THE CONTENTS OF THIS DOCUMENT ARE THE HIGHEST QUALITY AVAILABLE.

INITIAL Kun DATE 3/14/94

e

.

•

COPY

INEL RCRA/CERCLA INVESTIGATIONS

SAMPLE AND CORE DESCRIPTION LOGBOOK - I

WELL NO: 87020

DATE	START		19	
DATE	END	r	19	

LOGBOOK NO: <u>BWP-003</u> LOGBOOK ASSIGNED TO: <u>TEP CLAWSON</u>

SITE: <u>89020</u> - RWMC

WHEN COMPLETED RETURN TO: DONNA KIRCHNER MS: 4153 1403

> A5-4 Dayle 832

. 794 5366-3025 564 53-651	DRILLING C	ORE LOG	
Sale: 1/25/90		Borenole: <u>522.2</u>	
Geologist: T. C. AUSS	$\sim N$	Sample No.: D02 Z89	01
Core Langin: 3.3	(ft.)	Cored Interval: 2.5	Teo
		28.3	Bottom

Depth Below Land Surface (ft.)	Core Diagram	Description
2.6.500		IT Gray Vacioular basalt MATRIX
	2000200	of vericles of 25.5, 26, 26.5
27		2) The sheet Vesiclog 5 MM
- 28	<i>0</i> v	te BAA
		r
"фу. айну 41	, , ,	1 <u></u>
		• • • •
•		· · · · · · · · · · · · · · · · · · ·
)	•
•		
	- - -	-
•		r
•		
	•	
Remarks:	werrust.	od because adjustment unt
harted f	C and	locked up the tube
		AF-U
	Na Mahamman dan mangan menjadi kili kina di Katana Mahar Mahara na mangana menjadi katang menjadi katang menjad	· Page 833
		3

DRILLING CORE LOG

هر. الرجع	м	5040-0	025
2.00	:	5-84)	

,4

1-29-90	
General TS CIALUS ON	
Core Langth:5	(ft.)

	907			
Sample No.: Do	22	<u> 289</u>	0	2
Cored Interval:	28	3		Tee
	37.	3		Bottom

Depth Below Land Surface (ft.)	Diagram	- Description
	, i ^a , a, i	L+ Nodium Gray Vesicular basa/t vesicles 2-5 mm scattors 2 fracture, 7 paies 30.2' to 30.6' and 32' to 32.3'
	0	
30	·	
	e 	
32	°	
- 33	• •	

Remarks:

A5-4 Page 834

A5-4 Page 835

5 FIELD TEAM LEADER'S DAILY LOGBOOK LIED ID Januar 1,990 08:35 Partly Cloudy Began inloading supplies and sett to finish sementin cond Dipe, 0930 Mixed 20 sacks of Type II cement and pumped in 1 amulus of Robertous to set the 10" Conde the Lipe Saves about 15 gollans of conort behind rix when the annulus filled up. Attached hoses and HENA Filters to Compressors Closed out This Ste at 0120. 837

FIELD TEAM LE	ADER'S DAILY LOGBOOK
THURS II TENI	1990
OBIOD ARMA RUMAC FO	A METHE AN OLD P FELEN
M. BRUMEREL	
T. MATZEN	H. DEMINING
T CLAUSCH	J. DEAN BL
M. TOWLER	DTURGENSEN
B HIGES	D. KELSC
B.L. THEMAS	T. MILLER
SDA CUESED TO OFERATI	ICAS DUE TO WET/MUDAY CONDITIONS
S DA CUESED TO OPERATI	IONS DUE TO WET/MUMAY CONDITIONS
SDA CLOSED TO OFERATI	ICAS DUE TE WET/INGONG CONDITIONS
SDA CUESED TO OFERATI	ICAS DUE TO WET/INGONG CONDITIONS
S. GUSTEN SDA CLESED TO OPERATI Acomps Q. Mag	ICAS DUE TO WE T / IN UNA CONDITIONS
S. BUSTEN SDA CLOSED TO OFERATI Acomp Q. Mag	ICAS DUE TO WE T / IN UNA CONDITIONS
S. BUSTEN SDA CLESED TO OFERATI Alman a. Mag	ichs due to we to / in unity conditions
SDA CUESED TO OFERATI Amon Q. Mag	ICAS DUE TO WE T / IN UNY CONDITIONS
S. GUSTEN SDA CLESED TO OFERATI Amais a. Mag	ICHS DUE TE WET / MUNY CONDITIONS
S. GUSTEN SDA CLESED TO OPERATI Annas Q. Mag	ICAS DUE TO WE T/ IN UNA CONDITIONS
S. GUSTEN SDA CUETED TO OFERATI Alman Q. Mag	ICM'S DUE TO WE T/ MURDY & CONDITIONS
S. GUSTEN SDA CUESED TO OFERATI Annas a. Mag	ACM'S DUE TO WE T/ MAGNY CONDITIONS

5 FIELD TEAM LEADER'S DAILY LOGBOOK MON 15 JAN 1996 NO DRILLING OFFRATIONS THIS CAT. SNA CLOSED TO ALL OFERATIONS DUE TO WET MUDER CONCITIONS. Porce a Mator · _____ <u>A5-4</u> Page 839

FIELD TEAM LEADER'S DAILY LOGBOOK
THES IS JAN 1820
NO DRILLING OPERATIONS THIS DAY, SOA CLOSED TO
FIELD CRERATIONS DUE TO WET/MUDDY CONDITIONS
Almas a Matin
·
<u> </u>
Page 840

7 FIELD TEAM LEADER'S DAILY LOGBOOK WED 17 JAN 1990 NO DAILLUSS OPERATIONS THIS DAT SOA CLOSED TO OPERATION DUE TO WET/MUDOU CONDITIONS Floras a. Mation ······ 841

8 FIELD TEAM LEADER'S DAILY LOGBOOK THURS 18 JAN 1990 89020 NO DELLING, RUINE MANAGEMENT HAS CLOSED THE SOA TO AL OPERATIONS DUE TO WET/MUNDER CONDITIONS Romes a. Mater ____ • • • A5-4 Page 842

9
FIELD TEAM LEADER'S DAILY LOGBOOK
MON 22 SAN 1920 89020
PARTLY CLOUDE CLUARING WIND: 1-2 FROM NIN 1007
104_A.12.
UT:30 DEMALLIST MARIUE WITH 23 FT OF 8 IN SURFACE CASING.
10:00 DEMNINGS TRANSFER CASING PROF. THICK PICKUP TO DECK TRAILER
FLACE HEATER UNDER ALL TO WARD THE BUBSEL DESCRAP.
TO THE THE SECTION OF BIN FASING COUNT TO HIGH MAY
FOR STEAM CLEANING
11.00 TAKE CASING NACK OUT TO COCATION E.O 13 ATTEMPTING
TO START THE GENERATOR
1136 ED TOOL CONSTATOR IN TO SHOP
12.00 LUNCH
11:30 DEPARTIES OFT NIL STARTED PREPARING TO DRILL RIC OP
CTELLIS AND WERE AND CONCESSES, RE HE ARE INTES
HUGS FO ERCHT CHT CAR
15:00 REGINICALLING (CLEAN OUT APPROX & FT OF FILL
IN CONFLECTOR AND BEGIN DRILLING EASALT W/ 9 7/8 IN. BIT)
15:16 SCHOUL DRILL KOD AND BHA
15:30 PUNINHOLD WITH TAFT OF & & IN SURFACE CASING,
SET AT 245 FT BELOW SUBFACE
PREPARE TO MIX CEMENT
16:00 REGIN MUTNIC CERENT:
15:36 COMPLETE CEMENTING & IN CHAING AND CLEAN
<u> </u>
A5-4 Page 843 Thomas a. Matin

10 FIELD TEAM LEADER'S DAILY LOGBOOK TUES 23 JAN 1980 89020 WALT ON CEMENT Fromas a Matim ----A5-4 Page 844

	••
FIELD TEAM LEADER'S DAILY LO	GBOOK
WED 24 JAN 1990	<u> 9902 D</u>
CLEAR, 20°F, WIND 5-10 FROM	WSW.
78:00 BRIEFING BEGINSIGNOFFS.	
8:30 AECIN WARMING RIG ENGINE AND SET UP	CUT OFF TOP OF A"
SURFACE CASING .	
19:45 RIG STARTED AND WARMING UP.	WAITING FOR H.P. TO
GET OUT OF MEETING.	
11:00 H.P. TOOK SMEADS; COUNTING SHE	LARS. DENNINGS TRYING TO
WARN NYDERAUC SYSTEM.	
13: 40 RUMNING IN HOLE WITH CP CORE	samel
4:10 BEGIN CORING ; CEMENT STILL G	REEN, CARE BIT WILL NOT
<u>Cu</u> T.	
4:25 AL COME OUT OF HOLE WATH CORE ASS	SAGLY PREPARE TO RUN IN HO
WITH BIN TRICONE TO DRILL OUT CEMENT.	*****
5:10 RUN IN HOLE WITH BIN. TRICONE.	REGIN DRILLING OUT CEMENT
DRILL TO 25 ET. (GIN. INTO EASALT)	
SISS COME OFF BOTTOM WITH BIT. LEAVE	ONE TOINT OF ROD WITH BLT
IN HOLE & IN CADER TO CLOSE HOLE FOR TO	HE MICH
G:00 SHUT DOWN CLUSE OUT PROCEDU	R.E.
and and a second se	
	. <u></u>
Λει	
HJ-4	

12 FIELD TEAM LEADER'S DAILY LOGBOOK CLOAR CA hur 1 -ーイで 2 equip 2 MPI 10 COYP rad Densetra 1300 a No neo A 1500 ad1 L'C 0 105 1520 CCOILE. ρ 2 11 11 S 1Nº \heartsuit 5 hea U ノカス , o16 / hrun 16 30 NC. DUIN to a С. 11 DU \sim U 11 NO 7, 15 - 4846 age

13 FIELD TEAM LEADER'S DAILY LOGBOOK . MAN 1-29-90 CLOAR 1.11110 0902 5 ρ_{α} lure ING 1100 Cor) n in 1/ ... 7 70 he nall KIN bar Orl SAM 10 5 \wedge и ING ¥. \mathcal{O} NPI ſ U. / t WI 1615 00 19 5-4 847

14 FIELD TEAM LEADER'S DAILY LOGBOOK 1-32-90 Overichs + 11-0 123 30 proc-Ur-100 <u>60</u> 090 SAND 0,0 + OU ç Mple yorcu 1020 pul nod.s SOME CORD AL TOP harro ON HAIN DPA1 5 DOM r Arg pr GAN NA \mathcal{O}_{1} re γ_{μ} 'N 3) ACEO j N SA $\varphi \zeta$ <u>-3 INC</u> TMENT 50 THEN 2 -2 4 A.S.A Ş \mathcal{O} hec VC 5102 iNC a. WAS MADE +0 C U ICUPY てこ 9 SACH N/ ሳ '420 ent 35 001 **C**

FIELD TEAM LEADER'S DAILY LOGBOOK 15 The FRIDAY ZFAbruary 1990 Duercust and CALM Site Inspected and opened for work of 915 m Hacebuse opened at 2:47 by Min Brumfield Started Rig et 9:00 m. Begin Terping 7% Zit and drill Staine into hole at 10:20 Berin Dawing + 10:30 Fies Connecte at 10:52 Bein dille 11:00 auxilling compressor. Encountered 110' Interbed at apportint Stop for second connection @ 1130 COMPRESSON OFF at 11:32 Hopes For La 1135 Started Dreihing at 12:28 pm 12:57 DRILLER THREASED LUOR 1:07 Stopped Drewing to make connection 1:09 5hut down Aie from Auxilling Compressore 1:10 Connection Complete, engaging secondary compressor and resume drilling 1:37 Stopped Druing to make connection and sweb hole. 1:38 Shut Down Auxilian Compressor and BREAR Connection 1:40 - Connection complète and Auxilling Compressor on line Z:07 Stopped Daulin to make convertion and such hole Down Auxilling Compressore and break connection 2:08 Shut Z:09 Connection Complete! Z:10 Auxilluny Complexeors on line. A5-4 Paige 849

FRIDAY 2 February 1990 FIELD TEAM LEADER'S DAILY LOG 16 LOGBOOK 7:44 m Shut down to make connection and suich loke down auxiliar compressor and BREAK 2:15 Shut Connection 2:46 Connection 2:46 Ausullia complete mplessor on line suab hole. to make connection 3:08 Shut and 3:09 Shut down Auxilliancy Compressor and 3:11 Connection complete and Auxillic Agnection complessor 3:20 pm BREACHED 240' Interb 3:30 pm REAMING and Swabbin the hale BREAK Connection and shu + down Augellun 3:360m Compressor. 3:38pm Auxilling Compressor dimi basalt Auxillian complessor _04 RIPPING out of hole 3:4S - approximatelle 246 5.100pm A5-4 Page 850

2/14/90 17 FIELD TEAM LEADER'S DAILY LOGBOOK TD 238 W-+ _____ 1300 ····· 851

. 4

3²⁰-1-5-<u>|23|90</u> 18 EAM LEADER'S DAILY LOGBOOK 12.42 TARing Samptes for RELEASE at Duning # YB1 1986 Ric liscens Ria - Control 1 - Backot RGOZDD1 NA -DRILL DIDE BIOZDDZ VOA DRILL 8902DD3 METAL -Rib Was Pressure Vest cleaned 122/20). These samples are being analyted -VOA'3 and Metals, to assure the ry is an at any Condominate on the surface or in 2/22/20). - subsurface of the SDA. Delivered to LAB STEZ MINIS/30 + 1322

FIELD TEAM LEADER'S DAILY LOGBOOK • ____ . a - . . i i _____ pr. . 1 A5-4 Page 853 · ____

. 4

COPY

NO.WH-7

TOLE CORPORATION BUFFALO, NEW YORK

8 C õ Ó ā ż . وله خد 8 BO ** ------. 1. N. -. <u>...</u>-المراسرا 0 Ô. 5 6.02 2-1 2 n'' ĥ. 5 المشاربة ا 0 0 B C B C B _ _ _ _ 20 السريسات . ج اف افر THE L سل مد رود ر Ξ المیز میں میں میں است. پیسال میں میں الی میں 9 ----h 30 <u> 1997</u> ----1 inter 20 Ñ 2 Ξ. <u>0</u> 2____ ---بۇ مۇنمۇ ب سالية الملاط _ أسعر وسن سأسأ ك -8-___ 25 -00 <u>____</u>

> A5-4 Page 854

C RESIDENT STREET

0= 1 <u>à</u> Q, 8 ř <u>َ</u>ه: 50 5 00 -10-. 1 8 ---7 9 ---با العادية (عدم يبا التاريخ العلم الاستنجاب (10 -- ; - ! - . . يبغ ماد المرجع سادة <u>____</u> مدمدة مبدادة _____ . -----9 -----_____

A 5-4 Page 855

NEW YORK

NO.WH-7

8 Q B 5 لتساد بالمشت ----:e____ -<u>t-t-</u>___ 8 _____ المعادية الم tt E -----------┑<mark>┙╺┧╺┧┿┿</mark>┿╎╎╎╍╡╶┧╴┯┯╈┯<mark>┠╶┓┯┯┙</mark>╸ -----المراجع من معالم المراجع المراج المراجع <u>g</u>__ سإحمل كرابي كريدو and and a second se The second se The second se **Q**___ ____ ر داده وهم ها استا به موسود. ها معد اهد مرابع مطبقها و المطول و يقدر الدغا 4 المحدد --- **9**----------بر ، ؤ مراجع من ما ما ما ليبير براحاء - <u>Q</u> 1111 يساعه والساء 00 0 ÷

A5-4 Page 856

CHICONDING CHARTY GRAPHIC CONTROLS CORPORATION SUFFALO NEW YORK

. . Ko.WH-7

ō - i-0 \mathbf{O} 3 1.00 - فعالمة بال 02 ರ 5 0---07 Λ --07 ē σ 6 9 Ġ) 2 ₩_¢ 0 Survey Repr. m-ġ. Σ and a product of the second 01 ١., 0 4 4-Ē. S. أسبع أسراج الجراجة المخداسة فسأسل ----1.4 نہ نہ پ سادن ولير رسي ----State (1. \$ o --د بليا فراييك عليه الليك الأرد والدار د بت " ست 00 4. ... · . . يبأ بدهم فح dag b -----جهدية التبط 1.4 1...... ة سر م 0 t 1 . م مسلم م ----. . . . -يبذب أنصرت ----6 ÷----ē A5-4 Page 857

A 5-Page

RWM(89-02D Feb. 6, 1990 Neutron Log 3 ci Am-241Be 15" Spacen C. P.= 1K T.C.= 4 Pos = 9.98 Var. Span = 10.0 T.D. = 224.0' (detector) L.S. = 20'/Min A

CHRECOND!

_____ :<u>[]):</u>___ 0 0 0 :0 863 11 A5-4 Party 0

10.VVH-7 - 0 -03 (<u>Ait</u> 1.11 New Tran Log 1066 Į मिं 00 111 0 365 40 Pault l M M M 50 80 11

0800 5/12/89

COPYRecordificat

LANCE, Chris, DONNA BONNie; SAmple INFORMATION Needs toget to DONNA quickly for our part at the drill site the PG needs to copy AMDMAIL copies of pertivent sample log and o pages of other logs on a basis. Rungen A5-4 Page 8 866
2 CME 75, MAYHEW 20000?, COMPRESSORS . . <u>n 62</u> 01 Sp Water res/Trup Cal Tind . , ÷ į. • • • 1 <u> 45-4</u> Page 867

2/14/90 Tusting 8902 Weather Cloar Cold 10:30 AM Tagged hole bottom @ 238 f. Wot sediment up standing water @ 238 ft. 1 1300 startrunning tremie tube 10.2ft TICAL . will run lien 21.2 juts, le they with and lea 5.2 ft Jut total depthbelow ground surface with tremie 226 ft. 14ro Noticed strong odor frim hole Luring tremie INSTAL Mel GARGIA MEASURED 65 ppm coly at hole Nothing IN breathing art materials instal Ation 1443 5 sand to the interbod will place two socks of provide clean bottom in then install ins IN the upper section a 1450 putin 2 sacks of sand 1.1 in hole to 228.5 will install instrument at that depth and continue the sand fill should maintain, openhole 10 path way in the interhed 600 1530 INStrament #1 IN at 229 (tubing measure) poured 2 more SACKS of SAND top of SAND at 221.444 45-4 Page 868

4 8902 D Instrumenting 2/15/90 equipment Started rigging 0930 up top Ace bontonit óN CEMAN I_ cap 2545 PLACED hoi Mix and place come a poured 5 sts come. de to 210ft 45 Mixed, & pourcal 5 sks LUNC 204 1230 Topot 1250 placed 1315 INStra × 199.7 ft <7=== 2 0455 the 1101 2 WON trenie back to ma room pulling 1330 Wor WSt- DASSO ecding to INSTALLA tiondra renje run 350 f:f ho 1 01 - 2___ POUR SANCE batton INS 198.7 355 SAND 00 DACED gt <u>+'</u>+ a boutonite at 188.5 O CAP st tranie to place centres MPL 52 Adi AC L ust nje depth, 179.8' spot 1st 1430 cement at 180.5 will benton te 861

896203 8902D 2 7 180 1440 ' Vr 1500_ <u>>ourea</u> 1505 5 DIACO 1515 9 _1615 Shu 20 sacks comenti dawn L. LOURED a Will MEASURE tomonica • ۳ -. 870

ć FRIDAY 16 February 1990 8902D Instrumentation 0845 HEAVY Snow falling with light winds blowing from the east. Tim Miller reports How readings up 2 300 pm in the breathing zone above the purchase I CREWS will war respirators with in 4' radius of the borehole 0850 Writing up equipment and pieparing to place instaiment #2 0945 MEASURED depth through tremits is 1431/2 + 3'-= 145'. CEMENT will be added to pring top of coment to approximately 136' 1010 M-Sape depth to the of cement is 138' 1020 Placin Bentonite cap 1025 Bentonite Cap to 132' 1100 Placing Vapor Poet #4 and sand. Bottom of sand pack for #4 is 132'. Vapor Pott is at 130'. Top of sand is 124'. Bentonite cap placed from 124' to 118'. 11:10 Placed convent on top of Bentonite Cap o 11:30 stopped for lunch 5-4 Page 871

7 FRIDRY 16 February 1990 89020 SED cement at 110'+3'=113'. NExt zone Id be comented to 109'. bentonite to 106, sand 106-101 and bentonite to 28', for Instrument 1340____ n 106-101 # 1400 - Shat coment@ 113' Will roume with down -w/ #5 Abond 1990 FRIDAY 16 ł 5-4 Page 872

8 Tues 2/20/90 89020 1 1100 Tagged cener t top at 109.5 te to 106 1115 Placed bruton. ₩5 1130 start, ac IN with westrument 00 Intriment 45 at 104.51 TAM top at 995' top or t. SANd 125 bentonite at 97' ready for cement Target for top of cement 76 1.5 will mix and place 13 sks and meas. 1230 cener to t'so' mix 2 sts 1300 topot cement at 76 HIYO TOP OF CENTONITO AT 73FT 14:50 ENSTALL POST # 6 AT 70.5 FT. 15 10 TOFOF SANA AT COFT 15:20 TOPOF CENTENITE AT 648 FT ISTO HIXAND PLACE BRAGS OF GROUT CEMENT 15:45 TOP OF CEMENT AT SS FT. TUP OF BENTCHITE AT 48.6 FT 22 25 16:00 INSTALLING FORT 7 AT 46 FT TOP OF SAND AT 43.5 FT. 16:05 16:10 TAP OF BENTONITE AT 41 PT 14:15 MIX 4 SACKS CEMENTE OUT TOP OF CEMENT AT 34 FT 16:25 16:30 CLEAN GE AND SHUT DOWN, WILL RESUME WE PCAT # 3 TEMORECU. Henry a. Matin FEB 1920 872

Q WED Z/ZI/DO 89020 WARM UP EQUIPMENT £30 to to 2 of Cemant MEASURER Desth 34.5-1 \$45 32 FT TOP OF BENCONITE AT INSTRUMENT # B AT 30 FT INSTALLINC OF SAND AT 25.5 FT 708 TOP OF BENTONITE AT 21.5 FT MIXING 12 15 BAGS CEMENT GROUT TOP OF CEMENT AT APROXIMATELY GROUNDLEUFL. SHUT COUN AND CLEAN UP INSTRUMENTING GERATION 8 LUNCH CLEAN UP AND PREPARE TO WELD RISER TO TOP OF SURFACE 100 CASING TOMORROW. HITSO' CLEAN UP CONTINUING, EO HAULS OFF DEARLS INCLOENTAL TO DRILLING. E.O. REMOUES GENERATOR. SITE IS SURVEYED OUT. Thomas a. Mater WED 21 FER 1990 ÷ . 2 45-4 873

A5-4 Page 874

LAB NOTEBOOK

EECOD &

NO. INEL-NBU- 1443 ASSIGNED TO Joel Hubbell

SUBJECT^S.I.P. - Drilling Log FY 1988 Volume 2

Simples Id 880ZD

A5-4 Page 875

THIS LOGBOOK WAS RECEIVED FROM RWMC

A5-4 Page 876

л.

FORM EG&G 3025A (RPv 05/38)

Surface Elevation:

WELL LOG

_(ft.)

Well Number:	5902D
Measuring Point:	

DLM -2			
Date: <u>87/29/88</u>	Page:	of	

Geologist: __

669 435.1

Location (co-ord): _____267_365.5

Depth Core % Interval Length Recov-Sample HNu Comments, Activity Time (ft) BLS (ft.) ery Number 28 15 Table TOD. Hower Ruma Angeron site, Hawley on site \$129188. 7/28/88 11:22 Blew out hole 8802001 11:29 - 6 191 -12,1150 = 6.0 BLS Ą: 11:41 11 Tricone Reaming 1214" Bit Dien)E @ 12:45 - 10.7' Done Reamina 6.3 + 7.2 = 13.5 Steel -2.8 54 = 10.71 14.11 E10.7' TD 10" Casing. 10" Casing Top is 10" above LS. Set casing . Table about to TOD St A LSH DM Tably 31271857 Steel above LS 410 Table to Street Ta LS to Table 2.9 5.00 تبتط تتبيط فمماعتهما ومريا ومريا والمريا was not Total 10 Casing Length = abuil 20. = TD of 8" = -7.4 SU 10.7 Cemented in bottom of casing 3-4" then ouched to TD casing in up sides Cementer annulus 10 Surface <u> A5-4</u> Paye 827 Delunah & MicElray copieet from hog book IP buchay 797, 8)8/88

18.10-5+eef+c3 - 565-Shekup

4.45 = TO

A 5-4 Page 878

CBASSEMBLY= S.1, LS to Table = 2.8, 2

FORM EG&(•Rev: 05-88)	3 3026A				W	ELL LOG
Well Nu	mber:	530	CZD			Date:
Measurii	ng Point:		WW et an aske maken men ad	<u>LS</u>		Geologist: D.L. MICELROV
Surface	Elevation				(ft.)	Location (co-ord):
Time	Depth Interval (ft) BLS	Core Length (ft.)	% Recov- ery	Sample Number	HNu	Comments, Activity
9:08					1	ppm in barehole, BZ=OK (0)
11:35				ALMS/515	•	Lunch
11.45	5 <i>9.51</i>	4.9	(5)	# 3302D02	0.2	(4.1) = Besalt
11152						Filter Change
12:03	- 14.5'					· · · · · · · · · · · · · · · · · · ·
12:50 	1 4.5 LM 315	135 4.95		\$8802D03	¢.	$\frac{32.7 - 5.0}{5.3} = 5.0 \text{ (a) } 7.5 \text{ (b) } 7.5 \text{ (c) } 7.5 ($
13:28	-19.5					
3:44	19.9			9902D04		<u>plm \$15788</u> <u>.5.35</u> <u>38.1 - STE</u> <u>2.81</u> <u>9.16</u> <u>19.9</u> <u>0.65 - She peice</u>
14:03	<i>24.9</i> '			 		S'h T danne son - l al dissel
19:20 DLM 515174				-		A5-4 Page 879

•

Debuah Z McElray 8/5/88

•

20' 84 17.6

.

A5-4 Parke 880

З

,

•

6.3 ¥ D05 3.1 3.10 Steel 2.5 3.15 54 2.2, 3.7 DOF 343.1 8.1 35.0 206 38. (-Sheef 2.9 38. (-Sheef 5.3 5.1-50 38.1 <u>- 8.1</u> 30.0 3.2 3.7 3.7 36.5'SU 3.7 36.5'SU 3.7 -6.5 9.4 26.6 33.10 8.15 24.95

A5-4 Page 881

FORM EG&G 3026A (Rev. 05-88)

WELL-LOG

	Date: 8 8 8 9 Page: of
Measuring Point:	Geologist: DL MCEIRON
Surface Elevation:(ft.)	Location (co-ord):

Time	Depth Interval (ft) BLS	Core Length (ft.)	% Recov- ery	Sample Number	77)n HNU	Comments, Activity
6:30 7:46 8:30 10:10 10:20	eren al san al construir e la construir anna la san daoine				0.5	MEASURE HOLE ON BACKLE Site. Reaming Steel. Steel. Steel. Steel. Steel. Steel. Steel. Steel. Steel. Steel. Steel. Steel. Steel. Steel. Chick hole. Topod Hole. Topod Hole. Topod Hole. Topod Hole. Reading to Ream. Reading to 23.9', whither filters Resume Reaming Reaming Reaming Reaming
11'40 11:48 11:55	24.9'	4,7		<i>9902</i> 005	ø	CP Wireline Coving. 5.35' Steel Above toble @23.7' Stul " - Soft spot. Hit sectiment I Bul
12:10	-30.0' -35.0'	4.9'		3902Wb	Ą	5.3' stul Bugalt
12:52	40.0	5.		8382007	¢	5.3 Stul
					A E	5-4 Age 882

л.

FORM EG&G 3026A (Rev. 05-88)

WELL LOG

Well Nu	mber:	4302			Date: <u>9-9-99</u> Page: of
Measuri	ng Point:				Geologist: DL MLEIRN/
Surface	Elevation	: 		(ft.)	Location (co-ord):
Time	Depth Interval (ft) BLS	Core % Length Recov- (ft.) ery	Sample Number	HNu	Comments, Activity
13:21	40'	40.02 02m 8-3-88	<i>q8</i> 02.008	¢	5.3 Bouet
13:36	45.0'	5.25		, 	
(3:53	450'		8802009	6	Basalt
105	50	4.8		/	
35:10 14:53	50' 58' 233'				Messure Hzle 47.75 + 5 = 52.75 -2.8 Step 12t day
	والمتعا ومعا ومعا ومعا ومعا ومعا				A5-4 Page 883 Neberah Fillelra

.*

CALCULATION SHEET

.

•

,

. •

A5-4 Page 884

FORM	EG4G	3026A
0.000	4.321	

WELL LOG

ell Nur	nber:	850	020	>		Date: <u>5-9-88</u> Page: of
easurin	ig Point:					Geologist: <u>DL MCELRCY</u>
irface I	Elevation				(ft.)	Location (co-ord):
Time	Depth Interval (ft) BLS	Core Length (ft.)	% Recov- ery	Sample Number	HNu	Comments. Activity
6:30 6:50 830	- 33'					ON-SITE BEGIN Reciming (centinue), 7 7/3 "bit 1.3'
:56 :36	48.7' -50'		, , ,	<i>7902</i> 010	٨	25.1 = Barometric Pressure CP Wireline Curincy
		5.1			φ	Bosaet
53	55					
1:25 1:20 1:22	55'	5,0		8802D11	Þ	5.3 Lunch Resume Coving
1:34	60'					
:#4	60'	414		880200	ø	5.3 - steel
2:01	651				·	
2:18	65'			8302013		1.3 - strel
2:29	70'					Went on bronk. Pulledsample autoflicite
13:30	701'					W 13:05 Taped Hole T-D Ream wil 3(20)
		5	A5-	4 Page	. 886	+ 2.5' wite #4 reaming stral

A a 1 y MI ON

FOAM EG&G 3026A Rev (5-88)

WELL LOG

Vell Nu	mber:		58	C2D	i	Date:		
leasuri	ng Point:	-	•			Geologist: DL MCELROY		
lurface	Elevation	:	<u>-Inno. In 50 181</u>		(ft.)	Location (co-ord):		
Time	Depth Interval (ft) BLS	Core Length (ft.)	% Recov- ery	Sample Number	HNu	Comments, Activity		
6'46	48.7					Begin Reaming. 77/3' hit.		
	69.9'					End Reaming		
9:17	70.0	485		8902D14	9	Fape Hote 2 DLM 8-10-88 .5.3 - Sheel Quialt		
9:49 9 :4 9	75.0'		 					
7:55	7-5.0'	4.B		5302015	P	S.3 - Steel Basalt		
10:17	\$90.0'		1					
1149	80.0'	5.0		8802D16	Þ	Busult		
11:40	\$5.0							
11:55	95.0'			8902017		Basach		
12?: 12:53	90.0'	1		2502018				
8:13	45.1			0,000 0.0				
3:5/	95.1					92.9+5 Topel foatage = 95.1 -2.5		
4:00	[[r 1	 			Stry En Dry		

Deborali FMcElray

1 C

.

.

. 6

. .

A 5-4 888 page

A5-4 Page 889

,

.

. •

FORM EG&G 0026A

WELL LOG

v.'ell Number:	5802D	Date
Measuring Point:		Geo

Surface Elevation: _____(ft.)

Date: 8-11-28	Page: of
Geologist:/	MEEIRDY
Location (co-ord):	·*

Time	Depth Interval	Core Length	% Recov-	Sample	HNu	Comments Activity
ាពាម	, (IL) DES	(14)	e y	Number		
11:30	Ē,		2			William up.
12:15	67.9		· · · · ·		1 1 -	Realling - = 7/3 triane Sit
15:0	950'					Frid Barning, Go "and
,	E.	ļ			1	(112 m/ 5 mp 7 20)
		i				
1		•				
1	ļ				-	A DAMSD.
						Actional Milling
						8/11/83
	È					· · · · · · · · · · · · · · · · · · ·
	Ē	1		2 2 2 2 4		1
	Ę	1 1 1		 		
	r T	• •	 	1		
	-	1				;
	<u>F</u>	, I				
						······
	.			1		
			1 1 1			
	Ē.					
	Ę		1			
ľ	*	•				
						······································
	1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	L					Page 890
L.,						

JASALT ___ 97.1 INTERISED

- - - - 101.8' Basaet

A5-4 Page 891

FORM EG&G 30254 (Fev. 05-88)					W	WELL LOG			
Well Number:						Date: Page: cf			
Measurir	ig Point:		• • • • • • • • • • • • • • • • • • •			Geologist: DL MCELROY			
Surface	Elevation:				(ft.)	Location (co-ord):			
Time	Depth Interval (ft) BLS	Core Length (ft.)	% Recov- ery	Sample Number	HNu	Comments, Activity			
6:3D	r r		1			Set-up.			
7:44	95.0'	T. ter 33 S 11/55	C	880329		Steel: 5.3 Soft & 3' unto beel Stop steel (a) 1.3 Bosact & Interbed ant RO Examplify to Stills For			
7:50_	-99.0'					Analysis' so can send App it (next) to wester hab			
8:D					7ppm	Leave site 7 ppm in bore hole. Could not			
11:00					Φ	ppm in borchotic			
11:40					5-97	il gas would reapper. pom. Took Gas Sample (Kelly Wright & Duna False)			
(2:00)					:	Winds too high 720 mph. Cancel samplin.			
13;00)					· · ·	Goo Atomes			
14:42	-68.4 -		-	2802020	Þ	<u>CP (or e</u> <u>(2) 3.4' inte ure, became harder</u> <u>Steel = 22.3.6'</u>			
1451	101.8- ICI B	EDLM 8-1	54			PG. Tape Ne 103.5+5.0=105.5 50=3.9+2.8=6.7 108.5-6.7-101.8'			
15:15	بر لمعت اعتدا بمعداده					Gouto Day Jelvali Jillelay 8/5/88 A5-4			

. 5

14

45-4 Page 893

$$5|17|55$$

$$77/5" = 5.88"
= 0.65"(H)
1"= 0.06ft
$$V = (\pi n^{2}) L = \pi (3.94^{2}) L
= \pi 15.52 F'' L
= \pi (0.006 ft^{2}) L
= 0.33 ft^{2} L
(13 cubic ft)
$$V = 0.33 ft^{3} (13 cubic ft)
V = 0.33 ft^{3} (13 cubic ft)
V = 0.33 ft^{3} cm^{3} q_{3} q_{5} cm^{3}$$
So Gignue $V = q_{3} q_{5} sml \approx 1.2$
So Gignue $\chi = 1.2/10ch = 77s$ Diam Bacelelo$$$$

16

2.54cm/in 30.48 cm/ft 28316.8 cm³/ft³

...

.

11 X10 = 110 10.5 = 110.5 Steel

A 5-4 894 Page 894

ORM EG&0 Rev (05-88)	3 3025A				W	ELL LOG
Well Number:						Date: <u>5-16-88</u> Page: of
Neasurii	ng Point:		~			Geologist: DL WCEIRUY
Surface	Elevation	:			(ft.)	Location (co-ord):
Time	Depth Interval (ft) BLS	Core Langth (ft.)	% Recov- ery	Sample Number	HNu	Comments, Activity
6120 7: 85		 			77pm In Dorehole	On-Site. Set up. It survey Bragin removing CP steel. Change to deconnel diam tot. (In hard or and
ଞ୍ଚାଠ	Ę		:	15000000000000000000000000000000000000	: : :	Put in CP steel w/ diam bit
8:30	101.8	3.2'		8802021	4 April	3.5- Steel above table UMS/14/54 Ring to bottom sing = ## #20.18' 0.4= To table
4:05	105.1	4.2		8902722		0.752 from Top Steel 1.151 Dem ghilist
4:27 <u></u> 11:45					0.4	Dulled CP ster Dut in Deaming Ster Turned on vent pump - upsteel togs' Opened top. Vent - min -> Rose to gr. Topon - peaked - the went down. Stayed at 0.4 ppm> bkgun Dd not gas sample.
(2:15 12:40 (3:00	75					Began Peaming Sine Gravel in cycline End Reaming cutting - 1-2m Vength USGS LOSSEd Hole in 2 21-51
			- -		 A5-4	8-16-88 F Page 895

.

FORM EG&G 3026A (Rev. 05-88)

.

4

. 5

WELL LOG

Well Number:	8802D	Date: <u>5-17-88</u> Page: of
Measuring Point:		Geologist: DLMCELROY
Surface Elevation:	(ft.)	Location (co-ord):

1030 1030 1030 1030 1030 10315	Time	Depth Intervai (ft) BLS	Core Length (ft.)	% Recov- ery	Sample Number	HNu	Comments, Activity
1/20 Driller 5245 choing ca that my but Q 103.9' - this is about the real lather of the reamed. the locked of reamy steely could see the the reamed by under the ream for measure Washing coursing the the course of hole. 104.7' bittem of hole 103.9' b' cosing TD alove pulled. 103.9' b'' cosing TD alove pulled. 103.9' b''' cosing TD alove pulled. 103.9' b''' cosing TD alove pulled. 103.9' b'''''''''''''''''''''''''''''''''''	630	in a lana lanal mada anda an ban					Decon Cusing Put in 11 perces of 10' 6" manne + 0.55her -=110.5 H casing. Tack weided straps of steel to listed joints. Here 5'4.5' it infall send- from belt caring OLN 3-17 5 5 (and blav if all me - blowing down cares. And turnin casing. Some gravel bluev up with same. Must be regravels in the 110' Interpret.
AE IT	11.00	104.7 103.9	l boitor 6" ca	n of sing T	hcle <u>Defare</u> pu	lect.	Driller saus casing on Jottom, Jut Q 103.9' - this is short the roc he though the reamed. He looked for reaming steel, could so it in ast mouth he reamed to use to 104 /2 => believes he monophing-7. didn't ream for enough. Wash's care in was preach at bottom of hole. Drillers begin to pull casing. Will Publi Custing, ream blake to 5' below IB, the case. Stop for Day

National 8-17-88 Ì

CALCULATION SHEET

105.0°

8802D1 109.1 Steel 3.5 -6.3 101.5 -6.350 105.10 - 3.02 - 105.08

A5-4 897 Page 897

FORM EG&G 3026A (Aev 05-88)

r

WELL LOG

Well Number:	5902D	Date: <u>3-13-55</u> Page: of _
Measuring Point:		Geologist: DL MCELRUY
Surface Elevation:	(ft.)	Location (co-ord):

Date:	3-1	3-53	Page:	 of	
Geologist:	\mathcal{D}	_ MCE	TROY	 	

Time (ft) BLS: (ft.) eryNumberHNuComments. Activity6:20Set-upDheck hole.9:101040'Proceed with Pulling	rasing.
6:20 Set-up check hole. Proceed with Pulling	easing.
en 1040' Proceed with pulling	rasing.
Leam to tosse with	77/3" LSF
8:37:108.6	
Put down casine, 6", 5	Shapsweland
The castra Joints	
Pucking to TO Puls	
in 60 Dentronto (21 Pline	ch) Gives
3" Bantonite in annular.	SDACA FAST
Fills up rathele and in	nner casina.
12:21 Pushed casina back to	, TP.
Cut off 6" casing	12" abovels.
Brass ring - temp seal between	n 6" = 10" casing
13:19 Winds Ober 20 mph_5	that dozen
	· · · · · · · · · · · · · · · · · · ·
	(A)
1.02	ilent f
$h_{1} \approx 1^{1/2}$	0
the second secon	
A5-4	
Page 899	

•

FORM EG3G 3026A

WELL LOG

Weil Nu	nber:		<u>105</u>	D		Date:
Measuring Point:						Geologist: TOL INCELEDY
Surface	Elevation		,		(ft.)	Location (co-ord):
Time	Depth Interval (ft) BLS	Core Length (ft.)	% Recov- ery	Sample Number	HNu	Comments, Activity
2:15			1			in the isometry said
7.15	109.11 -	5,0		-1962122	>backs	steel 6.2' Abou Fable
7:35	114.1					
7:53	- 109,1 - 114.1	PLIN	5-19-5	3402024		6. 2' Steel Abave Table.
		5.05				· · · · · · · · · · · · · · · · · · ·
813	EIMA'					
8:37	119.1	5.05	1319.38	9302025		6.2'
9:0-1	- 24.	5.00				
9:17	4.1			3802026		(a.25)
6.21	المركد ور	2.3	ancat	Tube? F	ulled w	to check out, TUREOK, Sample V.
1.50 9:50	126.4	0.75'		8802027		- tube stuck coming up, Poured ait in steel.
					10-37pm	- HWH CCH -> sample part
10.19	128.6			- ` :	40-50pp1	-Stopped drilling due to his organic reading. Have to deem CP steel perawart all in pice
12:00			 			Alsso need to decan Reaming steel, washing to
64. 2	والرومية والم		 			•
e						A5-4 Rase, 900

BOREHOLE 8902D

A5-4 Page 901

.

يون. مربع ف
A5-4 Page 902

.

.

COPY

INEL RCRA/CERCLA INVESTIGATIONS SITE: FIELD TEAM LEADER'S DAILY LOGBOOK 89020

LOGBOOK NO.: <u>BWP-013</u> LOGBOOK ASSIGNED TO: <u>TED CLAWSON</u>

WHEN COMPLETED RETURN TO: DONNA KIRCHNER MS: 1403

A 5-4 Page 903

A5-4 Page 904

.*

1	
FIELD TEAM LEADER'S DAILY LOGBOOK	
<u></u>	
- BENNING BALLED TA	_
R JAN 90	
D9:30 DENNINGS ARRIVED WITH THIER RIC . ME FLECO	
DECONTATION RIG	
	_
	álimati
·	
	_
	Methine .
<u></u> <u>A5-4</u>	domana-
Page 905	<u> </u>

FIELD TEAM LEADER'S DAILY LOGBOOK

ς	23	10	1	1	Ŋ	1	 7	ΔN	(
-		•	-			· 🛶	1000		۰.
1000									

NAME (Print)	SIGNATURE
TED CLAWSCH	
TOM MATZEN	مربقها مربق مربق مربق مربق مربق مربق مربق مربق
DOUC JERGENSEN	
MIKE TOWLER	
MIKE DENNING	•
TODYPANNING	
•	
<u>Visitors-Name</u>	<u>Reason for Visit</u>
1997 - J. C. J.	
P	5-4
Pi	lage 906

A5-4 Page 907

A5-4 Page 908

.

Appendix 5–5

APPENDIX 5-5

APPENDIX IX DATA FROM BOREHOLE 8801D

.

Pesticide/PCB 88	1000EBB	
PESTICIDE ORG	SHEET	CPH SAMPLE NU.
Lab Name: ROY F. WESTON Contrac	ct:	881DOOEBB
Lab Code: Case No.: <u>880850</u> SHS NC	J.: 50G	NO.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	88065009002
Sample wt/vol: <u>1000 (g</u> /mL) <u>ML</u>	Lab File ID:	
tevel: (low/mad) <u>LOW</u>	Date Received:	06/04/88
% Moisture: not dec dec	Date Extracted:	06/06/88
Extraction: (SepF/Cont/Sonc) <u>SEPF</u>	Date Analyzed:	07/20/88
GPC Cleanup: (Y/N) NpH:	Dilution Factor	: <u>1.0</u>
CONC	ENTRATION UNITS.	La mante lime
CAS NO. COMPOUND (ug/	L or ug/Kg) <u>UG/L</u>	Instruction of livel
319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC 58-89-9gamma-BHC (Lindane) 76-44-8Heptachlor 309-00-2Aldrin 1024-57-3Heptachlor epoxide 959-98-8Bitldrin 60-57-1Dieldrin 72-20-8		V . 050 U - not defected at . 050 U . 10 U 0. 50 U 1. 0 U 0. 50 U 1. 0 U 1. 0 U 1. 0 U 1. 0 U 1. 0 U

He Value Report

05-5 page 1 1/872700.

FORM I PEST

	Organophosp Destrictus	shorous U	Norma	d10 115	. Tenti	E340	3
lamsted: Received:	06/03/53 06/04/29	•	88100	DEBB	Samble LU:	1306s000	
CHLOPINATE	D PHENOXY ACID	HERBICICES	2M 5008	CRGANOPHOSP	HOROUS PESTICI	CES	EPA 614
E-tracted: Analised: Contracted:	16/03/99 16/03/89 20	Ert Fact: Dil Fact: Blany ID:2	100 	Extracted: Analyzed: Confirmed:	98%96%88 98%36%88 110	Ert Fact: Dià Pact: Blank ID:	100 1 CAS8134
PFA LID F: Lomeound	002	Fesuits 1 .ppp: _g/t	Sample	PFW Lib #:		esults ppp) ug/L	Det Limit Sample Ug/L
2,4-0, 2,4.5-TP 2,4,5-T	S1lve	ن ب ب ب	1.00 2.12 5.10	Phorate Dimethoate. Dioxathion Diazinon Disulfoton Demeton Methyl Dara Malathion Sthyl Parat DEF Sthion Thionazin Famonur Azinonos-me	(Delnav) (DiSysten) thion hion thyl Guthion).		0.20 0.20 1.00 0.30 0.30 0.30 0.30 0.40 0.40 0.50 0.50 2.00 2.00 2.00
				2 1 1 1 1			
U = Compos	und analyzed for	- but not de	tected	<pre>>>pprovea:</pre>	Decian Cowley Organic Sectio	on manager	

05-5 page 2

,

ID PESTICIDE ORGANICS ANALYSIS DATA SHEE	B 881000EBB EPA SAMPLE NO.
Lap Name: ROY F. WESTON Contract:	881D00EB8
Case No.: <u>8806S0</u> SAS No.:	SDG No.:
Matrix: (soil/water) <u>WATER</u>	ab Sample ID: <u>88065009002</u>
Sample wt/vol: 1000 (g/mL) ML La	ab File ID:
Level: (low/med) LOW	ate Received: 06/04/88
* Moisture: pot dec	ate Extracted: 06/06/88
Extraction: (SepF/Cont/Sonc) <u>SEPF</u> Da	ate Analyzed: <u>07/20/88</u>
GPC Cleanup: (Y/N) N pH: <u>7.0</u> Di	ilution Factor: <u>1,0</u>
CAS NO. COMPOUND (ug/L or 319-84-6alpha-BHC 319-85-7beta-BHC 319-86-8delta-BHC	ATION UNITS: - ug/Kg) UG/L Q
58-89-9gamma-BHC (Lindane) 76-44-8Heptachlor 309-00-2Aldrin 1024-57-3Heptachlor epoxide 959-98-8Endosulfan I 60-57-1Dieldrin 72-55-94,4'-DDE	0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.10 U 0.10 U
72-20-8Endrin 33213-65-9Endosulfan II 72-54-84,4'-DDD 1031-07-8Endosulfan sulfate 50-29-34,4'-DDT 72-43-5Methoxychlor 53494-70-5Fodrin katopa	0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.10 U 0.50 U
5103-71-9alpha-Chlordane 5103-74-2gamma-Chlordane 8001-35-2Toxaphene 12674-11-2Aroclor-1016 11104-28-2Aroclor-1221 11141-16-5Aroclor-1232	0.50 U 0.50 U 1.0 U 0.50 U 0.50 U 0.50 U 0.50 U
53469-21-9Aroclor-1242 12672-29-6Aroclor-1248 11097-69-1Aroclor-1254 11096-82-5Aroclor-1260	0.50 U 0.50 U 1.0 U 1.0 U

,

a5-5 page 3 1/8-27-6.

8810000EBC - Metals

U.S. EPA - CLP									
			EPA SAMPLE NO.						
and the second	INORGANIC ANALYSIS	DATA SHEET	Berry .						
Lap Name: WESTON ANAL	LYTICS LH.	Contract: 688131538 Fib	Stideocec						
Lab Code: #ESCA	Case Mo.: 8813	SAS No.:	3DG NO.: 881000						
Matrix (soil/water):	WATER	Lab Sample	ID: 8806-009-00E						
Level (low/med):	LOW	Date Recei	ved: 06/04/88						
% Solids:	0.0								

Concentration Units (ug/L or mg/kg dry weight): UG/L

••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			1	
CAS No.	Analyte	Concentration		ð	M	a we a
7429-90-5	Aluminum		·		:	o ite furre
7440-36-0	Antimony	2.5	<u>501</u>		! = -	grapen
7440-38-2	Arsenic	4.4	1 <u>01</u>		ŗ	
7440-39-3	Barium	41.8	<u>UL</u>		<u>! P</u>	
7440-41-7	Beryllium	1.0	8!		<u> P</u>	ICP
7440-43-9	Cadmium	2,5	<u>.</u>		!P	· NOP
7440-70-2	Calcium		i 		1	, Styr
7440-47-3	Chromium	6.5	U		P	
7440-48-4	Cobalt	11.5	U		! P	
7440-50-8	Copper	9.0	U		P	- P 1
7439-89-6	Iron		1 1		1	- F 2
7439-92-1	Lead	10.6	i I		! F	
7439-95-4	Magnesium		i I		1	h Jee
7439-96-5	Manganese	1	i i		ļ	bert
7439-97-6	Mercury	0,40	1 1		;	ane linut
7440-02-0	Nickel	15.9	UT		'P	BE Valle oc III
7440-09-7	Potassium		1		t	B Let Bash
7782-49-2	Selenium	4.2	<u>'U</u> !		'F	ust. of F.
7440-22-4	Silver	7.7	Ū	N	'P	mationline
7440-23-5	Sodium	I .			1	g CD yec
7440-28-0	Thallium	1.2	<u>:</u> U!		!F	; · ou
7440-62-2	Vanadium	27.0	i u i		; p	I
7440-66-6	Zinc	156	1 1		19	
· · · · · · · · · · · · · · · · · · ·	Cyanide	25	iu:		105	,
· · · · · · · · · · · · · · · · · · ·	1		1 1		 	1

Color Before: COLORLESS Clarity Before: CLEAR Texture:

Color After: COLORLESS

Clarity After: CLEAR

Artifacts:

4

007

Comments:

FORM I - IN

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lac Mame: WESTON ANALYTICS Lab Code: WESCA Case No.: 88/3 SAS No.: SDG No.: 88/000 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

1

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	М
Aluminum	1980.0;			5000.0		1 1		}	
Antimony	1010.0	1074.00	106.3	100.0	103.40	103,4	99,00	99.0	E
Arsenic	47.0	48.20	102.5	50.0			50,30	100.6	F
Barium	1980.0	2023.00	102.2	10000.0	10002.00	100.0	10174.00	101.7	P
_ <mark>Beryllium</mark> ;	481.0	<u>158.00</u>	95.2	200.0	198.50	99.3	198.10	99.0	!P
<u>Cadmium</u>	<u>489.0</u>	492.70	100.8	200.0		<u>101.0</u>	198,40	99.2	1 <u>P</u>
<u>Calcium</u>	<u>49800,0</u> ¦			<u>99999.0</u>		۱ ۱ ۱		لمة ذ	-i
<u>Chromium</u>	<u>506.0</u> ¦	478.10	94.5	<u> </u>	467.10	93.4	478.60	95.7	1 <u>P</u>
Cobalt	474.0	491.00	<u>103.6</u>	2000.0	2177.60	108.9	2077.40	103.9	<u> P</u>]
Cooper	<u>542.0</u>	507.30	93.6	1000.0	1003.50	100.4	I		1 <u>P</u>
<u>Iron</u>	<u>1990.0</u> ;		· ·	5000.0		۱ ۱) i	11
' <u>Lead</u>	97.91	<u>97.00</u>	<u> </u>	50.0	50,30	<u>101.3</u>	52.50	105.0;	IE I
<u>Magnesium</u>	<u>25000.0</u> ;		· i	99999.0	·····	، ۱ ــــــــــــــــــــــــــــــــــــ			-+
' <u>Manganese</u>	<u>513.0</u> ;		 	500.0		۱ ۱ ۱		 	1
Mercury	5.2!		 	5.0		۱ ۱			1
Nickel	496,0;	<u> </u>	95.4	2000.0	2168.80	108.4	2152.20	107.6	12
Potassium	<u>50200.0</u> ;		 	50000.0				\$ 	•
<u>Selenium</u>	104.0	100.20	96.3	50.0	54.80	109.6	54.10	108.2	'E
<u>Silver</u>	<u>509,0</u>	479.90	94.3	<u>500.0</u>	- 194.30	<u>98.9</u>	492.10	98.4	12
Sodium	<u>50700.0;</u>			50000.0		۱ ۱			
<u>Thallium</u>	<u>97.3</u>	101.80	104.6	50.0	51.60	103.2	50.30	100.6	E
' <u>Vanadium</u>	<u>511.0</u>	<u> 175.50</u>	<u>93.1</u>	2000.0	1982.70	99.1	1912.50	95.6	P
<u>lZinc</u>	3100.01	3169.00	<u>102.2</u>	1000.0	1070.00	1 <u>07.0</u>	1082.00	108.2	1 <u>P</u>
<u>Cyanide</u>	35.01) 	25.0					1
1						· · · · · · · · · · · · · · · · · · ·		Ī	1

Control Limits: Mercury 80-120; Other Metals 90-110: Cyanide 85-115

FORM II (PART 1) - IN

7/97

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

'_ab	Mame:	WESTON ANA	LYTICS	- k .,	Contract: 4	C88131538 Floor	A LOUBE
Lab	Code:	WESCA	Case	No.: 8813 F. 10000	SAS No.: "	SDG	Non
Init	cial C	alibration	Source:	EPA-EMSL			

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ution %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%ਜ (1).	M
Aluminum	1980.0			5000.0				2 Carporne	2000 1
Antimony	1010.0			100.0	101.30	101.3	108,50	108.5	TE
Arsenic	47.0			50.0	54.80	109.6	50,4 0	100.8	<u>]</u> E
Barium	1980.0	2093.00	105.7	10000.0	10217.00	102.2	10248.00	102:5	P
Beryllium	481.0	459,90	<u> </u>	200.0	194.80	97,4	195.10	97.6	"P
Cadmium	489.0		 (200.0	<u>199.20</u>	99.6	195.00	97 5	IP_
Calcium	<u>49800.0</u> ;	(<u>99999.0</u>		ا ا ـــــــــــــــــــــــــــــــــــ		S STATES	
Chromium	506.0	472.10	93.3	<u> </u>	484.50	<u>96.9</u>	513.10	102.61	fie_
Ccbalt	474.0	482.40	101.3	2000.0	2028.70	<u>101.4</u>	2017.30	100.9	TE.
Copper	542.0	499.00	<u>92.1</u>	<u>1000.C</u>	972.10	97.2	965.80	98.6	" <u>P</u>
<u>Iren</u>	<u>1990.0</u> ;		 	<u>5000.0</u>		1 ا ــــــــــــــــــــــــــــــــــــ		- Charles -	
Lead	<u>97.9</u>		· · · ·	<u> </u>	51.90	<u>103.3</u>	52.90	105.8	<u> </u> E
Magnesium	25000.0		• •	99999.0		 		Contraction of the local distance of the loc	·+ 1
Manganese	<u>513.0</u>		l	<u> </u>		ا مىسىمىسى ا	·	200 C	
Mercury	5.2		ا مستقد میں ا	<u> </u>	 	 			1 <u>-</u>
Nickel	496.0	445.70	<u>89.9</u>	2000.0	2062.00	<u>103.1</u>	2081.50	104.1	12
<u>Potassium</u>	<u>50200.0</u>		l 	<u>50000.0</u>		ا سيسينينين ا			
<u>Selenium</u>	104.0		 	50.0	52.20	<u>104,4</u>	54.80	109.6	TE.
' <u>Silver</u>	<u>509.0</u>	501.60	98.5	<u> </u>	<u> 551.50</u>	<u>110.3</u>	<u> 194.40</u>	<u>98.9</u>	<u> P</u>
<u>Sodium</u>	<u>50700.0</u>	·····	! 	<u>50000.0</u>		• ••••••••••••••••••••••••••••••••••••			
Thallium_	97.3		·	50.0	49.40	<u>98.3</u>	46,90	93.8	IE_
<u>Vanadium</u>	<u>511.0</u>	192,10	36.4	2000.0	1955.90	<u>97.3</u>	1930.30	96.5	1P
! <u>linc</u>	3100.0	<u> 3076.00</u>	<u></u>	<u>000.0</u>	1024.00	<u>102.4</u>	<u>*051.00</u>	<u>105,1</u>	<u>IP</u>
<u>Cyanice</u>	35.0		l	25.0					֥
1	, <u> </u>		-	· ·	··	·		1 1	i

(1) Control Limits: Mercury 80-120: Other Metals 20-110; Cyanide 85-115

us-s page 6 FORM II (PART 1) - IN 7/87

U.S. EPA - CLP 2A INITIAL AND CONTINUING CALIBRATICN VERIFICATION

1. W. 1			17,688	
Lap Name: WESTON ANALYTICS	1 1 1683	Contract: 688131538		K.P.
Lab Code: WESCA Case	» No.:8813	SAS NO.:	SDG N	0.:881000
Initial Calibration Source	EPA-EMSL			
Continuing Calibration Sour	ce: SPEX			

Concentration Units: ug/L

Analyte	Initial Cali True Found	bration %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
Aluminum	1980.0		5000.0					¥
Antimony	1010.0;	· · · · · · · · · · · · · · · · · · ·	100.0	101.90	101.9	106,30	106.3	E
Arsenic	47.0		50.0	52.60	105.2	50.70	101.4	E
Barium	1980.01	t	10000.0	10464.00	104.6			P
<u>Bervllium</u>	481.0	⁺	200.0	190.00	95.0			1E
<u>Cadmium</u>	489.0		200.0	194.30	97.2	190.50	95.2	E
<u>Calcium</u>	49800.0	(<u>99999.0</u>		: د ــــــــــــــــــــــــــــــــــــ		المعين مريستيه	1 <u>8</u>
[<u>Chromium</u>	<u>506.0</u> ;		<u>500.0</u>	497.40	<u>99.5</u>			FE!
<u>Cobalt</u>	474.0	i	2000.0	2021.70	<u>101,1</u>	1984.40	99.2	1 <u>P</u>
Copper	542.0	······································	1000.0	966.90	<u>96.7</u>		الم	<u>**P</u>
<u>Iren</u>	1990.0!	I	<u>5000.0</u>	 	· ·			i !
(<u>Lead</u>	97.9!	· · ·	: <u> </u>	52.10	104.2	51.40	102.8	IE !
<u>Maonesium</u>	25000.0!		; <u>99999,0</u> ;	·	· i			· · · · · · · · · · · · · · · · · · ·
<u>Manganese</u>	513.0	I	<u> </u>	l l	ا ئ			- k
Mercury	5.2!		5.0	·		4.31	86.2	TOVI
Nickel	495,0:		<u>2000.0</u>	2054.20	102.7	2051.10	102.6	ie.
<u>Potassium</u>	50200.0!		<u>50000.0</u>				+it اi	1977 - 1 17 innun 1
{ <u>Selenium</u> }	104.0	·····	<u> </u>	51.40	102.8	49.20	98.4	E
¦ <u>Silver</u>	509.0	J	<u>500.0</u>	485.20	97.0	512.40	102.5	1P-1
Sodium	<u>50700.0</u> ;	<u>ا</u>	<u>50000.0</u>	: 			الب ر . المسلم ال	.
Thallium	97.3!		<u>50.0</u>	48,20	26.4	51.40	102.8	IE!
<u>Yanadium</u>	511.0	ا نىسىسىر ئا بىسىسىر	<u>2000.c</u>	2005.20	100.3	1956.90	97.8	P
l <u>Zinc</u>	3100.01	1	1000.0	1049.00	104.9	1064.00	106.4	<u> P</u>
<u>Cyanide</u>	85.0;	i	25.0				lł	
) 	······	۱ ۱ ـــــــــــــــــــــــــــــــــــ		1			r

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

7/87

U.S. EPA - CLP 2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

.ab Name: WESTON ANALYTICS Lab Code: WESCA Case No.: 8813 SAS No.: SDG No:: 881000 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

: ·				1				1.5	
r I	Initia	l Calibr	ation		Continuir	ng Cali	bration	14	
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	3R(1)	ΪH Ι
) 				t					5
Aluminum	1980.01		* 	5000.0				- munitive and	
Antimonv	1010.01) 	100.0	105.60	105.6	:03.40	103.4	E
Arsenic	47.0			50.0	53.90	107.8	51.70	103.44	
<u>Sarium</u>	1980.0		1	10000.0	1045.00	10.4		Carl Room	P≊ ¦
<u>Bervllium</u>	481.0		 	200.0	188.00	94,0		- AND CONTRACTOR	E:
Cadmium	489.0			200.0		 		1.7.1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	\$.C.
[<u>Calcium</u>]	49800.0		 	<u>99999.0</u>		l			ño:
Chromium	<u>506.0</u>			500.0	501.80	100.4			P
Cobalt	474.0		i	2000.0		· · · · · · · · · · · · · · · · · · ·		13.62	
Copper	542.0		1	1000.0	932.80	93.3			PT !
Iron	1990.0		1	5000.0				\$4	
Lead	97.91		i	50.0	48.60	97.2	50.60	101-21-	E
' <u>Magnesium</u>	25000.01) 	<u> 99999.0</u>		! ! .			(
Manganese	<u>513.0</u>		 	500.0				we can be	
Mercury	5.2		 	5.0	4.65	93.0			CV
Nickel	496.0		1	2000.0		l i .			÷ .
<u>Potassium</u>	<u>50200.c</u> !		I I	50000.0		l l		ಾಜ್ಞಾನ	1995 - 1 1995 -
Selenium	104.0		!	50.0	47.10	94.2	48.20	_98.44	E
<u>Silver</u>	<u>509.0</u> ;		 	500.0	504.30	100.9		13 mil	Pz.
Sodium	<u>50700.0</u> ;		1	50000.0		· · .		- 3	
<u>Thallium</u>	97.3		1	50.0	<u>51.20</u>	102.4	52.00	104.0**	E I
' <u>Yanadium</u>	<u>511.0</u>		1	2000.0	······	۱ ۱ <u> </u>			
<u>Zinc</u>	3100.0		1	<u>1000.0</u>		i		1-1	و ا ا
<u>Cvanide</u>	95.0!		 	25.0		۱ ۱ ـــــــــــــــــــــــــــــــــــ			
•	·		1) ;,		l i		r	r~

(1) Control Limits: Mercury 80-120: Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

.006

7/87

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON	ANALYTICS	1 Hard	Contract: C 8813153	4:50 68	ita
Lab Code: WESCA	Case	No.: 8813	SAS No.:	SDG	No.: 881000
Initial Calibrat	ion Source:	EPA-EMSL			

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
Aluminum	1980.01		I	5000.0		ļ			
Antimony	1010.0			100.0	99.50	99.5		· · · · ·	F
Arsenic	47.0			50.0	50.90	101.8	51.60	103.2	F
Barium	1980.0			10000.0				<u>يتيني.</u> اين ديو.	. t
Beryllium	481.0			200.0		· · · · · · · · · · · · · · · · · · ·			2 1
Cadmium	489.0			200.0		· · · · · · · · · · · · · · · · · · ·		1	
Calcium	49800.0			99999.0					4
Chromium	506.0			500.0					
Cobalt	474.0			2000.0				 	
Copper	542.0			1000.0					
Iron	1990.0			5000.0					
Lead	97.9			50.0	51.30	102.6	51.60	103.2	E
Magnesium	25000.01			99999.0		1) — — — — — — — — — — — — — — — — — — —	· • · · · · · · · · · · · · · · · · · ·
Manganese	513.0			<u>500.0</u>					
Mercury	5.2	5.12	98.5	5.0	5,35	<u>107.C</u>		ا ب اب 2	TCV
Nickel	496.0		 	2000.0		l l		i i	<u>}</u>
Potassium	50200.0		 i	50000.0				 	
Selenium	104.0			50.0	49.00	98.0	47.20	94.4	E
Silver	<u>509.0</u>			<u>500.0</u>		l 1		<u> </u>	· k
Sodium	<u>50700.0</u>	- i		<u>50000.0</u> ;		I I		ll	- I - I 1 7 1
' <u>Thallium</u>	97.3	97.40	<u>100.1</u>	<u>50.C</u>	48.90	<u>97.6</u>	50.80	<u>101.6</u>	IE :
<u>Yanadium</u>	<u>511.0</u>	i	 	2000.0			•	¦1	1
! <u>Zinc</u>	3100.0		·	1000.0		۱ ۱		:t	
<u>Cyanide</u>	95.0		 	25.0		 		i i ł	
1						l		1 1	1 1

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Oyanide 85-115

FORM II (PART 1) - IN

page 9

7/87

007

~

008

U.S. EPA - DLP

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS Lab Code: WESCA Case No.: 8813 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	tion %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	\$R (1)	
Aluminum	1980.0			5000.0		i		Home Solar	
Antimony	1010.0	1013.00	100.3	100.0	97.00	<u>97.0</u>	102.10	102.1	IE.
Arsenic	47.0			50.0	51.60	103.2	53.00	108.01	TE.
<u>Barium</u>	1980.0			10000.0		1 1		-	a (*
<u>Bervllium</u>	481.0		 	200.0		1	-1	1. 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Cadmium	<u>489.0</u> ;			200.0			÷.	「「「ない」	惹苏
Calcium	<u>49800.0</u> ;			<u>99999.0</u> ;		1 		- Contraction - Harding	
Chromium	<u>506.0</u>			500.0) 		The sector of	aren .
{ <u>Cobalt</u>	474.0		1	2000.0		ł		1	:X4.; <u>2</u> .
<u>Copper</u>	542.0			1000.0				「空山」	÷1
Iron	1990.0			5000.0					
Lead	97.9			50.0	53.90	<u>107.8</u>		<u> </u>	IE_
Magnesium	25000.0	1		99999.0				ا تقديدينينين والم	
<u>Manganese</u>	513.0		· ·	<u>500.0</u>		۲ ۱		Lat. St. St. St. A.	3 pm
Mercury	5.2	4.87	93.7	5.0	5.03	100.6		SPACE TO	計CV
Nickel	496.0			2000.0				Gree gent	
Potassium	<u>50200.0</u> ;			50000.0	·) لا برسود ور ^{در} الاقرار ا	: 1::
Selenium	104.0	<u>106.CO</u>	101.9	50.0	50.70	101.4	48.60	<u>,</u>	E
Silver	509.0			500.0				Store with all	
Sodium	50700.0			50000.0				المترد ماينت المسب	
Thallium	97.3			50.0	50.00	100.0	48.70	97.4	IE_
Vanadium	511.0			2000.0				- The Low Pro-	- <u>-</u> -
1Zinc	3100.0	1		1000.0		!!		· · · · · ·	A
Cyanide	35.0			25.0		i i		i	<u>h</u>
)	11		· ·	I I		1		· · ·	

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

7/87

U.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIBRATICN VERIFICATION

Lab Name: WESTON ANALYTICS Lab Code: WESCA Case No.: 8813 SAS No.: SDG No.: 881000 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Calil %R(1)	bration Found	%R(1) M
<u>Aluminum</u>	<u>1980.0</u> ;			<u>5000.0</u>		!		
<u>Antimony</u>	<u>1010.0</u>	I		100.0	108.60	108.6;		E.
Arsenic	47.0	48.10	102.3	50.0	48.80	<u>97.6</u>		F.
<u>Sarium</u>	<u>1980.0</u>			<u>10000.0</u>				Server E
Beryllium	481.0			200.0	۱ ۱			ي الما حويد
Cadmium	489.0			200.0			-	······································
(<u>Calcium</u>	49800.0			<u>99999.0</u> ;				200.000
<u>Chromium</u>	<u>506.0</u>		 	500.0	I	1		
Cobalt	<u>474.0</u>	1		<u>2000.0</u>				
Copper	542.0			1000.0		i		՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝՝
Iron	1990.0		·	5000.0	I	ł _		<u> </u>
Lead	97.9	100.40	<u>102.6</u>	<u>50.0</u>	49.80	39.5!	<u> </u>	100.2 F
' <u>Magnesium</u> '	25000.0			<u>99999.0</u> ;		[)
<u>Manganese</u>	<u>513.0</u>			500.0	۱ ا ــــــــــــــــــــــــــــــــــــ		1	······································
Mercury	<u> </u>			5.0				
Nickel	496.0			2000.0				
<u>Potassium</u>	<u>50200.0</u> !		 	<u>50000.0</u>				
<u>Selenium</u>	<u>104,0</u>	104.75	<u>100,7</u>	<u>50.0</u>	48.40	<u>96.8</u>	49.00	98.01 F
! <u>Silver</u>	<u>509.0</u>			<u>500.0</u>	t I		I	<u> </u>
Sodium	<u>50700.0</u>	1		<u>50000.0</u>		I _	·	•/•3 1•8 , •
<u>Thallium</u>	97.3			<u> </u>	48.70	<u>97.4</u> !		!!! <u>F</u>
<u>Vanadium</u>	<u>511.0</u> ;	1		<u>2000.0</u>		i		l_1
! <u>Zinc</u>	3100.0			1000.0	ا ب			
<u>Cyanide</u>	<u> </u>			25.0				
I	۱ ۱		l	l !		1		

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) -

7/87

ÓIÐ

U.S. EPA - CLP

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: C98131538 Fitte 88 Lab Name: WESTON ANALYTICS Lab Code: WESCA Case No.: 8813 SAS No.: 1 SDG No.: 8 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	XR(1)-1M	-
Aluminum	1980.0		·	5000.0		I			<u>}- 1</u>
Antimony	1010.0	1037.00	102.7	100.0	96.80	96.8	98.20	98.24IF	
Arsenic	47.0	49.00	104.3	50.0	50.30	100.6	50.50	10110	25-1
Barium	1980.0			10000.0				Series and	.
Beryllium	481.0		 	200.0		 			<u>i</u> - j
Cadmium	489.0		l	200.0				- Charles and the	*
Calcium	49800.0		l I :	99999.0				201000	<u>è</u>
Chromium	506.0			500.0					<u> </u>
Cobalt	474.0		l	2000.0		· !			ا ا ــــــ
Copper	542.0		ا ا	1000.0		I			<u> </u>
Iron	1990.0		l l	5000.0					-
Lead	97.9	!	· · · · · ·	50.0	50.80	101.5	51.20	<u>10274</u> 計F	17
Magnesium	25000.0		۱	99999.0;		1		THE PARTY OF THE PARTY OF	
Manganese	513.0			500.0	,	1			3
Mercury	5.2		1	5.0		1		Same Alexander	5
Nickel	496.0	1	1 I	2000.0		1			<u>.</u>
Potassium	50200.0			50000.0		1		······································	
Selenium	104.0			50.0	48.20	96.4	47.50	95:24	÷
Silver	509.0		t	500.0		1			
Sodium	50700.0		1	50000.C		e .		A CONTRACTOR	<u>}-</u>
Thallium	97.3	97.80	100.5	50.0	50.30	100.6	48.60	97.21F	
Vanadium	511.0			2000.0					×:
'Zinc	3100.0			1000.0		i		··· •· •·	-
'Cyanice	35.0		1	25.0				1.19	
•			1	ii				4-4-	

:: Control Limits: Mercury 30-120; Other Metals 90-110: Cyanide 85-115.

FORM II (PART 1) - IN

(15-5)a.a.e. 12 7/87

U.S. EPA - CLP

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS Lab Code: WESCA Case No.: 8813' SAS No.: SDG No.: 881000 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

l I				: I					1. 1	. 1
1 1 2 1	Initia	l Calibr	ation	} (Continuir	ng Calil	bration		1 L 1 L	ŀ
Analyte	True	Found	%R(1)	{ True	Found	%R(1)	Found	%R(1)		M
				l					11.	<u> </u>
<u>Aluminum</u>	1980.0		t I	5000.0		! -			I k	
Antimony	1010.0) [100.0	<u> </u>	95.4	101.00	101.0	11.	E
<u>Arsenic</u>	47.0		l	50.0	<u> 49.50</u> ¦	<u>99.0</u>	49,10	98.2	II.	E
<u>'Barium</u> '	<u>1980.0</u>		I I	<u>10000.0</u>	I	I	1		1-1- 1-1-	
<u>Beryllium</u>	481.0		l 1	<u>200.0</u>	1	: 	1	·	6-8- 1-1-	
<u>Cadmium</u>	489.0		1	<u>200.0</u>		I .			科目	1
<u>Calcium</u>	49800.0		1	; <u>99999.0</u> ;	I	i			ł.	
Chromium	506.0		1	<u>500.0</u>	t	1 		·	辞书	. (
<u>Cobalt</u>	474.0		1	2000.0		· ! _				
Copper	542.0		t 	<u>1000.0</u>		i .	i	·	1 T	ا ا جمعیت
Iron	1990.0		1 . 1 . <u></u>	<u>5000.0</u>		ء • ــــــــــــــــــــــــــــــــــــ		i	11	
ead	97.9		· · · · · · · · · · · · · · · · · · ·	50.0	52.30	104.6	<u>50,60</u>	101.2	1 F 1 F	<u>F</u> _
Magnesium	25000.0) . i	; <u>99999.0</u> ;) i i -			11	
Manganese	513.0		! 	500.0		l			1.1	·
Mercury	5.2		1	[<u>5.0</u>]		 				
Nickel	496.0		1	2000.0		· · .		 	łł	-
Potassium	50200.0		1	<u>50000.0</u>		 ,		! •	11 1	
Selenium	104.0		. I	50.0	45,50	91.0			11	E
Silver	509.0			500.0		 ,		. <u> </u>	1 1 1 1	
Sodium	50700.0		I	<u>50000.0</u>		! ! .		i L	11	
Thallium	97.3		!	50.0	49,70	<u> 29.4</u>	50,40	<u>100.8</u>	11	<u>F</u>
Yanadium	511.0		1	2000.0		 		/ •	4 # 1 #	
Zinc	3100.0		. :	1000.0		t <u> </u>		/ \	11	
Cyanide	<u>95.C</u>			25.0	i) .		، ۱		
†	1		1	1		!		t	1	

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

UD-D Dage 13 FORM II (PART 1) - IN

7/87

OII

OIZ

U.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIERATION VERIFICATION

. . . Å

Lap	Name:	WESTON 4	NALYTICS		Contract: <88131538	K.H.	
Lab	Code:	WESCA	Case No	.:8813	SAS No.:	SDG	No. 381 Doo
Init	tal Ca	alibratio	on Source:	EPA-EMSL			
Cont	inuing	, Calibra	ation Source:	SPEX			

Analyte	Initia True	al Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
<u>Aluminum</u>	<u>1980.0</u>	· 1		5000.0		l l .		13.12.13	
Antimony	1010.0			100.0	96.60	96.6	95.20	95.21	E
Arsenic	47.0			50.0	48.70	97.4	50.00	100.0	E
Barium	1980.0			10000.0					
Beryllium	481.0			200.0					MAC (
Cadmium	489.0			200.0		l			M -
Calcium	49800.0			99999.0				Service of the	
Chromium_	506.0			500.0					
Cobalt	474.0			2000.0		l l		Weisler	(14)
Copper	542.0			1000.0				1 F. S.	
Iron	1990.0			5000.0				- 100 - C	
Lead	97.3	<u> </u>	110.5	<u>50.0</u>	52.70	105.4	53.00	106.01	E
Magnesium	25000.0	·		<u>99999.0</u>		l l .			
Manganese	<u> 513.0</u>	·		<u>500.0</u>		I I		17128- C	71. (
Mercury	5.2			5.0		· ;		The second second	
Nickel	496.0			2000.0		· ·		- en Ani A.	
Potassium	50200.0			50000.0				· *****	÷1
Selenium	104.0	105.25	101.2	50.0	50.50	101.0	48.70	97.4	"E
Silver	509.0			500.0				A markenser	4
Sodium	50700.0			50000.0				· · · · · ·	
Thallium	97.3			50.0	49.60	29.2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E.
Vanadium	511.0			2000.0	,			1 · · · · · ·	1
Zinc	3100.0			1000.0		1		•	
Cyanide	35.0			25.0		· · · · ·			1
				1		1		·	!

Concentration Units: ug/L

1) Control Limits: Mercury 30-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

Q5-5 page KI 7/87

U.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIBRATICS VERIFICATION

Lab Name: MESTON ANALYTICS

Contract: **488131538**84 100698

Case No.: 88132, н. 100698 SDG NO .: 881000K+ SAS No.: Lab Code: WESCA Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

1	Initial Calibration				Continuir	ng Cali	bration	1	1
Analyte	True	Found	%R(1)	True	Found	ж̂R(1)	Found	%R(1)	M
Aluminum	1980.01		ł	5000.0!]			
Antimony	1010.0			100.0	100.30	100.3			E
Arsenic	47.0			50.0	51.80	103.6	48.60	97.2	E
Barium	1980.01			10000.0				1.00000	. F ~~ 1
Servilium	<u>481.0</u> ;			200.0				·····	1
Cadmium	489.0;			200.0		ii			
Calcium	49800.0;			99999.0		1		Ch. mars	1 <u>–</u> 1
Chromium	<u>506.0</u>	-		500.0		 		<u> </u>	
<u>Cobalt</u>	<u>474.0</u>			2000.0		۱ ۱		[
Copper	542.0;			1000.0		· ·			1
Iron	1990.0;			5000.0				i	
<u>'ead</u>	<u> </u>		· · ·	50.0	50.40	<u>100.3</u> ¦	<u>9.90</u>	<u>99.8</u>	<u> </u> E
Magnesium	25000.0;			<u>99999.0</u> ;		، ،			ا ا ا ـــــــــــــــــــــــــــــــــ
Manganese	<u>513.0</u>			<u>500.0</u>		 			: () : : : : : : : : : : : : : : : : : :
Mercury	5.2			5.0	I	! !			2
Nickel	<u>496.0</u>			2000.0					1
<u>Potassium</u>	50200.0!			50000.0		 			
Selenium	104.0	i		<u>50.0</u>	48.80	<u>97.6</u>	46,40	<u>. 92.8</u>	E
Silver	<u> 509.0</u> ;			<u>500.0</u>		۱ ۱			
Sodium	<u>50700.0</u> ;		·	50000.0		 	· · · · · · · · · · · · · · · · · · ·	t	
Thallium	<u> </u>	100.40	103.2	50.0	47:10	94.2	<u>3.30</u>	97.6	1 <u>E</u>
<u>Vanadium</u>	<u>511.0</u>			2000.0		! i	. <u></u>	1 	.]"
' <u>Zinc</u>	3100.2			1000.0		l 1	······		!
Cvanide	95.0		•	25.0			I		1
1	t I		t in the second s	F 1		· · · · · · · · · · · · · · · · · · ·		1	1

1.1 Control Limits: Mercury 80-120; Other Metals 30-110; Cyanide 85-115

25-5 Vage 15

7/87

FORM II (PART 1) ΞN 013

U.S. EPA - OLP

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

1.1.4

Lab Name: WESTON ANALYTICS

Contract: C88131538KH.

Lab Code: WESCA Case No.: 88/3 KH SAS No.:

Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	al Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
<u>Aluminum</u>	1980.0) }	5000.0		l l			
Antimony	1010.0		۱ ۱	100.0	97.60	<u>97.6</u> ;	96.90	96.94	E-
<u>Arsenic</u>	47.0		I	50.0	49.40	98.9	48.70	97: 44	
<u>Barium</u>	1980.0		l l	10000.0		۱ ۱			
<u>Bervllium</u>	481.0		1	200.0		l ł ł _			16
<u>Cadmium</u>	489.0		I I	200.0		1 1		Des 1579	and the second
Calcium	49800.0		l J	99999.0		۱ ــــــــــــــــــــــــــــــــــــ		- Scient	S
<u>Chromium</u>	<u>506.0</u>			500.0)))			
<u>Cobalt</u>	474.0) 	2000.0		 			
Copper	542.0		! :	1000.0		! ! .		1100 A.	1 Fa
Iron	1990.0		}	<u>5000.0</u>		i 		· · · · · · · · · · · · · · · · · · ·	4
' <u>Lead</u>	97.9	······	۱۰۰۰ ۱۰۰۰	50.0;	49.00	98.0	52.90	105 8	IE.
Magnesium	25000.0		1	99999.0;		l l _		The survey of	-
Manganese	<u> </u>		1	500.0		l ł			
Mercury	5.2			5,0		1		Antes	1.77
Nickel	496.0		i I	2000.0		l l		2-F-F-F	- car
Potassium	50200.0		l	50000.0		I			1998 A.
Selenium	104.0	100.25	96.4	50.0	48.50	97.0;	49.10	98.24	1F
Silver	509.0		1	500.0				人等時間	te.
Sodium	50700.0		1	50000.0		I I			
Thallium	97.3		1	50.0		·			11245
Vanadium	511.0		1	2000.0	£	I	1	i, 7	
Zinc	3100.0		1	1000.0					1
Cvanide	35.0			25.0		L			
1						· · ·		ţ.	1

1) Control Limits: Mercury 30-120: Other Metals 90-110; Cyanide 85-115

7/87

FORM II (PART 1) - IN

014

SDG No.: 881000

U.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS

Contract: C881316386.14

015

COBSE

Case No. :8813 K.H. SAS No.: SDG NO. : 981000K.H Lab Code: WESCA 100688 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initial True	Calibr: Found	ation %R(1)	True	Continuir Found	ng Calil %R(1)	bration Found	%R(1)	М
Aluminum	1980.0;		,	5000.0		[]		 	
Antimony	1010.01		l	100.0	100.30	100.3			IE.
Arsenic	47.0		·	50.0	48,10	96.2	48.30	96.6	<u> E</u>
Barium	1980.0		t 1	<u>10000.0</u>		l I		·	[:t]
Beryllium	481.0		I	200.0		۱ ۱ <u>ـــــــــــــــــــــــــــــــــــ</u>			:: <u></u> !
Cadmium	489.0		I	200.0		۱ ۲ ۱ .		<u> </u>	k_t } t
Calcium	49800.0		1 I	<u>99999.0</u>		۱ ۱ ـــــــــــــــــــــــــــــــــــ		منبقہ .	ki
Chromium	506.0		l	<u>500.0</u>		¦ ! .			i i i ii
Cobalt	474.0		 	<u>2000.0</u>		۱ ۱ ـــــــــــــــــــــــــــــــــــ		 	· · ·
Copper	542.0		ا ۱	<u>1000.0</u>		t			
Iron	1990.01		l I	<u>5000.0</u> ;		! + .		/	11. 11. 1
Lead	97.9		· · · ·	<u>50.0</u>	51.30	<u>102.5</u>	<u>9.20</u>	98.4	: <u> E</u> '
Magnesium	25000.01		1	¦ <u>99999.0</u> ¦		۱ ۱ ۱			1 1
<u>Manganese</u>	<u>513.0</u>		l	<u>500.0</u>		1		i I	[
Mercury	5,21		f I	<u> </u>		۱ ۱		, .	; •
Nickel	496.0		t L	2000.0		۱ ۱		; •	::
Potassium	50200.0		a L	<u>50000.0</u> ;	. <u></u>	۱ ۱ ـــــــــــــــــــــــــــــــــــ		¦ I	:: <u></u> :
<u>Selenium</u>	104.0		1 1	<u>50.0</u>	51.80	<u>103.6</u>	49.80	<u>99,6</u>	: <u> E_</u>
Silver	<u>509.0</u> ;		I	<u>500.0</u>		l . 1		<u> </u>	!!
Sodium	<u>50700.0</u> ;		1	<u>50000.0</u>		↓		! !	11
<u>Thallium</u>	<u>97.3</u>		l	<u> </u>		۲ ۱ ــــــــــــــــــــــــــــــــــــ] }	· · · · · · · · · · · · · · · · · · ·
<u>Vanadium</u>	<u>511.0</u> ;		1 1	<u>2000.0</u>		۱ ۱ ـــــــــــــــــــــــــــــــــــ		I	
<u>Zinc</u>	3100.0!		 	1000.0		;	i] •	
<u>Cyanide</u>	<u> </u>	<u> </u>	! !	25.0		1		 	
t	1		1	1		1 I	l	1	11 .

