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TRANSPORT SOLUTIONS TO THE ONE-DIMENSIONAL
CRITICAL PROBLEM*

by

George J. Mitsis

ABSTRACT

The new method of case(l) for treating the one-velocity
transport equation is applied to a uniform, one-dimensional
multiplying medium. The method leads to exact expressions
for the neutron distribution and criticality conditions. These
expressions depend on expansion coefficients which are shown
to satisfy a Fredholm integral equation. The results of diffu-
sion theory with the exact Milne problem extrapolationdistance
are shown to correspond to the zeroth-order approximation of
the Neumann series solution to the Fredholm equation.

I. INTRODUCTION

Although the neutron transport equation has been extensively treated
both analytically and numerically, exact solutions are available only for
highly idealized cases. Moreover, the various computational techniques in
common use are based on approximations of the exact equations or exact
boundary conditions rather than its solutions.

A fres§1 approach to the problem was recently introduced by
K. M. Case. 1 This new approach is based on the fact that, at least under
certain restrictions, the transport equation is separable. Thus the famil-
iar procedure of expanding the neutron distribution in the set of normal
modes generated by the separation of variables and finding the expansion
coefficients from the boundary conditions can be used.

The unique feature of this method is found in the singular nature
of the expansion modes. The correct interpretations of such singularities
were first given by Van Kampen 2) in his work on plasma oscillations.

*A brief summary of the results of this paper as well as the results
obtained independently by Dr. R. Zelazny at the Institute of Nuclear
Research, Poland, were reported by Case.



Van Kampen notes that it is permissible to use the principal value of inte-
grals involving such eigenfunctions provided the contribution of the singular
point is not neglected. These contributions can be accounted for through
the addition of arbitrary multiples of the Dirac 5-function. The resulting
expansion modes will therefore be highly singular, but integrable. Their
singular form is of no concern since the final results are always expressed
in terms of integrals. Furthermore, Case has shown that the appropriate
singular modes for the one-speed transport equation form a complete set.
Consequently, the neutron distribution is completely represented by an

expansion in terms of these functions.

The purpose of this paper is to apply this method to the solution
of the transport equation in a one-dimensional, uniform, multiplying
medium. The treatment will be further restricted to a single energy and
isotropic scattering. Under these assumptions, the angular neutron
density ¥ depends on the single position variable x and direction variable
Qy = |, and satifies the equation

du(x, [y Ry ;
p P 5 o) = B | vl (1

where the Z's denote the macroscopic cross sections.

Introducing distance in mean free paths,

the mean number of secondaries per collision
ci R vZf)/Zt )

and dropping primes gives
1

wlept) el - (2)
-1

v, _c
e

The general solution of Eq. (2) will be found by expanding ¥ (x,u) in
the appropriate set of singular eigenfunctions. The results will be in the
form of expressions for ¥ (x,1), the neutron density



The neutron current

i) = /::}“//(x,p) dl (3a)

and the critical condition for the system. All these expressions will be
exact in the sense that they will depend on the expansion coefficients,
which obey a Fredholm integral equation of the second kind. Successive
approximations of the integral equation can be readily obtained and lead
to recognizable forms of the respective expressions. In particular, the
zeroth approximation of the coefficients will be shown to correspond to
the results of diffusion theory.

II. EIGENFUNCTIONS OF THE TRANSPORT EQUATION
Inasmuch as the development of the eigenfunctions of Eq. (2) has
been discussed in detail by Case, 1) it is sufficient to summarize the

pertinent results here.

Separation of the variables x and ([ shows that the solutions of
Eq. (2) have the form

e e (@

where ¢, (1) satisfies the equation

1

[1- @A) eulw) = %f ¢y (p') dp . (5)

If we use the normalization

f e () Gl = A (6)

1
Eq. (5) reduces to
(v - ¢y (W) =(%)v : (7)

Since V is not restricted, it can take values in the interval [-1,1] where p
is defined, thus introducing singularities at the points u = v. The general
solution of (7) must be written as

v
V- i

Su(y) =5 P S (8)



where P denotes principal values of integrals involving ¢ (}_L) and the
second term contributes only at the singular points U = V. Furthermore,
Eq. (8) is a solution of (7) for any A(v).