(1) Control Limits: Mercury 60-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART

05-5 1991 17 7/87

U.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS

Contract: 688131538K.H.

Case No.: 8813 LH SAS No.: Lab Code: WESCA

SDG No. 28001000

Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration	Units:	ug/L
---------------	--------	------

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	% R(1)	M
<u>Aluminum</u>	<u>1980.0</u> ;		l I	<u>5000.0</u>		۱ <u> </u>	7		
Antimony	1010.0	1010.00	100.0	100.0	106.30	106.9	39.10	99.1	E
<u>Arsenic</u>	47.0		t 1 <u></u>	50.0	47.70	<u>95.4</u>	46.60	9372	* E
<u>Barium</u>	1980.0		t 	10000.0		1 1			jie-
Bervllium	481.0		l	200.0		i i	4;	TRACK.	制造
<u>Cadmium</u>	489.0			200.0		l i		HOCKIC!	<u> 1</u> A
Calcium	49800.0			99999.0		tt	-,-		1
Chromium	<u>506.0</u>			500.0		t i	2		50. S
Cobalt	474.0			2000.0		1		Barst the State of St	र्ष् र ह
Copper	542.0			1000.0		1		N Stevens≥	.
Iron	1990.0			5000.0		1			
Lead	97,9		·	50.0	50.30	100.5	51,50	103.0	F
Magnesium	25000.01			99999.0					
Manganese	513.0			500.0				W. 99	20
Mercury	5.2			5.0				- Carlos Hal	3
Nickel	496.0			2000.0		t t		- 3. P. A	
Potassium	50200.0			50000.0				و بېزىمىسەر ا	25
Selenium	104.0	107.29	103.2	50.0	51.40	102.8	51,10	102.2	F
Silver	509.0			500.0		· ;		WAR A	
Sodium	50700.0			50000.0			······································	- : 12.4	4
Thallium	97.3			50.0					445 ⁻
Vanadium	511.0			2000.0		; <u> </u>	·····		
Zinc	3100.0	······		1000.0		,		· ····································	e
Cyanide	85.0			25.0					2
							-	,	1

(1) Control Limits: Mercury 30-120: Other Metals 30-110; Cyanide 85-115

05-5 709218

7/87

U.S. EPA - OLP

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lap Name: WESTON ANALYTICS

Contract: <88131538 KH

Case No.: 8813K.H. SAS No.: 10688 Lab Code: WESCA

SDG NO. : SEIDUOL.H

Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibr Found	ation %R(1)	True	Continuir Found	ng Calil %R(1)	pration Found	%R(1)	M
<u>Aluminum</u>	1980.0	****	 	<u>5000.0</u>		 		_	
Antimony	1010.0			<u> 100.0</u>		: 		لا يُعد م	T
Arsenic	47.0	<u></u>	1	<u>50.0</u>	47.80	95.6	46.20	92.4	۹E
<u>Barium</u>	1980.0		1	<u>10000.0</u>		۱ ۱			£
<u>Beryllium</u>	481.0	······		<u>200.0</u>		l			<u>* - </u>
<u>Cadmium</u>	489.0	<u></u>	. I	200.0		l ł _		الم المستحد	
Calcium	49800.0		. !	<u>99999.0</u>		۱ ۱ <u>ـ</u> ۱ ـ		1	
Chromium	506.0			<u>500.0</u>		l l			1 2 77 ()
<u>Cobalt</u>	474.0			2000.0		۹ ۱ ۱ _		l l	₩
Copper	542.0			<u>1000.0</u>		! ! _		l 	ا روغاند است
Iron	<u>1990.0</u>		. !	<u>5000.0</u>		() 		1 1	1
Lead	97.9			50.0	53.80	<u>107.8</u> ;	<u>54.30</u>	108.6	IE I
Magnesium	25000.0			<u> 99999.C</u>		۲ ۱			·
Manganese	513.0		. t	500.0		1 I _		الم	
Mercury	5.2		_	5.0		۱ ۱		الم يور محمد من من ا	
Nickel	496.0		F	2000.0		! I 1 l _		<u>ا به محمد ا</u>	1
Potassium	50200.0			<u>50000.0</u>		[] []		····	
Selenium	104.0			50.0;		1 I		~~1	
Silver	509.0			500.0		1 F		العقد الرجيعة ا	* · · · ·
Socium	50700.0			50000.0		i			+
Thallium	97.3		1	50.0		1		[[+
Vanadium	511.0			2000.0		1		i i	t
Zino	3100.0			1000.0		ii			
Cvanide	85.0			25.0		I I I I I I I I I I I I I I I I I I I		ii	4-
}	1		+	1 1		i i		1 7	1

1) Control Limits: Mercury 30-120; Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

7/87

Ô17

U.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lap Name: WESTON ANALYTICS Contract: C88131538 KH.

Case No.: 8813 KH SAS No.: SDG No .: BBIBOOK _ab Code: WESCA Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	XR(1)	M-
<u>Aluminum</u>	1980.0		i	5000.0		· · .		مار بو در مید	
Antimony	1010.0		 	100.0		! !! !		m	et al
Arsenic	47.0		 	50.0	45.70	91.4	<u> 16.10</u>	-92-22	
Barium	1980.0		l Ii	10000.0		¦!.		1-16-22-61-41	8.2
Beryllium	<u>481.0</u>		l I	200.0		· · .		28.240	
Cadmium	489.0		1	200.0		l			See.
Calcium	49800.0		l 	99999.0		l l .			
Chromium	506.0		l 1	500.0		· 1.		31 3 F.J. Store	
Cobalt	474.0		(/	2000.0		۱ ۱ ـــــــــــــــــــــــــــــــــــ			
Copper	542.0		, 	1000.0		۱ ۱ ـــــــــــــــــــــــــــــــــــ		: الإنجاز، تعديدات: + ا	
Iron	1990.0		{ 1	5000.0		¦ ; .			
'Lead	<u>97.9</u>		·	50.0	53.40	<u>106.8</u>	51.00	102:0	IEI I
: <u>Magnesium</u> :	25000.0		t 1	<u>99999.0</u> ;		۱ ۱ ۱ -			1+ 1.2
<u>Manganese</u>	<u>513.0</u> ;		¦ •	500.0		۱ ۱ ـــــــــــــــــــــــــــــــــــ	i	NOT STATES	
Mercury	5.2		l l	5.0		1 1 .			臣三
Nickel	496.0		I I	2000.0		۱ ۱ ـــــــــــــــــــــــــــــــــــ		2. C. C. C.	2.7
Potassium	50200.0		1 1	<u>50000.0</u>		۱ ۱ ـــــــــــــــــــــــــــــــــــ			
<u>Selenium</u>	<u>104.0</u>		1	<u> </u>		tt .			19:
Silver	<u>509.0</u>		t 1	<u>500.0</u>		r			·
Sodium	50700.0		!	50000.0					£
<u>Thallium</u>	<u>97.3</u>		l i	<u>50.0</u>		۱ ۱ ـــــــــــــــــــــــــــــــــــ			1940 - 1 1 1
<u>Vanadium</u>	511.0		l	2000.0		¦			
' <u>Zinc</u>	3100.0		:	1000.01		11		1	
Cyanide	<u>85.0</u>		1	25.0		¦		1	*
1	1		F.	r į		1 1		· · · ·	i i

(1) Control Limits: Mercury 30-120: Other Metals 90-110; Cyanide 85-115

FORM II (PART 1) - IN

25-5 age 20 7/87

019

U.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS

Contract: (88131538 x.H.

Case No.: 8813 KH. SAS No.: SDG NO.: 881000KH. Lab Code: WESCA 10688 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Aluminum 1980.0 5000.0	Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	н М
Antimony 1010.0 100.0	<u>Aluminum</u>	<u> 1980.0</u>			<u>5000.0</u>				 	ļ.
Arsenic 47.0 47.90 101.9 50.0 49.30 98.6 Barium 1980.0 10000.0 10000.0 10000.0 Beryllium 481.0 200.0 10000.0 10000.0 Cadmium 489.0 200.0 10000.0 10000.0 Calcium 49800.0 99999.0 1000.0 1000.0 Chromium 506.0 500.0 1000.0 1000.0 Cobalt 474.0 2000.0 1000.0 1000.0	Antimony_	<u> 1010.0</u> ;		l 	<u>100.0</u>		· •		l	; ; . ;
Barium 1980.0 10000.0	Arsenic	47.0	47.90	<u>101.9</u>	<u>50.0</u>	49.30	98.6		l 1 :	<u>E</u>
Beryllium 481.0 200.0	Barium	<u> 1980.0</u>		! 	<u>10000.0</u>		l l		l	1 1 1 1
Cadmium 489.0 200.0	<u>Beryllium</u>	<u>481.0</u>		·	<u>200.0</u>				l :	<u> </u>
Calcium 49800.0 99999.0	<u>Cadmium</u>	489.0		İ	200.0		{		l	· ·
Chromium 506.0 500.0	Calcium	<u>49800.0</u>	, <u>_,</u>	l 	<u>99999.0</u>			·····		
Cobalt 474.0 2000.0 Copper 542.0 1000.0	<u>Chromium</u>	<u>506.0</u>		l 	<u>500.0</u>		 	······································	t 	1 1
Copper 542.0	<u>Cobalt</u>	474.0			2000.0		 		!	· · ·
	<u>Copper</u>	542.0		l	<u>1000.0</u>		 		! 	[]]]
<u>Iron 1990.0</u>	! <u>Iron</u>	1990.0		 	<u>5000.0</u>				l i	l l l
' <u>Lead 97.9</u> ! <u>50.0</u> ; <u>51.20</u> ; <u>102.</u> ≩; <u>49.70</u> ; <u>99.4</u> ;	' <u>Lead</u>	97.9	·	· ·	<u>50.0</u>	51,20	<u> 102.2</u>	<u> 49.70</u>	99.4	<u>: 15</u>
Magnesium 25000.0	Magnesium	<u>{25000.0</u> }		l l	<u>99999.0</u>) i		• •• •	:: <u> </u>
Manganese: 513.0; 500.0; 500.0;	Manganese	<u> 513.0</u>		: i	<u>500.0</u>		۱ ۹ میں میں میں ا		: 1	::
Mercury 5.2 5.0	Mercury	! <u> </u>		l l	5.0		l l		l 1) () -) () -
Nicke] 496.0	Nickel	<u>496.0</u>		l 1	<u>2000.0</u>		 		1 1	1 1 1 1
Potassium 50200.0	Potassium	<u>50200.0</u>		(<u>50000.0</u> ;		 		• •	t !
Selenium 104.0 50.0 [104	Selenium	104.0		1 1	50.0		l l		l l	ľ I
Silver 509.0	¦ <u>Silver</u>	<u> 509.0</u>		t 1	<u>500.0</u>		l 			! !
Sodium [50700.0] [50000.0]	Sodium	<u>50700.0</u> ;		l l	<u>50000.0</u>		1 1 1		l l	
Thallium 97.3 50.0!	Thallium	97.3) L	<u>50.0</u>		l l		l 1	
<u>Vanadium 511.0</u>	Vanadium	<u> </u> 511.0		l	<u>2000.0</u> ;		 		l i	¦
Zinc 13100.01 1000.01	! <u>Zinc</u>	<u>13100.0</u>		! 	1000.0		۱ ۱		t	¦
Cyanide 85.01 25.01	: <u>Cvanide</u>	85.0		! ↓	25.0		((1	 <u> </u>

(1) Control Limits: Mercury 30-120; Other Metals 90-110: Cyanide 85-115

25-5 page 21 FORM II (PART 1) - IN

7/87

O2O

SDG No 88100

1060

U.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS

Contract: C88131538 KH. 10688

SAS No.:

Lab Code: WESCA Case No.: 9813 KH. 1988 Initial Calibration Source: EPA-EMSL Continuing Calibration Source: SPEX

Concentration	Units:	ug/L
---------------	--------	------

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	×R(1)	i i	
Aluminum	1980.0		l	5000.0		ii				
Antimony	<u>1010.0</u>		l l :	<u>100.0</u>		 		127.2.2.42	註三	
Arsenic	<u> 47.0</u> [49.70	<u>105.7</u>	50.0	47.10	94.2	48.40	96.8	計E	
<u>Barium</u>	<u>1980.0</u>		l l i	<u>10000.0</u>				135-06-HP	19	
<u>Beryllium</u>	481.0		t I	200.0		l			\$÷~	
; <u>Cadmium</u>	4 <u>89.0</u>	······································	l I	200.0				1-34 Maria	1	_
<u>Calcium</u>	49800.0	· · · · · · · · · · · · · · · · · · ·	l l	<u>99999.0</u>		۲ ۲ ۲		216 A.4.5	÷	
<u>Chromium</u>	<u>506.0</u>		l :	<u>500.0</u>		 		Protect 25%	11	
<u>Cobalt</u>	<u>474.0</u>		1 4	2000.0		1		1949 (25) (C. 26)	1715	
Copper	542.0		l I	1000.0				19735 Variat	2.4	
Iron	<u>1990.0</u> ;		: ۱	<u>5000.0</u>		1			1' 1 1	
Lead	<u>97.3</u> ;		·	<u> </u>	<u> </u>	<u>101.4</u> 1		1 - 50 (8)	E	
Magnesium	<u>25000.0</u>	I	: 	<u>99999.0</u>					j	
<u>Manganese</u>	<u> 513.0</u>]			500.0				1742 195		
Mercury	<u> </u>	······	·	5.0				- Martin	器支	
' <u>Nickel</u>	<u>496,0</u> ;		 	2000.0					21-	
<u>Potassium</u>	<u>50200,0</u>	l	: 	<u>50000.0</u>		 		1	141 - 121	
<u>Selenium</u>	<u>104.0</u>	·····	 	50.0		 			0 	
<u>Silver</u>	<u>509,0</u>		 	500.0		 		2	\$ 55	_
' <u>Sodium</u>	<u>50700.0</u>			<u>50000.0</u>		.		تەرىخىنى ئۇرىمىيى ا		
' <u>Thallium</u>	<u>97.3</u>		l I	50.0						_
<u>Vanadium</u>	511.0		 	2000.0				· · · · · · · · · · ·		
! <u>_inc</u>	3100.0	······································	i	1000.01	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			1:14. 1 1	
<u>Cyanide</u>	85.01		۱ ۰	25.01				ł		
1 · · · · · · · · · · · · · · · · · · ·	ł	i	ا 	l l				1		

(1) Control Limits: Mercury 80-120; Other Metals 30-110; Oyanide 85-115

FORM II (PAPT 1) - IN

a5-5 page 22 7/87

U.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS Lab Code: WESCA Case No.: 8813 K.H. SAS No.: 1 SDG No.: 881900 K Initial Calibration Source: EPA-EMSL Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyta	Initial True	Calibra	ation %8(1)		Continuir	ng Calit KR(1)	oration Found	%R (1)	M
						, , , , , , , , , , , , , , , , , , ,			
Aluminum !	1980.0		l l	<u>5000.0</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				<u>المعامة</u>
Antimony	1010.0		1 1	<u> 100.0</u>		i .		ال <u>وزور</u> ، درمید ا	ا ایسیسیا کا
Arsenic	47.0		1	50.0	[<u> </u>
Barium	1980.0		1	<u>10000.0</u>					
<u>Beryllium</u>	481.0		t I	<u>200.0</u>	۰ ۱	l _			ا
Cadmium	489.0		۱ ۱	<u>200.0</u>	f	l -		;~	2
Calcium	49800.0		t I	<u>99999.0</u>					
Chromium	506.0		1	<u>500.0</u>					//1¥25 [`11'
Cobalt	474.0		!	<u>2000.0</u>		. <u></u> i	[┝╡ ┲╼ ┊╴╴╷ ┶ ╷┨╶───
: <mark>Copper</mark>	542.0		!	<u> 1000.0</u> ;		!		I	ا شيتية الاتما المستجد ا
! <u>Iren</u>	<u>1990.0</u>		ł L	5000.0		·		ł	
'Lead	97.3	97.00	<u>39,1</u>	50.01	51.30	102,61	<u>50.00</u>	100.0	; <u> E</u>
<u>Magnesium</u>	<u>25000.0</u> !_		1 4	<u>99999.C</u>		· · · · · ·		·	ز معرفاً معرفاً. استنسبتر ≹می
Manganese	<u>513.0</u>		} }	<u>500.0</u>		i .		ال . • 1 مستحد مستحد ا	i :⊉?
Mercury	<u>5.2</u>		; ;	<u> </u>	I			- 6 - 1	
Nickel	496.0	•) 	2000.0		ا منبعہ میں ا			
Potassium	50200.0) 	50000.0		· i -			i e peri Li tainan
Selenium	104.0;		1	50.0					
Silver	<u>509,0</u>	······	l 1	<u>500.0</u>		l		<u> </u>	174 L I
Sodium	50700.0		ł 1	<u>50000.0</u>		 			167 () 1 - 11
Thallium	97.3		1	50.0		· · .		·	r
Vanadium	<u>511.0</u>		1	<u>2000.0</u>		· · _		: 	Ľł.
<u>'Etnc</u>	<u>3100.0</u>		l i	1000.0	i			: 	- -
Cyanide	85.0		1 i	25.0				 	: + <u></u>
	i I		*	!				ا ا	/ 1 ⁻ /

(1) Control Limits: Mercury 20-120; Other Metals 30-110; Cyanide 85-115

03-5 Dage 23 7/87

FORM II (PART 1) - IN

ÓZI

EPA SAMPLE NO. 1AVOLATILE ORGANICS ANALYSIS DATA SHEET TRIP-BLANK Name: ROY F. WESTON Contract: C88-131538 Lab Code: WESCA Case No.: 75099 SAS No.: _____ SDG No.: _____ Lab Sample ID: <u>8807S099-003V</u> Matrix: (soil/water) WATER Sample wt/vol: <u>5.0</u> (g/mL) <u>ML</u> Lab File ID: <u>88M1V02482</u> Level: (low/med) LOW Date Received: 07/27/88 Date Analyzed: 08/09/88 % Moisture: not dec. ____ Dilution Factor: 1.00 Column: (pack/cap) PACK CONCENTRATION UNITS: Q CAS NO. COMPOUND (ug/L or ug/Kg) UG/L U 74-87-3-----Chloromethane_____ 10 74-83-9----Bromomethane__ 10 U U 75-01-4-----Vinyl Chloride 10 75-00-3-----Chloroethane_____; 10 U 75-09-2-----Methylene Chloride_____ 1 BJ 67-64-1----Acetone_____ 8 BJ 75-15-0-----Carbon Disulfide_____ 5 U õ ! U 75-35-4-----1,1-Dichloroethene_____ õ ¦U 75-35-3-----1,1-Dichloroethane___ 540-59-0-----1,2-Dichloroethene (total)____ 5 U 67-66-3-----Chloroform_ 5 ! U 107-06-2-----1, 2-Dichloroethane_____ 5 U U 78-93-3-----2-Butanone____ 10 71-55-6-----1,1,1-Trichloroethane_____ 5 ! U 56-23-5-----Carbon Tetrachloride_____ õ U 108-05-4-----Vinyl Acetate_ 10 ¦U õ ¦U 75-27-4-----Bromodichloromethane_____ 5 ¦U 78-87-5-----1,2-Dichloropropane___ õ U 10061-01-5----cis-1,3-Dichloropropene_____ 5 79-01-6-----Trichloroethene___ ¦U 124-48-1----Dibromochloromethane_____ 5 1 U 79-00-5-----1,1,2-Trichloroethane_____ 5 {U 71-43-2----Benzene_ 5 !U 5 ¦U 10061-02-6----Trans-1, 3-Dichloropropene_____ - **5** U | 75-25-2----Bromoform_ 108-10-1-----4-Methyl-2-Pentanone_____ 10 U U 591-78-6----2-Hexanone____ 10 ¦U 127-18-4-----Tetrachloroethene_____ 1 U õ 79-34-5-----1,1,2,2-Tetrachloroethane_____ 10 U 108-88-3----Toluene 5 1 U 5 ¦U 108-90-7-----Chlorobenzene อี {U 100-41-4----Ethylbenzene 100-42-5----Styrene__ 5 ¦U { U 1330-20-7----Total Xylenes____ 5

L

03-5 24 1/875 Her.

1E VOLATILE ORGANICS ANALYSIS	DATA SHEET
TENTATIVELY IDENTIFIED CO	MPOUNDS
L Name: <u>ROY F. WESTON</u>	Contract: <u>C88-131538</u>
Lab Code: <u>WESCA</u> Case No.: <u>78099</u>	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>8807S099-003V</u>
Sample wt/vol: <u>5.0</u> (g/mL) <u>ML</u>	Lab File ID: <u>88M1VO2482</u>
Level: (low/med) LOW	Date Received: <u>07/27/88</u>
% Moisture: not dec.	Date Analyzed: <u>08/09/88</u>
Column (pack/cap) <u>PACK</u>	Dilution Factor: <u>1.00</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

Number TICs found: <u>1</u>

CAS NUMBER	COMPOUND NAME	 RT	EST. CONC.	Q
1. 0-00-0	UNKNOWN	6.23	6.0	JX

FORM I VOA-TIC

05-5 page 25 1/87 Rev.

Organophosphorous Pesticides + Herbicides 8802002B

.

Client: EG&G

4

Sample ID: 8802DOEB

- <u>A @O P-1</u> -	08705788		Matrix:	WATER			
Neu -	U8706738				REW Job #:	3808s016	
************		==========	============			==================	============
CHUORINATED :	HENOXA (0010	HERBICIDES	SM 5098	ORGANOPHOSP	HOROUS PESTIC	DES	EPA 614
Extracted:	08/01/88	Ext Fact:	100	' 'Extracted:	08/08/88	Ext Fact:	100
analyzed:	08/16/88	011 Fact:	100	Analyzed:	08/23/88	Dil Fact:	
Contirmed:	NC	Blank ID:	0488181	Confirmed:	NC	Blank ID:	0488270
				!			
RFW Lab #:	001	Results (ppb)	Oet Limit Samole	RFW Lab #:	001	Results (ppb)	Det Limit ; Sample
Compound		ua/L	ua/L	: Compound		ua/L	ua/L
		2222222222	= = = = = = = = = = = = = = = = = = = =				
2.4-0 2.4.5-TP (13) 2.4.3-T	1 v́ex }		1.00 0.10 0.10	Phorate Dimethoate. Dioxathion Diazinon Disulfoton Demeton Methyl Para Nalathion Ethyl Parat DEF Ethion Famphur Azinphos-me	(Delnav) (DiSyston) thion hion		0.20 0.20 1.00 0.30 0.30 0.30 0.30 0.40 0.40 0.40 0
• • •				* * *			
:				, 1 1			
1				:			
1				k t			
;				1			i
1				1			
				222222322222		,==========	
0 = Compound	a analyzed for	but not d	etected	Approved:	Decian Cowley		· · · · · · · · · · · · · · · · · · ·

05-5 page 26

Pestiade/PCB	88020088	
	* + j s	

EPA SAMPLE NO.

	PESTICIDE	DRGANTOS ANALYSIS D	DATA SHEET		
				8	B02D0EB
- (0)	ame provins w <u>es</u>	Co Co	ontract: <u>68-01</u>	-7413	
Fire Dir	MESCA	Case No.: 8 <u>5016</u> 5	AS NO.:	SDG No.	: 880200
Marin ()	(: + so) {/water)	WATER	Lab Sa	mole ID: 8 <u>8</u>	085016 001
ិភពភ្	e at/Mol:	<u>10</u> 00 (g/mL) <u>ML</u>	Lab Fi	le ID:	ang ga makan ing kang mang kang mang kang pang pang pang kang kang kang pang pang kang pang pang pang kang pang
Leve ::	: (low/med)	L <u>DW</u>	Date R	ecelved: <u>08</u>	/06/88
% Mois	sture: not dec.	dec.	Date E	xtracted: 0 <u>8</u>	/08/88
Herrad	ction: (SepF/	Cont/Sone) <u>SEPE</u>	Date A	nalyzed: <u>08</u>	/29/88
epc cj	leanup: (YZN)	NpH: <u>7.0</u>	<u>)</u> Diluti	on Factor: <u>1</u>	.0
			CONCENTRATIO	N UNITS:	
	CAS NO	COMPOUND	(ug/L or ua/	Kg) <u>UG/L</u>	Q
	· ····				1 1
	í 1. triða Ordania anna an		i	0.05	
	·		······································	0.05	
in an	: 319-85-7	Deta-BHU	i		
		delta-BHC	,,,,,,	0.05	
	58-89-9	gamma-BHC (Lindar	ne)i	0.05	
	; 76-44-8	Heptachlor		0.05	
	: .309-00-2	Aldrin		0.05	010
	1024-57-3	Heptachlor epoxic	tet	0.05	0;0
	959-98-8	Endosulfan I	 	0.05	0;U ;
	; 60-57-1	Dieldrin	 	0.1	0¦U
	: 72-55-9	4,4'-DDE	<u> </u>	0.1	0¦U {
	: 72-20-8Endrin			0.1	0¦U
	; 33213-65-9	Endosulfan II	۱ ۲	0.1	0¦U ¦
	: 72-54-8	4,4'-DDD	ا ا سرب میں	0.1	0;U ;
	; l031-07-8	Endosultan sultat	te;	0.1	0¦U
	: 50-29-3	4.4'-DDT	ا 1 <u></u>	0.1	o;u ;
	72-43-5Methoxychlor		0.5	0(U	
	53494-70-5Endrin ketone		0.1	o;u ;	
	5103-71-9alpha-Chiordane		0.5	o;u ;	
	5103-74-2gamma-Chlordane		0.5	0¦U	
	; 8001-35-2Toxaphene		1.	010 1	
	12674-11-2Aroclor-1016		0.5	010	
	11104-28-2Aroclor-1221		0.5	0;U ;	
	11141-16-5Aroclor-1232		0.5	010	
	53469-21-9Aroclor-1242		0.5	010	
	12672-29-6	Aroclor-1248		0.5	010
	1 1097-69-1	Aroclor-1254	j 	1.	o U
	1096-82-5	Aroclor-1260		1.	
			I I		
	angleddar i'r alfada yr i'na dalae yn r Hanna a bara yn yw yn y		•		•

25-5 page 27

1/87 **226**
WESTON ANALYTICS 7720 LOBRAINE AVE. SUITE JTOCITON CA 95210 209	102 9 957-340	GC/MS SEMI-VOLATILE	ORGANICS ANALYSIS	LAB REFERENCE NUMBER : 8808S016-1 CLIENT SAMPLE ID : 8802SDOEB REPORT DATE : 08-27-1988
CLIENT NAME : EGLG-RWMC METHOD : 8270 BLANK ID : 88M3BN1552 SAMPLE TYPE : WATER				DATE SAMPLED : 08/05/88 DATE RECEIVED : 08/06/88 DATE EXTRACTED : 08/08/88 DATE ANALTSED : 08/29/88
108-39-4	10 U	3-HETHTLPHENOL	99-35-4	10 U 1.3.5-TRINITROBBNZENB
930-55-2	10 0	N-NITROSOPYRROLIDINE	2303-15-4	10 U DIALLATE
98-86-2	10 U	ACETOPHENONE	62-44-2	10 U PHBNACETIN
59-89-2	10 U	N-NITROSONORPHOLINE	122-39-4	10 U DIPHENYLANINE
95-53-4	10 U	o-TOLUIDINB	99-55-8	10 U 5-NITRO-O-TOLUIDINB
100-75-4	50 U	N-NITROSOPIPERIDINE	92-67-1	10 U 4-AKINOBIPHENYL
122-09-8	10 U	N,N-DINBTHYLPHBNBTHYLANINB	23950-58-5	10 U PRONANIDE
87-65-0	10 U	2,6-DICHLOROPHENOL	88-85-1	50 U 2-SEC-BUTYL-4,6-DINITROPHENOL
1888-71-7	10 U	HEXACHLOROPEOPENE	82-68-8	50 U PENTACHLORONITROBENZENE
106-50-3	10 U	p-PEBNYLENEDIAMINE	56-57-5	20 U 4-HITROQUINOLINE-1-OXIDE
924-16-3	10 U	N-NITROSO-DI-N-BUTYLAMINB	91-80-5	10 U METHAPYRILENE
94-59-7	10 U	SAPROLE	140-57-8	20 U ARAMITE
95-94-3	10 U	1,2,4,5-TETRACHLOROBENZENE	510-15-6	10 U CHLOROBENZILATE
120-58-1	10 U	ISOSAFROLE	50-11-7	10 U p-DINETHYLANINOAZOBEZENE
130-15-4	10 G	1,4-NAPHTEOQUINONB	119-93-7	10 U 3,3'-DIMETHYLBENZIDINE

RESULT UNITS : UG/L

DILUTION FACTOR : 1

10 U 2-ACETYLAHINOPLUORENE

10 U 3-METHYLCHOLANTHRENB

90 U HEXACHLOROPHENE

10 U 7,12-DIKETHYLBENZ(A]ANTHRACENB

U = indicates the compound was analysed for, but not detected.

The numerical value preceeding 'U' is the limit of detection for that compound, based on dilution.

J = indicates an estimated trace value.

99-65-0

608-93-5

134-32-7

91-59-8

58-90-2

10 U 1,3-DINITROBENZENE

10 U I-HAPHTHYLAMINE

10 U 2-NAPHTHYLANING

10 U PENTACHLOROBENZENE

10 U 2,3,4,6-TETRACHLOROPHENOL

ANALYST :

05-5 page 28

APPROVED BY : _____125

53-96-3

57-97-6

70-30-4

58-49-5

Name: <u>ROY F. WESTON</u> Contract: Code: <u>WESCA</u> Case No.: <u>88016</u> SAS No.:	: <u>88131538</u>	880:	2DOEB
Code: <u>WESCA</u> Case No.: <u>88016</u> SAS No.:	· <u>·····</u>)		
Code: <u>WESCA</u> Case No.: <u>88016</u> SAS No.:			
	: SDG	No.: §	<u>3802DO</u>
rix: (soil/water) <u>WATER</u>	Lab Sample ID:	88088	5016-1
ple wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID:	<u>88M3</u>]	<u>BN1553</u>
el: (low/med) LOW	Date Received:	08/00	<u>6/88</u>
oisture: not dec dec	Date Extracted:	08/08	8/88
raction: (SepF/Cont/Sonc) <u>CONT</u>	Date Analyzed:	08/2	9/88
Cleanup: (Y/N) <u>N</u> pH: <u>7.0</u>	Dilution Factor	·: <u>1.0</u>	0
CONCEN CAS NO. COMPOUND (ug/L	NTRATION UNITS: or ug/Kg) <u>UG/L</u>	_	ବ
108-95-2Phenol	ther	10 10 10 <td></td>	

.

EPA SAMPLE NO. 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET 8802DOEB Lab Name: ROY F. WESTON Contract: 88131538 Lab Code: <u>WESCA</u> Case No.: <u>88016</u> SAS No.: <u>SDG No.: 8802D0</u> Lab Sample ID: 8808S016-1 Matrix: (soil/water) WATER Sample wt/vol: <u>1000 (g/mL) ML</u> Lab File ID: 88M3BN1553 Level: . (low/med) LOW Date Received: 08/06/88 % Moisture: not dec. ____ dec. ____ Date Extracted: 08/08/88 Date Analyzed: 08/29/88 Extraction: (SepF/Cont/Sonc) CONT **GPC** Cleanup: (Y/N) <u>N</u> pH: <u>7.0</u> Dilution Factor: 1.00 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q U 99-09-2----3-Nitroaniline 50 83-32-9----Acenaphthene_ 10 U U 51-28-5-----2,4-Dinitrophenol____ 50 50 U 100-02-7-----4-Nitrophenol 10 U 132-64-9----Dibenzofuran 121-14-2----2,4-Dinitrotoluene____ 10 U 84-66-2----Diethylphthalate 10 ! U 7005-72-3-----4-Chlorophenyl-phenylether___ 10 ! U U 86-73-7----Fluorene 10 100-10-6-----4-Nitroaniline_____ 50 U 50 534-52-1-----4,6-Dinitro-2-Methylphenol____ U 86-30-6-----N-Nitrosodiphenylamine (1)____ 10 U 10 U 101-55-3-----4-Bromophenyl-phenylether___ 118-74-1-----Hexachlorobenzene____ 10 U 50 ! U 87-86-5-----Pentachlorophenol____ 85-01-8-----Phenanthrene 10 U. 120-12-7----Anthracene___ 10 ! U 84-74-2----Di-n-Butylphthalate____ 10 ! U 206-44-0----Fluoranthene_____ 10 U 129-00-0----Pyrene 10 U 85-68-7-----Butylbenzylphthalate_____ 10 ¦U 91-94-1-----3,3'-Dichlorobenzidine 20 ! U 56-55-3-----Benzo(a)Anthracene 10 ĮΨ 218-01-9----Chrysene_ 10 ! U 117-81-7-----bis(2-Ethylhexyl)phthalate___ 10 U 117-84-0----Di-n-Octylphthalate_____ 10 1U 205-99-2----Benzo(b)Fluoranthene 10 1 U 207-08-9----Benzo(k)Fluoranthene 10 U 50-32-8----Benzo(a)Pyrene_ 10 ! U 193-39-5-----Indeno(1,2,3-cd)Pyrene____ 10 !U 53-70-3-----Dibenz(a,h)Anthracene____ 10 1U 191-24-2----Benzo(g,h,i)Perylene___ 10 U 123 (1) - Cannot be separated from Diphenylamine FORM I SV-2 1/87 Rev.

		EPA SAMPLE NO.				
	8802DOEB	1				
Lab Name:	ROY F. WEST	ON	Contract: <u>881</u>	31538		
Lab Code:	WESCA C	ase No.: <u>88016</u>	SAS No.:	SDG N	o.: <u>8802DO</u>	
Matrix: (s	soil/water)	WATER	Lab	Sample ID:	88085016-1	
Sample wt/	vol:	<u>1000</u> (g/mL) <u>ML</u>	Lab	File ID:	<u>88M3BN1553</u>	
Level: .	(low/med)	LOW	Date	Received:	08/06/88	
% Moisture	e: not dec.	dec	Date	Extracted:	<u>08/08/88</u>	
Extraction	n: (SepF/C	Cont/Sonc) <u>CO</u>	NT Date	Analyzed:	08/29/88	
GPC Cleanu	ap: (Y/N)	<u>N</u> pH:	<u>7.0</u> Dilu	tion Factor:	1.00	

Number TICs found: <u>0</u>

.

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

	1	ł	1	1
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
				=====
1	1 ····································	, 1	I I	
	1	l	l	ا ا

FORM I SV-TIC

25-5 page 31

124 1/87 Rev.

1A VOLATILE ORGANICS ANALYSIS DATA	SHEET	EPA SAMPLE NO.
Lab Namer BOY E MESTON		8802DOSB
Lao Name: <u>ROY F. WESTON</u> Contra	ict: <u>C88-131538</u> ;	
Lab Code: <u>WESCA</u> Case No.: <u>85016</u> SAS N	No.: SDG No	.: <u>8802DO</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>8</u>	<u>3808S016-003V</u>
Sample wt/vol:5.0 (g/mL) ML	Lab File ID: §	38M1V02517
Level: (low/med) LOW	Date Received: 🤇	08/06/88
% Moisture: not dec	Date Analyzed: 🤇	08/11/88
Column: (pack/cap) <u>PACK</u>	Dilution Factor:	1.00
CAS NO. COMPOUND (ug	CENTRATION UNITS: ;/L or ug/Kg) <u>UG/L</u>	ବ
74-87-3Chloromethane 74-83-9Bromomethane 75-01-4Vinyl Chloride 75-01-4Vinyl Chloride 75-01-4Vinyl Chloride 75-01-4Vinyl Chloride 75-01-4Vinyl Chloride 75-01-4Chloroethane 75-01-4		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
FORM I VO	page 32	1/87 Rev.

1-12

μ

1E VOLATILE ORGANICS ANALYSIS DATA	SHEET	EPA SAMPLE NO.
TENTATIVELY IDENTIFIED COMPOUN	DS	8802DOSB
'ab Name: <u>ROY F. WESTON</u> Contra	ct: <u>C88-131538</u>	1
Lab Code: <u>WESCA</u> Case No.: <u>88016</u> SAS N	o.: SDG	No.: <u>8802DO</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>88085016-003V</u>
Sample wt/vol:5.0 (g/mL) ML	Lab File ID: '	88M1V02517
Level: (low/med) LOW	Date Received:	08/06/88
% Moisture: not dec	Date Analyzed:	08/11/88
Column (pack/cap) PACK	Dilution Facto	r: <u>1.00</u>
CON Number TICs found: <u>0</u> (ug	CENTRATION UNITS: /L or ug/Kg) <u>UG/L</u>	
CAS NUMBER COMPOUND NAME	RT EST	. CONC. Q

.

FORM I VOA-TIC

a5-5 page 33 1/87 Rev.

. .

.

U.S. EPA - CLP

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab	Name:	WESTON	ANALYTICS	Contra	act: <u>688</u>	31538	
Lab	Code:	WESCA	Case No.: 82	313 SAS NO	o.:	SDG No.:	<u>88</u>
SOW	No.:					mple NO.	
Were	ICP .	interelem	ent corrections ap	pplied?		Yes/N	οV
Were	ICP I If v	backgroun es-were r	d corrections appl aw data generated	Lied? before		Yes/N	o <u>^</u>
	appl.	ication o	f background corre	ections?		Yes/N	• _
Com	nents:						

computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Lab Manager:

Date:

COVER PAGE - IN

J.S. EPA - CLP

EPA SAMP

INORGANIC ANALYSIS DATA SHEET

LID Mame: WESTON ANALYTICS 2810 LID TODE: YESCA Case TO.: 8813 SAS No.: 3DG No .: 8811 Lab Sample ID: 8806-000 Matrix / soil/water : WATER . Level low/med): LOW Date Received: 06/04/E

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	: Concentration	; ; ;	2	· M - 1
7429-90-5	Aluminum	· · · · · · · · · · · · · · · · · · ·	; ;		· · · · · ·
7440-36-0	Antimony	2.5	U		· = ·
7440-38-2	Arsenic	2,0 4,4			(=)
7440-39-3	Barnum	41.8	U;		' P
7440-41-7	Beryllium	1.0	9!	7-	: P
7440-43-9	Cadmium	2.5	: U !		· P
7440-70-2	Calcium		1 5		ţ
7440-47-3	Chromium	6.5	U.		!p
7440-48-4	Cobalt	11.5	: U !		· p i
7440-50-8	Copper	9.0	<u>.</u>		. <u>.</u>
7439-89-6	Iron				1
7439-92-1	Lead	10.6		aladii waadii i ta'aana ayaa	
7439-95-4	Magnesium				1
7439-96-5	Manganese		; <u>;</u>		1
7439-97-6	Mercury	0.40			· .
7440-02-0	Nickel	15.9			· 0
7440-09-7	Potassium				:
7782-49-2	Selenium	4.2	0		' 🛱 '
7440-22-4	Silver	7.7	10!	N	· p
7440-23-5	Sodium		<u>لاست</u> د ، ا		·
7440-29-0	Thallium	1.2	י ט י		· ۲
7440-62-2	Vanadium	27.0			10
7440-56-6	Zinc	156	• •		i p i
	Cyanide	2.5	u.		20
	1	1			5

Color Before: COLORLES

Color	Before:	COLORLESS	Clarity	Before:	CLEAR	Texture:
Color	ifter:	COLORLESS	Clarity	After:	CLEAR	Artifacts:

Comments:

FORM I - IN

2A 2A INITIAL AND CONTINUING CALIBRATION VERIFICATION,

*ame	H MESTON	ANALYTICS	5 	Contract: 688131538	6.5000 3	
_ap Code	: WESCA	Case	No.: 8813	SAS No.:	SDG	No.: 881000
Initial	Calibratia	on Source:	EPA-EMSL			

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	1110n %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
<u>Aluminum</u>	<u>1980.0</u> ;			<u>5000.0</u>		 	·	1 	
Antimony	<u>1010.0</u> ;	1074.00	106.3	100.0	103.40	103.4	99.00	99.0	1
Arsenic.	47.0	48.20	102.6	<u>50.0</u>		 	50.30	100.6	F
Barium	1980.0	2023.00	102.2	10000.0	10002.00	100.0	10174.00	101.7	1P
.¦ <u>Beryllium</u>	4 <u>81.0</u> ;	<u>58.00</u>	95.2	200.0	198.50	99.3	<u> 198.10</u>	99.0	12
Cadmium	489.0	<u>+92.70</u>	100.3	200.0	201.90	101.0	198.40	99.2	1P
<u>Calcium</u>	<u>49800.0</u> ;			<u>99999.0</u> ;		 	 	-it-	4
<u>Chromium</u>	<u>506.0</u>	478,10	94.5	<u> </u>	<u> </u>	93.4	<u> </u>	95.7	12
<u>Cobalt</u>	474.0	491.00	103.6	<u></u>	2177.60	<u>108.9</u>	<u>2077.40</u>	103.9	<u> P</u>
<u>Copper</u>	542.01	<u>= 507.30</u>	<u>93.6</u>	<u>1000.0</u>	1003.80	100.4		۱ ۱	12
<u>Iron</u>	<u>1990.0</u>			5000.0		·	·	l 	, ,
<u>'aad</u>	97.9	97.00	<u>.</u> ;	50.0	50.30	1 <u>101.3</u> 1	<u> </u>	105.0	1 E
<u>Magnesium</u>	: <u>25000.0</u> ;			99999.01		, 	·		·+·
: <u>Manganese</u>	513.0			<u>500.0</u>) 			1_
Mercury	5.2;			5.0					
Nickel	496.0;	<u>73.33</u>	95.4	2000.0	2168.30	108.4	2152.20	107.6	P
<u>Potassium</u>	; <u>50200.0</u> ;			<u>50000.0</u> ;		(1
Selenium	<u>104.0</u>		<u>96.3</u>	<u>50.0</u>	54.30	109.6	54.:0	108.2	F
! <u>Silver</u>	509.0	179.90	94.3	500.0	<u>194,30</u>	98.9	192.10	98.4	12
Socium	<u>50700.0</u>			50000.0					
' <u>Thallium</u>	27.3	101.20	104.6	50.0	51.60	103.2	30,30	100,6	F
Vanadium	<u>511.0</u>	<u>175.50</u>	33.1	2000.0	1982.70	99.1	1912.50	95.6	;P
' <u>linc</u>	1 3100.0	2168.00	102.2	<u> 200. 5</u>	1070.00	107.0	1092.00	108.2	P
<u>Cyanice</u>	18 25.2	15.6	8100	25.0	221	रह म			1
									1

10 Control Limits: Mercury 20-120: Other Metals 20-110: Cyanide 85-115

FORM II (FART IN - IN

015-5 2002 36

.

7/87

U.S. EPA - CLP

				,									
Lab	Name:	WESTO	SN I	Analy	Tics		Cont	ract:	<u>C88131:</u>	238			
Lab	Code:	WESCA		Case 1	xo.: 5	280 Julop	SAS	No.:		SDG	No.:	880	<u>z</u> 0
SOW	No.:	787			٤	35016							
и 1		EP			•				Sample 0830/6-00 0650/6-0	ID. 1 2 2 2 2 2 2 2 2 2 2 2 2 2			
													1
Wer	a ICP	interele	ement o	correc	tions	applied	?				Yes/	No	N
Wer	a ICP	backgrou	ind con	rrectio	ons ap	pplied?	e				Yes/	No	μ_{c}
	appl	ication	of bad	ckgrou	nd co	rrection	s?				Yes/	No	
Com	ments:												

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Lab Manager:

61 2.03 Date:

COVER PAGE - IN

 α

Metals ànalipis 8802005B Revised data package U.S. EPA - CLP

3 003

Revised	data paeka	u.s.	EPA - CLP			
	I	NORGANIC A	1 NALYSIS DATA S	HE	ET	EPA SAMPLE
Lab Name: UE	STON Ana	lyhis	Contract: 🖉	381	31538	8802D05B
Lab Code: UEX	A cas	se No.: <u>89</u>	DIG SAS NO.	: _		SDG No.: <u>&</u>
Matrix (soil/wa	iter): Wa	ter		La	ub Sampl	e ID: 880850/
		~			- -	in stile
Level (low/med)		<u> </u>		Ua	ICE RECE	Ived: 5/6/8.
<pre>% Solids:</pre>	$- \phi$					1
Con	centration	Units (ug/	L or mg/kg dry	W	eight):	Ugle
		· · · · · · · · · · · · · · · · · · ·				
	CAS No.	Analyta	Concentration	c	M	0
	7429-90-5	Aluminum] 	
	7440-36-0	Antimony	(0.0			¦
	7440-38-2	Arsenic	(8.3	쓴	- <u>-</u>	
	7440-39-3	Barium	700	 		
	7440-41-7	Bervllium	<u> </u>			
	7440-43-9	Cadmium	14.2			{
	7440-70-2	Calcium			· 1	
	7440-47-3	Chromium	. 43.3	i-i		
	7440-48-4	Cobalt	53.2			<u> </u>
	7440-50-8	Copper	43.3	iTi	2	
	7439-89-6	Iron		Ξi	i	
1	7439-92-1	Lead	56.4		F	
· · ·	7439-95-4	Magnesium		1_1]	
· · · · · · · · · · · · · · · · · · ·	7439-96-5	Manganese			l	
	7439-97-6	Mercury	3.8		<u></u>	<u>₩</u> ¥I
	7440-02-0	Nickal	53.7		<u> </u>]
	7440-09-7	Potassium		<u> </u>	!	!
	7782-49-2	Selenium_	12.5	[<u> </u>	
	7440-22-4	Silver	/0	<u> </u> 2	!	M
	7440-23-3			<u></u>		
	/44U-20-U 7440-27-7		/0.0	ы Ч	<u></u>	
	7440-66-6	71pc		<u>[-</u>]	<u> </u>	
•		Cvanide		-	l	
		7in	1000	ᇤ		<u></u>
		1		ا تنت ا		I

Color Before:	Clarity Before:	Texture:
Color After:	Clarity After:	Artifacts:
Comments:		
۰		······································

a5-5 age 3

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

. 4.₁₀.

EPA SAMPLE NO.

Lab Name: ROY F. WESTON	8802DOEB
Lab Code: <u>WESCA</u> Case No.: <u>85016</u>	SAS No.: SDG No.: <u>8802DO</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>8808S016-001V</u>
Sample wt/vol:5.0 (g/mL) M1	Lab File ID: <u>88M1VO2518</u>
Level: (low/med) <u>LOW</u>	Date Received: 08/06/88
% Moisture: not dec	Date Analyzed: <u>08/11/88</u>
Column: (pack/cap) <u>PACK</u>	Dilution Factor: <u>1.00</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
74-87-3 Chloromethane 74-83-9 Bromomethane 75-01-4 Vinyl Chloride 75-00-3 Chloroethane 75-09-2 Methylene Chlor 67-64-1 Acetone 75-15-0 Carbon Disulfi 75-35-3 1,1-Dichloroet 75-35-3 1,1-Dichloroet 67-66-3 Chloroform 107-06-2 1,2-Dichloroet 78-93-3 Carbon Tetract 107-06-2 1,1.1-Trichlor 56-23-5 Carbon Tetract 108-05-4 Vinyl Acetate 75-27-4 Bromodichlorof 78-87-5 Yinyl Acetate 75-27-4 Bromodichlorof 79-01-6 Trichloroether 124-48-1 Dibromochlorof 79-00-5 1,1,2-Trichlor 71-43-2 Benzene 10061-02-6 Trans-1,3-Dichlor 75-25-2 Bromoform 108-10-1 Hextop 79-34-5 Pitor 108-10-1 Hextop 108-88-3 Pitor 108-90-7 Chlorobenzene </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

1E VOLATILE ORGANICS ANALYSIS	EPA SAMPLE NO.	
TENTATIVELY IDENTIFIED (COMPOUNDS	8802DOEB
b Name: <u>ROY F. WESTON</u>	Contract: <u>C88-131538</u>	
Lab Code: <u>WESCA</u> Case No.: <u>85016</u>	SAS No.: SDG	No.: <u>8802DO</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	<u>88085016-001V</u>
Sample wt/vol:5.0 (g/mL) ML	Lab File ID:	<u>88M1V02518</u>
Level: (low/med) LOW	Date Received:	08/06/88
% Moisture: not dec	Date Analyzed:	08/11/88
Column (pack/cap) <u>PACK</u>	Dilution Factor	·: <u>1.00</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER COMPOUND NAME RTEST. CONC. ହ

Number TICs found: 0

FORM I VOA-TIC

a5-5 17 page 40 1/87 Rev.

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS	S DATA SHEET
Lab Name: ROY F. WESTON	Contract: <u>C88-131538</u>
Lab Code: <u>WESCA</u> Case No.: <u>85016</u>	SAS No.: SDG No.: <u>8802DO</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>8808S016-002V</u>
Sample wt/vol: <u>5.0</u> (g/mL) <u>ML</u>	Lab File ID: <u>88M1VO2516</u>
Level: (low/med) LOW	Date Received: 08/06/88
% Moisture: not dec.	Date Analyzed: <u>08/11/88</u>
Column: (pack/cap) <u>PACK</u>	Dilution Factor: <u>1.00</u>
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
74-87-3Chloromethane	10 U 00 U 10 U 10 <td< td=""></td<>
	payer

.

1A

.

-14

1 E	EPA SAMPLE NO.
VOLATILE ORGANICS ANALYSI TENTATIVELY IDENTIFIED	S DATA SHEET COMPOUNDS 8802DOTB
b Name: <u>ROY F. WESTON</u>	Contract: <u>C88-131538</u>
Lab Code: <u>WESCA</u> Case No.: <u>88016</u>	SAS No.: SDG No.: <u>8802DO</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>8808S016-002V</u>
Sample wt/vol:5.0 (g/mL) ML	Lab File ID: <u>88M1VO2516</u>
Level: (low/med) <u>LOW</u>	Date Received: 08/06/88
% Moisture: not dec	Date Analyzed: <u>08/11/88</u>
Column (pack/cap) <u>PACK</u>	Dilution Factor: <u>1.00</u>
	CONCENTRATION UNITS:
Number TICs found: <u>0</u>	(ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER COMPOUND NAME RT EST. CONC. Q

.

. .

FORM I VOA-TIC

25-5 27 page 42 1/87 Rev.

VOA 881000EBA

1A VOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.
	881DODEBA (ak) 881DEBA
Lab Name: <u>ROY F. WESTON</u> Contract: <u>C88131538</u>	
Lab Code: WESCA Case No.: EG G09 SAS No.: SD0	A No.:
Matrix: (soil/water) <u>WATER</u> Lab Sample ID:	8806509-01
Sample wt/vol: <u>5.0</u> (g/mL) <u>ML</u> Lab File ID:	88M1V01670
Level: (low/med) LOW Date Received:	
X Moisture: not dec Date Analyzed:	06/07/88
Column: (pack/cap) <u>PACK</u> Dilution Factor	or: <u>1.00</u>
CONCENTRATION UNITS: CAS NO. COMPOUND (ug/l or ug/Kg) UG/L	Q
74-87-3Chloromethane 75-01-4Bromomethane 75-01-4Bromomethane 75-00-3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
FORM I VOA Page «	43 1/87 Rev.

. 19

VOLATILE C	1E DRGANICS ANALYSIS DAT	A SHEET	EPA SAMPLE NO.
TENTATIV	ELY IDENTIFIED COMPO	UNDS	881000EBA (ati)
Lab Name: <u>ROY F. WESTO</u>	DN Cont	ract: <u>C88131538</u>	(a 21/5K
Lab Code: <u>WESCA</u> Ca	ase No.: <u>EG G09</u> SAS	No.: SDG	No.:
Matrix: (soil/water) <u>h</u>	ATER_	Lab Sample ID:	8806509-01
Sample wt/vol: _	<u>5.0</u> (g/mL) <u>ML</u>	Lab File ID:	88M1V01670
Level: (low/med) L	_OW	Date Received:	
% Moisture: not dec		Date Analyzed:	<u>06/07/88</u>
Column (pack/cap) <u>E</u>	PACK	Dilution Factor	: 1.00

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 96-37-7	CYCLOPENTANE, METHYL-	10.30	260	XC
2. 00-00-0	PENTANE, METHYL-	11.84	35	XC
3. 00-00-0	PENTANE, METHYL-	13.30	1700	XC

Number TICs found: 3

.

5-5 Je 44 15 1/87 Rev.

FORM I VOA-TIC

VAA 881 DOOTBA

VOLATILE ORGANICS ANALYSIS	DATA SHEET
	881D00 TBA (a4.)
Lab Name: ROY F, WESTON	Contract: <u>C88131538</u>
Lab Code: <u>WESCA</u> Case No.: <u>EG G09</u>	SAS No.: SDG No.:
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: <u>8806S09-07</u>
Sample wt/vol:	Lab File ID: <u>88M1V01669</u>
Level: (low/med) LOW	Date Received:
* Moisture: not dec	Date Analyzed: 06/07/88
	Dilution Fector: 1 00
Column: (pack/cap) <u>PACK</u>	Dilución Faccor: 1.00
	CONCENTRATION UNITS:
CAS NO. COMPOUND	(ug/L or ug/Kg) <u>UG/L</u> Q
	!
74-87-3Chloromethane	10 U
74-83-9Bromomethane	10 ¦U ¦
75-01-4Vinyl Chloride	10 ¦U ¦
75-00-3Chloroethane	10 ¦U ¦
75-09-2Methylene Chlor	ide
67-64-1Acetone	10 U
75-15-0Carbon Disulfide	∋ 5 ¦U
75-35-41,1-Dichloroethe	ane 5 ¦U
; 75-35-31,1-Dichloroetha	ane 5 U
540-59-01,2-Dichloroethe	ane (total)
67-66-3Chloroform	5 U
107-06-21,2-Dichloroetha	ane 5 (U
78-93-32-Butanone	10 ¦U
{ 71-55-61,1,1-Trichloroe	athane 5 U
56-23-5Carbon Tetrachic	pride 5 U
108-05-4Vinyl Acetate	10 U
75-27-4Bromodichloromet	:hane5 U
78-87-51,2-Dichloroprop	ane5 U
10061-01-5cis-1,3-Dichlord	propene; 5 ;U ;
79-01-6Trichloroethene	; 5 ¦U ;
! 124-48-1Dibromochloromet	:hane ! 5 !U !

.20

FORM I VOA

79-00-5-----1,1,2-Trichloroethane

108-10-1-----4-Methyl-2-Pentanone_

127-18-4----Tetrachloroethene

10061-02-6----Trans-1,3-Dichloropropene_

79-34-5-----1,1,2,2-Tetrachloroethane_

71-43-2----Benzene_

108-68-3----Toluene_

100-42-5----Styrene_

75-25-2----Bromoform

591-78-6----2-Hexanone_

108-90-7----Chlorobenzene

100-41-4----Ethylbenzene_

1330-20-7----Total Xylenes

1/87 Rev.

26

5

5

5

5

10

10

5

5

5

5

5

5

10

¦U

10

U

U

U

!U

U

U

U

!U

¦U

¦υ

¦υ

1E VOLATILE ORGANICS ANALYSIS DATA SHEET				EPA SAMPLE NO.	
TENTAT	IVELY IDENTIFIED C	OMPOUNDS	ž	BIDCOTBA (ali)	
Lab Name: ROY F. WEST	TON	Contract: <u>C8813</u>	538		
Lab Code: <u>WESCA</u>	Case No.: <u>EG G09</u>	SAS No.:	SDG N	10.:	
Matrix: (soil/water)	WATER	Lab San	nple ID:	8806S09-07	
Sample wt/vol:	<u>5.0</u> (g/mL) <u>ML</u>	- Lab Fil	e ID:	88M1V01669	
Level: (low/med)	LOW	Date Re	ecived:		
% Moisture: not dec.		D ate Ar	alyzed:	<u>06/07/88</u>	
Column (pack/cap)	PACK	Dilutic	n Factor:	1.00	

Number TICs found: ____

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Т			t	1	1 1
ł			1		1 1
1	CAS NUMBER	COMPOUND NAME	; Rī	LEST. CONC.	: Q :
ì	****************	, 	!========	İzzzzzzzzzzzzzz	ii
1		NAT FOUND			!!
i		NOT 10011V		i	i i

FORM I VOA-TIC

0.5-5 27 page 46 1/87 Rev.

Semi-VOA 881 DODEBB

SEMIVOLATILE OF	GANICS ANALY	SIS DATA SHEET		EPA SAMP	PLE NO.
Lab Name: ROY F. WESTON		Contract:		881D00E	EBB.:
Lab Code: <u>WESCA</u> Case	NO.: 00509	3A5 NU.:	30G	NO.: <u>E88</u>	
Matrix: (soil/water) <u>WATE</u>	IR	Lab	Sample ID:	<u>8806509=</u>	-02
Sample wt/vol: <u>1000</u>) (g/mL) <u>ML</u>	Lab	File ID:	88M3BN10	10
Level: (low/med) <u>LOW</u>		Date	Received:	06/04/88	
% Moisture: not dec	dec	Date	Extracted:	06/06/88	<u> </u>
Extraction: (SepF/Cont/	Sonc) <u>CO</u>	NT Date	Analyzed:	06/17/88	
GPC Cleanup: (Y/N) N	pH:	Dilui	tion Factor	: 1.00	
CAS NO. CO	MPOUND	CONCENTRATI (ug/L or ug	(ON UNITS: g/kg) <u>ug/l</u>	QŢ	• •
			ê ê 1		
108-95-2ph	eno:	vl)Ether	- {		i i
95-57-8	Chlorophenol	iy i / 5 ciler	-1		1 1
541-73-11	3-Dichlorober	7606		10 10	1 1
106-46-71	4-Dichlorober			10 10	1
100-51-6Be	nzvl Alcohol			10 10	1
95-50-11.	2-Dichlorober	zene		10 10	
95-48-72-	Methylphenol		• • 1	10 10	ł
108-60-1bi	s(2-Chloroisc	propyl)ether	• • • •	10 U	i i
106-44-54-	Methylphenol_			10 10	i
621-64-7N-	Nitroso-Di-n-	Propylamine	1 · · ·	ιο <u>;</u> υ	i
67-72-1He	xachloroethan	le	1	10 ¦U	í E
98-95-3Ni	trobenzene		· · ·	10 (U	1- 1-
78-59-1Is	ophorone		1 · · ·	IO ;U	* 6
88-75-52-	Nitrophenol		4 · · ·	υ	ri L
105-67-92,	4-Dimethylphe	no1		0 10	L T
65-85-0Be	nzoic Acid	N		50 U	н Б.
; 111-91-1bi	s(z-Chloroeth	oxy)Methane			* *
120-83-22,	4-UICNIOPOPN O		, L 		Ť I
2V-62-	2,4-ir iun iuro Nhthalana	vanzaua	,1 1	0 10	1
1 08-47-84-	Chloroaniline	· · · · · · · · · · · · · · · · · · ·		0 1U	ł
87-68-3Ha	xach]orobutad	iene	1	ō lū	
59-50-74-	Chloro-3-Meth	ylphenol	1	o lū	
91-57-62-	Methylnaphtha	lene	1	o (u	1
: 77-47-4He	xachlorocyclo	pentadiene	1	ο ;υ	4 1
88-06-22,	4,6-Trichloro	pheno]	1	0 U	1
95-95-42,	4,5-Trichloro	phenol	[5		
91-58-72-	Chioronaphtha	lene			i
	NITFOANIIINO_	**	, D	0, 0	1
· · · · · · · · · · · · · · · · · · ·	metny (pricrala ananhthylana	ųd	1 I		1
606-20-22,	6-Dinitrotolu	ene	1	o U	90
, 			1 5-5	ł	4 90
	FOR	MISV-1	page 46	1/8	7 0

1C SEMIVOLATILE ORGANICS ANALYSIS DATA S	HEET	EPA SAMPLE NO.
Lab Name - BOY E WESTON Contract.	1 1 1 1 1	881D00EBB
	t	
Lab Code: <u>WESCA</u> Case No.: <u>06809</u> SAS No.:	SDG	No.: EBB
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	8806509-02
Sample wt/vol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID:	88M3BN1010
Level: (low/med) <u>LOW</u>	Date Received:	06/04/88
% Moisture: not dec dec H	Date Extracted:	06/06/88
Extraction: (SepF/Cont/Sonc) CONT	Date Analyzed:	06/17/88
GPC Cleanup: (Y/N) NpH:	Dilution Factor	: 1.00
CAS NO. COMPOUND (ug/L d	pr ug/Kg) <u>UG/L</u>	Q_
	i 1 5 y	
83-32-9Acenaphthene		
51-28-52,4-Dinitrophenol	;	50 U
100-02-74-Nitrophenol		50 U
132-64-9Dibenzofuran	i .	
121-14-22,4-Dinitrotoluene		0 U I
84-66-2Diethylphthalate		0 U
7005-72-34-Chlorophenyl-phenylethe	9r 1	0 10
	i <u>1</u>	OU,
524-52-14-8-Dipitro-2-Methylpheno	5 	
86-30-6Nitrosodiphenvlamine (1	//{1}	
101-55-34-Bromophenyl-phenylether	· · · · · · · · · · · · · · · · · · ·	
118-74-1Hexachlorobenzene		
87-86-5Pentachlorophenol	5	o u
85-01-8Phenanthrene	1	0 U
120-12-7Anthracene	1	0 U
84-74-2Di-n-Butylphthalate	1	0 U
206-44-0Fluoranthene	! 1	o ¦u ¦
129-00-0Pyrene	1	0 U
85-68-/Buty (Denzy) phtha late	i 1	0 - 10
56-55-2Benzo(a)Anthracone	2	
218-01-9Chrysene	i 1 1	
117-81-7bis(2-Ethylhexyl)phthalat		4
117-84-0Di-n-Octylphthalate		o u
205-99-2Benzo(b)Fluoranthene	1	0 10
207-08-9Benzo(k)Fluoranthene	! 1	0 ¦U
50-32-8Benzo(a)Pyrene	t	0 10 1
193-39-5Indeno(1,2,3-cd)Pyrene	1	0 U
53-70-3Dibenz(a,h)Anthracene		
191-24-2Benzo(g,h,1)Perylene		U U
(1) - Cannot be separated from Diphonylamin		s i _ i _ i _ i 97
	page	47

SEMIVOLATILE ORGAN	1F [CS ANALYSIS DATA S	SHEET	EPA SAMPLE NO.
Lab Name: ROY F. WESTON	Contract:	· · .	881D00EBB
Lab Code: <u>WESCA</u> Case No.:	06509 SAS No.:	: SDG	No.: <u>EBB</u>
Matrix: (soil/water) <u>WATER</u>		Lab Sample ID:	8806509-02
Sample wt/vol: <u>1000</u>	g/mL) <u>ML</u>	Lab File ID:	88M3BN1010
Level: (low/med) <u>LOW</u>		Date Received:	06/04/88
% Moisture: not dec.	dec	Date Extracted:	<u>06/06/88</u>
Extraction: (SepF/Cont/Sond) <u>CONT</u>	Date Analyzed:	06/17/88
GPC Cleanup: (Y/N) <u>N</u>	pH:	Dilution Factor:	1.00

Number TICs found: <u>0</u>

.

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

	1		•	<u>+</u>		!
		N1 A M/F			0010	
CAS NUMBER	COMPOUND	NAME	1 RI	ESI.	CONC.	;_Q;
!======================================	\ ====================================	===================	;=========	!=======	======	t====!
1	1		, 1	I	1	
******)		l	l		i i

25-5-Dage 48 93 1/87 Rev.

.

881000BB

Laboratory	Name	WESTON	
Case No _	8806	509	

Sample Number -38/D00 EBB

8806509-02 88105 BN 1010

APPENDIX IX REPORT FORM

CAS Number	Compound Name	Fracuon	RT or Scan Number	Estimated Concentration (ug/I or ug/kg)
1	NONE FOUND			_
2				
3				
4				
5				
6				
7				
8			······	
9				
10				
11				· · · · · · · · · · · · · · · · · · ·
12				
¹ 13				
<u> </u>				١
15			·	
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
28				
29				
20				

INORGANIC

DATA SUMMARY REPORT

=======================================	=======================================		*==========
RFW Batch Number	: 8806-009	Client: E G & G	Page: 2

Sample Information

RFW Batch ID:	8806-009-006
Customer ID:	881D00EBF
Matrix:	Water

Sample Information

Chloride Cyanide, Total			
Fluoride	0.4	U	mg/l
Nitrate-Nitrite-Nitrogen			
Total Organic Carbon			
рН			
Sulfate			
Specific Conductance			
Iurbidity			
Sulfide			
Oil and Grease			
Ignitability			
% Solids			
Total Dissolved Solids			
нсоз			
CO3=			
Suspended Solids			
Hexavalent Chromium (Cr+6)			

WESTON ANALYTICS INORGANIC

6. () 24 (*** *** * *

DATA SUMMARY REPORT

FW Batch Number: 8806-009	Client: E	G & G	Page: 1
ample Information	****		
RFW Batch ID: Customer ID: Matrix:	8806-009-0001BL BLANK Water	8806-009-0001BS BLANK SPIKE Water	8806-009-005 881D00EBE Water
ample Information			
Sloride vanide, Total uoride trate-Nitrite-Nitrogen stal Organic Carbon l. llfate ecific Conductance rbidity	0.4 tJ mg/t	96 % mg/l	
lfide. l and Grease. nitability. Solids. tal Dissolved Solids. 03- 3= spended Solids. xavalent Chromium (Cr+6).	1.0 U mg∕i	100 % mg/l	1.0 U mg/l

-

.

WESTON ANALYTICS DIOXINS/FURANS DATA SUMMARY

RFW Batch Numbe	er: 8809-738	(Client:		EG & (G				1	Page:
	Client		8802D0EB	·]	BLANK	 I	B.S.]	B.S.D.		
Sample	ID:				(177)	((177)		(177)		
Information	RFW#:	(003]	BLANK	F	B.S.]	B.S.D.		
	D.F.:		1.		1		l		1		
	Matrix:	ĩ	Water	I	Water	V	Vater	I	Water		
	Units:]	Ng/L]	Ng/L	1	lg∕L	l l	Ng/L 		
C-13 TCDD RECOV	ERY:		54%		 80%		83%		 72%		
C-13 OCDD RECOV	ERY:		55%		86%		898		72욱		
		CONC	LOD	CONC		CONC	LOD	CONC	LOD	CONC	LOD
PCDD/S											
PCDD'S 2,3,7,8-TCDD		ND	0.59	ND	0.13	44	NA	50	NA		
PCDD'S 2,3,7,8-TCDD TCDD		ND ND	0.59 0.17	ND ND	0.13 0.13	44 44	NA NA	50 50	NA NA		
PCDD'S 2,3,7,8-TCDD TCDD PeCDD		ND ND ND	0.59 0.17 0.16	ND ND ND	0.13 0.13 0.12	44 44 ND	NA NA 0.13	50 50 ND	NA NA 0.11		
PCDD'S 2,3,7,8-TCDD TCDD PeCDD NHXCDD	· · · · · · · · · · · · · · ·	ND ND ND ND	0.59 0.17 0.16 0.15	ND ND ND ND	0.13 0.13 0.12 0.10	44 44 ND ND	NA NA 0.13 0.03	50 50 ND ND	NA NA 0.11 0.08		
PCDD'S 2,3,7,8-TCDD TCDD PeCDD HxCDD HpCDD	· · · · · · · · · · · · · · · · · · ·	ND ND ND ND ND	0.59 0.17 0.16 0.15 0.26	ND ND ND ND ND	0.13 0.13 0.12 0.10 0.33	44 44 ND ND ND	NA NA 0.13 0.03 0.08	50 50 ND ND ND	NA NA 0.11 0.08 0.20		
PCDD'S 2,3,7,8-TCDD TCDD PeCDD HxCDD HpCDD OCDD		ND ND ND ND ND	0.59 0.17 0.16 0.15 0.26 0.44	ND ND ND ND ND	0.13 0.12 0.10 0.33 0.18	44 44 ND ND ND 84	NA NA 0.13 0.03 0.08 NA	50 50 ND ND 92	NA NA 0.11 0.08 0.20 NA		
PCDD'S 2,3,7,8-TCDD TCDD PeCDD HxCDD HpCDD OCDD PCDF'S		ND ND ND ND ND	0.59 0.17 0.16 0.15 0.26 0.44	ND ND ND ND ND	0.13 0.13 0.12 0.10 0.33 0.18	44 44 ND ND ND 84	NA NA 0.13 0.03 0.08 NA	50 50 ND ND 92	NA NA 0.11 0.08 0.20 NA		
PCDD'S 2,3,7,8-TCDD TCDD PeCDD HxCDD HpCDD OCDD PCDF'S 2,3,7,8-TCDF		ND ND ND ND ND	0.59 0.17 0.16 0.15 0.26 0.44	ND ND ND ND ND	0.13 0.12 0.10 0.33 0.18	44 44 ND ND 84 ND	NA NA 0.13 0.03 0.08 NA	50 50 ND ND 92 ND	NA NA 0.11 0.08 0.20 NA		
PCDD'S 2,3,7,8-TCDD TCDD PeCDD HpCDD OCDD PCDF'S 2,3,7,8-TCDF TCDF		ND ND ND ND ND ND	0.59 0.17 0.16 0.15 0.26 0.44 0.08 0.08	ND ND ND ND ND ND	0.13 0.12 0.10 0.33 0.18 0.08 0.08	44 44 ND ND 84 ND ND	NA NA 0.13 0.03 0.08 NA 0.12 0.12	50 50 ND ND 92 ND ND	NA NA 0.11 0.08 0.20 NA 0.05 0.05		
PCDD'S 2,3,7,8-TCDD TCDD PeCDD HpCDD OCDD PCDF'S 2,3,7,8-TCDF PCDF PCDF		ND ND ND ND ND ND ND	0.59 0.17 0.16 0.15 0.26 0.44 0.08 0.08 0.10	ND ND ND ND ND ND ND	0.13 0.12 0.10 0.33 0.18 0.08 0.08 0.14	44 44 ND ND 84 ND ND ND	NA NA 0.13 0.03 0.08 NA 0.12 0.12 0.12 0.05	50 50 ND ND 92 ND ND ND	NA NA 0.11 0.08 0.20 NA 0.05 0.05 0.15		
PCDD'S 2,3,7,8-TCDD TCDD PeCDD HpCDD OCDD PCDF'S 2,3,7,8-TCDF PCDF PeCDF HxCDF		ND ND ND ND ND ND ND ND	0.59 0.17 0.16 0.15 0.26 0.44 0.08 0.08 0.10 0.13	ND ND ND ND ND ND ND ND	0.13 0.12 0.10 0.33 0.18 0.08 0.08 0.14 0.11	44 A4 ND ND 84 ND ND ND ND	NA NA 0.13 0.03 0.08 NA 0.12 0.12 0.12 0.05 0.03	50 50 ND ND 92 ND ND ND ND	NA NA 0.11 0.08 0.20 NA 0.05 0.05 0.15 0.07		
PCDD'S 2,3,7,8-TCDD TCDD PeCDD HpCDD OCDD PCDF'S 2,3,7,8-TCDF TCDF PeCDF HpCDF HpCDF		ND ND ND ND ND ND ND ND ND	0.59 0.17 0.16 0.15 0.26 0.44 0.08 0.08 0.10 0.13 0.30	ND ND ND ND ND ND ND ND ND	0.13 0.12 0.10 0.33 0.18 0.08 0.08 0.14 0.11 0.24	44 A4 ND ND 84 ND ND ND ND ND	NA NA 0.13 0.03 0.08 NA 0.12 0.12 0.12 0.05 0.03 0.13	50 50 ND ND 92 ND ND ND ND ND	NA NA 0.11 0.08 0.20 NA 0.05 0.05 0.15 0.07 0.15		

CONC CONCENTRATION ND NONE DETECTED

ND NONE DELECTED

NA NOT APPLICABLE

LOD LIMIT OF DETECTION

WESTON ANALYTICS DIOXINS/FURANS DATA SUMMARY

RFW Batch Numbe	r: 8809-738		Client:		EG & G						Page: 1	
	Client		8801D480	:	8801D49C]	BLANK		B.S.		8801D48C	 !
Sample	ID:		0.01		002	r	(176) BIANK	ı	(176)		001 MC	
Information	Rrw#: DF:		1		1	1		۱	D.D. 1		001 MS	
	Matrix:		SOTL		SOIL	-	SOIL		SOIL		SOIL	
	Units:	j	Ng/g	1	Ng/g	1	Ng/g	1	√g/g		Ng/g	
C-13 TCDD RECOV	ERY:		 40%		46%		 54%		 50%		 42%	-
C-13 OCDD RECOV	ERY:		25%		54%		36%		17%		65%	
		CONC	LOD	CONC	LOD	CONC	LOD	CONC	LOD	CONC	LOD	
PCDD'S												=
2,3,7,8-TCDD		ND	0.02	ND	0.05	ND	0.03	4.4	NA	3.9	NA	
TCDD		ND	0.02	ND	0.05	ND	0.03	4.4	NA	3.9	NA	
PeCDD		ND	0.03	ND	0.05	ND	0.05	ND	0.06	ND	0.04	
HxCDD		ND	0.02	ND	0.06	ND	0.02	ND	0.02	ND	0.06	
HpCDD		ND	0.09	ND	0.04	ND	1.4	ND	0.62	ND	0.02	
OCDD		1.6	NA	ND	0.05	ND	0.09	7.5	NA	7.5	NA	
PCDF'S												
2,3,7,8-TCDF		ND	0.01	ND	0.04	ND	0.03	ND	0.03	ND	0.03	
TCDF		ND	0.01	ND	0.04	ND	0.03	ND	0.03	ND	0.03	
PeCDF		ND	0.02	ND	0.03	ND	0.03	ND	0.04	ND	0.04	
HxCDF		ND	0.03	ND	0.07	ND	0.03	ND	0.04	ND	0.07	
HpCDF		ND	0.07	ND	0.07	ND	0.20	ND	0.40	ND	0.05	
OCDE		NÐ	0.11	ND	0.07	ND	0.03	ОИ	0.15	ND	0.06	

NONE DETECTED ND

NA NOT APPLICABLE LOD LIMIT OF DETECTION

phokage					
		U.S.	lpa - Clp		
		INORGANIC	l Analysis data	SHEET	EPA SAMPL
	CODA ANI	. h.c.	••••••	0017157	B SSOZ DOE
Lab Name: $\underline{\mathcal{O}}_{\mathcal{A}}$	SION FULL	yncs	Contract:	-0015/350	<u></u>
Lab Code: WES	<u>ca</u> ca	ise No.: 85	OIG SAS NO.	:	SDG No.: 8
Matrix (soil/w	ater): We	er		Lab Sam	ple ID: 82085
Level (low/med	1: Law			Date Red	:eived: <u>08/0</u>
<pre>% Solids:</pre>	_0				C
Col	centration	Units (ug/	Lor ma/ka dr	v weicht)	· 119/1
					<u> </u>
	CAS No.	 Analyte	 Concentration	ICI M	
	7429-90-5		1	·	•
	17440-36-0	Antimony	I	· ! !	•¦
	7440-38-2	Arsenic	10.0	IN F	• • • • • • • •
	7440-39-3	Barium	200	ILL P	
	7440-41-7	Beryllium	<u> </u>	<u>u</u> <u>P</u>	_!
	7440-43-9	Cadmium	<u> </u>	<u> u </u>	.
	7440-70-2	Caicium		!_!	·!!
		Coromium_	<u> </u>	<u> [_]</u>	·
	17440-40-4	Copper	2 5		•
	7439-89-6		<u> </u>		·¦}
	7439-92-1	Lead	29.8	· ·	· ; {
	7439-95-4	Magnesium	<u>6 </u>		
	7439-96-5	Manganese	·		
	7439-97-6	Mercury		' \ 	
	7440-02-0	Nickel	40	u P	
	7440-09-7	Potassium			
	7782-49-2	Selenium_	5.0	NI <u>F</u>	<u> </u>
	7440-22-4	Silver	/0	<u> ~ _ P</u>	
	1/440-23-5	SOGIUE		<u>ا ب ا</u>	!
	17440-43-0	LAGLLLUM_	/0.0		
	7440-66-6	Zinc	20		}
		Cyanide	2.5		
	-	· Tià	/000		
	•	Fluoride	002		۱ <u> </u>
Color Before:		Clarit	y Before:	-	Texture:
Color After:	مان میں بندور میں میں میں میں میں میں میں میں میں میں	Clarit	y After:		Artifacts:
Comments:					
		······································			
		<u></u>			

58020058			3
Old paceuse	U.S. 2	PA - CLP	
	INORGANIC AND	l LYSIS DATA SHEET	EPA SAMPLE NO
Lab Name: UESTON	Analytics	Contract: C88131538	8802005B
Lab Code: WEXA	Case No .: 8501	SAS No.:	SDG No.: <u>5802</u>
Matrix (soil/water):	Water	Lab Sampl	e ID: 88085016-
Level (low/med):	Low	Date Rece	ived: 5/6/87
<pre>% Solids:</pre>			ţ '

Concentration Units (ug/L or mg/kg dry weight): 19/

CAS No.	Analyta	Concentration		М
7429-90-5	Aluminum			
7440-36-0	Antimony			
7440-38-2	Arsenic	48.3	i – i	4
7440-39-3	Barium	200	L.	9
7440-41-7	Beryllium	49.0		P
7440-43-9	Cadmium	14.2		P
7440-70-2	Calcium		-i	
7440-47-3	Chromium	43.3	Ξi	
7440-48-4	Cobalt	53.2	<u> </u>	Ę
7440-50-8	Copper	43.3	-i	P
7439-89-6	Iron		Ξi	
7439-92-1	Lead	56.4		6-
7439-95-4	Magnesium		-i	
7439-96-5	Manganese		Ē	
7439-97-6	Mercury			
7440-02-0	Nickel	53.7	<u> </u>	4
7440-09-7	Potassium		ΞÌ	
7782-49-2	Selenium_	12.5	<u> </u>	4
7440-22-4	Silver	10	5	?
7440-23-5	Sodium]	_1	
7440-28-0	Thallium	10.0	N	F
7440-62-2	Vanadium_	106		P
7440-66-6	Zinc	KP & 44		2
1	Cyanide			
	TIN	1000	u	þ

Texture:

Color After:

Clarity After:

Artifacts:

7/87

Comments:

FORM I - IN

25-5 page 55

Metals Data 880200EB OLD PACKAGE

EPA SAMPLE NO. INORGANIC ANALYSIS DATA SHEET Contract: (88131538 8802)OEB Lab Name: WESTON Analytics Lab Code: WESCA Case No.: 85016 SAS No.: ____ SDG No.: 880200 Matrix (soil/water): Water Lab Sample ID: 8808 5016-00, Date Received: 08/06/88 Level (low/med): aw % Solids: \bigcirc Concentration Units (ug/L or mg/kg dry weight): Ug/L ĩ ! 1

OPH

2

7/87

		CAS NO.	Analyte	Concentration	ic	M	Q	
		7429-90-5	1 <u></u>	 	! !		·¦──┤	
		7440-36-0	Antimony	1	1 - 1		╸╎╺┈╍╸╎	
		7440-38-2	lArsenic	10.0		F	• { {	
		7440-39-3	Barium	200			- ! !	
		17440-41-7	Bervllium				• 	
		17440-43-9	+Cadmium			F	• { }	
		17440-70-2	Calcium	•			·¦¦	
		7440-47-3	1 Chromium			\$	· ¦ }	
		17440-48-4	Cobalt	50			• { }	
		7440-50-8	Copper	25			╽╺╾╾╎	
		7439-89-6	Tron	·			· { }	
		7439-92-1	Lead	798	¦ ─ ¦		· ; ;	
		7439-95-4	Magnesium				· • •	
		17439-96-5	Manganese		-			
		7439-97-6	Mercury				· { }	
		7440-02-0	Nickel	40		P	· · <u>· · · · ·</u> · · · · · · · · · · · ·	
		7440-09-7	Potassium		<u> </u>		· ¦ ¦	
		7782-49-2	Selenium	5.0	ілi	-	·	
		7440-22-4	Silver	10	I.	2	; ;	
		7440-23-5	Sodium				; — ;	
		7440-28-0	Thallium	/ο. υ	u i	F	; — ;	
		7440-62-2	Vanadium	50.0	ū	- P	;;	
		7440-66-6	Zinc	20 :	ū	P	;;	
			Cyanide	2.5	ū	uv	· · · · · · · · · · · · · · · · · · ·	
		1 Tim	- GIT -	1000	치	2		
			Fhioride	002	้น่	IC		
Color	Before:		Clarit	y Before:			Textur	'e:
Color	After:		Clarit	y After:			Artifa	.cts:
Commer	nts:							
	<u> </u>					<u></u>		
				· · · · · · · · · · · · · · · · · · ·				
						<u> </u>	EE	<u> </u>
						U	D D L	10

FORM I - IN

8502005B Capy

.

	ET	EPA SAMPLE NO.								
Lab Name: UE	STON Ana	lyhis	Contract: 🤇	581	31538	880ZDOSB				
Lab Code: UEX	A ca	se No.: 89	SAS NO.	: _		SDG No.: <u>88020</u>				
Matrix (soil/wa	ater): Wa	ter		La	ub Samp	le ID: 88085016-00				
Level (low/med)): <u>lou</u>	<u>5</u>		Da	te Reci	eived: 5/6/87				
<pre>% Solids:</pre>	-0-					. 1				
Concentration Units (ug/L or mg/kg dry weight): Ug/										
	CAS No.	Analyte	Concentration	С	M	Q				
	7429-90-5	Aluminum	·							
	7440-36-0	Antimony_		1_1						
	7440-38-2	Arsenic	48.3		<u> </u>					
	7440-39-3	Barlum	200	5	<u>P</u>					
	7440-41-/	Beryllium	<u> </u>		<u>q</u>					
	/440-43-9 7440-70-2		· · · · · · · · · · · · · · · · · · ·		<u>_</u>					
	7440-47-3		43.3							
	7440-48-4	Cobalt	53.2			· i				
	7440-50-8	Copper	43.3							
	7439-89-6	Iron								
	7439-92-1	Lead	56.4		<u>(-</u>					
	7439-95-4	Magnesium		<u>_</u> i						
	7439-96-5	Manganese		_		!				
	7439-97-6	Mercury		_!		!				
	7440-02-0	Nickel	53.1	_!	<u> </u>]				
	7440-09-7	Potassium		-!						
	7440-22-4	Selenium_	<u> </u>			\				
	7440-22-4 7440-23→5	Sodium		21						
	7440-28-0	Thallium	/0.0	πi	F					
	7440-62-2	Vanadium	106		- P					
	7440-66-6	Zinc	KP & 44		7					
	I	Cyanide								
	I	<u>710</u>	1000	<u>ч</u>		1				
Color Before:		Clarit	ty Before:			Texture:				
Color After:	<u> </u>	Clarit	ty After:			Artifacts:				
Comments:										
			· · · · · · · · · · · · · · · · · · ·			••••••••••••••••••••••••••••••••••••••				
••••••••••••••••••••••••••••••••••••••	· · · ·									
		<u></u>		<u> </u>						
					n	-5				
					Xà	00 57				
		F	ORM I - IN		pu	yc - 7/87				

U.S. DFA - CLP

2A INITIAL AND CONTINUING CALIERATION VERIFICATION

Lab Name: WESTON ANA Lytics Contract: C881315 38 Lab Code: WESCA Case No.: 8016 SAS No.: _____ SDG No.: 80200E Initial Calibration Source: <u>EMSL-LV</u> Continuing Calibration Source: SPEX

Concentration Units: ug/L

	Initia.	l Calibr	ation		Continui	ng Cali	bration		
Analyte	True	Found	3R(1)	True	Found	3R(1)	Found	3R(1)	M
Aluminum	·				· · · · · · · · · · · · · · · · · · ·				!]
Antimony			1			• +		!	¦
Nrsenic	50.0	50.1	100	50.0	51.7	(02	18.1	97	
	Zaro	2024	94	10,000	10003	100	10229	1 (07	5
Peryllium		468.2	93	200	/97.7	99	2046	101	1
Cadmium_]	492	487.8	99	200	191.2	95	195.8	98	ί. Γ. Φ
Calcium								· · · ·	¦ ≟→
Chromium_j	503	472.9	94	500	511.5	102	527.8	1/25	
Cobalt _	498	487.3	98	2000	1917.2	91.	1446.3	<u> </u>	5
Copper	520	497.4	96	1000	994.5	49	1022.3		0
Iron III						· · · · · · · · · · · · · · · · · · ·			
Lead	25.0	25.7	103	25	Z 5.7	103	7.41	GL	
Magnesium				· · · · · · · · · · · · · · · · · · ·		·		;;	
Manganese			i ————————————————————————————————————	· i	······································			; }	
Mercury			· ·	 				¦	
Nickel	485	4581	94	2000	1903.5	95	1442.1	- <u>a</u> 7	$\overline{\mathcal{P}}$
Potassium								<u> </u>	<u> </u>
Selenium	50.0	54.8	110	50.0	50.3	101	47.5	1-05	
Silver	484	494.0	101/	500	440.8	08	<u> </u>	97	
Sodium			ii					╎──┴┯╧┯╸╎	
Thallium	25	25.7	163	25	25.1	100	2.3.1	97	
Vanadium]	505	502	99	2000	2081	104	2044	<u> </u>	
Zinc	2920	2169	102	1000	1013	$\frac{101}{101}$	1024	1 107	1
Cyanide	50.0	48.0	96	50.0	42.8	88			
I TIN I	54 5000	5114	103	5000	5'080	102	5063		P
	front					·	<u></u>		۱ <u>ــــ</u> ۱

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

05-5 page 58

7.3. 1FA - CIP

CA INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANA Lytics Contract: C88131538 Lab Code: WESCA Case No.: 85016 SAS No.: SDG No.: 820200E Initial Calibration Source: EMSL - LV Continuing Calibration Source: SPEX

Concentration Units: ug/L

	Initial	. Calibr	ation		Continui				
Analyte	True	Found	3R(1)	True	Found	3R(1)	Found	3R(1)	M
Aluminum				·					!
Antimony]	!		<u> </u> !					1	i i <u> </u>
Trsenic	l		· I ł		!	. I I		1	
_arium	!		<u> </u>	10000	10104	101	10017	102	İΡ
Peryllium;	!		.!!	_200	214	107	208	104	P
admium			<u> </u>	200	202	101	207	105	17
Calcium	!_		!!				•	1	i i
Chromium_			!!	500	545	109	526	105	i P
Cobalt				2000	1971	98	2032	1 102	ip
Copper				1000	1074	1 /07 1	1060	106	ijρ
Iron								1	· · · · · · · · · · · · · · · · · · ·
Lead									i i
Magnesiumi			1		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	;;
Manganesei					t	·		•;	; ;
Mercury	· /		ii			· ; ;			;;
Nickel			- i i	2000	1990	09	Z059	1 /03	Ìσ
Potassium	i -	-	i i			• • • • • • • • • • • • • • • • • • •			; ;
Selenium	i -		• i i		<u> </u>	• ¦ i	<u>.</u>		; ; —
Silver	· ·		; ;	Cali	485	1 67	475	95	ll 🖉
Sodium			- i			• {			; ; <u>.</u>
Thallium			• ¦	·	,	╸ᢤ╺┈╼╾╾╸ᢤ		- }	::
Vanadium (- i i	7.000	2630	-[<u></u> !	1651	99	He
2 inc	i _		- i i	1006	/02 -		(070		lb
Cvanice	·		- ! i 		<u></u>				: <u> ፲</u>
	·		• ! <u></u> i 		:	•		-	!

Jontrol Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

,-5 Al 59

U.S. EPA - CLP

2B CRDL STANDARD FOR AA AND ICP

Lab Name:	WESTON A	NALITICS	Contract: <u>C8813</u>	1538
Lab Code:	WESCH	Case No.: 8016	SAS No.:	SDG NO.:8807DIE
AA CRDL St	andard Sourc	e: Johnson Mathey		
ICP CRDL S	Standard Sour	CE: SPEX		

Concentration Units: ug/L

	CRDL St	andard fo	or AA		CRDL Standard for ICP Initial Final					
Analyte	True	Found	% R	True	Found	ŧR	Found	*R		
Aluminum Antimony	.	······································			·	 	·····	 		
Arsenic Barium			 		- 220	<u> </u>	220	NR		
cadmium		· · · · · · · · · · · · · · · · · · ·		/6	10.6	106		<u>_/36</u> _ <u>_</u> 137		
Chromium				<u>75</u> <u>100</u>	<u>18.3</u> <u>78.0</u>	91	17.5	87		
Iron Lead	5,0	4.6	92	<u></u>	<u>\$ 1, </u> 	_ <u>(o</u> 2 				
Magnesium Manganese										
Nickel	 			80	<u></u>	103	74.6	118		
Selenium_ Silver	5.0	4.6	92	20		86	21.8	109		
Thallium Vanadium	10.0	(1.0	110	/06	+7.0			91		
Zinc		·····	ii	40	19.0	245	<u>92.0</u>	230		

a5-5 page 40 7/87

FORM II (PART 2) - IN

3 BLANKS

 Lab Name:
 WESTON
 ANHLYTICS
 Contract:
 CEE1315-38

 Lab Code:
 WESCA
 Case No.:
 SAS No.:
 SDG No.:
 SDG No.:
 SDG No.:
 SDG No.:
 SB02066

 Preparation Blank Matrix (soil/water):
 Water
 Water
 Yester

 Preparation Blank Concentration Units (ug/L or mg/kg):
 Ug/L
 Yester

Analyte	Initial Calib. Blank (ug/L)	C	Conti	Lnu Bl C	ing Calib ank (ug/L) 2	rat) C	ion 3		Prepa- ration Blank	c	 M
Aluminum_		!_				!_		 !!		! !!	
_ itimony_				_		_				!_	· I `
Arsenic	10.0	<u>u</u>		<u>a</u>		17				4	I.F
arium	- 200	5	200	5	<u></u>	<u> </u> <u>∽</u>	200	L L	200	말	<u>ا ۴</u>
Beryllium		ЧЧ		5	5	느	<u> </u>	느	<u> </u>	!뇌	<u> p</u>
Cadmium				5		ليما			5	5	P
Calcium		<u> _ </u>			»	!!		_		! <u> </u>	I <u></u> !
Chromium_	1	」 上	/0	느		<u> 또</u>	<u> </u>	<u>1</u>	1/0	19	P
Cobalt	50	\leq	50.	L 上	50	<u> </u>	دى		50	5	P
Copper	25	<u> </u>		<u>الم</u> ا	25	느	25	비	125	15	ΙP
[Iron	l	_				!_:				1	
Lead	5.0 10.0	121	5.0	<u> </u> 4	5.0	K.	•	[_]	5.0	4	1
Magnesium:	l			!_				1_1			1
Manganese	I	!_!				1		_			i —
Mercury	l	_		_		<u> </u> _		1_1		[]	
Nickel	140	12	40	느	<u></u>	<u>الم</u>	<u></u>	느	40	أها	P
Potassium	1	1						ΙΞI		i Ti	i —
Selenium_	5.0	<u>IU</u>	5.0	KL!	50	14		1_1	5.0	4	I F
Silver	1	15	/0	느	/0	<u> </u> <u>.</u>	10.	14	10	5	12
Sodium						1		İΞİ		j T	
Thallium_	10.0	<u> </u>	10.0	<u>N</u>	10.0	<u>u</u>	I		1	ū	IF
Vanadium_	50	1	50	15	57	1-	57	교	50	ίū.	P
Zinc	20	<u>u</u>	20	1	20	ju,	70	1	10	L M	1P
Cyanide	2.5	<u> </u>	2.5	10				11	2.5	ัด	100
1 <u> </u>	1000	<u> </u>	1000	1교		1		<u>i</u> _i	/000	ju.	P

us-5 pagelol

3 BLANKS

Lab Name: WESTON ANALYTICS Contract: C8E131538Lab Code: WESCA Case No.: 85016 SAS No.: SDG No. 80206EPreparation Blank Matrix (soil/water): WaterPreparation Blank Concentration Units (ug/L or mg/kg): ug/L

Analyte	Initial Calib. Blank (ug/L)	C	Conti 1	nu BJ C	 Prepa- ration Blank	C	M				
		I						1	1	1	
Aluminum_		!=İ				[_		Ξį		<u> </u> _	
' ''TEIMONY_		[]				_		-!	!	!_!	ا ا
		_		_			i	_!		[]	<u> </u>
arium	200	<u>L</u>	2.00	느	•			_!	!	!_!	<u> </u>
Beryllium		니니	<u>S</u>	ш		_	!!	_!		!_!	$ \underline{P} $
Cadmium_		느	<u> </u>	Я		_	!!	_!			<u> </u>
Calcium_		<u> _</u>					! <u></u>	_!			
Chromium_	/0	5	/0	느				_!	·		<u> P_</u>
Cobalt	50	$ \underline{\neg} $	50	느님		_		_!		<u> </u> _	<u> P</u>
Copper	75	노	25	<u>iu</u>	· <u></u> ·	_		_!	[<u> </u> <u> </u>
Iron				_		_		_[. _ 	: I I
Lead				_		_	·	_		. I I	: I !
Magnesium		<u> </u> _		_		_		_1		_	l I !
Manganese						l_		_		_	l I i
Mercury				_		_		_		<u> _</u>	l I
Nickel	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	<u> </u>	<u> </u>	느		_	II	_!			H <u>+</u> .
Potassium	l	_		_		1_		_	i		1
Selenium_				_		!		_	l	. _	1
Silver	l	<u>L</u>	/0	<u>ч</u>	/ 0	느	!ł	_	1	<u>lu</u>	1 <u>P</u>
Sodium	l	_	·	l_'	·	1_	!!	_	l	1_	
Thallium_	l			_					l	1_1	
Vanadium_	1 <u> </u>	الط	50	느	50	<u> 4</u>				. _	117
Zinc	20	<u>u</u>	<u> </u>	Ч		!_				!	117
Cyanide		!		!_		1				[_]	
I_Tin_	1000	14	1000	느		!_!	1				IP.

(15-5 page 62
4 ICP INTERFERENCE CHECK SAMPLE

.

Lab Name:	LESTON ,	NAUTOS	Contract:	<u>29813153</u> 8	
Lab Code:	WESCH	Case No: 80	Le SAS No.:	SDG	NO.: 580200E
ICP ID Nui	mber: <u>ICP65</u>	00	ICS Source	EMY-LV	

Concentration Units: ug/L

1	TI	rue	Ini	tial Found	d	Final Found			
 Analyte	A 301.	AB	A A	AB	۶R	A A	AB	%R	
l									
Aluminum_					!		<u> </u>		
Antimony_								l	
Arsenic					. <u> </u>	!			
Barium	<u> </u>	483		<u> </u>	49	13	493	102	
Beryllium		474	1.3	<u> </u>	88	<u> </u>	450	95	
.admium	<u> </u>	909	- 35.3	1013	!	42.8	1009	1/1	
Jalcium					!				
Chromium	0	513	7516	<u> </u>	199	73.6	546	106	
Cobalt	Ø	478	38.6	467.6	98	41.2	469.0	98	
Copper	0	534	3.0	488	91	1.2	515.3	96	
Iron									
Lead								1	
Magnesium									
Manganese								: <u></u>	
Mercury								1	
Nickel		916	555	843,2	92	C4.9 1	2'and	94	
Potassium	1		·		i			·	
Selenium				<u></u>	1	· /			
Silver -	6	934	- 8.3	1016	109	-14.5	1050	1112	
Sodium	;	i			•				
Thallium	· ·	;	ii			· ·			
Vanadium	0	475	48	504	106	38	512	108	
Zinc	0	973	88	-154	1 48 -	800		94	
TIN			NR	NR	· · · · · · · · · · · · · · · · · · ·	NR	NR	+	

015-5 page 63

7/87

 5A
 EPA SAMPLE NO.

 SPIKE SAMPLE RECOVERY
 EPA SAMPLE NO.

 Lab Name: (UESTON Analytics contract: C88/31538
 8802DOEB

 Lab Code: WESCA
 Case No.: 85016
 SAS No.: 5DG No.: 880200E

Matrix (soil/water): Uhter

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	*R		M
Aluminum			ı_i		1				
Antimony					1_1	I		1_	
Arsenic		,			1_1				
Barium	75-125	1972	1_1	200	<u> </u> <u>u</u>	2000	98.6	1_	2
Beryllium	75-125	51.1	1_1	<u> </u>	<u> 4</u>	50.0	102		<u>γ</u>
Cadmium	25-125	50.7	<u>+ _ </u>	5.0	12	50.0	101	!_	P
Calcium			1_1		<u> </u>			!_	!
Chromium_	75-725	203	[_]	100	<u> 4</u>	2,00.		!_	<u>_</u>
Cobalt	75-125	475.3	<u> _</u>	<u>So.o</u>	<u>I</u> M	<u></u>	99.1	!_	ļΥ Į
pper	75-125	272	! !	25.0	ו <u>א</u> ו		_/09	<u> </u>	ĮΥ_
iron			! <u>_ </u> !	•				!_	! —
Lead			!_!	·	-!'		·	!	!
Magnesium			!_!		.!_			!	!
Manganese			!_!	<u></u>				!-	!
Mercury					·			!	1-77-
NICKEL	13-165	477.8	!-!	40.0	귀쓰		76	¦	ļ <u>Ľ</u>
Potassium:	¦		$\left\ - \right\ $		·¦ —			- ¦	¦
Selenium_			171	10.0	1			- -	¦
Silver	<u>-75-765</u>		<u>남</u> 목						11
Thallium]				·¦ —				¦
Vanadium	75-125	<u> </u>			4	500	97 6	¦-	10
17inc	25-11-5	1 (179	¦	<u> </u>	17	500	<u> </u>	1-	ΪÞ
Cvanide	<u></u>	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>			-17		<u></u>	\{	¦—
	75-12-5	/////	17	/000	- u	5000	NR		17

Comments:

FORM V (PART 1) - IN

7/87

Level (low/med): Low

			5B Post digest spike sample becovery					EPA	SAMPLE	NO.
			1001		0× 1104					
ab	Name:	WESTON	AMALYTICS		Co:	ntract:	<u>(88131538</u>	 		
Lab	Code:	NEXA	Case	No.: 8	<u>Sab</u>	SAS No	».:	SDG	хо.: <u>8</u> 8	ozNE
Mati	rix (so	oil/water)	: Writer				Level	(low/	med):	Low

Concentration Units: ug/L

Analyte	Control Limit * %R	Spiked Sample Result (SSR)	C	Sample R esult (SR)	C	Spike Added (SA)	۶R	 Q	M
	·		<u></u>		·				
Artimony			¦	·				}	-
Ancimony_		<u></u>							:
Arsenic			 	· · · · · · · · · · · · · · · · · · ·					¦ ;
Barrum			¦		¦			¦	
Beryillum	·		¦		-¦			¦	
	¦¦		¦	·	- —			¦-	¦ !
	·		¦ —		¦				
Cobalt						·		¦	¦
Copper	·	, <u> </u>		·	-			{	¦ '
Copper				·				¦	¦
	¦ '			·				¦	¦
Magnesium									¦
Manganese		· · · · · · · · · · · · · · · · · · ·		·	 -	·		¦-	
Mercury	·	· · · · · · · · · · · · · · · · · · ·			·¦ —			¦	¦
Nickel	¦ i	·	i-i		· ¦			;-	¦ ——
Potassium	: :		i - 1	• 	'i -			1-	;
Selenium		· · ·	1-	1	; —			1-	; —
Silver	·		i-		'i -			i-	i
Sodium	·		; —	· · · · · · · · · · · · · · · · · · ·	i –	·		i –	;—
Thallium			i-		·i –	·	i	i-	i —
Vanadium			1	1	i-	i		i -	i —
zinc –	1		1		i-	1		i ⁻	i —
Cyanide			i T		i-		İ	i T	i
· · · ·	1		i -	İ	i-		1	i -	1

Comments:

FORM V (PART 2) - IN

-

a5-5 page 65 7/87

-

.

	EPA SAMPLE NO.						
Lab Name: WE	STON ANAL	this	Con	tract: <u>(88/3</u>	1538	8802000	ĒB
Lab Code: WES	<u>-A</u> c	ase No.: 85016	2	SAS No.:		SDG No.	860226E
Matrix (soil/w	vater): Wa	ter			Level	(low/med)	low
% Solids for S	Sample:	0_		% Solid	ls for.	Duplicate	e: <u> </u>
Co	ncentratio	n Units (ug/L	or n	g/kg dry we	ight):	ug/c	
Analyte	Control Limit	Sample (S)	С	 Duplicate	(D) C	 RPD	Q M
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium Chromium_ Cobalt_ Copper_ Iron_ Lead_ Magnesium		200 5.0 5.0 70.0 50.0 25.0		<u> </u>			
Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide	20 20 20 20			40.0 /0.0			
I TIN	20	1000	iūi	1000	<u> </u>	NC	ii <u>-i</u> 환i

25-5 page 66

7/87

FORM VI - IN

.

7 LABORATORY CONTROL SAMPLE

85016

Contract: (28/3/538

SAS NO.: SDG NO.:8852DE

Lab Name:	WESTON	Analytics
Lab Code:	WESCA-	Case No.:
Solid LCS	Source:	
Aqueous LO	CS Source:	SPER

Solid (mg/kg) Aqueous (ug/L) Limits 3R Found С Analyte True Found 3R True Aluminum Antimony Arsenic 50.6 103 50.0 99 99 9966 Barium 10000 Beryllium 200 198 Cadmium 1891 94 200 alcium 96 Aromium 478 500 97 ,Cobalt 2000 1849 97 968 Copper 1000 Iron |Lead 50.0 50.3 101 |Magnesium| Manganese Mercury_ 2000 Nickel 1772 89 Potassium 52.7 Selenium | 50.0 105 Silver 500 496 496 49 Sodium Thallium 90 50.0 45.7 Vanadium 2000 1899 95 Zinc 2000 48 1,640 Cyanide TIN 49 5000 4906

page 67

7/87

8 STANDARD ADDITION RESULTS

Lab	Name:	WESTON	Analytics	Contract: (881315)	56
Lab	Code:	WESCA	Case No.: 85016	SAS No.:	SDG NO .: 8802005

Concentration Units: ug/L

EPA Sample No.	 An	Dil	0 ADD Abs	1 ADD Con Abs	2 ADD CON ABS	3 ADD CON ABS	 Final Conc.	r	 Q
				 		 	 		! !
·						[] 			
] 	 		!_ !_
]				
			 			,		! !	_ _ _
					· · · · · · · · · · · · · · · · · · ·				
	.¦	¦		· !	• ¦	•	.[!	¦_

0.5-5 page 68

FORM VIII - IN

7/87

	9 ICP SERIAL	DILUTIONS		EPA SAMPLE NO.
_ab Name: WESTON	Analytics c	ontract: <u>(88</u>	131538	
Lab Code: <u>[NES:A</u>	Case No.: 85016	SAS No.:		SDG No .: STOLDE
Matrix (soil/water):	:Water		Level	(low/med): <u>Low</u>

Concentration Units: ug/L

	 Initial Sample	Serial Dilution		% Differ-	
Analyte	Result (I) C	Result (S)	c	ence	Q -M
Aluminum					
Antimony_	!!!	I	1_1	II	1_!!
Arsenic	l	l			
Barium	lll	1		1 <u>NR</u> [
Beryllium	11_1	1		NR	P
Cadmium_	11_1	l	1	INRI	$ \overline{P} $
Calcium	1	1		1	
Chromium_			ΪĪΪ	NR	i i T
Cobalt	11	1	i Ti	NR	1 P
Copper	1		i-i	I NR I	ーア
Iron			ΠÌ		i Ti Ti
Lead		1	i i		i – i – i
Magnesium			i Ti		i Ti Ti
Manganese		1	i i		
Mercury	1	·	i Ti		i - i i
Nickel			i i	NR	
Potassium		1			i - i - i
Selenium		1	i-i	ii	
Silver		1	i Ti	I NR I	i i Ti
Sodium					
Thallium			i Ti	1 to led	
Vanadium			i Ti	NR	iTTi
Zinc		1	i Ti	NR	
TIN	II	I	i_i	NR	

05-5 page 69

.

7/87

.

10 HOLDING TIMES

Lab Name: WESTON Awalyfics Contract: C88131538 Lab Code: WESCA Case No.: 85016 SAS No.: _____ SDG No.: 850200E

EPA Sample No.	Matrix	Date Received	Mercury Prep Date	Mercury Holding Time	 Cyanide Prep Date	Cyanide Holding Time
7802705B 9802705B	WATER	08/06/88 09/06/88	<u> </u>	9 		
			1 1 1		 	
	·	· · · · · · · · · · · · · · · · · · ·				
				۱۱		

11 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: WESTON	Analytics	Contract:	<u>(88131532</u>	8
Lab Code: WESCA	Case No.: 8596	SAS No.:		SDG NO. 3802 DOC
ICP ID Number:	Ic16500	Date:	10/7/88	
Flame AA ID Number:	PES 0302 - Ku 10/7		·	
Furnace AA ID Number:	PE 3030 Z			

	Watto-				
	langth	 Back-	ן זמפים	TDT.	
3malute	(am)				i M/
Anaryce	(11111)	ldrannai			
Aluminum		!	200		
Antimony		i ——— i	60		
Arsenic	193.70	82	10		i i
Barium	455.40	·	200	2.00	<u>P</u>
Beryllium	313.04	· i	5	5	P
Cadmium	714.44		5	5	P
Calcium			5000		
Chromium	267.72	· i	10	/0	2
Cobalt	228.62	·	50	50	1
Copper	324.75		25	25	$ \overline{P} $
Iron			100		
Lead	283.3	82	5		
Magnesium			5000		!!
Manganese			15		! <u> </u>
Mercury			0.2		i
Nickel	231.60	11	40	40	<u> </u>
Potassium			5000		
Selenium_	196.0	<u>B</u> 2	5		
Silver	328,07		10	10	1 <u>'P</u>
Sodium			5000		I
Thallium_	276.8	BE	10		1
Vanadium	292.40	اا	50	50	P
Zinc	213.86		20	20	<u>e</u>
TIN	189.926		5000	5000	1 <u>P</u>

Comments:

.<u>....</u>

FORM XI - IN

12A

ICP INTERELEMENT CORRECTION FACTORS (QUARTERLY)

Lab	Name: WESTON ANAlytics	Contract:	C88131538
Lab	Code: WESCA Case No.: 85016	SAS No.:	SDG No.: Elector
ICP	ID Number: ICP6500	Date:	10/1/08

	Wave-	I	nterelement	Correction	Factors for
nalyte	(nm)	Al	Ca	Fe	Mg
luminum					
ntimony [i i				
rsenic					
arium 🔤					
eryllium					
admium					
alcium					
hromium_[
balt	!				
opper	!!.	•			l <u></u>
ron			.	+ 	
ead	!!!		ļ		
agnesium					
anganese					
ercury					
ickel			· [·		
otassium	!!				
eienium_					i
ilver	!!!				
odium	!!	<u></u>			
nallium_!	!!				· ·
anadium_	!!!		•	!	ļ
inc			!	I	I

Comments:

25-5 page 72

7/87

18

FORM XII (PART 1) - IN

12B ICP INTERELEMENT CORRECTION FACTORS (QUARTERLY)

Lab	Name:	WESTON	Analytics	Contract:	CF8131538	
Lab	Code:	WESCA-	Case No.: 8	016 SAS No .:	SD	G NO.: SECZLOF
ICP	ID Num	nber: <u>JCA6</u>	DO	Date:	10/2/58	

	Wave-	 	Interelement	Correction	Factors for	r:
Analyte	(nm)			_	—	
Aluminum		· · · · · · · · · · · · · · · · · · ·				
Antimony						
Arsenic						
Barium		1				
Beryllium						
Cadmium	[]	I				
Calcium_		1		1		
Chromium_		I	!		l	
'Cobalt		I	[
opper		۱	!	I		
Iron		I	1	I	l	
Lead		ł	1	l		
Magnesium	II	I				
Manganese	I I	l	l	l		
Mercury	! I	1			. <u></u>	
Nickel	I I		!	I	l	
Potassium	اا	I	!	I	l	[
Selenium_		I		l	l	
Silver			!	l	l	
Sodium		I	!	I	l	I
Thallium	11			[l	
[Vanadium_					!	
Zinc	l1	ļ	1		1	
	[]	1	1			

Comments:

. .___

a 5-5 page 73 FORM XII (PART 2) - IN

19

ICP LINEAR RANGES (QUARTERLY)

Lab Name: WESTON AnalyficsContract: C88(31538)Lab Code: WESCACase No.: 85016SAS No.: ______ SDG No. 880200EICP ID Number: ICP6500Date: 100/88

20

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	M
Aluminum			i — i
Antimony			
Arsenic			
Barium			
Beryllium			
Cadmium			I — İ
Calcium			
Chromium_			
Cobalt			
Copper			
Iron			
Lead		l	
Magnesium			
Manganese			
Mercury			
Nickel			
Potassium			
Selenium_			
Silver			1
Sodium			
Thallium			
Vanadium			<u> </u>
Zinc			i i
			i — i

Comments:

FORM XIII - IN

Metals Data 881DODEBC Old package

J.S. EPA - CLP

EPA SAMPLE NO.

007

4

1 INORGANIC ANALYSIS DATA SHEET

Lad Mame: WESTON ANA	LYTICS 4	Contract: 6881315	38 - 5000 Stillcocesc
Lab Code: WESCA	Case No.: 8813	SAS No.:	3DG NO.: 881000
Matrix (soil/water):	WATER	Lab Sa	mole ID: 8806-009-005
<pre>_evel : low/med):</pre>	LOM	Date R	eceived: 06/04/88
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

		· · · · · · · · · · · · · · · · · · ·			
CAS NO.	Analyte	Concentration	:01	Ģ	t M
7429-90-5	Aluminum		; ; -		<u>;</u>
7440-36-0	Antimony	2.5	1		· _ i
7440-38-2	Arsenic	4.4			'F
7440-39-3	Barium	41.8	UL		<u>'</u> P
7440-41-7	Beryllium	1.0	81		P
7440-43-9	Cadmium	2.5	<u>U</u> :		P
7440-70-2	Calcium				
7440-47-3	Chromium	6.5	UL		P
7440-48-4	Cobalt	11.5	U		P
7440-50-8	Copper	9.0	UL		P
7439-89-6	Iron		i I 1		4
7439-92-1	Lead	10.6			<u>'</u> F_'
7439-95-4	Magnesium	t			1 1
7439-96-5	Manganese	1			I I
7439-97-6	Mercury	0.40	1 1		; ; ;
7440-02-0	Nickel	15.9	<u>; y :</u>		<u>, b</u>
7440-09-7	Potassium	l	۱ ۱ ۱		۱ ۱
7782-49-2	Selenium	4.2	<u>'U!</u>		<u> </u>
7440-22-4	Silver	7.7	<u>; u : i</u>	<u>N</u>	<u>'P</u>
7440-23-5	Sodium		¦		۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱ ۱
7440-29-0	Thallium	1.2	<u>1U</u>		1 1
7440-62-2	Vanadium	27.0	<u>;u:</u>		<u> </u>
7440-56-6	Zinc	156	۱ <u>۱</u>		<u>'p'</u>
) 	Cyanide	25	<u> 4</u>		<u>'05</u> ;
!	1	k			1 1

Color Before: COLORLESSClarity Before: CLEARTexture:Color After: COLORLESSClarity After: CLEARArtifacts:

Comments:

2098 75

FORM I - IN

7/87 Rev. IFB Amendment One 2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS Lab Code: WESCA Case No.: 88/3 SAS No.: SDG No.: 80/000 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
Aluminum	1980.01	•		5000.0					
Antimony	1010.0	1074.00	106.3	100.0	103.40	103.4	99.00	99.0	F
Arsenic	47.0	48.20	102.5	50.0			50.30	100.6	F
Barium	1980.0	2023.00	102.2	10000.0	10002.00	100.0	10174.00	101.7	P
Beryllium	481.0	458.00	95.2	200.0	198.50	99.3	198.10	99.0	<u>ip</u>
Cadmium	489.0	492.70	100.8	200.0	201.90	101.0	198.40	99.2	E
Calcium	49800.0;			99999.0				لمؤند.	4
Chromium	506.0	478.10	94.5	500.0	467,10	93.4	478.60	95.7	P
Cobalt	474.0	491.00	103.6	2000.0	2177.60	108.9	2077.40	103.9	<u> </u>
Copper	542.0	507,30	93.6	1000.0	1003.80	100.4		i	<u> </u> <u> </u>
Iron	1990.0		·	5000.0					† 1
Lead	97,9;	97.00	38	50.0	50.30	<u> 101.3</u>	<u> </u>	105.0	<u> E</u>
Magnesium	25000.0;		! :	<u>99999.0</u>		۱ ۱ ـــــــ ·		· · · · · · · · · · · · · · · · · · ·	·+ I
Manganese	513.0		۱ ۱	500.0		۱ ۱ <u></u> ۱		l l	1
Mercury	5.2;		ł	5.0		۱ ۱ ـــــــــــــــــــــــــــــــــــ	·		58
Nickel	496.0	<u>173.30</u>	95.4	2000.0	2168.80	108.4	2152.20	107.6	<u> </u> 2_
Potassium	50200.0;		!	<u>50000.0</u>		۱ ۱ <u>ـــــــــــــــــــــــــــــــــــ</u>	· · · · · · · · ·		ا هو. استعمال
<u>Selenium</u>	104.0	100.20	96.3	<u> </u>	54,80	109.5	<u> </u>	108.2	IE_
<u>Silver</u>	<u>509.0</u>	<u> 479,90</u>	94.3	<u> </u>	<u> </u>	<u>98.9</u>	<u> </u>	98.4	<u> P</u>
Sodium	<u>50700.0</u> ;		l	<u>50000.0</u>		ا ۱ i		. <u> </u>	.!
<u>'Thal'ium</u>	<u>97.3</u>	<u> 101.80</u>	104.5	50.0	51.60	<u> 103.2</u>	50.30	<u>100.6</u>	E_
<u>Vanadium</u>	{ <u>511.0</u> }	<u> </u>	<u> </u>	2000.0	1982.70	<u> 99.1</u>	<u>1912.50</u>	<u>95.6</u>	<u> </u>
<u>Zinc</u>	<u>3100.0</u>	3169.00	<u>102.2</u>	<u>1000.0</u>	1970.00	<u>: 107.0</u>	<u> 1092.00</u>	<u>108.2</u>	<u> </u>
<u>Cyanide</u>	<u>35.0</u>		· <u> </u>	<u> </u>		{			
I	۱ ۲ ۲ ۲				·	·	·	· ;	¦

Concentration Units: ug/L

10 Control Limits: Mercury 20-120; Other Metals 30-110; Cyanide 85-115

25-5 page 76

FORM II (PART ') - IN

7/97

2A INITIAL AND CONTINUING CALIBRATICN VERIFICATION

LaD Name: WESTON ANALYTICS Contract: C88131538 Flower LaD Code: WESCA Case No.: 8813 Flower Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	stion %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	XR(t)	M
Aluminum	1980.0;	1		5000.0	·			12 1 19 3 1 10	ـــــــــــــــــــــــــــــــــــــ
Antimony	1010.0			100.0	101.30	101.3	·08,50	108.5	F
Arsenic	47.0			50.0	54.80	109.6	50.40	100.8	
Barium	1980.0	2093.00	105.7	10000.0	10217.00	102.2	10248.00	102:5	P
Servllium	481.0	459,90	35.6	200,0	194.80	97.4	195,10	E. C.	(P
Cadmium	489.0			200.0	199.20	99.6	195.00	39-5	E.
Calcium	49800.0			99999.0				STATISTICS OF STATES	14 <u>7</u> .
Chromium	506.0	472.10	93.3	500.0	484.50	96.9	513.10	102.6	ΪE.
! <u>Cobalt</u>	474.0	482.40	<u>101.8</u>	2000.0	2028.70	101.4	2017.30	100.9	TE_
Copper	542.0	199.00	92.1	1000.C	972.10	97.2	965.80	98.8	TP_
<u>!Irón</u>	<u>1990.0</u> ;			5000.0	ا ا ،	ا ب ــــــــــــــــــــــــــــــــــــ		د بر این این از مینید و از ما در منابع این این می این این می این این می این این می این این می این می این می ای در می این می این می این می این می این می این می این می این می این می این می این می این می این می این	
Lead	<u>97.9</u>		، ۱ <u></u>	50.0	51.90	<u>103.3</u>	52.90	105.8	Ϊ <u>Ε</u>
<u>Magnesium</u>	<u>25000.0</u> ;		· ·	99999.0	· ·····	·		THE REAL PROPERTY AND	-+ 1
Manganese	<u>513.0</u> ;		l l	500.0	l l	ا د ه	·		21-0- 1 1
Mercury	5.21			<u>5.0</u>	ا د ــــــــــــــــــــــــــــــــــــ	۱ ۱ ۱	·	- Company of the second	<u> </u>
Nickel	496.0	445.70	89.9	2000.0	2062.00	<u>103.1</u>	<u>2081.50</u>	104.1	E.
<u>Potassium</u>	; <u>50200.0</u> ;		۱ ۱ ـــــــــــــــــــــــــــــــــــ	<u>50000.0</u>	۱ ـ	ا ۱ ــــــــــــــــــــــــــــــــــــ		۱ · · · ۳۶۰۰۰ خو۲۰۰۰ ۱ ا	1 t
<u>Selenium</u>	<u>104.0</u>		·	<u> </u>	52.20	<u>104.4</u>	54.80	109.6	Ϊ <u>Ε</u>
<u>Silver</u>	<u>509.0</u>	<u> 501.60</u>	98.5	500.0	<u> </u>	<u> 110.3</u>		<u>98,9</u>	<u> </u>
<u>Sodium</u>	<u>50700.0</u>		۱ ۱ <u> </u>	<u>50000.0</u>	l	ا ب <u></u> ب		۲۰۰۰ بالاد ر ۲۰۰۰ ا	· · · ·
<u>Thallium</u>	97.3	<u> </u>	۱ ۱	<u> </u>	49.40	<u>98.3</u>	46.90	93.8	Ε <u></u>
<u>Yanadium</u>	<u>511.0</u>	<u> </u>	36.4	2000.0	1955.90	97.3	<u>1930.30</u>	<u>96,5</u>	<u> </u>
l <u>linc</u>	3100.0	<u>3076.00</u>	<u>- 39 - 5</u>	<u>1000.0</u>	<u>1024.00</u>	<u>::02.4</u>	<u>. 1051.00</u>	105.1	Ţ <u>Ρ</u>
<u>Cyanide</u>			·	25.0	t	i i		! ا	· · · · · · · ·
	1 1		•	1	I			1 1	i

Control Limits: Mercury 80-120: Other Metals 90-110: Cyanide 85-115

a5-5 page 77

FORM II (PART () - IN

2A INITIAL AND CONTINUING CALIBRATICN VERIFICATION

Lab Name: WESTON ANALYTICS

41,068 Contract: 688131538 41,068 41

Lab Code: WESCA Case No.:8813

•

Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

	Initial Calib	ration)) []	Continuir	ng Cali	bration	1 5 1 1	1 1
Analyte	True Found	38R(1)	¦ True	Found	%R(1)	Found	%R(1)	M.
Aluminum	1980.0;	1	5000.0		 			1
Antimony	1010.0		100.0	101.90	101.3	106.30	106.3	<u>IE</u>
Arsenic	47.0	1	50.0	52.60	105.2	50.70	101.4	E
Barium	1980.01		10000.0	10464.00	104.6		<u></u>	4E
Bervllium	481.01		200.0	190.00	95.0		The second second second second second second second second second second second second second second second s	1 <u>P</u>
<u>Cadmium</u>	489.0	_!	200.0	194.30	97.2	190.50	95.2	·P-
Calcium	49800.0		99999.0				STATE STATE	-
Chromium	<u>506.0</u>	_!	500.0	497.40	99.5			7 <u>E</u>
<u>Cobalt</u>	474.0		2000.0	2021.70	<u>101.1</u>	1984,40	99.2	1 <u>P</u>
<u>Ccoper</u>	542.0	_!	<u>1000.0</u>	966.90	26.7		الس الم	* <u>P</u>
Iron	_1990.0	_!	5000.0	·	ا • •		 	<u>}</u>
<u>_eao</u>	97.3		<u>50.0</u>	52.10	<u>104.2</u>	51,40	102.8	IE_
<u>Magnesium</u>	25000.01	i	1 <u>99999.0</u>		۱ ۱ ـــــــــــــــــــــــــــــــــــ		t	
<u>Manganese</u>	(<u>513.0</u> ;	{	500.0	1	ا ا ـــــــــــــــــــــــــــــــــــ			/-1.: ∶1
Mercury	<u> </u>		5.0	: 		4.31	86.2	7 <u>CV</u>
! <u>Nickel</u>	496.01	_ !	2000.0	<u>2054.20</u>	102.7	2051.10	102.6	문
<u>Potassium</u>	<u>50200.0;</u>	ł	50000.0	 	ا ۱ <u></u> ۱	i		
<u>Selenium</u>	104.0	_!	50.0	51.40	<u>102.8</u>	49.20	<u>.98.4</u>	E
<u>Silver</u>	509.0		500.0	485.20	97.0	512.40	<u>102.5</u>	<u>19-</u>
Sodium	<u>50700.0</u> ;		50000.0	· ·	ا ا		و ا ۲	
<u>Thallium</u>	97.3		50.0		<u>. 26.4</u>	<u> </u>	<u>102.8</u>	Ι <u>Ε</u>
<u>Vanadium</u>	<u>511.0</u>	_ ¦	2000.0	2005.20	<u> 100.3</u> ¦	<u> 956.90</u>	<u>97.8</u>	12
<u>llinc</u>	3100.0		1000.0	<u>1049.00</u>	<u>104.9</u>	1264.00	106.4	E_
<u>Cyanide</u>	<u>. 95.0</u> ;		25.0	l	۱ ۱ ـــــــــــــــــــــــــــــــــــ			۰ <u>۴</u>
I	ł ł	1	1		1 1		i 1	r

1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

25-5 Xage 78

FORM II (PART 1) - IN

7/87

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Code: WESCA Case No.: 8813 SAS No.: SDG No:: 881000 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: u

Analyte	Initial C True Fo	alibration und %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
<u>Aluminum</u>	<u>1980.0</u>		<u>5000.0</u>		·	l		
<u>Antimonv</u>	1010.0	: ا ا	100.0	105.60	105.6	103.40	103.4-	E
<u>Arsenic</u>	47.0		<u> </u>	53,90	<u>107.3</u>	<u>51.70</u>	103:44	王
<u>Bartum</u>	<u>1980.0;</u>	1 1	<u>10000.0</u>	1045.00	10.4			
<u>Beryllium</u>	481.0	1 	200.0	188.00	94.0		-WE SHARE	E
<u>Cadmium</u>	489.0		200.0		· i		1	1 27
<u>Calcium</u>	49800.0;	; ;	<u>99999.0</u>				and the second s	S
<u>Chromium</u>	506.0		500.0	501.80	100.4	· · · · · · · · · · · · · · · · · · ·	THE CALL OF THE OWNER	P
<u>Cobalt</u>	474.0		2000.0				1.7.62	<u>.</u>
Copper	542.0		1000.0	932.30	93.31			P
Iron	1990.01		5000.0					×.
Lead	37.3		50.0	48.60	37.2	50.60	101-21-1	E
Magnesium	25000.01		99999.0					
Manganese	513.0	i	500.0					<u>.</u>
Mercury	5,2	t	5.0	4,65	93.0		1	<u>TY</u>
Nickel	496.0	i	2000.0					23
Potassium	50200.01	e	50000.0				نې د <u>د د د د</u>	<u> </u>
Selenium	104.0	• · · · · · · · · · · · · · · · · · · ·	50.0	47,10	94.2	<u> 48.20</u>	_98-44	F
Silver	509.0		500.0	504.30	100.9			P7
Sodium	50700.0		50000.0		l l			<u>.</u>
' <u>Thallium</u>	97.3		50.0	51.20	102.4	52.00	104.0**	E.
<u>!Vanadium</u>	511.0;	1	2000.0					
Zinc	3100.0		1000.0		i i i			• · · · · · ·
Cvanide	95.0		25.0					ръ. Г
1			· · · · · · · · · · · · · · · · · · ·		i — i		r d	/

1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

a.5-5 page 79

FORM II (PART 1) - IN

007

U.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

F. 00000

Lab Name: WESTON ANALYTICS

Contract: (8)31538

SAS NO.: SDG NO.: 881000

4:50000

Lab Code: WESCA Case No.: 8813

Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration (Units:	ug/L
-----------------	--------	------

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
Aluminum	1980.0;		· · · · · · · · · · · · · · · · · · ·	5000.0					
Antimony_	1010.0			100.0	99.50	99.5			L.F.
Arsenic	47.0			50.0	50,90	101.8	51.60	103.2	TE
Barium	1980.01			10000.0				يتر مسور	is <u>p</u> .
Beryllium	481.0			200.0					F-0 -
Cadmium	<u>489.0</u>		l 	200.0				فيستح لمراج والم	<u>-</u>
<u>Calcium</u>	<u>49800.0</u>	<u></u>	 	99999.0				- 44	1-1-
<u>Chromium</u>	<u>506.0</u>		· :	500.0					E.D.
<u>Cobalt</u>	474.0		 	2000.0					
<u>Copper</u>	542.0		·	1000.0		I			<u>i </u>
Iron	<u>1990.0</u> ;		1 •	5000.0) i	l (i i-
Lead	<u> </u>		i	<u> </u>	51.30	102.3	51.60	103.2	1 <u> </u>
<u>Magnesium</u>	<u>25000.0</u>		(}	<u>99999.0</u>	· · · · · · · · · · · · · · · · · · ·			·	· • • • · · · · · · · · · · · · · · · ·
<u>Manganese</u>	<u>513.0</u>		 	<u>500.c</u>	 	 		· · · · · · · · · · · · · · · · · · ·	*.* 1° T
Mercury	5.2	5,12	98.5	<u> </u>	5.35	<u>107.C</u>			TOV IN
Nickel	<u>496.0</u>		; !	2000.0	 	!			i i.
<u>Potassium</u>	<u>;50200.0</u> ;		 	<u>50000.0</u>	I I			l	+ · · t.
<u>Selenium</u>	104.0		I 1	50.0	49.00	98.0	47.20	94.4	Î E
<u>Silver</u>	<u>509.0</u>		 	<u>500.0</u>	·	!		<u> </u>	1-1 1 T
Sodium	<u>50700.0</u>		 	<u>50000.0</u>	 ;	۱ ۱ ـــــــــــــــــــــــــــــــــــ		۱ ۱	6-F 177
<u>Thallium</u>	<u>97.3</u>	97.40	<u>100.1</u>	<u> </u>	48.90	97.6	50.90	101.6	I E
<u>Vanadium</u>	<u>511.0</u>		 	2000.0		1 1 1		l	11
l <u>Zinc</u>	<u>3100.0</u>		;	<u>1000.0</u>		· _ · · · · · · ·		 	11
<u>Cyanide</u>	85.0		 	25.0		ii			<u> </u>
1	! !			l 				I	11

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

0.5-5 page 80

FORM II (PART 1) - IN

008

U.S. EPA - CLP

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS

Contract: <88131538

Lab Code: WESCA Case No.: 8813

SAS No.:

SDG No BEIDOO

K:toolog

Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R (1)
Aluminum	1980.0			5000.0				Went C 12
Antimony	1010.0	<u> 1013.00</u>	100.3	100.0	97.00	<u>97.0</u>	102.10	102.1
Arsenic	47.0			50.0	51.60	103.2	<u>53.00</u>	105.0
Barium	<u>1980.0</u>			10000.0	· · · · · · · · · · · · · · · · · · ·	l l .		
<u>Beryllium</u>	481.0		·	200.0		· · · · · · · · · · · · · · · · · · ·	ir 	14400 - C
Cadmium	489.0			200.0	·	l i .	نې . مالي ان ان ان ان ان ان ان ان ان ان ان ان ان	Sector.
<u>Calcium</u>	49800.0			<u>99999.0</u>		۱ ۱ ـــــــــــــــــــــــــــــــــــ		1
Chromium_	506.0		·	500.0	·	· · ·		
<u>Cobalt</u>	474.0		·	2000.0		l i.	=	1 I
Copper	542.0		l 	1000.0				1
Iron	1990.0;		1	5000.0		۱ ۱ ـــــــــــــــــــــــــــــــــــ		
Lead	<u> </u>		۱ ۱ <u>ـــــــــــــــــــــــــــــــــــ</u>	<u> </u>	<u> </u>	<u>107.8</u>		<u> </u>
Magnesium	25000.0;		l I	99999.0	·	 		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Manganese	513.0		'	<u>500.0</u>	l	t i.		ا ا د د
Mercury	5.2	4,27	93.7	5.0	5.03	<u>100.5</u>		SPANET P
Nickel	496.0		 	2000.0	t	ا ا ـــــــــــــــــــــــــــــــــــ		Bridger
Potassium	50200.0		l l	50000.0	ł 	۱ ۱ ـــــــــــــــــــــــــــــــــــ		1 33 3 3 4 4 4 4 1 4 1 4 1 4 1 4 1 4 1 4
Selenium	104.0	106.00	101.9	50.0	50.70	<u>101.4</u>	48.60	<u>]97`.2</u>
<u>Silver</u>	<u>509.0</u>		l 1	<u>500.0</u>	1 1	;		<u></u>
Sodium	50700.0		I	50000.0	l	۱ ــــــــــــــــــــــــــــــــــــ		<u>ا در بیند میرا</u> ا
Thallium	97.3	<u> </u>	1 \	50.0	50.00	<u>100.0</u> !	48.70	<u>97.4</u>
<u>Yanadium</u>	511.0		l	2000.0) !	l i		1
Zinc	3100.0			1000.0	!	۱ ۲ ــــــــــــــــــــــــــــــــــــ		¦
Cyanide	35.0		:	25.0	۱ ۱ <u>ـــــــــــــــــــــــــــــــــــ</u>	t (· · · · · · · · · · · · · · · · · · ·
	! I		·	·	I 	; <u> </u>		Г. І.—

Concentration Units: ug/L

(1) Control Limits: Mercury 80-120: Other Metals 30-110; Cyanide 85-115

a 5-5 page 81

FORM II (PART 1) - IN

2A INITIAL AND CONTINUING CALIBRATICN VERIFICATION

Lab Name: WESTON ANALYTICS

44,000 Contract: **688131538**

SAS NO.: SDG No.: 8810

Lab Code: WESCA Case No.: 8813

Kibo 88

Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)
Aluminum	1980.0;			5000.0				
Antimony_	1010.0			100.0	108.50	108.6		الثلية والم
Arsenic	47.0	48.10	102.3	50.0	48.80	97.6		
Barium	1980.0			10000.0				CONSTRUCT.
Beryllium	481.0			200.0				بها حبوب
Cadmium	489.0			200.0				
Calcium	49800.0			99999.0				Caller St. Carrier St.
Chromium	506.0			500.0		I		
Cobalt	474.0			2000.0				
Copper	542.0		! 	1000.0		· * _		ر ما هاد از از از از از از از از از از از از از
Iron	1990.01			5000.0				
Lead	97.9	100.40	102.6	50.0	19.30	39.5	50.10	<u>100.21 F</u>
Magnesium	25000.0		1 1	<u>99999.0</u>				
Manganese	513.0		I	500.0				۰ ۲۰ <u>۵</u> ۰ د. ۱۰ ۲۰۱ <u>۲۰۰۰ د.</u>
Mercury	5.2		l l	5.0				
Nickel	496.0		1	2000.0) _		
Potassium	<u>50200.0</u>		! }	<u>50000.0</u>				ttttt
Selenium	104.0;	104.75	100.7	<u> </u>	48.40	36.8	49.00	<u>98.0 F</u>
Silver	509.0		t I	500.0		 		<u> </u>
Sodium	<u>50700.0</u>		l l	50000.0		 		ا ــــــــــــــــــــــــــــــــــــ
<u>Thallium</u>	97.3		۱ 	50.0	48.70	<u>97.4</u>		!!!E
Vanadium	511.0		t [2000.0		 		
2100	3100.0		·	<u>1000.0</u>		۱ ۱ .		(
<u>Cyanide</u>	35.0;		I I	25.0	·	۱ ۱ ـــــــــــــــــــــــــــــــــــ		<u>ا</u>
1	ii		1	1		· · · ·		

11: Control Limits: Mercury 30-120; Other Metals 90-110; Cyanide 85-115

25-5 7age 82

FORM II (PART 1) - IN

010

U.S. EPA - CLP

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	WESTON	ANALYTICS		Contract: (88131538	F; 00693	· بېر
_ 3 D	Code:	WESCA	Case	NO.: 8813	SAS No.: 1	SDG	No.: BBIDE
Init	tial C	alibrati	on Source:	EPA-EMSL			

Continuing Calibration Source: SPEX

Concentration Units: ug/L

	Initia	l Calibra	ation		Continuir	ng Cali	bration	
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	\$R[1]+1#-
Aluminum	1980.0			5000.0				- dans - free
Antimony	1010.0	1037.00	102.7	100.0	96.80	96.8	98.20	98.24E
Arsenic	47.0	49.00	104.3	50.0	50.30	100.6	<u>50.50</u>	1.0214 0 2025
<u>Barium</u>	1980.0			10000.0		! .		
Beryllium	481.0		l	200.0		¦.		
Cadmium	489.0		l 	200.0		1.		
<u>Calcium</u>	49800.0		¦	<u>99999.0</u>				
<u>Chromium</u>	<u>506.0</u>		l 1	500.0				The second second
<u>Cobalt</u>	474.0	·	!	2000.0		1		
Copper	542.0		۱ ۱ <u>- مسمع</u>	1000.0		! -		The second second
Iron	1990.0;		I I	5000.0		ł -	ا ا	110 - 1 1 0-
Lead	97.3		•	50.0	50.80	101.5	51.20	102744FF
Magnesium	25000.01		1	99999.0				
Manganese	513.0		1	500.0				
Mercury	5.2		1	5.0		i		- And the second second
Nickel	496.0			2000.0		I		
<u>Potassium</u>	50200.0		l	50000.0				······································
Selenium	104.0		1	50.0	48.20	25.4	47,50	95:25F
Silver	509.0			500.0		· · · · · · · · · · · · · · · · · · ·		and the second
Sodium	50700.0		I	50000.C		!		
Thalltum	97.3	97.30	100.5	50.0	50.30	100.61	18.60	97.2**F
Vanadium	511.0		·	2000.0				
linc	3100.0			1000.0		1		
Cvanide	35.0			25.0				
1			1					↓ ↓ ↓ ↓

1: Jontrol Limits: Mercury 30-120; Other Metals 90-110: Cyanide 85-115

0.5-5 Jaqe 83

FORM II (PART 1) - IN

-

O | |

J.G. EPA - CLP

2A

INITIAL AND CONTINUING CALIERATION VERIFICATION

Lab Code: WESCA Case No.: 8813 SAS No.: 3DG No.: 881000 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Analyte	Initia True	l Calibr Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
<u>Aluminum</u>	1980.0		l l	5000.0				i i	ł
Antimony	1010.0		1	100.0	95.40	95.4	101.00	101.0	IE_
Arsenic	47.0		1	50.0	49.50	99.0	49.10	98.2	1E
Barium !	1980.0			10000.0				· ·	· •
Beryllium	481.0		1	200.0		i			1
Cadmium !	489.0		1	200.0				۱ ۱ ـــــــــــــــــــــــــــــــــــ	
Calcium	49800.0			199999.0					- <u>+</u>
Chromium	506.0			500.0				 	-t
Cobalt	474.0		1	2000.0		!		i i	1
Copper	542.0		1	1000.0				ا 1 مىسمىيىسى ا	¦
Iron	1990.0		1	5000.0				۱ ــــــــــــــــــــــــــــــــــــ	¦
Lead	97.9		I	50.0	52.30	104.61	50.60	<u>101.2</u>	<u>F</u>
Magnesium	25000.0		1 1	<u>99999.0</u>			·	· · 	1.
Manganese	513.0		1	500.C		i .		ا د ا	: : :
Mercury	5.2;		.!	5.0				· •	- !
Nickel	496.0		1	2000.0		I .		ا مستقدم ا	¦
Potassium	50200.0	-	1	[<u>50000.C</u>]				۱ ۱	.t
<u>Selenium</u>	104.0		I	50.0	45,50	91.0		ا ا ا ــــــــــــــــــــــــــــ	<u> </u> E
Silver	: <u>509.0</u> ;			<u>500.0</u>	i			:l	
Sodium	<u>50700.0</u>		1 1	<u> 50000.0</u>				: :	! <u> </u>
<u>Thallium</u>	<u>97.3</u>		, :	50.0	49.70	<u></u>	<u>50.40</u>	100.8	<u> </u> <u>F</u>
<u>Vanadium</u>	<u>511.0</u>		. i	<u> 2000,0</u>		 			
Zinc	3100.0		· · · · · · · · · · · · · · · · · · ·	1000.0		۱ ۱ ـــــــــــــــــــــــــــــــــــ		·	·
<u>Cyanıde</u>	35.0		- ! <u> </u>	25.0		P		·	
	1 E		1	1 1		r †		1 1	

Concentration Units: ug/L

(1) Control Limits: Mercury 30-120; Other Metals 90-110; Dyanide 85-115

a 5-5 Dage 84

FORM II (PART 1) - IN

017:

J.S. EPA - CUP

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Code: WESCA Case No.: 8813 688 SAS No.: SDG Nor: 681000 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

i	; !			ł . M				ן. ו	
1	Initia	1 Calibra	ation		Continuir	ng Cali	bration	1	-18 10 1 - 1
'Analyte 👘	True	Found	%R(1)	True	Found	38R(1)	Found	XR(1)	M
• •	ł 			l					· •
<u>Aluminum</u>	<u> 1980.C</u> ;		t 1	<u>5000.0</u> ;				主要是南京	
Antimony	<u>1010.0</u>		· ·	<u>100.0</u>	96.60	26.6	<u> 35.20</u>	. 95.2	RE.
<u>Arsenic</u>	47.0		;	50.0	48.70	97.4	<u>50.00</u>	100.0	RE
<u>Barıum</u>	<u>1980.0</u>		۱ ۱ <u> </u>	<u>10000.0</u>					
<u>Beryllium</u>	<u>481.0</u>) 	200.0			·		
Cadmium	489.0		t 	200.0			·	Carlos Sta	*
Calcium	<u>49800.0</u> ;		۱ ۱ ۱	<u>99999.0</u>				1.4	H
Chromium	506.0		! 	500.0				1. S	Q.
Cobalt	<u>474.0</u>		1 	2000.0		·		WTS (Store -	13890
Copper	<u>542.0</u>		l 	1000.0				1997 F. 1998	
Iron	1990.0		l	5000.0				landa -) = 8
'Lead	97.3	108.20	<u>110:5</u>	<u>50.0</u>	52.70	<u>105.1</u>	53.00	105.0	IE_
<u>Magnesium</u>	25000.01		·	<u>99999.0</u>					
Manganese	<u>513.0</u>		!	500.0			· · · · · · · · · · · · · · · · · · ·	71/20	
Mercury	5.2		1	5.0				-	F <u></u>
Nickel	496.0		1	2000.0					
Potassium	50200.0			50000.0					rtt
Selenium	104.0	105.25	101.2	50.0	50.50	101.0	48.70	97.4	TE
Silver	509.0		1	500.0					C4
Socium	50700.0		1	50000.0					
Thallium	97.3			50.0	49.60	29.2		i sa na mi ning sa sa sa sa sa sa sa sa sa sa sa sa sa	1 <u>E</u>
Vanadium	511.0			2000.0				· · · ·	
'Zinc	3100.0			1000.0					H E
1 Oyanide	35.0		1	25.0					
			•	1					

1) Control Limits: Mercury 30-120; Other Metals 90-110: Cyanide 85-115

0.5-5 page 85

FORM II (PART 1) - IN

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

lab Name: WESTON ANALYTICS

Contract: <8813153824

Case No.: 88132.4. SDG No.: \$81000 K: Lab Code: WESCA SAS No.: 💡 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentrat	10n	Uniter.	100 21
	1911	uillug.	

1 1 2	Initia	1 Calibra	ation) 	Continuir	ng Cali	bration	L 4 1 L 1 L 1 L 1 L 1 L	•
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	ł
Aluminum	1980.01		·	5000.0;		1			-
Antimony	1010.0			100.0	100.30	100.3			
<u>Arsenic</u>	47.0			50.0	51.80	103.6	48.60	97.2	
<u>Barium</u>	1980.0		1	10000.0		!		Lawrence Life	۲:
<u>Beryllium</u>	481.0!	<u> </u>	!	200.0				China and the	:
<u>Cadmium</u>	<u>489.0</u> ;		1	200.0		I .			۸.
<u>Calcium</u>	<u>49800.0</u> ;		: 	<u>99999.0</u>	I	. <u> </u>		<u></u>	۲. •4
<u>Chromium</u>	<u>506.0</u> ;		t 1	<u>500.0</u>		I .			,
<u>Cobalt</u>	474.0		·	2000.0		۱ 		ſ`ŀ 	
Cobber	<u>542.0</u>		·	1000.0		! -		8.8. 	_
I <u>ron</u>	<u>1990.0</u>			<u>5000.0</u>	;	i		i i _	
<u>Lead</u>	97.3		·	50.0	<u> </u>	100.31	<u>-9.90</u>	<u>99,8</u>	:
<u>Magnesium</u>	25000.01		1 4	<u> 99999.0</u>		· · · ·		· · · · · · · · · · · · · · · · · · ·	
<u>Manganese</u>	<u>513.0</u>		!	<u>500.0</u>	i	· ; ·		- 111 - 	
Mercury	5.2		·	5.0		·	I	12[
Nickel	496.0		¦ ¦	2000.0		. <u> </u>			÷
<u>Potassium</u>	50200.0		!	<u>50000.0</u>		I .			
<u>Selenium</u>	<u>104.0</u>		·	<u>50.0</u>	48.80	<u>97.6</u>	46.40	<u>92.8</u>	:
<u>Silver</u>	<u>509.0</u>		!	<u>500.0</u>	I	I .		· · · · · · · · · · · · · · · · · · ·	<u>.</u>
Sodium	<u>50700.0</u>	·	l	<u>50000.0</u> ;		·		L	
<u>Thallium</u>	97.3	100.40	<u>103.2</u>	<u> </u>	47.10	34.21	<u> 13.30</u>	<u>97.6</u>	:
<u>Vanadium</u>	<u>511.0</u>		¦	2000.0	ا ن ــــــــــــــــــــــــــــــــــــ	¦;			
' <u>Zinc</u>	<u>3100.0</u> ;		·	<u>1000.0</u> !		· · .			
<u>Cvanide</u>	<u> </u>		t t	25.0		! · ·			
·	۱ ۰ <u></u> ۰		·	۱ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ		· · ·			

Control Limits: Mercury 30-120; Other Metals 30-110; Cyanide 85-115

0.5-5 page 86

FORM II (PART 1) - IN

7/87

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Mame: WESTON ANALYTICS

Contract: C88131538KH.

Lap Code: WESCA Case No.: 88/3 KH SAS No.: SDG No.: 88/000 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	} Calibra Found	tion %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
<u>Aluminum</u>	1980.0			5000.0	ا ا ـــــــــــــــــــــــــــــــــــ		ة المريد المريد المريد المريد المريد المريد المريد المريد المريد المريد المريد المريد المريد المريد المريد المريد		
Antimony	<u>1010.0</u>		·	100.0	<u> </u>	<u>97.3</u> ;	<u></u>	96.91	SE
<u>Arsenic</u>	47.0	1 l		50.0	49.40	98.9	48.70	97.44	1.9 2 Mar
<u>Barium</u>	1980.0	ł		10000.01	۱ بر المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد ال	<u> </u>		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
<u>Beryllium</u>	481.0	i		200.0;	······	· 1.	ł		
Cadmium	489.0			200.0	I				A ser
Calcium	49800.0	i		99999.01			ا اا		
Chromium	506.0			500.0		1	_		<u> </u>
Cobalt	474.0			2000.0				- 575	
Copper	542.0			1000.0;		1			
Iron	1990.0			5000.0					
'Lead	97.9			50.0	49.00	<u>98.0</u>	52.90	105.8	3 E-
Magnesium	25000.0			99999.0;					
Manganese	513.0			500.0		!		· • 26	12.45
Mercury	5.2			5.0				100	
NICKel	496.0			2000.0					3.30
Potassium	50200.0			50000.0				-	
Selenium	104.0	100.25	96.4	50.0	48,50	97.0	49.10	98.2	4E
Silver	509.0		ļ	500.0				1 Carteria	100
Sodium	50700.0		i	50000.0					47.
Thallium	97.3		i	50.0		1			بجغ و نيا
Vanadium	511.0		i	2000.0					
'Zinc	3100.0			1000.0					't
: Cyanide	35.0	<u> </u>		25.0		ii			
•	· ·		; 	;					1.4

1) Control Limits: Mercury 80-120: Other Metals 90-110; Cyanide 85-115

a.5-5 page 87

FORM II (PART 1) - IN

7/87

014-

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS

.

Contract: C88 B15386.4

Lab Code: WESCA Case No.: $881_{K,H}$ SAS No.: SDG No.: $881_{DOO_{K}}$ Code: Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Aluminum 1980.0 5000.0	Analyte	Initia T rue	l Calibr Found	ation %R(1)	True	Continui Found	ng Calil %R(1)	bration Found	%R(1)	M
Antimony 1010.0 100.0 100.30 100.2 100.30 Arsenic 47.0 50.0 48.10 96.2 48.30 96.6 Barum 1980.0 10000.0 10000.0 10000.0 10000.0 10000.0 Beryllium 481.0 200.0 200.0 1000.0 10000.0 1000.0 Cadmium 489.0 200.0 1000.0 </td <td>Aluminum</td> <td>1980.0;</td> <td></td> <td></td> <td>5000.0</td> <td></td> <td>۱ ۱</td> <td>4</td> <td></td> <td></td>	Aluminum	1980.0;			5000.0		۱ ۱	4		
Arsenic 47.0 50.0 48.10 36.2 48.30 96.6 Barium 1980.0 10000.0	Antimony	1010.0			100.0	100.30	100.3	1	;	Ē
Barium 1980.0 10000.0	Arsenic	47.0			50.0	48.10	96.2	48.30	96.6	F
Beryllium 481.0 200.0	Barium	1980.0			10000.0		· · · · · · · · ·			
Cadmium 489.0 200.0	Beryllium	481.0			200.0		1 L			1
Calcium 49800.0 99999.0	Cadmium	489.0		1	200.0		i i		: 1	-iΞ
Chromium 506.0 500.0	Calcium	49800.0			99999.0			1		4
Cobalt 474.0 2000.0	Chromium	506.0		1	500.0					· []
Copper 542.0 1000.0	Cobalt	474.0	-		2000.0				i	1
Iron 1990.0 5000.0 102.5 49.20 98.4 Magnesium 25000.0 99999.0	Copper	542.0			1000.0		1	L		÷.
Lead 97.9 50.0 51.30 102.5 49.20 98.4 Magnesium 25000.0 99999.0	Iron	1990.01			5000.0		1	1		1
Magnesium 25000.0 99999.0	Lead	97.9			50.0	51.30	102.5	49.20	98.4	Ē
Manganese 513.0 500.0	Magnesium	25000.0			99999.0					12
Mercury 5.2 5.0	Manganese	513.0			500.0		i i 1i	1		I.
Nickel 496.0 2000.0	Mercury	5.2		1	5.0					1
Potassium 50200.0 50000.0	Nickel	496.0		·	2000.0		t 1	4		1
Selenium 104.0 50.0 51.80 103.6 49.80 99.6 Silver 509.0 500.0 5000.0 103.6 49.80 99.6 Sodium 50700.0 50000.0 103.6 49.80 99.6 Sodium 50700.0 50000.0 1000.0 1000.0 1000.0 Yanadium 511.0 2000.0 1000.0 1000.0 1000.0	Potassium	50200.0			50000.0		i I i	i	i	
Silver 509.0 500.0	Selenium	104.0			50.0	51.80	103.6	49.80	<u>. 99.6</u>	Ľ
Sodium 50700.0 50000.0	Silver	509.0			500.0		· · · · · · · · · · · · · · · · · · ·		\leq	1
Thallium 97.2 50.0	Sodium	50700.0		.!	50000.0		· · · · · ·	1		1.
Vanadium 511.0 2000.0 Zinc 3100.0 1000.0	Thallium	<u>97.3</u>			50.0			I	l	1_
Zinc 3100.0	Vanadium	<u>511.0</u>			<u> 2000.0</u>		! ! _	i		1_
	Zinc	3100.0		·····	1000.0		t ! .		I	1_
<u>Syanide</u> <u>85.0</u>	Cyanide	<u> </u>		- i	25.0		• •			1_

(1) Control Limits: Mercury 30-120; Other Metals 30-110: Cyanide 85-115

0.5-5 page 88

FORM II (PART () - IN

7/87

016

J.S. EPA - CLP

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Contract: 688131538K.H. Lab Name: WESTON ANALYTICS Case No.: 8813 KH SAS No.: SDG Na .: BODICC Lab Code: WESCA EPA-EMSL Initial Calibration Source:

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	% R(1) M
<u>Aluminum</u>	<u>1980.0</u>		l i	5000.0		l l		
<u>Antimony</u>	1010.0	<u>1010.00</u>	<u>::00.0</u>	100.0	106.30	106.9	39.10	99.114F
<u>Arsenic</u>	47.0		l l i	50.0	47.70	95.4	46.60	98.24F
<u>Barium</u>	<u>1980.0</u>		! { !	10000.0		¦i		
<u>Bervllium</u>	<u>481.0</u>)	200.0		1 1 1	*	PS AND A PH
<u>Cadmium</u>	<u>489.0</u>		! :	200.0		ii		Sax Shered 1
<u>Calcium</u>	49800.0		! ! i	<u>99999,0</u> ;		¦		Stewart Inc.
<u>Chromium</u>	506.0		l 	500.0		· ·	<u>></u>	Contraction of the
<u>Cobalt</u>	474.0		۱ ۱	2000.0		11		1000 (m. 1996) - 17 100 (m. 1
Copper	542.0		1 	1000.0		l i .		IN PRODUCTION
Iron	1990.01		۱ ۱ ۱	<u>5000.0</u>		1 1		
Lead	<u>97.9</u>		I I I	50.0	50.30	100.5	51.50	103.0 F
(<u>Magnesium</u>	{ <u>25000.0</u> ;		1 I	<u>99999.0</u> ;		ii	· -	
<u> Manganese</u>	<u>513.0</u>		t i	500.0		i		
Mercury	5.2		1 4 i	<u> </u>		l l .		A STATE OF THE STATE OF
Nickel	<u>496.0</u>		! 	<u>2000.0</u>		l l .		100 Jackson 171
<u>Potassium</u>	; <u>50200.0</u> ;		1 1	<u>50000.0</u>		l l		1
<u> Selenium</u>	104.0	107.29	<u>103.2</u>	<u> </u>	51.40	102.3	51.10	102.21 F
<u>¦Silver</u>	<u>509.0</u>	<u></u>	; !	500.0		l i		THE REAL PROPERTY AND ADDRESS
Sodium	<u>50700.0</u>		l I	<u>50000.0</u>		1 1		1
<u>Thallium</u>	97.3		ι ι	50.0		1		1 1 1
<u>Vanadium</u>	<u>511.0</u>		(•	2000.0		 ;		
! <u>Zinc</u>	3100.0		•	1000.0		i i		1 4 cg
<u>Cyanide</u>	<u>85.0</u>		t	25.0		· ·		
1	i i		!	·		1		

(1) Control Limits: Mercury 30-120; Other Metals 90-110; Cyanide 85-115

Sage 89

FORM II (PART 1) - IN

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: NESTON ANALYTICS

Contract: <88131538 KH

Lab Code: WESCA Case No.: 88132.4. SAS No.: SDG No.: 8810002. Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initial Calibr True Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	L. L M
Aluminum	1980.0;		5000.01	I				
<u>Antimony</u>	1010.0	_ ł	100.0		l i .			
<u>Arsenic</u>	47.0:	- ¹	<u>50.0</u>	<u> </u>	<u>95.6</u>	46.20	92.4	TE.
<u>Barium</u>	1980.0	 = !	<u>10000.0</u>		· ! .			
<u>Beryllium</u>	481.0	_!	200.0		l l .			-
<u>Cadmium</u>	489.0	_	200.0	I	 			2 E
Calcium	49800.0;	_ ! !	99999.0		l 1 .			-
<u>Chromium</u>	506.0	_ ! :	500.0		l l .			
<u>Cobalt</u>	474.0		<u>2000.0</u>		i i .		· · · · · · · · · · · · · · · · · · ·	· • • • •
Copper	542.0	_ l,	1000.01		l ł			·
l <u>icon</u>	1990.01	_ i	<u>5000.0</u>		;		ؤ 1 <u> ا</u>	÷+
<u>lead</u>	97.9	_ i	50.0	53.30	<u>197.8</u>].	54.30	108.6	IE_
Magnesium	25000.0	_ !	<u>99999.0</u> ;	ا ا	۱ ۱۱			⊢ <u>†</u> ⊳ ⊁‱,,,,,
Manganese	513.0		<u>500.0</u> ;		· · .	[
Mercury	5.2	_!	<u>5.0</u>		۱ ۱ ۱ .	1	(بچ - معر مر مر اور اور اور اور اور اور اور اور اور او	年
Nickel	496.0	_ \	2000.0			(
Potassium	<u>50200.0</u>	_!	<u>50000.0</u>		۴ ۱۴			
<u>Selenium</u>	104.0		<u>50.0</u>	· · · · · · · · · · · · · · · · · · ·	r i.		اين ا	a bea
Silver	509.0	_ !	500.0		f f			
Socium	50700.01	_!	<u> 50000.0</u>		· ·		::::::::::::::::::::::::::::::::::::::	gaden: La li annun
<u> Thallium</u>	97.3	t	<u>50.0</u>		;		f 1	· · · · · · · · · · · · · · · · · · ·
Vanadium	<u>511.0</u>		2000.0		۱ ــــــــــــــــــــــــــــــــــــ		۱ ۲	<u>t</u>
' <u>Zinc</u>	3100.0	<u> </u>	1000.01		۱ ا ۱ ۱		ł ł	· i
Cvanide	85.0		25.0		[] ;;	I	l	

1) Control Limits: Mercury 30-120; Other Metals 30-110; Cyanide 85-115

FORM II (PART 1) - IN

7/87

018

J.S. EPA - CLP

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: WESTON ANALYTICS

Contract: C88131538 K.H.

Lab Code: WESCA Case No.: 88/3 K.H. SAS No.: SDG No.: 88/3 BCO Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Analyte	Initial Calib True Found	ration %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	
Aluminum	1980.0;		5000.0		1 1 1			
Antimony	1010.0		100.0		1		ويتربيه برده مسه	
Arsenic	47.0		50.0	45.70	91.4	46.10	-92=2	
Barium	1980.0		10000.0		1		Assessment of	19
Beryllium	481.0		200.0		· · · · · · · · · · · · · · · · · · ·		10-10-7	
Cadmium	489.0		200.0		1			
Calcium	49800.0		99999.0		· · · · · · · · · · · · · · · · · · ·	1		
Chromium	506.0		500.0		ł i		-	-
Cobalt	474,0		2000.0		(
Copper	542.0		1000.0		1		<u>باوندار 10 تا ۲</u>	-
Iron	1990.0		5000.0		i i			
Lead	97.91	1	50.0	53,40	<u>106.3</u>	51.00	102:0	:F=
<u>Magnesium</u>	25000.0	\	99999.0		i			
<u>Manganese</u>	<u>513.0</u> ¦	i	500.0					
Mercury	<u> </u>		5.0		i I i .			
Nickel	496.0		2000.0		· · _			
Potassium	50200.0	!	50000.0		i i .		- 02	59 e.
Selenium	104.0		50.0		¦		····	
<u>Silver</u>	509.0		500.0		۱			他一
<u>Sodium</u>	50700.0	¦	50000.0		 .			
' <u>Thallium</u>	97.3	I	50.0		۱ ۱ ۱ .			
<u>Yanadium</u>	511.0	<u> </u>	2000.0		۱ ۱ ۱		l	· **
' <u>linc</u>	3100.01		1000.0		[]		! 	ander ja ja se se se se se se se se se se se se se
<u>Cyanide</u>	85.0	;	25.0		۱ ۱ ـــــــــــــــــــــــــــــــــــ		· · ·	
	1 1	1	1 1		, ,		t 🕴	-1 i

Concentration Units: ug/L

1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

a5-5 page 91

FORM II (PART 1) - IN

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Mame: WESTON ANALYTICS

Contract: (88131538 K.H.

Lab Code: WESCA Case No.: 8813 KH. SAS No.: SDG No.: 881000 KH 1066 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Analyte	Initia True	l Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Found	%R(1)	M
Aluminum	1980.0		I	5000.0		1	i		
Antimony	1010.0	J		100.0					
Arsenic	47.0	47.90	101.9	50.0	49,30	98.6			F
Barium	1980.0	4	i 	10000.0					
Beryllium	481.0	4	i	200.0		• •			
<u>Cadmium</u>	489.0	i 	 	200.0		1			
Calcium	49800.0	i	۱ ۱	99999.0		1	i		<u>H</u>
Chromium	506.0	 	l I	500.0			i		i i:
<u>Cobalt</u>	474.0	i 1	1	<u>2000.0</u>		1	I		¦
<u>Copper</u>	<u>542.0</u>	t 4	·	1000.0	1	· i	i		: : <u> </u>
Iron	<u>1990.0</u>	i	l l	5000.0			I		
<u>Lead</u>	97.9	; ;	·	50.0	51.20	<u>102.4</u>	<u>9.70</u> ¦	99.4	ΗE
<u>Magnesium</u>	<u>25000.0</u>	i I	:	99999.0	<u> </u>	· · · · · ·	i		1 F 1 I
<u>Manganese</u>	<u> </u>	۱ ۱	i	<u>500.0</u>	I	ا ا	. <u> </u>	· ·	
<u>Mercury</u>	5.2	i I	·	5.0					: ! <u> </u>
<u>Nickel</u>	<u>496.0</u>		!	2000.0			ا 1 1		
Potassium	<u>50200.0</u>	1	!	50000.0			i		
<u>Selenium</u>	<u> 104.0</u>	t	¦	50.0		 			<u>`}</u>
Silver	<u>509.0</u>) 1	l L	500.0					!!
Sodium	50700.0	I	·	50000.0		· ·	I		l 1
Thallium	97.3	1	I	50.0			i		¦
Vanadium	511.0	1	4	2000.0		· · · · · · · · · · · · · · · · · · ·			::
Zirc	3100.0	!	·	1000.0			I	· · · · · · · · · · · · · · · · · · ·	::[
Cyanide	85.0	t t	l	25.0			I		: ! <u> </u>
	1		1	· · · ·		;;			!!_

Concentration Units: ug/L

(1) Control Limits: Mercury 30-120; Other Metals 30-110; Cyanide 85-115

a.5-5 Dage 92

FORM II (PART () - IN

OO

J.S. EPA - CLP

2A INITIAL AND CONTINUING CALIBRATICN VERIFICATION

Lab Mame: WESTON ANALYTICS

.

Contract: C88131538 KH. 10688 Case No.: 813KH. SAS No.: SDG No. 881000 Lab Code: WESCA 1060 Initial Calibration Source: EPA-EMSL Continuing Calibration Source: SPEX

Concentration Units: ug/L

Analyte	Initia True	i Calibra Found	ation %R(1)	True	Continuir Found	ng Cali %R(1)	bration Fou nd	X R(1)	M
<u>Aluminum</u>	1980.0			5000.0		1			
Antimony	<u>1010.0</u>			100.0		۱ ۱ ۱	<u></u>	Server Harris	
<u>Arsenic</u>	<u>47.0</u>	49.70	<u>105.7</u>	<u>50.0</u> ;	47,10	<u>94.2</u>	48.40	96.8	Ê.
<u>Barium</u>	<u>1980.0</u>			<u>10000.0</u> ;		F F		STAR STAR	
<u>Beryllium</u>	481.0			200.0		۱ ۱		Harris T	<u>7</u> .
<u>Cadmium</u>	489.0			200.0		ii		1380 mil/	
<u>Calcium</u>	<u>49800.0</u>			99999.0					
<u>Chrcmium</u>	506.0			500.0				Contraction of the	a.,
<u>Cobalt</u>	474.0			2000.0				Land Cargon Said St	E.
<u>Copcer</u>	542.0			1000.0		· · · · · · · · · · · · · · · · · · ·		14577777 (Saude	
I <u>ron</u>	1990.0			5000.0					
Leaa	97.3			50.0	<u>50.70</u>	101.4			F
<u>Magnesium</u>	25000.01			99999.0		;;		The second second second second second second second second second second second second second second second se	
<u>Manganese</u>	513.0			500.0		· ;		1740 770 ··· 151	
<u>Mercury</u>	5.2			5.0		, i		-	Ξü.
<u>Nickel</u>	496.0			2000.0				-	<u>75.</u>
Potassium	50200.01			50000.0		· · · · · · · · · · · · · · · · · · ·		- e 100 PS1	
<u>Selenium</u>	104.0			50.0			········	والمتح والمرافق الم	-3
Silver	509.0			500.0					5
Socium	50700.0			50000.0					
Thallium	97.3			50.0		· · · · · · ·			•
Vanadium	511.0			2000.0!	i				
: <u>linc</u>	3100.0			1000.0		; ;		k . T	
Cyanide	85.0			25.01				· · · ·	
:	ıi			1		·			_

Control Limits: Mercury 80-120; Other Metals 30-110; Dyanide 85-115

7/87

FORM II (PAPT 1) - IN

2A -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Code: WESCA Case No.: 8813KH. SAS No.: 1 SDG No.: 887000 Initial Calibration Source: EPA-EMSL

Continuing Calibration Source: SPEX

Concentr	etion.	Uniter	a /!
0011001101			- 19/ -

· ·	Initia	l Calibri	ation		Continuir	ng Cali	bration	~~~ (_ =
Analyte	Irue	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	i M
Aluminum	1980.0		I	5000.0;	l 1	(المربية مستعد المعد المعالية	
Antimony	1010.0			100.0	i				i i 1-1-1
Arsenic	47.0			50.0					
<u>Barium</u>	<u>1980.0</u>		l	10000.0					
<u>Beryllium</u>	481.0		۱ ۱	200.0	I	. <u> </u>		ا موردین <u>محرود</u> ا	
<u>Cadmium</u>	489.0		I	200.0		4		······	4
<u>Calcium</u>	<u>49800.0</u> ;		I	1 <u>99999.0</u>	i				
<u>Chromium</u>	<u>506.0</u>		!	<u>500.0</u>			i		r_1== r:1
<u>Cobalt</u>	474.0		! 	2000.0		I			⊬:r- ∟1
Coccer	<u>542.0</u>		· /	<u>1000.0</u>		۱	I		haili
<u>Tron</u>	<u>1990.0</u> ;		۱ ۱	<u>5000.0</u> ;	ہ ا	·		ا ا	1
' <u>lead</u>	97,3	97.00	39,1	50.0	51.30!	<u>102.5</u> ;	<u>= 50.00</u>	<u>100.0</u>	IE.
Magnesium	<u>25000.0</u>		;	<u>99999.0</u> ;	، ا			·	ب و او او او او او او او او او او او او ا
' <u>Manganese</u>	<u>513.0</u>		۱ ۱ <u> </u>	<u>500.0</u> ;	I	;		ا . • . · 	1 :17 I. U
<u>Mercury</u>	5.2		! !	5.0				-34	<u> </u>
Nickel	496.0		!	2000.0	1	i			1. he.:
Potassium	<u>50200.0</u>		¦	<u>50000.0</u>				l l	1~ f~"
Selenium	<u>104.0</u>		1	50.0	i	i			<u> 51</u>
<u> Silver</u>	<u>509.0</u>		1 I	500.0		!			i
Sodium	<u>50700.0</u>		! :	<u>50000.0</u>	t			+ L	Ľ I
<u> Thallium</u>	97.3		۱ ۱	50.0		·		·	r
! <u>Vanadium</u>	<u>511.0</u>		l 1	2000.0;		· · · · · · · · · · · · · · · · · · ·			
' <u>linc</u>	3100.0		1	<u>1000.0</u>	······································	;		, I	
(<u>Cyanide</u>	85.0		 	25.3		!		l	¦
1	r		1	ii	······				f f'

.1 Control Limits: Mercury 30-120; Other Metals 30-110: Oyanide 85-115

25-5 Dage 94

FORM II (PART 1) - IN

7/87

OZ1

	INORGANIC	ANALYSIS DATA	SHEET	EPA SAMPLE
Lab Name: [1] ELTON	Analytics	Contract: (288131538	8801D49E
Lab Code: WESA	Case No .: 75	5099 SAS NO.	.:	SDG No.:8 <u>201</u> t
Matrix (soil/water):	Soil		Lab Sample	E ID: 58075994
Level (low/med):	Low		Date Rece	ived: 1/21/8.
<pre>% Solids:</pre>	80.5			* *

 \leq

Concentration Units (ug/L or mg/kg dry weight): M6/Kg

			1	1	1 (
		CAS No.	Analyta	 Concentration 	C	м	Q	
		7429-90-5	Aluminum	· · · · · · · · · · · · · · · · · · ·	-			
		7440-36-0	Antinony	14.4	ivi	F	iデi	
		7440-38-2	Arsenic	14.3	iŤi	P	NS I	
		7440-39-3	Barium -	348	i-i	2		
		7440-41-7	Beryllium	1.4	i Ei	P		
		7440-43-9	Cadmium	7.8	ίΞi	7	×	
		7440-70-2	Calcium		ŧΞi	·	i i	
		7440-47-3	Chromium_	.33.4	iΞi	7	i <u> </u>	
		7440-48-4	Cobalt	13.4	iΞi	P		
		7440-50-8	Copper	30.3 Nulz	īΞi	P	i 🔤 i	
		7439-89-6	Iron	GR TT	i Ti		i <u> </u>	
		7439-92-1	Lead	14.6 14.6	iΞi	۴	5	
		7439-95-4	Magnesium		ΙĪ		i <u> </u>	
		7439-96-5	Manganese		iΞi		i <u> </u>	
		7439-97-6	Mercury	0,12	IKI	CV		
		7440-02-0	Nickel	27.9	1_1			
		7440-09-7	Potassium	1	121			
		7782-49-2	Selenium_	1.0	141	<u> </u>	! <u></u> !	
		7440-22-4	Silver	1 2.4	141	<u>-</u>	!!	
		7440-23-5	Sodium		1		11	
		7440-28-0	Thallium_	1 2.4	IU I	4	! <u> </u>	
		7440-62-2	Vanadium_	49.5	1_1	-1		
		7440-66-6	Zinc	67.4	1_1	<u> </u>	<u> E</u>	
		l	Cyanide	1.25	191	Color	14	
		I	$ T_{N}$	237	141	<u></u>	Y1	
			Sulfide	1.0	и	TITLETE		
Color	Before:		Clari	ty Before:		-	Texture:	
Color	After:		Clari	ty After:		-	Artifact	.s:
Commer	nts:							
								<u>.</u>
							···· •_	
			·····					
	· · · · · · · · · · · · · · · · · · ·					~ ~ ~	6	
			F	ORM I - IN		0.5	1095	7/87
							-	

Appendix 5-6

.