For values of ¥V not in the interval [-1,1], Eq. (8) reduces to

Vo it AT
and the normalization condition (6) determines the values of v:
=1/ 1
1 = cvtanh == . (9)
v

There are two roots of Eq. (9) which are purely imaginary for
¢ >1. These roots will be denoted by *vg and the corresponding eigen-
functions by

v
0

c
Po+ = — = 10
AT (10)
For v in the interval [-1,1], the normalization serves only to
determine the form of )\(V), leaving v unrestricted. Thus,
=i}
M) = = epipmn - @ (11)

The eigenfunctions of Eq. (2) can now be separated into two classes:

a) For v% [-1,1] there are two discrete eigenfunctions:

Fx/v
Vor(x, ) = dox (1) e x/vo : (12a)
with 7 and ¢g4(p) defined by equations (9) and (10), respectively.

b) For v € [—1,1], there is a continuum of solutions:

By = 0,0 (126)
where ¢, (,u) is given by Eq. (8).

Finally, the general solution of Eq. (2) can be written as
1

Ylx,u) = ao+¥Pot (k) +ao-Vo- (xu) + f AW) Polep) dv (13)

=1

where ag+ and A(V) are arbitrary expansion coefficients.



III. APPLICATION TO THE CRITICAL PROBLEM
We now apply the above solution to a uniform, multiplying system,
finite only in the x-direction. The thickness t and half-thickness b (see
accompanying diagram) are in units of mean free paths

and the origin of coordinates is at the center.

The steady-state neutron distribution in the sys-

1
|
|
|
|
|
|
[
fs=—b—

=2
g tem is characterized by ¥ (x,u), which is given by Eq. (13).
It remains to determine the expansion coefficients from
1 the boundary conditions
Y = pl-x-u (14)
and
by =0 5. . (15)

Inserting Eq. (13) in (14) and using the symmetry properties of the
eigenfunctions,

Yor(-x,-p) = ll/o;(x,,u)
vy (cxmp) = v G0
we find after some rearrangement that

(20t - 20-) Vot () + (20- - ao+) Yo- (%, )

1
+f L8] Al slam e = e

1
Since this is to hold for all |x| = b and all |u|=1,we conclude that
agr = ap-; Al = A-Y) . (14b)

Using the condition at x = -b, we obtain the following equation for
the coefficients,

1
2o+ [T//o+('b,#) 'Hl/o— (‘bxﬁ)] + f A(V) wy(_bnu) dv = 0 s M > 0

-1
(15a)

It should be noted that Eq. (15a) is equally valid at x = b.



Equation (15a) can be put in a standard form for a nonhomogeneous
singular integral equation by decomposing the integral term and using the
fact that both A(¥) and A (V) are even functions:

"E)vare)
A(p)n(p) + Pf <ivv_¥- di= -a[¢o+(#) +¢o-(u)e_t/y°:l

where we have defined

Alf) = Alp) B/
(17)

a = ap+ eb/Vo

The theory of reducing equati?nf of the form of Eq. (16) to Fredholm
equations is given by Muskhelishvili. 3) m essence, the procedure consists

of rewriting Eq. (16) as

with
Y(S)varme

T dv  (18a)

i PR ]

0

and assuming temporarily that the 9'(u) is a known function. The unknown
coefficient A'(v) is then related to the boundary values of a sectionally
holomorphic (analytic) function as it approaches the cut (0,1) from above
and below. Finally, such a function is constructed from its properties and
A'(v) is determined from the boundary values of the constructed function.
The discrete coefficient a (or ap4) remains arbitrary, as indeed it should.

It is pointed out in Chapter 14 of Ref. 3 that the procedure of reduc-
ing singular to regular integral equations holds for sufficiently well-behaved
functions A'(v) and ¥ (u). Specifically, we assume that both A' and 7' satisfy
the H* condition, i.e., they satisfy the Holder condition (H condition):

with 0 < a =1 (19)

Alu) = A'(u)

| [0}
SM|N1‘Mz



on the open interval 0 < y < 1, with possible singularities at the ends
B = 0 or 1, which are weaker however, than 1/;1;

CL
- ef

In the above conditions, M is a positive constant and A*(u) is an arbitrary
function which obeys the H condition (19) in the closed interval 0 = =I.