APPENDIX 5-6

DATA QUALIFICATION REPORT--8801D APPENDIX IX DATA

Quality Assessment for the Subsurface Investigation Program Conducted for the Idaho National Engineering Laboratory Idaho Falls, Idaho

Prepared for EG&G, Inc.

٠

Prepared by

Science Applications International Corporation 8400 Westpark Drive McLean, Virginia 22102

October 8, 1990

a5-6 Dagel

TABLE OF CONTENTS

<u>Section</u>

Page

1.	DATA QUA	LITY ASS	ESSMEN:	Γ.		•••	•	•	• •			•	•		•	•	•	•	•	•		•	1-	1
1	.1 INTRO	DUCTION						•	•		•		•	•		•	•		•	•	•	•	1 -	1
	1.1.1	Data Qu	ality S	Summa	ary	•••		•	•		•	•	•	•	•	٠	•	•	•	•	•	•	1 -	1
		$1.1.1.1 \\ 1.1.1.2 \\ 1.1.1.3 \\ 1.1.1.4 \\ 1.1.1.5$	Precis Accura Repres Compas Comple	sion acy senta rabil etene	 ativn lity ess	 nes: 	s	• • • •	• • • •	· ·	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• • • •	• • •		• • •	1- 1- 1- 1-	1 2 3 3
2.	FIELD QU	JALITY CO	NTROL A	ASSES	SSME	NT	•	•			•			•		•	•			•		•	2 -	1
2 2	.1 TRIP .2 EQUIP	BLANKS MENT BLA	 NKS.	•••	 	•••		•	•	 	•		•		•	•	•	•	•	•	•	•	2 - 2 -	1 1
3.	LABORATO	RY QUALI	TY CON	TROL	ASS	ESSI	MEN	T					•	•		•			•				3 -	1
3	.1 ORGAN	NIC ANALY	SES .				•		•				-	•		•	•			•		•	3 -	1
	$3.1.1 \\ 3.1.2$	Volatil Semivol	e Organ atile (nic (Organ	Comp nic	oun Com	d A pou	ina Ind	1ys A1	sis nal	() ys:	Fel is	oru	ıar	у	19	88	S	OW	I)		•	3 -	1
	3.1.3	(Febr Tetrach	uary l' lorina	988 9 ted (SOW) dibe:	nzo	-р-	di	ox:	 ins	a	nd	•	•	•	•	•	•	•	•	•	•	3-	15
	3.1.4	Tetra Pestici	chlori des/PC	nateo Bs (1	d di Febr	ben uarj	zot y 1	ur 198	ans 8 S	s. Sow). ()		•			•	•		•	•		•	3 - 3 -	28 36
3	.2 INORG	GANIC ANA	LYSES	•••				•					•			•				•	•	•	3-	41
	3.2.1	Trace M	letals .	and (Cyan	ide	(3	Jul	y :	198	8	SOV	J)							•			3 -	41

a5-6 page2

LIST OF TABLES

OCT 18

<u>Page</u>

-

DRAFT

2-1	Field QC to Environmental Sample Cross-Reference	2-2
2-2	Trip Blank Summary	2-3
2-3	Equipment Blank Summary	2-4
3-1	Data Validation Tables: Volatile Organic Compounds	3-2
3-2	Data Validation Tables: Volatile Organic Compounds	3-5
3-3	Data Validation Tables: Volatile Organic Compounds	3-8
3-4	Surrogate Recovery Summary: Volatile Organic Compounds (Water) .	3-13
3-5	Surrogate Recovery Summary: Volatile Organic Compounds (Soil) .	3-14
3-6	MS/MSD Summary: Volatile Organic Compounds (Water)	3-16
3-7	MS/MSD Summary: Volatile Organic Compounds (Soil)	3-17
3-8	Data Validation Tables: Semivolatile Organic Compounds	3-18
3-9	Data Validation Tables: Semivolatile Organic Compounds	3-21
3-10	Surrogate Summary Recovery: Semivolatile Organic Compounds (Water)	3-26
3-11	Surrogate Summary Recovery: Semivolatile Organic Compounds (Soil)	3-27
3-12	MS/MSD Summary: Semivolatile Organic Compounds (Water)	3-29
3-13	MS/MSD Summary: Semivolatile Organic Compounds (Soil)	3-30
3-14	Data Validation Tables: Dioxins/Furans	3-31
3-15	Data Validation Tables: Pesticides/PCBs	3- 37
3-16	Data Validation Tables: Inorganic Compounds	3-42
3-17	Spiked Sample/Duplicate Sample Summary: Metals (Water)	3-48
3-18	Spiked Sample/Duplicate Sample Summary: Metals (Soil)	3-49

1. DATA QUALITY ASSESSMENT

1.1 INTRODUCTION

A standardized quality assurance/quality control (QA/QC) program was followed during the Subsurface Investigation Program conducted for EG&G, Inc. at the Idaho National Engineering Laboratories (INEL) located near Idaho Falls, Idaho to ensure that analytical results and the decisions based on these results were representative of the environmental condition at the sites. The data validation worksheets are located within the appropriate section. The QC checks and results are summarized below.

1.1.1 Data Quality Summary

The following sections summarize the data quality objectives (DQOs) for precision, accuracy, representativeness, comparability, and completeness (PARCC) obtained during the Subsurface Investigation Program conducted for EG&G, Inc. at the INEL.

1.1.1.1 Precision

Precision was defined as the reproducibility, or degree of agreement, among replicate measurements of the same quantity. The closer the numerical values of the measurements are to each other, the more precise the measurement. Analytical precision was expressed as the percentage of the difference between results of duplicate samples for a given compound or element. Relative percent difference (RPD) was calculated as:

$$Precision=RPD=\frac{\frac{C_1-C_2 \times 100 percent}{C_1+C_2}}{2}$$

where:

 C_1 = Concentration of the compound or element in the sample

 C_2 = Concentration of the compound or element in the duplicate/replicate.

Precision was determined using matrix spike/matrix spike duplicate (MS/MSD) analyses conducted on samples collected at the INEL. The laboratory selected 1 sample in 20 and split the sample into 3 aliquots. The first aliquot was analyzed routinely for the parameters of interest, while the other two aliquots were spiked with known quantities of the parameters of interest before analysis. The RPD between the two spike results was calculated and used as an indication of the precision of the analyses performed.

u 5-6 page 4

Sample collection reproducibility and media variability were measured in the laboratory by the analysis of field replicates. One sample in 10 similar matrices was collected, and sample collection reproducibility and media variability were evaluated based on the RPD values of the two duplicates. No corrective action was taken based on RPD values. Based on the evaluation of the MS/MSD results presented on Tables 3-6, 3-7, 3-12, and 3-13, the overall laboratory precision is acceptable.

1.1.1.2 Accuracy

Accuracy was defined as the degree of difference between measured or calculated values and the true value. The closer the numerical value of the measurement approaches the true value, or actual concentration, the more accurate the measurement. Analytical accuracy is expressed as the percent recovery of a compound or element that has been added to the environmental sample at a known concentration before analysis. The following equation was used to calculate percent recovery:

Accuracy=Percentrecovery=
$$\frac{A_r - A_o x100 percent}{A_f}$$

where:

- A_r = Total compound or element concentration detected in the spiked sample
- A_o = Concentration of the compound or element detected in the unspiked sample
- A_{ϵ} = Concentration of the compound or element added to the sample.

Laboratory accuracy also was assessed by evaluating method blank surrogate recovery, initial and continuing calibration, and MS/MSD results calculated from all analyses. Based on the evaluation of the laboratory QC blank, surrogate recovery, MS/MSD, and initial and continuing calibration results summarized in Section 3, the overall laboratory accuracy is acceptable.

Trip blanks and field blanks were prepared to ensure that all samples represented the particular site from which they were collected and to assess any cross-contamination that may have occurred. Based on an evaluation of the compounds detected in the field QC blanks, the overall field accuracy is acceptable.

1.1.1.3 Representativeness

Representativeness was defined as the degree to which the data accurately and precisely represent a characteristic of a population, parameter variations at a

U5-6 page5

sampling location, a process condition, or an environmental condition. Sample representativeness was ensured during the Subsurface Investigation Program by collecting sufficient samples of a population medium, properly distributed with respect to location and time. Representativeness was assessed by evaluating the concentrations of interferents detected in the field and laboratory QC blanks, since replicate samples were not collected. The reproducibility of a representative set of samples reflects the degree of heterogeneity of the sampled medium, as well as the effectiveness of the sampling techniques. Based on the evaluation of the factors described above and summarized in Section 3, the samples collected during the Subsurface Investigation Program are considered to be representative of the environmental condition at the INEL.

1.1.1.4 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared to another and is limited to the other PARCC parameters, because only when precision and accuracy are known can one data set be compared to another. To optimize comparability, only the specific methods and protocols that were specified in the Subsurface Investigation Program QAPjP were used to collect and analyze samples during the Subsurface Investigation Program at the INEL. By using consistent sampling and analysis procedures, all data sets were comparable within the sites at the INEL, between sites at the installation, or among U.S. Department of Energy (DOE) facilities nationwide, to ensure that remedial action decisions and priorities were based on a consistent data base. Comparability also was ensured by the analysis of U.S. Environmental Protection Agency (EPA) reference materials, establishing that the analytical procedures used were generating valid data. Based on the precision and accuracy assessment presented above, the data collected during the Subsurface Investigation Program are generally considered to be comparable with the data collected during previous investigations.

1.1.1.5 Completeness

Completeness was defined as the percentage of valid data obtained from a measurement system. For data to be considered valid, they must have met all acceptance criteria, including accuracy and precision, as well as any other criteria specified by the analytical methods used. Based on the evaluation of the field and laboratory QC results presented in Sections 2 and 3, these data were considered equal to 79 percent and as such, were used as the basis of all recommendations presented in this report.

Project completeness was defined as the percentage of data used to prepare a baseline risk assessment and upon which recommendations for site remediation are based. For analytical data to be considered usable for risk assessment and remediation recommendations, they must be satisfactorily validated. Values and concentrations reported for all analyses conducted that are labeled with the laboratory or validation qualifier "R" (i.e., unusable) were not used in the risk estimates or for remediation recommendations. Based on an evaluation of the field and laboratory results, no data were determined to be unusable.

nnnelo

2. FIELD QUALITY CONTROL ASSESSMENT

Five trip blanks and two equipment blanks were collected and analyzed for the same compounds and using the same laboratory techniques as those used for the nine environmental samples. The analytical results obtained from the field QC blanks are used to assess the efficiency and effectiveness of the sample collection, handling, and equipment decontamination procedures used in the field. Table 2-1 contains a cross-reference of environmental samples to the associated field QC blank sample.

2.1 TRIP BLANKS

Trip blanks were prepared by the Roy F. Weston (Weston) Laboratory located in Stockton, California. These blanks were prepared with laboratory-grade water, sent to the INEL, stored with the unused sample bottles, and returned to the Laboratory with each cooler containing the environmental samples to be analyzed for volatile organic compounds (VOCs) using the EPA Contract Laboratory Program (CLP) February 1988 Statement Of Work (SOW). Five trip blanks were collected during the sample collection event (i.e., 881D00TBA, 8801D22TBA, 8801D22TBB, TRIP BLANK, and 8802D0TB) and were analyzed for VOCs using the February 1988 SOW. Table 2-2 presents the results of the trip blank samples collected during the Subsurface Investigation Program.

Volatile Organic Compound Analysis (SOW 2/88)--Methylene chloride was detected in samples 8801D22TBA and 8801D22TBB associated with the soil samples collected during the sample collection event at concentrations of 6 μ g/L and 12 μ g/L, respectively. No other VOCs were detected in these trip blanks. Since methylene chloride was detected in the associated method blank in both cases, the presence of this VOC is not considered to be significant or representative of the environmental condition at the INEL.

2.2 EQUIPMENT BLANKS

Equipment blanks were collected to provide baseline analytical data for the water used for equipment decontamination and in the steamcleaner equipment. Equipment blanks were collected by randomly selecting sample containers from the supply, filling them with the appropriate water source, and then preserving and analyzing these blanks for the same compounds and using the same laboratory methods as those used for the associated environmental samples. Although there were only two equipment blank samples, sample 881D00EB is actually a composite of samples 881D00EBA, 881D00EBB, and 881D00EBC which were tested for VOCs; Pesticides/polychlorinated biphenyls (PCBs), hydrocarbons, and semivolatile organic compounds (SVOCs); and metals, respectively. Table 2-3 presents the analytical results of the equipment blanks collected at the INEL.

Volatile Organic Compound Analysis--Two equipment blanks (i.e., 881D00EB(A) and 8802D0EB) were collected during the sample collection event and analyzed for VOCs using the February 1988 SOW. No VOCs were detected in 8802D0EB. Acetone was detected in 881D00EB(A) at 13 μ g/L. This result had no adverse effects on the environmental samples, since no relationship between this sample and any environmental sample could be established from the chain-of-custody forms.

UD-6 page 7

DRAF 06T 13

TABLE 2-1. FIELD	QC TO ENVIRONMENTAL	SAMPLE CROSS	-REFERENCE
SAIC	Laboratory	Associated	Associated
Sample	Sample	Trip	Equipment
ID	ID	Blank	Blank
WATER SAMPLES			
881D00EBA	8806509-01	881D00TBA	NA
881D00EBB	8806509-02	881D00TBA	NA
881D00EBC	8806-009-003	881D00TBA	NA
SBLK	LAB BLANK 6/17	NA	NA
881D00TBA	8806\$09-07	NA	881D00EB
VBLK	WATER BLANK 6/U/	NA	NA
8801D22TBA	8806579-02	NA	*Not Avail.
8801022188	8806579-03	NA	"NOT AVAIL.
	WATER BLANK 7/00	NA NA	NA NA
	WATER BLANK 7/07	NA NA	NA NA
VBLK	WATER BLANK 8/09	NA	NA
TRIP RIANK	88075099-003V	NA	*Not Avail.
++8802D0EB	8808s016-001V	8802DOTB	NA
++	8809-738-003	8802DOTB	NA
SBLK01	WATER-BLANK 8/29	NA	NA
8802DOTB	8808S016-002V	NA	8802D0EB
VBLK	WATER BLANK 8/11	NA	NA
LAB BLANK	BLANK (177)	NA	NA
PBLK	PBLK 880606	NA	NA
PBLK	PBLK 880702	NA	NA
PBLK	PBLK 880729	NA	NA
PBLK	PBLK 880808	NA	NA
SOIL SAMPLES			
8801D22A	8806\$79-01	8801D22TB	*Not Avail.
8801D228	8806S79-01	8801D22TB	*Not Avail.
8801D48A	8807S099-001V	Trip Blank	8802DOEB
88010488	88075099-001M	Trip Blank	8802DOEB
++88010480	8809-738-001	ILID BLOOK	000200EB
8901D/OA	00075099 001X	Trip Blank	990200EB
89010/08	88075099-002V	Trip Blank	8802D0EB
++88010496	88075099-01	Trip Blank	8802DOEB
1186010490	8809-738-002	Trip Blank	8802DOEB
	8807S099 002X	Trip Blank	8802D0EB
8801D49CRE	8807S099-028E	Trip Blank	8802D0EB
88065015-003	8807-006-001	*Not Avail.	*Not Avail.
88065015-006	8807-006-002	*Not Avail.	*Not Avail.
88065015-011	8807-006-003	*Not Avail.	*Not Avail.
88065015-013	8807-006-004	*Not Avail.	*Not Avail.
88065015-015	8807-006-005	*Not Avail.	*Not Avail.
88065079-001x	8807-006-006	*Not Avail.	*Not Avail.
SBLK01	SOIL-BLANK 8/24	NA	NA
SBLKUZ	BLANK-SUIL 9/01	NA	NA
LAB BLANK LAB BLANK	BLANK (777) BLANK (176)	NA NA	NA
NA - Not Applicable *Not Avail Infor ++ - These samples numbers for di	mation was not avail were given different fferent analysis typ	lable t Laboratory S pes (VOCs, SVC	Sample ID DCs, etc.)
Note: Sample 881D0 881D00EBA, 8 Sample 8801D 8801D22TBA a	OEB is actually a co 181DOOEBB, and 881DOO 122TB is actually a co 1nd 8801D22TBB.	omposite of sa DEBC. composite of s	amples samples
Note: There were r	o Field Blank sample	es taken for 1	this project.

a 5-6 pages

IABLE	2-2. TRIP BLAN	IK SUMMARY F	OR IDAHO N	ATIONAL ENG	INEERING LAB	ORATORY	
Parameter	Units	Lower Limit of Detection	881D00TBA	8801D22TBA	8801D22TBB	TRIP BLANK	8802DOTB
Collectio	on Date		6/03/88	6/27/88	6/27/88	7/25/88	8/05/88
VOLATILE COMPOUNDS Methylene Chloride	µg∕L	5	ND	6 В	12 в	ND	ND

DRAFT

a 5-6 page 9

DRAFT

OCT 18

,

Parameter	Units	Lower Limit of Detection	881D00EB	8802D0EB
Collection Date)		6/03/88	8/05/88
METALS				
Lead	µg/L	1.0	10.6 F	29.8
Mercury	µg/L	0.2	0.40	N
Zinc	µg/L	15.3	156 P	NC
VOLATILE COMPOUNDS				
Acetone	µg/L	10	13	N

Semivolatile Organic Compound Analysis--Two equipment blanks (i.e., 881D00EB(B) and 8802D0EB) were collected during the sample collection event and were analyzed for SVOCs using EPA Method 3510/8270. No SVOCs were detected in either sample and, therefore, had no effect on any of the environmental samples.

Dioxin/Furan Analysis--Of the two equipment blanks collected for the sampling event at the INEL, only one (8802DOEB) was analyzed for Dioxins/Furans. This was performed using EPA Method 8280. No compounds were detected for either TCDD or TCDF analysis.

Pesticides/PCB Analysis--Two equipment blank samples (i.e., 881D00EB(B) and 8802D0EB) were collected during the collection event at the INEL and were analyzed for Pesticides/PCBs using EPA Method 3550/8080. No Pesticides/PCBs were detected in either 881D00EB(B) or 8802D0EB and, therefore, had no effect on the environmental samples.

Inorganic Compound Analysis--Two equipment blanks (i.e., 881D00EB(C) and 8802D0EB) were collected during the sample collection event and were analyzed for Inorganics using the July 1988 SOW. In sample 881D00EB(C), lead, mercury, and zinc were detected in concentrations of 10.6, 0.40, and 156 µg/L, respectively. Lead was also detected in sample 8802D0EB at a concentration of 29.8 µg/L. However, since trace heavy metals are relatively nonvolatile, the concentrations detected were contributed solely by the water. Also, at least several orders of magnitude exist between the lowest metal concentration detected in the soil samples and the highest concentration of the same metal detected in the associated equipment blank. Finally, the concentration of metals detected in water samples is measured in mass per volume ratios (µg/L) and that in soils is measured in mass per mass (mg/kg). Therefore, the compounds detected in the equipment blanks should have no effect on the environmental samples.

Dage I

3. LABORATORY QUALITY CONTROL ASSESSMENT

All soil samples and field QC blanks collected at the INEL were analyzed using the February 1988 SOW for organic analyses using gas chromatography/mass spectrometry (GC/MS) and GC, the July 1988 CLP SOW for inorganic analyses, EPA solid waste test methods, and EPA general chemical methodology from the following references:

- Statement Of Work For Organic Analysis, Multi-Media, Multi-Concentrations, EPA Contract Laboratory Program, February 1988
- Statement Of Work For Inorganic Analysis, Multi-Media, Multi-Concentrations, EPA Contract Laboratory Program, July 1988
- Test Methods For Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition, September 1986, with 1989 revisions
- Methods For Chemical Analyses Of Water And Wastes, EPA 600/4-79-020, EPA 1983, with revisions.

3.1 ORGANIC ANALYSES

Nine soil samples were submitted to the Weston Laboratory for VOC, SVOC, and pesticide/PCB analyses using the February 1988 CLP SOW and TCDD/TCDF analyses using EPA Method 8280. A data quality assessment is presented in the following subsections.

3.1.1 Volatile Organic Compound Analysis (February 1988 SOW)

Three soil samples and seven QC blanks (i.e., five trip blanks and two equipment blanks) were collected and analyzed using the February 1988 SOW. Data quality will be evaluated using the guidelines and control limits specified for holding times, tuning and mass calibration results, initial and continuing calibration verification, method blank spikes, method blanks, surrogate recoveries, internal standard areas, and MS/MSDs. Tables 3-1, 3-2, and 3-3 present the VOC validation worksheets.

Holding Times--Holding times were defined as the maximum amount of time allowed to elapse between the date and time of sample collection and the date and time of sample analysis. The Weston Laboratory was required by the SOW prepared for the Subsurface Investigation Program to meet holding times of 7 days for unpreserved water samples; 14 days for preserved (i.e., sufficient hydrochloric acid to lower the pH to 2) water samples; and 14 days for soil samples collected for VOC analysis. Analysis of samples that have exceeded the method-recommended holdtimes may result in the following: 1) undetected concentrations of compounds that would have been detected ordinarily due to chemical transformation, compound volatilization, or biodegradation; 2) reported concentrations lower than that originally present due to the factor previously stated; or 3) reported concentrations greater than those originally present in the sample due to external contamination of water samples or changes in soil moisture content. Based on an evaluation of all environmental samples and field QC blanks analyzed for VOCs using the February 1988 SOW, all holding time criteria were met.

UD-6 page 12

SAIC Sample Number	Laboratory Identification Number	Collection Date	Analysis Date	Volatile Surrogate Recovery	Volatile MS/MSD Analyses	Volatile Blank Analyses	Volatile Tuning/Mass Calibration	Initial Calibration Check
WATERS 881D00EBA	8806\$09-01	6/03/88	6/07/88	ALLOK	ALL	NONE DETECTED	ALL BFB	5/27/88 (CASE # EG G09)
881D00EBA MS	8806S09-01MS	6/03/88	6/07/88		LIMITS	TIL TOTAL=0		ALL SPCC RRF > 0.300
881D00EBA MSD	8806509-01MSD	6/03/88	6/07/88				LIMITS	$CCC \ \%RSD < 30\%$
881D00TBA	8806\$09-07	6/03/88	6/07/88		KFU-14%			DCPEc12 < 0.3; HX02 < 0.3 MEK > 30% HX02 > 30%
VBLK	WATER BLANK 6/07	NA	6/07/88					ALL REMAINING TOLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS
WATERS 8801D22TBA	8806\$79-02	6/27/88	7/06/88	All OK	ALL	MTLNCL=4Jµg/L	ALL BFB	7/06/88 (CASE # EG G79)
VBLK	WATER BLANK 7/06	NA	7/06/88		LIMITS	ALL UTHERSENU	WITHIN	ALL SPCC RRF > 0.300
8801D22TBB	8806\$79-03	6/27/88	7/06/88				LIMITS	18ME > 0.250 CCC %RSD < 30%
8801D22TBB MS	8806S79-03MS	6/27/88	7/06/88					ALL REMAINING TELS AND
B801D22TBB MSD	8806579-03MSD	6/27/88	7/06/88					SURROGATE COMPOUNDS WITHIN CONTROL LIMITS
SOILS VBLK	WATER BLANK 7/07	NA	7/07/88	ALLOK		NONE DETECTED	ALL BFB Criteria	
METHANOL BLANK	*Not Avail.	*Not Avail.	*Not Avail	-			WITHIN	
801D22A	8806S79-01	6/27/88	7/07/88				LIMITS	

25-6 page 13

CT 18

	TABLE 5-1.	DATA VALIDATION TABLES: VOLATILE OR	JANIC COMPOUNDS (CONTINU	ea)	
SAIC Sample Number	Laboratory Identification Number	Continuing Calibration Check	Volatile Internal Standard	īrip Blank Analysis	Equipment Blank Analysis
WATERS 881D00EBA	8806509~01	6/07/88 (CASE # EG G09)	ALL AREAS WERE WITHIN	881D00TBA	NA
881D00EBA MS	8806S09-01MS	ALL SPCC RRF50 > 0.300	CONTROL LIMITS (RETENTION TIMES	881D00TBA	NA
881D00EBA MSD	8806509-01MSD	$CCC \times D < 25\%$	WERE NUT (ESTED)	881D00TBA	NA
881D00TBA	8806509-07	CCPEc12 < 0.3; TCA112 < 0.3;		NA	881D00EBA
VBLK	WATER BLANK 6/07	AMELPENT (0.3, MADE (0.3) %D: CDS > 25%; DCA12 > 25%; MEK > 25%; TCA > 25%; DBCME > 25%; TCA > 25%; DBCME > 25%; TCA112 > 25%; BZ > 25%; 4ME2PENT > 25%; HX02 > 25%; PCE > 25%; DCE > 25% ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS		NA	NA
WATERS 8801D22TBA	8806579-02	7/06/88 (CASE # EG G79)	ALL AREAS UERE WITHIN	NA	*Not Avail
	WATER BLANK 7/06	DAILY TUNE IN CONTROL:	CONTROL LIMITS	NA	NA
8801022TBB	8806570-03	TBME > 0.250	WERE NOT TESTED)	NA	NA NAT
8801D22TBB MS	8806579-03MS	RRF50: MEK < 0.3; DCPEc12 < 0.3; TCA112 < 0.3; HXO2 < 0.3; %D: VA > 25%		NA	*Not Avail.
8801022TBB MSD	8806579-03MSD	ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS		NA	*Not Avail.
		7/07/88 (CASE # EG G79) DAILY TUNE IN CONTROL: ALL SPCC RRF50 > 0.300 TBME > 0.250 CCC %D < 25% RRF50: MEK < 0.3; VA < 0.3; DCPEc12 < 0.3; TCA112 < 0.3; HX02 < 0.3 %D: VA > 25%; 4ME2PENT > 25%; HX02 > 25% ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS			
SOILS	WATER BLANK 7/07			NA	NA
METHANOL RIAME	*Not Avail		CONTROL LIMITS	*Not Avail	*Not Avail
PROIDOON	990(070_01		WERE NOT TESTED)		"NUL AVAIL.
00U ID 22A	0000579-01			8801D22TB	^Not Avail.

a 5-6 M

SAIC Sample Number	Laboratory Identification Number	Significant Sample Results	Tentatively Identified Compounds
WATERS 881D00EBA	8806509-01	ACE=13 μg/L	1995 (3)
881D00EBA MS	8806S09-01MS	Not Applicable	Not Analyzed
881DOOEBA MSD	8806S09-01MSD	Not Applicable	Not Analyzed
881D00TBA	8806509-07	None Detected	0 (0)
VBLK	WATER BLANK 6/07	None Detected	0 (0)
WATERS	000/070 00		
8801D22TBA	8806579-02	MTLNCL=6B µg/L	0 (0)
VBLK	WATER BLANK 7/06	MTLNCL=4J µg/L	0 (0)
8801D22TBB	8806579-03	MTLNCL=12B µg/L	0 (0)
8801D22TBB MS	8806S79-03MS	Not Applicable	Not Analyzed
8801D22TBB MSD	8806579-03MSD	Not Applicable	Not Analyzed
SOILS VBLK METHANOL BLANK	WATER BLANK 7/07 *Not Avail.	None Detected Not Analyzed	0 (0 Not Analyzed
		······································	· · · · · · · · · · · · · · ·

SAIC Sample Number	Laboratory Identification Number	Collection Date	Analysis Date	Volatile Surrogate Recovery	Volatile MS/MSD Analyses	Volatile Blank Analyses	Volatile Tuning/Mass Calibration	Initial Calibration Check
WATERS 8802DOEB	8808s016-001v	8/05/88	8/11/88	ALLOK	ALL WITHIN	ACE=5Jµg/L ALL OTHERS=0	ALL BFB CRITERIA	8/05/88 (CASE # 8S016) DAILY TUNE IN CONTROL:
8802DOEB MS	8808S016-1MS	8/05/88	8/11/88		LIMITS			ALL SPCC RRF > 0.300
8802DOEB MSD	8808S016-1MSD	8/05/88	8/11/88				LIMITS	CCC XRSD < 30%
8802DOTB	8808S016-002V	8/05/88	8/11/88					DCPEc12 < 0.3; MEK < 0.3; DCPEc12 < 0.3; DCP13t < 0.3
8802DOSB	8808S016-003V	8/05/88	8/11/88					ALL REMAINING TOLS AND SURROGATE COMPOUNDS WITHIN
VBLK	WATER BLANK 8/11	NA	8/11/88					
SOILS VBLK	WATER BLANK 8/06	NA	8/06/88	ALLOK		ACE=5Jµg/L	ALL BFB	8/05/88 (CASE # 75099)
8801D48A	8807\$099-001V	7/25/88	8/06/88			ALL UTHERS=0	WITHIN	ALL SPCC RRF > 0.300
8801D49A	8807s099-002v	7/25/88	8/06/88				LIMITS	CCC XRSD < 30% RRF: DCE12 < 0.3; MEK < 0.3; DCPEc12 < 0.3; DCP13t < 0.3 ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL (IMITS

a 5-6 16

	Laboratory	Continuing	Volatile	Trin	Equipment
SAIC Sample	Identification	Calibration	Internal	Blank	Blank
Number	Number	Check	Standard	Analysis	Analysis
WATERS					
8802D0EB	8808S016-001V	8/11/88 (CASE # 8S016) DAILY TUNE IN CONTROL:	ALL AREAS WERE WITHIN CONTROL LIMITS	8802DOTB	NA
8802DOEB MS	8808S016-1MS	ALL SPCC RRF50 > 0.300	(RETENTION TIMES	8802DOTB	NA
8802DOEB MSD	8808s016-1MSD	CCC D < 25%	WERE NOT TESTEDY	8802DOTB	NA
8802DOTB	8808s016-002V	*D: ACE > 25%; DCE12 > 25%;		NA	8802DOEB
8802DOS8	8808S016-003V	MEK > 25%; VA > 25%; DBCME > 25%; 4ME2PENT > 25%; HV02 > 25%		8802DOTB	8802DOEB
VBLK	WATER BLANK 8/11	ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS		NA	NA
SOILS					
VBLK	WATER BLANK 8/06	8/06/88 (CASE # 7S099) DAILY TUNE IN CONTROL:	ALL AREAS WERE WITHIN CONTROL LIMITS	NA	NA
8801D48A	8807S099-001V	ALL SPCC RRF50 > 0.300 TBME > 0.250	(RETENTION TIMES WERE NOT TESTED)	Trip Blank	8802DOEB
8801D49A	8807\$099-002V	CCC %D < 25%	·	Trip Blank	8802DOEB
		%D: DCE12 > 25%; VA > 25%; HX02 > 25%			
		ALL REMAINING TOLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS			
		8/09/88 (CASE # 75099)			
		ALL SPCC RF50 > 0.300 TBME > 0.250			
		RRF50: MEK < 0.3; VA < 0.3; TCA112 < 0.3; 4ME2PENT < 0.3; HX02 < 0.3			
		<pre>%D: ACE > 25%; DCE12 > 25%; MEK > 25%; VA > 25%; DBCME > 25%; TCA112 > 25%; 4ME2PENT > 25%; HXO2 > 25%</pre>			
		ALL REMAINING TCLS AND SURROGATE			

a 5-6 page 17

SAIC Sample lumber	Laboratory Identification Number	Significant Sample Results	Tentatively Identified Compounds
ATERS 3802DOEB	8808S016-001V	MTLNCL=4J/ACE=88J µg/L	0 (0)
B802DOEB MS	8808S016-1MS	Not Applicable	Not Analyzed
3802DOEB MSD	8808S016-1MSD	Not Applicable	Not Analyzed
B802DOTB	8808S016-002V	MTLNCL=2J/ACE=88J µg/L	0 (0)
3802DOSB	8808S016-003V	Not Applicable	0 (0)
/BLK	WATER BLANK 8/11	ACE=5J µg/L	0 (0)
SOILS /Blk	WATER BLANK 8/06	ACE=5J µg/L	0 (0)
3801D48A	8807s099-001v	MTLNCL=4J/ACE=14B µg/Kg	6.2 (1)
3801D49A	8807S099-002V	MTLNCL=2J/ACE=9BJ/TCLME=8/CTCL=3J/ TCE=49/PCE=3J µg/Kg	0 (0)

a 5-6 page 18

	TABLE 3-3. DATA VALIDATION TABLES: VOLATILE ORGANIC COMPOUNDS											
SAIC Sample Number	Laboratory Identification Number	Collection Date	Analysis Date	Volatile Surrogate Recovery	Volatile MS/MSD Analyses	Volatile Blank Analyses	Volatile Tuning/Mass Calibration	Initial Calibration Check				
SOILS VBLK	WATER BLANK 8/09	NA	8/09/88	ALLOK	ALL	CLME=1Jµg/L	ALL BFB					
8801D48A MS	8807S099-001V MS	7/25/88	8/09/88		LIMITS							
8801D48A MSD	88075099-001V MSD	7/25/88	8/09/88			ALL UTHERS=U	LIMITS					
TRIP BLANK	8807S099-003V	7/25/88	8/09/88									

a 5-6 19

aboratory Identification Number	Continuing Calibration Check	Volatile Internal Standard	Trip Blank Analysis	Equipment Blank Analysis
ATER BLANK 8/09			i na	NA
3807\$099-001V MS		(RETENTION TIMES	Trip Blank	8802DOEB
38075099-001V MSD		WERE NOT TESTED)	Trip Blank	8802DOEB
3807s099-003V			NA	*Not Avail.
	aboratory dentification umber ATER BLANK 8/09 807S099-001V MS 807S099-001V MSD 807S099-003V	aboratory Continuing dentification Calibration umber Check ATER BLANK 8/09 807s099-001V MS 807s099-001V MSD 807s099-003V	aboratory Continuing Volatile dentification Calibration Internal umber Check Standard ATER BLANK 8/09 ALL AREAS WERE WITHIN 807S099-001V MS (RETENTION TIMES 807S099-001V MSD 807S099-001V MSD 807S099-003V	aboratory Continuing Volatile Irip dentification Calibration Internal Blank umber Check Standard Analysis ATER BLANK 8/09 ALL AREAS WERE WITHIN NA 807S099-001V MS (RETENTION TIMES WERE NOT TESTED) Trip Blank 807S099-001V MSD Trip Blank WA

a 5-6 page 20

SAIC Sample Number	Laboratory Identification Number	Significant Sample Results	Tentatively Identified Compounds
SOILS VBLK	WATER BLANK 8/09	CLME=1J/MTLNCL=3J/ACE=19 µg/L	0 (0)
8801D48A MS	8807\$099-001V MS	Not Applicable	Not Analyzed
8801D48A MSD	8807s099-001V MSD	Not Applicable	Not Analyzed
TRIP BLANK	8807S099-003V	MTLNCL=1BJ/ACE=8BJ µg/L	6 (1)

25-6 page 21

FOOTNOTES TO TABLES 3-1, 3-2, AND 3-3

DRAFT OCT 18

Note: Sample 8801D22TB is actually a composite of samples 8801D22TBA and 8801D22TBB. Note: There were no Field Blank samples taken for this project. NA - Not Applicable *Not Avail. - Information was not available Control Limits for Water VOA Surrogate Recoveries d8-Toluene: 88-110 Bromofluorobenzene: 86-115 d4-1,2-Dichloroethane: 76-114 Control Limits for Soil VOA Surrogate Recoveries d8-Toluene: 81-117 Bromofluorobenzene: 74-121 d4-1,2-Dichloroethane: 70-121 Control Limits for Water VOA MS/MSD Percent Recoveries Control Limits for Water VOA MS/MSD Percent Recoveries 1,1-Dichloroethene: 61-145, %RPD= 14 Trichloroethene: 71-120, %RPD= 14 Benzene: 76-127, %RPD= 13 Chlorobenzene: 75-130, %RPD= 13 Control Limits for Soil VOA MS/MSD Percent Recoveries 1,1-Dichloroethene: 59-172, %RPD= 22 Trichloroethene: 62-137, %RPD= 24 Benzene: 66-142, %RPD= 21 Toluene: 59-139, %RPD= 21 Chlorobenzene: 60-133, %RPD= 21 Tuning and mass calibration performed with bromofluoro Tuning and mass calibration performed with bromofluorobenzene (BFB). System Performance Check Compounds (SPCCs): Chloromethane (CLME), 1,1-Dichloroethane (DCA11), Bromoform (TBME), 1,1,2,2-Tetrachloroethane (PCA), and Chlorobenzene (CLBZ). Calibration Check Compounds (CCCs): Vinyl Chloride (VC), 1,1-Dichloroethene (DCE11), Chloroform (TCLME), 1,2-Dichloropropane (DCPA12), Toluene (BZME), and Ethylbenzene (EBZ). Volatile Internal Standard Area Summary Compounds: Bromochloromethane (BCM) 1,4-Difluorobenzene (DFB) Chlorobenzene (CBZ) Significant sample result data qualifiers: B - analyte found in associated laboratory blank as well as in environmental sample J - analyte present between lower detection limit of instrument and lower quantitation limit

Q 5-6 Page 22

Tuning and Mass Calibration Results--The first step in the calibration of the GC/MS system is the demonstration of satisfactory ionization and fragmentation of standard mass spectral tuning compounds. This was accomplished, in addition to a sensitivity check, using 4-bromofluorobenzene (4-BFB) injected at a concentration near the instrument detection limit for the February 1988 SOW protocol. This standard was analyzed every 12 hours to ensure that the GC/MS was tuned correctly. Tuning and mass calibration requirements used to evaluate the acceptable instrument operation are described in the February 1988 SOW. Based on an evaluation of the ionization and fragmentation criteria, in addition to the instrument tune frequency, all 4-BFB tuning and mass calibration criteria requirements were met.

Initial Calibration Results--Calibration of the GC/MS was established and validated by injecting EPA-traceable standards at five concentrations spanning the expected sample concentration range. Following the initial calibration, system performance check compounds (SPCCs) and calibration check compounds (CCCs) were evaluated to verify the validity of the initial calibration. Calibration criteria requirements (i.e., relative response factors [RRFs] for SPCCs and relative standard deviation [RSD] for CCCs) for VOC analyses were described in the February 1988 SOW. Based on an evaluation of the initial calibrations conducted for VOC analyses, all SPCC and CCC criteria requirements were met.

Continuing Calibration Results -- A continuing calibration verification (CCV) standard was analyzed daily and every 12 hours. Following the standard analysis, SPCCs and CCCs were evaluated to verify that the current calibration remained acceptable. RRF and percent difference requirements used to evaluate the calibration acceptability are described in the February 1988 SOW. Based on an evaluation of the continuing calibrations conducted for VOC analyses, all SPCC and CCC criteria requirements were met.

Internal Standard Summaries--Three internal standards (i.e., bromochloromethane, 1,4-difluorobenzene, and chlorobenzene- d_5) were added to each sample immediately before analysis as indicators of instrumental operating variations. The concentration of VOCs detected were calculated with reference to the RF of the internal standard for each sample. Internal standard area requirements were described in the February 1988 SOW. Based on an evaluation of all analyses, all internal standard areas were within acceptable limits.

Surrogate Recoveries--Three radio-labeled compounds (i.e., toluene- d_8 , 4-BFB, and 1,2-dichloroethane- d_4) were added to each sample immediately before analysis. The control limits for surrogate recoveries in soil and water samples were described in the February 1988 SOW. All surrogate recoveries were within the control limits. Tables 3-4 and 3-5 summarize the surrogate recovery results for water and soil samples, respectively.

Method Blank Results--One method blank analysis was conducted with each batch of environmental samples analyzed for VOCs. Each method blank was evaluated for interferents that might potentially interfere with accurate quantitation of a target compound. According to CLP method blank criteria, a laboratory blank may not contain methylene chloride, 2-butanone, toluene, or acetone in concentrations 10 times greater than the contract required quantitation limit (CRQL) or any other target compound in concentrations greater than the CRQL. Based on an evaluation of all method blanks analyzed for VOCs using the February 1988 SOW, the only interferents detected were methylene

page 23

DRAFT OCT 18

0								
Parameter	Total Number Analyses	Percent Recovery Ranges	Percent Recovery Control Limits	No.Accept Analyses*	No.Unaccept Analyses*			
VOCs			· · ·					
Toluene-d8	21	93-100	(88-110)	21	0			
Bromofluorobenzene	21	92-109	(86-115)	21	0			
1.2-Dichloroethane	21	90-105	(76-114)	21	0			

DRAFT DCT 18

TABLE 3-5. LABORATORY QUALITY CONTROL SUMMARY: SURROGATE RECOVERY-VOLATILE ORGANIC COMPOUNDS (SOIL SAMPLES) AT IDAHO NATIONAL ENGINEERING LABORATORIES, IDAHO FALLS, IDAHO								
Parameter	Total Number Analyses	Percent Recovery Ranges	Percent Recovery Control Limits	No.Accept Analyses*	No.Unaccept Analyses*			
VOCs	-			_	_			
Toluene-d8	5	101-111	(81-117)	5	0			
Bromofluorobenzene	5	86-100	(74-121)	5	0			
1,2-Dichloroethane	5	91-100	(70-121)	5	0			

chloride (4J) in VBLK 7/06; acetone (5J) in VBLK 8/11 and VBLK 8/06; and chloromethane (1J), methylene chloride (3J), and acetone (19) in VBLK 8/09.

Matrix Spike/Matrix Spike Duplicate Results--MS/MSD analyses were conducted to assess the accuracy and precision of the laboratory and to evaluate the matrix effect of the sample upon the analytical methodology based upon the percent recovery of each compound. Accuracy was expressed as the percent recovery of the spike compounds. Precision was expressed as the RPD of the concentrations of the spike compounds in the MS/MSD samples. The control limits for percent recoveries in soil samples were described in the February 1988 SOW. One MS/MSD analysis was required for each set of 20 samples of similar matrix, excluding dilutions and re-analyses conducted. One MS/MSD analysis (of three soil samples received by the laboratory) was conducted on soil samples (i.e., 8801D48A). All percent recoveries and RPDs were within the required control limits. Tables 3-6 and 3-7 summarize the MS/MSD results for water and soil analyses, respectively.

3.1.2 <u>Semivolatile Organic Compound Analysis (February 1988 SOW)</u>

Two soil samples and two field QC blanks (i.e., equipment blanks) were collected and analyzed using the February 1988 SOW. Data quality will be evaluated using the guidelines and control limits specified for holding times, tuning and mass calibration results, initial and continuing calibration verification, method blank spikes, method blanks, surrogate recoveries, internal standard areas, and MS/MSDs. Tables 3-8 and 3-9 present the SVOC validation worksheets.

Holding Times--Holding times were defined as the maximum amount of time allowed to elapse between the date and time of sample collection and the date and time the sample was extracted. Holding times were further defined as the maximum amount of time allowed to elapse between the dae and time of extraction and sample analysis. The Weston Laboratory was required to meet extraction holding times of 7 days for water samples and 14 days for soil samples collected for SVOC analysis. All analyses were required within 40 days of extraction. Based on an evaluation of all environmental samples and field QC blanks analyzed for SVOCs using the February 1988 SOW, all holding time criteria were met.

Tuning and Mass Calibration Results--The first step in the calibration of the GC/MS system is the demonstration of satisfactory ionization and fragmentation of standard mass spectral tuning compounds. This was accomplished, in addition to a sensitivity check, using decafluorotriphenylphosphine (DFTPP) injected at a concentration near the instrument detection limit for the February 1988 SOW protocol. This standard was analyzed every 12 hours to ensure that the GC/MS was tuned correctly. Tuning and mass calibration requirements used to evaluate the acceptable instrument operation are described in the February 1988 SOW. Based on an evaluation of the ionization and fragmentation criteria, in addition to the instrument tune frequency, all DFTPP tuning and mass calibration criteria requirements were met.

Initial Calibration Results--Calibration of the GC/MS was established and validated by injecting EPA-traceable standards at five concentrations spanning the expected sample concentration range. Following the initial calibration, SPCCs and CCCs were evaluated to verify the validity of the initial calibration. Calibration criteria requirements (i.e., RRFs for SPCCs and RSD for CCCs) for

page 26

			ACCURAC	:Y		PRECISION				
Parameter	MS Total No. Analyses	Percent Recovery Ranges	%R Control Limits	%R No.Accept Analyses	%R No.Unaccept Analyses	MSD Total No. Analyses	Range RPD	RPD Limits	RPD No.Accept Analyses*	RPD No.Unaccept Analyses*
VOCs										
1,1-Dichloroethene	6	82-98	(61-145)	6	0	3	1-6	14	3	0
Trichloroethene	6	79-99	(71-120)	6	0	3	2-7	14	3	0
Benzene	6	82-92	(76-127)	6	0	3	3-8	11	3	0
Toluene	6	81-94	(76-125)	6	0	3	3-14	13	2	1
Chlorobenzene	6	87-100	(75-130)	6	0	3	1-10	13	3	0

25-627 page 27

OCI 1.8

			ACCURAC	Y	PRECISION					
Parameter	MS Total No. Analyses	Percent Recovery Ranges	%R Control Limits	%R No.Accept Analyses	%R No.Unaccept Analyses	MSD Total No. Analyses	Range RPD	RPD Limits	RPD No.Accept Analyses*	RPD No.Unaccept Analyses*
VOCs										-
1,1-Dichloroethene	2	106	(59-172)	2	0	1	0	22	1	0
Trichloroethene	2	101-104	(62-137)	2	0	1	3	24	1	Û
Benzene	2	91-96	(66-142)	2	0	1	5	21	1	0
Toluene	2	98-103	(59-139)	2	0	1	5	21	1	0
Chlorobenzene	2	100-104	(60-133)	2	0	1	4	21	1	0

25-628 page 28

SAIC Sample Number	Laboratory Identification Number	Date Collected	Date Extracted	Date Analyzed	Semivolatile Surrogate Recovery	Semivolatile MS/MSD Analyses	Semivolatile Blank Analyses	Semivolatile Tuning/Mass Calibration	Semivolatile Internal Standards
WATER 881D00EBB	8806509-02	6/03/88	6/06/88	6/17/88	All OK	ALL	BZACID=5J μg/L	ALL DFTPP	ALL AREAS WE
881D00EBB MS	8806509-02MS	6/03/88	6/06/88	6/17/88		WITHIN LIMITS	ALL OTHERS=ND	CRITERIA WITHIN CONTROL	LIMITS (RETE
881D00EBB MSD	8806S09-02MSD	6/03/88	6/06/88	6/17/88				LIMITS	TESTED)
SBLK	LAB BLANK 6/17	NA	6/06/88	6/17/88					
SOIL 8801D22B	8806579-01	6/27/88	7/01/88	7/19/88	ALLOK	ALL WITHIN	BZACID=63J/ NNSPH=46J µg/Kg	ALL DFTPP CRITERIA	AREA FOR PRY CONTROL LIMI
8801D22B MS	8806S79-01MS	6/27/88	7/01/88	7/19/88		LIMITS	TIC TOTAL=630 ALL OTHERS=ND	WITHIN CONTROL LIMITS	ALL SAMPLES BATCH, ALL C
8801D22B MSD	8806579-01MSD	6/27/88	7/01/88	7/19/88					AREAS WERE WITH LIMITS (RETENTION TIMES WERE NOT TESTED)
SBLK	SBLK 7/19	NA	7/01/88	7/19/88					
SOIL SBLKO1	SOIL BLANK 8/24	NA	8/01/88	8/24/88	ALLOK	ALL WITHIN LIMITS EXCEPT:	NONE DETECTED	ALL DFTPP	ALL AREAS WE
8801D49C	8807s099-01	7/25/88	8/01/88	8/24/88		PHENOL MS%R=129, MSD%R=167; CLPH2 MS%R=115, MSD%R=148; MNSPR MSD%R=128;	TIC TOTAL=300	CRITERIA WITHIN CONTROL LIMITS	WITHIN CONTROL LIMITS (RETENT TIMES WERE NO
8801D49CRE MS	8807S099-02MS	7/25/88	8/01/88	8/24/88		C4MSPH MS5R=115, MSD5R=150; NTPH4 MSD5R=115; NTPH4 MSD5R=125, MSD5R=1/2;			IESIED)
8801D49CRE MSD	88075099-02msd	7/25/88	8/01/88	8/24/88		PCP MS%R=135, MSD%R=164; PYR MSD%R=176			
\supset									
7									
~									

DR. 1

	TABLE 3-8. DA	TA VALIDATION WORKSHEETS: SEMIVOLATILE O	RGANIC COMPOUNDS (Continued)	
SAIC Sample Number	Laboratory Identification Number	Initial Calib. SPCC/CCC	Contin. Calib. SPCC/CCC	Equipment Blank Analysis
WATER 881D00EBB	8806509-02	6/14/88 (CASE # 06509)	6/17/88 (CASE # 06509)	NA
881D00EBB MS	8806S09-02MS	ALL SPCC RRF > 0.050	ALL SPCC RRF50 > 0.050	NA
881D00EBB MSD	8806509-02MSD	%RSD: BZLAL > 30%; 4NOZAN > 30% ALL PENALNING TOLS AND SURPOGATE	%D: BZLAL > 25%; b2CLISOE > 25%; $\Delta MDH > 25%; BZACID > 25%;$	NA
SBLK	LAB BLANK 6/17	COMPOUNDS WITHIN CONTROL LIMITS	2NO2AN > 25%; 4NO2AN > 25%; PHL > 25%; 2FP > 25% ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS	NA
SOIL				444 A 444-21
8801D22B	8806579-01	7/18/88 (CASE # UGS/9) DAILY TUNE IN CONTROL: ALL SPCC RRF > 0.050	7/19/88 (CASE # 9/44) DAILY TUNE IN CONTROL: AII SPCC RRF50 > 0.050	*Not Avait.
8801D228 MS	8806S79-01MS	CCC %RSD < 30% %RSD: BZACID > 30%	CCC %D < 25% %D: b2CLISOE > 25%; BZBF > 25%;	*Not Avail.
8801D228 MSD	8806579-01MSD	ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS	BZKF > 25%; INP123 > 25%; DBAHA > 25%; BZGHIP > 25%	*Not Avail.
SBLK	SBLK 7/19		ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS	NA
SOIL				
SBLK01	SOIL BLANK 8/24	8/23/88 (CASE # 75099)	8/24/88 (CASE # 75099)	NA
8801D49C	8807s099-01	ALL SPCC RRF > 0.050 CCC %RSD < 30%	ALL SPCC RRF50 > 0.050 CCC %D < 25%	8802D0EB
8801D49CRE MS	8807S099-02MS	ACSU: HELEZ > 30%; HE > 30% ALL REMAINING TOLS AND SURROGATE COMPONINGS WITHIN CONTROL LIMITS	AU: BPPC4 > 23%; TULD2 > 23%; BIS2EKP > 25%; TBP > 25% ALL PEMAINING TO: SAND SURROGATE	8802D0EB
8801D49CRE MSD	88075099-02MSD	CONFOUNDS WITHIN SOUTHOE EILING	COMPOUNDS WITHIN CONTROL LIMITS	8802D0EB
4				

DRAFT BOT 18

SAIC Sample Number	Laboratory Identification Number	Significant Sample Results	Tentatively Identified Compounds
WATER 881D00EBB	8806509-02	BIS2EHP=4J µg/L	0 (0)
881D00EBB MS	8806509-02MS	Not Applicable	0 (0)
881D00EBB MSD	8806509-02MSD	Not Applicable	0 (0)
SBLK	LAB BLANK 6/17	BZACID=5J μg/L	0 (0)
SOIL 8801d22b	8806579-01	PHENOL=170J/BZACID=93BJ/NNSPH=62BJ/ BIS2EHP=190J μg/Kg	2490 (8)
8801D228 MS	8806s79-01Ms	Not Applicable	Not Analyzed
8801D228 MSD	8806579-01MSD	Not Applicable	Not Analyzed
SBLK	SBLK 7/19	BZACID=63J/NNSPH=46J µg/Kg	630 (3)
SOIL SBLK01	SOIL BLANK 8/24	None Detected	300 (1)
8801D49C	8807\$099-01	BZACID=110J/PCP=120J/BZKF=44J/ BZAP=44J µg/Kg	1110 (3)
8801D49CRE MS	8807s099+02Ms	Not Applicable	Not Analyzed
8801D49CRE MSD	88075099-02MSD	Not Applicable	Not Analyzed

OCT 18

			TABLE 3-9.	DATA VA	LIDATION WORKSHE	EETS: SEMIVOLATILE ORGANIC COM	POUNDS		
SAIC Sample Number	Laboratory Identification Number	Date Collected	Date Extracted	Date Analyzed	Semivolatile Surrogate Recovery	Semivolatile MS/MSD Analyses	Semivolatile Blank Analyses	Semivolatile Tuning/Mass Calibration	Semivolatile Internal Standards
WATER SBLK01 8802DOEB 8802DOEB MS 8802DOEB MSD	WATER BLANK 8/29 8808s016-1 8808s016-1Ms 8808s016-1MsD	NA 8/05/88 8/05/88 8/05/88	8/08/88 8/08/88 8/08/88 8/08/88	8/29/88 8/29/88 8/29/88 8/29/88	FBP BELOW CONTROL LIMIT; ALL OTHER SURROGATES OK	ALL WITHIN LIMITS EXCEPT: NNSPR MSD%R=40; TCB124 MS%R=32, MSD%R=36; ACNP MS%R=42, MSD%R=42	NONE DETECTED TIC TOTAL=310	ALL DFTPP CRITERIA WITHIN CONTROL LIMITS	AREA FOR NPT FOR SAMPLE 8802D0EB-MS ABOVE CONTROL LIMIT, ALL OTHER AREAS WITHIN LIMITS (RETENTION TIMES WERE NOT TESTED)
SOIL SBLK02 8801D49CRE	BLANK SOIL 9/01 8807S099-02RE	NA 7/25/88	8/30/88 8/30/88	9/01/88 9/01/88	TPH AND 2FP ABOVE CONTROL LIMITS; ALL OTHER SURROGATES OK		BZACID=74J/ INP123=46J/ DBAHA=45J µg/Kg ALL OTHERS=ND	ALL DFTPP CRITERIA WITHIN CONTROL LIMITS	ALL AREAS WERE WITHIN CONTROL LIMITS (RETENTION TIMES WERE NOT TESTED)

25-6232

	TABLE 3-9. DATA	A VALIDATION WORKSHEETS: SEMIVOLATILE C	RGANIC COMPOUNDS (Continued)	
SAIC Sample Number	Laboratory Identification Number	Initial Calib. SPCC/CCC	Contin. Calib. SPCC/CCC	Equipment Blank Analysis
WATER SBLK01	WATER BLANK 8/29	8/25/88 (CASE # 85016)	8/29/88 (CASE # 85016)	NA
8802DOEB	8808\$016-1	ALL SPCC RRF > 0.050 CCC %RSD < 30%	ALL SPCC RRF50 > 0.050 CCC %D < 25%	NA
8802DOEB MS	8808S016-1MS	%RSD: 3NO2AN > 30% ALL REMAINING TCLS AND SURROGATE	XD: BZLAL > 25%; 3NO2AN > 25%; BPPE4 > 25%: HCLBZ > 25%;	NA
8802DOEB MSD	8808s016-1MSD	COMPOUNDS WITHIN CONTROL LIMITS	BTBZNATE > 25%; BIS2EHP > 25% TBP > 25% ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS	; NA
SOIL SBLK02	BLANK SOIL 9/01	8/25/88 (CASE # 7S099)	9/01/88 (CASE # 75099)	NA
8801D49CRE	8807S099-02RE	DAILY TUNE IN CONTROL: ALL SPCC RRF > 0.050 CCC %RSD < 30% %RSD: 3NO2AN > 30% ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS	DAILY TUNE IN CONTROL: ALL SPCC RRF50 > 0.050 CCC %D < 25% %D: BZLAL > 25%; BZACID > 25%; 4CLAN > 25%; 3NO2AN > 25%; BTBZNATE > 25%; TBP > 25% ALL REMAINING TCLS AND SURROGATE COMPOUNDS WITHIN CONTROL LIMITS	8802DOEB

25-633

DCT 18

TABLE	3-9. DATA VALIDATION	WORKSHEETS: SEMIVOLATILE ORGANIC COMPOUNDS	§ (Continued)
SAIC Sample Number	Laboratory Identification Number	Significant Sample Results	Tentatively Identified Compounds
WATER SBLK01	WATER BLANK 8/29	None Detected	310 (2)
8802DOEB	88085016-1	None Detected	0 (0)
8802DOEB MS	8808\$016-1MS	Not Applicable	Not Analyzed
8802DOEB MSD	8808s016-1MSD	Not Applicable	Not Analyzed
SOIL SBLK02	BLANK SOIL 9/01	BZACID=74J/INP123=46J/DBAHA=45J µg/Kg	0 (0)
8801D49CRE	8807S099-02RE	BZACID=79BJ µg/Kg	0 (0)

25-6 page 34

18

FOOTNOTES TO TABLES 3-8 AND 3-9

{**AT** 1 - 3

Note: There were no Field Blank samples taken for this project. Trip Blanks were not analyzed for SVOAs. Note: Control Limits for Water SVOA Surrogate Recovery Nitrobenzene-d5: 35-114 2-Fluorobiphenyl: 43-116 Terphenyl: 33-141 Phenol-d5: 10-94 2-Fluorophenol: 21-100 2,4,6-Tribromophenol: 10-123 Control Limits for Soil SVOA Surrogate Recovery Nitrobenzene-d5: 23-120 2-Fluorobiphenyl: 30-115 Terphenyl: 18-137 Phenol-d5: 24-113 2-Fluorophenol: 25-121 2,4,6-Tribromophenol: 19-122 Control Limits for Water SVOA MS/MSD Analyses Phenol: 12-86, %RPD= 42 2-Chlorophenol: 27-123, %RPD= 40 1,4-Dichlorobenzene: 36-97, %RPD= 28 N-Nitroso-di-n-propylamine: 41-116, %RPD= 38 1,2,4-Trichlorobenzene: 39-98, %RPD= 28 4-Chloro-3-methylphenol: 23-97, %RPD= 42 4-chloro-31 Acenaphthene: 46-118, %RPD= 31 4-Nitrophenol: 10-80, %RPD= 50 2,4-Dinitrotoluene: 24-96, %RPD= 38 Pentachlorophenol: 9-103, %RPD= 50 Pyrene: 26-127, %RPD= 31 Control Limits for Soil SVOA MS/MSD Analyses Phenol: 26-90, %RPD= 35 2-Chlorophenol: 25-102, %RPD= 50 1,4-Dichlorobenzene: 28-104, %RPD= 27 N-Nitroso-di-n-propylamine: 41-126, %RPD= 38 1,2,4-Trichlorobenzene: 38-107, %RPD= 23 4-Chloro-3-methylphenol: 26-103, %RPD= 33 4-compthence: 31-132, %PDD= 10 Acenaphthene: 31-137, %RPD= 19 4-Nitrophenol: 11-114, %RPD= 50 2,4-Dinitrotoluene: 28-89, %RPD= 47 Pentachlorophenol: 17-109, %RPD= 47 Pyrene: 35-142, %RPD= 36 System Performance Check Compounds (SPCCs): N-nitroso-di-n-propylamine (NNSPR), Hexachlorocyclopentadiene (HCCP), 2,4-Dinitrophenol (DNP24), and 4-Nitrophenol (NTPH4) Calibration Check Compounds (CCCS): Phenol (PHENOL), 1,4-Dichlorobenzene (DCBZ14), 2-Nitrophenol (NTPH2), 2,4-Dichlorophenol (DCP24), Hexachlorobutadiene (HCBU), 4-Chloro-3-methylphenol (C4M3PH), 2,4,6-Trichlorophenol (TCP246), Acenaphthene (ACNP), N-nitrosodiphenylamine(1) (NNSPH), Pentachlorophenol (PCP), Fluoranthene (FLA), Di-n-octylphthalate (DNOP), and Benzo(a)pyrene (BZAP) Semivolatile Internal Standard Area Summary Compounds: 1,4-Dichlorobenzene-d4 (DCB) Naphthalene-d8 (NPT) Acenaphthene-d10 (ANT) Phenanthrene-d10 (PHN) Chrysene-d12 (CRY) Perylene-d12 (PRY) NA - Not Applicable *Not Avail. - Information was not available Significant sample result data qualifiers: ${\bf B}$ - analyte found in associated laboratory blank as well as in environmental sample E - analyte's concentration exceeds the calibration range of the instrument for this specific analysis analyte present between the lower detection limit of the instrument and the lower quantitation limit

570 2012 35

SVOC analyses were described in the February 1988 SOW. Based on an evaluation (C) 18 of the initial calibrations conducted for SVOC analyses, all SPCC and CCC criteria requirements were met.

Continuing Calibration Results--A CCV standard was analyzed daily and every 12 hours. Following the standard analysis, SPCCs and CCCs were evaluated to verify that the current calibration remained acceptable. RRF and percent difference requirements used to evaluate the calibration acceptability are described in the February 1988 SOW. Based on an evaluation of the continuing calibrations conducted for SVOC analyses, all SPCC and CCC criteria requirements were met.

1,4-Internal Standard Summaries--Six internal standards (i.e., dichlorobenzene- d_4 , naphthalene- d_8 , acenaphthene- d_{10} , phenanthrene- d_{10} , chrysene- d_{12} , and perylene- d_{12}) were added to each sample immediately before analysis as indicators of instrumental operating variations. The concentration of SVOCs detected was calculated with reference to the RF of the IS for each sample. IS area requirements were described in the February 1988 SOW. The internal standard areas were within the acceptable ranges in all analyses. Based on an evaluation of all analyses, all internal standard areas were within acceptable limits, except perylene-d₁₂ in 8801D22B, 8801D22B(MS), and 8801D22B(MSD) and naphthalene-d₈ in 8802D0EB(MS). Since target compounds that are quantified using perylene-d₁₂ were not detected in 8801S22B in concentrations greater than the detection limit and all MS/MSD percent recoveries were within the control limits, the decreased area of this internal standard is not considered to have an adverse impact on the data quality. The low percent recovery of 1,2,4-trichlorobenzene in 8802D0EB(MS) should be considered qualified, since this target compound is quantified using naphthalene-d₈ and the increased area counts of this internal standard may have resulted in a decreased percent recovery of the spike compound.

Surrogate Recoveries--Six radio-labeled compounds (i.e., phenol-d₅, 2-fluorophenol, 2,4,6-tribromophenol, d₅-nitrobenzene, 2-fluorobiphenyl, and terphenyl) were added to each sample immediately before analysis. The control limits for surrogate recoveries in soil and water samples were described in the February 1988 SOW. All surrogate recoveries were within the control limits, except 2-fluorobiphenyl in SBLKO1 and terphenyl and 2-fluorophenol in SBLKO2. Tables 3-10 and 3-11 summarize the surrogate recovery results for water and soil samples, respectively.

Method Blank Results--One method blank analysis was conducted with each batch of environmental samples analyzed for SVOCs. Each method blank was evaluated for interferents that might potentially interfere with accurate quantitation of a target compound. According to CLP method blank criteria, a laboratory blank may not contain phthalate esters in concentrations 10 times greater than the CRQL or any other target compound in concentrations greater than the CRQL. Based on an evaluation of all method blanks analyzed for SVOCs using the February 1988 SOW, no interferents were detected.

Matrix Spike/Matrix Spike Duplicate Results -- MS/MSD analyses were conducted to assess the accuracy and precision of the laboratory and to evaluate the matrix effect of the sample upon the analytical methodology based upon the percent recovery of each compound. Accuracy was expressed as the percent recovery of the spike compounds. Precision was expressed as the RPD of the concentrations of the

page 35

D					
ł	i (T	1	3	

TABLE 3-10. LABORATORY QUALITY CONTROL SUMMARY: SURROGATE RECOVERY-SEMIVOLATILE ORGANIC COMPOUNDS (WATER SAMPLES) AT IDAHO NATIONAL ENGINEERING LABORATORIES, IDAHO FALLS, IDAHO								
Parameter	Total Number Analyses	Percent Recovery Ranges	Percent Recovery Control Limits	No.Accept Analyses*	No.Unaccept Analyses*			
SVOCs								
Nitrobenzene-d5	8	49-77	(35-114)	8	0			
2-Fluorobiphenvl	8	30-73	(43-116)	7	1			
Terphenyl	8	79-108	(33-141)	8	0			
Phenol-d5	8	35-81	(10-94)	8	0			
2-Fluorophenol	8	51-85	(21-100)	8	0			
2.4.6-Tribromophenol	8	50-83	(10 - 123)	8	0			

,

DRAFT OCI 18

TABLE 3-11. RECOVERY-SEMIVOLAT ENGI	LABORATORY ILE ORGANIC NEERING LAB	QUALITY (COMPOUNDS CRATORIES,	CONTROL SUM 5 (SOIL SAM , IDAHO FAL	MARY: SURRO IPLES) AT ID LLS, IDAHO	GATE AHO NATIONAL
Parameter	Total Number Analyses	Percent Recovery Ranges	Percent Recovery Control Limits	No.Accept Analyses*	No.Unaccept Analyses*
SVOCs					
Nitrobenzene-d5	10	49-103	(23-120)	10	0
2-Fluorobiphenyl	10	57-110	(30-115)	10	0
Terphenyl	10	88-151	(18-137)	9	1
Phenol-d5	10	74-111	(24 - 113)	10	0
2-Fluorophenol	10	65-137	(25-121)	9	1
2.4.6-Tribromophenol	10	87-110	(19-122)	10	Ó

•

a 5-6 page .37

spike compounds in the MS/MSD samples. The control limits for percent recoveries in soil samples were described in the February 1988 SOW. One MS/MSD analysis was required for each set of 20 samples of similar matrix, excluding dilutions and re-analyses conducted. Two MS/MSD analyses (of two soil samples received by the laboratory) were conducted on soil samples (i.e., 8801D22B and 8801D49C). All percent recoveries and RPDs were within the required control limits in 8801D22B. All percent recoveries and RPDs were within the required control limits in 8801D49C, except for phenol (129 and 167 percent), 2-chlorophenol (115 and 148 percent), n-nitroso-di-n-propylamine (128 percent), 4-chloro-3-methylphenol (115 and 130 percent), 4-nitrophenol (115 percent), 2,4-dinitrophenol (125 and 142 percent), pentachlorophenol (135 and 164 percent), and pyrene (176 percent). None of these compounds were detected in the soil samples; therefore, these MS/MSD results are not considered to have adversely impacted data quality. One MS/MSD analysis was conducted on one equipment blank (i.e., 8802D0EB) collected. All percent recoveries and RPDs were within the required control limits, except for n-nitroso-di-n-propylamine (40 percent), 1,2,4-trichlorobenzene (32 and 36 percent), and acenaphthene (42 and 42 percent). These percent recoveries are not considered to adversely impact the environmental sample results. Table 3-12 and 3-13 summarize the MS/MSD results for water and soil analyses, respectively.

3.1.3 <u>Tetrachlorinated dibenzo-p-dioxins and Tetrachlorinated Dibenzofurans</u>

Eight soil samples were collected and analyzed for TCDD/TCDF using EPA Method 8280 (*The Analysis of Polychlorinated dibenzo-p-dioxins And Polychlorinated dibenzofurans* [*PCDD/PCDFs*]). Data quality will be evaluated using the guidelines and control limits specified for holding times, system performance check analysis, continuing calibration verification, method blanks, surrogate recoveries, and MS/MSDs. Table 3-14 presents the TCDD/TCDF validation worksheets.

Holding Times--Holding times were defined as the maximum amount of time allowed to elapse between the date and time of sample collection and the date and time the sample was extracted. Holding times were further defined as the maximum amount of time allowed to elapse between the day and time of extraction and sample analysis. The Weston Laboratory was required to meet extraction holding times of 14 days for soil samples collected for TCDD/TCDF analysis. All analyses were required within 40 days of extraction. All samples were extracted at least 18 days after the sample were collected. Some samples (i.e., 8801D48C and 8801D49C) were extracted 65 days after collection. All extracts were analyzed within 40 days.

System Performance Check Analyses-- The first step in the calibration of the GC/MS system is the demonstration of satisfactory isotopic ratio criteria resulting from the analysis of a system performance check solution. This was accomplished, in addition to a retention time window check, a 2,3,7,8-TCDD and 1,2,3,4-TCDD resolution check, and a relative ion abundance check. This standard was analyzed every 12 hours to ensure that the GC/MS was tuned correctly. Tuning and mass calibration requirements used to evaluate the acceptable instrument operation are described in EPA Method 8280. Based on an evaluation of the system performance check criteria, all PCDD/PCDF criteria requirements were met.

0.5% page 38

			ACCURAC	Y			PRECISION			
Parameter	MS Total No. Analyses	Percent Recovery Ranges	%R Control Limits	%R No.Accept Analyses	%R No.Unaccept Analyses	MSD Total No. Analyses	Range RPD	RPD Limits	RPD No.Accept Analyses*	RPD No.Unaccept Analyses*
SVOCs										
Phenol	4	50-65	(12-86)	4	0	2	6-8	42	2	0
2-Chlorophenol	4	52-69	(27-123)	4	0	2	3-6	40	2	0
1.4-Dichlorobenzene	4	39-74	(36-97)	4	0	2	3-5	28	2	0
N-Nitroso-di-n-propylamine	4	40-73	(41-116)	3	1	2	7-28	38	2	0
1.2.4-Trichlorobenzene	4	32-70	(39-98)	2	2	2	3-12	28	2	0
4-Chloro-3-methylphenol	4	45-61	(23-97)	4	0	2	2-16	42	2	0
Acenaphthene	4	42-70	(46-118)	2	2	2	0-3	31	2	0
4-Nitrophenol	4	26-47	(10-80)	4	0	2	0-40	50	2	0
2.4-Dinitrotoluene	4	49-70	(24-96)	4	0	2	3-6	38	2	0
Pentachlorophenol	4	62-67	(9-103)	4	0	2	3-8	50	2	0
Pyrene	4	66-80	(26-127)	4	0	2	4-7	31	2	0

a5-639

			ACCURAC	Y		PRECISION				
Parameter	MS Total No. Analyses	Percent Recovery Ranges	%R Control Limits	%R No.Accept Analyses	%R No.Unaccept Analyses	MSD Total No. Analyses	Range RPD	RPD Limits	RPD No.Accept Analyses*	RPD No.Unaccept Analyses*
SVOCs										
Phenol	4	64-167	(26-90)	2	2	2	10-26	35	2	0
2-Chlorophenol	4	59-148	(25-102)	2	2	2	11-25	50	2	0
1.4-Dichlorobenzene	4	53-85	(28-104)	4	0	2	9-15	27	2	0
N-Nitroso-di-n-propylamine	4	53-128	(41-126)	3	1	2	11-23	38	2	0
1.2.4-Trichlorobenzene	4	61-83	(38-107)	4	0	2	5-11	23	2	0
4-Chloro-3-methylphenol	4	72-130	(26-103)	2	2	2	12-13	33	2	0
Acenaphthene	4	74-134	(31-137)	4	0	2	7-18	19	2	0
4-Nitrophenol	4	67-115	(11 - 114)	3	1	2	1-16	50	2	0
2.4-Dinitrotoluene	4	72-142	(28-89)	2	2	2	3-13	47	2	0
Pentachlorophenol	4	78-164	(17-109)	2	2	2	1-19	47	2	0
Pyrene	4	87-176	(35-142)	3	1	2	3-23	36	2	0

DRAF 00CT 18

		TABLE 3-14. DATA V	ALIDATION W	ORKSHEETS:	EPA METHOD SW 8280DIOXIN/FURAN ANALYSES						
SAIC Sample Number	Laboratory Identification Number	Date Collected	Date Extracted	Date Analyzed	TCDD Surrogate Recovery	OCDD Surrogate Recovery	Dioxin/Furan MS/MSD Analyses	Dioxin/Furan BS/BSD Analyses	Dioxin System Performance Check Analysis		
SOILS 88065015-003	8807-006-001	6/07/88	7/15/88	7/28/88	102 PERCENT	138 PERCENT	ALL	ALL	ALL PCDD AND		
88065015-006	8807- 006-002	6/07/88	7/15/88	7/28/88	81 PERCENT	97 PERCENT	LIMITS	LIMITS	WITHIN CONTROL		
88065015-011	8807-006-003	6/07/88	7/15/88	7/28/88	108 PERCENT	145 PERCENT			LIMIIS		
88065015-013	8807-006-004	6/07/88	7/15/88	7/28/88	106 PERCENT	136 PERCENT					
88065015-015	8807-006-005	6/07/88	7/15/88	7/28/88	107 PERCENT	151 PERCENT					
88065079-001X	8807-006-006	6/27/88	7/15/88	7/28/88	101 PERCENT	116 PERCENT					
LAB BLANK	BLANK (777)	NA	7/15/88	7/28/88	96 PERCENT	145 PERCENT					
88065015-015 MS	8807-006-005 Ms	6/07/88	7/15/88	7/28/88	95 PERCENT	128 PERCENT					
88065015-015 MSD	8807-006-005 MSI	6/07/88	7/15/88	7/28/88	82 PERCENT	107 PERCENT					
SOILS 8801D48C	8809-738-001	7/25/88	9/28/88	10/18/88	40 PERCENT	25 PERCENT	ALL	ALL WITHIN LIMITS	ALL PCDD AND PCDF CRITERIA WITHIN CONTROL		
8801D49C	8809-738-002	7/25/88	9/28/88	10/18/88	46 PERCENT	54 PERCENT					
LAB BLANK	BLANK (176)	NA	9/28/88	10/18/88	54 PERCENT	36 PERCENT	(MSD WAS NOT ANALYZED)	ANALYZED)	LIMITS		
BLANK SPIKE	BS (176)	NA	9/28/88	10/18/88	50 PERCENT	17 PERCENT					
8801D48C MS	8809-738-001 MS	7/25/88	9/28/88	10/18/88	42 PERCENT	65 PERCENT					
WATERS 8802DOEB	8809-738-003	8/05/88	9/28/88	10/28/88	54 PERCENT	55 PERCENT		ALL	ALL PCDD AND		
LAB BLANK	BLANK (177)	NA	9/28/88	10/28/88	80 PERCENT	86 PERCENT		WITHIN LIMITS	PCDF CRITERIA WITHIN CONTROL		
BS	BS (177)	NA	9/28/88	10/28/88	83 PERCENT	89 PERCENT			LIMITS		
BSD	BSD (177)	NA	9/28/88	10/28/88	72 PERCENT	72 PERCENT	,				

25-641

SAIC Sample Number	Laboratory Identification Number	Initial Calibration	Continuing Calibration	Equipment Blank Analysis
SOILS 88065015-003 88065015-006 88065015-011 88065015-013 88065015-015	8807-006-001 8807-006-002 8807-006-003 8807-006-004 8807-006-005	7/28/88 DAILY TUNE IN CONTROL: ALL %RSD <= 10% ALL COMPOUNDS WITHIN CONTROL LIMITS		*Not Avail *Not Avail *Not Avail *Not Avail *Not Avail
88065079-001X LAB BLANK	8807-006-006 Blank (777)			*Not Avail NA
88065015-015 MS 88065015-015 MSD	8807-006-005 MS 8807-006-005 MSD			*Not Avail *Not Avail
SOILS 8801D48C 8801D49C LAB BLANK BLANK SPIKE 8801D48C MS	8809-738-001 8809-738-002 BLANK (176) BS (176) 8809-738-001 MS	10/18/88 DAILY TUNE IN CONTROL: ALL %RSD <= 10% %RSD: TCDD > 10%; PeCDD > 10%; HxCDD > 10%; HpCDD > 10%; OCDD > 10%; TCDF > 10%; PeCDF > 10%; HxCDF > 10%; HpCDF > 10%; OCDF > 10% ALL REMAINING COMPOUNDS WITHIN CONTROL LIMITS	10/18/88 DAILY TUNE IN CONTROL: ALL %D <= 10% %D: HpCDF > 10%; ''C-d12-OCDD > 10% ALL REMAINING COMPOUNDS WITHIN CONTROL LIMITS	8802DOEB 8802DOEB NA NA 8802DOEB
WATERS 8802DOEB LAB BLANK BS BSD	8809-738-003 Blank (177) BS (177) BSD (177)	10/24/88 DAILY TUNE IN CONTROL: ALL %RSD <= 10% ALL COMPOUNDS WITHIN CONTROL LIMITS	10/28/88 DAILY TUNE IN CONTROL: ALL %D <= 10% ALL COMPOUNDS WITHIN CONTROL LIMITS	NA NA NA

INAU

SAIC Sample Number	Laboratory Identification Number	Significant Sample Results (TCDD)	Significant Sample Results (TCDF)	Confirm As OCDD	Confirm As HpCDD
SOILS 88065015-003	8807-006-001	OCDD=0.43 ng/g	None Detected	Yes	NA
88065015-006	8807-006-002	HpCDD=0.17/OCDD=0.76 ng/g	None Detected	Yes	Yes
88065015-011	8807-006-003	OCDD=0.22 ng/g	None Detected	Yes	NA
88065015-013	8807-006-004	None Detected	None Detected	NA	NA
88065015-015	8807-006-005	None Detected	None Detected	NA	NA
88065079-001x	8807-006-006	None Detected	None Detected	NA	NA
LAB BLANK	BLANK (777)	None Detected	None Detected	NA	NA
88065015-015 MS	8807-006-005 MS	Not Applicable	Not Applicable	NA	NA
88065015-015 MSD	8807-006-005 MSD	Not Applicable	Not Applicable	NA	NA
SOILS 8801D48C	8809-738-001	OCDD=1.6 ng/g	None Detected	NC	NA
8801D49C	8809-738-002	None Detected	None Detected	NA	NA
LAB BLANK	BLANK (176)	None Detected	None Detected	NA	NA
BLANK SPIKE	BS (176)	Not Applicable	Not Applicable	NA	NA
8801D48C MS	8809-738-001 MS	Not Applicable	Not Applicable	NA	NA
WATERS 8802DOEB	8809-738-003	None Detected	None Detected	NA	NA
LAB BLANK	BLANK (177)	None Detected	None Detected	NA	NA
BS	BS (177)	Not Applicable	Not Applicable	NA	NA
BSD	BSD (177)	Not Applicable	Not Applicable	NA	NA

DRAFT

FOOTNOTES TO TABLE 3-14 Note: There were no Field Blank samples taken for this project. Note: Trip Blanks were not analyzed for Dioxins/Furans. NA - Not Applicable *Not Avail. - Information was not available NC - this sample result was Not Confirmed Control Limits for DIOXIN/FURAN MS/MSD Analyses 2,3,7,8-Tetrachlorodibenzo-p-dioxin: 40-120, %RPD= 20 Octachlorodibenzo-p-dioxin: 40-120, %RPD= 20 Control Limits for DIOXIN/FURAN BS/BSD Analyses 2,3,7,8-Tetrachlorodibenzo-p-dioxin: 40-120, %RPD= 20 Octachlorodibenzo-p-dioxin: 40-120, %RPD= 20 Octachlorodibenzo-p-dioxin: 40-120, %RPD= 20 Note: Control Limits obtained from STATEMENT OF WORK - DIOXIN ANALYSIS, 9/1/86, pages E-7 (%R) and E-9 (RPD). Although these limits are specifically for 2,3,7,8-TCDD MS/MSD values only, they were arbitrarily used for OCDD MS/MSD and all 85/BSD values also. Control Limits for DIOXIN/FURAN Initial/Continuing Calibrations Initial Calibration: <= 10% Note: Control Limits obtained from STATEMENT OF WORK - DIOXIN ANALYSIS, 9/1/86, pages D-19 (Initial) and D-20 (Continuing).

a 5-6 page 44

NC 18

Initial Calibration Results--Calibration of the GC/MS was established and validated by injecting EPA-traceable standards at five concentrations (i.e., 200; 500; 1,000; 2,000; and 5,000 μ g/L) spanning the expected sample concentration range. Following the initial calibration, RRFs, standard deviation, and percent RSD values were evaluated to verify the validity of the initial calibration. Calibration criteria requirements (i.e., less than 15 percent RSD) for TCDD/TCDF analyses were described in the EPA Method 8280. Based on an evaluation of the initial calibrations conducted for TCDD/TCDF analyses, all percent RSD criteria requirements were met, except HxCDD (20 percent), HpCDD (16 percent), OCDD (20 percent), and OCDF (25 percent) in the October 18, 1988 initial calibration. All other percent RSD values were less than 15 percent.

Continuing Calibration Results--A CCV standard was analyzed daily and every 12 hours. Following the standard analysis, the percent differences of the RRF values from the mean RRF values calculated during the intial calibration were were evaluated to verify that the current calibration remained acceptable (i.e., were less than 30 percent). Percent difference requirements used to evaluate the calibration acceptability are described in EPA Method 8280. Based on an evaluation of the continuing calibrations conducted for TCDD/TCDF analyses, all percent difference criteria requirements were met.

Surrogate Recoveries--Two radio-labeled compounds (i.e., C^{13} -TCDD and C^{13} -OCDD) were added to each sample immediately before analysis. No control limit criteria for surrogate recoveries in soil and water samples were specified in EPA Method 8280. All surrogate recoveries were less than 108 percent and greater than 40 percent for C^{13} -TCDD and less than 151 percent and greater than 17 percent for C^{13} -OCDD.

Method Blank Results--One method blank analysis was conducted with each batch of environmental samples analyzed for TCDD/TCDF. Each method blank was evaluated for interferents that might potentially interfere with accurate quantitation of a target compound. According to EPA Method 8280 method blank criteria, a laboratory blank may not contain any signal at mass 320, 322, or 259 that is greater than 2 percent of the mass 322 response within 5 scans of the mass 322 maximum. Based on an evaluation of all method blanks analyzed for TCDD/TCDF using EPA Method 8280, no interfering signals were detected.

Matrix Spike/Matrix Spike Duplicate Results--MS/MSD analyses were conducted to assess the accuracy and precision of the laboratory and to evaluate the matrix effect of the sample upon the analytical methodology based upon the percent recovery of each compound. Accuracy was expressed as the percent recovery of the spike compounds. Precision was expressed as the RPD of the concentrations of the spike compounds in the MS/MSD samples. The control limits for percent recoveries in soil samples were described in EPA Method 8280. One MS/MSD analysis was required for each set of 20 samples of similar matrix, excluding dilutions and re-analyses conducted. One MS/MSD analysis and one MS analysis (of 8 soil samples received by the laboratory) were conducted on soil samples (i.e., 88065015 and 8801D48C). All percent recoveries and RPDs were within the required control limits.

Blank Spike/Blank Spike Duplicate (BS/BSD) Analyses--One BS/BSD analysis and one BS analysis (of 8 soil samples received by the laboratory) were conducted. All percent recoveries and RPDs were within the required control limits.

page 45

3.1.4 Pesticide/PCBs (SOW 2/88)

Three soil samples and two equipment blanks were collected and analyzed for pesticide/PCBs using the February 1988 CLP SOW. Data quality will be evaluated using the guidelines and control limits specified for holding times, system performance check analysis (i.e., 4,4'-DDT retention time, 4,4'-DDT/endrin degradation check, and dibutyl chlorendate retention time check), initial and continuing calibration verification, method blanks, surrogate recoveries, and MS/MSDs. Table 3-15 presents the pesticide/PCB validation worksheets.

Holding Times--Holding times were defined as the maximum amount of time allowed to elapse between the date and time of sample collection and the date and time the sample was extracted. Holding times were further defined as the maximum amount of time allowed to elapse between the day and time of extraction and sample analysis. The Weston Laboratory was required to meet extraction holding times of 7 days for water samples and 14 days for soil samples collected for pesticide/PCB analysis. All analyses were required within 40 days of extraction. Based on an evaluation of all environmental samples and field QC blanks analyzed for pesticide/PCBs using the CLP SOW 2/88, all holding time criteria were met, except for 8801D0EBB and the associated MS/MSD analyses that were conducted 44 days after these samples were extracted.

Surrogate Recoveries--One surrogate compound (i.e., dibutyl chlorendate) was added to each sample immediately before the sample was extracted. The control limits for surrogate recoveries in soil and water samples were described in the February 1988 SOW. All surrogate recoveries were within the control limits.

MS/MSD Analyses -- MS/MSD analyses were conducted to assess the accuracy and precision of the laboratory and to evaluate the matrix effect of the sample upon the analytical methodology based upon the percent recovery of each compound. Accuracy was expressed as the percent recovery of the spike compounds. Precision was expressed as the RPD of the concentrations of the spike compounds in the The control limits for percent recoveries in soil and water MS/MSD samples. samples were described in the February 1988 SOW. One MS/MSD analysis was required for each set of 20 samples of similar matrix, excluding dilutions and re-analyses conducted. Three MS/MSD analyses (of 3 soil samples received by the laboratory) were conducted on soil samples (i.e., 8801D22A, 8801D48C, and 8801D49C). All percent recoveries and RPDs were within the required control limits, except lindane (31 and 38 percent) in 8801D22A. Two MS/MSD analyses were conducted on equipment blanks (i.e., 8801D0E and 8802D0EB). All percent recoveries and RPDs were within the required control limits, except aldrin (123 percent recovery and 24 percent RPD) in 8801DOE and heptachlor (28 percent RPD). aldrin (41 percent RPD), and 4,4'-DDT (36 percent recovery and 61 percent RPD) in 8802D0EB.

Method Blank Analyses--One method blank analysis was conducted with each batch of environmental samples analyzed for pesticides/PCBs. Each method blank was evaluated for interferents that might potentially interfere with accurate quantitation of a target compound. According to CLP method blank criteria, a laboratory blank may not contain any target compound in concentrations greater than the CRQL. Based on an evaluation of all method blanks analyzed for SVOCs using the February 1988 SOW, no interferents were detected.

page 44

SAIC sample Number	Laboratory Identification Number	Date Collected	Date Extracted	Date Analyzed (1)	Date Analyzed (2)	Date Analyzed (3)	Pesticide/PCBs Surrogate Recovery	Pesticide/PCBs MS/MSD Analyses	Pesticide/PCBs Blank Analysis
881DOOE68	8806\$009002	06/03/88	06/06/88	07/20/88	07/20/88	07/20/88	ALL SURROGATE RECOVERIES WERE WITHIN CONTROL LIMITS (24-154) FOR	ALL WITHIN CONTROL LIMITS EXCEPT: ALDRIN MSD %R=123;	NONE DETECTED
PBLK 881DOOEBB MS 881DOOEBB MSD	PBLK 880606 8806s009002 MS 8806s009002 MSD	NA 06/03/88 06/03/88	06/06/88 06/06/88 06/06/88	07/20/88 07/20/88 07/20/88	07/20/88 07/20/88 07/20/88	07/20/88 07/20/88 07/20/88	DIBUTTECHLOKENDATE	ALUKIN KFU-24%	
PBLK 8801D22A	PBLK 880702 8806S079 001	NA 06/27/88	07/02/88 07/02/88	08/07/88 08/08/88	07/25/88 07/25/88	07/29/88 07/29/88	ALL SURROGATE RECOVERIES WITHIN CONTROL LIMITS (20-150) FOR DIBUTYLCHLORENDATE	ALL WITHIN CONTROL LIMITS EXCEPT: LINDANE MS %R=31; LINDANE MSD %P=38	NONE DETECTED
8801D22A MS 8801D22A MSD	8806S079 001 MS 8806S079 001 MSD	06/27/88 06/27/88	07/02/88 07/02/88	08/08/88 08/08/88	NT NT	07/29/88 08/08/88			
PBLK 8801D48C 8801D49C 8801D48C MS 8801D48C MSD 8801D49C MS 8801D49C MSD	PBLK 880729 88075099 001X 88075099 002X 88075099 001X MS 88075099 001X MSD 88075099 002X MSD 88075099 002X MSD	NA 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88 07/25/88	07/29/88 07/29/88 07/29/88 08/01/88 08/01/88 07/29/88 07/29/88	08/20/88 08/21/88 08/21/88 NA NA 08/21/88 08/21/88	08/20/88 08/11/88 08/11/88 08/11/88 08/11/88 NA NA	08/20/88 08/06/88 08/06/88 NA NA 08/06/88 08/06/88	ALL SURROGATE RECOVERIES WITHIN CONTROL LIMITS (20-150) FOR DIBUTYLCHLORENDATE	ALL WITHIN % REC AND %RPD CONTROL LIMITS	NONE DETECTED
PBLK 8802DOEB 8802DOEB MS 8802DOEB MSD	PBLK 880808 88085016 001 88085016 001 MS 88085016 001 MSD	NA 08/05/88 08/05/88 08/05/88	08/08/88 08/08/88 08/08/88 08/08/88	08/29/88 08/29/88 08/29/88 08/29/88	08/16/88 08/16/88 08/16/88 08/16/88	08/23/88 08/23/88 08/23/88 08/23/88	ALL SURROGATE RECOVERIES WERE WITHIN CONTROL LIMITS (24-154) FOR DIBUTYLCHLORENDATE	HEPTACHLOR RPD=28%; ALDRIN RPD=41%; 4,4'-DDT MSD %R=36%, AND RPD=61%	NONE DETECTED

25-6 2909e 47

SAIC sample Number	Laboratory Identification Number	Equipment Blank Analysis	Significant Sample Results	Evaluation Check for Linearity	Evaluation Retention Time Shift For DBC
881DOOEBB PBLK 881DOOEBB MS 881DOOEBB MSD	8806S009002 PBLK 880606 8806S009002 MS 8806S009002 MSD	NA NA NA NA	None Detected None Detected Not Applicable Not Applicable	ALDRIN (11.0%) AND 4,4'-DDT (24.6) WERE GREATER THAN 10.0% DIFFERENCE FOR LINEARITY CHECK; ENDRIN AND DBC WERE WITHIN CONTROL LIMITS	DBC RETENTION TIME PERCENT DIFFERENCES LESS THAN 2% FOR ENVIRONMENTAL SAMPLES
PBLK 8801D22A	PBLK 880702 88065079 001	NA *Not Avail.	None Detected None Detected	ALL %RSD <10.0% FOR ALDRIN, ENDRIN, 4,4'-DDT, AND DBC	DBC RETENTION TIME PERCENT DIFFERENCES LESS THAN 2% FOR ENVIRONMENTAL SAMPLES
8801D22A MS 8801D22A MSD	8806S079 001 MS 8806S079 001 MSD	*Not Avail. *Not Avail.	Not Applicable Not Applicable		
PBLK 8801D48C 8801D49C 8801D48C MS 8801D48C MS 8801D49C MS 8801D49C MS 8801D49C MSD	PBLK 880729 88075099 001X 88075099 002X 88075099 001X MS 88075099 001X MSD 88075099 002X MSD 88075099 002X MSD	NA 8802D0EB 8802D0EB 8802D0EB 8802D0EB 8802D0EB 8802D0EB	None Detected None Detected Not Applicable Not Applicable Not Applicable Not Applicable	ALL %RSD <10.0% FOR ALDRIN, ENDRIN, 4,4'-DDT, AND DBC (FOR SAMPLES ANALYZED 8/20-8/21) ALDRIN (16.2%), ENDRIN (15.9%), AND 4,4'-DDT (11.9%) WERE GREATER THAN 10.0% DIFFERENCE FOR LINEARITY CHECK; DBC WAS WITHIN CONTROL LIMITS (<20% BREAKDOWN FOR COMBINED 4,4'-DDT AND ENDRIN 8/22-8/23)	DBC RETENTION TIME PERCENT DIFFERENCES LESS THAN 2% FOR ENVIRONMENTAL SAMPLES
PBLK 8802DOEB 8802DOEB MS 8802DOEB MSD	PBLK 880808 88085016 001 88085016 001 MS 88085016 001 MSD	NA NA NA NA	None Detected None Detected Not Applicable Not Applicable	ALL %RSD <10.0% FOR ALDRIN, ENDRIN, 4,4'-DDT, AND DBC	DBC RETENTION TIME PERCENT DIFFERENCES LESS THAN 2% FOR ENVIRONMENTAL SAMPLES

page 48

SAIC sample Number	Laboratory Identification Number	Pesticide/PCB Standards Summary's	Evaluation Check for 4,4DDT/Endrin Combined Breakdown
881DOOEBB PBLK 881DOOEBB MS 881DOOEBB MSD	8806S009002 PBLK 880606 8806S009002 MS 8806S009002 MSD	THE PERCENT DIFFERENCE FOR 4,4'-DDT (19.7%) WAS GREATER THAN THE 15.0% DIFFERENCE CONTROL LIMIT FOR QUANTITATION; ALL OTHERS WERE IN CONTROL LIMITS FOR BOTH QUANTITATION AND CONFIRMATION	ALL PERCENT BREAKDOWNS FOR 4,4'-DDT AND ENDRIN WERE LESS THAN 20.0%
PBLK 8801D22A 8801D22A MS 8801D22A MS	PBLK 880702 8806S079 001 8806S079 001 MS 8806S079 001 MSD	SEVERAL PERCENT DIFFERENCES WERE GREATER THAN 15.0% FOR QUANTITATION AND 20.0% FOR CONFIRMATION, BUT NO PESTICIDES WERE DETECTED IN THESE SAMPLES SO NO CORRECTIVE ACTIONS WERE NECESSARY, NOR WERE ANY TAKEN	NOTE THAT EVAL MIX B (08/08/88 -9:18) WAS ABOVE THE CONTROL LIMIT OF 20.0% AT 20.3% BREAKDOWN FOR ENDRIN AND 4,4'-DDT; SINCE THIS IS A QUANTITATION CHECK AND NO PESTICIDES WERE DETECTED, NO CORRECTIVE ACTIONS WERE NECESSARY
PBLK 8801D48C 8801D49C 8801D49C MS 8801D48C MS 8801D48C MSD 8801D49C MSD	PBLK 880729 88075099 001x 88075099 002x 88075099 001x MS 88075099 001x MSD 88075099 002x MS 88075099 002x MSD	SEVERAL PERCENT DIFFERENCES WERE GREATER THAN 15.0% FOR QUANTITATION AND 20.0% FOR CONFIRMATION, BUT NO PESTICIDES WERE DETECTED IN THESE SAMPLES SO NO CORRECTIVE ACTIONS WERE NECESSARY, NOR WERE ANY TAKEN	ALL PERCENT BREAKDOWNS FOR 4,4'-DDT AND ENDRIN WERE LESS THAN 20.0%
PBLK 8802DOEB 8802DOEB MS 8802DOEB MSD	PBLK 880808 88085016 001 88085016 001 MS 88085016 001 MSD	ALL PERCENT DIFFERENCES WERE LESS THAN 15.0% FOR QUANTITATION AND 20.0% FOR CONFIRMATION	ALL PERCENT BREAKDOWNS FOR 4,4'-DDT AND ENDRIN WERE LESS THAN 20.0%

.

BL 130

FOOTNOTES TO TABLE 3-15

	Control limits for Soil Pesticide/PCB Surrogate Recovery Dibutylchlorendate: 20-150 Isodrin: 20-127
	(advisory limits) Control limits for Water Pesticide/PCB Surrogate Recovery Dibuty chloromdato: 26-156
	Isodrin: 20-127 (advisory limits)
	Control limits for Soil Pesticide/PCB MS/MSD Analysis Lindane: 46-127, %RPD=50 Heptachlor: 35-130, %RPD=31
	Aldrin: 34-132, %RPD=43 Dieldrin: 31-134, %RPD=38 Endrin: 42-139, %RPD=45
	4,4'DDT: 23-134, %RPD=50 Control limits for Water Pesticide/PCB MS/MSD Analysis
and the second se	Heptachlor: 40-131, %RPD=20 Aldrin: 40-120, %RPD=22
	Dieldrin: 52-126, %RPD=18 Endrin: 56-121, %RPD=21 4,4'DDT: 38-127, %RPD=27
	NA - Not Applicable NT - Not Tested *Not Avail Information was not available
	Control limits for organophosphorous pesticides: Disulfton: 55-109% Methyl Parathion: 81-111%
	Control limits have not been established for dimethoate, delnav, ethyl parathion, and DEF.
	Note concerning the analyses: all samples were analyzed for Pesticides/ PCBs (reported on the standard form I) and additionally, organophosphorous pesticides, and chlorinated phenoxy acid herbicides were analyzed for and reported on seperate forms. Samples "A" and "B" were the same sample analyzed for different parameters and both samples were used for MS/MSDs.
	 Note: There were no Field Blank samples taken for this project. Trip Blank samples were not analyzed for Pesticides/PCBs. Note: The MS/MSD analysis for sample 8801D48C was performed for Chlorinated Phenoxy Acid Herbicides only. The MS/MSD analysis for sample 8801D49C was performed for CLP Pesticides/PCBs and Organophosphorous Pesticides only.
	 (1) Samples were analyzed for CLP pesticides/PCBs. (2) Samples were analyzed for chlorinated phenoxy acid herbicides. (3) Samples were analyzed for organophosphorous pesticides.

0.5-6 page 50

Linearity Check--Calibration mixtures containing aldrin, endrin, 4,4'-DDI, and dibutyl chlorendate at 3 concentration levels must be analyzed at the beginning of each 72-hour analytical period. The percent RSD must be less than or equal to 10 percent. All linearity criteria were met, except aldrin (11 percent) and 4,4'-DDT associated with 8801D0EB, analyzed July 20, 1988, and aldrin (16.2 percent), endrin (15.9 percent), and 4,4'-DDT associated with 8801D48C and 8801D49C, analyzed on August 29, 1988. Since the surrogate recoveries and MS/MSD recoveries and differences were within the QC criteria, these linearity results are not considered to have adversely affected data quality.

Retention Time Evaluation--Since all pesticides and PCBs are quantified using the external standard technique, the retention time of all target compounds and surrogates must be determined. The dibutyl chlorendate retention time shift between initial and all subsequent calibration mixtures must not be greater than 2 percent. All retention time shift criteria (i.e., less than 2 percent) were met.

Standards Summary--Two calibration standards (i.e., Individual Standard Mixtures A and B) were analyzed at the intervals specified in SOW 2/88. The calibration factor calculated for each single component pesticide (e.g, lindane, endrin, aldrin) must not exceed 15 percent for the GC column used for quantitation nor exceed 20 percent for the confirmation analysis. Several percent differences calculated from the July 20, August 7, 8, 20, and 21 analyses were greater than 15 percent; however, pesticides/PCBs were not detected in the associated samples. The percent differences calculated from the August 29, 1988 analysis were less than 15 percent.

4,4'-DDT/Endrin Breakdown Evaluation--All percent breakdown criteria (i.e., 20.0 percent) were met, except for that calculated for the August 8, 1988 analysis (20.3 percent). Since pesticides/PCBs were not detected in the associated samples, corrective action was not taken based on this QC analysis. These results are not considered to adversely impact data quality.

3.2 INORGANIC ANALYSES

Three soil samples were submitted to the Weston Laboratory for Inorganic Compound analysis using the July 1988 CLP SOW. A data quality assessment is presented in the following subsection.

3.2.1 Trace Metals and Cyanide (SOW 7/88)

Three soil samples and three QC blanks (i.e., two equipment blanks and one spike blank) were collected and analyzed using the July 1988 SOW. Data quality will be evaluated using the guidelines and control limits specified for holding times, initial and continuing calibration verification, method blanks, interference check sample analysis, spiked sample analysis, duplicate sample analysis, laboratory check sample analysis, and contract required detection limits (CRDL) verification. Table 3-16 presents the trace metals and cyanide validation worksheets.

Holding Times--Holding times were defined as the maximum amount of time allowed to elapse between the date and time of sample collection and the date and

15-6 page 51

			TABLE	3-16. IDA	HO NATIONAL ENGINEERING LABORAT	FORY INORGANICS DATA VALIDATI	ON WORKSHEETS	
					CALIBRATION		BLANKS	
SAIC Sample Number	Laboratory ID Number	Date Received	Mercury Analysis Date (1)	Cyanide Analysis Date (1)	Initial Continuing Calibration (a) Calibration (a	Initial a) Blank (b)	Continuing Blank (b)	Procedural Blank (b)
SOIL 8801D48B	8807S099-001M	07/27/88	08/11/88 (15 DAYS)	08/05/88 (9 DAYS)	ALL INITIAL AND CONTINUING CALIBRATIONS WITHIN %R CONTROL LIMITS FOR ALL METAIS	NO CONTAMINANTS WERE DETECTED IN ANY OF THE INITIAL BLANKS	NO CONTAMINANTS WERE DETECTED IN ANY OF THE CONTINUING BLANKS	NO CONTAMINANTS WERE DETECTED IN ANY OF THE PROCEDURAL BLANKS
8801D49B	88075099-002M	07/27/88	08/11/88 (15 DAYS)	08/05/88 (9 days)				
SOIL 8801D22B	88065079-001	06/28/88	07/19/88 (21 DAYS)	07/06/88 (8 days)	ALL INITIAL AND CONTINUING CALIBRATIONS WITHIN XR CONTROL LIMITS FOR ALL METALS	NO CONTAMINANTS WERE DETECTED IN ANY OF THE INITIAL BLANKS	NO CONTAMINANTS WERE DETECTED IN ANY OF THE CONTINUING BLANKS	NO CONTAMINANTS WERE DETECTED IN ANY OF THE PROCEDURAL BLANKS
WATER 8802DOEB	8808s016-001	08/06/88	08/15/88	08/10/88	ALL INITIAL AND CONTINUING	NO CONTAMINANTS WERE	NO CONTAMINANTS WERE DETECTED IN ANY OF THE	NO CONTAMINANTS WERE DETECTED IN ANY OF THE
8802DOSB	8808s016-003	08/06/88	(9 DAYS)	(4 0010)	CONTROL LIMITS FOR ALL METALS	INITIAL BLANKS	CONTINUING BLANKS	PROCEDURAL BLANKS
WATER 881DOOEBC	8806-009-003	06/04/88	Not Avail.	Not Avail.	ALL INITIAL AND CONTINUING CALIBRATIONS WITHIN %R CONTROL LIMITS FOR ALL METALS (2)	CONTAMINANTS WERE DETECTED IN THE INITIAL BLANKS BELOW THE CRDL (2)	CONTAMINANTS WERE DETECTED IN THE CONTINUING BLANKS BELOW THE CRDL (2)	CONTAMINANTS WERE DETECTED IN THE PROCEDURAL BLANKS BELOW THE CRDL (2)

Dage 52

	Laboratory	ICP/ICS	ICP/ICS	ACCURACY	PRECISION	LCS Laboratory	CRDL Verification	
SAIC Sample Number	ID Number	Initial (c)	Final (c)	Spike Sample (d)	Duplicate Sample (e)	Control Sample (f)	AA (g)	
SOIL 8801D48B 8801D49B	88075099-001M 88075099-002M	ALL INITIAL ICP/ICS %R WITHIN CONTROL LIMITS	ALL FINAL ICP/ ICS %R WITHIN CONTROL LIMITS	PERCENT RECOVERY FOR AG=3.3%/ ALL OTHER %Rs WITHIN SPIKE SAMPLE CONTROL (2)	ALL DUPLICATE SAMPLE RPDs WERE LESS THAN 35%.	AS %R=122% RESULTS REMAINED UNCORRECTED; TL %R=57% RESULTS REMAIN UNCORRECTED; ALL OTHER PERCENT RECOVERIES WITHIN CONTROL	ALL CRDL %R FOR AA WERE GREATER THAN ZERO	
SOIL 88010228	88065079-001	ALL INITIAL ICP/ICS %R WITHIN CONTROL LIMITS	ALL FINAL ICP/ ICS %R WITHIN CONTROL LIMITS	PERCENT RECOVERY FOR AG=3.3%/ ALL OTHER %Rs WITHIN SPIKE SAMPLE CONTROL (2)	ALL DUPLICATE SAMPLE RPDS WERE LESS THAN 35%.	AS %R=122% RESULTS REMAINED UNCORRECTED; TL %R=57% RESULTS REMAIN UNCORRECTED; ALL OTHER PERCENT RECOVERIES WITHIN CONTROL LIMITS	ALL CRDL %R FOR AA WERE GREATER THAN S ZERO	
WATER 8802DOEB 8802DOSB	8808s016-001 8808s016-003	ALL INITIAL ICP/ICS %R WITHIN CONTROL LIMITS	ALL FINAL ICP/ ICS %R WITHIN CONTROL LIMITS	PERCENT RECOVERY FOR AG=0%/ ALL OTHER %RS WITHIN SPIKE SAMPLE CONTROL LIMITS	WATER SAMPLES ARE NOT ANALYZED FOR PERCENT DIFFERENCES	ALL PERCENT RECOVERIES WITHIN %R CONTROL LIMITS (80-120%)	ALL CRDL %R FOR AA WERE GREATER THAN ZERO	
WATER 881DOOEBC	8806-009-003	ALL INITIAL ICP/ICS %R WITHIN CONTROL LIMITS	ALL FINAL ICP/ ICS %R WITHIN CONTROL LIMITS	PERCENT RECOVERY FOR SE=72.0%/ ALL OTHER %RS WITHIN SPIKE SAMPLE CONTROL LIMITS	WATER SAMPLES ARE NOT ANALYZED FOR PERCENT DIFFERENCES	PERCENT RECOVERIES FOR AS=214, PB=52.3, TL=48.1; ALL OTHER %Rs WITHIN CONTROL LIMITS	ALL CRDL %R FOR AA WERE GREATER THAN ZERO	

25-6 page 53

SAIC Sample Number	Laboratory ID Number	CRDL Verification Initial ICP (g)	CRDL Verification Final ICP (g)	Standard Addition Results	Equipment Blank Results	Significant Sample Results
SOIL 8801D488	88075099-001M	ALL % FOR INITIAL ICP CRDL VERIFICATIONS WERE GREATER THAN ZERO	ALL %R FOR FINAL ICP CRDL VERIFICATIONS WERE GREATER THAN ZERO	PEARSON'S r=0.9743 FOR LEAD; ALL OTHER STANDARD ADDITION RESULTS GREATER THAN 0.995	8802DOEB	SB=14.4UFN\AS=6.4FNS\BA=392P\BE=1.4P\ CD=8.4P*\CR=40.0P\CO=14.4P\CU=26.9P\ PB=16.1F\HG=0.12UCVN*\NI=34.4P\V=52.7P\ ZN=81.6PE mg/Kg AS=14.3EN\RA=3.4P\DE=1.4P\CD=7.8D*\
000 10498	0007 5099-002M				COULDOLD	CR=33.4P\CO=13.4P\CU=30.3P\PB=14.6F\ HG=0.12UCVN*\NI=27.9P\V=49.5P\ZN=67.4P mg/Kg
SOIL 8801D22B	8806s079-001	ALL %R FOR INITIAL ICP CRDL VERIFICATIONS WERE GREATER THAN ZERO	ALL %R FOR FINAL ICP CRDL VERIFICATIONS WERE GREATER THAN ZERO	PEARSON'S r=0.9743 FOR LEAD; ALL OTHER STANDARD ADDITION RESULTS GREATER THAN 0.995	Not Avail.	AS=4.0FN\BA=273P\CD=4.8P*\CR=25.2P\CO=13.3P\ CU=28.4P\PB=7.2F\HG=0.6CVN*\NI=27.5P\ V=53.3P\ZN=48.9P mg/Kg
WATER 8802DOEB	8808\$016-001	ALL %R FOR INITIAL ICP	ALL %R FOR FINAL ICP		NA	PB=29.8F µg/L
8802DOSB	88085016-003	CRDL VERIFICATIONS WERE GREATER THAN ZERO	CRDL VERIFICATIONS WERE GREATER THAN ZERO		8802DOEB	Not Applicable
WATER 881DOOEBC	8806-009-003	ALL %R FOR INITIAL ICP CRDL VERIFICATIONS WERE GREATER THAN ZERO	ALL %R FOR FINAL ICP CRDL VERIFICATIONS WERE GREATER THAN ZERO		NA	BE=1.0BP\PB=10.6F\HG=0.40\AG=7.7UN\ZN=156P μg/L

pages4

DRAF 130

	FOOTNOTES TO TABLE 3-16
(a)	talibration percent recovery control limits for mercury = $80-120$ %R, for other metals = $90-110$ %R and for evenide = $85-115$ %P
ы	Instrument detection limits and methods for all metals analyzed ($\mu \alpha/L$):
	Sb = 60 F
	As = 10F
	Ba = 200 P
	Be = 5 P
	Cd = 5 P
	Cr = 10 P
	CO = 50 P
	Ha = 0.2 CV
	$N_1 = 40 P$
	Se = 5 P
	Ag = 10 P
	TL = 10 P
	sn = 5000 P
	V = 50 P
	Zn = 20 P
(0)	initial and final
(d)	Initial and final. Control limits for spike comple % recoveries (%P) and 75-125%
(e)	Duplicate sample control limits are + 20 percent RPD for those samples
``	greater than 5X the CRDL.
(f)	Laboratory control sample (LCS) control limits are 80-120 percent for
	all elements.
(g)	Control limits for CRDL Verification have not been established, any
	recovery greater than zero is deemed acceptable.
(1)	Holding time for mercury is 28 days for soil and water samples;
	notaing time for cyanide samples is 14 days for soil and water
10	samples. Note about all the data: these samples were enalyzed in batches that were
<u>``</u>	validated previously: some data may be skewed by the results from
	non-applicable samples.
NA -	- Not Applicable
Not	Avail Information was not available
* -	Duplicate analysis not within control limits.
CV -	- Analyzed by cold vapor (mercury only).
F -	Analyzed by graphite furnace atomic absorption (GFAA).
N .	Spiked sample recovery not within control limits.
L [Analyzed by inductively coupled argon plasma (ICAM). Indicates commound was analyzed for but not detected
1 3 -	manuales compound was analyzed for but not detected.
Not	e: There were no Field Blank samples taken for this project.

Q5-6 page 55

time the sample was extracted. The Weston Laboratory was required to meet analysis holding times (for both soil and water samples) of 14 days for cyanide, 28 days for mercury, and 6 months for all other inorganics. Based on an evaluation of all environmental samples and QC blanks analyzed for Inorganics using the July 1988 SOW, all holding time criteria were met.

Initial Calibration Verification--Calibration of the inductively coupled argon plasma (ICP) spectrometer was established and validated by injecting a blank and at least one standard to establish an analytical curve. Calibration of the graphite furnace atomic absorption spectrometer (GFAA) was established and validated by injecting a blank and at least three standards (one of which must be at the CRDL) to establish the analytical curve. Mercury analysis requires the use of a blank and at least four standards to establish the curve and cyanide analysis requires the use of a blank and at least three standards in establishing the curve with a distilled midrange standard. Following the initial calibration, percent recovery values were evaluated to verify the validity of the calibration. Calibration criteria requirements (i.e., mercury, 80 to 120 percent; cyanide, 85 to 115 percent; and all others, 90 to 110 percent recovery) were described in the July 1988 SOW. Based on an evaluation of the initial calibrations conducted for metals and cyanide analyses, all percent recovery values were within control limits.

Continuing Calibration Verification--A CCV standard was analyzed daily and every 12 hours. Following the standard analysis, percent recovery values were calculated to verify that the current calibration remained acceptable. After this, at least one of the ICV and CCV percent recovery values per analysis type (e.g., ICP, GFAA) was recalculated to confirm that the original calculation agreed with the recalculation (i.e. within one percent). Percent recovery requirements used to evaluate the calibration acceptability are described in the July 1988 SOW. Based on an evaluation of the continuing calibrations conducted for metals and cyanide analyses, all percent recovery values were within control limits.

Method Blanks--One method blank analysis was conducted with each batch of environmental samples analyzed for metals and cyanide. Each method blank was evaluated for interferents that might potentially interfere with accurate quantitation of a target compound. According to CLP criteria, a laboratory blank may not contain any contaminants. Based on an evaluation of all method blanks (i.e., initial, continuing, and procedural) analyzed for metals and cyanide using the July 1988 SOW, no interferents were detected, except in 881D00EBC, where some contaminants were detected, but were all below the CRDL.

Interference Check Sample (ICS) Analysis--An ICS was run at the beginning and end of each sample analysis run, or twice per 8-hour work shift, whichever was more frequent. The results for the ICS solution analysis must fall within the control limits (i.e., within 20 percent of the true value), or have an absolute value greater than the instrument detection limit for those analysis not present in the ICS solution. One or more of the percent recoveries were then recalculated from the raw data (ICP printout) to verify that the original value and the recalculated value agreed. ICS criteria requirements are described in the July 1988 SOW. Based on an evaluation of the interference check sample analyses conducted for metals and cyanide, all percent recovery criteria were within control limits.

US-D page 50

Spiked Sample Analysis--Spiked sample analyses were conducted to assess the accuracy of the laboratory and to evaluate the matrix effect of the sample upon the analytical methodology based upon the percent recovery of each compound. The control limits for percent recovery values were between 75 and 125 percent, and were described in the July 1988 SOW. One or more of the recoveries was then recalculated from the raw data to verify that the original value and the recalculated value agreed. All percent recoveries were within the required control limits for all spiked samples, except for 8801D48B (silver = 3.3 percent), 8801D22B (silver = 3.3 percent), 8802D0EB (silver = 0 percent), and 881D00EBC (selenium = 72.0 percent). None of these elements were detected in the soil samples, however, so these spiked samples were not considered to have adversely impacted the data quality. Tables 3-17 and 3-18 present the spiked and duplicate sample results for water and soil samples, respectively.

Duplicate Sample Analyses--Duplicate sample analyses were conducted to assess the precision of the laboratory based on each sample matrix. Precision was expressed as the RPD. The control limits for the RPD were within 20 percent (35 percent for soils) for sample values greater than 5 times the CRDL or two times the CRDL for sample values less than 5 times the CRDL. These limits were described in the July 1988 SOW. One or more of the RPD values was then recalculated to verify that the results were reported correctly. Based on an evaluation of the duplicate sample analyses conducted for Metals and Cyanides, all soil samples were within control limits. Since all of the water samples were field QC blanks, duplicate analyses were not performed for water samples.

Laboratory Control Sample (LCS) Analyses -- Laboratory control sample analyses serve as monitors of the overall performance of all analysis steps. Since LCS control limits (percent recovery) for soils were not reported, the limits for soils were assumed to be the same as those used for water samples (i.e. 80-120 percent). These control limits were described in the July 1988 SOW. The raw data were then checked and one or more of the recovery values was recalculated to verify the results. All percent recoveries results for metals and cyanide were within control limits, except for 8801D48B (arsenic = 122 percent, thallium = 57 percent), 8801D22B (arsenic = 122 percent, thallium = 57 percent), and 881D00EBC (arsenic = 214, lead = 52.3, thallium = 48.1 percent). The significant sample results for arsenic for samples 8801D48B and 8801D22B should be regarded as estimates because the LCS recoveries were greater than 120% and the sample results were above the instrument detection limit (i.e., 10 μ g/L). For samples 8801D48B and 8801D22B, the sample results for thallium should be regarded as estimates because the results were below the instrument detection limit (i.e. 10 μ g/L) and the LCS recoveries were within the range of 50 to 79 percent. In sample 881D00EBC, the result for arsenic is regarded as acceptable because the results are below the instrument detection limit and the LCS recovery is greater than 120 percent. Additionally, the result for lead in this sample is regarded as an estimate because the LCS recovery is within 50 to 79 percent and the sample result is above the instrument detection limit (i.e., $3 \mu g/L$); the result for thallium, however, is unusable because the LCS recovery is less than 50 percent.

CRDL Verification--A CRDL verification analysis is required for both GFAA and the ICP (initial and final) to verify the contract required detection limits.

15-0 XUQE 57

			ACCURA	CY				PRECIS	ION	
Parameter	MS Total No. Analyses	Percent Recovery Ranges	%R Control Limits	%R No.Accept Analyses	%R No.Unaccept Analyses	MSD Total No. Analyses	Range RPD	RPD Limits	RPD No.Accept Analyses*	RPD No.Unaccep Analyses*
TRACE METAL	S									
Antimony	1	(103)	(75-125)	1	0	0	NA	60	NA	N
Arsenic	1	(83.0)	(75-125)	1	0	0	NA	10	NA	N
Barium	1	(98.6)	(75-125)	1	0	0	NA	200	NA	N
Beryllium	1	(102)	(75-125)	1	0	1	(200)	5	0	
Cadmium	1	(101)	(75-125)	1	0	0	NA	5	NA	N
Chromium	1	(101)	(75-125)	1	0	0	NA	10	NA	N
Cobalt	1	(99.1)	(75-125)	1	0	0	NA	50	NA	N
Copper	1	(109)	(75-125)	1	0	0	NA	25	NA	N
Lead	1	(97.0)	(75-125)	1	0	1	(0.00)	5	1	
Nickel	1	(96.0)	(75-125)	1	0	0	NA	40	NA	1
Selenium	1	(72.0)	(75-125)	0	1	0	NA	5	NA	,
Silver	1	(0.00)	(75-125)	0	1	0	NA	10	NA	
Thallium	1	(95.6)	(75-125)	1	0	0	NA	10	NA	ļ
Vanadium	1	(92.6)	(75-125)	1	0	0	NA	50	NA	
Zinc	1	(96.0)	(75-125)	1	0	1	(109)	20	0	

NA - Not analyzed. Samples 8801EBCD and 8802DOEB were used for matrix effects evaluations.

as-b page 58

81 FD0

			ACCURAC	Y				PRECI	SION	
Parameter	MS Total No. Analyses	Percent Recovery Ranges	%R Control Limits	%R No.Accept Analyses	%R No.Unaccept Analyses	MSD Total No. Analyses	Range RPD	RPD Limits	RPD No.Accept Analyses*	RPD No.Unaccept Analyses*
TRACE METALS										
Barium	1	(99.0)	(75-125)	1	0	1	0.040	20	1	(
Beryllium	1	(97.0)	(75-125)	1	0	0	NA	20	0	(
Cadmium	1	(102)	(75-125)	1	0	1	14	20	1	(
Chromium	1	(98.0)	(75-125)	1	0	1	0.80	20	1	(
Cobalt	1	(105)	(75-125)	1	0	1	14	20	1	(
Соррег	1	(107)	(75-125)	1	0	1	7.7	20	1	(
Nickel	1	(103)	(75-125)	1	0	1	8.6	20	1	(
Silver	1	(3.30)	(75-125)	0	1	0	NA	20	0	(
Tin	1	(99.0)	(75-125)	1	0	0	NA	20	0	(
/anadium	1	(89.0)	(75-125)	1	0	1	4.7	20	1	(
Zinc	1	(85.0)	(75-125)	1	0	1	2.0	20	1	(

25-6 59

The EPA has not established any control limits for this QC check analysis, but any positive percent recovery is considered to be acceptable. Based on an evaluation of the CRDL verification analyses conducted for Metals and Cyanide, all samples were greater than zero.

us-o page W

Appendix 5–7

.

APPENDIX 5-7

GAS SAMPLING RESULTS

Borehole Number	Sample Number	Sample Volume	Chain of Custody	Holding Time	Surrogate Recovery	Tuning and Mass Cal	Initial <u>Cal</u>	Continuing <u>Cal</u>	Internal <u>Standard</u>	Method <u>Blank</u>
	+= / + + / + +									
8801D	05/03/89	014	01/	01/	<u> </u>	017	Тжо	4 compounds	01/	Acetone
	E8019X8901	UK	UK	UK	UK	UK	compounds	exceeds		2-butanone
	E8018X8901	UK	UK	UK	UK	UK	exceeds	% diff	UK	
	E8017X8901	UK	UK	UK	UK	UK	% diff		UK	
	E8016X8901	UK		UK	UK	UK			UK	
	E8015X8901	Sample	not collec	ted	*				0 1/	
	E801528901	UK	UK	UK	NU *	UK			UK	
	E801538901	UK	UK	UK	NU	UK			UK	
	E801058901	ŬK	0K	ŬK	UK	0K			UK	
8801D	05/10/89									
	E801548901	5mL	0K	0K	OK	OK			OK	
	E8014X8901	5mL	0K	0K	0K	OK		3 compounds	OK	4 compounds
	E8013X8901	5mL	0K	0K	NO [*]	0K		exceeas % diff	OK	lab blank
	E801328901	5mL	0K	0K	NO [*]	0K		% uni	NO	
	E801338901	Sample	not collec	ted						
	E8012X8901	5mL	OK	OK	0K	0K			0K	
	E8011X8901	5mL	OK	OK	OK	0K			0K	
	E8010X8901	5mL	0K	OK	OK	OK			0K	
70.4	05 (10 (00									
/8-4	US/18/89 F784588001	OK	or	OK	OK	or			ΩK	
	E784528901	OK OK	0K		OK	OK		6 compounds	OK	2-butanone
	E7844328301	0K 0K	0K		OK	OK		exceeds	OK	methylene chlo
	E784428001	0K 0K	0K 0K	0K	OK			% diff	OK	1,1,1-trich or
	E784328901	23 ml	OK	OK	NO.				OK	
	E7842X8001		0K	0K	NO *	OK			OK	
	E7042A0301	OK	OK OK	ON OV	NO *	OK				
	E7640E6901	UN	UN	UN	I¥U	UK			UN	
WWW-1	05/31/89									
	EWW17X8901	0K	0K	OK	0K	0K		^	OK	4
	EWW16X8901	OK	0K	0K	0K	0K		8 compounds	OK	4 compounds found in
	EWW1628901	Sample	not collec	ted				% diff		blank
	EWW1638901	OK	OK	OK	OK	ОК			0K	
	EWW15X8901	0K	0K	0K	0K	0K			OK	
	EWW14X8901	OK	0K	0K	0K	OK			OK	
	EWW1428901	0K	0K	0K	0K	OK			OK	
	EWW1058901	0K	0K	0K	0K	OK			0K	
ԱԱԱ– 1	06/06/20									
488 L	FWW13X8901	OK	0K	٥ĸ	0K	ΩK			OK	
	FWW1328901	0K	OK	0K	OK	0K		7 compounds	OK	2 blanks
	FWW12Y8901	OK	OK	OK	OK	0K		exceeds	0K	run
	FWW1118901	0K	OK	OK	NO.*	0K		% diff	0K	
	FWW1128901	OK	OK	OK	NO *	0K			0K	3 compounds
	FWW10Y8901	0K	DK	OK	NO.*	0K			OK	reported
	CHH10/0001	WIN .	<u>u</u> .	OIN CONT	110				U.S.	

⁺able 5-22. Quality control table summary for formation gas samples^a

a 57 page 1

Table 5-22. (continued)

Borehole Number	Sample <u>Number</u>	Sample <u>Volume</u>	Chain of <u>Custody</u>	Holding <u>Time</u>	Surrogate <u>Recovery</u>	Tuning and <u>Mass Cal</u>	lnitial <u>Cal</u>	Continuing	Internal <u>Standard</u>	Method <u>Blank</u>
77-1	06/08/89							8 Compounds		2-butanone
	E7716X8901	0K	OK	>48 H	0K_	0K		exceeds	OK	1,1,1-tri-
	E7715X8901	0K	OK	>48 H	NO	OK		% 0111	0K	chloroethane
	E771528901	0K	0K	>48 H	0K	ОК			OK	
	E7714X8901	OK	0K	>48 H	0K	0K			ŨΚ	
	E7713X8901	0K	0K	>48 H	OK	ОК			0K	
	E7712X8901	0K	0K	>48 H	NO	0K			0K	
	E7710T8901	0K	0K	>48 H	NO [*]	0K			OK	

a. Communication between L. D. Goodrich, EG&G Idaho, Inc., Idaho Falls, Idaho, and L. N. Peterson/C. J. Bonzon, EG&G Idaho, Inc., Idaho Falls, Idaho, December 26, 1989.

0.5-7 page 2

Appendix 6-1

.

APPENDIX 6-1

1983 SOILS STUDY

Report No. PG-WM-83-032 Date: _____ Gctober 1983

INTERNAL TECHNICAL REPORT

SCREENING FOR HAZARDOUS MATERIALS IN RWMC ERODIBLE SOILS

Physical and Biological Sciences Division Earth and Life Sciences Branch

wlan B. Crockett

Checked 34: Celen B. Contest Approved Sy

THIS DOCUMENT HAS NOT RECEIVED PATENT CLEARANCE AND IS NOT TO BE TRANSMITTED TO THE PUBLIC DOMAIN

SCREENING FOR HAZARDOUS MATERIALS IN RWMC ERODIBLE SOILS

-

Physical and Biological Sciences Division Earth and Life Sciences Branch

Alan B. Crockett

Q6-1 page 2

.

CONTENTS

INTRODUCTION	1
OBJECTIVES	3
SAMPLING DESIGN	4
ANALYTICAL PROCEDURES	8
RESULTS	13
CONCLUSIONS	15
REFERENCES	16
APPENDIX ARAW DATA FOR METALS AND NONMETALLIC INCRGANIC CONSTITUENTS IN RWMC SOILS	17

FIGURES

1.	Locations of RWMC soil sampling sites R-2 through R-9	5
2.	Location of soil sampling location R-1 and Spreading Area B where control samples were collected	6

TABLES

1.	List and detection limits of organic chemicals, 9 metals, and nonmetallic inorganic constituents analyzed in RWMC and control soils	9
2.	Results of two quality assurance samples (field duplicates) submitted to the Laboratory	12
3.	Concentration of metals and inorganic nonmetallic 14 compounds in surface soils at RWMC and WERF	14
A-1.	Raw data for metals and nonmetallic inorganic constituents in RWMC soils	18

.

alle-1 page 3

INTRODUCTION

The Radioactive Waste Management Complex (RWMC) in the Idaho National Engineering Laboratory is currently a shallow land burial site for low-level waste and, prior to 1970, for transuranic waste. Since it was opened in 1952, about 115,000 m^3 (4,060,000 ft³) of low-level waste and low-level waste commingled with transuranic waste have been buried at the RWMC. The practice of burying transuranic waste was discontinued in 1970.

The buried waste consists of a variety of materials contaminated with radioactivity including: construction and demolition material, laboratory equipment, protective clothing, maintenance equipment, decontamination materials, waste processing products, etc.¹ Some of the buried waste, if not radioactive, would be considered hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA), 40 CFR 260-265. By this definition, the hazardous wastes known to be buried at the RWMC include acetone, antimony, benzene, cadmium, hydrofluoric acid, mercury and thallium. Other buried hazardous materials include asbestos, beryllium, gasoline, lead, nitrates, oil, palladium, polychlorinated biphenyls, zirconium, etc.¹ Accurate data do not exist on the types and quantities of contaminated, hazardous materials buried at the RWMC, but quantities of most are thought to be small.

Increased concern for hazardous waste has been stimulated by the RCRA regulations promulgated by the EPA, and DOE's concern for hazardous waste and radioactive mixed waste (radioactive waste containing hazardous waste constituents). Under DOE Order 5480.2,² low-level radioactive mixed waste will be managed "to assure a degree of protection of the environment and the safety of the public equivalent to that afforded under 40 CFR 260-265." While the Order does not apply retroactively, it has stimulated concern about radioactive mixed waste previously buried at the RWMC.

To ensure that buried radioactive waste is not migrating from the RWMC, routine environmental monitoring is conducted.^{3,4} Samples of

2001 4

groundwater, surface water, subsurface rock and soil, surface soil, air, and biota are analyzed for radionuclides. The only nonradioactive constituents routinely sought are nitrates in a few soil and surface water samples and chlorides in groundwater. Results of the monitoring programs are reported annually.

One special study was conducted in 1980 by the U.S. Geological Survey;⁵ RWMC groundwater and perched water samples were analyzed for dissolved organic carbon (DOC), since elevated levels generally indicate contamination by organic chemicals. Water samples from four deep wells--numbers 87, 88, 89, and 90--were collected by pumping. These samples contained 1.6-8.7 mg/L of DOC compared to background levels of 7.1 mg/L. The perched water sample was collected from Well 92 and it showed a value of 8.7 mg/L DOC compared to a background level of 9.3 mg/L. According to these data, there is no evidence of organic contamination of groundwater.

Other than the United States Geological Survey (USGS) study of groundwater, no studies have been conducted to determine if nonradioactive hazardous materials are migrating from the RWMC. Since only limited migration of radioactive waste has occurred, hazardous waste movement has also been assumed to be minimal. Thus, this screening study was conducted to determine if trace elements and organics from buried waste are migrating from the RWMC as evidenced by their presence in surface soils.

000-1 Dane, 5

OBJECTIVES

The purpose of this screening study was to determine if hazardous materials buried at the RWMC are migrating from the burial site as particulate matter suspended in air or water. To maximize the probability of detecting metals and organics and to minimize costs, sampling efforts focused on collecting surface soils consisting of fine particulates. Fine-grained soils have a relatively higher probability of resuspension and a greater sorption capacity for metals and organics than do coarse materials.⁶ The results of this study will serve as a basis for determining if more comprehensive studies are needed.

The specific objectives of the study were as follows:

- To quantify the concentrations of hazardous metals and organics in surface soil at the RWMC
- To determine whether the contaminant levels represent a significant hazard that would require routine monitoring.

pagelo
SAMPLING DESIGN

Initially, waste records were examined to determine if specific areas of the RWMC could be associated with radioactive mixed waste disposal. The records were not helpful and were not used as a basis for the sampling design.

As previously noted, metals and organic chemicals usually concentrate in fine particles, and such fines are more susceptible to erosion. Therefore, waterborne and deposited soil found in drainage ditches and depressions was selected for sampling. Nine soil samples potentially containing hazardous materials (R) and three control samples (C) were collected from the following areas (Figures 1 and 2):

- R-1 Spreading area downstream from the RWMC to which runoff is channeled
- R-2 Ditch just outside the burial ground into which all runoff water from the burial grounds is pumped
- R-3 Depression to the right of the entrance gate and within the burial grounds
- R-4 Culvert which receives runoff from Pad A
- R-5 Depression west of pit 2 (closed in 1963)
- R-6 Sedimentation area north of trench 2 before culvert
- R-7 Depression southeast and downgradient from an abandoned acid disposal pit
- R-8 Bottom of active pit 16/17

a 6-1 page 7

Figure 1. Location of RWMC soil sampling Sites R-2 through R-9.

INEL 3 1201

Figure 2. Location of soil sampling Location R-1 and spreading Area 8 where control samples were collected.

page 9

- R-9 Area where snow scraped from the burial grounds is deposited
- C-1 Control taken from undisturbed sagebrush area
- C-2, C-3 Controls collected from diversion area B which is used as a source of clean soil for capping pits and trenches

Each sample was a composite of five surface soil subsamples. The subsamples were scooped with a trowel from inside a steel ring (5 cm deep x 10-cm diameter) which was pounded into the ground and the soil was then placed in specially cleaned l-qt (\sim l-L) glass jars with teflon-lined lids. In control areas, subsamples were collected from a large area, but samples collected from ditches and ponding areas were composited from much smaller areas. The trowel and steel ring used for sampling was cleaned with chlorothane Nu (solvent for radioactive decontamination) between samples. The samples were collected on September 13, 1982, and shipped chilled to the analytical laboratory where they were received September 15, 1982.

ANALYTICAL PROCEDURES

All samples were analyzed by California Analytical Laboratories, Inc., for the organic compounds, metals, and inorganic nonmetallic constituents shown in Table 1. The lower limits of detection in soil are also listed in Table 1. Raw data on these metals, inorganic nonmetals, and a few other elements are presented in Appendix A. All results are based upon wet weights of samples.

Organic Compounds

The analytical procedures used for organic priority pollutants in sediments were specified by the EPA in their contract with the laboratory. The procedures are modified versions of methods 608, 613, 624, and 625 as published in the Federal Register, December 3, 1979. Any significant peak detected on the gas chromatograph runs, even though not a priority organic, was to be identified.

For extractable compounds, 40 g of sediment (wet weight) were extracted in a Soxhelet apparatus with 1:1 acetone/hexane (v:v) (spiked with the internal standards) for 16 h. One half of the extract was concentrated to 10 mL using a Kuderna-Danish evaporator, and the second half was rinsed with water, concentrated, and analyzed for pesticides. The first extract was added to 50 mL of hexane, and the mixture was extracted three times with a NaOH solution. The organic phase was then concentrated and analyzed by gas chromatography/mass spectrometry for base/neutral compounds. The aqueous extract was acidified, extracted three times with methylene chloride, concentrated, and analyzed for acid extractable compounds.

Volatile organics in soils were determined by placing 1 to 5 g of soil into a volatile organic analysis vial and adding 5 mL of water containing internal standards. The vial was then purged, and the vapors trapped and analyzed according to EPA method 624 referenced above.

page 11

TABLE 1. LIST AND DETECTION LIMITS OF ORGANIC CHEMICALS, METALS AND NONMETALLIC INORGANIC CONSTITUENTS ANALYZED IN RWMC AND CONTROL SOILS (mg/kg)

Volatiles	Detection	Base/Neutral Compounds	Detection imit
acrolein	0.05	acenaphthene	0.5
acrylonitrile	0.05	benzidine	0.5
benzene	0.05	1,2,4-trichlorobenzene	0.5
carbon tetrachloride	0.05	hexachlorobenzene	0.5
chlorobenzene	0.05	hexachloroethane	0.5
1,2-dichloroethane	0.05	bis(2-chloroethyl)ether	0.5
1,1,1-trichloroethane	0.05	2-chloronaphthalene	0.5
1,1-dichloroethane	0.05	1,2-dichlorobenzene	0.5
1,1,2-trichloroethane	0.05	1,3-dichlorobenzene	0.5
1,1,2,2-tetrachloroethane	0.05	1,4-dichlorobenzene	0.5
cnloroethane	0.05	3,3'-dichlorobenzidine	0.5
2-chloroethylvinyl ether	0.05	2,4-dinitrotoluene	0.5
chloroform	0.05	2,6-dinitrotoluene	0.5
l,l-dichloroethene	0.05	1,2-diphenylhydrazine	0.5
trans-l,2-dichloroethene	0.05	fluoranthene	0.5
1,2-dichloropropane	0.05	4-chlorophenyl phenyl ether	0.5
trans-1,3-dichloropropene	0.05	4-bromophenyl phenyl ether	0.5
cis-1,3-dichloropropene	0.05	bis (2-chloroisopropyl) ether	0.5
ethylbenzene	0.05	bis (2-chloroethoxy) methane	0.5
methylene chloride	0.05	hexachlorobutadiene	0.5
chloromethane	0.05	hexachlorocyclopentadiene	0.5
bromomethane	0.05	isophorone	0.5
bromoform	0.05	napnthalene	0.5
bromodichloromethane	0.05	nitrobenzene	0.5
fluorotrichloromethane	0.05	N-nitrosodiphenylamine	0.5
dichlorodifluoromethane	0.05	N-nitrosodioropylamine	0.5
chlorodibromomethane	0.05	bis (2-etnylhexyl) onthalate	0.5
tetrachloroethene toluene trichloroethene vinyl chloride Acid Compounds	0.05 0.05 0.05 0.05	benzyl butyl phthalate di-n-butyl phthalate di-n-octyl phthalate diethyl phthalate dimethyl phthalate benzo(a)pyrene	0.5 0.5 0.5 0.5 0.5 0.5
2, 4, 6-trichlorophenol p-chlor-m-cresol 2-chlorophenol 2,4-dichylorophenol 2,4-dimethylphenol 2-nitrophenol	0.5 0.5 0.5 0.5 0.5 0.5	benzo(b)fluoranthene benzo(k)fluoranthene chrysene acenaphthylene anthracene benzo(ghi)perylene fluorene	0.5 0.5 0.5 0.5 0.5 0.5
4-nitrophenol 2,4-dinitrophenol 4,6-dinitro-2-methylphenol pentachlorophenol pnenol	2. 1. 0.5 0.5 0.5	phenanthrene dibenzo(a,h)anthracene indeno(1,2,3-cd)pyrene pyrene	0.5 0.5 0.5 0.5

a 6-1 page 12

TABLE 1. (continued)

.

Pesticides	Jetection Limit	Metals	Detection Limit
aldrin dieldrin chlordane 4,4'-DDT 4,4'-DDE	0.01 0.01 0.1 0.01 0.01	antimony arsenic beryllium boron cadmium chromium	1.0 1.0 0.01 1.0 0.2 0.2
4,4'-DDD a-endosulfan 3-endosulfan endosulfan sulfate endrin	0.1 0.01 0.01 0.1 0.01	copper lead mercury nickel selenium	0.4 0.3 0.03 0.3 1.0
endrin aldehyde heptachlor heptachlor epoxide a-BHC 3-BHC	0.1 0.01 0.01 0.01 0.01	silver thallium zinc Inorganic Nonmetals	1.0 0.6 0.2
s-BHC y-BHC (lindane) PC3-1242 PC31254 PC3-1221	0.01 0.01 0.1 0.1 0.1	chloride nitrate	NA ^a NA
PCB-1232 PCB-1248 PCB-1260 PCB-1016 toxaphene	0.1 0.1 0.1 0.1 0.2		
Dioxins 2,3,7,3, -tetrachloro- dibenzo-p- dioxin	G.1		

a 6-1 page 13

.

Metals

For all elements except boron and mercury, 10 g of soil (wet weight) were digested with 10 mL of 1:1 HNO_3 for 2-6 h and evaporated to near dryness on a hot plate. Eight mL of HNO_3 were added to the sample and it was again evaporated to near dryness. Twenty mL of 1:1 HNO_3 and 6 mL of $30\% H_2O_2$ were added, and the sample was heated until effervescence ceased (approximately 10 min). After cooling, 2 mL of 1:1 HNO_3 and 25 mL of distilled water were added to the mixture, which was then filtered. The filtrate was made up to volume and analyzed by atomic absorption or inductively coupled plasma emission spectroscopy (Federal Register, December 3, 1979, Part III). Boron analyses were conducted on an aqueous extract of the soils. Mercury was determined by the cold vapor technique.

Inorganic Nonmetalic Compounds

The American Public Health Association⁷ procedures were used for the determination of chloride (method 407C), and nitrate (418C) on aqueous extracts of the soil samples.

Quality Assurance

A quality assurance (QA) program was included in this study. This involved submitting duplicate, spiked, and standard samples from another study to the analytical laboratory; however, only the samples collected simultaneously with the RWMC samples are presented. The metal and inorganic compound results (Table 2) indicate reasonable precision for a screening study. Since only one organic was detected, precision cannot be determined.

In addition, the analytical laboratory runs an internal quality assurance program as specified in EPA procedures for organic compounds and elements (Federal Register, December 3, 1979).

pager

		Sample ^a					
<u>Analysis^b</u>	A ₁	A2	B ₁	^B 2			
Boron Cadmium Chromium Copper Lead Nickel Zinc	42 0.58 120 10 11 8.2 83	49 0.58 150 11 8.0 7.4 175	0.29 1.9 3.6 15 1.2 25	0.36 1.3 2.5 12 0.6 20			
Chloride Nitrate-N	240 0.21	210 0.23	160 0.60	130 0.62			
PCB 1260			300	400			

TABLE 2. RESULTS OF TWO QUALITY ASSURANCE SAMPLES (FIELD DUPLICATES) SUBMITTED TO THE LABORATORY (mg/kg)

a. A and B are separate samples. 1 and 2 represent field duplicates.

b. No other metals or organic compounds were detected. QA results are from sediment samples collected for a different study but submitted to the laboratory at same time.

Q 6-1 page 15

RESULTS

The 12 soil samples were analyzed for organic priority pollutants specified by the EPA (Table 1). Sample R-1 showed chloroform at 0.055 mg/kg but no other organic compound was detected in the samples. The source of the chloroform was probably the chlorothane Nu cleaning solution which contained chloroform. The results for volatile compounds should be viewed with caution since such compounds are not likely to persist in surface soils.

Table 3 presents estimated geometric means and 95% confidence intervals for analytical data on inorganics in RWMC exposed soils, controls, and preoperational samples collected from around the Waste Experimental Reduction Facility (WERF). The WERF is a facility on the INEL at which a set of preoperational soil samples was collected and analysed. The results are included as additional background data. Samples R-8 and C-3 were rejected as statistical outliers. The only reasonable explanation for the outliers is an error in the extraction procedure.

T-tests for comparisons of means indicated no statistically significant difference in concentration between inorganics in RWMC soils and controls at the 95% confidence level. Considering only two control samples were used, this is not suprising. However, the data do not even suggest contamination. Generally, control soils contain somewhat higher levels of inorganics than RWMC exposed soils. RWMC soils also do not have elevated levels of elements compared to granitic or basaltic crustal abundance levels (Table 3).⁹ The soils at the RWMC are derived mainly from granitic rock but also contain some basaltic materials. In a comparison of concentrations, it should be noted that all concentration data are based upon wet weights. Concentrations could have increased by about 50% if the samples had been analyzed on a dry weight basis.

A comparison of the 95% confidence intervals for RWMC and WERF soils indicates that copper, lead, and zinc levels are lower at the WERF than at the RWMC (95% confidence intervals do not overlap). However, these elements at the RWMC are below average crustal abundance values for granite.

page 16

	Concentrations mg/kg						
		RWMC Surface Soil		WERF S	urface Soil		t t
<u>Constituent</u> ^a	Exposed Mean ^b	95% Conf. Int.	Control <u>Mean^{b,C}</u>	<u>Mean ^bn=12</u>	95% Conf. Int.	Granite Average ^d	Basalt <u>Average^d</u>
Boron	19	16 - 22	25	67	61 - 74	15	5
Cadmium	0.50	0.42 - 0.60	0.62	0.5	0.4 - 0.6	0.2	0.2
Chromium	3.5	2.7 - 4.6	3.3	4.4	3.7 - 5.3	4	200
Copper	6.9	5.6 - 8.4	6.8	ND		10	100
Lead	8.8	7.8 - 9.9	9.9	1.7	1.0 - 2.9	20	5
Nickel	7.0	5.8 - 8.6	5.8	5.7	4.8 - 6.8	0.5	150
Zinc	37	27 - 51	27	19	16 - 23	40	100
Chloride	150	80 - 310	160				
Nitrate-N	0.28	0.15 - 0.52	0.53				

TABLE 3. CONCENTRATION OF METALS AND INORGANIC NONMETALLIC COMPOUNDS IN SURFACE SOILS AT RWMC AND WERF

a. The following elements were not detected in RWMC surface soils or controls: antimony, arsenic, beryllium, mercury, selenium, silver, and thallium.

b. Estimated geometric mean.

c. One RWMC soil sample extract was rejected as an outlier for elemental analysis; n equals 8 and 2 for exposed and control soils. For the other inorganic constituents n equals 9 and 3 for exposed and control soils.

d. Reference 9.

CONCLUSIONS

The screening study for hazardous waste at the RWMC shows no evidence of surface contamination by organic chemicals, metals, or nonmetallic inorganic constituents. It can be concluded that no significant elevated levels of the constituents listed in Table 1 are being transported off the RWMC by surface runoff or atmospheric transport of particulates. The results should not, however, be used to draw any conclusions concerning the transport of highly volatile organic chemicals. The results of this screening study do not provide any evidence that a routine monitoring program for elements and organics in surface soil at the RWMC needs to be established.

Dage 18

REFERENCES

- 1. U.S. Department of Energy, <u>Environmental and other Evaluations of</u> <u>Alternatives for Management of Defense Transuranic Waste at the Idaho</u> <u>National Engineering Laboratory</u>, IDO-10103, Vol. 1, 1982.
- 2. U.S. Department of Energy, DOE Order 5480.2, <u>Hazardous</u> and <u>Radioactive</u> <u>Mixed Waste Management</u>, Washington D.C., 1982.
- U.S. Department of Energy, <u>1981 Environmental Monitoring Program</u> <u>Report for Idaho National Engineering Laboratory Site</u>, IDO-12082 (81), 1982.
- 4. D. H. Janke and T. P. Zahn, <u>Annual Report 1981: Environmental</u> Surveillance for the INEL Radioactive Waste Management Complex, EGG-2209, 1982.
- 5. J. A. Leenheer and J. C. Bagby, <u>Organic Solutes in Groundwater at the</u> Idaho National Engineering Laboratory, IDO-22061, 1982.
- 6. L. Schultz and K. A. Rahn, "Trace-Element Concentrations in Erodible Soils," Atmospheric Environment, 16, pp. 171-176.
- American Public Health Association, Standard Methods for the Examination of Water and Wastewater, 15th edition, Washington, D.C. 1981, 1134 p.
- 8. W. J. Dixon and F. J. Massey, Jr, <u>Introduction to Statistical</u> <u>Analysis</u>, New York: McGraw-Hill Book Company, Inc., 1969, 639 p.
- S. R. Taylor, "Abundance of Chemical Elements in the Continental Crust: A New Table," <u>Geochimica et Cosmochimica Acta, 28</u>, pp. 1273-1285.

a 6-1 page 19

APPENDIX A

RAW DATA FOR METALS AND NONMETALLIC INORGANIC CONSTITUENTS IN RWMC SOILS

a 6-1 page 20

a Constituent	Detection · Limit	R-1	R-2	R-3	R-4	R~5	R-6	R+7	R-8	R-9	(-)	ſ-2	6-3
								·····			<u> </u>		
Bar ium	1.0	83	210	180	83	92	180	83		130	250	92	
Boron	1.0	17	18	12	21	22	18	22		22	25	25	
Chromium	0.2	5.1	3.5	2.7	4.7	5.1	2.5	3.3		2.4	5.8	7.9	
Cadmium	0.2	.65	,45	.45	.62	.55	.34	.50		.52	1.1	.36	
Cobalt	0.4	3.5	2.2	2.2	2.5	3.1	2.7	52.1	÷-	2.3	4.8	2.0	
Copper	0.4	9.2	8.3	5,5	8.1	8.0	4.5	6.6		6.2	n	4.3	
Lead	0.3	10	8.2	8.2	11	9.2	8.3	9.2		6.8	12	7.8	
Manganese	0.1	200	160	150	150	190	120	120		140	230	160	
Nickel	0.3	12	6.7	5.9	6.9	8.0	5.7	5.9		7.1	8.3	4.0	
Zinc	0.2	52	31	32	78	39	26	28		33	38	20	- -
Chloride		400	160	240	400	160	80	64	64	160	130	130	240
Nitrate-N		0.53	0.22	0.57	0.17	0.14	0.26	0.20	0.18	0.74	0.57	1.0	0.27

TABLE A-1. RAW DATA FOR METALS AND NONMETALLIC INORGANIC CONSTITUENTS IN RWMC SOILS (mg/kg)

a. Antimony, arsenic, beryllium, mercury, selenium, silver, thallium, and vanadium were not detected. Metal results for samples R-8 and C-3 rejected due to extraction errors.

Appendix 11–1

APPENDIX 11-1

EDF-PRELIMINARY ANALYSIS OF TWO-WEEK TEST

Q11-1 pageo

Project File Number EDF Serial Number Functional File Number

ENGINEERING DESIGN FILE

VVED Project/Task Subtask DATA ANALYSIS EDF Page _ of <u>LS</u> Preliminary Analysis of the 2 week UVED Test Subject.: (See below) Abstract:

Distribution (complete package) P.B. BLACKER, K.H. KINKAID, R.R. PISCITELLA, J.B. SISSC R.G. BACA, N.W. SPANG, J.F. GINSBERG, D.L. FRENCH, T.B. ARRINGTON, F.A. DAVIES

Distribution (cover sheet only): Project EDF file log, EDF serial no. log

Date Date Author Dept. Reviewed RG Baca 5/28/90 5-10-90 James isson FR3t

The objective of this report is to present a preliminary evaluation of the data from the 2-week Vapor Vacuum Extraction Demonstration (VVED) applicable to modeling. This report focuses on evaluation of the soil gas pressure and organic vapor concentration data. The VVE process proceeded at a soil gas pumping rate of 514 cfm producing an average mass extractoin rate for carbon tetrachloride (CCL4) of 14 lbs/day. Problems with the Data Acquisition System (DAS) were encountered that prevented the pressure data from the 2 week test from being fully useful. However, problems with the system have been corrected and now has yielded data for more then 1 month continuously at a sampling interval of 2 minutes. Downhole pressures are being corrected for barometric effects. The corrected pressures will be used to obtain estimates of the large scale hydraulic conductivities needed to model a large clean up system. The gas concentration data appears to have sources of error that are probably mechanical but are as yet to be identified. Further studies are needed to better isolate and correct these errors. The concentration of carbon tetrachloride (CCl4) in the extraction stream is anomalously low and a tracer test is being devised to identify conduit flow near the extraction well.

PRELIMINARY ANALYSIS OF THE 2 WEEK VVED TEST

by J. B. Sisson

The 2-Week VVED test was conducted primarily to establish levels of radionuclides that might be transported by Vapor Vacuum Extraction (VVE) process (See ERP-VVED-042 for a report on the radionuclides). Secondary objectives of the 2-Week Test were to obtain data for modeling activities and data required to scale up the extraction system to the final cleanup configuration. This report presents a preliminary evaluation of the data collected during the 2 week VVED test. This information will be used to model the contaminant migration beneath the SDA.

Data collected during the operation of the VVED 2 week test are soil gas concentrations, soil gas pressures, concentration of the extraction stream, pressure at the well head during extraction, and skid operating parameters.

Skid Operating Parameters and DAS Operation:

The skid operating parameters tell us how things are going with the pumping phase of the extraction process. From an extraction viewpoint the two most important parameters are flow rate and bore hole pressure. Figure 1 shows the relationship between Flow rate and borehole pressure. These small vacuum pressures indicate that the underlying basalts are highly permeable and can be pumped at a high rate. Based on these results doubling the pumping rate to 1000 cubic feet per minute (CFM) or 28 cubic meters per minute (MM) would result in a bore hole vacuum pressure of 1 psi (6.5 kPa).

Other operating parameters monitored manually at the skid include relative humidity (following the in line heater), well

2/1-1)age 2

Figure 1. Pumping rate at the extraction well vs the extraction well vacuum. Soild line from regression (Flow = $0.6+4.3 \times Vacuum$).

 $\frac{335}{56} \frac{205}{56} \frac{497}{56} \frac{497}{56} \frac{905.75}{750} \frac{56}{750} \frac{14.795}{10000000}$

all-1 page 3

vacuum, heater temperature, HNu reading, electrical power frequency applied to the pump motor, vacuum at the pump, gas discharge temperature, pressure drops across filters, position of the extraction well valve, and rotameter flow reading for the flat filters. The following Table summarizes the pumping activities during the 2-Week Test.

Date	Time	Activity		
Sept. 31	15:36	Start of Staged Pump Test. Flow set at 0, 100, 300, and 500 CFM.		
	16:22	Pump set to permitted limit of 514 ±11 CFM		
Nov. 1	11:19	Pump off. Condensation in CAM Alarm System, Rotameter, and HNu suction line.		
Nov. 3	08:49	Pump restarted and set to limit.		
Nov. 14	15:30	Pump off. End of the 2-week test.		

Table 1. Pumping Activities During 2 Week Test.

Relative humidity readings ranged between 30 and 40% throughout the test while the air stream temperature ranged from 70 to 80 F. Vacuum in the well ranged from 0.38 to 0.46 pounds per square inch vacuum (psiv) or 2.58 to 3.21 kPa. An additional data column added to the log indicates that the pumping rate varied from 497 to 523 cubic feet per minute (CFM) during the 2-Week test.

Downhole and Barometric Pressures:

Downhole pressures are known to vary with pumping rates and

page 4

the barometer. A data set showing only barometric effects is presented on Figure 2. Figure 2 shows that the downhole pressures are similar to the barometric pressure except they appear smoother and lag behind the barometer. The shallower depths lag about 20 minutes and the deepest depths lag nearly 10 hours! These results indicate that if the downhole pressures are to be corrected for the barometer long periods (> 2 weeks) of uninterrupted data sequences are needed. Figure 2 also shows the need to remove barometric effects from the data in order to precisely estimate pumping effects. Once the pumping effects are precisely known, reliable estimates of the hydraulic properties of the underlying basalts will be obtained. These data are essential to produce more accurate computer simulations of the gas extraction process. During the 2 week test the barometer ranged 11 kPa (between 79 and 90 kPa) while there was only a 3 kPa vacuum in the extraction well. These results indicate that if pumping effects are to be seen in the closest monitoring well 8801D, 22 meters away, the downhole effects due to the barometer must be reduced to less then 0.01 kPa. Currently digital filters are being designed to carry out this task.

Soil gas pressures from 33, 50, 78, 93, 103, 131, 167, 193, and 230 feet below land surface were recorded at time intervals varying from 30 seconds to hourly at monitoring Well 8801D. At monitoring Well DO2, the downhole pressures were sampled hourly for the entire test period from 28, 60, 69,100, 130, 166, 193, and 233 feet below land surface. The pressure sensors at 8801D were differential sensors with the reference port open to atmospheric

a11-1 page 5

Figure 2. Downhole pressure flutuations due to barometric effects at monitoring Well DO2.

Xage 6

pressure. Differential sensors were found to be unsatisfactory for this application and following the 2 week test were returned to the vendor for absolute pressure sensors designed specifically for atmospheric pressure monitoring. Well DO2 was originally equipped with absolute sensors of the barometric type. Following the 2 week test a barometric sensor was added to the existing system of sensors for the explicit purpose of monitoring barometric pressure at DO2. This provides measurement redundancy for the barometric pressure.

During the 2 week test the Data Acquisition System (DAS) experienced several failures producing gaps in the data from the skid and well 8801D. One source of DAS failure was attempting to provide too wide a range of options for operating the DAS. The complex menus that resulted were difficult to read on the portable computer under field conditions thus, causing errors. It was not until several months following the 2 week test that a firmware error in the DAS was discovered. This error caused the DAS to drop out for 24 hour periods. Currently all sensors, data loggers and computers appear to be fully operational and one month of data has been obtained without interruption.

A preliminary estimate of the horizontal hydraulic permeability was computed. The computation assumed all flow to the extraction well to be horizontal and an undetectable pressure drop in the closest observation well. The computed value of 40 Darcies compared favorably with the USGS estimates made at the Birch Creek Playa.

211-1 Dalle.7

Figure 3. Concentration of the standard gas estimated with field GC.

8

Gas Sampling Activities:

Soil gas samples were obtained from the 4 monitoring wells 8801D, DO2, WWW-1, and 78-4. Samples were taken using a small portable pump in Tedlar bags and transported to the skid for analytical analysis. Gas concentrations was estimated using a gas chromatograph (GC). In addition to the monitoring wells samples of a standard gas mixture were analyzed. Results of the standard gas analysis is shown on Figure 3. Figure 3 indicates that the GC data had a large variance; in this particular case the average concentration of the standard gas was 140 ppm with a standard error of 80 ppm. Since the 2 week test the GC has been moved from the skid to a more temperature stable office in the SWEPP building to partially control the wide variance in these data.

During the 2 week test samples were taken from the extraction stream and are shown on Figure 4. Using the pumping rate of 514 CFM an extraction rate for CCl4 was computed and integrated over the duration of test shown on Figure 5. After integration a smooth extraction curve resulted that is near linear over the duration of the test. Figure 5 indicates that approximately 165 lbs (76 kg) of CCl4 was extracted over the 12 days of pumping for an average extraction rate of 14 lbs per day (6 kg/day). The ability of the system to sustain this rate of extraction will depend on maintaining at least 200 ppm CCl4 in the extraction stream.

The concentration of contaminants in the extraction stream is controlled in part by the horizontal hydraulic conductivity and by the ratio of the horizontal to vertical hydraulic conductivities

all-1 page 9

Figure 4. Concentration of CCl4 in the extraction stream. Solid line fitted using linear regression (r-square = 0.12).

a11-1 page 10

DU

(i.e. anisotropy ratio). These conductivities will be estimated from downhole barometric effects, individual pumping tests at each port, and from the VVED itself. Another factor controlling the concentration of contaminants in the extraction stream is the distribution of contaminants surrounding the extraction well.

Gas Concentrations in the monitoring wells:

The gas concentrations in the monitoring wells (8801D and DO2, and more recently 8902D) near the extraction well are indicators of the concentration levels to be expected in the extraction stream. Figure 6 shows the concentration of CCl4 at the 50 ft depth in well 8801D located 22 m from the extraction well. The trend in Figure 6 is nearly level except for the 3 peaks above 2000 ppm in concentration. The high values could have resulted from samples being mixed-up or simply instrument error. In contrast to the nearly level trend in Figure, the results shown in Figure 7 from the 93 ft depth in 8801D show a pattern of wide and erratic swings ranging from 0 to more then 7000 ppm CCl4. It would appear that this wide of a range in data values taken from the same port could only result from mechanical sampling problems, yet to be identified. The two deepest ports at 8801D show less variation then those at the intermediate depths, but they also are lower in concentration. For example at the 90 foot depth concentrations are on the order of 2000 ppm where at the 193 and 230 ft depths concentrations are approximately 20 ppm. During and after the 2 week test some progress has been made in tracking down sources of error and include loose fittings on the sampling ports, and

Jage 12

Figure 6. Concentration of CCl4 from the 50 foot depth in monitoring well 8801D during the 2 week test.

all-1 page 13

7 **Figure 6.** Concentration of CCl4 from the 50 foot depth in monitoring well 8801D during the 2 week test.

concentrations outside the GC calibration range. Fittings have been tightened and a diluter has been tested to correct these problems. Even though field and lab procedures are followed to the letter obtaining quality data requires constant vigilance and scrutiny of the equipment.

Although the measured concentrations during the 2 week VVED test show considerable variance they have been used in identifying possible sources of sampling problems. The 20 ppm concentration extraction well is relatively low for seen in the the concentrations found on well 8801D. The only depths with similar concentrations are at 30, 193 and 230 ft. all other depths are at least 10 time higher in concentration. There are a number of possible reasons for the low concentrations observed in the extraction well. For Example, 1) nearly all of the extracted gases are coming from the deeper depths in the system and 2) the extraction well was not grouted satisfactorily and a direct conduit to the atmosphere exists. Currently the construction of the extraction well is being reviewed by hydrologists. In addition, a helium tracer scoping study is being designed to establish the presence of any direct connection to the soil surface. If deeper depths are contributing most of the gas being extracted then the downhole pressure distribution should indicate that.

Conclusions:

The objective of this report is to present a preliminary evaluation of the data from the 2-week Vapor Vacuum Extraction Demonstration (VVED) applicable to modeling. This report focuses on

U11-1 page 15

evaluation of the soil gas pressure and organic vapor concentration data. The VVE process proceeded at a soil gas pumping rate of 514 cfm producing an average mass extraction rate for carbon tetrachloride (CCL4) of 14 lbs/day. Problems with the Data Acquisition System (DAS) were encountered that prevented the pressure data from the 2 week test from being fully useful. However, problems with the system have been corrected and now has yielded data for more then 1 month continuously at a sampling interval of 2 minutes. Downhole pressures are being corrected for barometric effects. The corrected pressures will be used to obtain estimates of the large scale hydraulic conductivities needed to model a large clean up system. The gas concentration data appears to have sources of error that are probably mechanical but are as yet to be identified. Further studies are needed to better isolate and correct these errors. The concentration of carbon tetrachloride (CCl4) in the extraction stream is anomalously low and a tracer test is being devised to identify conduit flow near the extraction well.

U11-1 Xaqe 16

Appendix 13–1

,

APPENDIX 13-1

DETAILED OPERATING PROCEDURES

Date

(OM) Initial

RWMC/SWEPP PROGRAMS

RWMC OPERATIONS

DETAILED OPERATING PROCEDURE

5.0 Retrieval

5.2 Buried Waste Programs Operations

<u>5.2.2</u> <u>Pad A Initial Penetration Pre-operational Site</u> <u>Preparation</u> DOP RO Number Subject

Approved:

J. N. Davis RWMC/SWEPP Programs Manager

Reviewed:

<u>C. W. Bloom</u> RWMC/SWEPP Radiological Engineer

<u>R. C. Caummisar</u> RWMC/SWEPP Safety Engineer

W. J. Isle RWMC/SWEPP Quality Engineer

<u>T. H. Johnsen</u> RWMC/SWEPP Engineering Manager

<u>R. O. Sanders</u> RWMC/SWEPP Rigging Engineer

D. L. French RWMC/SWEPP Operations Manager

T. L. Clements, Jr. RWMC/SWEPP Technical Programs Mgr.

Original Cignatures appear on DRR-VM-3487

U 197 Dage 1
Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

REFERENCES

- 1. RWMC Operational Safety Requirements (OSR) including Appendix A
- 2. RWMC Emergency Action Plan
- 3. EG&G Safety Manual
- 4. EG&G Radiological Controls Manual
- 5. PAD A Initial Penetration Soil Sample Collection Procedure
- 6. PAD A Initial Penetration Health and Safety Plan
- 7. PAD A Initial Penetration Quality Assurance Project Plan
- 8. DOE Hoisting & Rigging Manual
- 9. DOE/ID-10112 INEL Low-Level Radioactive Waste Acceptance Criteria
- 10. DOE/ID-10074 INEL Transuranic Waste Acceptance Criteria
- 11. SWR's:
 - 11.1RS224XFabricate Ventilation Skid11.2RS225XInstall Ventilation System11.3RS226XFabricate and Install Electrical System11.4RS227XErect Pad A Building11.5RS228XRelocate Pad A Building11.6RS356XBreathing Air System S.O.Test11.7POWER 1012Install Pole, Line and Transformer-RWMC
- 12. JHM Sketch 4 Pad A Portable Breathing Air Compressor Temperature Control System

13. **Project Directives:** Transfer, Storage, Handling and Tracking of Waste 13.1 PD-RS-1.8 13.2 PD-RS-1.13 Use of DOPs and SOPs 13.3 PD-RS-2.1 RWMC Receipt, Inspection, and Documentation of Waste 13.4 PD-RS-2.2 RWMC Operations in the Subsurface Disposal Area 13.5 PD-RS-2.4 Operations in the TSA 13.6 PD-RS-3.6 RWMC / SWEPP Document Preparation and Control 13.7 PD-RS-6.1 Radiation and Contamination Control Industrial and Fire Safety 13.8 PD-RS-6.2 13.9 PD-RS-6.3 Criticality Control Control of Radiological Spills 13.10 PD-RS-6.5 13.11 PD-RS-6.8 RWMC Access Control

page2

Page 2

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

<u>REFERENCES (Cont'd)</u>

14. Detailed Operating Procedures: 14.1 DOP-RO-5.2.1 Pad A Initial Penetration & Retrieval Project

<u>GENERAL</u>

This procedure provides instructions for the following:

1. Pad A preparation for sprung structure:

Pad A preparation includes flattening an area approximately 2500 square feet to accommodate the 40 ft. diameter sprung structure. Prior to pad preparation, the soil overburden will be sampled for chemical and radiological contamination. Sampling will be performed per the Sample Collection Procedure (Ref.5)

2. Movement of the sprung structure building:

The primary purpose of the retrieval containment building is to provide protection from the elements. The building is a 40 ft. diameter sprung structure, with an 18.5 ft. peak. The building was erected on the asphalt pad on the West side of Pad A per SWR RS227X and will be moved using a crane and appropriate slings per SWR RS228X.

3. Retrieval equipment setup:

The equipment setup includes the excavation boundaries, backhoe, ventilation, filters, CAMs etc. as they will be used for drum retrieval in DOP-RO-5.2.1. There will be two cargo containers for Rocky Flats drums and one for Non-Rocky Flats drums.

4. Decontamination

Decontamination procedures will be initiated if surface levels of the building and/or equipment exceed radiological clean limits as stated in the EG&G Radiological Control Manual.(See Precautions and Limitations Item 13)

The DOE Hoisting and Rigging Manual has been interpreted to classify all lifts within this procedure as "Ordinary Lifts".

This procedure is in compliance with the criteria of the EG&G Safety Manual, EG&G Radiological Controls Manual and DOE Hoisting and Rigging Manual, and shall be completed per requirements of PD-RS-1.13. The sequence of steps may be altered or worked in parallel with the permission of the RWMC/SWEPP Shift Manager, or designated alternate, and all alterations shall be so noted in the body of the procedure. Compliance and execution are verbatim.

page 3

Page 3

_ • •

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

<u>GENERAL (Cont'd)</u>

If RWMC Operating Limits cannot be satisfied or any abnormal condition arises that may compromise this operation, this operation shall stop and the limit and/or condition brought to the attention of the RWMC/SWEPP Operations Manager or designated alternate. The identified condition shall be resolved before proceeding with operations (RWMC OSR 3. Operating Limits, Numbers 2, 3 and 4). Abnormal conditions that may be associated with this task will be covered in the Training Checklist and crew briefing prior to the execution of this procedure.