A'(p) WL (19a)

Following Ref. 1 closely, we introduce the sectionally holomorphic
function

1/c '
N(z) :< ! ) wdv (20)

2L -z

0
having the following properties:
a) N(z) is holomorphic in the plane cut from 0 to 1.
b) N(z)Né as z —=o -

const

c) N(z)<l—m v<1as z—fB.

The boundary values of N(z) as it approaches the line of discontinuity (0,1)
are given by the Plemelj formula 3):

1
+ I @ 1 (%) vA'(v)
i = - = A +— | P _ W 3
N (w) > 5 kAW (zm) ] T
from which it follows that
1 1 % i
Nt+N = =P & dy (20a)
T W=
0

and

NT-NT =S pay (20b)
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Substitution of Eq. (20a) and (20b) into (18) gives

Suy(p)
G(p) N*(u) - N"(u) = — oy (21)
- (SE)
where we have defined
o e
Cly) == 3 (21a)
Mu) - g}l-

The reduction of Eq. (18) is now equivalent to the following boundary
value problem: to find a sectionally holomorphic function N(z) having the
aforementioned properties on the complex plane and subject to Eq. (21) on
the boundary. This problem is referred to as the nonhomogeneous Hilbert
problem and is discussed extensively in Ref. 3. Its solution involves the
construction of a particular solution to the homogeneous Hilbert problem
which results by equating the right side of (21) to zero. Let [X(z)]™! be that
particular solution. By definition, it satisfies the properties of N(z) in the
complex plane,'and its boundary values are subject to the homogeneous part
of Eq. (21):

el s il (W (22)

The explicit form of X(z) can now be found by taking logarithms of
Eq. (22), using the Plemelj formula, and requiring that the resulting ex-
pression has the correct behavior at the ends. From Table I of Ref. 1,
the appropriate X(z) is :

5z) = : iz eF(Z) : (23)
where
1

0

Inserting G(u) from Eq. (22) in Eq. (21), we obtain

XPNY L XTNT = () v (24)

where

v = . (24a)




The solution of the nonhomogeneous Hilbert problem now follows
immediately from (24) and the use of Plemelj's formula:

1
N(z) = 1 / () Tl/'(#) du +Pk(z) ) (25)

2 i X(z) o U=z X(Z)

where Pk(z) is an arbitrary polynomial of degree k. Since () e l/z at
infinity, it follows from Eq. (25) that N(z) will have this behavior only if
Pk(z) = and

[y vwa-o . (26)

. To complete the reduction of Eq. (18), it is now only necessary to
find N'(p) from Eq. (25) and use Eq. (20b). The result is

1
1 (v) ¢ (v)
Al(p) = 2w gle,p) ¥ (w) - e P/ Ll g
xwhw e SE] L VT
(27)
where
1
) = ——7 =y (27a)
i N (1) +<——Czﬂ4 ”Z)

The proposed integral equation for the coefficients now follows by
inserting Eq. (18a) for Y (u). The final form of this equation, as well as
many subsequent results is, however, considerably simplified by two iden-
tities for the function X(z). These identities were first proved by Case.(4)
The proofs are sketched in Appendix A.

1
i y(w) dp
X(Z) £ ‘/0‘ [Weer 7

- cztanh !z
55U T i e gy

—

The discrete terms of Eq. (18a) give rise to integrals of the form

1 1
$os(v) y(¥) dv _

c Y(V) dv
U= L 2

(wo Fv) (v - 1)

Vo

1131
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Decomposing the denominator by partial fractions and using the first
identity, we find

/ Guvinolar _fep b AneltR o
0

V-Uu 2 Vo + UL

Similarly, the integral term of Eq. (18a) gives

. aA' 't/a 1—C—OLA'(OL) e't/x
/ e / da = 2 [X(u)-X(-a)] da
a+ v o+
0

Finally, from the second identity, we see that

X=(1) [x(:» +%] )

g (cop) (WG - 1) (1 - ¢) X(-w)

Substitution in Eq. (27) and cancellation of common terms gives

A1) = =a [00r) X0 #0-() Xl-0) o /Yo ]
x (15 - ) (1 - ¢) X(-u) gle, w
v X(-v) A'(V) ot/

- (- 1) (1 - c)gle,p) o v (28)
0

By a similar procedure, the auxiliary condition (26) can also be put in

a more explicit form:

ac—;o[X(vo)-e't/VO X(-v0)] = fol %UX(-V) A'(v) e‘t/” e (29)

Equation (29) states that a solution of the transport equation with the given
boundary conditions exists only if there is a definite relation between mate-
rial concentrations (given by c or v,) and the size giviensbyat s
therefore, corresponds to an exact statement of the criticality condition.

To summarize, we have shown that the angular neutron density in
a one-dimensional multiplying medium can be exactly represented by

1

w(X:#) = ao+ [¢o+(x,#) + wo-(xle«)] i /; A(V)U/y(x,#) dv B (30)

1



where ag+ is an arbitrary constant and A(v) obeys the Fredholm integral
equation (28). The criticality condition is given by Eq. (29).

From Eq. (3) and the normalization condition the neutron density
becomes

plx) = aot+ [e-x/v0 + ex/vo] + /1 AW) e%/V av . (31)

=

This expression can be put in a more recognizable form by recalling
that vy is purely imaginary and A(v) is an even function:

p(x) = 2ao+ cos (x/|v°|)+ 2 ﬁlA(v) cosh(x/v) 7. (32)

where v = ilvol. The first term of (32) is immediately identified with the
asymptotic solution from diffusion theory. Also, o(x) possesses the ex-
pected symmetry about the origin.

A similar procedure gives the following expression for the neutron
current:

j(x) = 2apt(c - 1) |Vo| sin (x/lvol) +2(c-1) ‘/ol Av)v sinh(x/v) dv

(33)
As expected, j vanishes at the origin. A further check is obtained by
differentiating Eq. (33) with respect to x. This yields the continuity
equation
di
Ll e o e (34)

dx

which could also be obtained by integrating the original equation.

IV. APPROXIMATE SOLUTIONS

It is clear from the results of the previous section that an explicit
solution of Eq. (2) is not possible. The major advantage of this approach
is that it affords a systematic approximation method by which the desired
results can be computed to any accuracy. Moreover, a number of very
interesting results emerge from the approximations.

The approximation procedure which will be used in this section
involves keeping successive terms of the Neumann series solution(®) of
Eq. (28). It is shown in Appendix B that such a series converges very
rapidly for values of 1 =c < 2, which are those of practical interest.

15
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We start by writing Eq. (28) as

1
A'(v) = Aj(v)+ xf K(v,a) A'(a) da. (35)
0
where A;(v) denotes the free term of (28),

e = (1l = @) (35a)

&
2
and

Bl e _(18 - V) X(~v) i(f,;) X(-a) ae_t/a (35b)

is the kernel. The Neumann series of Eq. (35) has the form

Aly) = Allp) tad) R 2g() (36)
where
Pn(v) = fol K, (v,a) A; (o) da (36a)
and
1
K, (v,0) = fo (0, B) R (18 o) Rl s (36b)

For the zeroth approximation,we take A'(v) = 0. Since this is
strictly true for ¢ = 1 (Appendix B), the results would be expected to hold
for large systems.

The criticality condition in this case becomes

el (37)

The ratio X(-vo)/X(Vo) is simply related to the Milne problem extra-
polation distance zg(c) (Appendix A):

X(-vp) o _e-zzo/vo . (38)

Combining Eqs. (37) and (38), we get
eZZO/'Uo a e—ta/l/o =0
or

cos(te/2|vp] +2¢/|el) = 0, (39)



from which emerges the familiar result

ty = 7|Uo| - 220 (40)
where tg is the thickness in mean free paths for A (B =0

This approximation also provides the means of testing the validity
of the commonly used boundary condition of no re-entrant current. If we

let A(v) = 0 in Eq. (13), and replace the exact boundary condition at the
surface by