Acronyms and abbreviations used in this procedure include:

A/R	As Required
BWP	Buried Waste Program
CAM	Constant Air Monitor
CGI	Combustible Gas Indicator
CIH	Certified Industrial Hygienist
DOE	Department of Energy
DOP	Detailed Operating Procedure
DOT	Department of Transportation
DRD	Direct Reading Dosimeter
DRR	Document Revision Request
FO	Equipment Operator
GC	Gas Chromatograph
GVW	Gross Vehicle Weight
HAZMAT	Hazardous Material
HEO	Heavy Equipment Operator
HEPA	High Efficiency Particulate Air
HNU	A "Trade Name" for a type of organic vapor detector
HP	Health Physics Technician
HSO	Health and Safety Officer
TH	Industrial Hygienist
II TSF	Intermediate Level Transuranic Storage Facility
JS	Pad A Job Supervisor or Alternate (an Operations Specialist who
	has been trained specifically for this job)
NA	Not Applicable
ND	No alpha contamination detected with a large area wipe
OMP	Occupational Medical Program
0S	Operations Specialist
OSR	Operational Safety Requirements
OVA	Organic Vapor Analyzer
PD	Project Directive
QA	Quality Assurance Inspector
QAPP	Quality Assurance Project Plan
QFO	Quality Field Officer
RWMC	Radioactive Waste Management Complex
SOP	Standard Operating Procedure
SM	Shift Manager
SWEPP	Stored Waste Examination Pilot Plant
SWL	Safe Working Load
	/1//3-1

Issued: 08/08/89 Page 4 Subject: DOP-RO-5.2.2 --Pad A Initial Penetration Pre-operational Site Preparation Acronyms and abbreviations (Cont'd) SWP Safe Work Permit SWR Site Work Release Training Coordinator TC Thermal Luminescent Dosimeter TLD Transuranic Storage Area TSA | A "Trade Name" for a type of material used in personnel protection TYVEK clothing Warning Communication Center WCC WE Waste Engineer Waste Management Facility WMF MATERIALS and EQUIPMENT Materials 1. Duct tape - A/RYellow 20 mil. nylon reinforced polyethylene sheeting - A/R 2. Yellow poly bags, large - A/R Soil stabilizer (to be determined) 4. Visquine, as required 5. Equipment for Health Physics and Industrial Safety Requirements Five (5) ea. ABC fire extinguishers, 30 lb. capacity * (RWMC SAR Add. 1. A, 3.5) Five (5) ea. MET-L-X fire extinguishers, 30 lb. capacity ** (RWMC SAR 2. Add. A, 3.5) 1000 lb. Soda Ash available at RWMC for fire suppression (RWMC SAR Add. 3 A, 3.5) Beta/gamma constant air monitor (CAM) to monitor filter discharge, 4. (RWMC OSR Add. A, 3.5.3.1) 5. Beta/gamma constant air monitor (CAM) with sniffer hose for excavation area monitoring (RWMC OSR Add. A, 3.5.3.1) Alpha CAM, 5A or equivalent to monitor filter discharge, (RWMC OSR Add. 6. A, 3.5.3.1) 7. Alpha CAM, 5A or equivalent with sniffer hose for excavation area monitoring (RWMC OSR Add. A, 3.5.3.1) Alpha survey meters, portable (2 ea), (RWMC OSR Add. A, 3.5.3.1) 8.

- Beta/Gamma Survey Meters, portable (2 ea), (RWMC OSR Add. A, 3.5.3.1) 9.
- Low Range Radiation Meters (2 ea), (RWMC OSR Add. A, 3.5.3.1) 10.
- 11.
- High Range Radiation Meter (1 ea), (RWMC OSR Add. A, 3.5.3.1) Portable Air Sampler (1 ea), (RWMC OSR App.A, 3.5.3.1) 12.
- Contamination survey smears 13.
- Kimwipes, teritowels, etc. 14.
- Hard hats 15.
- 16. Safety shoes
- Organic Vapor Analyzer (OVA or HNU) (1 ea), (RWMC OSR Add. A, 3.5.3.1) 17.
- 18. Combustible Gas Indicator (CGI), (1 ea), (RWMC OSR Add. A, 3.5.3.1)

U13-1 page 5

Issued: 08/08/89 Page 5 Pad A Initial Penetration Pre-operational Site Subject: DOP-RO-5.2.2 --Preparation Equipment for Health Physics and Industrial Safety Requirements (Cont'd) 19. Scott Air Pacs (2 ea) 20. Health Physics Emergency Response Trailer (Available at RWMC) Anti-C clothing (coveralls, shoe covers, nitrile gloves with surgical 21. liners) A/R 22. Full face respirators A/R (Five of these to be located in evacuation vehicle) 23. Air hoods or airline respirators A/R 24. TYVEK suits A/R Breathing air compressor (capable of supplying six [6] people) 25. including hoses and portable power supply (One ea.) (RWMC SAR Add. A, 3.4) Area TLD's (2 ea) 26. Self contained air horn 27. Permanent felt tip markers for marking drums (AR) 28. Materials and Equipment as required per Section 5 of the Pad A Initial 29. Penetration Soil Sampling Collection Procedures (Ref. 5) Personal Air Samplers (AR), (RWMC OSR Add. A, 3.5.3.1) 30. Passive Organic Monitors (RWMC OSR Add. A, 3.5.3.1) 31. First Aid Kit-Industrial first aid kit with sufficient supplies for 32. five people. 33. Eye Wash-Eye wash meeting the minimum requirements of ANSI-Z358-1. (Location directed by the IH) * Other sizes may be used as long as total weight is 150 lb. min. ** Other sizes may be used as long as total weight is 150 lb. min. Equipment for Operations 1. Excavator (backhoe-75641 or 75643, etc. *) Backhoe-75641 for drum retrieval 2.

- 3. Drum handling device (vertical)
- 4. Drum handling device (horizontal)
- 5. Drum uprighting device
- 6. Shovels or hand augers for manual soil removal A/R
- 7. Power supply for electrical equipment
- 8. Sprung structure containment building with ventilation blowers and HEPA filters
- 9. Radio "6" Net (1 ea)
- 10. Radio Head Sets, Channel "C" (6 ea min.)
- 11. Crane for building movement (Manitowoc)-75610
- 12. International 10 wheel flat bed truck-71621 *
- 13. Low Rider LOED material handler-75189 *
- 14. Front end loader-75632 * or tracked earth mover-75702 *
- 15. Fork lift-75224 *, with hydraulic clamp handler available at TSA as required for placing drums in cargo containers

page 6

Page 6

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

Equipment for Operations (Cont'd)

- 16. Flexible hose for vehicle exhaust from building
- 17. 83 gal. vented drum overpacks with bar codes (48 each)
- 18. Cargo Containers, three each, located at TSA (Two for the Rocky Flats drums and one for the Non-Rocky Flats drums).
- 19. Waste containers for change areas for storing used clothing, respirators etc.
- 20. A change area for donning and doffing protective clothing
 - NOTE: Not all the equipment listed will be used in this preparation activity, however all equipment will be set up and operational for the retrieval operation which will follow.
 - Or Equivalent Equipment numbers shown are examples for reference only

SPECIFIC PRECAUTIONS AND LIMITATIONS

- 1. The Pad A Job Supervisor will be responsible to ensure that all personnel entering the retrieval area (workers and observers) have completed the OSHA HAZMAT, respirator and radiation worker training.
- 2. Building movement shall be initiated and conducted only in fair weather as judged by the Pad A Job Supervisor and the RWMC/SWEPP Shift Manager or designated alternates.
- 3. The dig area will be an <u>Exclusion Zone</u> and shall be so posted after equipment set up. Air hoods or airline respirators, TYVEK suits, safety shoes, chemical resistant booties, and Nitrile outer gloves with surgical inner gloves and hard hats will be worn inside this area. (These requirements do not apply during equipment set up.)
- 4. The area outside the Exclusion Zone but inside the building will be a <u>Contamination Reduction Zone</u> and shall be so posted after equipment set up. Full face respirators, TYVEK suits, safety shoes, chemical resistant booties, and Nitrile outer gloves with surgical inner gloves will be worn inside this area. The airline hood may be worn when transiting out from the exclusion zone (these requirements do not apply during equipment set-up).
- 5. Non-working observers inside either the Exclusion Zone or the Contamination Reduction Zone will wear the same protective clothing as required for workers in the corresponding area. In accordance with the ALARA philosophy, the number of non-working observers in the exclusion zone will be minimized.

0.13-1 page 7

Page 7

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

SPECIFIC PRECAUTIONS AND LIMITATIONS (Cont'd)

- 6. All personnel will wear protective equipment as required by conditions as determined by the IH on HP:
- 7. If uncontained contamination exceeds limits of Precaution 13, all activities shall be stopped. The affected area shall be stabilized with soil stabilizer if required, and covered with nylon reinforced plastic. All personnel shall then leave the immediate area and shall proceed to a pre-designated staging area for personnel survey. The RWMC/SWEPP Shift Manager shall be notified. An evaluation of the situation shall be made by the Pad A Job Supervisor and/or Project Engineer, RWMC/SWEPP Shift Manager, BWP Project Manager, Technical Programs and Safety personnel. Specific corrective action shall then be determined and supporting documentation completed as required. All corrective actions shall be completed before resuming operations.
- 8. In the event of an abnormal occurrence (fire, radiation or explosion), all personnel shall evacuate upwind or as directed by the Health Physics technician or Job Supervisor. Work area evacuations shall be by verbal communication. Emergency communications between Pad A work site and the RWMC work control office in WMF-601 shall be via "5" net radio and activation of the RWMC evacuation siren will be determined by the Emergency Action Director. The RWMC/SWEPP Shift Manager or his designated alternate shall direct further action in accordance with procedures established in the RWMC Emergency Action Plan.
- 9. All applicable requirements of the DOE Hoisting and Rigging Manual shall be observed during lifting procedures.
- Limits for overburden soil shall be 100 counts/minute above background Beta/Gamma and ND Alpha as determined through monitoring by Health and Safety personnel. If above limits are exceeded, samples will be collected for full radionuclide analysis.
- To prevent crushing drums with vehicles, the minimum dirt thickness over drums has been established at <u>26</u> inches (Ref. RWMC OSR Add. A, 3.3.3).
- 12. If the fire department is needed, call RWMC personnel on "6" net radio at WMF-601 and have phone call placed to 6-2211.

a 13-1 page 8

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

SPECIFIC PRECAUTIONS AND LIMITATIONS (Cont'd)

- 13. When conducting wipe surveys, if less than 100 c/m beta-gamma above background and ND alpha, proceed. If greater than the above limits, perform a legal smear survey. If the results exceed 200 d/m/100 cm² beta-gamma and/or 20 d/m/100 cm² alpha, stop the operation and contact the JS for resolution. An evaluation of the situation will be made by the Pad A Job Supervisor and/or Project Engineer, RWMC/SWEPP Shift Manager, BWP Project Manager, Technical Programs and Safety personnel. Specific corrective actions will then be determined and completed before resuming operations.
- All operations involving radioactive materials or the potential of encountering radioactive materials shall be conducted with continuous HP coverage. (RWMC OSR 4.6.3.2.)
- 15. An Industrial Hygienist (IH) will be at the dig site during all operations involving hazardous materials. (RWMC OSR Add. A, 4.2.3.2)
- 16. The Pad A containment exhaust radiological effluent activity downstream of the HEPA filtration system shall not exceed 2 x 10^{-12} uCi/ml alpha activity and/or 1 x 10^{-10} uCi/ml beta-gamma activity (RWMC OSR Add. A, 3.2.3.1).
- 17. If organic levels are detected at greater than 200 ppm for a period of 15 minutes, operations will be suspended and the containment building evacuated. (RWMC OSR Add. A, 3.2.3.4).
- If the combustible gas indicator readings within the containment exceed 10% of the Lower Explosive Limit (LEL). Retrieval activities will be suspended. (RWMC OSR Add. A, 3.2.3.4) (Combustible gas samples are not required during equipment set up.)
- 19. When wind speeds exceed 75 mph (120 Km/h), operations at Pad A shall cease and all personnel shall exit the Pad A containment structure. Only in the event of an emergency shall personnel reenter the Pad A containment structure until wind speeds decrease to less than 75 mph. (RWMC OSR Add. A, 3.1.3.1)

U13-1 page 9

Page 9

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

SPECIFIC PRECAUTIONS AND LIMITATIONS (Cont'd)

- 20. A portal monitor, large-area detector, or portable survey station shall be operating in the guard house (WMF-611) for use by personnel entering and exiting the RWMC/SWEPP. (RWMC/SWEPP OSR Section 3.3.3.)
 - NOTE: 1. A new copy of this DOP will be used for each shift.
 - 2. The Pad A Job Supervisor shall maintain a daily operations log.
 - 3. The H.P. will maintain a specific Pad A HP log.
 - 4. The IH will maintain a daily log book of monitoring activities.
 - 5. All operations shall be documented with photographs as required by the Pad A Job Supervisor.

PREREQUISITES

<u>General</u>

 (JS) The following designated crew members (min) have been qualified in their basic positions. (All RWMC personnel trained and qualified per RWMC Training program (RWMC OSR 4.1.3). (Operations involving radioactive material shall have as a minimum an HP and a crew size designated by RWMC OS. The RWMC/SWEPP Operations Specialist or designated alternate must be present at the facility during waste handling operations. (RWMC OSR Add. A, 4.2.3.2).

One	Pad A Job Supervisor (JS)		Name:	
0ne	Industrial Hygienist (IH)	Name:		
One	heavy equipment operator (H	HEO)	Name:	
0ne	equipment operator (EO)		Name:	
One	HP technician (HP)		Name:	
0ne	Laborer		Name:	
			Name:	
0ne	Photographer		Name:	-

2. (JS) Verify that wind speed as read at WMF-601 or WMF-613 does not exceed 75 mph. (RWMC OSR Add. A, 3.1.3.1)).

113-1 Dage 10

Page 10

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

PREREQUISITES (Cont'd)

- 3. (JS) Complete a shift briefing which will cover the anticipated operations coming up this shift as well as a summary of status to date, as applicable. The potential chemical, radiological and industrial hazards will be made explicitly clear. (In addition, a briefing will be held prior to starting a new phase of the operation if not covered in the pre-shift briefing.)
 - 4. (JS) A portal monitor, large-area detector, or portable survey station is operating in the guard house (WMF-611) for use by personnel entering and exiting the RWMC/SWEPP.
- 5. (JS) Upon completion of the roadway on top of Pad A to either excavation site, as appropriate, and prior to commencement of daily activities on Pad A place the engineer's transit over the designated benchmark and short roadway level to assure that the roadway is still at least 30 in. above the waste.

Area Soil Preparation

- 6. (JS) Soil field sampling and analysis using portable Gas Chromatograph (GC) has been completed.
- _____ 7. (JS) Front-end loader or tracked earth mover and operator are available.

Building Placement/Movement

- 8. (JS) Weather forecasts shall indicate fair weather (no precipitation) for an 8-hour period of time prior to initiation of building placement/movement. Weather evaluation will be made by the Pad A Job Supervisor or Project Engineer and RWMC/SWEPP Shift Manager.
- _____ 9. (JS) Maximum wind conditions shall be 15 mph during building movement.
- _____ 10. (JS) Crane and operator are available.
- _____ 11. (JS) Other personnel as listed in SWR RS-228X are available.

Breathing Air System Installation

_____ 12. (JS) Prior to Installing the breathing air system per step 2.4 of this DOP, the breathing air system will be operationally tested per SWR-RS-356X (Ref.4.6).

a13-1 page 11

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

WASTE MANAGEMENT DEPARTMENT

RWMC/SWEPP PROGRAMS

PERSONNEL BRIEFING LOG

Personnel Briefing Log (your signature and initials indicate your briefing attendance, understanding, and commitment to procedure compliance)

DATE	NAME (PRINT)	SIGNATURE	INITIALS	CLASSIFICATION	BRIEFED BY
		·	<u> </u>		
		<u></u>			
			<u> </u>	<u> </u>	
				<u> </u>	
<u> </u>		·····	<u> </u>	<u></u>	
	· · · · · · · · · · · · · · · · · · ·				
		· · · ·			<u></u>
					· · · · · · · · · · · · · · · · · · ·
				<u> </u>	
		· · · · · · · · · · · · · · · · · · ·	<u> </u>		
<u> </u>			<u> </u>		
		0.13^{-1}			
		$DDD \phi (12)$			
		pugoia			

Page 12

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre- erational Site Preparation

WASTE MANAGEMENT DEPARTMENT

RWMC/SWEPP PROGRAMS

PERSONNEL BRIEFING LOG (Continued)

Personnel Briefing Log (your signature and initials indicate your briefing attendance, understanding, and commitment to procedure compliance).

DATE	NAME (PRINT)	SIGNATURE	INITIALS	CLASSIFICATION	BRIEFED BY
····					
					
			. <u></u>		<u> </u>
					
<u> </u>				<u></u>	
					
<u> </u>	·····		<u> </u>		<u> </u>
			<u> </u>		
					<u></u>
			<u>-</u>		
	Marthala Malana an ann an an an an an an an an an an		······		
		M12-	1		
		$\mathcal{O}(\mathcal{O})$	12		
		puye	リ		

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

OPERATION

Procedure Opened: _____ Time ____ Date _____

- 1. AREA SOIL PREPARATION
 - NOTE: After Step 1.8 has been completed, building may be transported and placed on first site per Section 2., Enclosure/Ventilation/ Radiation Monitoring Equipment Installation, while second site is prepared per Step 1.9, if desired.
 - ____ 1. (JS) Verify that General prerequisites and the prerequisites for Area Soil Preparation have been completed.
 - 2. (JS) The HP will periodically survey the overburden soil for contamination using Alpha and Beta/Gamma instruments.
 - NOTE: <u>STOP</u> operations and notify RWMC/SWEPP Shift Manager if the following readings are obtained:
 - 1. >100 cpm Beta/Gamma above background
 - 2. Any Alpha detection
 - 3. (JS) The IH will periodically survey the area for organic vapors and document findings in the IH log.
 - NOTE: <u>STOP</u> operations and notify RWMC/SWEPP Shift Manager if HNU photoionization readings above 200 ppm above background for 15 minutes are obtained:

Restart operations only after notification from Shift Manager.

- 4. (JS) During earth moving operations, the HP will periodically take "Grab Samples" downwind of the operation area. These samples will be evaluated for Alpha and gross Beta/gamma activity.
- 5. (JS) Establish the excavation boundaries for penetration sites as shown in Figure 1. The "Point A" stake will be the center of the North penetration site and the "Point B" stake will be the center of the South penetration site.
- 6. (JS) Remove dirt from east side of each penetration site for crane positioning as shown in Figure 1. These crane location areas will be at the approximate height of the area to the East of Pad A and will be connected by a roadway so that crane may be moved as required.

page 14

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

<u>OPERATIONS (Cont'd)</u>

- 7. (JS) Prepare equipment access roadway to the top of Pad A per Job Supervisor direction. This road will be used by the backhoe, the ten wheel truck, the Low Rider LOED etc. and may involve hauling dirt in to the area from elsewhere at the RWMC.
 - 8. (JS) Remove overburden from South penetration area as necessary to flatten area sufficiently to install the 40 foot diameter building over the South penetration area as shown in Figures 1 and 2 per Pad A Job Supervisor direction. Prior to excavating dirt with power equipment, dig test holes with hand shovels or hand augers to ensure that a minimum of 26-in. of dirt remains above the drums at all times. Repeat testing prior to moving each layer of dirt. (RWMC OSR Add. A, 3.3.3).
 - 9. (JS) Prepare a roadbed per Pad A Job Supervisor's direction, on top of Pad from the equipment access roadway in Step 1.7 to the site where the 40 ft diameter building will be located maintaining a minimum of 30 in. of fill above the waste. Subsidence holes on depressions will be filled as required and reported to the RWMC/SWEPP Shift Manager as they are encountered.
 - 10. (JS) Clearly define with markers the roadway on top of Pad A per Pad A Job Supervisor's direction. All heavy equipment used on Pad A will follow the designated road.
 - 11. (JS) Perform frequent inspection daily on the top of the Pad for further subsidences and report findings to the RWMC/SWEPP Program and Shift Managers.
 - 12. (JS) Remove overburden from North penetration area as in 1.8 above to flatten area in preparation for building installation.
- 2. ENCLOSURE/VENTILATION/RADIATION MONITORING EQUIPMENT INSTALLATION
 - NOTE: Steps may be worked in parallel per Job Supervisor's direction.
 - (JS) Verify that the General prerequisites and the prerequisites for Building Movement have been completed.
 - (JS) Install the Sprung Structure building over the South penetration location as shown in Figure 1 and 2 per SWR-RS228X.

page 15

Issued:	08/	08/89				Page 15	
Subject:	DO	P-RO-5	.2.2	Pad A Initial Preparation	Penetratio	n Pre-operationa	al Site
	3.	(JS)	Install por (Ref 11.3)	wer distributic and POWER 1012	on equipmen 2 (Ref 11.7)	t per SWRs-RS226).	5X
	4.	(JS)	Verify tha Installati	t the prerequis on has been com	site for Bro npleted.	eathing Air Syst	em
	5.	(JS)	Install ve including	ntilation equip smoke test per	oment and ve SWR RS225X	erify operabilit (Ref 11.2).	у
	6.	(JS)	Install the (Ref 12) a Job Superv	e Breathing Aim nd locate compo isor.	r System per onents as d	r JHM Sketch 4 irected by the P	Pad A
	7.	(HP)	Install th follows:	e various radia	ation monit	oring equipment	as
			One A the E One A the H Other	lpha CAM and or xclusion area. lpha CAM and or EPA filter out equipment loca	ne Beta/Gam ne Beta/Gam let flow. ated as des	na CAM will moni na CAM will moni ired.	tor tor
			Verify ope Log.	rability. Log	results in	Pad A Health Ph	nysics
	8.	(HP)	Record HP/	IH instruments	assigned to	o this operation	1.
			INSTRUMENT	TYPE	<u>Serial No.</u>	<u>Calib.Date</u>	
			<u>Alpha Cont</u>	<u>amination</u>			
						······································	
			<u>Beta/Gamma</u> Contaminat	ion			
			Direct Rad	iation			
				013-			

page 16

Subject: DOP-RO-5.2.2 --Pad A Initial Penetration Pre-operational Site Preparation

OPERATIONS (Cont'd)

. . .

<u>miscellaneous</u>	
	 <u></u>
	 ·····
	 <u></u>

- (JS) Position the following equipment as it will be during the 9. retrieval operation:
 - 1. Ten wheel flatbed truck
 - 2. Backhoe (No. 75641)
 - 3. Low Rider LOED
 - 4. Change area
 - 5. Exclusion Zone boundaries
 - 6. Contamination Reduction Zone boundaries

3. CARGO CONTAINER PLACEMENT AT TSA

- 1. (JS) Place three (3) cargo containers at the ILTSF at TSA as directed by the PAD A Job Supervisor.
- (JS) Identify two of the cargo containers as "Rocky Flats" and the other one as "Non-Rocky Flats".

4. EQUIPMENT SHUTDOWN

1. (JS) Shut down all equipment except for one ventilation blower which will be left running to minimize humidity buildup in the containment building.

Procedure Completed:

Signature _____ Time ____ Date ____

Shift Manager_____ Date_____

0.13-1 page17

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

Q13-1 page 18

Figure 1. Plan View of Pad A and Penetration Area.

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

- Contamination Reduction Corridor 1.
- Access Control Points 2.
- Decontamination Station A 3.
- Decontamination Station B 4.
- Exclusion Zone 5.
- Contamination Reduction Zone 6.
- 7. Backhoe
- 8. Retrieval Area

Figure 2. Pad A Building/Penetration Layout.

u 13-1 page 19

Page 19

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

ATTACHMENT 1

ABNORMAL/EMERGENCY PROCEDURES

General

- If prompt, lifesaving first aid and/or medical treatment is 1. required, decontamination procedures can be omitted. Onsite personnel should accompany contaminated victims to the medical facility to provide medical personnel information regarding contamination specifics.
- 2. Lifesaving care will be instituted immediately without considering decontamination. Outer garments can be removed if they do not cause delay or interfere with treatment or aggravate medical problems. Respiratory equipment must always be removed. Chemical-resistant clothing can be cut away. If the outer contaminated garments cannot be removed, the victim should be wrapped in cloth to help prevent contamination of transporting vehicles or medical personnel. Outer garments can then be removed at the medical facility. Medical radiation and chemical decontamination facilities are located at CFA. The transport vehicle and medical facility may have to be decontaminated.
- 3. In cases of life-threatening emergencies such as fire or explosion, personnel should leave the vicinity using the shortest possible route without regard for decontamination at that time. When the situation has stabilized, personnel will take necessary steps to decontaminate themselves, equipment, and other affected areas.
- 4. Emergency phone numbers:
 - Warning Communication Center (WCC) 0 777 Occupational Medical Program (OMP) 6-2356 0
- 5. Other phone numbers:

0	Work Package Manager:	Buck Horton
		Work - 526-2116
		Home - 529-2368
0	Cost Account Manager:	Steve Fogdall
		Work - 526-6265
	,	Home - 529-3220
0	Health and Safety Officer:	Jeff Ginsburg
		Work - 526-9698
		Home - 523-2945

U 13-1 page 20

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

Transportation of an injured person and follow up action

- 1. If an injured worker is transported to the medical facility, he/she will be accompanied by at least one other dig site worker to inform medical personnel of the level of decontamination performed prior to leaving the dig site and to provide specific details as to the nature of the injury. If radiological contamination is suspected, the HP will accompany the victim; likewise, if hazardous chemical exposure is suspected, the IH will accompany the victim.
- 2. In the event of contaminant exposure, the same procedures will be followed and affected personnel monitoring devices will be immediately transported to the analytical lab to aid in the appropriate testing and treatment of the injured worker.

8/89

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

COMMENT SHEET

<u>Init</u>	<u>Date</u>	Page <u>Number</u>	Step <u>Number</u>	Comments/Notes/Observations
			<u></u>	
<u></u>	<u> </u>	<u></u>		
	.		<u></u>	
			<u> </u>	
			<u> </u>	
. <u></u>		<u></u>	<u></u>	
		.		
<u></u>				
				
				alz-1 page 22

Page 22

."

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

COMMENT SHEET (Continued)

<u>Init</u>	<u>Date</u>	Page <u>Number</u>	Step <u>Number</u>	Comments/Notes/Observations
<u> </u>				
	<u> </u>	<u></u>		
				· · · · · · · · · · · · · · · · · · ·
		<u></u>		· · · · · · · · · · · · · · · · · · ·
 				· · · · · · · · · · · · · · · · · · ·
				e de la construcción de la construcción de la construcción de la construcción de la construcción de la constru La construcción de la construcción de la construcción de la construcción de la construcción de la construcción d
				· · · · · · · · · · · · · · · · · · ·
				<u></u>
<u></u>				
. <u></u>				
			<u></u>	
			800	

ADD CONTINUATION SHEETS AS REQUIRED

Q 13-1 page 23

Page 23

Subject: DOP-RO-5.2.2 -- Pad A Initial Penetration Pre-operational Site Preparation

COMMENT SHEET (Continued)

<u>Init Dat</u>	Page <u>e Number</u>	Step <u>Number</u>	<u>Comments/Notes/Observations</u>
<u></u>	<u> </u>	<u> </u>	
<u> </u>			
<u> </u>		<u></u>	
			
,		••••	
<u> </u>	<u> </u>	<u> </u>	
<u> </u>			
	···		
	·		
·	<u> </u>		· · · · · · · · · · · · · · · · · · ·

ADD CONTINUATION SHEETS AS REQUIRED

U13-1 Dage 24

Q13-1 page 25

.

.

.

-

-

00/00/00 م الم م ب م

issued:	08/08/89		Page 24
Subject:	DOP-RO-5.2.2 Pad Pre	A Initial Penetr paration	ation Pre-operational Site
	<u>RWMC</u> <u>TRAINI</u> Pad A Initial Penetratic	<u>/SWEPP_PROGRAMS</u> NG_CHECKLIST_FOR n_Pre-operational	Site Preparation
Name		S Number	
Date		Classifica	tion
Each iter this tas	n listed below is to be c c. The personnel respons	ompleted by each ible for signing	individual who is to work each item is as noted. Signature
1.0	Attend a Briefing and s following:	elf study on the	
	PD-RS-6.6 Control of Ra	diological Spills	
	RWMC Emergency Action F V1.A.2 - Radi V1.A.3 - Oper	lan ological Emergenc ational Emergenci	ies es
	Pad A Initial Penetrati Safety Plan	on Health and	
	Pad A Sections of the F	WMC OSR/SAR	Individual
2.0	Attend a Briefing and s following Detailed Oper DOP RO Number <u>5.2.2</u> Penetration Pre-operati	elf study on the ating Procedure: Pad A Initial onal Site Prepara	tion Individual
3.0	Complete an Oral Checko listed in 1 and 2 above	out on the items	
	HPs		HP Work Leader
	All other team men	ıbers	Operations Specialist
4.0	Qualification Completed	I	RWMC/SWEPP Oper. Mgr.
5.0	Checklist Included in E Training Record	ndividual's	Training Coordinator

Q13-1 page 26

Q13-1 page 27

÷.

.

.

Page	25
------	----

Subje	ct: DOP-RO-5.2.2 Pad A Initial Penetration Pre-operational Site Preparation
	<u>RWMC/SWEPP_PROGRAMS</u> <u>TRAINING_CHECKLIST_FOR</u> <u>Pad_A_Initial_Penetration_Pre-operational_Site_Preparation</u>
Name_	S Number
Date_	Classification <u>Job Supervisor</u>
Each this	item listed below is to be completed by each individual who is to work task. The personnel responsible for signing each item is as noted.
1.0	Review the RWMC/SWEPP Document Tree with J. B. Sahr or
	designated alternate J. B. Sahr Date
2.0	Review the following with D. L. French or designated
	D. L. French Date D. L. French Date PD-RS-1.5 Work Control PD-RS-1.13 Use of DOPs and SOPs PD-RS-2.2 RWMC Operations in the Subsurface Disposal Area PD-RS-3.6 RWMC/SWEPP Document Preparation and Control PD-RS-6.1 Radiation and Contamination Control PD-RS-6.2 Industrial and Fire Safety PD-RS-6.6 Control of Radiological Spills PD-RS-6.8 RWMC Access Control
	RWMC Emergency Action Plan V1.A.2 - Radiological Emergencies V1.A.3 - Operational Emergencies
	DOP RO 5.2.2- Pad A Initial Penetration Pre-operational Site Preparation
	DOE Hoisting and Rigging Manual
3.0	Review the RWMC Operations Safety Requirements Document, Appendix A to OSR and Safety Analysis Report with R. L. Devries or designated alternate. R. L. Devries Date
4.0	Complete an oral checkout on the items in 1, 2, and 3 above with J. N. Davis or designated alternate J. N. Davis Date
5.0	Qualification Completed $O(O + O + RWMC/SWEPP Oper. Mgr.$
6.0	Checklist Included in Individual's $page 28$ Training Coordinator

Q13-1 page 29

,ł

-

Completed DOP Review

Date (OM) Initial

<u>11/28/89</u> Issue Date

RWMC/SWEPP PROGRAMS

RWMC OPERATIONS

DETAILED OPERATING PROCEDURE

- 5.0 Retrieval
- 5.2 Buried Waste Programs Operations

5.2.1 <u>BWP Pad A Initial Penetration & Retrieval Project</u> DOP RO Number Subject

Approved:

J. N. Davis RWMC/SWEPP Programs Manager

Reviewed:

<u>C. W. Bloom</u> RWMC/SWEPP Radiological Engineer

<u>R. O. Sanders</u> RWMC/SWEPP Rigging Engineer

<u>R. C. Caummisar</u> RWMC/SWEPP Safety Engineer

<u>W. J. Isle</u> RWMC/SWEPP Quality Engineer

L. D. Croft RWMC/SWEPP Engineering Manager

<u>M. M. Garcia</u> RWMC/SWEPP Industrial Hygiene

- K. McNeel RWMC/SWEPP Environmental Engineer
- D. L. French RWMC/SWEPP Operations Manager

Original signatures appear on DRR-WM-3594

213-1 2923C

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

REFERENCES

RWMC Operational Safety Requirements (OSR) including Appendix A

RWMC Emergency Action Plan

EG&G Safety Manual

EG&G Radiological Controls Manual

PAD A Initial Penetration Soil Sample Collection Procedure

PAD A Initial Penetration Health and Safety Plan

PAD A Initial Penetration Quality Assurance Project Plan

DOE Hoisting & Rigging Manual

DOE/ID-10112 INEL Low-Level Radioactive Waste Acceptance Criteria

DOE/ID-10074 INEL Transuranic Waste Acceptance Criteria

SWR's:

RS228X Relocate Pad A Building

JHM Sketch 4 - Pad A Portable Breathing Air Compressor Temperature Control System

Project Directives:

Ject Directives.	
PD-RS-1.8	Transfer, Storage, Handling and Tracking of Waste
PD-RS-1.13	Use of DOPs and SOPs
PD-RS-2.1	RWMC Receipt, Inspection, and Documentation of Waste
PD-RS-2.2	RWMC Operations in the Subsurface Disposal Area
PD-RS-2.4	Operations in the TSA
PD-RS-3.6	RWMC/SWEPP Document Preparation and Control
PD-RS-6.1	Radiation and Contamination Control
PD-RS-6.2	Industrial and Fire Safety
PD-RS-6.3	Criticality Control
PD-RS-6.6	Control of Radiological Spills
PD-RS-6.8	RWMC Access Control

Detailed Operating	Procedures:			
DOP-RO-5.2.2	Pad A Initial	Penetration	Pre-operational	Site
	Preparation			

U15-1 Dage 32

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

GENERAL

This procedure provides instructions for the following:

1. Final overburden removal to expose drums.

Pad A penetration will be accomplished using a backhoe. The vehicle will enter and exit the sprung structure from a large equipment access door. Dirt which is removed from the penetration will be placed adjacent to the penetration for later use as backfill.

2. In-situ drum inspection and removal.

Once the drums are exposed, their radiation levels will be measured, then they will be visually inspected and checked with large area wipes to determine loose surface contamination. Where possible, in-situ ultrasonic testing will determine drum wall thickness. Drums will then be retrieved using the backhoe and appropriate rigging and drum handling fixtures.

3. Above ground drum inspection, overpacking and interim storage (until characterization studies start).

Once retrieved, drums will be inspected for corrosion and integrity as well as tags and labels which may provide information regarding waste content, dates, etc. Additional ultrasonic measurements, radiation readings and radiological large area legal wipes and smears will be taken as required. Upon completion of inspection, the drums will be placed in 83-gal drum overpacks, the drum information transferred to overpacks, and the overpacked drums stored in cargo containers at the ILTSF at TSA. There will be two cargo containers for Rocky Flats drums.

4. Movement of the sprung structure building.

Following completion of drum retrieval at the South penetration, the building and equipment will then be moved to the North penetration site. The building was placed on the South penetration site per DOP-RO-5.2.2 (Ref. 14) and will be moved to the North penetration site using the crane and appropriate slings per SWR RS228X.

- 5. Repeating instructions 1, 2 and 3 at the North penetration site.
- 6. Building relocation.

Following drum retrieval at the North penetration, the building will be removed and stored at the RWMC for future use per SWR-RS228X.

U13-1 Page 33

Page 2

Page 3

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

<u>GENERAL (Cont'd.)</u>

7. Contouring and reseeding the Pad A berm

The Pad A surface will be recontoured to provide slope as required to provide water runoff then reseeded to prevent erosion.

The DOE Hoisting and Rigging Manual has been interpreted to classify all lifts within this procedure as "Ordinary Lifts".

This procedure is in compliance with the criteria of the EG&G Safety Manual, DOE Hoisting and Rigging Manual, and EG&G Radiological Controls Manual and shall be completed per requirements of PD-RS-1.13. The sequence of steps may be altered or worked in parallel with the permission of the RWMC/SWEPP Shift Manager, and that alteration shall be so noted and initialed by the Shift Manager in the body of the procedure. Non-applicable Sections/Steps must be designated n/a and initialed by the Shift Manager or RWMC Operations Manager. Compliance and execution are verbatim.

If RWMC Operating Limits cannot be satisfied or any abnormal condition arises that may compromise this operation, this operation shall stop and the limit and/or condition brought to the attention of the RWMC/SWEPP Shift Manager. The identified condition shall be resolved before proceeding with operations (RWMC OSR 3. Operating Limits, Numbers 2, 3 and 4). Abnormal conditions which may be associated with this task will be covered in the Training Checklist and crew briefing prior to the execution of this procedure.

Decontamination procedures will be initiated if surface contamination of the building and/or equipment exceed radiological clean limits as stated in the EG&G Radiological Control Manual (see Precautions and Limitations item 13).

If a drum is unable to support its weight and collapses during removal, retrieval operations will immediately cease, the area will be stabilized and personnel will evacuate the building. Further work will be evaluated. Prior to further operations, an approved DRR to this DOP must be issued showing continuation procedures.

NOTE

1. A new copy of this DOP will be used for each shift.

- The Pad A Job Supervisor shall maintain a daily operations log.
- 3. The HP will maintain a specific Pad A HP log.

U13-1 DUGE 3

- The IH will maintain a daily log book of monitoring activities.
- 5. All operations shall be documented with photographs as required to the radio was laber for.

Page 4

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

ACRONYMS AND ABBREVIATIONS USED IN THIS PROCEDURE INCLUDE:

A/R	As Required
BWP	Buried Waste Program
CAM	Constant Air Monitor
CGI	Combustible Gas Indicator
cpm	Counts per minute
CIH	Certified Industrial Hygienist
dpm	Disintegrations per minute
DOE	Department of Energy
DOP	Detailed Operating Procedure
DOT	Department of Transportation
DRD	Direct Reading Dosimeter
DRR	Document Revision Request
EO	Equipment Operator
GC	Gas Chromatograph
GVW	Gross Vehicle Weight
HAZMAT	Hazardous Material
HEO	Heavy Equipment Operator
HEPA	High Efficiency Particulate Air
HNu	A "Irade Name" for a type of organic vapor detector
HP	Health Physics lechnician
HSO	Health and Safety Ufficer
IH	Industrial Hygienist
1LISF	Intermediate Level Transuranic Storage Facility
12	Pad A Job Supervisor or Alternate (an Operations Specialist who
	has been trained specifically for this job)
NA	Not Applicable
NU	No alpha contamination detected with a large area wipe
UM	Uperations manager
UMP	Uccupational medical program
02	Operations Specialist
USK	Operational Safety Requirements
UVA	Drganic Vapor Analyzer
	Project Directive Quality Assumance Increator
	Quality Assurance Inspector
	Padialagical Engineen
	Padiaactive Waste Management Complex
CE CE	Safaty Engineen
200	Standard Operating Procedure
SOF	Shift Managan
SHEDD	Stored Waste Examination Dilot Dlant
SWEFF	Safe Working Load
	Safe Work Permit
SWR	Site Work Release
TC	Training Coordinator
τĭn	Thermoluminescent Dosimeter
TSA	Transuranic Storage Area
TYVEK	A "Trade Name" for a type of material used in personnel protection
	clothing $(1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
WCC	Warning Communication Center (1/3-1
WE	Waste Engineer
WMF	Waste Management Facility $(1/1/2)$
WPM	Work Package Manager

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

MATERIALS and EQUIPMENT

Materials

- 1. Duct tape - A/R
- Yellow 20 mil. nylon reinforced polyethylene sheeting A/R 2.
- Yellow poly bags, large A/R 3.
- 4. Soil stabilizer (to be determined)
- 5. 83 gal. vented drum overpacks with bar codes (48 each)
- Cargo Containers, three each, located at TSA (Two for the Rocky Flats 6. drums and one for the Non-Rocky Flats drums).
- 7. Waste containers for change areas for storing used clothing, respirators etc.
- 8. Visquine - A/R or
- 9. Tarps (20 ft.x 20 ft. Min) 6 each
- 10. Twelve inch adjustable wrench (crescent)
- 11. Permanent marker pens-A/R

Equipment for Health Physics and Industrial Safety Requirements

- Five (5) ea. ABC fire extinguishers, 30 lb. capacity * (RWMC SAR Add. 1. A, 3.5)
- Five (5) ea. MET-L-X fire extinguishers, 30 lb. capacity ** (RWMC SAR 2. Add. A, 3.5)
- 1000 lb. Soda Ash available at RWMC for fire suppression (RWMC SAR Add. 3. A, 3.5)
- 4. Beta/gamma constant air monitor (CAM) to monitor filter discharge, (RWMC OSR Add. A, 3.5.3.1)
- Beta/gamma constant air monitor (CAM) with sniffer hose for excavation 5. area monitoring (RWMC OSR Add. A, 3.5.3.1)
- Alpha CAM, 5A or equivalent to monitor filter discharge, (RWMC OSR Add. 6. A, 3.5.3.1)
- 7. Alpha CAM, 5A or equivalent with sniffer hose for excavation area monitoring (RWMC OSR Add. A, 3.5.3.1)
- Alpha survey meters, portable, PAC 4's or equivalent, (2 ea), (RWMC OSR 8. Add. A, 3.5.3.1)
- 9. Beta/Gamma Survey Meters, portable (2 ea), (RWMC OSR Add. A, 3.5.3.1)
- 10. Low Range Radiation Meters (2 ea), (RWMC OSR Add. A, 3.5.3.1)
- High Range Radiation Meter (1 ea), (RWMC OSR Add. A, 3.5.3.1)
 Portable Air Sampler (1 ea), (RWMC OSR Add. A, 3.5.3.1)
- 13. Contamination survey smears
- 14. Kimwipes, teritowels, etc.
- 15. Hard hats
- 16. Safety shoes
- 17. Organic Vapor Analyzer (OVA or HNU) (1 ea), (RWMC OSR Add. A, 3.5.3.1)
- 18. Combustible Gas Indicator (CGI), (1 ea), (RWMC OSR Add. A, 3.5.3.1)
- 19. Hand held ultrasonic thickness gage with step wedge (with current calibration)
- 20. Scott Air Pacs (2 ea)
- 21. Health Physics Emergency Response Trailer (Available at RWMC)
- 13-1 page36 22. Anti-C clothing (coveralls, shoe covers, nitrile gloves with surgical liners and leather gloves A/R
- 23. Full face respirators (Five extras to be located in evacuation vehicle)

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

Equipment for Health Physics and Industrial Safety Requirements (Cont'd.)

- 24. Air hoods or airline respirators A/R
- 25. TYVEK suits A/R
- 26. Breathing air compressor (capable of supplying six [6] people) including hoses and portable power supply (One ea.), (RWMC SAR Add. A, 3.4)
- 27. Area TLD's (2 each)
- 28. Self contained air horn
- 29. Materials and Equipment as required per Section 5 of the Pad A Initial Penetration Soil Sampling Collection Procedures (Ref. 5)
- 30. Personal Air Samplers (AR), (RWMC OSR Add. A, 3.5.3.1)
- 31. Passive Organic Monitors (RWMC OSR Add. A, 3.5.3.1)
- 32. First Aid Kit-Industrial first aid kit with sufficient supplies for five people
- 33. Eye Wash Eye wash meeting the minimum requirements of ANSI-Z358-1. (Location directed by the IH)
- 34. "Exclusion Zone" signs
- 35. "Contamination Reduction Zone" signs
- 36. Ridge pole timber for covering penetration holes (about 18 ft long) -2 ea
- 37. 16 sheets plywood (1/2 in. min.)
 - Other sizes may be used as long as total weight is 150 lb min.
 Other sizes may be used as long as total weight is 150 lb min.

Equipment for Operations

Excavator (backhoe-75641 or 75643, etc. *) 1. 2. Backhoe-75641 for drum retrieval Drum handling device (vertical) with sling 3. 4. Drum handling device (horizontal) 5. Drum uprighting device Shovels or hand augers for manual soil removal A/R 6. Power supply for electrical equipment 7. 8. Sprung structure containment building with ventilation blowers and HEPA filters 9. Radio "6" Net (1 ea) Radio Head Sets, Channel "C" (6 ea min.) 10. Crane for building movement (Manitowoc)-75610 11. 12. International 10 wheel flat bed truck-71621 * 13. Low Rider LOED material handler-75189 * 14. Front end loader-75632 * or tracked earth mover-75702 * 15. Fork lift-75224 *, with hydraulic clamp handler available at TSA as required for placing drums in cargo containers 16. Flexible hose for vehicle exhaust from building 17. A change area for donning and doffing protective clothing 18. Waste box for plywood and plastic sheeting * Or Equivalent - Equipment numbers shown are examples for reference only

Q13-1 19 age 37
Page 7

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

SPECIFIC PRECAUTIONS AND LIMITATIONS

- 1. The Pad A Job Supervisor must be present during all Pad A operations. (RWMC OSR, Add. A, 4.2.3.1)
- All operations shall be conducted with continuous HP coverage. The crew size will be approved by the RWMC/SWEPP Operations Manager or designated alternate. (RWMC OSR, Add. A, 4.2.3.2. and 3.2.4.3)
- 3. An Industrial Hygienist (IH) will be at the dig site during all operations, (QAPP Sect.3.2.4), and will monitor with volatile organic detection instrumentation (OVA and HNu) to comply with the Pad A Health and Safety plan. (RWMC OSR, Add. A, 4.2.3.2)
- 4. The RWMC Pad A Job Supervisor or alternate will be responsible to ensure that all personnel entering the retrieval area (workers and observers) have completed the OSHA HAZMAT, respirator and radiation worker training. In addition, all personnel entering the area must have the permission of the Pad A Job Supervisor or his designated alternate.
- 5. All applicable requirements of the DOE Hoisting and Rigging Manual shall be observed during lifting procedures. (RWMC OSR 3.4.3.1. and 3.4.3.2)
- All personnel working in the containment building on the Pad A drum retrieval operation will take complete showers at the end of each work shift. (Pad A Health and Safety Plan, Sect.5.5)
- 7. The dig area will be an <u>Exclusion Zone</u> and shall be so posted. Modified Level B suits (air hoods or airline respirators, TYVEK suits, safety shoes, chemical resistant booties, outer gloves with surgical inner gloves as required by HP and IH) and hard hats (if required by HSO and IH) will be worn inside this area.
- 8. The area outside the Exclusion Zone but inside the building will be a <u>Contamination Reduction Zone</u> and shall be so posted. Level C suits (full face respirators with combination organic filter, TYVEK suits, safety shoes, chemical resistant booties, and outer gloves with surgical inner gloves, as required by HP and IH). The airline hood may be worn when transiting out from the exclusion zone.
- 9. Nonworking observers inside either the Exclusion Zone or the Contamination Reduction Zone will wear the same protective clothing as required for workers in the corresponding area. In accordance /ith the ALARA philosophy, the number of nonworking observers in the exclusion zone will be minimized.

age 38

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

SPECIFIC PRECAUTIONS AND LIMITATIONS (Cont'd.)

- Pad A operations inside the containment building will be monitored for HAZMAT with the instrumentation listed in the Equipment section (RWMC OSR, Add. A, 3.2.4.4).
- 11. A vehicle capable of carrying five persons shall be available at the retrieval site at all times for emergency evacuation. Five extra full-face respirators shall be kept in the vehicle.
- 12. Personnel within the exclusion zone will be continuously monitored <u>in</u> <u>the breathing zone</u> (chest or face level). Negative readings on the HNu should <u>never</u> be interpreted as a complete absence of airborne toxic substances. If the readings on the HNu rise to 200 ppm above background, work at the site must be halted and personnel evacuated from the area. (RWMC OSR Add. A, 3.2.3.4) At this point, an evacuated canister sample will be taken to determine the constituents present in the air. From the analysis results, the IH will advise on an appropriate plan of action. Personnel <u>will not re-enter the site</u> <u>except for sampling</u> until the WPM has been assured of its safety.
- 13. When conducting wipe surveys, if less than 100 cpm beta-gamma above background and NO alpha, proceed. If greater than the above limits, stop operation to assess by performing a legal smear survey. If the results exceed 200 dpm/100 cm² alpha, stop the operation and contact the JS for resolution. An evaluation of the situation will be made by the Pad A Job Supervisor and/or Project Engineer, RWMC/SWEPP Shift Manager, BWP Project Manager, Technical Programs and Safety personnel. Actions will then be determined and completed before resuming operations.
- 14. If uncontained contamination exceeds limits of Precaution 13 or if a waste container is found to be breached or ruptured, all activities shall be stopped. The affected area shall be stabilized with soil stabilizer if required, and/or covered with nylon reinforced plastic or poly sheeting. All personnel shall then leave the immediate area and shall proceed to a pre-designated staging area for personnel survey. The RWMC/SWEPP Shift Manager shall be notified. An evaluation of the situation shall be made by the Pad A Job Supervisor and/or Project Engineer, RWMC/SWEPP Shift Manager, BWP Project Manager, Technical Programs and Safety personnel. An assessment of the additional information will be made and additional precautions will be instituted if necessary as determined by the Pad A Job Supervisor and Safety representative.

U13-1 page 39

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

SPECIFIC PRECAUTIONS AND LIMITATIONS (Cont'd.)

- 15. Beta/gamma limits for overburden soil shall be 100 cpm above background as determined through monitoring by Health and Safety personnel per Soil Sampling Collection Procedure. If above limit is exceeded, samples will be collected for full radionuclide analysis.
- 16. The Pad A confinement exhaust radiological effluent activity downstream of the HEPA filtration system shall not exceed 2 x 10^{-12} uCi/ml alpha activity and/or 1 x 10^{-10} uCi/ml beta-gamma activity. (RWMC OSR Add. A, 3.2.3.1)
- 17. If the combustible gas indicator readings within the containment exceed 10% of the Lower Explosive Limit (LEL) for one minute, retrieval activities will be suspended. (RWMC OSR Add. A, 3.2.3.4)
- 18. Building movement shall be initiated and conducted only in fair weather as determined by the Pad A Job Supervisor and the RWMC/SWEPP Shift Manager.
- 19. A portal monitor, large-area detector, or portable survey station shall be operating in the guard house (WMF-611) for use by personnel entering and exiting the RWMC/SWEPP. (RWMC OSR Section 3.3.3)
- 20. The tops of the waste containers in Pad A are at irregular elevations and may not be covered with plywood.
- 21. To prevent crushing drums with vehicles, the minimum dirt thickness over drums has been established at <u>26</u> in. (RWMC OSR Add. A, 3.3.3)
- 22. If the fire department is needed, call RWMC personnel on "6" net radio at WMF-601 and have phone call placed to 6-2211.

U13-1 page 40

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

<u>SPECIFIC PRECAUTIONS AND LIMITATIONS (Cont'd.)</u>

- 23. When wind speeds exceed 75 mph (120 Km/h), operations at Pad A shall cease and all personnel shall exit the Pad A containment structure. Only in the event of an emergency shall personnel reenter the Pad A containment structure until wind speeds decrease to less than 75 mph. (RWMC OSR Add. A, 3.1.3.1)
- 24. Due to the age of the waste which will be retrieved, breached waste containers, and consequently uncontained contamination, will be considered an anticipated or normal event. If uncontained contamination exceeds limits of Precaution 13, or if a waste container is found to be breached, ruptured, and/or corroded such that handling would be unsafe, all retrieval activities shall be stopped. The affected area and/or container shall be stabilized with soil stabilizer if required, and covered with nylon reinforced plastic. All personnel shall then leave the immediate area and shall proceed to a pre-designated staging area for personnel survey. The RWMC/SWEPP Shift Manager shall be notified. An evaluation of the situation shall be made by the RWMC/SWEPP Shift Manager, the Pad A Job Supervisor and/or Project Engineer, BWP Project Manager with Health and Safety personnel. Specific corrective action shall then be determined. All corrective actions shall be completed before resuming operations.
- 25. In the event of an abnormal occurrence (fire, high air particulate activity or explosion) all personnel shall evacuate upwind or as directed by the Health Physics technician or Job Supervisor. Work area evacuations shall be by verbal communication. Emergency communications between Pad A work site and the RWMC work control office in WMF-601 shall be via "6" net radio and activation of the RWMC evacuation siren will be determined by the Emergency Action Director. The RWMC/SWEPP Shift Manager shall direct further action in accordance with procedures established in the RWMC Emergency Action Plan.
- 26. The minimum temperature for operations requiring organic vapor monitoring is 15⁰ F.
- 27. When not in use, air lines inside the building will have ends taped over to prevent personnel contamination.

U13-1 page 41

Page 11

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project PREREQUISITES

1. GENERAL

1.1 (JS) DOP-RO-5.2.2 (Pad A Initial Penetration Pre-operational Site Preparation) has been completed for the South penetration site (Section 2) and cargo containers are ready (Section 3).

- 1.2 (JS) A Startup Checklist has been completed prior to the start of operations each day.
 - 1.3 (JS) The following designated crew members (minimum) have been qualified in their basic positions. (All RWMC personnel trained and qualified per RWMC Training program (RWMC OSR 4.1.3). Operations involving radioactive and/or hazardous materials shall have as a minimum an HP, an IH, a fire watch and a crew size designated by RWMC SM or designated alternate (RWMC OSR Add. A, 4.2.3.2). The Pad A Job Supervisor must be present during all Pad A operations (RWMC OSR Add. A, 4.2.3.1). N/A all positions which are not required for daily activities.

One Health and Safety Officer (HSO)	Name:
One Quality Field Officer (QFO)	
(for soil samples)	Name:
One Industrial Hygienist (IH) for	
soil samples	Name:
One Sampling Team Leader (for soil	
samples)	Name:
One Sampling Technician (for soil	
samples)	Name:
One Quality Assurance Inspector (QA))
(for drums thickness)	Name:
One heavy equipment operator (HEO) !	Name:
Two equipment operators (EO)	Name:
Two HP technicians (HP)	Name:
One Laborer	Name:
One Photographer	Name:

U15-1 XIJE 42

Page 12

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

PREREQUISITES (Cont'd.)

- 1. <u>GENERAL (Cont'd.)</u>
- 1.4 (JS) Verify that wind speed as read at WMF-601 or WMF-613 does not exceed 75 mph. (RWMC OSR Add. A, 3.1.3.1)
- 1.5 (JS) Complete a shift briefing which will cover the anticipated operations coming up this shift as well as a summary of status to date, as applicable. The potential chemical, radiological and industrial hazards will be made explicitly clear. (In addition, a briefing will be held prior to starting a new phase of the operation if not covered in the pre-shift briefing.)
 - 1.6 (JS) A portal monitor, large-area detector, or portable survey station is operating in the guard house (WMF-611) for use by personnel entering and exiting the RWMC/SWEPP (RWMC OSR, 3.3.3.1).
- 2. FINAL PAD OVERBURDEN PENETRATION and DRUM RETRIEVAL
 - 2.1. (HP) Ensure that access control signs are posted, listing radiation levels, Anti-C requirements, respiratory protection and survey requirements.
 - 2.2. (HP) All monitors and samplers shall be in operation in the vicinity of the work area. Location of the samplers and monitors will be determined by Health and Safety personnel.
 - 2.3. (HP) Two (2) area TLD's shall be positioned near the work area.
 - 2.4. (HP) Each worker entering the Exclusion Zone shall have the following equipment and dosimetry:
 - 1. Alarming digital dosimeter
 - 2. TLD
 - 3. Appropriate safety equipment as required in this procedure
 - 4. Air hood or airline respirator and TYVEK suit
 - 5. Personal air sampler as required by IH/RE
 - 6. Direct reading dosimeter
 - 2.5. (JS) The CFA Fire Department personnel have been oriented on special hazards involved regarding a fire at Pad A. (RWMC SAR Add. A, 3.5)

x13-1 xge 43

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project <u>PREREQUISITES (Cont'd.)</u>

2. FINAL PAD OVERBURDEN PENETRATION and DRUM RETRIEVAL (Cont'd.)

- 2.6. (JS) A summary of waste records, photographic files and existing log books for Pad A shall be reviewed thoroughly by the Pad A Job Supervisor with the crew for familiarization with the type of waste and waste containers which will be encountered.
 - 2.5 (HP) Record HP/IH instruments assigned to this operation:

<u>Instrument type</u>		
	<u>SERIAL #</u>	<u>CAL. DATE</u>
Alpha Contamination		
		<u></u>
Beta/Gamma		
Contamination		
Direct Radiation		
Alpha CAM		
Alpha CAM		. <u> </u>
Beta/Gamma CAM	<u> </u>	<u> </u>
Beta/Gamma CAM	-# · ··	
HNu	··· ,******	
HNU		<u> </u>
Hi-Vol		
Hi-Vol	<u> </u>	<u> </u>
Personal air sampler		
Personal air sampler	<u> </u>	
Personal air sampler	<u> </u>	
		,
	. <u></u>	
		<u></u>
	() 12	3-1
	UL)	
	nnu	O KIKI
	puy	

Page 14

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

PREREQUISITES (Cont'd.)

- 2.8 (JS) Once the ventilation system is operational and the exhumation vehicle is in place, have a smoke test performed to ensure that the exclusion area boundaries are properly delineated. Reposition exclusion area boundaries if necessary.
 - 2.9 (JS) Waste disposal containers have been positioned and are available for use.
 - 2.10 (JS) Spread plastic, tarp or Visquine in areas where the overburden dirt will be placed and where retrieved drums and overpack drums will be placed.
- 3. DRUM MOVEMENT to TSA
 - 3.1. (JS) Waste Profile sheets, completed for waste to be stored in TSA, have been approved by RWMC/SWEPP Programs prior to storage in TSA.
 - **3.2.** (JS) A RWMC Hazardous Waste Inventory List as been completed by a qualified Hazardous Waste Shipper and transmitted to RWMC/SWEPP Operations prior to storage in TSA.
- _____ 3.3. (JS) The flat bed truck is positioned for loading.
 - 3.4. (JS) The Low Rider LOED or equivalent is available at Pad A.
- 4. BUILDING PLACEMENT/MOVEMENT
 - 4.1. (JS) Weather forecasts shall indicate fair weather (no precipitation) for an 8 hr period of time prior to initiation of building placement/movement. Weather evaluation will be made by the Pad A Job Supervisor or Project Engineer and RWMC/SWEPP Shift Manager.
 - 4.2. (JS) Maximum wind conditions shall be 15 mph during building movement.
- ____ 4.3. (JS) Crane and operator are available.
- _____ 4.4. (JS) Other personnel as listed in SWR RS-228X are available.
- 5. END of SHIFT
 - 5.1 (JS) Complete a Shutdown Checklist prior to end of shift.

u15-1 2age45

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

WASTE MANAGEMENT DEPARTMENT

RWMC/SWEPP PROGRAMS

PERSONNEL BRIEFING LOG

Personnel Briefing Log (your signature and initials indicate your briefing attendance, understanding, and commitment to procedure compliance)

DATE	NAME (PRINT)	SIGNATURE	INITIALS	CLASSIFICATION	BRIEFED B:
		·	<u> </u>	······································	
<u> </u>			,		
					· <u>·····</u> ······························
					·
. <u></u>			<u> </u>		
······					
<u>.</u>	·····				
<u> </u>		·····			
					<u></u>
		<u></u>	<u> </u>	<u> </u>	
		<u> </u>			
				<u>,</u>	
	<u> </u>				
		U13-1			
		page 46			

Page 16

.

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project WASTE MANAGEMENT DEPARTMENT

RWMC/SWEPP PROGRAMS

PERSONNEL BRIEFING LOG (Cont'd.)

Personnel Briefing Log (your signature and initials indicate your briefing attendance, understanding, and commitment to procedure compliance)

DATE	NAME (PRINT)	SIGNATURE	INITIALS	CLASSIFICATION	BRIEFED BY
		····			
		····			- <u></u>
					- <u></u>
<u> </u>	<u> </u>			. <u></u>	
<u> </u>	·····				
	•********				
<u> </u>					
<u> </u>					
					<u> </u>
		····			
					<u>_</u>
		Q13	-1		
		pagi	e 41		
		1 5			

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

<u>OPERATION</u>

Procedure Opened: _____ Time ____ Date _____

The Pad A Job Supervisor must complete a Startup Checklist at start of each shift and a Shutdown Checkoff at the end of each shift.

- 1. <u>Penetration Opening (South)</u>
 - 1.1 (JS) Verify that the "General" Prerequisites and Prerequisites for "Final Pad Overburden Penetration and Drum Retrieval" have been completed.
 - 1.2 (JS) Remove the remaining overburden to achieve penetration using backhoe and/or hand shovels to expose drums or plastic sheet (whichever comes first). Place dirt adjacent to excavation.
 - a. If plywood, plastic sheeting, or drums are not encountered when 42 inches of overburden have been removed, the operation shall stop, the RWMC/SWEPP Shift Manager notified, and the situation will be evaluated by the RWMC/SWEPP Shift Manager, Pad A Job Supervisor, and Health and Safety personnel.
 - b. Before work continues, a formal procedure will be developed and approved to determine the exact location of the waste zone.
 - 1.3 (JS) Once penetration has been achieved, conduct a smoke test to determine direction and pattern of air flow at the opening. If necessary make adjustments to area boundary and/or ventilation system to ensure that flow is from the opening out through ventilation system.
 - 1.4 (JS) If plastic sheeting has been uncovered, remove it and the plywood. Dispose of wood and plastic. If contaminated, dispose of as contaminated waste. As the drums are exposed, Health Physics personnel sample the area using: 1. Radiation exposure meter, 2. Portable alpha and beta/gamma instruments, and 3. Wipe survey. All operations shall be conducted in a manner to minimize the activity and time spent on top of waste stack.

(See Precaution 13)

Page 18

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

OPERATION (Cont'd.)

2. <u>Visual Inspection of Drums (South)</u>

The following procedure steps do not necessarily have to be done in sequential order. The actual order will be determined by the Pad A Job Supervisor.

2.1 (JS) Visually inspect drums for identification tags, labels, content code, corrosion and integrity. Enter applicable data in Tables 1 and 2. If drums are intact, continue. If drums are corroded through or otherwise breached, stop and evaluate (See Precaution 14). The results of the evaluation will be documented in the daily operations log and a detailed recovery plan will be made per DRR to this DOP.

CAUTION

If a "Non-Rocky Flats" drum is encountered, that drum must not be removed from its disposal location. (RWMC SAR Add A, Appendix 4)

- 3. <u>Ultrasonic Inspection of Drum Thickness (South)</u>
 - 3.1 (QA) Perform ultrasonic inspection of drums in place if possible. If necessary complete measurements following drum removal. Record results of the inspection in Table 1. If results are satisfactory (.020 in. or greater), continue with drum retrieval section, if not, stop and evaluate.
- 4. Drum Retrieval/Overpacking/Transport to TSA (South)
 - NOTE A total of approximately 24 drums will be retrieved from each of the two penetrations. Because there is not enough room in the enclosure to overpack all the drums at once, drums will be retrieved and overpacked in batches per the Pad A Job Supervisor's discretion. Enough 83 gal overpacks should be brought into the enclosure to do one batch prior to retrieving that batch. The barcodes will be recorded in Table 1.
 - 4.1 (JS) Verify that the "General" prerequisites and prerequisites for "Final Pad Overburden Penetration and Drum Retrieval" as well as "Drum Shipment to TSA" have been completed.

page 49

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

OPERATION (Cont'd.)

4. Drum Retrieval/Overpacking/Transport to TSA (South) (Cont'd.)

- 4.2 (JS) Retrieve drums one at a time from the penetration site using the backhoe and either a drum handling device per Figure 3 or rigging per Figure 5, moving them to the drum inspection/overpack area and place on previously prepared plastic, tarp, Visquine or plywood plastic covered surface.
 - 4.3 (JS) Upright drums using hand uprighter as they are retrieved to optimize floor space.
 - 4.4 (JS) Mark drums with overpack barcode numbers which correspond to the overpacks which were brought into the enclosure. Drums will be placed in the corresponding overpacks.
 - 4.5 (JS) When enough drums have been accumulated to overpack (Job Supervisor's discretion), overpack those drums and transport to TSA cargo containers as follows:
 - a. Mark overpack to be used with drum identification information and fill out Table 2.
 - b. Rig to drum per Figure 4.
 - c. Lift drum and place in overpack drum.
 - d. Close and secure overpack drum lid.
 - e. HP shall make final survey of overpack drum prior to removal of drum from enclosure building.
 - f. Open the equipment access door and using the Low Rider LOED, rig to overpack per Figure 4 or utilize 83 gal drum barrel handlers.
 - g. Move overpack to flatbed truck for transport to TSA.
 - h. When truck is loaded, transport loaded overpacks to TSA cargo containers.
 - i. Using a forklift with hydraulic clamp handler, place the drums in the appropriate cargo container.
 - NOTE: All drums removed during a shift must be placed in the appropriate cargo container at TSA and a list of drums transferred given to RWMC/SWEPP Operations prior to the end of the shift. (Make entry in the Shutdown Checklist.) $\alpha/3-1$

al 50

Page 20

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

OPERATION (Cont'd.)

5. <u>Penetration Closure (South)</u>

- 5.1 (HP) Collect soil samples from the penetration overburden which is stockpiled adjacent to the penetration and any soil which may be in the penetration itself. Chain of custody rules shall be invoked at this point and samples transfered to Sampling Team leader for further transfer to laboratories.
 - 5.2. (JS) Cover penetration opening as follows:
 - a. Cover hole with plastic sheet or Visquine.
 - b. Cover hole with plywood at drum level.
 - c. Cover plywood with plastic, tarp or Visquine and secure to prevent wind damage.
 - d. Rope off hole area to prevent personnel access.
- 6. Building Removal (South)
 - 6.1 (JS) Verify that the "General" prerequisites and prerequisites for "Building Placement/Movement" have been completed.
 - 6.2. (HP) Survey and decontaminate building and equipment as required to meet the limits as shown in Precaution 13.
- 6.3. (JS) Shut down and disconnect all equipment from power.
 - 6.4. (JS) Move all equipment to north penetration location.
 - NOTE: Steps 7.1 and 15.1 may be performed concurrently following building removal from north penetration.
- 7. <u>Contour Area (South)</u>
 - NOTE: Building must be removed from South penetration site per Step 8.1 prior to performing Step 7.1
 - 7.1. (JS) Fill and contour the area over the South penetration with excavated overburden and clean dirt to match the surrounding contours such that there are no depressions to collect water.
- 8. <u>Enclosure/Ventilation/Radiation Monitoring Equipment Installation</u> (North)
 - 8.1 (JS) Move and reinstall the Sprung Structure building at the north penetration location as shown in Figures 1 and 2 per SWR RS228X. $\alpha/3-1$

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project OPERATION (Cont'd.)

- 8. <u>Enclosure/Ventilation/Radiation Monitoring Equipment Installation</u> (North) (Cont'd.)
 - ______8.2 (JS) Move power distribution equipment to north penetration area.
 - ______ 8.3 (JS) Install ventilation equipment and verify operability.
 - 8.4 (HP) Install the various radiation monitoring equipment as follows:
 - One Alpha CAM and one Beta/Gamma CAM to monitor the Exclusion area
 - 2. One Alpha CAM and one Beta/Gamma CAM to monitor the HEPA filter outlet flow
 - 3. Other equipment located as desired.

Verify operability. Log results in Pad A Health Physics Log.

- 8.5 (JS) Position the following equipment as it will be during the retrieval operation:
 - 1. Ten wheel flatbed truck
 - 2. Backhoe (No. 75641)
 - 3. Low Rider LOED or equivalent
 - 4. Change area
 - 5. Exclusion Zone boundaries
 - 6. Contamination Reduction Zone boundaries.
- 8.6 (JS) After all equipment has been positioned in the enclosure building, and the ventilation system is running, have a smoke test performed to ensure that the exclusion area boundaries are properly positioned. Reposition Exclusion Area boundaries if necessary.
- 9. <u>Penetration Opening (North)</u>
 - 9.1 (JS) Verify that the "General" Prerequisites and Prerequisites for "Final Pad Overburden Penetration and Drum Retrieval" have been completed.
 - 9.2 (JS) Remove the remaining overburden to achieve penetration using backhoe and/or hand shovels to expose drums or plastic sheet (whichever comes first). Place dirt adjacent to excavation.

)age 52

a. If plywood, plastic sheeting, or drums are not encountered when 42 inches of overburden have been removed, the operation shall stop, the RWMC/SWEPP Shift Manager notified, and the situation will be evaluated by the RWMC.SWEPP Shift Manager, Pad A dec,

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

- b. Before work continues, a formal procedure will be developed and approved to determine the exact location of the waste zone.
- 9.3 (JS) Once penetration has been achieved, conduct a smoke test to determine direction and pattern of air flow at the opening. If necessary make adjustments to area boundary and/or ventilation system to ensure that flow is from the opening out through ventilation system.

OPERATION (Cont'd.)

- 9. <u>Penetration Opening (North) (Cont'd.)</u>
- 9.4 (JS) If plastic sheeting has been uncovered, remove it and the plywood. Dispose of wood and plastic. If contaminated, dispose of as contaminated waste. As the drums are exposed, Health Physics personnel sample the area using: 1. Radiation exposure meter, 2. Portable alpha and beta/gamma instruments, and 3. Wipe survey. All operations shall be conducted in a manner to minimize the activity and time spent on top of waste stack.

(See Precaution 13)

- 10. Visual Inspection of Drums (North)
 - 10.1 (JS) Visually inspect drums for identification tags, labels, content code, corrosion and integrity. Enter applicable data in Tables 1 and 2. If drums are intact, continue. If drums are corroded through or otherwise breached, stop and evaluate. (See Precaution 14) The results of the evaluation will be documented in the daily operations log and a detailed recovery plan will be made per DRR to this DOP.

CAUTION

If a "Non-Rocky Flats" drum is encountered, that drum must not be removed from its disposal location. (RWMC SAR Add A, Appendix 4)

- 11. <u>Ultrasonic Inspection of Drum Thickness (North)</u>
 - 11.1 (QA) Perform ultrasonic inspection of drums in place if possible. If necessary, complete measurements following drum removal. Record results of the inspection in Table 1. If results are satisfactory (.020 in. or greater), continue with drum retrieval section, if not, stop and evaluate. () (2)

0157 299853

Page 22

RWMC Operations

Subject: DOP-RO-5.2.1 ~~ BWP Pad A Initial Penetration and Retrieval Project OPERATION (Cont'd.)

12. Drum Retrieval /Overpacking/Transport to TSA (North)

- NOTE: A total of approximately 24 drums will be retrieved from each of the two penetrations. Because there is not enough room in the enclosure to overpack all the drums at once, drums will be retrieved and overpacked in batches per the Pad A Job Supervisor's discretion. Enough 83 gal overpacks should be brought into the enclosure to do one batch prior to retrieving that batch. The barcodes will be recorded in Table 1.
 - 12.1 (JS) Verify that the "General" prerequisites and prerequisites for "Final Pad Overburden Penetration and Drum Retrieval" as well as "Drum Shipment to TSA" have been completed.
 - 12.2 (JS) Retrieve drums one at a time from the penetration site using the backhoe and either a drum handling device per Figure 3 or rigging per Figure 5, moving them to the drum inspection/overpack area and place on previously prepared plastic, tarp, Visquine, or plywood surface.
 - 12.3 (JS) Upright drums using hand uprighter as they are retrieved to optimize floor space.
 - 12.4 (JS) Mark drums with overpack barcode numbers which correspond to the overpacks which were brought into the enclosure. Drums will be placed in the corresponding overpacks.
 - 12.5 (JS) When enough drums have been accumulated to overpack (Job Supervisor's discretion), overpack those drums and transport to TSA cargo containers as follows:
 - a. Mark overpack to be used with drum identification information and fill out Table 2.
 - b. Rig to drum per Figure 4.
 - c. Lift drum and place in overpack drum.
 - d. Close and secure overpack drum lid.

U13-1 page 54

Page 24

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project OPERATION (Cont'd.)

- 12. Drum Retrieval /Overpacking/Transport to TSA (North) (Cont'd.)
 - e. HP shall make final survey of overpack drum prior to removal of drum from enclosure building.
 - f. Open the equipment access door and using the Low Rider LOED, rig to overpack per Figure 4, or utilize 83 gal drum barrel handlers.
 - g. Move overpack to flatbed truck for transport to TSA.
 - h. When truck is loaded, transport loaded overpacks to TSA cargo containers
 - i. Using a forklift with hydraulic clamp handler, place the drums in the appropriate cargo container.
 - NOTE: All drums removed during a shift must be placed in the appropriate cargo container at TSA and a list of drums transferred given to RWMC/SWEPP Operations prior to the end of the shift. (Make entry in the Shutdown Checklist.)
- 13. <u>Penetration Closure (North)</u>

13.1 (IH) Collect soil samples from the penetration overburden which is stockpiled adjacent to the penetration and any soil which may be in the penetration itself.

- 13.2 (JS) Cover penetration opening as follows:
 - a. Cover hole with plastic sheet or Visquine.
 - b. Cover hole with plywood at drum level.
 - c. Cover plywood with plastic, tarp or Visquine and secure to prevent wind damage.
 - d. Rope off hole area to prevent personnel access.
- 14. Building Removal (North)
 - 14.1 (JS) Verify that the "General" Prerequisites and Prerequisites for "Building Placement/Movement" have been completed.
 - 14.2 (HP) Survey and decontaminate building and equipment as required to meet the limits as shown in Precaution 13.
 - 14.3 (JS) Shut down and disconnect all equipment from power.

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

OPERATION (Cont'd.)

- 14. Building Removal (North)
 - 14.4 (JS) Remove the Sprung Structure building from the North penetration and store per the direction of the Pad A Job Supervisor and SWR RS228X.
- 15. Contour Area (North)
 - 15.1 (JS) Fill and contour the area over the North penetration with excavated overburden and clean dirt to match the surrounding contours such that there are no depressions to collect water.
- 16. <u>Contour Pad A (Overall)</u>
 - 16.1 (JS) Fill the cutouts on the East side of Pad A where the crane was and contour the overall shape of the pad overburden so that there are no depressions to collect water.
- 17. <u>Reseed Areas (Both)</u>
 - 17.1 (JS) Reseed Pad A per the requirements of PD-RS-2.2 -Operation in the Subsurface Disposal Area.
- 18. <u>Cleanup of Equipment/Area and Storage of Equipment</u>

18.1 (JS) Clean up area following project to ensure that equipment is stored and waste has been disposed of etc.

Procedure Completed:

Signature _____ Time ____ Date _____

Shift Manager_____ Date_____

U13-1 page 56

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

Figure 1. Plan View of Pad A and Penetration Area.

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

.

- 1. Contamination Reduction Corridor
- 2. Access Control Points
- 3. Decontamination Station A
- 4. Decontamination Station B
- 5. Exclusion Zone
- 6. Contamination Reduction Zone
- 7. Backhoe
- 8. Retrieval Area

Figure 2. Pad A Building/Penetration Layout. $\frac{2}{3}$

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

RWMC DRAWING 8/12/88

Richard O. Sander

Figure 3. Horizontal drum handling.

P

Page 29

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

Richard O. Sander

Figure 4. Vertical drum handling.

Figure 5. Horizontal Drum Handling a/3-1 pagea

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project TABLE 1. ULTRASONIC TESTING OF DRUMS

Penetration	n (Circle one)	SOU	ТН	NOR	гн			
<u>Layer No.</u>	<u>Drum Ident.</u>	RWMC Barcode <u>Number</u>	Top	(2	Upper Side_	Middle 	Lower Side	<u>Bottom</u>
			(in) _	(in)	(in)	(in)	(in)
			(in) _	(in)	(in)	(in)	(in)
			(in) _	(in)	(in)	(in)	(in)
		<u></u>	(in) _	(in)	(in)	(in)	(in)
			(in) _	(in)	(in)	(in)	(in)
- <u></u> ,			(in) _	(in)	(in)	(in)	(in)
. <u></u>	. <u></u>		(in) _	(in)	(in)	(in)	(in)
. <u></u>			(in) _	(in)	(in)	(in)	(in)
·			(in) _	(in)	(in)	(in)	(in)
			(in) _	(in)	(in)	(in)	(in)
	·	<u></u>	(in) _	(in)	(in)	(in)	(in)
			(in) _	(in)	(in)	(in)	(in)
			(in) _	(in)	(in)	(in)	(in)
			(in)	(in)	(in)	(in)	(in)
			(in)	(in)	(in)	(in)	(in)
			(in) _	(in)	(in)	(in)	(in)
Instrument	Number:					Not	e	

Calibration Date:_____

Performance Signature:_____

Date: _____

Q13-1 page 62

Normal drum wall thickness ranges from .0533 to .0598 in.

Minimum wall thickness is .020 in.

Page 32

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

TABLE 1. ULTRASONIC TESTING OF DRUMS (continued)

Penetratio	n (Circle one)	SO	UTH	NORTH			
<u>Laver No.</u>	<u>Drum Ident.</u>	RWMC Barcode <u>Number</u>	<u>Тор</u>	Upper <u>Side</u>	Middle <u>Side</u>	Lower <u>Side</u>	<u>Bottom</u>
. <u></u>	<u> </u>		(i	n)(in)(in)	(in)	(in)
		<u></u>	(i	n)(in)(in)	(in)	(in)
			(i	n)(in)(in)	(in)	(in)
		<u> </u>	(i	n)(in)(in)	(in)	(in)
		<u></u>	(i	n)(in)(in)	(in)	(in)
			(i	n)(in)(in)	(in)	(in)
			(i	n)(in)(in)	(in)	(in)
		<u> </u>	(i	n)(in)(in)	(in)	(in)
	.		(i	n)(in)(in)	(in)	(in)
			(i	n)(in)(in)	(in)	(in)
	<u> </u>		(i	n)(in)(in)	(in)	(in)
			(i	n)(in)(in)	(in)	(in)
			(i	n)(in)(in)	(in)	(in)
<u> </u>			(i	n)(in)(in)	(in)	(in)
			(i	n)(in)(in)	(in)	(in)
		. <u></u>	(i	n)(in)(in)	(in)	(in)

Instrument Number:_____

Calibration Date:_____

Performance Signature:_____

Date: _____

1015-1 29e63

<u>Note</u>

Normal drum wall thickness ranges from .0533 to .0598 in.

Minimum wall thickness is .020 in.

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project TABLE 1. ULTRASONIC TESTING OF DRUMS (continued)

Penetratior	n (Circ]	le one)	S	OUTH	NO	RTH			
Layer No.	<u>Drum Ide</u>	<u>ent.</u>	RWMC Barcode <u>Number</u>	Тор		Upper <u>Side</u>	Middle 	Lower <u>Side</u>	<u>Bottom</u>
					(in)	(in)	(in)	(in)	(in)
	·				(in)	(in)	(in)	(in)	(in)
	· <u></u>				_(in)	(in)	(in)	(in)	(in)
					_(in)	(in)	(in)	(in)	(in)
	·				(in)	(in)	(in)	(in)	(in)
					(in)	(in)	(in)	(in)	(in)
					_(in)	(in)	(in)	(in)	(in)
				<u></u>	(in)	(in)	(in)	(in)	(in)
				·	(in)	(in)	(in)	(in)	(in)
		,	,	<u></u>	_(in)	(in)	(in)	(in)	(in)
					_(in)	(in)	(in)	(in)	(in)
					_(in)	(in)	(in)	(in)	(in)
					(in)	(in)	(in)	(in)	(in)
				<u> </u>	(in)	(in)	(in)	(in)	(in)
	. <u> </u>				(in)	(in)	(in)	(in)	(in)
					_(in)	(in)	(in)	(in)	(in)

Instrument Number:_____

Calibration Date:_____

Performance Signature:____

Date: _____

U 13-1 Dage LA

<u>Note</u>

Normal drum wall thickness ranges from .0533 to .0598 in.

Minimum wall thickness is .020 in.

.

L

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

TABLE 2. DRUM DATA

Drum Ident. No.	Rad.Level	Content Code	Contents	
				·
		•••••••		
	· <u></u>		<u> </u>	
				55 Fel
_ 				
·····				
		<u> </u>		
		· · ·	<u></u>	·····
			4*******************************	
Content Codes Exp	<u>ected</u> <u>Co</u>	<u>ntents</u>	<u>EPA Waste No.</u>	
5	Ni	trates	D001	
995	Se	wer Sludge	Awaiting Testing	
None	Ur	anium/Beryllium	Awaiting Testing	

Issued: 11/28/89		Page 35
RWMC Operations		
Subject: DOP-RO-5.2.1	BWP Pad A Initial Pe	netration and Retrieval Project
TABLE 2. DRUM DATA (co	ontinued)	
Drum Ident. No. Rad	Level Content Code	Contents
	<u> </u>	
	<u></u>	
······································		· · · · · · · · · · · · · · · · · · ·
<u></u>		
Content Codes Expected	<u>d Contents</u>	EPA Waste No.
5	Nitrates	D001
995	Sewer Sludge	Awaiting Testing
None	Uranium/Beryllium	Awaiting Testing

Q13-1 page 66

Issued: 11/28/89	9		Page 36		
RWMC Operations					
Subject: DOP-RO-5	5.2.1 BWP Pa	d A Initial Pe	netration and Retrieval Project		
TABLE 2. DRUM DAT	TA (continued)				
Drum Ident. No.	Rad.Level C	ontent Code	Contents		
- <u></u>					
	<u> </u>	·····			
	<u></u>				
	<u></u> _		· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·			
	<u> </u>				
	<u> </u>				
	<u> </u>		······································		
<u></u>					
Content Codes Exp	ected <u>Conte</u>	<u>nts</u>	EPA Waste No.		
5	Nitra	tes	D001		
995	Sewer	Sludge	Awaiting Testing		
None	Urani	um/Beryllium	Awaiting Testing		
		\sim 10			

-

•

Q13-1 page 67

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

ABNORMAL/EMERGENCY PROCEDURES

<u>General</u>

- 1. If prompt, life-saving first aid and/or medical treatment is required, decontamination procedures can be omitted. On site personnel should accompany contaminated victims to the medical facility to provide medical personnel information regarding contamination specifics.
- 2. Life-saving care will be instituted immediately without considering decontamination. Outer garments can be removed if they do not cause delay or interfere with treatment or aggravate medical problems. Respiratory equipment must always be removed. Chemical-resistant clothing can be cut away. If the outer contaminated garments cannot be removed, the victim should be wrapped in cloth to help prevent contamination of transporting vehicles or medical personnel. Outer garments can then be removed at the medical facility. Medical radiation and chemical decontamination facilities are located at CFA. The transport vehicle and medical facility may have to be decontaminated.
- 3. Hand signals and the buddy system will be used if an emergency situation should arise and normal communication becomes impossible or unsafe. The following hand signals will be used in an emergency:
 - o Hand gripping throat out of air, can't breathe;
 - Grip partner's wrist or both hands around waist leave area immediately;
 - o Hands on top of head need assistance;
 - o Thumbs up okay, I'm all right, I understand; and
 - o Thumbs down no, negative.

- 20 - 10

- 4. In cases of life-threatening emergencies such as fire or explosion, personnel should leave the vicinity using the shortest possible route without regard for decontamination at that time. When the situation has stabilized, personnel will take necessary steps to decontaminate themselves, equipment, and other affected areas.
- 5. Prior to personnel entry into the Pad A containment, radiological and gross volatile organic levels will be determined. If during operations, the IH detects organic levels in excess of 200 parts per million (PPM) above background for 15 minutes, work will be suspended and personnel will evacuate the containment. An evacuated canister sample will be taken and analyzed for constituents present. The IH will continue to monitor the fluctuation of vapor levels with a Combustible Gas Indicator (CGI) and photo or flame ionization detector (PID/FID). If the elevated vapor levels do not dissipate, the IH, JS, and HSO will jointly M3-1determine a course of action that will allow safe operations.