1
el = fo py(-b,p) du =0 (41)
we obtain, instead of (40),

1
im = Wil = 2l (41a)
where
1 cl=],

20 |7Jo|tan EE ln,\/l + 1/‘1/()'2

For (c-1) <<1, Eq. (41b) reduces to

(41b)

o o L oy C;ll/z

s e e Z( 3 )

2, 4 (
_3-|:1+§(1-C)+ ] 4 (41)

1

Equation (41c) is identical with the extrapolation distance in the P, approxi-
mation.\7) Thus, the replacement of the exact boundary condition by Eg. (41)
consists of replacing the exact Milne problem extrapolation distance by zo

of Eq. (41b).

The neutron distribution in this approximation is described by the
following expressions:

a) The angular density
Yolx, 1) = ao+[®o+(#) e il Y0+ go- () e v ]

 set 2l 1) con /o) + s /o] (42)

[ol
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This expression clearly possesses the required symmetry in x and [.

b) The neutron density

Po(x) = 2ag+ cos (x/l %) (43)
c) The neutron current
jolx) = 2ags|v| (e = 1) sin(x/|2l) . (44)
A comparison of Egs. (43) and (44) gives
. d po(x)

= D = 44a
jolx) D e (44a)

where

D= |nf(c-1) . (44b)

This definition for the diffusion coefficient D degenerates to the familiar
result of D = — in units of mean free path for c close to unity. Moreover,
combining Eqs. (44a) and (44b) with the continuity equation (34), we obtain
the standard diffusion equation

d? 1
Looled o P =0 (44c)

where 1/| vo| plays the role of the "buckling."

For the first approximation we let A'(v) equal the first term of
Eq. (36):

A'Y) = AYY) = 2520 (e - 1) X(-1) g ()

Z [Vo (X(Vo) + X (-v0) e't/v°) +v<X(v0) - X(-vo)e-t/w)]

(45)
Inserting this in the criticality statement, we find
-t/v =
X(vp) - X(-vp) e /o = % (1°-"c) {vo [X(vo) + X(-vo) e t/v°] 1,
-t
i [X(Vo) - X(-v) e /VO:I Iz} s (46)

where

1
L = _/0 v X% (-1) gle,v) e-t/v dv (46a)



I

and

1
I, = ﬁ V2 X%(-1) g (c, ) e—t/v dv . (46b)

A rearrangement of Eq. (46) gives

X(Vo) = X('Vo) S

= apeiie,i) ; (46¢)
X(vo) + X(-vg) o=t/ V0

where the function a(c,t) is defined by

L= )i
@ = < i , (46d)

1 -(-—Z—)(c = i) T

With the aid of Eq. (38), we finally arrive at the criticality condition
corrected to firstiorder:

1
T e + - =i ;
an - B [tl 2z¢g =T |vo|j| |vo| a (47)

Further insight is gained by examining this result for small values
of a}vg|. Then,

ty= 7|V - 220 - 2alc,t) |Vol?

to - 2|vol®alc,t) (48)

M

where to is the zeroth-order thickness. Since a(c,t) is positive, it follows
from Eg. (48) that the transport correction introduced by the first-order
approximation has the effect of decreasing the critical thickness. For the
cases where the argument t; - to is not small, the transcendental equation (47)
can of course be solved graphically.

Before presenting the expressions for ¥/, p(x il and j(x) in this
approximation, it is convenient to simplify the form of A} (u) by, judicial
grouping of constants. First, we note that the quantity X(vo) et VtyX(-Uo)
can be expressed in terms of a(c,t) with the aid of (46c)

_X(vo) t/vo _1tav,

X( -UO) 1 -ave

from which it follows that



Recalling the definitions of a and A'(p) from Eq. (17), we obtain

Ay(p) = aos B(1 +ap) X(-u) gle,p) e b/ ; (49)

where

B et 1)[5(”—")—1‘&#%“ . (492)