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

- 6. Emergency phone numbers:
 - Warning Communication Center (WCC) 777
 Occupational Medical Program (OMP) 6-2356
- 7. Other phone numbers:

0	Work Package Manager:	Buck Horton Work - 526-2116
0	Cost Account Manager:	Home - 529-2368 Steve Fogdall Work - 526-6265
		Home - 529-3220
0	Health and Safety Officer:	Jeff Ginsburg
		Work - 526-9698 Home - 523-2945
0	Explosives Expert:	Richard Green
		Work - 526-2702
0	Industrial Hygienist	Mel Garcia
		Work - 526-8072

Personnel Injury in the Exclusion Zone

- 1. Sound a continuous blast on either the self contained air horn or a vehicle horn.
- 2. Shut down all equipment within the Exclusion Zone unless necessary to respond to the emergency.
- 3. On site personnel transport the injured personnel to the boundary between the Exclusion Zone and the Contamination Reduction Zone.
- 4. Assemble all other personnel at the decontamination line.
- 5. Notify RWMC Shift Manager.
- 6. The HSO and/or JS immediately contact the Occupational Medical Program (OMP) at 6-2356 through WMF-601 and "6 NET" radio to evaluate the nature of the injury.
- 7. If deemed necessary, contact the INEL WCC at 777 for emergency transportation and medical aid.
- Becontaminate the injured person to the most reasonable extent possible prior to movement to the support zone. Decontamination may be omitted if prompt, life saving first aid and/or medical treatment is required.
- 9. Administer appropriate first aid to injured.
- 10. Record the injury in the logbook.

Personnel Injury in the Support Zone

IQE 69

- 1. The JS and HSO assess the nature of the injury.
- 2. Notify RWMC Shift Manager.
- 3. If the cause of the injury or the loss of the injured person does not affect the performance of site personnel, operations will continue with the administration of first aid to the injured and

Page 39

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

Personnel Injury in the Support Zone (Cont'd.)

- 4. If the injury may increase the risk to other site workers, the emergency signal (horn) will be sounded, nonessential equipment will be shut down and all Pad A personnel will move to the decontamination line for further instructions.
- 5. Activities on site will not start up again until the added risk is removed or minimized.

Transportation of and Follow up of Injury

- 1. If an injured worker is transported to the medical facility, he/she will be accompanied by at least one other Pad A worker (an HP if possible) to inform medical personnel of the level of decontamination performed prior to leaving the Pad A site and to provide specific details as to the nature of the injury. If radiological contamination is suspected, the HP <u>will</u> accompany the victim; likewise, if hazardous chemical exposure is suspected, the IH will accompany the victim.
- 2. In the event of contaminant exposure, the above procedures will be followed and affected personnel monitoring devices will be immediately transported to the analytical lab to aid in the appropriate testing and treatment of the injured worker.

<u>Fire</u>

- 1. Stop retrieval operations.
- 2. If possible put out fire with fire extinguishers.
- 3. Notify RWMC Shift Manager.
- 4. If necessary, call RWMC personnel on "6" net radio and have Fire Department called (6-2211).
- 5. Keep all personnel a safe distance upwind from the involved area until the situation is remedied and the risks have been eliminated.

Explosion

- I. Stop retrieval operations.
- 2. Evacuate the building and area.
- 3. Administer first aid to the injured (if any).
- 4. Notify RWMC Shift Manager, Fire and Explosives experts.
- 5. Transport the injured for medical assistance.

<u>Bulging drum</u>

- 1. Stop retrieval operation.
- 2. Notify RWMC Shift Manager.
- 3. JS, IH and HSO jointly determine safe handling method prior to movement of drum. $\bigcirc 10.1$

013-1 page 70

Page 40

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

Breached Drum (in place)

- 1. Stop retrieval operations.
- 2. If required, stabilize the area with soil stabilizer and/or nylon reinforced plastic or poly sheeting.
- 3. Evacuate the building.
- 4. Notify RWMC Shift Manager.
- 5. Situation will be evaluated by RWMC Shift Manager, Pad A Job Supervisor and/or Project Engineer, BWP Project Manager and Health and Safety personnel.

Breached Drum (while lifting)

- 1. Stop retrieval operations.
- 2. If required, stabilize the area with soil stabilizer and/or nylon reinforced plastic/or poly sheeting.
- 3. Evacuate the building.
- 4. Notify Shift Manager.
- 5. Situation will be evaluated by RWMC Shift Manager, Pad A Job Supervisor and/or Project Engineer, BWP Project Manager and Health and Safety personnel.

- 1. Stop retrieval operations.
- 2. Evacuate the building.
- 3. Notify Shift Manager.
- 4. HP perform survey to determine extent of problem.

High Volatile Organic Gas Concentration (>200 PPM for 15 minutes).

- 1. Stop retrieval operations.
- 2. Evacuate the building.
- 3. Notify Shift Manager.
- 4. Perform follow up actions as shown in the Abnormal/Emergency Procedures, " General" section, Step 5.

<u>High Combustible Gas Indicator (CGI) readings</u> [10 % of the Lower Explosive Limit (LEL) or greater]

- 1. Stop retrieval operations.
- 2. Evacuate the building.
- 3. Notify Shift Manager.
- 4. Perform follow up actions as shown in the Abnormal/Emergency Procedures, " General" section, Step 5.

(1/3-1) page 71

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

<u>Radioactive Contamination</u> (>200 dpm/100 cm² beta-gamma and/or 20 dpm/100 cm² alpha)

- 1. Stop retrieval operations.
- 2. Evacuate the building.
- 3. Notify Shift Manager.
- 4. Perform follow up actions as shown in the Abnormal/Emergency Procedures, " General" section, Step 5.

Encountering a Waste Box (In-Place)

Pad A contains over 2000 plywood boxes of Rocky Flats waste that are in a degraded condition based upon the 1979 penetration inspection. The penetration sites have been picked to encounter and inspect drums only based upon historic documents and pictures. if a plywood waste box is uncovered or encountered during drum examination/retrieval:

- 1. Stop retrieval operations.
- 2. if required, stabilize the area involved with soil stabilizers/or nylon reinforced plastic or poly sheeting.
- 3. Evacuate the building.
- 4. Notify the RWMC shift manager.
- 5. Situation will be evaluated by the RWMC Shift Manager, Pad A Job Supervisor and/or Project Engineer, BWP Project Manager and Health and Safety personnel.
- 6. Corrective action and site closure based upon developed procedure from No. 5 above.

Personal Protective Equipment Failure

If any site worker experiences a failure or alteration of protective equipment that affects the protection factor, that person and his/her buddy will immediately leave the Exclusion Zone. Reentry will not be permitted until the equipment has been repaired or replaced. The HP, IH, and HSO will determine potential exposures and evaluate the need for biological sampling.

Other Equipment Failure

If any other equipment on site fails to operate properly, the JS and HSO will be notified and they will determine the effect of this failure on continuing operations on site. If the failure affects the safety of personnel or prevents completion of Technical Work Plan tasks, all personnel will leave the Exclusion Zone until the situation is evaluated and appropriate actions are taken.

013-1 page 72

Page 42

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

<u>Start-up Checklist</u>

(To be filled in at the start of operations each day)

1. (JS) Complete a shift briefing which will cover the anticipated operations coming up this shift as well as a summary of status to date, as applicable. The potential chemical, radiological and industrial hazards will be made explicitly clear. (In addition, a briefing will be held prior to starting a new phase of the operation if not covered in the pre-shift briefing.)

- 2. (JS) Start the four ventilation blowers. Verify proper operation of all four blowers.
 - 3. (JS) Read and record magnehelic gage reading on all four blowers to insure 4 inches wg. is not exceeded. (If 4 inches wg. is read, stop operations, change out filter prior to continued operation).
 - (IH) Verify that volatile and explosive gas concentrations are satisfactory.
 - 5. (HP) The Alpha 5A CAM inside the building is operating properly and is set at 2 x 10^{-12} uCi/ml.
 - 6. (HP) The Alpha 5A CAM at the HEPA filters is operating properly and is set at 2 x 10^{-12} uCi/ml.
 - 7. (HP) The Beta/Gamma CAM inside the building is operating properly and is set at 1 x 10^{-10} uCi/ml.
 - 8. (HP) The Beta/Gamma CAM at the HEPA filters is operating properly and is set at 1×10^{-10} uCi/ml.
 - 9. (IH) The breathing air compressor has been started per EG&G Standard Practice 840-12 and is operating properly.
 - 10. (JS) Verify prerequisites for the work to be done.

Checklist	Complete		_Date	Time
		(JS)		

Jage 73
Page 43

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project

Shutdown Checklist

(To be filled in at the end of operations each day)

- 1. (WE) All drums removed during this shift have been overpacked and placed in the appropriate cargo container at TSA and a list of drums transferred has been given to RWMC/SWEPP Operations.
 - (HP) Perform a survey of the building, the area and equipment inside and the outside of the building for contamination. Record results in Pad A HP Log.
- 3. (JS) Read and record magnehelic gage readings on all four blowers to insure 4 inches wg. is not exceeded.
 - ____ 4. (JS) Secure all blowers.
 - 5. (HP) CAM filters have been removed for counting and new filters have been installed. (Leave all CAMs running.)
- _____ 6. (JS) Building doors are shut.
 - (IH) The breathing air compressor has been shut down per EG&G Standard Practice 840-12
 - 8. (HP) Filters from CAMs have been counted for gross beta and gross alpha activity using a gas proportional smear counter. Results have been recorded in this step and the Pad A HP log.

Alpha CAM (inside building) Alpha CAM (at filters) Beta/Gamma CAM (inside building) Beta/Gamma CAM (at filters)

9. (JS) Vehicle heaters are plugged in, if applicable

Checklist	Complete		Date	Time
		(JS)		

page 74

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project COMMENT SHEET

Page Step Init Date Number Number Comments/Notes/Observations _ _ - -- ---- -- -_ - ---____ ----- -- -- ----- -- -- -- ------- _____ ------ -- -_ -- -- -_ _ - -____ - --- --- -- -- ------____ _ _ - ---- --_ _ _ _ - -- -- -_ _ -____ _ _ _ _ - -- -- -- -- -. ____ - --------75

Page 45

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project COMMENT SHEET (Continued)

<u>Init</u>	<u>Date</u>	Page <u>Number</u>	Step <u>Number</u>	Comments/Notes/Observations
<u></u>			<u> </u>	
				- · · · · · · · · · · · · · · · · · · ·
<u> </u>				
	<u> </u>			
	<u> </u>			
		<u> </u>	<u> </u>	
			<u> </u>	
	—			
		, <u> </u>		
	. <u></u> ,			
			<u></u> .	
			ADD	CONTINUATION SHEETS AS REQUIRED
				012-1

page 16

RWMC Operations

Subject: DOP-RO-5.2.1 -- BWP Pad A Initial Penetration and Retrieval Project COMMENT SHEET (Continued)

<u>Init</u>	<u>Date</u>	Page <u>Number</u>	Step <u>Number</u>	Comments/Notes/Observations
<u></u>		<u></u>	<u> </u>	
	<u> </u>	. <u></u>		
	<u></u>		<u> </u>	
			<u></u>	
	<u> </u>			
	<u> </u>			
				
	<u></u>		<u> </u>	
			<u> </u>	
		<u> </u>		
		,	<u></u>	
			ADD	CONTINUATION SHEETS AS REQUIRED

11/20/00

Issued: 11/28/89	Page 4/
RWMC Operations	
Subject: DOP-RO-5.2.1 BWP Pad A	Initial Penetration and Retrieval Project
<u>RWMC/</u> <u>TRAININ</u> <u>BWP Pad A Initial Pen</u>	<u>SWEPP_PROGRAMS</u> <u>G_CHECKLIST_FOR_</u> etration_and_Retrieval_Project
Name	S Number
Date	Classification <u>Job Supervisor</u>
Each item listed below is to be com this task. The personnel responsib	pleted by each individual who is to work le for signing each item is as noted. Signature Date
1.0 Attend a Briefing and self stu	dy on the following:
PD-RS-6.6 Control of Radiologi	cal Spills
RWMC Emergency Action Plan V1.A.2 - Radiologica V1.A.3 - Operational	l Emergencies Emergencies

Pad A Initial Penetration Health and Safety Plan

Pad A Sections of the RWMC OSR/SAR

- 2.0 Attend a Briefing and self study on the following Detailed Operating Procedure: DOP RO Number <u>5.2.1</u> BWP Pad A Initial Penetration and Retrieval Project
- 3.0 Participate in a Dry Run which will include actual On the Job training for entry into and exit from the portable building as well as some anticipated abnormal situations.
- 4.0 Complete an oral checkout on the items listed in 1 and 2 above

ΗP

All other team member

5.0 Qualification Completed

- 6.0 Checklist Included in Individual's Training Record
- Individual Date Individual Date Operations Specialist Date HP Work Leader Date **Operations** Specialist Date RWMC/SWEPP Oper.Mgr. Training Coordinator

Issue	ed:	11/28/89		
RWMC	0per	ations		

Subje	ect: DOP-RO-5.2.1 BWP Pad A Initial P	enetration and Retrieval Project	
	<u>RWMC/SWEPP PRO</u> <u>TRAINING CHECKLI</u> BWP Pad A Initial Penetration	<u>GRAMS ST FOR</u> and Retrieval Project	
Name_	S Nu	mber	
Date	Clas	sification Job Supervisor	
Each this	item listed below is to be completed by task. The personnel responsible for si	each individual who is to work gning each item is as noted. Signature Date	
1.0	Review the RWMC/SWEPP Document Tree with Production/Planning Manager or designated alternate	Production/Planning Manager	
2.0	Review the following with Operations Manager or designated alternate:	Operations Manager	
	Project Directives: PD-RS-1.5 Work Control PD-RS-1.13 Use of DOPs and SOP PD-RS-2.2 RWMC Operations in PD-RS-3.6 RWMC/SWEPP Document PD-RS-6.1 Radiation and Conta PD-RS-6.2 Industrial and Fire PD-RS-6.6 Control of Radiolog PD-RS-6.8 RWMC Access Control	s the Subsurface Disposal Area Preparation and Control mination Control Safety ical Spills	
	RWMC Emergency Action Plan V1.A.2 - Radiological Emergencies V1.A.3 - Operational Emergencies		
	DOP RO 5.2.1- BWP Pad A Initial Penetr	ation and Retrieval Project	
	DOE Hoisting and Rigging Manual		
3.0	Review the RWMC Operations Safety Requirements Document, Appendix A to OSR and Safety Analysis Report with Engineering Manager or designated alternate	Engineering Manager	
4.0	Complete an oral checkout on the items in 1, 2, and 3 above with RWMC/SWEPP Progams Manager or designated alternate	RWMC/SWEPP Programs Manager	
5.0	Qualification Completed	RWMC/SWEPP Oper.Mgr.	Q13-1
6.0	Checklist Included in Individual's Training Record	Training Coordinator	page 79

Appendix 13-2

.

APPENDIX 13-2

PHASE 1 SAMPLE COLLECTION LOGBOOK

Pad A. Cover Soil 8/18/88 Page 1 cF9 0530 Arrived at Pad A In Attendance Karen Kaslow Team Leader Joe Londy Decon Sampher Les Frickurgen Decol cample packer. H. Richarden Guality Wayne Schufield - H.P. Larry Miller - H.P Craig Davis - Safety Jeff Ginsburg - Safry Engineer R.B. Horten - WPM Sampling equipment has been cleaned 0840 Equipaint blank prepared by running PI water of a cleaned 55 spoon which was removed from plastic bug just before collection of sumple. 3-40ml glass vials collected Water from Lab meets 18 megotin min. 1-1000ml plastic preserved with nidric acid Ph <2 1- 500 ml plastic preserved with sulfuric acid PhK2 Labels, Seals, plastic bays, In cooler with blue ice 0945 Briefing. WPM has established that procedure deviations for sampling can be gutherized by the team leader Deviations affecting

9'D Page 20F9 Pad A Cover Soil 8/18/88 250 ml glass containing and clean watter Than Jeff amber per presedure. Teem header and Grasburg indicate these configuring are acceptable Sample location - of berm Ŋ Survey 2 <u>- v.)</u> Siak. has •-© 2measurements 5 sample stake locations. 91 Ŷ Survey 'n Work station is established on east rathe f Pad A as indica aide a than west in procedure. Ayproved by tean Pad A mound -stablished as exclusi No yellow nibbans will be strung as indicated in procedure Everyone informal Approved by <u>+-</u> an. 1-eder à 13-2 page 2

Pad A Cover 5.:1 8/18/88 Page 3.59 Sampling areas will not be something photographed during initial entry as indicated in procedure Approved by teen leader and Jeff Graburg. Estry Party Equipment. Full face Respirators yellow plastic shoe covers Canvas shae canery Rubber gloves GM source checked 8/16 calibrated 3/9/88 2A 113750 source checked 5/15 cal 3)11/82 6/ 130809 " " 8/15 " 7/27/88 Response checked This AM Entry Party: Joe Lords Sampler L.O. Miller Craig Davis Wayne Schofield. Karen Koslow - without Respirator - will ofur up wind. Auchard 8+18/85-10,7 Initial Entry = 0.13-2K. Kolos ___pāge 3

Pad A Cover 50:1 8/18/58 Page 4 of 9 Laydown area established. Clean table at Radiation checked: Background Lolme. Grganic vapors checked none measured 1033 Sanple takan from Survey location 1 sample 1 1-60x1glaps bottle filled Surface to 10 Frinches 1. 250 ml glass bottle filled Surface to 10 miles Excess soil returned to hold. Rudiation charked - None above background Vapors checked - Non e measured, -sul- silly day - day. 1040 Samples removed to packer Weather. Temp & 70°F Wind - From S At Smph Sky clear Sample Survey location 1 sample E 1042 Auger renoved from plastic to collect sample. Sample 16" N of stake Clean sample mix plan and spasse unused from plastia 1-65 ml glass bottle filled (1'-2') 1-250 ml glass bottle filled (1-2') Radiation - None above background Organic vapors - None Heasured Samples renoved to partin Soil - Silly day - day Weather - Same us 1040 a13-2 flootant page 4 flootant 048 :

Pad A Cover Soil 8/18/88 Page 5 of " Survey location 1 sample 3. Clean SS par + spons to sample location Clean Auger for this semple Sample Jatan 2 N of state. 1-60ml glass bottle filled (1'-2') 1-250 ml glass bottle filled (1'-2') Radiation - None above background Vayors - None measured. Soil - Silty day - day. 1112 Samples to packer aventher: Jemp & 75°F Wind from S = 5 mil Sky - Clear Excess soil returned to hole. Survey location 1 Sample 4 Clean 55 pans, spoons and augerto sample location Equipment previously used has been deconed per decen procedure. (HR took radiation Swipe) Sampler wearing clean outer glives. Sample taken 6" South of stake. 1-60ml glass bottle filled (2'-3') 1-250ml glass bottle filled (2'-3') Radiation - None above background Vajors - None measured. Soil - Moist sand, silt, clay. a/3-2 8/18/85 page 5 1129 Samples to packer Weather - some as 1112

Pad A Cover Soil 8/18/88 Pear 6 of 9 1130 Tools & personnel removed from survey location 1. loles all filled 11311 Shee covers, gloves & waste plastic glaced in yellow madietin bag Samples scaled, evedence tage, tagged, double plastic bagged. Placed in cooler with vermiculity packing and Blue Ice. Chain of custody forms completed. Trip black in cooler. 1255 Equipment used at survey la-ation 1 decenterinated and bagged in accordance with decontemination procedure for use at survey location 2. 11.P. took swipes on cleaned pans. No radiation defeded when reacured Survey location 2. Equipont: Eluc coverells Full Face respirations Plastic share covery Canvos shore covers - alge 6 _____ Rubben gloves ______ Kubben gloves Organic rapors monitors Alulant 1988

Pad A Soil Cover \$15/88 Page 7 of 9 Entry Party Joe lord Servier Craig Davis Subety Larry Miller AP Karen Koslow - w/o reopirator (will stay down will) 1338 Initial entry to survey location 2 Sample 5' Clean 55 Pars spoons augen taken to sample location Sample taken 6" N of stake Radiation - None above background (<.lmr Vajors - None detected. 1-60 ml glass bottle filled (2'-3') 1-250 pl glass bottle filled (2'-3') Radiation - none above background Vapors - none detected Soil - Silly clay - dry. Sample to packer 1350 Weather: Temp 2 85°F wind - From S at = 10 mph SKy - Clear Survey location 2 - Sample 6 Clean 55 pan, spoon, augen to site. Sample taken 6" No of stake. K Spoon auger to take sample the al3:2 -

101 Pad A Sail Cover 8/18/88 Page 8 of 9 Radiation - None above background Vapare - None delected <u>Soil - Silty clay - dry</u> <u>1410 Sample to pucker</u> <u>Weather - Same as 1350</u> Survey location 2 Sample 7 Clean 55 par & spoon taken to location Anger deconed per procedure for semple collection Sample location in 12" E of stake Clean ylours on peopler. HP tosk surpe from anger 1-60 ml glass bottle filled (z'-3') 1-250 ml glass bottle filled (z'-3') Radiation - None about backgroups Vapors - None measured Soil - Sandy silty soil, Jamp Weather - Same as 1330 Survey location 2 Sample 8 Clean SS jan, spilla, auger. Clean gloves an samples-Koslaw _____

Pad A Cover soil 8/18/88 Page 9 of 9 1430 Scaple location 6" N of stake. 1-60 ml glass bottle filled 1-250 ml glass bottle filled Radiation - None above background Soil - Silt - damp. Sagle to packer Weather Temp = 85°F wind from SA SMPH SKy clean 2-Sampt All holes filled All holes filled 1435 Equipment and personnel renoved Equipment surviged Sanplis Jakan from locations 7+8 for radioandide analysis Sample packing Bottles labelis, seals, evedence tape, tag. Placed in double plastic bags. Chain of custody forms completed. Placed in cooler, with verniculity + blue ice. Filled with verniculite Chain of custody form in cooler. Cooler has lip-arrows on four ordes taped closed + drain 1450 Job Complete al3-2 Dage 9

QUALITY FIELD OFFICER CHECKLIST

Page (of 3

I tei No	n Parameter .	Comply Yes No	Remarks	Date Corrected
1.	Job Briefing and Documented a. Emergency Actions b. Safety Precautions c. Hold Points Established d. Procedural Review a. Notifications	1111		
2.	Material Available a. Safety Equipment b. Sample Containers c. Sampling Equipment d. Communication System e. Waste Containers f. Camera, Film g. Logbooks	LTUA	Eye Wash, First Aid Kit 250A1 containers are clear.	
)] 3.] 3- 2 2	Access Controls a. Control Area Established b. Designated Access Control Person c. Documentation of Persons Entered Access Control Area d. Trained Persons only in Access Control Access Area	7777	Mourd	
4.	Procedures Available/Performed a. Logbooks b. Sample Procedures c. Health and Safety Plan d. SWR, SWP e. Decontamination Proc.	1777		
5.	Quality Documentation/Items a. Field Logbook Controls b. Procedure Controls c. Sampling/Sample Equipment Controls			

, ~

ł

TABLE 3: Audit Checklist

QUALITY FIELD OFFICER CHECKLIST

Page 1 of Z

AREA Pad A Cover Soil QFO HiRichardson Date 8/18/88

	Item		Comply		Date
	NO.	Parameter	Tesino	Remarks	LOFFELLEG
	6.	 Sampling/Packaging Requirements Followed a. Field Logbook Notes Dates, time, purpose, names, weather cond., calibration of equipment, observations, sample of identifications, chain-of-custody, etc. b. Labels c. Identification d. Approved Containers e. Preservation 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
DD	7.	Chain-of-Custody maintained a. Custody Forms Completed	~		
GUD	8.	Debriafing of Checklist items	L		
C'					
		wante e Sta			•
		TABLE 3: AU	ait thecklis	st (continued)	

project Title: Retrieval Cost Accountant Manager: Pad A Work Package Manager: Pad A Health and Safety Officer: Industrial Hygienist:

15 1

Pad A Initial Penetration S. P. Fogdall R. B. Horton J. F. Ginsburg Craig Dails

I certify that I have been given a copy of the Health and Safety Plan for the Pad A Initial Penetration and agree to comply with the procedures described therein. I further certify that I understand the potential health and safety hazards of the program (as outlined in the Health and Safety Plan) and have been trained in the Health of the personal protection equipment selected for this project.

Employee:		********
(Print)	(Signature)	(Date)
Company of Employment:	EG4G	
Nork Package Manager: <u><i>R.B</i>.</u>	Hozzar Je Cottantes	<u>k 8-18-58</u>
(Pri	nt) (Signature)	(Date)
Health and Safety Officer:	JF Ginsburg A. J.	il 8/18/88
·	(Print) (Signature	e) (Date)
	Operations Personnel	
<u>Print</u>	<u>Signature</u>	<u>Date</u>
Richardson	Hickorden	<u> </u>
Freiburger	Su Frailurger	
ý	Q_{13}	-2

Operations Personnel

Print

,⊣× I

KANEN NINA Koslow

Joseph R Lorp

Signature <u>Date</u> Karen Nina Koslow 8/18/88 Juplan 8/13/88 8/18/51 A.C.S 8/18/88 ___ 4 8/18/82 Harry O. ville

Q13-2 bage 13

CALIBRATION / RESPONSE CHECK

0F

INDUSTRIAL HYGIENE INSTRUMENTS

INSTRUMENT: <u>HNIL Photoionizer Model PI 101</u> (type; model no.; property ID no.; etc.)

CALIBRATION METHOD USED: Togel 3400m @ 9.8 Span with 10.2 eV (Table & (enter appropriate Table(s) from Standard Practice)

CALIBRATION GAS DATA, IF APPLICABLE:

<u>Tegal Scientific 34ppm - 9.8 Span - 10.2eV</u> (type; manufacturer; concentration; percent accuracy; percent by volume; etc.)

				PERFORMED BY *
DATE	TIME	ACTION Call RC	ACTUAL READING	<u>Cal.Lab.</u> User Mnfr Cal. PM (signature)
-617	0810	X	34 pom (no adjustment	Burg/POW
6-17-8	r c ^{e2} 10	$ \times $	34 ppm	A.C. Deries
7-25-8X	<u>ج. ج</u>		24 on A fill of the	Ar.D.
1-28-88	10:15	X	34 ppm (lo al mtment)	A.C. Drin
7-24.58	6:21	×	34 ppm (Us al strant)	A.C.D.
5-5-83	8:15	×	//	A.C. Dogin
8-9-89	8:415	X	.,	A.C. Dore
9-18-88	8:10	X	ļi	A.C. D. 74
			· · · · · · · · · · · · · · · · · · ·	

* <u>User</u> maintains file of manufacturer's calibration data when calibration is performed by the manufacturer

FORM EGAG 17	
lev 02-87)	

.-

-

SAFE WORK PERMIT

					فأنفع ستعلقه المتعلم			
ORM EG&G 17 Tev 02-87)	(See Instruction NOTE, SSWP	ons and Standard s require Area Saf	l Salety Procedu ety Manager & F	ires on back of acility Manager :	Signatures	·	· · · · ·	
SECTION I-TO BE COMPLETED BY JOB SI	UPERVISOR							
WR/Contract Number:		Job Location (Inc.	Bldg. No.):	<u> </u>	System(s)	Involved:		
ob Description (Detailed):			· · ·		· · · · · · · · · · · · · · · · · · ·		/ .	<u> </u>
		÷			· · ·			. /
 Date and shift work is to: Begin: 	0319 - 1	Nign	t 🗋 Oay 🖸 Eve	. 🗆 End	7/17/2	<u> </u>		E Eve
Area Inspection Made? No 🗔 Yes 🕱 By. 🔒	Jan 1/2 1	<u> </u>		· ·				
Associated Hazards	Job Supervis	01			For	Radiologica	I Work Only	
Radiation 🛄 Contamination 🖄 C	Other 🗋			· (2)	Brior	0		5
				Training	Exposure	·	Per	
Initial Names of Wo	rkers		Crait	Current?	Month	Current	Day	Fina
2			Тесн		C		<i>40</i>	12
The K KICION	? ~ }~		T_CH	V.S			40	18
See continuation sheet for additional nam	nes 'E	ach worker is to i	nitial in the space	e next to name a	Inter reading the in:	structions of	the completed form	n.
OB SUPERVISOR OR DESIGNATED ALT	ERNATE:		· ·	-			• • • • •	
Reviewed job and associated hazards	with workers. Acoro	wed job to be peri	formed within list	ed unquirements	Ensured all neces	isary salety	•••••	
training for workers is current.	. G	Signature:	and it	arter				
SECTION II- TO BE COMPLETED BY HEA	LTH PHYSICS REP	PRESENTATIVE			iusi be signed bei	ow when ch	ecked)	
(3) RADIATION Gamma	BetaLI Ne		Current	General	Highest Curr	ent ··	- Alpha Li	ran i
Working Field: Local Level	Wor	king Field:	Levei:		Level:	τ. ·	C Level: /	
mrem/hr 4.5		<u> </u>	hr < <u>~~</u> / <	. <u>20</u> dpm/100 cr	n ² < <u>200/<</u> 20	100 cm	2 < <u>2 ~ /< 2</u> 0 dpr	v100 d
Location: Date	n"57 (~15)_			() Zone H	Zone	• 🗖	Zone ilt 🗆	
			REQUIREMENT	's				
Continuous On Completion of Job	Neutron TLD (badge) Extremity TLI	(type) Suppl Ctype) Cther	lied-Air		loves (surgeon) Cotton Liner Shoe Covers (scutts Bootles (plastic) Boots (rugoer)		er Sur xxxxx (cloth) xxxx (Tyvex) XPE OPENINGS SI	IUT (
Continuous On Completion of Jab	Neutron TLO (badge) Extremity TLC	(type) Suppl Cther 	iled-Air		Soves (surgeon) Cotion Liner Shoe Covers (scutts Booties (plastic) Boots (rugoer) Sther <u>(271/25</u>		er sur xxxd (chuth) xxxd (Tyvek) xxxd (Tyvek	ит (
Continuous On Completion of Jab Decial Instructions:	→ Neutron → TLO (badge) → Extremity TLt /// La. VPO, U	(type) Suppl Cther 	. <u>15</u>	<u> </u>	Soves (surgeon) Sotton Liner Note Covers (scuffs Booties (plastic) Boots (rugoer)		er Sunt xood (cloth) xood (Tyvek) XPE OPENINGS SH	
Continuous On Completion of Job	Neutron TLO (badge) Extremity TLC /// La. vir.o.	(type) Suppl Cther Cther 		<u> </u>	Soves (surgeon) Cotton Liner Shoe Cavers (scuffs Sooties (plastic) Socies (rugoer) Other (27,1727) Com 7,27	$\frac{-}{4t^2}$	er Suar xxxd (Crysek) VPE OPENINGS St	/
Continuous On Completion of Job recial Instructions:	→ Neutron → TLD (badge) → Extremity TLL /// La. VPO, Ú cs Representative	(type) 	ied-Air 	- 91 A CHE	Sovers (surgeon) Cotton Liner Nooe Covers (scuffs Booties (plastic) Boots (rupper)	$\frac{-}{2}$	er Suar Xood (cloth) Xood (Tyvek) NPE OPENINGS SH	iut (
Continuous On Completion of Job Decial Instructions: Health Physic ECTION III—TO BE COMPLETED BY AREA	Neutron TLD (badge) Extremity TLC // La. vico, CS Representative SAFETY REPRESE	(type) 	iled-Air 	- 23, 10 12 - 24, 10 12 - 24,	Soves (surgeon) Cotton Liner Shoe Cavers (scuffs Sooties (plastic) Socies (rugoer) Other (271/25) Con 410 De signed below of	AT C	ed)	
Continuous On Completion of Job pecial Instructions: Health Physic SECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD	Neutron TLD (badge) Extremity TLC 	(type) 		<u> </u>	Soves (surgeon) Sotton Liner Shoe Cavers (scuffs Sooties (plastic) Boots (rupper) Other (2.91/2.5 25 (77) 7 (2.91/2.5) Ster (2		ed) TEM/AREA REQUI	
A Continuous On Completion of Job pecial Instructions: Health Physic SECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Election	Neutron TLO (badge) Extremity TLC 	(type) Suppl (type) Cther Cther Signature: 22 ENTATIVE Salety-toe S	Iled-Air 	Delicable (must Safety Glasses	Soves (surgeon) Cotton Liner Shoe Cavers (scuffs Sooties (plastic) Boots (rupper) Other (2.11/25) 25 (77) 4 20		ed) TEM/AREA REQUI	AEME:
Continuous On Completion of Job pecial Instructions: Health Physic SECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic — Electrical — Welding / Burning	Neutron TLO (badge) Extremity TLC 	(type) Suppl (type) Cther Cther Signature: Signature: Signature: Signature: Tog Guards Cher Guards	ied-Air 	Depilicable (must IIPMENT Safety Glasses Chemical Goggi	Sover (surgeon) Cotton Liner Note Covers (scuffs Sooties (plastic) Notes (rupper) Cither (2.21/2.7 Cither (2.21/2.7 Cither (2.21/2.7) Cither		ed) TEM/AREA REQUI	REME:
Continuous On Completion of Job pecial Instructions: Health Physic SECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Welding / Burning Hazardous/Inert Almosphere	Neutron TLO (badge) Extremity TLC 	(type) 	ied-Air 	2 Siery Glasses Chemical Goggle Face Shield	Sovers (surgeon) Cotton Liner Stote Covers (scuffs Sooties (plastic) Notice (2000) Cottor (er Sun xod (cloth) xod (Tyvek) IPE OPENINGS SH TACK TACK TACK TACK TACK TEM/AREA REQUIN Trical or Valve Dan Lockout (equipment e Off and Post Are Watch	REME: ger Ta t isola
Continuous On Completion of Job Decial Instructions: Health Physic ECTION III—TO BE COMPLETED BY AREA COMPLETED BY AREA Acid or Caustic Acid or Caustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r	→ Neutron → TLD (badge) → Extremity TLD /// La. VPD, U CS Representative SAFETY REPRES:	(type) 	Ibid-Air Ibid-Air	29. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	boton Liner hoe Covers (scuffs botos (plastic) bots (rupper) Cher (27/45) Cher (27/45) be signed below to be signed below to 15		er Sun xod (cloth) xod (Tyvek) IPE OPENINGS SH TEM/AREA REQUIN trical or Valve Dan Lockout (equipmen e Off and Post Are Watch itional Ventilation (REME: ger Ti ti isola
Continuous On Completion of Job Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids	Neutron TLD (badge) Extremity TLI <u>La. viPo</u> , <u>U</u> cs Representative SAFETY REPRESI <u>Ca</u> reactor)	(type) 	10 -1<	29.7.7.2	Sovers (surgeon) Cotton Liner Note Covers (souffs Booties (plastic) Bootis (rupper) Covers (angles) Covers (angles) Covers (souffs) Covers		ed) TEM/AREA REQUIT Lockout (equipment ed) TEM/AREA REQUIT trical or Valve Dan Lockout (equipment e Off and Post Are Watch itional Ventilation r Smoking	REME: ger Ta ti isola a equirer
Continuous On Completion of Job Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids Hoisting and Rigging Towing Material for	Neutron TLD (badge) Extremity TLT (badge) Extremity TLT (cs. Representative SAFETY REPRESE (cs. Representative SAFETY REPRESE (cs. Representative SAFETY REPRESE (cs. Representative (cs.	(type) 	Id Id <tdid< td=""> Id Id Id<!--</td--><td>Deficible (must Deficible (must Deficible (must Deficible (must Deficible (must Deficible (must Deficible (must Deficible (most Deficible ><td>Sovers (surgeon) Cotton Liner Note Covers (souffs Booties (plastic) Boots (rupper) Con 1/2 Con 1/2 be signed below to the signe</td><td>when check SYS⁻ (a) - Elec (b) - Fire (c) - Fire (c) - Fire (c) - Chu</td><td>ed) TEM/AREA REQUIN Trical or Valve Dan Lockout (equipmen e Off and Post Are Watch itional Ventilation / Smoking er <u>fractional</u></td><td>REME ger Ti ti tisola a</td></tdid<>	Deficible (must Deficible (must Deficible (must Deficible (must Deficible (must Deficible (must Deficible (must Deficible (most Deficible	Sovers (surgeon) Cotton Liner Note Covers (souffs Booties (plastic) Boots (rupper) Con 1/2 Con 1/2 be signed below to the signe	when check SYS ⁻ (a) - Elec (b) - Fire (c) - Fire (c) - Fire (c) - Chu	ed) TEM/AREA REQUIN Trical or Valve Dan Lockout (equipmen e Off and Post Are Watch itional Ventilation / Smoking er <u>fractional</u>	REME ger Ti ti tisola a
Continuous On Completion of Job Decial Instructions: Health Physic Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Gaustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids Hotsting and Rigging Toxic Materials (Incl. Asbestos) Eccavation	Neutron TLD (badge) Extremity TLD (badge) Extremity TLD (badge) (c) (c) (c) (c) (c) (c) (c) (c	(type) 	10 11 10 11 10 11 10 11 10 11 10 11 11 11 12 11 11 11 12 11 12 11 13 11 14 11 15 11 15 11 16 11 17 11 18 11 17 11 17	Deficiency of the second secon	Sovers (surgeon) Cotton Liner Nove Covers (scuffs Booties (plastic) Bootis (rupper) Control (2016) Control	when check when check SYS ⁻ Construction	ed) TEM/AREA REQUIN TEM/AREA REQUIN Trical or Valve Dan Lockout (equipme e Off and Post Are Watch Watch Smoking or <u>A CAT, 724</u> TRIAL RESPIRATOR	REME ger Ta ti sola a equire
Continuous On Completion of Job Decial Instructions: Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids Hoisting and Rigging Toxic Materials (Incl. Asbestos) Excavation Other (state;	Neutron TLD (badge) Extremity TLT // La. vico, CS Representative SAFETY REPRES: CAFETY R	(type) 	10 11 10 11 10 11 10 11 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12	Deficiency of the sector of th	Sovers (surgeon) Cotton Liner Nove Covers (scuffs Booties (plastic) Bootis (rupper) Control (237/237 Control (237/237 Control (237/237 Control (237/237 Control (237/237 Control (237/237) Control	when checks When checks SYS Checks	ed) TEM/AREA REQUINT TEM/AREA REQUINT TEM/AREA REQUINT Trical or Valve Dan Lockout (equipment e Off and Post Are Watch Watch Smoking er <u>Ho CAT, 120</u> TRIAL RESPIRATOR	REME ger Ti ti isoli a equire
Continuous On Completion of Job Decial Instructions: Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids Hoisting and Rigging Hoisting and Rigging Toxic Materials (Incl. Asbestos) Excavation Other (state):	Neutron TLO (badge) Extremity TLC () CS Representative SAFETY REPRES: () () () () () () () () () ()	(type) 	ied-Air <u>10</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u> <u>11</u>	Deficiency of the system Deficiency of the	born Liner Note Covers (scuffs Booties (plastic) boots (rupper) Control (201427) Control (201427) Control (201427) De signed below to the signed bel	when checks when checks	ed) TEM/AREA REQUI Trical or Valve Dan Lockout (equipment off and Post Are Watch itional Ventilation r Smoking of <u>Cart. 720</u> TRIAL RESPIRATOR CTION REQUIREME I Face	REME: ger Ti ti isola a equire
Continuous On Completion of Job Decial Instructions: Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids Hotsting and Rigging Toxic Materials (Incl. Asbestos) Excavation Other (state; Other (state; Other (state; Other (state))	Neutron TLO (badge) Extremity TLC () CS Representative SAFETY REPRES: () () () () () () () () () ()	(type) 	ied-Air <u>10</u>	Deficable (must Deficable	be signed below the sig	when checks when checks and and and and and and and and	ed) TEM/AREA REQUI Trical or Valve Dan Lockout (equipmente off and Post Are Watch itional Ventilation of Smoking or <u>Cast 7, 7,0</u> TRIAL RESPIRATOR CTION REQUIREMENT I Face Face ister/Cartridge	REME ger Ti ti tisola a quire
Continuous On Completion of Job Pecial Instructions: Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids Hotsting and Rigging Toxic Materials (Incl. Asbestos) Eccavation Other (state; Decial Instructions: American Decial Instructions: American Decial Instructions: Materials (Incl. Asbestos)	Neutron TLO (badge) Extremity TLC () CS Representative SAFETY REPRES: () () () () () () () () () ()	(type) 	ind-Air	Deplicable (must Deplicable (be signed below v be signed below v be signed below v be signed below v c c c c c c c c c c c c c c c c c c c	when checks When	er Sun Sod (cloth) Sod (Cloth) Sod (Cloth) Sod (Cloth) Sod (Cloth) SPE OPENINGS SH TRAC Ed) TEM/AREA REQUI Trical or Valve Dan Lockout (equipment e Off and Post Are Watch Itional Ventilation (Smoking er <u>Catt. 720</u> (TRIAL RESPIRATOF CTION REQUIREMENT Face Face ister/Cartridge e)	REME ger Ti solu a equire
Continuous On Completion of Job Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Weiding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids Hoisting and Rigging Toxic Materials (Incl. Asbestos) Excavation Other (stater: Decial Instructions: <u>AM Marce</u> 6	Neutron TLO (badge) Extremity TLC () CS Representative SAFETY REPRES: () () () () () () () () () ()	(type) Suppl (type) Cither Cither Cither Cither Signature: Signature: Cither	Ind-Air	Deplicable (must Deplicable (be signed below v be signed be	when checks when checks	ed) TEM/AREA REQUI Trical or Valve Dan Lockout (equipment Watch trical or Valve Dan Lockout (equipment Crical or Valve Dan Lockout (equipment of and Post Are Watch tritonal Ventilation r Smoking or <u>Control Repuisement</u> Frital RESPIRATOF CTION REQUIREMENT Face Face ister/Cartridge et	REME ger T. ti isoli a equire
Continuous On Completion of Job Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid of Caustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids Hotsting and Rigging Toxic Materials (Incl. Asbestos) Excavation Other (state): Oeccal Instructions: <u>A machine</u> Saf ECTION IV—TO BE COMPLETED BY AREA	Neutron TLO (badge) Extremity TLC (badge) Extremity TLC (cs. Representative SAFETY REPRES: (c) (c) (c) (c) (c) (c) (c) (c)	(type) Suppl (type) Citype)	Indications	A grant and a gran	Sovers (surgeon) Cotton Liner Note Covers (scuffs Socties (plastic) Notes (rupper) Cotton (20147) Covers (scuffs Covers	when checks and and and and and and and and	ed) TEM/AREA REQUINTS Show and (cloth) APE OPENINGS Show and the sho	REME ger Ti ti isoli a equire
Continuous On Completion of Job Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids Hoisting and Rigging Toxic Materials (Incl. Asbestos) Excavation Other (state): Descal instructions: <u>Amarca</u> Saf ECTION IV—TO BE COMPLETED BY AREA he applicable Sections of this S/SWP have to safely proceed.	Neutron TLO (badge) Extremity TLC La. vico, Constraints SAFETY REPRES: Constraints Representative A SUPERVISOR Deen filled out and a	(type) Suppl (type) Cither Cither Cither Cither Signature: Cither Cith	Indications and a second secon	A state of the system of the s	sloves (surgeon) cotton Liner ihoe Covers (souffs sooties (plastic) sooties (rupper) Cover (a <u>minor</u>) <u>cover (a <u>minor</u>) <u>cover</u>) be signed below to the signed below t</u>	when checks when checks and and AT AT AT AT AT AT AT AT AT AT	ed) TEM/AREA REQUINTS Show a cloth PE OPENINGS Show a cloth PE OPENINGS Show a clother and a clother and a clother and a clot	REME ger Ti ti isoli 8 equire
Continuous On Completion of Job Decial Instructions: Health Physic ECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r Hoisting and Rigging Toxic Materials (Incl. Asbestos) Excavation Other (state): Decial Instructions: ECTION IV—TO BE COMPLETED BY AREA he applicable Sections of this S/SWP have to safely proceed. pecial Instructions:	Neutron TLO (badge) Extremity TLC (badge) Extremity TLC (cs. Representative SAFETY REPRES: (c) (c) (c) (c) (c) (c) (c) (c)	(type) Suppl (type) Cher Cher Signature: Signature: Signature: Salety-toe S Toe Guards Gioves (not) Gioves	Ind-Air	A Construction of the second sec	Sovers (surgeon) Cotton Liner Note Covers (scuffs Booties (plastic) Notes (rupper) Control (2017) Control	when checks when checks are in readin are in readin	er Surt Sod (cloth) Sod (Cloth) Sod (Tyvek) SPE OPENINGS SH TRIAL REQUINT Control of Valve Dan Lockout (equipment e Off and Post Are Watch Itional Ventilation r Smoking er <u>Valve Dan</u> Lockout (equipment e Off and Post Are Watch Itional Ventilation r Smoking er <u>Valve Dan</u> (TRIAL RESPIRATOF CTTON REQUIREMENT Face Face ister/Cartridge er	AUT REME ger Ti ti soli a equire
Continuous On Completion of Job On Completion of Job Health Physic Health Physic Health Physic Electrical Welding / Burning Hazardous/Inert Atmosphere Elevated Work Tank or Confined Space Entry (not r High Temperature/Pressure Fluids Hotsting and Rigging Toxic Materials (Incl. Asbestos) Excavation Other (state): Soecial Instructions: If Interventions of this S/SWP have to o salely proceed. ipecial Instructions:	Neutron TLO (badge) Extremity TLC (badge) Extremity TLC (cs. Representative SAFETY REPRESE (c) (c) (c) (c) (c) (c) (c) (c)	(type) Suppl (type) Citype)	Ind-Air	A Construction of the system A Construction of the system	Sovers (surgeon) Cotton Liner Note Covers (scuffs Booties (plastic) boots (rupper) Comment Comment De signed below v Is on meable) nti-C)	when checks when checks are in reading are in reading are in reading are in reading	ed) TEM/AREA REQUI TEM/AREA REQUI Trical or Valve Dan Lockout (equipment & Vatch titonal Ventilation r Smoking or <u>Control Requirement</u> FRIAL RESPIRATOF CITION REQUIREMENT Face Face ister/Cartridge e1 =================================	REME: ger Ta tisola a equired
Continuous On Completion of Job On Completion of Job Health Physic Rectal Instructions: Health Physic SECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Weiding / Burning Hazardous/Inert Atmosphere Electrical High Temperature/Pressure Fluids Hoisting and Rigging Hoisting and Rigging Excavation Other (state): Section IV— TO 8E COMPLETED BY AREA SECTION IV— TO 8E COMPLETED BY AREA SECTION IV— TO 8E COMPLETED BY AREA SECTION V—TO 8E COMPLETED BY THE Job Complete Instructions:	Neutron TLO (badge) Extremity TLC (badge) Extremity TLC (badge) Extremity TLC (c) (c) (c) (c) (c) (c) (c) (c)	(type) Suppl (type) Citype)	Indi-Caloridge	A Construction of the second sec	Sovers (surgeon) Cotton Liner Sooton Liner Sooton Liner Sooton (plastic) Sooton (rupper) Cher (27/25) Com 1/25 Com 1/2	A T A T A T A T A T A T A T A T	ed) TEM/AREA REQUINERS SH TEM/AREA REQUINERS SH TEM/AREA REQUINERS TEM/AREA REQUINERS TO ARE A SECONDARY TEM/AREA REQUINERS TEM/AREA RESPIRATOR TEM/AREA	REME/ ger Ta tisola a squired
Continuous On Completion of Job On Completion of Job Health Physic Electrical Instructions: Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Electrical Health Physic Health Physic Electrical Health Physic Health Physic Electrical Health Physic Healt	Neutron Neutron TLO (badge) Extremity TLC	(type) 	Indi-Caloridge	A Construction of the second sec	Sovers (surgeon) Cotton Liner Note Covers (souffs Booties (plastic) Boots (rupper) Comentary Comentary Comentary De signed below to the signed belo	A T A T A T A T A T A T A T A T	ed) TEM/AREA REQUINTS Show of (cioth) we of (Tyvek) we open in the second se	REME/ ger Ta tisola equired NTS
Continuous On Completion of Job Healtin Physic Recal Instructions: Healtin Physic SECTION III—TO BE COMPLETED BY AREA Control of Caustic Cont	Neutron TLO (badge) Extremity TLC (badge) Extremity TLC (badge) Extremity TLC (c) (c) (c) (c) (c) (c) (c) (c)	(type) Suppl (type) Cither Cither Cither Cither Signature: Salety-toe S Toe Guards Gloves (nub Gloves	Ind-Air In	A Construction of the second sec	Sovers (surgeon) Cotton Liner Note Covers (souffs Booties (plastic) Boots (rupper) Covers (souffs Boots	A T A T A T A T A T A T A T A T	ed) TEM/AREA REQUINESS P PE OPENINGS SP PE OPENINGS SP PE OPENINGS SP PACE Ed) TEM/AREA REQUINE Trical or Valve Dan Lockout (equipment e Off and Post Are Watch I cockout (equipment e Off and Post Are Watch Strical Ventilation r Smoking or Pace Face Face ister/Cartridge el ess for the work simeter readings have	REME! ger Ta ti sola a equiret INTS
Continuous On Completion of Job Health Physic Recal Instructions: Health Physic SECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Health Physic Electrical Weiding / Burning Hazardous/Inert Atmosphere Health or Confined Space Entry (not r High Temperature/Pressure Fluids Hoisting and Rigging Hoisting and Rigging Hoisting and Rigging Excavation Cother (state): Description Section IV— To BE COMPLETED BY AREA SecTION IV— To BE COMPLETED BY THE Jood radiological and housekeeping practice ecorded in Section 1. MMEDIATELY RETURN COMPLETED FOR	Neutron TLO (badge) Extremity TLC (badge) Extremity TLC (badge) Extremity TLC (c) Co Representative SAFETY REPRESS (c) (c) (c) (c) (c) (c) (c) (c)	(type) Suppl (type) Cher Cher Signature: Signature: Signature: Cher Signature: Signature: Signature: Signature: Signature: Signature: Signature: Signature: Cher Signature: Signatu	Ind-Air	X C X E X E X E X E X E X E X E X E X E X E X E X E X E X E X E	Sovers (surgeon) Cotton Liner Note Covers (scuffs Booties (plastic) Bootis (rupper) Cotton (and the fill Booties (plastic) Booties (plastic	when check when check SYS Check C	ed) TEM/AREA REQUINATION OF A State of the second (cloth) Second (cloth) Second (Tyrek) UPE OPENINGS SH TRACAREA REQUINATION TEM/AREA REQUINATION TEM/AREA REQUINATION Control Ventilation / Simoking	AUT REME: ger 1: ti sola a equire NTS
Continuous On Completion of Job Health Physic Rectal Instructions: Health Physic SECTION III—TO BE COMPLETED BY AREA DESCRIPTION OF HAZARD Acid or Caustic Electrical Health Physic Electrical Health of Confined Space Entry (not r High Temperature/Pressure Fluids Holating and Rigging Toxic Materials (Incl. Asbestos) Excavation Other (state): Eccion IV— TO BE COMPLETED BY AREA Section IV— TO BE COMPLETED BY AREA ECTION IV— TO BE COMPLETED BY AREA ECTION V— TO BE COMPLETED BY THE JC iood radiological and housekeeping practice Ecorded in Section I. MMEDIATELY RETURN COMPLETED FOR	Neutron TLO (badge) Extremity TLC (ii) CS Representative SAFETY REPRESS (ii) CS Representative SAFETY REPRESS (ii) CS Representative CS	(type) 	Ind-Air	A constraint of the second secon	Sover (surgeon) Cotton Liner Nove Covers (scuffs Booties (plastic) Bootis (rupper) Cotton (rupper) Cot	when checks when checks (2) - Elec (2) - Fire (3) - Fire (3) - Fire (4) - Add Add Add Add Add Add Add Add	ed) TEM/AREA REQUI add (Tyyek) VPE OPENINGS SE add (Tyyek) VPE OPENINGS SE add (Tyyek) VPE OPENINGS SE add (Tyyek) VPE OPENINGS SE add (Tyyek) Add (Ty	AUT REME: ger Ta squired a s squired a s squired a s squired a s squired a s squired a s squired a s squired a s squired a s squired а з а з а з а з з з а з з з з з з з з

ORM EG&G 17-A (Rev. 09-86)

SAFE WORK PERMIT CONTINUATION SHEET 🔀

e

NOTE: SSWPs require Branch level signature

3XZ RUP140 SWR/Contract Number: _

1 Contraction of the second se

SWP N	Numper: 163655			For F	adiologica	I Work Only	
•	· · · · · · · · · · · · · · · · · · ·		2	3	Dos	simeter Readin	igs
•			Safety	Prior	6	(4) Allowabie	6
	Names of Workers	Cratt	Training		Current	Per	Final
initial		Ten Fue		Month	Ourtent	Uay	
W175	W.D. SCHOFIELD	KID CNA		0		40	
FOR	L.O. MILLER	H F	/			40	
A.C.D.	AC DAVIS	TH	<u> </u>	0	0	40	0
1-1-	JE GNSEHRE	FUSR	<u> </u>	0	0	40	0
.2.4	-R.B. HORTON, JA	ENGR	<u> </u>	0	$ \circ $	40	0
	H RICHARDSON	QE	<u> </u>	0	0	40	0
		1			ŕ –		
						, :	
				-			
_					•		
	_						
·							
	· · · · · · · · · · · · · · · · · · ·						
	-						
				·····			
				·			
<u> </u>							
				· .		· · · · · · · · · · · · · · · · · · ·	
	·····	· · · · · · · · · · · · · · · · · · ·				1	
		-					

* Each worker is to initial in the space next to name after reading the instructions of the completed form. Remarks/Observations:

U13-2 page 16

Q 13-2, page 17

MDA COVER SOIL SAMPLING

•

•

PADA 18800_

FIELD LOG BOOK TABLE OF CONTENTS

SITE ID	SITE DESCRIPTION	SAMPLE DATE	SAMPLE ID #	PAGE #
	INEL PADA SOIL COVER	8/18/88	PADAI830EEI	1
	PADA SOIL COVER	8 18 88	PADAIBBOFI	4
	PADA SOIL COVER	8 18 88	PADA188001	7
	PAD A SOIL COVER	8 18 88	PADA1880#1	10
	PAD A SOIL CEVER	81 181 88	PADAI 22002	13
	PHO A SCIL COVER	81 18188	PADA188003	16
	PAOA SOIL COVER	8/18/82	PADAI88004	19
	PADA SOIL OVER	81 181 88	PADA188009	22
	PAD A SOIL COVER	8 18 88	PADAI88005	25
	PAD A SCIL COVER	8 18 88	PADA188006	28
	PAD A SOIL COVER	8118188	PADAI 88007	31
	PAD A SCIL COVER	8 18 88	PADA188008	34
	MAPOF SAMPLE SITES	8/ 18 / 88		3
		/ /		
		1 1		
		/ /		
		/ /		
		1 1		
		1 1		
		1 1		
		/ /		
		1 1		

013-2 page 19

EGIG HAZARDOUS WASTE

.

SAMPLE LOG SHEET

SAMPLE ID	CON VOLUME	TAINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL	
PADAI880EIA	4 40ml	glass vial	TCE, MEE, VOC-TCH, CALBOTT	4°C	100
4	A 40~1	glass vial	VOC-TCA CALD. TCA	4°C	107
	4 40m1	glass vial	VOC- TCA CANATA	4°C	102
	S 1000ml	plastic	Metals-Bc, LL	4°C/HNO3	104
4	5 500m1	plastic	Actals . Nitrates	4°C / H- 504	10季
				, 	
-					
				· <u> </u>	
		 			4
					1
				<u></u>	
-					
S011		<u> </u>	WATER]
[A] <u>25 L GL</u> - VOL [B] I L GL - MET [C] I L GL - EXT [D] OTHER	[E] 40 ML [F] .25 L [G] .25 L [H] 0.5 L	GL - VOL, NONE GL - TOX, NONE PL - GL -	[J] 1 L GL [K] 1 L PL [L] 2 L PL [M] 4 L AG	- TOC, H2SO4 - MET, HNO3 - HCN, NaOH - EXT, NONE	
DECODDED DV.	[1] 0.5 L	PL - S,NaOH+ZnA	C [N] OIHER		
Kallen M. Kolow	08 / 18		Kolm	UAIE: 08/18/88	2
	۲	U 13-2 Dage 21)		

EG&G HAZARDOUS WASTE

••

SAMPLE LOG SHEET

ID # <u> <i>P</i> <i>A</i> <i>D</i></u> SITE	$\frac{P[A 1 8 8 0 E 1]}{\text{DATE (mm/dd/yy)}} \frac{ 0 8 1 8 8 8}{ 0 2 }$ $\frac{P[A 1 8 8 0 E 1]}{\text{DATE (mm/dd/yy)}} \frac{ 0 8 1 8 8 8}{ 0 2 }$
DESCRIPTION	Farment Black - Inter off 55 Space
DESCRIPTION	OOPPARE
LOCATION SAMPLE DEPTH	N I I I I I I CODE I I FRCM TO (UNITS) BELOW SURFACE
SAMPLE MEDIA (<u>SOIL/ROCK</u> [00] Surf. [01] Surf. [02] Basal [03] Sedimu [04] Other OTHER	CODE 1/181LIQUIDSSoilSEDIMENT/SLUDGE[10] Lake/PondSoil[05] Lake/Pond[11] River/StreamSediment[06] River/Stream[12] Impoundmentt[07] Impoundment[13] Drum/Tankent Interbed[08] Drum/Tank[14] Plant Discharge[09] Other[15] Spring/Seep[16] Perched Aquifer[17] Regional AquiferGuiament Blank[18] Other
FIELD OBSERVA	TIONS:
SAMPLE DESCRI	PTION:
FIELD MEASURE	MENTS: Outside/
Radioactivi O	Background Inside Sample Units Instr. # ty
Temperatu	re
Flow/Lev	el
SAMPLE METHOD [0] Grab SAMPLE TYPE: [0] Norma [4] Split	: CODE [1] Spatial Comp. [2] Time Comp. [3] Other CODE _2 1 [1] Equip Blank (Prior) [2] Equip Blank (Post) [3] Spike [5] Replicate [6] Trip Blank
ASSOC. SAMPLE	S:
SAMPLING PLAN	FOLLOWED: Yes V No V. If [No] explain
SAMPLED BY:	Joe Loro page 21

2/3-2 age 22

.

EG&G HAZARDOUS WASTE

•••

SAMPLE LOG SHEET

SAMPLE ID	CON VOLUME	TAINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL
PADA1880EI,	4 40ml	A. G	VOC	40C
				-
-				
-		·		
l				
[A] .25 L GL - VOL [B] 1 L GL - MET [C] 1 L GL - EXT [D] OTHER	[E] 40 ML [F] .25 L [G] .25 L [H] 0.5 L [I] 0.5 L	GL - VOL, NONE GL - TOX, NONE PL - GL - PL - S,NaOH+Zn	- <u>WATER</u> [J] 1 L GL [K] 1 L PL [L] 2 L PL [M] 4 L AG AC [N] OTHER	- TOC, H2SO4 - MET, HNO3 - HCN. NaOH - EXT, NONE
RECORDED BY: Karin M. Kostr	DATE: <u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <i>B</i> <u> </u> <u> </u> <u> </u> <i>B</i> <u> </u> <u> </u> <u> </u> <i>B</i> <u> </u> <u> </u> <u> </u> <i>B</i> <u> </u> <u> </u> <u> </u> <i>B</i> <u> </u> <u> </u> <u> </u> <i>B</i> <u> </u> <u> </u> <u> </u> <i>B</i> <u> </u> <u> </u> <i>B</i> <u> </u> <u> </u> <i>B</i> <u> </u> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B</i> <u> </u> <i>B B</i> <u> </u> <i>B B B B B B B B B B</i></u>	188 CHECKED	BY: 71 Kalar	DATE: 8/19/88
		Q 13-2	2	<u> </u>
		puyer		

EG&G HAZARDOUS W	ASTE		SAM	PLE LOG SHEET
ID # <u> P A D A</u> SITE DESCRIPTION	Field Blank o	DATE (mm/dd/y TIME (24 hrs) テチー <i>D・エ・レー</i> ク	y) <u> 0 8 / </u> <u> 0 9 : </u> +er	/181/18181 201
LOCATION NL SAMPLE DEPTH CO		E	(UNITS)	<u> </u> BELOW SURFACE
SAMPLE MEDIA COD SOIL/ROCK [OO] Surf. So [O1] Surf. Se [O2] Basalt [O3] Sediment [O4] Other OTHER	E <u>1/18</u> SEDIN 05] 06] 07] 07] 08] 09] Field Black	<u>IENT/SLUDGE</u> Lake/Pond River/Stream Impoundment Drum/Tank Other of DI Wate	LIQUIDS [10] Lak [11] Riv [12] Imp [13] Dru [13] Dru [14] Pla [15] Spr [16] Per [17] Reg [18] Oth	e/Pond er/Stream oundment m/Tank nt Discharge ing/Seep ched Aquifer ional Aquifer er
FIELD OBSERVATIO	NS:			<u>ia mya nyana na ana ana ana ana ana ana ana </u>
FIELD MEASUREMEN Radioactivity OVA Temperature	ITS: Outsic Background Insic	ie/ de Sample 	Units	Instr. =
pH FT and the set				
SAMPLE METHOD: C [0] Grab [SAMPLE TYPE: C [0] Normal [[4] Split [CODE $\underline{3}$ 1] Spatial Comp. [2 CODE $\underline{1}$ 1] Equip Blank (Prior 5] Replicate [6] Tr Ml Scandos of	2] Time Comp. [r) [2] Equip Blan ip Blank	3] Other k (Post) [3]	<u>Spike</u>
ASSOC. SAMPLES:_	PADA SANDIES Ship	ettert.	cooler to	- this phase
SAMPLING PLAN FO	DLLOWED: Yes 1	No <u> </u> . If [N	o] explain	
SAMPLED BY:	Karon X	oulo	– a /3 – pag	-2 e 24

.

Q 13-2 Page 25

EG&G HAZARDOUS WASTE

,

SAMPLE LOG SHELT

SAMPLE ID	CON VOLUME	TAINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL	1 <u>0</u> 1
ADDIEECOI	A 60mL	46	VOCRE, TCA	$4^{\circ}c$	
	B 250mL	CHE	Mitils - Br. U.	4° 4°C	10
					-
					-
					-
Ĩ					-
				· · · · · · · · · · · · · · · · · · ·	
		! 			
SOIL	5		-WATER		-
3] 1 L GL - MET	[E] 40 ML [F] .25 L	GL - VOL, NONE GL - TOX, NONE		- TOC, H2SO4 - MET, HNO3	
JILGL-EXT DIOTHER	[G] .25 L [H] 0.5 L	PL - GL -	[L] 2 L PL [M] 4 L AG	- HCN, NaOH - EXT, NONE	
	[I] 0.5 L	PL - S,NaCH+Zr	AC [N] OTHER		
ECORDED BY:	DATE:	CHECKED	BY	DATE:	

EG&G HAZARDOUS WASTE

ID # PAD SITE	141/18181014 504 -	21/1 DAT TIM Dav 4	E (mm/dd/yy E (24 hrs)) <u>1018</u> 1/10	1/1/181/1818 1:13101
DESCRIPTION	EAST	Side	- south	nud	
LOCATION SAMPLE DEPTH		<u>↓.</u> ↓↓ <u>₩₽£</u> 400-10		(UNI	- <u> </u> TS) BELOW SURFACE
SAMPLE MEDIA C SOIL/ROCK [00] Surf. [01] Surf. [02] Basalt [03] Sedime [04] Other OTHER	ODE <u> 0 0 </u> Soil Sediment ent Interbed	<u>SEDIMENT/SL</u> [05] Lake/P [06] River/ [07] Impour [08] Drum/T [09] Other	<u>UDGE</u> Pond Stream adment ank	LIQUI [10] [11] [12] [13] [14] [15] [16] [17] [18]	<u>DS</u> Lake/Pond River/Stream Impoundment Drum/Tank Plant Discharge Spring/Seep Perched Aquifer Regional Aquifer Other
FIELD OBSERVAT	IONS: <u>Temp</u>	Z 70°F	Wind ;	from S	5 2 Smph
SAMPLE DESCRIP	TION: 5,14	y clay - dr	ų T		W
FIELD MEASUREM	IENTS:	Outside/	<u> </u>		
	Background	Inside	Sample	Units	Instr. =
Radioactivit	y <.Imr		0		
OV	IA <u> </u>		0		<u> </u>
Temperatur	-e				
F	oH				
Flow/Leve				<u> </u>	<u></u>
SAMPLE METHOD: [0] Grab SAMPLE TYPE: [0] Normal [4] Split	CODE <u> 0 </u> [1] Spatial Com CODE <u> 0 </u> [1] Equip Blank [5] Replicate	p. [2] Time (Prior) [2] [6] Trip Blar	e Comp. [3 Equip Blank 1k] Other (Post)	[3] Spike
ASSOC. SAMPLES	5:				
SAMPLING PLAN	FOLLOWED: Yes 🛓	<u>XI</u> No <u>I</u>	If [No] explai	n
SAMPLED BY:	Jo LORD	· · · · · · · · · · · · · · · · · · ·	a pc	13-2 ige :	27

EG3G HAZARDOUS WASTE

SAMPLE ID	CON VOLUME	TAINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL	Shippi.
PADAVEEDCTVA	bomL	AG	BOID TOE	4°C	107
			CARDON TIT	•	
]
					-
					_
					_
,					
				·	
					_
) 				
[A] .25 L GL - VOL	[E] 40 ML	GL - VOL, NONE	<u>WATER</u> [J] 1 L GL	- TOC. H2SO4	-
[8] I L GL - MET [0] I L GL - EXT	[F] .25 L [G] .25 L	GL - TOX, NONE PL -	[K] 1 L PL	- MET. HNO3 - HCN. NaOH	
[D] OTHER	(H) 0.5 L	GL - PL - S.NaOH+ZnA	(M] 4 L AG c [N] OTHER	- EXT, NONE	
RECORDED_BY: + /	DATE:	CHECKED B	Y:	DATE:	
Les FRUI burge	<u>L (8) [8</u>	1180 Kan	in M. Koslo	<u> </u>	<u>E</u> 8
		M n p n	2		
	,	puych	1		

Ŧ

EG&G	HAZARDOUS	WASTE

SAMPLE LOG SHEET

ID # <u> P 4 0</u> SITE DESCRIPTION	A/BEKIOI SDA-PA EASE S	$\frac{TVA}{T} = 0$ $\frac{TVA}{T} = 0$ $\frac{TVA}{T} = 0$	ATE (mm/dd/y IME (24 hrs)	y) <u>10ピレ</u> 」 レビー:!	1121/19151 3101
ID ≠ 1/210 A/1212 K 10171/41 DATE (mm/dd/yy) 12 € 1/1/61/16 € SITE TIME (24 hrs) 121:512 DESCRIPTION DA - P.4 A	BELOW SURFACE				
SAMPLE MEDIA <u>SOIL/ROCK</u> [00] Surf. [01] Surf. [02] Basal [03] Sedim [04] Other OTHER	Image: Control (marked by form) Image: Control (marked by form) If E TIME (24 hrs) Image: Control (marked by form) SCRIPTION Image: Control (marked by form) Image: Control (marked by form) CATION N Image: Control (marked by form) Image: Control (marked by form) CATION N Image: Control (marked by form) Image: Control (marked by form) CATION N Image: Control (marked by form) Image: Control (marked by form) MPLE DEPTH CODE Image: Control (marked by form) Image: Control (marked by form) MPLE DEPTH CODE Image: Control (marked by form) Image: Control (marked by form) (01) Surf. Sediment Image: Control (marked by form) Image: Control (marked by form) (02) Surf. Sediment Image: Control (marked by form) Image: Control (marked by form) (03) Surf. Sediment Image: Control (marked by form) Image: Control (marked by form) (03) Surf. Sediment Image: Control (marked by form) Image: Control (marked by form) (03) Surf. Sediment Image: Control (marked by form) Image: Control (marked by form) (04) Surf. Sediment Image: Co				
FIELD OBSERVA	TIONS:				
SAMPLE DESCRI	PTICN:		· · · · · · · · · · · · · · · · · · ·	·	
SITE TIME (24 hrs) $1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 4 \\ 5 \\ 5 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5$					
SAMPLE METHOD [0] Grab SAMPLE TYPE: [0] Norma [4] Split ASSOC. SAMPLE	: CODE <u>3</u> [1] Spatial Con CODE <u>6</u> [1] Equip Blank [5] Replicate S: <u>PADA</u>	np. [2] Ti ((Prior) [2 [6] Trip B] <u>0014</u>	me Comp.] Equip Bla ank	[3] Other	Spike
SAMPLING PLAN	FOLLOWED: Yes	No No	⊥ If [No] explain.	
	<u></u>	: 			· · · · · · · · · · · · · · · · · · ·
SAMPLED BY:	J. Lore	~	(2, 13-2 5age =	30

47 381 SU SHITETS S SQUARE 49 382 LON SHITETS S SQUARE 49 380 JOO SHIETS S SQUARE

Q13-2 page 31

EGIG HAZARDOUS WASTE

-

SAMPLE ID	CONT VOLUME	AINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL	Si po
PA041880024	60mL	AC:	VOC	40	108
L.	ISML	Cleap G	Metals	402	109
					-
		harte 6°, ,*₩ t. t' a a. mai i a minimu 			
					-
			· · · · · · · · · · · · · · · · · · ·		
L			<u>WATER</u>		
[A] .25 L GL - VOL [B] 1 L GL - MET	[E] 40 ML [F] .25 L	GL - VOL, NON GL - TOX, NON	E [J] 1 L G E [K] 1 L P	L - TOC, H2SO4 L - MET, HNO3	
[D] ILGL - EXI [D] OTHER	[G] .25 L [H] 0.5 L [T] 0.5 L	PL - GL - PL - S N⇒OH±70	[L] 2 L P [M] 4 L A MAC [N] OTHED	L - HUN, NAUH G - EXT, NONE	
RECORDED BY: ->	DATE:	CHECKED	BY:	DATE:	_
Lee FREIDURGE	<u></u> [#	120 Kau 12-7	n M. Kaslow	08:221	<u>7</u> 8
		page ?	32		

EG&G HAZARDOUS WASTE

ID # $PAZA IB EIG SITE DESCRIPTION SDACastLOCATION NIIISAMPLE DEPTH CODE I FROM$	DICI21 DAT TIM Pad 7 Síde - LII.LIE DM _/TO	TE (mm/dd/) ME (24 hrs) 	y) <u> 2 € </u> / <u> 200</u> ; <u> 200</u> ; <u> </u> . <u> </u> . <u> </u> . <u> </u> . <u> </u> . <u> </u> . <u> </u> . <u> </u> .	1/101/10101 101/101/10 101/10 101/10 101/10 101/10 100/10 100/10 100/10 10 10/10 10 10/10 10 10 10/10 10 10 10 10 10 10 10 10 10 10 10 10 1	45
SAMPLE MEDIA CODE <u> 0 01</u> <u>SOIL/ROCK</u> [00] Surf. Soil [01] Surf. Sediment [02] Basalt [03] Sediment Interbed [04] Other OTHER	<u>SEDIMENT/SL</u> [05] Lake/F [06] River/ [07] Impour [08] Drum/1 [09] Other	<u>UDGE</u> Pond (Stream ndment Tank	LIQUIDS [10] La [11] Ri [12] Im [13] Dr [13] Dr [14] P1 [15] Sp [16] Pe [17] Re [18] Ot	ke/Pond ver/Stream poundment um/Tank ant Discharge ring/Seep rched Aquifer gional Aquifer her	
FIELD OBSERVATIONS: <u>Ten</u> Clear	<u>sky</u> = 70°F	Wind R	ion SZ	5mph	
SAMPLE DESCRIPTION: 5	Ity clay dry				
FIELD MEASUREMENTS: Background Radioactivity <u><./mr</u> OVA <u>O</u> Temperature pH	Outside/ d Inside	Sample O	Units	Instr. =	
Flow/Level SAMPLE METHOD: CODE <u> O </u> [0] Grab [1] Spatial f SAMPLE TYPE: CODE <u> O </u> [0] Normal [1] Equip Bl [4] Split [5] Replication ASSOC. SAMPLES:	Comp. [2] Time ank (Prior) [2] e [6] Trip Blar	e Comp. Equip Blar ak	[3] Other nk (Post) [3] Spike	
SAMPLING PLAN FOLLOWED: Ye	s 127 No 1	<u> </u> . If [N	lo] explain.	•	
SAMPLED BY:	Ĺ		0 13-2 page :	33	

42 381 50 SHEETS 5 SQUARE 43 182 100 SHEETS 5 SQUARE 42 180 200 SHEETS 5 SQUARE 12 180 200 SHEETS 5 SQUARE

.

.

EG&G HAZARDOUS WASTE

•••

Ξ

,

SAMPLE LOG SHEET ____

...

=

SAMPLE ID	CON VOLUME	AINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL	Shippi
PaDAIEE0034	boml	AG	Voc	402	110
La construction de la constructi	356m (Cline Cliss	Metals	4%	111
			-		-
					-
			5 		_
			 		_
					•
			-		
	- . . 				
					-
	-				
			 		_
					-
					_
			 WATER		_!
[A] .25 L GL - VOL [8] 1 L GL - MET	[E] 40 ML [F] .25 L	GL - VOL, NONE GL - TOX, NONE	[J] 1 L GL [K] 1 L PL	- TOC, H2SO4 - MET, HNO3	
[C] 1 L GL - EXT [D] OTHER	[G] .25 L [H] 0.5 L	PL - GL -	[L] 2 L PL [M] 4 L AG	- HCN. NaOH I - EXT. NONE	
	[I] 0.5 L	PL - S,NaOH+ZnA	c [N] OTHER	5. TC	
Lee tea burgen	UAIE:	CHECKED B	in M. Koslov	UATE: <u>08/32/3</u>	2
/		0.13-2	_		
		page 3:	5		

.

EG&G HAZARDOUS WASTE

•••

_ _

.

ID # $\frac{ P 4 y 4}{ P 4 y 4}$ SITE DESCRIPTION	$\frac{F}{F} \frac{F}{F} $\frac{2 3 }{2d} \text{DAT}$	E (mm/dd/y E (24 hrs)	y) <u>ØEI</u> 1/1/1 √ 5au	11 18 1/18-81 11 10 1 11 10 1	C c track o	
LOCATION NL SAMPLE DEPTH CO		 		(UNIT	S) BELOW SURFACE	3,
SAMPLE MEDIA COD <u>SOIL/ROCK</u> [00] Surf. So [01] Surf. Se [02] Basalt [03] Sediment [04] Other OTHER	E <u>10101</u> il diment Interbed	<u>SEDIMENT/SL</u> [05] Lake/F [06] River/ [07] Impour [08] Drum/1 [09] Other	UDGE Ond Stream idment ank	LIQUID [10] L [11] R [12] I [13] D [14] P [15] S [16] P [17] R [18] O	S ake/Pond iver/Stream mpoundment rum/Tank lant Discharge pring/Seep erched Aquifer egional Aquifer ther	
FIELD OBSERVATIO	NS: <u>Temp</u>	= 15°F	Wind t	For 53	5mpl	
SAMPLE DESCRIPTI	ON: <u>50;</u>]	silty elay	dry			
FIELD MEASUREMEN Radioactivity OVA Temperature pH Flow/Level	ITS: Background <u><./mr</u>	Outside/ Inside	Sample 0	Units	Instr. =	
SAMPLE METHOD: C [O] Grab [SAMPLE TYPE: C [O] Normal [[4] Split [ASSOC. SAMPLES:_	ODE <u> 0 </u> 1] Spatial Comp ODE <u> 0 </u> 1] Equip Blank 5] Replicate	o. [2] Time (Prior) [2] [6] Trip Blan	e Comp. [Equip Blan 1k	3] Other _ k (Post) [3] Spike	
SAMPLING PLAN FO	DLLOWED: Yes 🔟	No L	If [N	o] explain	•••	:
SAMPLED BY:	Jilor		(/	2 13- 299e	2 _ 30 _	

42 181 30 SHEETS 3 SQUARE 42 187 100 SHEETS 3 SQUARE 42 187 100 SHEETS 3 SQUARE 42 189 100 SHEETS 3 SQUARE •

Q13-2 page 37

.

¢ ¢ ¢

1

EGIG HAZARDOUS WASTE

SAMPLE ID	CON' VOLUME	TAINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL	Sr. Di
PADALEEDOCA	60 ml	AC	VOC	4°c	112
B	250 mL	Clur G	Metals	Ho	113
				-	_
–					-
					-
					_
					-
		 			i
					_
[A] .25 L GL - VOL [B] 1 L GL - MET [C] 1 L GL - EXT [D] OTHER	[E] 40 ML [F] .25 L [G] .25 L [H] 0.5 L [I] 0.5 L	GL - VOL, NONE GL - TOX, NONE PL - GL - PL - S,NaCH+ZnA	<u>WATER</u> [J] 1 L GL [K] 1 L PL [L] 2 L PL [M] 4 L AG c [N] OTHER	- TOC, H2SO4 - MET, HNO3 - HCN, NaCH - EXT, NGNE	-
RECORDED BY:	DATE:	CHECKED 8	Y: 7 1.1	DATE:	· 6
<u> Ale Anulling</u>	1_ <u>~</u> @/[2	a13-2	an M. Kistori	<u> </u>	<u></u>
		page 38			

00002-

EG&G HAZARDOUS WASTE

•••

				<u> </u>		
$ID \neq P \neq D $	141/181810K		DATE	(mm/dd/y	y) <u>108</u>	1/1/81/81
SITE	~	- ·	TIME	(24 hrs)	1/1	1:301
DESCRIPTION	<u>SD4 - 1</u>	PAd	A	SAMP	to taken	6" south of state
	CAST	side	_ ~	Sout	the ena	<u>.</u>
LOCATION	N	<u> </u>	<u>L</u> E			•
SAMPLE DEPTH	CODE FROM _		TO	<u>3′</u> _	(UN)	ITS) BELOW SURFACE
	······································					<u> </u>
SAMPLE MEDIA	ODE 10101				LIQU	IDS
SOIL/ROCK	Soil	SEDIMEN	T/SLUE	<u>DGE</u>	[10]	Lake/Pond Piver/Stream
[00] Surf. [01] Surf.	Sediment	[05] La	ver/Si	tream	[11]	Impoundment
[02] Basalt		[07] Im	pound	nent	[13]	Drum/Tank
[03] Sedime	ent Interbed	[08] Ur [09] 0t	um/lan her	٦K	[14]	Plant Discharge
foul outer		[05] 00			[16]	Perched Aquifer
OTUEN					[17]	Regional Aquifer
					[10]	
FIELD OBSERVAT	TIONS: Temp	= 750,	= u) al fro	m 5 =	Smok
	Clea	rsku		·		
SAMPLE DESCRI	PTICN. Mai	ist sun	1 -	14. etau		¥, <u></u>
				<u></u>		
ETELD MEASUREN		Nutside/	,	·····	····	
TICED HEADORES	Packaround	Incido		Sampla	Unite	Inctr =
Dadiaaatiuiy		Inside			Units	10500, 7
Radioactivi					<u>.</u>	
-	VA	<u></u>		0		
lemperatu	re				<u> </u>	
l	рН		<u></u>			
Flow/Lev	el				<u> </u>	
SAMPLE METHOD	: CODE <u>CO</u> [1] Spatial Com	n [2]	Time	Como [31 Other	
SAMPLE TYPE:		h. [r]		comp. [of other	
[0] Norma	1 [1] Equip Blank	(Prior)	[2] E	quip Blan	k (Post)	[3] Spike
[4] Spiit	[5] Replicate	[6] irip	Blank			
ASSOC. SAMPLE	S:					· · · · · · · · · · · · · · · · · · ·
	<u></u>			·····		
SAMPLING PLAN	FOLLOWED: Yes 🤟	1 N	lo	↓. If [N	o] expla	in
<u> </u>						
				/	1,13	-2,
SAMPLED BY:	J. Lond			(MID	20
				ŀ	~~yc	

144105 6 5133H5 002 496 24 144105 6 5133H5 002 496 24 144105 6 5133H5 012 186 24

•

. .

EG&G HAZARDOUS WASTE

G&G HAZARDOUS WASTE				SAMPLE LOG SHEE	I Shu
SAMPLE ID	CON VOLUME	TAINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL	Lict
141880094	40 40 AL	AG	VOC	4°c	1/
	+ 56mL	AG	Voc	N°C.	11
l l	B SCOMC	Plastie	Motuls	4°C H, SO4	/ <i>I</i> _E
,	3 1000ml	PLASTIC	Met4/s	4°C HNO3	/-
					-
					-
					-
					_
<u>SOIL</u> A] .25 L GL - VOL	[E] 40 MI	GL - VOL NON	<u>WATER</u> E [J]]] G	L - TOC. H2SO4	
BĴ I L GL - MET C] I L GL - EXT D] OTHER	[F] .25 L [G] .25 L [H] 0.5 L [I] 0.5 L	. GL - TOX, NON . PL - . GL - . PL - S,NaOH+Z	E [K] 1 L P [L] 2 L P [M] 4 L A nAc [N] OTHER	L - MET, HNO3 L - HCN, NaOH G - EXT, NONE	
ECORDED BY:	DATE:	CHECKED	BY:	DATE:	~ -
<u> in the second with the second secon</u>	<u>24_2 (20)/10</u>	α_13-2	nen 11. Most	<u>n 00 44 0</u>	<u>ک</u>
	ŀ	Jäge 4			

 \bigcirc \bigcirc \bigcirc \sim \sim

EG&G HAZARDOUS WASTE	9		SAM	IPLE LOG SHEET
SGAGE HAZARDOUS WASTE 9 SAMPLE LOG SHEET 10 # DIA 10141/181810000 DATE (mm/dd/yy) 10181/148/18181 SITE TIME (24 hrs) 1/181101 SITE SD 4 - 044 ICOSCRIPTION SD 4 - 044 ICOSCRIPTION SD 4 - 044 ICOSCRIPTION SD 4 - 044 ICOSCRIPTION SD 4 - 044 ICOSCRIPTION SD 4 - 044 ICOSCRIPTION IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
Dide HAZARCOUS WASTE 9 SAMPLE LOG SHEET 0 # PALALALAL PALA DATE (mm/dd/yy) ISTA/LALALALALALALALALALALALALALALALALALAL				
SAMPLE MEDIA CODE <u> / P</u> <u>SOIL/ROCK</u> [00] Surf. Soil [01] Surf. Sediment [02] Basalt [03] Sediment Interb [04] Other OTHER <u>Spikes</u>	<u>SEDIMENT/</u> [05] Lake [06] Rive [07] Impo ed [08] Drum [09] Othe	<u>SLUDGE</u> /Pond r/Stream undment /Tank r	LIQUIDS [10] La [11] Riv [12] Imp [13] Dru [14] P1a [15] Spu [16] Peu [17] Reg [18] Oth	ke/Pond ver/Stream boundment um/Tank ant Discharge ring/Seep rched Aquifer gional Aquifer
FIELD OBSERVATIONS:				
SAMPLE DESCRIPTION:	· · · · · · · · · · · · · · · · · · ·			
FIELD MEASUREMENTS: Backg Radioactivity OVA Temperature pH	Outside/ round Inside	Sample	Units	Instr. =
SAMPLE METHOD: CODE [0] Grab [1] Spat SAMPLE TYPE: CODE] [0] Normal [1] Equi [4] Split [5] Repl ASSOC. SAMPLES:	 ial Comp. [2] Ti p Blank (Prior) [2 icate [6] Trip Bl	me Comp. [3]] Equip Blank ank	Other (Post) [3	<i>Spike</i>] Spike
SAMPLING PLAN FOLLOWED:	Yes 1 No	<u>│ </u>	explain.	•
	· · · · · · · · · · · · · · · · · · ·		Q13-	2,
SAMPLED BY:	Lord		Dage	42

•

page 23

.

.

.

.

,

EGAG HAZARDOUS WASTE

SAMPLE LOG SHEET

•

	CON	ΤΔΙΝΕΡ		DRESERVATIVES	Sh
SAMPLE ID	VOLUME	Түре	ANALYSIS	TYPE/VOL	, ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
PACAIBEDOSA	60 m C	AG	VOC	4°	//
	SOML	Clian C	Metals	4°.]/
		•			
					-
		<u></u>	<u>+</u>		
		<u> </u>			-
					-
			}		
		! 	! 		_
		l 		 	-
		1			-
					_
					-
			1		
<u>SOIL</u> FA1 .25 L GL - VOI	[E] 40 MI	GL - VOL, NONF	WATER	- TOC. H2SO4	
[8] 1 L GL - MET	[F] .25 L	GL - TOX, NONE	[K] 1 L PL	- MET. HNC3 - HCN MacH	
[D] OTHER	[H] 0.5 L	GL - DL - S NOCH-704	[M] 4 L AG	- EXT. NONE	
PECODOED BY.	LI] U.D L	сиссись р	e imjornem v.	DATE	
Les Fringer	UATE: 10 <u>E/_/4</u>	elee tare	M. Koslow	UAIL: 	2
~	C	213-2,,,			
х	\mathcal{P}	age 44			

EG&G HAZARDOUS WASTE

-,

ID # $PAIdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	$\begin{array}{c cccc} \hline D & ATE & (mm/dd, \\ & TIME & (24 hr) \\ \hline 4d & A \\ \hline 5id_2 & - NORTK & e \\ \hline 1 & 1 & 1 & E \\ \hline 0 & T0 & 3 \\ \hline \end{array}$	(yy) OB / / B / E E E E E E E E E
SAMPLE MEDIA CODE <u> 0 0 </u> <u>SOIL/ROCK</u> [00] Surf. Soil [01] Surf. Sediment [02] Basalt [03] Sediment Interbed [04] Other OTHER	<u>SEDIMENT/SLUDGE</u> [05] Lake/Pond [06] River/Stream [07] Impoundment [08] Drum/Tank [09] Other	LIQUIDS [10] Lake/Pond [11] River/Stream [12] Impoundment [13] Drum/Tank [14] Plant Discharge [15] Spring/Seep [16] Perched Aquifer [17] Regional Aquifer [18] Other
FIELD OBSERVATIONS: Tem	5 2 85°F Wint	from 5 = 10mph
SAMPLE DESCRIPTION:	ear sky Ily clay dry	· · · · · · · · · · · · · · · · · · ·
FIELD MEASUREMENTS: Background Radioactivity <u>< ./mr</u> OVA <u>0</u> Temperature pH Flow/level	Outside/ Inside Sample 	Units Instr. =
SAMPLE METHOD: CODE <u> 0 </u> [0] Grab [1] Spatial Com SAMPLE TYPE: CODE <u> 0 </u> [0] Normal [1] Equip Blank [4] Split [5] Replicate ASSOC. SAMPLES:	mp. [2] Time Comp. k (Prior) [2] Equip Bl [6] Trip Blank	[3] Other ank (Post) [3] Spike
SAMPLING PLAN FOLLOWED: Yes	No ⊥. If	[No] explain
SAMPLED BY:, Lord	,	= a 13-2 = = page 45 =

47 101 50 5014815 5 501488 42 382 100 5014815 5 500488 42 389 200 5014815 5 500488 42 389 200 5018815 5 500488

.

EG&G HAZARDOUS WASTE

					= ۲
SAMPLE ID	CON VOLUME	TAINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL	[Spl
Addrescol	4 60 mL	AC	Voc	4°C	12
	3 250 mL	Clean G	Metals	4°C.	
_					-
-					
		·			_
					-
_		· · · · · · · · · · · · · · · · · · ·			-
				_	
			···		
-					
					_
				ł	1 5
<u>\$01L</u> 1 .25 L GL - VOL	[F] 40 MI	GI - VOL NONF	- <u>WATER</u>	I - TOC. H2SO4	· -
] 1 L GL - MET 1 I L GL - FXT	[F] .25 L	GL - TOX, NONE	[K] 1 L P	L - MET. HNO3	
j OTHER	[H] 0.5 L [I] 0.5 L	GL - PL - S.NaOH+7n	[M] 4 L A AC [N] OTHER	G - EXT. NONE	
CORDED BY:	DATE	CHECKED	BY:	DATE	
Teo Frontung	N ŒŢĒ		Then M. Kos	<u>hu 03; 22 7</u>	2
		U13-2	7		
	ł	ruye 4	(

10 # 1414	1 <u> 41/1818101</u>		ATE (mm/dd/)	(YY) 10181	1181188
SITE			IME (24 hrs)) $1/171$: 10
DESCRIPTION	<u> 544 -</u>	PAd	<u> </u>	mple taken	6"Notstake)
	<u>last</u>	SIda	- NOR	the and	2
LOCATION	N <u> </u>	·	LEL I	<u> </u>	
SAMPLE DEPTH	CODE FROM	$\underline{}$		(UN I T	S) BELOW SURFACE
SAMPLE MEDIA (SOIL/ROCK [00] Surf. [01] Surf. [02] Basal [03] Sedime [04] Other	CODE <u> 0 0 </u> Soil Sediment t ant Interbed	<u>SEDIMENT</u> [05] Laka [06] Rive [07] Impo [08] Drum [09] Otho	<u>(SLUDGE</u> e/Pond er/Stream oundment n/Tank er	LIQUID [10] L [11] R [12] I [13] D [14] P [15] S [16] P [17] R [18] O	<u>S</u> ake/Pond iver/Stream mpoundment rum/Tank lant Discharge pring/Seep erched Aquifer egional Aquifer ther
FIELD OBSERVA	TIONS:	mp=85°	= Wind +	from 5 la	10 mpt
		Clear 3	sky		
SAMPLE DESCRI	PTION:S	ilty clay	dry		
FIELD MEASURE	MENTS:	Outside/			
	Background	Inside	Sample	Units	Instr. =
Radioactivi	ty G.Imr		0		
0	VA <i>O</i>		0		
Tamporatu	<u> </u>				
remperatu					
	рн				
FIGW/Lev					
SAMPLE METHOD [0] Grab SAMPLE TYPE: [0] Norma [4] Split	: CODE <u> 0 </u> [1] Spatial Con CODE <u> 0 </u> 1 [1] Equip Blan [5] Replicate	mp. [2] T k (Prior) [[6] Trip B	ime Comp. 2] Equip Bla lank	[3] Other _ nk (Post) [3] Spike
ASSOC. SAMPLE	S:			<u></u>	
SAMPLING PLAN	FOLLOWED: Yes	No	<u>↓</u> . If [No] explain	
<u> </u>		·····		- 0,12	3-2 -
SAMPLED BY:	<u> </u>	<u>e</u> d		- pâl)ė 48 –

ł

000034

EG&G HAZARDOUS WASTE

_

SAMPLE ID	CON ⁻ VOLUME	TAINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL	Shinsid Cu . 7
PADA/EECOTA	60m.L	A G	VOC	4°C	125
6	250ML	Clas G	Metaks	4°C.	124
				· · · · · · · · · · · · · · · · · · ·	:
					_
			1	·	
				1 	
					-
				: :	1
					_
[A] .25 L GL - VOL [8] 1 L GL - MET	[E] 40 ML [F] .25 L	GL - VOL, NONE GL - TOX, NONE	[J] 1 L GL [K] 1 L PL	- TOC, H2SO4 - MET. HNO3	· -
[C] 1 L GL - EXT [D] OTHER	[G] .25 L [H] 0.5 L	PL - GL -	[L] 2 L PL [M] 4 L AG	- HCN. NaOH - EXT. NONE	
RECORDED BY: / /	LI U.S L	PL - S,NaUH+ZnA	C [N] OTHER V·	ρΔΤΕ·	
Noe And in 19	U BILE		in A Colon	(2) 22 8	- 3
		013-2	$\stackrel{\prime}{\searrow}$		
		puye-	\sim		

.

ID # <u>P 121</u> SITE DESCRIPTION	14111818101 <u>504</u> <u>- 2257</u> NIIIII	<u>0171</u> DA TI - <u>Paa</u> - <u>5ida</u>	NTE (mm/dd/y (ME (24 hrs)) / <u>A</u> (S EL	$\begin{array}{c} (y) & \square (B) \\ \square (Y) & \square (B) \\ \square (Y) & \square (Y) \\ \square (Y) & \square$	1 18 1/18 3 1/151 -~ 174 E. of 4_	[s+mkc]
SAMPLE DEPTH				(UNITS) BELOW SURFACE	<u>.</u>
SAMPLE MEDIA (<u>SOIL/ROCK</u> [00] Surf. [01] Surf. [02] Basali [03] Sedime [04] Other OTHER	CODE <u>10 D</u> Soil Sediment ent Interbed	<u>SEDIMENT/9</u> [05] Lake/ [06] River [07] Impou [08] Drum/ [09] Other	SLUDGE (Pond r/Stream undment (Tank	LIQUIDS [10] Lal [11] Ri [12] Im [13] Dru [14] Pl [15] Sp [16] Pe [17] Red [18] Ot	ke/Pond ver/Stream poundment um/Tank ant Discharge ring/Seep rched Aquifer gional Aquifer her	-
FIELD OBSERVAT	TIONS: <u>Ten</u>	<u> </u>	F Wind	from Sla	2 10 mpts	-
SAMPLE DESCRI	PTION: <u>San</u>	ly Silty	scil - d	Амр		-
FIELD MEASURE Radioactivi O Temperatur Flow/Leve	MENTS: Background ty <. 1 mm	Outside/ Inside	Sample 	Units	Instr. =	-
SAMPLE METHOD [0] Grab SAMPLE TYPE: [0] Norma [4] Split	: CODE <u> Ø </u> [1] Spatial Com CODE <u> Ø </u> [1] Equip Blank [5] Replicate	np. [2] Tin (Prior) [2 [6] Trip Bl	ne Comp.] Equip Blan ank	[3] Other nk (Post) [3] Spike	
ASSOC. SAMPLE	S:					-
SAMPLING PLAN	FOLLOWED: Yes	No .	<u> </u> . If []	No] explain.	•	-
SAMPLED BY:	See L	erd	· · · · · · · · · · · ·	 pag	3-2 _ je 51 _	- - -

SAMPLE LOG SHEET

EG3G HAZARDOUS WASTE

		0000	34
SAMPLE	LOG	SHEET	

SAMPLE ID	CON VOLUME	TA INER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL	Sh ta
PADA 18E00E	A60ml	AG	VOC	4°c	1
	B250MC	Char G	F-VO MITH	4°C	10
		·····		``````````````````````````````````````	-
					-
					_
					_
					-
					-
			· · ·		
					-
		, 		· · · · · · · · · · · · · · · · · · ·	_
		· · ··································			
					-
					-
		· · · · · · · · · · · · · · · · · · ·			_
<u>SOIL</u>			WATER) 	-
A] .25 L GL - VOL B] 1 L GL - MET C] 1 L GL - EXT D] OTHER	[E] 40 ML [F] .25 L [G] .25 L [H] 0.5 L [I] 0.5 L	GL - VOL, NONE GL - TOX, NONE PL - GL - PL - S,NaOH+ZnA	[J] 1 L GL [K] 1 L PL [L] 2 L PL [M] 4 L AG c [N] OTHER	- TOC, H2SO4 - MET, HNO3 - HCN, NaOH - EXT, NONE	
ECORDED, BY: The Alillui 1 ger	DATE:	CHECKED B	Y: N. Kolos	DATE: <i>2813218</i>	8
		U13-2	2		

EGAG HAZARDOUS WASTE

ID # PARA	4111218101 5.2.4 PAST 1.1.1.1 ODE 1.1. FROM	0181 DAT TIM 	E (mm/dd/yy E (24 hrs) <u>A</u> <u>NORH</u> 1 2') <u> ° 8 /</u> <u> / K/ </u> : <u>Sample</u> <u>e N d</u> <u> . </u> (UNITS	<u>(© / @+@:</u> <u>3 0 </u> ## <i>ken 6" Nof</i>] BELOW SURFACE	Stake
SAMPLE MEDIA CO SOIL/ROCK [00] Surf. S [01] Surf. S [02] Basalt [03] Sedimen [04] Other OTHER	DE <u>101</u> oil ediment t Interbed	<u>SEDIMENT/SL</u> [05] Lake/P [06] River/ [07] Impoun [08] Drum/T [09] Other	<u>UDGE</u> ond Stream dment ank	LIQUIDS [10] La [11] Ri [12] Im [13] Dr [14] P1 [15] Sp [16] Pe [17] Re [18] Ot	ke/Pond ver/Stream poundment um/Tank ant Discharge ring/Seep rched Aquifer gional Aquifer her	- · ·
FIELD OBSERVATI	ONS: Temp.	₹85°F W.	ind From	5 = 5m,	oh Clears	<i>ty</i>
SAMPLE DESCRIPT	IUN: <u>3117</u>	- dnnp		·····		-
FIELD MEASUREME Radioactivity OVA Temperature pH Flow/Level	NTS: Background <u>C. Imr</u>	Outside/ Inside	Sample C	Units	Instr. ≠	-
SAMPLE METHOD: [0] Grab SAMPLE TYPE: [0] Normal [4] Split	CODE <u> O </u> [1] Spatial Com CODE <u> O </u> [1] Equip Blank [5] Replicate	p. [2] Time (Prior) [2] [6] Trip Blan	Comp. [3 Equip Blank k] Other (Post) [3] Spike	
ASSOC. SAMPLES:						-
SAMPLING PLAN F	OLLOWED: Yes]	└┴ No⊥	If [No] explain. 0.13 -		-
SAMPLED BY:	a ho,	ed		page	_54	-

0 0 0 0 3 7

EGIG HAZARDOUS WASTE

SAMPLE ID	CONT VOLUME	AINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL
		•		
			·····	· · · · · · · · · · · · · · · · · · ·
۰.				
		1 		
	-	 		
				· · · · · · · · · · · · · · · · · · ·
			<u></u>	
		·		
			··· · · · · · · · · · ·	
<u>SOIL</u>		!	IATER	
(A] .25 L GL - VOL (B] 1 L GL - MET [C] 1 L GL - EXT [D] OTHER	[E] 40 ML [F] .25 L [G] .25 L [H] 0.5 L [I] 0.5 L	GL - VOL, NONE GL - TOX, NONE PL - GL - PL - S,NaOH+ZnAc	[J] 1 L GL [K] 1 L PL [L] 2 L PL [M] 4 L AG : (N] OTHER	- TOC, H2SO4 - MET, HNO3 - HCN, NaCH - EXT, NONE
RECORDED BY:	DATE:	CHECKED BY	′ :	DATE:
<u></u>			, 50	

SAMPLE LOG SHEET

ID # SITE DESCRIPTION	DATE (mm/dd/yy) ////////////////////////////////////
LOCATION SAMPLE DEPTH	N I
SAMPLE MEDIA C SOIL/ROCK [00] Surf. [01] Surf. [02] Basalt [03] Sedime [04] Other	CODEIQUIDSSoil[05] Lake/Pond[10] Lake/PondSediment[06] River/Stream[11] River/Streamt[06] River/Stream[12] Impoundmentt[07] Impoundment[13] Drum/Tankent Interbed[08] Drum/Tank[14] Plant Discharge[09] Other[15] Spring/Seep[16] Perched Aquifer[17] Regional Aquifer[18] Other[18] Other
FIELD OBSERVAT	TIONS:
SAMPLE DESCRIP	PTION:
FIELD MEASUREN	MENTS: Outside/
Radioactivit O\ Temperatur	Background Inside Sample Units Instr. = ty
Flow/Leve	e]
SAMPLE METHOD: [0] Grab SAMPLE TYPE: [0] Normal [4] Split	: CODE <u> </u> [1] Spatial Comp. [2] Time Comp. [3] Other CODE <u> </u> I [1] Equip Blank (Prior) [2] Equip Blank (Post) [3] Spike [5] Replicate [6] Trip Blank
ASSOC. SAMPLES	S:
SAMPLING PLAN	FOLLOWED: Yes I No I I. If [No] explain
	$\bigcap 12_{-}2$
SAMPLED BY:	Dalle, 57 - Dall

EG&G HAZARDOUS WASTE

42 Jul 30 Shitels 3 Sobakt 43 BB 100 Shitels 3 Sobakt 43 BB 200 Shitels 3 Sobakt 43 BB 200 Shitels 3 Sobakt

٠

013-2 009e58

,

EG3G HAZARDOUS WASTE

SAMPLE LOG SHEET

SAMPLE ID	CON' VOLUME	TAINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL
			<u></u>	
	_			
		1		
			······	
			<u></u>	
			· · · · · · · · · · · · · · · · · · ·	
<u></u>	<u> </u>	·	<u>ATER</u>	· · · · · · · · · · · · · · · · · · ·
[A] .25 L GL - VOL [6] 1 L GL - MET [0] 1 L GL - EXT [D] OTHER	[E] 40 ML [F] .25 L [G] .25 L [H] 0.5 L [I] 0.5 L	GL - VOL, NONE GL - TOX, NONE PL - GL - PL - S,NaOH+ZnAc	[J] 1 L G [K] 1 L P [L] 2 L P [M] 4 L A [N] OTHER	L - TOC, H2SO4 L - MET, HNO3 L - HCN, NaOH G - EXT, NONE
RECORDED BY:	DATE:	CHECKED BY	:	DATE:
		a 13-2 page 59	1	

.

0 0 0 0 4 0

EG&G HAZARDOUS	WASTE				SAMPLE LOG SHEET
ID # <u> </u> SITE DESCRIPTION		L DA TI	TE (mm/dd/y ME (24 hrs)	y) <u> </u>	
LOCATION SAMPLE DEPTH	N	TO	E <u>I I I I</u>	(UNI	 TS) BELOW SURFACE
SAMPLE MEDIA C <u>SOIL/ROCK</u> [00] Surf. [01] Surf. [02] Basalt [03] Sedime [04] Other OTHER	CODE <u> </u> Soil Sediment ent Interbed	SEDIMENT/S [05] Lake/ [06] River [07] Impou [08] Drum/ [09] Other	<u>LUDGE</u> Pond /Stream ndment Tank	LIQUII [10] [11] [12] [13] [13] [14] [15] [16] [17] [18]	<u>DS</u> Lake/Pond River/Stream Impoundment Drum/Tank Plant Discharge Spring/Seep Perched Aquifer Regional Aquifer Dther
FIELD OBSERVAT	[IONS:				
SAMPLE DESCRIP	PTION:				
FIELD MEASUREN Radioactivit O\ Temperatur Flow/Leve	AENTS: Background y /A re oH al	Outside/ Inside	Sample	Units	Instr. =
SAMPLE METHOD [0] Grab SAMPLE TYPE: [0] Norma [4] Split ASSOC. SAMPLES	: CCDE [1] Spatial Comp CODE [1] Equip Blank [5] Replicate [S:	. [2] Tim (Prior) [2] 6] Trip Bla	e Comp. [Equip Blan nk	3] Other k (Post)	[3] Spike
SAMPLING PLAN	FOLLOWED: Yes	No _	!. If [N	lo] expiai	n
<u></u>		,			<u> </u>
	· · · · · · · · · · · · · · · · · · ·		(213-	2
SAMPLED BY:	<u> </u>		Ĥ	sage	. 60

EG3G HAZARDOUS WASTE

SAMPLE LOG SHEET

SAMPLE ID	CON VOLUME	AINER TYPE	ANALYSIS	PRESERVATIVES TYPE/VOL
[A] .25 L GL - VOL [B] 1 L GL - MET [C] 1 L GL - EXT [D] OTHER	[E] 40 ML [F] .25 L [G] .25 L [H] 0.5 L [I] 0.5 L	GL - VOL, NONE GL - TOX, NONE PL - GL - PL - S,NaOH+ZnAG	[J] 1 L GL [K] 1 L PL [L] 2 L PL [M] 4 L AC c [N] OTHER	- TOC, H2SO4 - MET. HNO3 - HCN. NaCH G - EXT, NONE
RECORDED BY:	DATE:	CHECKED B	Y:	DATE:
	/	ais-2 page l	62	

0 0 0 0 4 3

_

EG&G HAZARDOUS	5 WASTE	SAMPLE LOG SHEET
ID # 1 1 SITE DESCRIPTION	DATE (mm/dd/yy)	
LOCATION SAMPLE DEPTH	N	TS) BELOW SURFACE
SAMPLE MEDIA (<u>SOIL/ROCK</u> [00] Surf. [01] Surf. [02] Basal [03] Sedime [04] Other OTHER	CODE I LIQUI Soil [05] Lake/Pond [10] Sediment [06] River/Stream [12] Sediment [06] River/Stream [12] Ent Interbed [08] Drum/Tank [14] [09] Other [15] [17] [18]	DS Lake/Pond River/Stream Impoundment Drum/Tank Plant Discharge Spring/Seep Perched Aquifer Regional Aquifer Other
FIELD OBSERVA	TIONS:	
SAMPLE DESCRI FIELD MEASURE Radioactivi O Temperatu	PTION: MENTS: Outside/ Background Inside Sample Units ty /A re DH	Instr. =
Flow/Lev SAMPLE METHOD [0] Grab SAMPLE TYPE: [0] Norma [4] Split ASSOC. SAMPLE	el [1] Spatial Comp. [2] Time Comp. [3] Other CODE [1] Equip Blank (Prior) [2] Equip Blank (Post) [5] Replicate [6] Trip Blank S:	[3] Spike
SAMPLING PLAN	FOLLOWED: Yes i No I. If [No] explai	n
SAMPLED BY:		Q 13-2 Page 63

A4 301 SU SHIELS S SQUARE 43 302 JOU SHEELS S SQUARE 43 302 JOU SHEELS S SQUARE MATLOWAL

.

Ö

000

()] 19

page of
Appendix 13-3

APPENDIX 13-3

PHASE 2 SAMPLE COLLECTION LOGBOOK

- 1

42 381 SU SHEETS 5 SQUARE 42 382 INU SHEETS 5 SQUARE 42 389 JOO SHEETS 5 SQUARE ANTIONAL UNIVERSITY 5 SQUARE

•

.

I.

. 500 je(jb 5.... 11/2 ~<u>~</u> deep anole-2.30 84 .a7 ;• Hrs 811 88 11/2 dee approx.

pring Supple NA + 69 Buch dt2 200 **U** 1 2 M 2 14.9 . 49.54 125/ 1635 HIS de ex ------0815 413 Arnhed Vaz V 0630 Lefy (**x**, ¹ U V deeo. 3 3 deg 202 1-0-1 び N 2 <u>بر</u> Sumple A . . 1 **1 1** -29 Hrs appent. <u>.</u> Som pile シシ ample 11:0251 Samp/ adida ro-dap

13-2 985

tàke id Chi 1 2 2 1 1 2 2 2 rinse firity E. C. Sum le A-11-1 at Onvo 115. DT winse Nelhant nin DT minse Air dry 4014V Sumple in Anil? A set 8 In clept 11.033 - THURE IN なら 2. 1.44 1520 down with a deconad م الم - 13 - 14 الم or of the - Remove with Showel Ś steel freen Decon Proceedure. the shovel 0 rocid din of by come. a 501/ 501/ collected w 5441 N 1855 5 remove sou Scoopyld. about 6% . ちょう After 1 Z

213-2 298-6

Symple A 18 tules at 1040 this 4th 4 leoth ち 节 41-11 - 1/ dut 1032 140 Sample A - 19 44 1047 Hrs 4010x 61 in < <u>1</u> 2 ンエ at 1053 Approx depth a pprox Sample A-13 Marter () at 1004 Hiss 414 Don X へいの 7.9 P 4+ 1010 HVS 1010: H-15 1-A-1 a00) 641-19 Sumple alamps oundle. -~+0 61

0-13-2 >age 7

8 76 E1 10/10this said Ċ I WW NY Hutterd het 186 K dif-WM1 **ب**ه H: way: dr (Einslewig , , , Inc: 221 1-01-4 111 10% - Tword Cient wisds. -60 white -Sum 2 NokK1 IMAR 59m C + Sa 691 40011 11/1/

Q13-2 page 9

Appendix 13-4

APPENDIX 13-4

PHASE 1 SAMPLE ANALYSIS REPORT

0.13-4 page 0

Kara & Sat Carl

7720 LORRAINE AVENUE SUITE 105 STOCKTON, CA 95210 PHONE: 209-957-3405

Original analytical dieta inclosed

September 12, 1988

ZÂF

9.14.68

Jeff Ginsburg/Kathy MacKay E G & G Inel, Inc. 1955 Fremont Avenue Idaho Falls, ID 83415

Dear Mr. Ginsburg/Ms. MacKay:

Enclosed please find the analytical results for the PAD A OVERBURDEN AND INTERSTITIAL SOILS sent into our laboratory August 19, 1988. These samples have been run for Halogenated Volatile compounds using Method 8010 and for the Metals Be, U, Na, K. These samples were also analyzed for No3. Those results are summarized on the following pages.

If there should be questions or further need, please don't hesitate to call me at (209)957-3405.

Sincerely,

ROY F. WESTON, INC.

Kris Hinds Project Manager

KH:te

Lab Name: Weston Analytics	Contract No.: 3399-03-01	EPA SAMPLE NO.: PADA188
Lab Code: Wesca		
Matrix (Soil/Water): Water	Case No.: 29833 SAS	NO.: SDG NO.: PADA188
Level (Low/Med): Low	Lab Sample 10: 88085041-001	
% Solids	Date Received: 08/22/88	

Concentration Units (ug/L or mg/kg dry weight) ug/L

<u>Cas No.:</u>	Analyte	Concentration	<u>c</u>	<u>a</u>	Ħ
7440-41-7	Beryllium	0.005	υ		P
	Uranium	1.0	U		P
7440-23-5	Socium	5.0	U		Р
7440-69-7	Potassium	5.0	U		ρ
7757-79-1	Nitrate as NO3	0.5	U		

Color	Before:	Coloriess	Clarity Before:	Clear	Texture: Medium
Calor	After:	Colorless	Clarity After:	Clear	Artifacts:

Comments:_____

Q.13-4 page.3

Lab Name: Weston Analytics	Contract No.: 3399-03-01	EPA SAMPLE NO.: PADA188
Lab Code: Wesca		
Matrix (Soil/Water): Soil	Case No.: 29833 SA	S No.: SDG No.: PADA188
Level (Low/Med): Low	Lab Sample ID: 88085041-003	
% Solids: 98.0	Date Received: 08/22/88	

Concentration Units (ug/L or mg/kg dry weight) mg/kg

<u>Cas No.:</u>	Analyte	Concentration	<u>c</u>	ā	M
7440-41-7	Beryllium	1.10			P
	Uranium	200	ប		Ρ
7440-23-5	Sodium	1000	Ų		Ρ
7440-09-7	Potassium	2249			Ρ
7757-79-1	Nitrate as NO3	5.7			

Color Before:	Brown	Clarity Before:	Texture: Medium
Color After:	Yeilow	Clarity After:	Artifacts:

Comments:_____

a13-4 page4

Lab Name: Weston Analytics	Contract No.: 3399-03-01	EPA SAMPLE S	NO.: PADA188
Lab Code: Wesca			
Matrix (Soil/Water): Soil	Case No.: 29833	SAS No.:	SDG No.: PADA188
Level (Low/Med): Low	Lab Sample ID: 8808S041+00	05	
% Selids: 90.8	Date Received: 08/22/88		

Concentration Units (ug/L or mg/kg dry weight) mg/kg

<u>Cas No.:</u>	Analyte	Concentration	Ē	<u>q</u>	M
7440-41-7	3eryllium	1.0	ប		۶
	Uranium	200	U		2
7440-23-5	Sodium	1081			ρ
7440-09-7	Potassium	2634			P
7757-79-1	Nitrate as NO3	5.0			

Calor Before:	Brown	Clarity Before:	Texture: Medium
Color After:	Yellow	Clarity After:	Artifacts:

Comments:_____

÷,

Q 13-4 page 5

Lab Name: Weston Analytics	Contract No.: 3399-03-01	EPA SAMPLE NO.: PADA188
Lab Code: Wesca		
Matrix (Soil/Water): Soil	Case No.: 29833 SAS	No.: SDG No.: PADA188
Level (Low/Med): Low	Lab Sample ID: 88088041-006	
% Solids: 85.6	Date Received: 08/22/88	

Concentration Units (ug/L or mg/kg dry weight) mg/kg

Cas No.:	Analyte	Concentration	<u>c</u>	<u>q</u>	H
7440-41-7	Beryllium	1.18			p
	Uranium	200	U		ρ
7440-23-5	Sodium	1351			Ρ
7440-09-7	Potassium	3347			Р
7757-79-1	Nitrate as NO3	5.3			

Calor	Before:	8rown	Clarity Before:	Texture: Medium
Color	After:	Yellow	Clarity After:	Artifacts:

Comments:____

013-4 page6

Lab Name: Weston Analytics	Contract No.: 3399-03-01	EPA SAMPLE NO.: PADA188
Lab Code: Wesca		
Matrix (Soil/Water): Soil	Case No.: 29833 SAS	No.: SDG No.: PADA188
Level (Low/Med): Low	Lab Sample ID: 8808S041-007	
% Solids: 90.5	Date Received: 08/22/83	

Concentration Units (ug/L or mg/kg dry weight) mg/kg

<u>Cas No.:</u>	Analyte	Concentration	<u>c</u>	ā	M
7440-41-7	Beryllium	1.15			P
	Uranium	200	U		₽
7440-23-5	Socium	1001			P
7440-09-7	Potassium	3122			P
7757-79-1	Nitrate as NC3	5.5			

Color	Before:	Brown	Clarity Before:	Texture: Medium
Color	After:	Yellow	Clarity After:	Artifacts:

Comments:_____

Q134 page 7

Lab Name: Weston Analytics	Contract No.: 3399-03-01	EPA SAMPLE NO.: PADA188
Lab Code: Wesca		
Matrix (Soil/Water): Water	Case No.: 29833 SA	S No.: SDG No.: PADA183
Level (Low/Med): Low	Lab Sample ID: 88085041-008	
% Solids:	Cate Received: 08/22/88	

Concentration Units (ug/L or mg/kg dry weight) ug/L

Cas No.:	Analyte	<u>Concentration</u>	<u>c</u>	G	M
7440-41-7	Beryllium	0.964			P
	Uranium	11.1			Ρ
7440-23-5	Sodium	50.5			P
7440-09-7	Potassium	50			P
7757-79-1	Nitrate as NO3	1.9			

Color	Before:	Colorless	Clarity Before:	Clear	Texture: Medium
Color	After:	Colorless	Clarity After:	Clear	Artifacts:

Comments:____

0.13-1 page 8

Lab Name: Weston Analytics	Contract No.: 3399-03-01	EPA SAMPLE NO.: PADA188
Lab Code: Wesca		
Matrix (Soil/Water): Soil	Case No.: 29833 SAS	No.: SDG No.: PADA188
Level (Low/Med): Low	Lab Sample ID: 88035041-009	
% Solids: 92.4	Date Received: C8/22/83	

Concentration Units (ug/L or mg/kg dry weight) mg/kg

<u>Cas No.:</u>	Aralyte	Concentration	<u>c</u>	đ	Ħ
7440-41-7	Beryllium	1.34			Р
	Uranium	200	U		۶
7440-23-5	Socium	1520			P
7440-09-7	Potassium	3418			Ρ
7757-79-1	Nitrate as NO3	0.5	U		

Color 5	lefore:	Brown	Clarity Before:	Texture: Medium
Color A	fter:	Yellow	Clarity After:	Artifacts:

Comments:_____

.

a13-4 page 9

Lab Name: Weston Analytics	Contract No.: 3399-03-01	EPA SAMPLE /	NO.: PADA188
Lab Code: Wesca			
Matrix (Soil/Water): Soil	Case No.: 29833	SAS No.:	SDG No.: PADA188
Level (Low/Med): Low	Lab Sample ID: 88089041-	010	
% Solids: 96.3	Date Received: 08/22/88		

Concentration Units (ug/L or mg/kg dry weight) mg/kg

Cas No.:	Analyte	Concentration	<u>c</u>	a	M
7440-41-7	Beryllium	1.06			P
	Uranium	200	U		Ρ
7440-23-5	Sodium	1213			Р
7440-09-7	Potassium	2544			P
7757-79-1	Nitrate as NO3	45.7			

Color	Sefore:	Brown	Clarity Before:	Texture: Medium
Calor	After:	Yellow	Clarity After:	Artifacts:

Comments:

Q13-4 page 10

U.S EPA - CLP 1AA (EXTENSION)

INCRGANICS DATA SHEET

Lab Name: Weston Analytics	Contract No.: 3399-03-01	EPA SAMPLE NO	D.: PADA188
Lab Code: Wesca			
Matrix (Soil/Water): Soil	Case No.: 29833	SAS No.:	SDG No.: PADA188
Level (Low/Med): Low	Lab Sample ID: 8808S041-01	1	
% Solids: 89.4	Date Received: 08/22/88		

Concentration Units (ug/L or mg/kg dry weight) mg/kg

<u>Cas No.:</u>	Analyte	Concentration	Ē	a	M
7440-41-7	Beryllium	1.30			Р
	Uranium	200	U		Р
7440-23-5	Sodium	1709			Ρ
7440-09-7	Potassium	3508			Р
7757-79-1	Nitrate as NO3	0.5	U		

Color	Before:	Srown	Clarity Before:	Texture: Medium
Calor	After:	Yellow	Clarity After:	Artifacts:

Comments:

Q13-4 page 11

Lab Name: Weston Analytics	Contract No.: 3399-03-01	EPA SAMPLE NO.: PADA188
Lab Code: Wesca		
Matrix (Soil/Water): Soil	Case No.: 29833 SA	S NO.: SDG NO.: PADA188
Level (Low/Med): Low .	Lab Sample ID: 88085041-012	
% Solids: 95.7	Date Received: 08/22/88	

Concentration Units (ug/L or mg/kg dry weight) mg/kg

Cas No.:	Analyte	Concentration	<u>c</u>	ā	M
7440-41-7	Seryllium	1.25			Ρ
	Uranium	200	U		Ρ
7440-23-5	Sodium	1296			P
7440-09-7	Potassium	3118			P
7757-79 - 1	Nitrate as NO3	0.5	U		

Color Before:	Brown	Clarity Before:	Texture: Medium
Color After:	Yellow	Clarity After:	Artifacts:

Comments:_____

Q13-4 page 12

ORGANICS CASE NARRATIVE WORKSHEET

FRACTION: 601

RFW#: 8808S041

CLIENT: E.G.& G.-29833

- 1: All required holding times were met with the following exceptions:
- 2: All tuning and calibration criteria were met for all samples, with the exception of:
- 3: All blanks analysed were below allowable limits of contamination as set forth in the EPA CLP SOW.
- 4: Other problems encountered were: The percent moisture for soil samples was not taken into account. The measurment for this data was not available at the time of reporting.

The following data qualifiers are used in the report:

- U Indicates that the compound was analysed for but not detected.
- J Indicates an estimated trace value.
- B Indicates the compound was found in the blank.
- D Indicates dilution of the sample

х –

Date:

Analyst:

U13-4 page 13

					Sample ID:	METHANOL E	LANK
Sampled: Received:	NA NA		Matrix: % Moist:	SOIL O	RFW Job #:	8808s041	
================= ! !	HALOGENATED	VOLATILE OR	======== GANICS	===============		EPA 8010	=======================================
	Extracted: Analyzed: Confirmed:	08/29/88 08/31/88 NO			Ext Fact: Dil Fact: Blank ID:	0.01 1 880831H	
	RFW Lab #: Compound	880829M2		Results (pom) mg/Kg	3	Det Limit Sample mg/Kg	
	1,1,1-Trich Carbon tetr Trichloroet 1.1,2.2-Tet	loroethane acnloride nene rachloroetha	ne	. l . l . i		0.050 0.050 0.050 0.050 0.050	

L Compound analyzed for but not detected Approved: All values are corrected for moisture content

213-4 29e 14

Declan Cowley Organic Section Manager

Sample ID: PADA188001A

Sampled: Received:	08/18/88 08/20/88	Matrix: SOIL % Moist: 0	RFW Job #: 8	808s041
1 1 1	HALOGENATED VOLATILE (DRGANICS		EPA 8010
) ; ; ; ;	Extracted: 08/29/88 Analyzed: 08/30/88 Confirmed: NO	3	Ext Fact: Dil Fact: Blank ID: 8	0.01 1 180830H
: ; ; ; ;	RFW Lab #: 003H	Resu (ppn	lts D	et Limit Sample
; ===== ===============================	Compound :====================================			mg/kg ===================================
	1,1.1-Trichlorcethane. Carbon tetrachloride. Trichlorcethene 1,1,2,2-Tetrachloroeth	nane	U U U	0.050 0.050 0.050 0.050
1 1 5 5				

U = Compound analyzed for but not detected Approved: All values are corrected for moisture content 0.13-13

.

-4 15

Declan Cowley Organic Section Manager

Sample ID: PADA188002A

Sampled: Received:	08/18/88 08/20/88	Matrix: % Moist:	SOIL O	RFW Job #:	8808s041	
	HALOGENATED VOLATILE OF	GANICS			EPA 8010	:==== ; ;
	Extracted: 08/29/88 Analyzed: 08/30/88 Confirmed: NO		E E	Ext Fact: Dil Fact: Blank ID:	0.01 1 880830H	
	RFW Lap #: 005H Compound		Results (pom) mg/Kg		Det Limit Sample mg/Kg	
	1,1,1-Trichloroethane Carbon tetrachloride Trichloroethene 1,1,2,2-Tetrachloroetha		. U . U . U . U		0.050 0.050 0.050 0.050 0.050	

U = Compound analyzed for but not detected Approved: All values are corrected for moisture content

···· · · · ·

IC

Decian Cowley Organic Section Manager

Sample ID: PADA188003A

Sampled: Received:	08/18/88 08/20/88	Mat % Mo	rix: SOI Mist: 0	L RI	FW Job #:	8808s041	
	HALOGENATED	VOLATILE ORGANIO	:======= ;S			EPA 8010	
	Extracted: Analyzed: Confirmed:	08/29/88 08/30/88 NO		Ext Dil Blai	Fact: Fact: nk ID:	0.01 1 880830H	1 1 1 1 1 1 1
	RF₩ Lab #: Compound	006H		Results (ppm) mg/Kg		Det Limit Sample mg/Kg	1 1 1 1 1 1 1 1 1 1
	1.1.1-Trich+ Carbon tetra Trichloroeth 1.1.2.2-Tetr	oroethane chloride ene achloroethane	· · · · · · · · · · · · · · · · · · ·	ບ ບ ບ ບ		0.050 0.050 0.050 0.050 0.050	

U = Compound analyzed for but not detected Approved: All values are corrected for moisture content,

H 00 Declan Cowley Organic Section Manager

Sample ID: PADA188004A

Sampled: Received:	08/18/88 08/20/88	Matrix: % Moist:	SOIL 0	RFW Job #:	8808s041	
	HALOGENATED V	OLATILE ORGANICS			EPA 8010	======================================
	Extracted: Analyzed: Confirmed:	08/29/88 08/30/88 NC		Ext Fact: Dil Fact: Blank ID:	0.01 1 880830H)
	RFW Lab #: Compound	007H	Results (ppm) mg/Kg		Det Limit Sample mg/Kg	
	1,1,1-Trichlo Carbon tetrac Trichloroethe 1,1,2,2-Tetra	roethane h)oride ne ch]oroethane			0.050 0.050 0.050 0.050 0.050	

U = Compound analyzed for but not detected Approved: All values are corrected for moisture content ,

P42222222222222222222222 Declan Cowley

Organic Section Manager

Sample ID: PADA188005A

Sampled: Received:	08/18/88 08/20/88	Matrix: % Moist:	SOIL 0	RFW Job #:	8808s041	
	HALOGENATED VOLAT	TILE ORGANICS			EPA 8010	:===== ! ! !
7 4 9 1 1 1 1	Extracted: 08, Analyzed: 08, Confirmed: NO	/29/88 /30/88		Ext Fact: Dil Fact: Blank ID:	0.01 1 880830H	ן ק נ נ נ
	RFW Lab #: 009 Compound	эн	Results (pom) mg/Kg		Det Limit Sample mg/Kg	
1 = = = = = = = = = = = = = = = = = = =	1,1,1-Trichloroet Carbon tetrachion Trichloroethene. 1,1,2,2-Tetrachio	thane ride proethane	. U . U . U		0.050 0.050 0.050 0.050 0.050	

U = Compound analyzed for but not detected Approved: All values are corrected for moisture content, ...

Declan Cowley Organic Section Manager

						Sample ID:	PADA188006A	
Sampled: Received:	08/18/88 08/20/88		Matrix: % Moist:	SOIL O		RFW Job #:	8808s041	
######################################	HALOGENATED V	OLATILE ORG	GANICS	29222233			EPA 8010	:========
r # 1	Extracted: Analyzed:	08/29/88 08/31/88			Ex Di	t Fact: il Fact:	0.01	1
ь к ,	Confirmed:	NO			81	lank ID:	880831H	, , ,
	RFW Lab #:	010H		Re:	sults pom)		Det Limit Sample	1 1 1 3
1	Compound			m	g/Kg		mg/Kg	
	1,1,1-Trichlo Carbon tetrac Trichloroethe 1,1,2,2-Tetra	proethane chloride ane achloroethar	ne		บ บ บ บ		0.050 0.050 0.050 0.050 0.050	
L 2 3 4 5 1 1								k 1 1
। 8 8 2								
r 								ן נ נ נ
) 6 6 1								1 1 1 1 1
; ; ;								1
r t l t								
1 1 1 1								1
) 1 1								*
f F 1 7								
1' 5 7 8								
5 1 1 3								
1 · · · · · · · · · · · · · · · · · · ·								1
				======	=======			=======
U = Compour All values	nd analyzed to are corrected	- but not de for moistu	etected re content		ed:	eclan Cowley	<u>`</u>	
			0.12 Dag	e 19	Or	rganic Secti	oń Manager	

a 13-4 page 19

Sample ID: PADA188007A

Sampled: Received:	08/18/88 08/20/88	Matrix: % Moist:	SOIL O	RFW Job #:	8808s041	
	HALOGENATED	VOLATILE ORGANICS	32222222222	=======================================	EPA 8010	=======
	Extracted: Analyzed: Confirmed:	08/29/88 08/31/88 NO		Ext Fact: Dil Fact: Blank ID:	0.01 1 880831H	
	RFW Lab #: Compound	011H	Results (ppm) mg/Kg		Det Limit Sample mg/Kg	
	1,1,1-Trichi Carbon tetra Trichioroeth 1,1,2,2-Tetra	proethane chloride ene achloroethane	U U U		0.050 0.050 0.050 0.050 0.050	

U = Compound analyzed for but not detected Approved: All values are corrected for moisture content, ...

Declan Cowley Organic Section Manager

£2**222222222222**2222

WISTER

Client: EG&G

				Sample ID:	PADA18800T1A	
Sampled: Received:	08/18/88 08/20/88	Matrix:	WATER	RFW Job #:	8808s041	
+ + !	HALOGENATED	VOLATILE ORGANICS			EPA 601	=====
• • • •	Extracted: Analyzed: Confirmed:	NO 08/29/88 NO		Ext Fact: Dil Fact: Blank ID:	1 1 880829H	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
r 1 7 1 1 1	RFW Lab #: Compound	004H	Results (ppb) ug/L		Det Limit Sample ug/L	
<pre></pre>	1,1.1-Trich Carbon tetra Trichloroetr 1.1,2,2-Tetr	orcethane			0.50 0.50 0.50 0.50	

U - Compound analyzed for but not detected

aetected Approved: *Q13-4 Page 21*

Declan Cowley Organic Section Manager

Sample ID: PADA188008A

Sampled: Received:	08/18/88 08/20/88		Matrix: % Moist:	SOIL 0	RFW Job #:	8808s041	
	HALOGENATED	VOLATILE OR	GANICS			EPA 8010	
	Extracted: Analyzed: Contirmed:	08/29/88 08/31/88 NC			Ext Fact: Dil Fact: Blank ID:	0.01 1 380831H-	ן ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג ג
	RFW Lab #: Compound	012H		Results (ppm) mg/Kg		Det Limit Sample mg/Kg	
	1,1,1-Trichl Carbon tetra Trichloroeth 1,1,2,2-Tetr	oroetnane chloride ene achloroetha	ne	. U . U . U	 	0.050 0.050 0.050 0.050 0.050	

U = Compound analyzed for but not detected Approved: All values are corrected for moisture content

Decian Cowley Organic Section/Manager

Client: EG&G

Sample ID: LAB WATER BLANK

<pre> damb re(): decelved:</pre>	NA HALOGENATED V Extracted: Analyzed: Confirmed: RFW Lab #: Compound HERE Lab #: Compound HERE Lab #: Compound HERE Lab #: Compound HERE Lab #: Compound HERE Lab #: Compound HERE Lab #: Compound HERE Lab #: Compound HERE Lab #: Compound HERE Lab #: Compound HERE Lab #: Compound HERE Lab #: Compound	NO 08/31/88 NO 880831H	Results (ppb) ug/L	RFW Job #: Ext Fact: Dil Fact: Blank ID:	8808s041 EPA 601 1 NA Det Limit
	HALOGENATED V Extracted: Analyzed: Confirmed: RFW Lab #: Compound HEREFERENCE 1,1,1-Trichle Carbon tetrac	/OLATILE ORGANICS NO 08/31/88 NO 880831H	Results (ppb) ug/L	Ext Fact: Dil Fact: Blank ID:	EPA 601 1 NA Det Limit
	Extracted: Analyzed: Confirmed: RFW Lab #: Compound HILLE 1,1,1-Trichle Carbon tetrac	NO 08/31/88 NO 880831H	Results (ppb) ug/L	Ext Fact: Dil Fact: Blank ID:	1 1 NA Det Limit
	Analyzed: Confirmed: RFW Lab #: Compound ====================================	08/31/88 NO 880831H	Results (ppb) ug/L	Dil Fact: Blank ID: 	NA Det Limit
	RFW Lab #: Compound HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	880831H	Results (ppb) ug/L		Det Limit
	Compound ====================================		(ppb) ug/L		
	1,1,1-Tricold Carbon tetrad		u .		Sample ug/L
	Carbon tetrad	proetnane			0.50
		chloride	· . U		0.50
	1,1,2,2-Tetra	achloroetnane	·· U		0.50
			· · · · · · · · · · · · · · · · · · ·		
				=======================================	121
•				DE.	
_= Compound	Lanalyzed for	r but not detected	Approved:	Decian Cowley	
		U13-1	(Organic Secti	on Manager
		nnno	12		
		puye			
		•			

Client: EG&G

Sample ID: LAB WATER BLANK

Sampled: Received:	NA NA	Matrix:	WATER RFW Job	#: 8808s041	
=======================================	HALOGENATED	VOLATILE ORGANICS	=======================================	EPA 601	=====
	Extracted: Analyzed: Confirmed:	NO 08/30/88 NO	Ext Fact: Dil Fact: Blank ID:	1 1 NA	, , , , , , , , , , , , , , , , , , ,
	RFW Lab #: Compound	880830H	Results (ppb) ug/L	Det Limit Sample ug/L	
,	1.1.1-Trichl Carbon tetra Trichloroeth 1.1.2.2-Tetr	oroethane chloride ene achioroethane	ບ ບ ບ ບ ບ	0.50 0.50 0.50 0.50 0.50	

U = Compound analyzed for but not detected

a 13-4 Dage 24

Approved:

Declan Cowley Organic Section Manager

$\nabla \nabla \overline{0}$	STAN 1				orienc.	EDAD
Sampled: Received:		Ма	trix:	WATER	Sample ID: RFW Job #:	LAB WATER BLANK 8808s041
	HALOGENATED	/OLATILE CRGANI	===== CS	=======================================		EPA 601
	Extracted: Analyzed: Confirmed:	NO 08/31/88 NO			Ext Fact: Dil Fact: Blank ID:	1 1 NA
	RFW Lap #:	880829H		Result: (pob)	5	Det Limit Sample
	1,1,1-Trichlo Carbon tetrac Trichloroetne 1.1.2.2-Tetra	proethane chloride ene achlorcethane				0.50 0.50 0.50 0.50
: ::::::::::::::::::::::::::::::::::::	nd analyzed to	r but not detec	:ted 2/3: 7/0P	Approved: -4 25	Declan Cowler Organic Sect	y ion Manager

WISSIGN

Client: EG&G

Sample ID: PADA1880E1A

Samples: 03/20/83 Matrix: WAISH Received: 03/20/83 RFW Job F: 28028041 HALGGENATED VOLATILE ORGANICS EPA 601 Extracted: N0 Ext Fact: 1 Analyzed: 02/23/88 Dil Fact: 1 Continned: N0 Blank ID: 800229H RFW Lao #: 001H Results Det Limit Combound ug/L ug/L 1.1.1-Frinchierostname U 0.50 Carbon tetrachiorostname U 0.50 Trichiorostname U 0.50 Trichiorostname U 0.50 1.1.2.2-Tetrachiorostname U 0.50 U = Compound analyzed for out not detected Approved: Declan Cowley Organic Section Manager		00//00/00			Sample 10:	PAUA 188UE IA	
HALDGENATED VCLATILE ORGANICS EPA 601 Extracted: NO Ext Fact: 1 Analyzed: 03/3/86 Dil Fact: 1 Contined: NO Blank ID: 830229H RFW Lap 4: 001H Results Det Limit (ppp) Sample Combound ug/L ug/L 1.1:1-Trichiorostname	Received:	08/18/88 08/20/88	Matrix: W	¥A1≿R	RFW Job #:	8808s041	
U = Compound analyzed for out not detected Approved: U = Compound analyzed for out not detected Appro		HALOGENATED VOLATILE O	RGANICS			EPA 601	 ! !
U = Compound analyzed for put not detected Approved:		Extracted: NO Analyzed: 08/29/88 Confirmed: NO		E. D B	xt Fact: il Fact: lank ID:	1 1 880829H	
U = Compound analyzed for but not detected Approved:	; ; ; ; ;	RFW Lap #: 001H Compound		Results (ppb) ug/L	~ ~ ~ ~ ~ ~ ~ ~	Det Limit Sample ug/L	
U = Compound analyzed for but not detected Approved: 0 = Compound analyzed for but not detected Approved: $0 = Compound analyzed for but not detected Approved: 0 = Compou$		1,1,1-Trichiorcetnane. Carbon tetrachioride Trichioroethene 1,1,2.2-Tetrachioroeth	ane			0.50 0.50 0.50 0.50	- - - - -
$i j j j i (j l l) \neq K - i (j - j)$	U = Compour	analyzed for but not	detected	Approved:	Declan Cowley Organic Secti	on Manager	

Client: EG&G

Sample ID: PADA1880F1 Sampled: 08/18/88 Matrix: WATER Received: 08/20/88 RFW Job #: 8808s041 HALOGENATED VOLATILE ORGANICS EPA 601 Extracted: NO Ext Fact: 1 08/29/88 Dil Fact: 1 Analyzed: Confirmed: NO Blank ID: 880829H RFW Lab #: 002H Det Limit Results (daa) Sample Compouna ug/L ug/L 1,1.1-Trich loroethane..... 0.50 U U 0.50 Carbon tetrachloride..... Trichloroetnene..... 0.50 U 1,1,2,2-Tetrachloroethane..... U 0.50

1 Compound analyzed for but not detected Approved:

13-4 age 2

Decian Cowley Organic Section Manager

======

.................

Q13-« page: 4 28

Appendix 13–5

APPENDIX 13-5

PHASE 2 SAMPLE ANALYSIS REPORT

a13-5 pageo

Robinson Plaza II, Suite 200 Pittsburgh, Pennsylvania 15205-1017

412/788-9200

ICF TECHNOLOGY INCORPORATED

December 15, 1988

Mr. Jeffrey F. Ginsburg Senior Engineer Idaho National Engineering Laboratory EG & G Idaho, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415

Dear Jeff:

Please find enclosed our report on results obtained from the analysis of soils collected and tested for volatile organics, at the Idaho National Engineering Laboratory (INEL). These soils were the sandy-clay material used as the closure cap for a buried radiological waste storage area (Pad "A") at the waste management facility. Testing of these materials was in support of the EG & G Buried Waste Remediation Plan, and was conducted to investigate wheterh or not the cap material is a hazardous waste. In addition the tests were conducted to clarify discrepancies of positive volatile organic results obtained from previous soil gas testing within and under the cap material.

ICF/SRW Associates would like to thank EG & G Idaho for considering and contracting our services in support of your work efforts at the INEL. If we can be of further assistance, please do not hesitate to contact us. If there are questions in regards to this report or you need other information, please call me at (412) 788-9200 Ext. 275.

Sincerely,

ICF/SRW ASSOCIATES A DIVISION OF ICF TECHNOLOGY INC.

arden for John W. Harris

John W. Harris Chemist

JWH:mdb

Enclosure

Technical Memorandum

Subject: Volatile Organic Compound Screening Results for Soil Samples (30753-000-00)

Date: December 9, 1988

Soil samples were collected and tested for the presence of targeted volatile organic compounds on November 21 & 22, 1988. Samples were collected from Pad "A", which is an above ground radiological waste burial mound, at the Waste Management facility of the Idaho National Engineering Laboratory (INEL). Testing of the soils produced real-time quantitative measurements using an ambient temperature gas chromatograph with photoionization detector.

Sampling locations and depths were predetermined by EG&G personnel. Originally, twenty four sampling locations were designated for collection and analysis. Four samples were to be grabbed from locations on the mound where utility poles were to be installed, and the additional samples encompassed the two proposed penetration areas (see Figure 1). The four samples were taken from the proposed utility pole positions but only one was analyzed due to time constraints and a switch in priority. Actual and Final sampling locations are shown in Figure 1. A total of twenty two samples were collected, including one background used to identify analytical interferences, and one trip blank. Nineteen of these samples were analyzed.

PURPOSE

The purpose of this memo is to present the analytical findings of the targeted volatile organic analyses, in order for EG&G personnel to evaluate possible contaminated soils which may be excavated. Rationale and procedures analysis are presented in the methodology accompanying this report, which were used in order to accomplish the analytical task in the time frame allotted.

PROCEDURE

Three volatile organic compounds were analyzed for, onsite, using headspace analysis. These compounds are trichloroethene, carbon tetrachloride, and tetrachloroethene.

Surface soil was removed to a depth of six inches using a shovel. A stainless spoon was used to remove soil which may have come in contact with this shovel and soil was sampled with a stainless steel spatula and placed into preweighed 40 ml vials containing organic free water (HPLC Grade).

RESULTS

Results of the analysis are as follows:

017-5 page 3

Standards Calibration File:

Compound	<u>Retention Time</u>	<u>Inj. Vol.</u>	<u>Response</u>	<u>Conc.</u>
Trichloroethene	121.9	25 ul	13.0 vs	910 ng/ul.
Carbon Tetrachlorid	e 299.2	25 ul	15.2 vs	992.5 ng/ul.
Tetrachloroethene	825.1	25 ul	12.5 vs	1012.5 ng/ul.
where vs = visible a	response			

Standards were created in the following manner:

 I ul of each "neat" chemical was introduced to a capped 40 ml VOA vial which produces the above gaseous concentrations, when allowed to evaporate, and using the formula:

$$c = d x a x 1,000 / v$$

where	с =	concentration in nanograms per microliter.
	d ≠	density of the neat standard in milligrams per microliter.
	a =	amount injected in microliters.
	۰ ا	volume of VOA vial in milliliters.

As an example, if I ul of trichloroethene is injected into the 40 ml VOA vial the concentration would be:

c = <u>1.456 x 1 ul x 1,000</u> = 36.4 ng/ul 40 ml

A visible chromatographic response was observable with a 25 ul injection. This would be equal to 910 ng of trichloroethene. Half of this amount or 455 ng was set as the detection limit for this compound. However, sample analysis was conducted using a 500ul injection instead of 25ul so our detectable concentration would be:

455ng / 20 or 22.75ng

Chromatographic quantitation is reported as parts per million (ppm) at the bottom of each analysis in the raw data, which is converted to nanograms of constituent per gram of soil (ng/g) in the following manner:

- if 1.861 is reported, this is equal to 1.861 ng/ul, so if 20 grams of soil was extracted then using the formula at the back of the analytical procedure we would have:

= 37220 ng/g or 37.2 ppm

The background sample (A-09) showed concentrations of 28.8 ng/g and 14.4 ng/g for trichloroethene and carbon tetrachloride respectively which would be subtracted out of any reportable results.

013-5 page 4

Results for Soil Samples Analyzed for Target Volatile Organic Compounds

Waste Management Facility INEL Testing Conducted for EG&G Idaho, Inc. All results in ng/g

	<u>A-01</u>	<u>A-02</u>	<u>A-03</u>	<u>A-04</u>	<u>A-05</u>	<u>A-06</u>	<u>A0-7</u>
trichloroethene	Not Analyzed	Not Analyzed	<650	Not Analyzed	<730	<760	<770
carbon tetrachloride			<600		<670	<700	<710
tetrachloroethene			<670		<750	<770	<790

.

Results for Soil Samples Analyzed for Target Volatile Organic Compounds

Waste Management Facility INEL Testing Conducted for EG&G Idaho, Inc. All results in ng/g

	<u>A-08</u>	<u>A-09*</u>	<u>A-10</u>	<u>A-11</u>	<u>A-12</u>	<u>A-13</u>	<u> </u>
trichloroethene	<670	29000	<1000	<1400	<1200	<1300	<1100
carbon tetrachloride	<610	14000	< 910	<1200	<1100	<1200	< 980
tetrachloroethene	<680	<782	<1000	<1400	<1200	<1300	<1100

*Background sample (Analysis #6) had interfering peaks in the calibration windows of trichloroethene and carbon tetrachloride which are evident in most analyses, and are subtracted out of results.

Results for Soil Samples Analyzed for Target Volatile Organic Compounds

Waste Management Facility INEL Testing Conducted for EG&G Idaho, Inc. All results in ng/g

25	<u>A-15</u>	<u>A-16</u>	<u>A-17</u>	<u>A-18</u>	<u>A-19</u>	<u>A-20</u>	<u>A-21</u>
5 trichloroethene	<1200	<1000	<1100	<860	<920	<1100	<970
CON i carbon tetrachlori	de <1100	< 930	< 970	<790	<840	<1000	<890
\sim O tetrachloroethene	<1200	<1000	<880	<880	<930	<1100	<980

SAMPLE WEIGHTS

<u>Sample #</u>	<u>Initial Wt.</u>	<u>Final Wt.</u>	<u>Wt. of Soil</u>	Comments
A-01	52.62	78.70	25.08	Not Analyzed
A-02	52.34	84.15	31.81	Not Analyzed
A-03	51.80	82.25	30.45	-
A-04	52.02	78.16	26.14	Not Analyzed
A-05	51.91	79.04	27.13	-
A-06	51.59	77.83	26.24	
A-07	51.51	77.78	26.27	
A-08	51.85	81.70	29.85	
A-09	51.39	77.28	25.89	Background
A-10	51.31	71.23	19.92	-
A-11	51.29	65.96	14.67	
A-12	51.76	69.25	17.49	
A-13	51.63	67.16	15.53	
A-14	52.11	70.71	18.60	
A-15	51.22	68.38	17.16	
A-16	51.66	71.49	19.83	
A-17	51.82	70.51	18.69	
A-18	51.38	74.50	23.12	
A-19	52.24	73.91	21.67	
A-20	51.65	69.55	17.90	
A-21	51.65	72.21	20.56	
A-22	52.20	52.20	0.00	Trip Blank - HPLC Grade H ₂ O

All wts. are in grams

Q 13-5 Page 8

SOIL/SEDIMENT SAMPLE SCREENING FOR PURGEABLE ORGANICS

I. INTRODUCTION

This procedure is used to screen soil and sediment samples for volatile organic contaminants. Sample screening can occur within a mobile laboratory located on or near the investigation site, or in a close proximity laboratory. Accurate, valid sampling techniques must be maintained to assure sample integrity. These data may be used to influence and support both Central Laboratory Program sample selection decisions and site investigative decisions such as drilling depths and locations for use in horizontal and vertical delineation of contamination.

II. <u>METHOD</u>

Soils and sediments are screened for the presence of volatile organics by headspace analysis using gas chromatography with photoionization detection.

III. PROCEDURE

- A. Sampling and Preservation:
 - 20 ml. of organic-free water is added to a clean 40 ml. VOA vial, which is then capped with a septum top and weighed to the nearest 0.1 gram. This can be done using a "triple beam" style or electronic balance.
 - 2. This is recorded as the tarred weight (see sample calculations sheet).
 - 3. During sampling, introduce enough soil/sediment to approximately occupy an additional 10 ml. volume of the VOA vial leaving approximately 10 ml. volume of headspace. Recap and weigh the vial and record the weight.
 - 4. Refrigerate sample vial at 4 degrees C.
- B. Standards Preparation:

Aqueous standards are prepared as outlined in EPA Method 601 (attached). Working standards are placed into known volumetrics and allowed to equilibrate between liquid and gaseous headspace.

- C. Screening:
 - 1. The analytical instrumentation must first be proven to be reliable and data reproducible. This is accomplished by developing three standard levels covering the expected sample concentration range and analyzing each level separately to

U13-5 page 9

produce a calibration curve. Method blanks and background samples are analyzed to determine internal and matrix interference.

- 2. Instrument calibration is created by analyzing one or more of the standard levels and storing a response factor calculated from targeted analyte responses in an instrument file. Sample responses are then compared to standard runs giving concentrations for each compound of interest.
- 3. Prior to analysis, field samples are brought to ambient temperature from cold storage and hand-shake vigorously for one minute, after which they are placed into a 90°C water bath or oven for 1 hour.
- 4. Next an aliquot of varying volume, dependent on expected concentration, of headspace above the solid/aqueous substrata is obtained with a syringe and injected onto the analytical column (do not inject water). If concentrations are unknown or expected to be high, injection aliquots should be kept small or the instrument sensitivity decreased and the instrument recalibrated.

IV. QUALITY ASSURANCE/QUALITY CONTROL

Performance samples from external sources (EPA) can be run to verify that established analytical quality control is sufficient toward supporting data requirements with procedures being used. Audits can be initiated by client, in-house, or third party officials for these evaluations.

Quality control for this method is performed in the following manner:

- 1. Samples are handled in daily sets (sample set).
- 2. A standard is run at the beginning of each sample set, followed by a method blank. Method blanks should also be analyzed after occurrence of a highly contaminated sample analysis.
- 3. A positive sample is split and run as a laboratory duplicate, which can be spiked with the target compounds at known concentrations to monitor sample matrix effects and to determine percent recovery.
- 4. Quality control samples obtainable from EPA EMSL can be run to check in-house standards.
- 5. Duplicate samples and field blanks should be obtained and analyzed, one for every 20 samples analyzed, to assess sampling accuracy and to check for crossover contamination from sample to sample.

0.13-5 page 10

V. <u>SITE SPECIFIC CRITERIA</u>

ICF/SRW Associates personnel will analyze soil/sediment samples obtained from a sandy-clay cap covering a radiological waste storage area to assess the possible existence of volatile organic contaminants. This area is located on the U.S. Atomic Energy Commission Reservation, Idaho Falls facility, and is managed by EG&G personnel whose offices are located in Idaho Falls, Idaho, approximately 50 miles east of the facility. The instrumentation to be used to analyze the samples will be a Photovac series 10 S50 gas chromatograph which includes a built-in integrator for data generation. This unit is a ambient temperature chromatograph and will use either zero grade air or ultra pure nitrogen as a carrier gas. The lab will be established in an onsite building with heat and electricity available for steady environmental conditions.

There have been previous surveys conducted which have been contradictory as to the presence of organic constituents in the cap materials. Four organic compounds have supposedly been detected. These compounds are tetrachloroethene, 1,1,2,2-tetrachloroethane, trichloroethene and carbon tetrachloride, with the latter two compounds being most prevalent. The possible existence of these compounds would also be low level (ppb).

U13-5 page 11

Calculation for the Concentration of Volatile Organics Within Soil/Sediment Samples

(ul headspace sample ini.) conc. in ng/g = <u>(ng/ml of analyte)*(ml H20 extract)</u> (ul headspace std. in.) grams of soil extracted

This is concentration of analyte derived from chromatographic analysis based upon standardization using gaseous standards prepared in-house.

U13-5 Dage 12

Q 13-5 page 14

$\frac{F_{1}E_{1}}{F_{1}E_{2}}$ $\frac{F_{1}E_{2}}{E_{2}E_{2}E_{2}}$ $\frac{F_{1}E_{2}}{E_{2}E_{2}E_{2}}$ $\frac{F_{1}E_{2}}{E_{2}E_{2}E_{2}}$ $\frac{F_{1}E_{2}}{E_{2}E_{2}E_{2}}$ $\frac{F_{1}E_{2}}{E_{2}E_{2}E_{2}}$ $\frac{F_{1}E_{2}}{E_{2}E_{2}E_{2}}$ $\frac{F_{1}E_{2}}{E_{2}E_{2}E_{2}}$	
sier +RLC WATER HANK in j = 1 500 ml in j = 2	
······································	•
ETET A SJOLO SAMPLE REN MOU 72 1380 18:46 ANALTSIS & L. EG AND C-BUP TEMPERAJURG TO POUR CALL DEST VOLATILE DRG. OFFSET. BAS AN OMALIDEST 1 SL OWNER UNALL DEST 12, See MINITED ASS' (100, SEE PLOTTER DELAT, 10, 3 See ANALTSIS JURE 2000 See CTELE JURE 2 A DIO	

C

	1005	714 5	M.T.	ABEAVEED
LARACLER		4	22. 4	122.7
UNKHJUN		Ť	17	110.5
LINKINGLIN		2	202.2	122. # 545
UNK PICLA		•	120.7	15.1 95

.

DU 01/AC siet syringe ¥ 2 Blank . 500 ml 1 1 5 INJ . . . 5 1 ------STOP 4 417.1 SALATE CON SAMPLE RUN NOU 22 1388 11-21 AMPLTSIS 3 2 £2 AND G-BUP TERPERATURE 22 PAO A GAIN 188 UOLATILE ORG, COMONDE MARY TEM FLE. AREAVERS UNENCLIN 1 2.8 171.2 -55 UNINDLA 2 78,2 199,9 Mic 3 82,2 782,9 Mis UPERCLA UNKNOLN 1 209.3 193.2 444 UNENCUN 4 177.0 2.2 12

PHOTOVAC STAFT 25pl inj Gela a 1 1 2 3 . . (2^{cls} 1012.5 رو د. رو ک Y aspe
 STOP # 222.5

 SATPLE RUN
 HOU 22 1988 11:0

 MALTSIS # 4 £0 AND G-8129

 TERPERATURE 12 FAG # _____

 GAIN
 198 VOLATILE CRE.
 ____ HOU 22 1988 11:35 20 ANO G-512 COTFDUND SAME FEED 5.1. AFERITS 7 172.7 3.8 43 5 993.1 17 1 45 LINKACLA -----

013-5 page 16

.

COPPOLED MADE FILM BUT, AREFURTD

CHENCLEN

CHARLENC'S TH المتحج وحلا د بندن رجو انکا در بال مرجو ان

-MAGELIE

1 2.4 (24); AU 2 72,8 (27) 7 AU 2 (2.2) 4 3 U 4 (21) 4 (21) 4 3 U 4 (21) 4

ليه در در در ۲۰ ۲۰۰ فرون فرفته فر

STOP 4 213.3 SAMPLE RUN NOU 22 1288 12:13 ANALYSIS 3 4 ER AND G-BLP TERPERATURE 22 PRO A BAIN 129 DOLATILE DRG.
Constant parts film till priadty to the priod parts to the till priod parts to the priod part of the till priod parts to the p

<u>م</u>

500 jul 9-09 BACKGROUND

.

...

· ` `

 \cap

۔ ـ

5

; a

ت هرد د هر محر د هر محر

5 ª Ø

>

. 4 3

 \Box

i

.

UNKACLES

.

Q 13-5 DAGE 18

BAD MS Idention) on penk PH í. \$?pmt_____ . 1 Icseline Ą Care Jack Behu Scale --- ہ بدية معبر التعليم (الوالسم)

512: • • • • • • • • •	7	•••••
SATELE BUN	NC:	2 72 1255 12:48
AMOLYSIS #	17 13	3 MC 3-817
TERPERATURE	- 73 - FI	AC 4
GAIN	168 0	CLATILE ORG.
	, Papa	t.t. Priet
Live rector	:	
- MKTCLA	-	422.2 T.: VA

Q 13-5 Dage 19 .

÷

.

Q 13-5 page 20

5.0 Jul 10
PHOTOUACI
41 AT
<u></u>
5
2 • 3
• 11
a 17
A 13
\$10F 4 299.2
SAUTLE RUN NOV 22 1980 14:55 ANNUTSIS & 16 EE AND G-BUP TERFERIURE 29 PRO A GRIN 100 WELATILE CRS.
CEREDURG MANE DEAN BUT, AREANTT
LONENQUES C. (25.2.0.22.0.3.445) LONENQUES C. 0.4.5.7.2.2.0.4-1 LONENQUES C. 27.2.0.041,7.745 122 6.1724,0.492,777
никистан в Слан у Солония америка 3 057,5 1,7 %5 америка 20 102,3 20,0 %5 америка 12 227,6 5,7 %5

.

i

·----- ·

TCB 182 m/m/ CASTULION 5 " CZUT 225 PHOT 0 VAC 47AF7..... 4 1 1 2 . . \$10P # 332.5 SAME ALM SAMPLE RUN NOU 22 1300 . NUMLTSIS & 28 EG ANG GABUP TERPERATURE 23 PAG A GAIN 100 UCLATILE ORD. NOU 22 1308 18/13 CONTRACT SAME SUCH ALL ADJACTED 0 (National emission 2 17 (2 77), 8 4 1 7 181, 7 1 (2 70), 8 4 1 22, 1 2 (2 70), 9 4 1 22, 1 2 (2 70), 9 4 a tu: Seconda se MANCLIN Contractory

;

250 ph + NO

Q13-5 page 24

Appendix 13-6

APPENDIX 13-6

PHASE 3 SAMPLE ANALYSIS REPORT

ETT: E. HORTON C. FIEF W. SCHOFIC

INTEROFFICE CORRESPONDENCE

Date: December 30, 1988

To: C. A. Bloom

From: L. D. Koeppen Don Koeppen

Subject: RADIATION MEASUREMENTS LABORATORY (RML) GAMMA-RAY ANALYSIS OF SOIL SAMPLES FROM RWMC - LDK-70-88

The RML counted/analyzed two soil samples from the RWMC by gamma-ray spectrometry. The "North Pad" sample was counted in a 500 cm³ squat jar and the "South Pad" sample was counted in a petri-dish geometry due to its small mass. Each sample was counted sixteen hours. The 500 cm³ sample was rotated on a turntable in front of the detector during the sixteen-hour counting duration to help negate the effects of possible inhomogeneity.

The activity determined on each sample is shown on the attached table (Table 1). Results are background corrected (detector system background only) and also decay corrected to the sample collection dates. The natural ⁴⁰K and radon/thoron activity levels are not reported, but were typical of soil background levels. The ¹³⁷Cs background soil activity varies considerably depending on sample location. Offsite surface soil (0 - 5 cm depth) measurements by the Radiological and Environmental Sciences Laboratory (RESL) from 1970-1986 show ¹³⁷Cs to be approximately 0.8 pCi/gram and ²⁴¹Am to be approximately 0.004 pCi/gram. This background activity information for ¹³⁷Cs and ²⁴¹Am was obtained from DOE/ID-12082(86) report "1986 Environmental Monitoring Program Report for the Idaho National Engineering Laboratory Site".

It is recommended that ^{241}Am activity results from Claude Sill be used for any formal reporting of ^{241}Am , as Claude Sill can better quantify the ^{241}Am with alpha spectrometry.

Table 1 includes the activity with total uncertainty. The total uncertainty includes the statistical uncertainty and the estimates of the uncertainty in the sample geometry (10%) and in the detector efficiency (5%). These uncertainties have been propagated in quadrature and are expressed as one estimated standard deviation.

Attachment: As Stated

jd

cc: R. J. Gehrke C. L. Rowsell Central Files L. D. Koeppen File

"Providing research and development services to the government"

Table 1

RWMC Soil Sample Activity

Collection	Soil Sample_I.D	RML I.D.	Sample Weight (Grams)	Radionuclide (Gamma)	Activity (pCi/gram)
12/20/88	South Crane Pad	SC122388221	12.6	Natural Only	Note 1
12/21/88	North Pad - A	A2122388038	558.2	¹³⁷ Cs ²⁴¹ Am	(5.6±1.5)E-02 (4.0±0.6)E-01

- NOTE: 1) Typical 40 K natural soil background = 17 pCi/gram. Typical radon/thoron daughter natural soil background = 1.5 pCi/gram.
 - 2) 137 Cs surface soil background = 0.8 pCi/gram (reference in letter).

 $^{241}\mathrm{Am}$ surface soil background \simeq 0.004 pCi/gram (reference in letter).

(213-6 page 3

The the same

INTEROFFICE CORRESPONDENCE

Date: January 6, 1989

To: C. A. Bloom

, C. Casey Creen Corey From:

Subject: RADIATION MEASUREMENTS LABORATORY (RML) GAMMA-RAY ANALYSIS OF RWMC SOIL SAMPLE - CC-01-89

The RML counted/analyzed a soil sample from the RWMC by gamma-ray spectrometry. The sample was counted in a 500 cm^3 squat jar which rotated on a turntable in front of the detector during the 16-hour counting duration to help negate the effects of possible inhomogeneity.

The activity found in the sample is shown below. Results are corrected for detector background and decay corrected to the sample collection date. The natural ⁴⁰K and radon/thoron activity levels are not reported, but are typical of soil background levels. ¹³⁷Cs is the only non-naturally occurring radionuclide detected. Measurements made by the Radiological and Environmental Sciences Laboratory (RESL) reported in DOE/ID-12082 (86), "1986 Environmental Monitoring Program Report for the Idaho National Engineering Laboratory Site," show ¹³⁷Cs background soil activity to be approximately 0.8 pCi/gram.

The total uncertainty reported below includes statistical uncertainty and the estimates of the uncertainty in the sample geometry (10%) and in the detector efficiency (5%). These uncertainties have been propagated in quadrature and are expressed as one estimated standard deviation.

Collection	Sample		Sample Weight		Activity
Date	<u> </u>	RML I.D.	<u>(grams)</u>	<u>Radionuclide</u>	(pCi/q)
12/22/88	PAD A Soil	A6010489021	418.0	¹³⁷ Cs	(5.5 <u>+</u> 1.4)E-02

jd

cc: R. J. Gehrke L. D. Koeppen C. L. Rowsell C. Casey

F+1 - F

"Providing research and development services to the government"

Appendix 13–7

APPENDIX 13-7

AIR SAMPLE RESULTS

EC2G Idaho, Inc. Environmental Chemistry P.O. Box 1625, MS 4123 Idaho Falls, ID 83415

This report of analysis (ROA) presents the analytical results for the analyses you requested. Sample identification, sampling information, and laboratory analysis information are listed in a column for each sample. Analytical results are listed by analytical parameter below the sample identification information. Acronyms and abbreviations used are defined at the end of the report. A letter and/or letter number flag immediately to the right of a parameter, mothed, PQL and units, result, or any other entry indicates an amplifying comment also provided at the end of the report.

REPORT OF ANALYSIS

 Prepared for:
 Report Identification:

 Mel Garcia
 ROA Number:
 49

 Waste Management
 Date:
 01/24/89

 EG&G Idaho, Inc.
 Charge N ::
 3X2RWP110

 P.O. Box 1625, MS 9206
 Page:
 1

213-7 29922

_

Page 2						
			Sampling Site:		PAD A	PAD A
			Sample Type:		25-ml Air	25-mi Air
		Cus	tomer Sample 1D:		RUMC 2GC	RWMC 1GC
			Sampling Date:		Unknown	Unknown
			Sampling Time:		Unknown	Unknown
			Date Received:		01/09/89	01/09/89
			Lab Sample 10:	Method Blk	9M1A0030	9MTA0029
			Date Extracted:	01/16/89	01/16/89	01/15/89
			Date Analyzed:	01/16/89	01/15/89	01/16/89
			Comments:	lab Slank	Ffeld Blank	
Parameter	Method		PGL and Units	Result	Result	Result
• • • • • • • •	• • • • • • • • • • •		•••••	•••••		
Volatile Organic Compounds			Comment A1			
Acetone	EPA 624	H2	2.0 mg/m3	8.4 mg/m3	3.4 mg/m3 B	SPOL
			0.33 ppm	3.5 ppm	1.4 ppm - 8	BPGL
2-Sutanone	EPA 624	M2	2.0 mg/m3	8.3 mg/m3	5.3 mg/m3 8	3201
			0.57 ppm	2.8 ppm	1.9 ppm 8	SPOL
Carbon tetrachloride	EPA 624	MZ	1.0 mg/m3	629L	BPOL	4.1 mg/m3
			0.16 ppm	SPOL	BPOL	0.64 ppm
p+ Dioxane	EPA 624	м2	2.0-4.0 mg/m3 T1	3.3 mg/m3	U,T1 SPQL T	1 SPOL T1
			0.5-1.0 ppm T1	0.90 ppm	1,T1 6PGL T	1 SPGL T1
Methylene chloride	EPA 624	<u>M2</u>	1.0 mg/m 3	6.2 mg/m3	6.5 mg/m3 8	ó.2 mg/m3 5
			0.23 com	1.8 com	1.8 ppm B	1.8 ppm - 3
Tetrachloroethene	EPA 624	H2	1.0 mg/m3	BPGL	SPOL	22.1 mg/m3
			0.14 ppm	SPOL	SPOL	3.2 ppm
Trichloroethene	EPA 624	H2	1.0 mg/m3	BPGL	BPOL	9.3 mg/m3
			0.18 ppm	BPCL	SPOL	1.8 ppm
Trichlorofluoromethane	EPA 624	۲2	1.0 mg/m3	BPCL	6.0 mg/m3	5.3 mg/m3
			0.17 ppm	BPOL	1.0 ppm	0.92 ppm
Others-Comment Al	EPA 624	H2	See Table 1	SPOL	BPOL	BPOL

Q13-7 page 3

Legend:

- BPQL = Below practical quantitation level. See PCL definition for further explanation of practical quantitation level.
 - PQL = Practical quantitation level. This is the lowest concentration reliably measurable (i.e., 33% maximum uncertainty in precision and accuracy at the one standard deviation confidence level) for normal samples during routine laboratory operations.

Comments:

- A1 Target volatile organic compounds and their practical quantitation levels (PQLs) are provided in Table 1. The instrument was calibrated to quantitatively measure these compounds, therefore compounds reported as below PQL (SPQL) are unlikely to have been present above their PQLs.
- B The presence of this compound in the associated laboratory method blank indicates the analyte found in the sample may be partially or completely a result of laboratory contamination.
- J Indicates estimated value. The concentration is below the POL, but the compound was detected in the sample.
- M2 A modification of EFA Method 624 was used since the method is designed for water samples. The POLS listed apply to a volume of 25 mL. The results are reported in units of mg/m3 and ppm. The ppm unit is on a volume compound per volume air basis and is determined by multiplying the weight of compound per volume of air concentration by 24.0 L (volume of 1.0 mole of gas at normal local temperature and prossure) and dividing by the compound's molecular weight (g/mole). Variations in temperature or pressure could introduce up to 25% uncertainty in the values reported in ppm units.
- T1 Tentatively identified compounds. These volatile organic compounds are not target compounds, and consequently the instrument is not calibrated to quantitatively measure their abundances. The estimated practical quantitation level for these compounds is 10 to 20 ug/L for water samples and 10 to 20 ug/kg for solid samples.

Porgo G T Ba

Joseph I. Bennett, Ph.D. Guality Assurance Coordinator

Richard J. Murphy Organic Technical Leader

page 4

EG&G Idaho, Inc. Environmental Chemistry Unit

	25.0 mL Air Samples		
Compound	(mg/m3)	(pom)	
Acetone	2.0	0.83	
8 enzene	1.0	0.31	
Bromodichlöromethane	1.0	0.15	
Bromoform	1.0	0.094	
Bromomethane	2.0	0.51	
2-Butanone	2.0	0.67	
Carbon disulfide	1.0	0.32	
Carbon tetrachloride	1.0	0.16	
Chlorobenzene	1.0	0.21	
Chloroethane	2.0	0.74	
Chloroform	1.0	0.20	
Chloromethane	2.0	1.0	
Dibromochloromethane	1.0	0.11	
1,1-Dichloroethane	1.0	0.24	
1,2-Dichloroethane	1.0	0.24	
1,1-Dichloroethene	1.0	0.24	
1,2-Dichloroethene (total)	1.0	0.24	
1,2-0ichloropropane	1.0	0.19	
cis-1,3-Dichloropropene	1,0	0.22	
trans-1,3-Dichloropropene	1.0	0.22	
Ethylbenzene	1.0	0.22	
2-Hexañone	2.0	0.48	
Methylene chloride	1.0	0.28	
4-Methyl-2-pentanone	2.0	0.48	
Styrene	1.0	0.23	
1,1,2,2-Tetrachloroethane	1.0	0.14	
Tetrachloroethene	1.0	0.14	
Toluene	1.0	0.26	
1,1,1-Trichloroethane	1.0	0.18	
1,1,2-Trichloroethane	1.0	0.18	
Trichloroethene	1.0	0.18	
Vinyl acetate	Z.0	0.56	
Vinyl chloride	2.0	0.77	
Xylenes (total)	1.0	0.077	

Table 1. Method sensitivities for volatile organic compounds by purge and trap GC/MS analysis

* Practical quantitation level is the lowest concentration reliably measurable (i.e., 33% maximum uncertainty in precision and accuracy at the one standard deviation confidence level) for normal samples during routine laboratory operations.

......

0.13-70.00005

Revision 01/23/89