1-a"vp
The neutron distribution is now given by the following expressions:
a) Angular density
Yl = Yolx,p) - alow (50)

where o(x, ) is given by Eq. (42) and

o ! . e-X/'lJ ex/'IJ
q(xp) = -A(w) AMp) H/i _p E’AI(V) v[ i ]dv
0

V- U vtu
(50a)

is a positive quantity representing a first-order transport correction.
The upper and lower signs in (50a) refer to positive and negative values
of 1, respectively.

b) Neutron density

p1(x) = polx) - h(x) (51)

where

1
h(x) =-2 ao+B[ X(-v) glc,v) (1 +av) e-b/v cosh (x/v) dv (51a)
0

is a positive correction to the asymptotic density.

c) Neutron current

1
ji(x) = jolx) - 2a¢+ (1 - c) Bf vX(-v) glc,v) (1 +av) e_b/v sinh(x/v)dv ,
0

(52)

where the correction term is again positive.

Approximations of higher order become too unwieldy for hand compu-
tations and do not seem to add further analytical insight to the neutron distri-
bution or criticality condition. In addition, it is shown in Appendix B that the
contribution of such terms is negligible except for systems with dimensions
less than one mean free path.



V. NUMERICAL RESULTS

The magnitude of the first-order correction terms was computed,
first, in order to examine their contribution and, secondly, to demonstrate
the applicability of the approximation procedure. Calculations for the
neutron distribution were made by means of the normalization

@) = Zege = 1L . (52)

The various integrals were evaluated with a four-point Gaussian quadra-
ture formulal8) which corresponded to an approximation of the integrands
by a seventh-order polynomial. The numerical results for X(-v), the
critical thickness, p(x) and ¥(x,u) for various values of c will be given in
order.

Computations of the function X(-v) are facilitated by two additional
identities. These identities are also due to Case and are proved in
Appendix A.

1

2
3. X(-1) = exp -% g(c,u)<l+—1%>zn(u+v)du
0
0
Lo g pdp
A X("V)_El—c/ (18 - 1) X(w) ©w-v) ol
il

From the second identity given previously on page 11l it follows that

IS ;20(—113 (54)

and
2 <
X(vo) X(-vo) = %[ﬁl@_)—v_%l—] : (55)

The third identity, given above, was used for numerical integrations. The
results for five values of ¢ are shown in Fig. 1. A comparison of X(0)
from the numerical integration and the exact value given by Eq. (54) shows
a deviation of 1 per cent for ¢ = 1.01 and 3 per cent at ¢ = 2.00.

An approximate expression for X(-v) can be obtained by noting that
the quantity g(c,u)[1 +(c2)/(1 - u?)] which appears in the integrand of the
third identity is slowly varying except near p = 1. Taking this quantity as
unity, the third identity reduces to

-cv/2
1 +v> o 1)—C/l e . (56)

v

x(-») = x(0) (



20

24

0.6 |

v

Fig. 1. The Function X(-v) for
Various Values of c

As would be expected, the largest deviation of this expression from the
values of Fig. 1 occurs for v = 1. For ¢ = 1.01, Eq. (56) overestimates
the values from Fig. 1 by 18.5 per cent while for ¢ = 2.00 it gives an
underestimate of ~21 per cent. Another approximate expression for
X(-v) can be obtained from the fourth identity. From Fig. 1, X(-v) varies
roughly as

X(-7) ~ X0

T Sher S ) (57)
Using (57) as a trial function in the integrand of (4) we find

~ cv|vol?
X(-1) = X(0) {1 = 2ol + D)

2 2
li(l—v) o 122 Dbl u SR 1}} (58)

v c|vol® 2 |20



This expression represents X(-v) quite accurately near v = 0. However for
v = 1, it becomes

x(-1 = X

which is the same as the trial function.

The critical thickness t was determined by first evaluating alc,t)
and then solving Eq. (47) graphically. The results for five values of c are
given in Table I.

Table I

CRITICAL THICKNESS AS COMPUTED FROM
EQS. (40), (47) and (60)

e ty it to % error = Fois (Gy t- b x 100
1
L)L 16.69 16.69 16.69 ~6x 10711
1,10 4.24 4.24 4.24 ~4x 1074
L&) 1,780 15780 L, 765 0170
1.60 1.022 15025 1.030 0775
2.00 DE62 0.625 0.634 2005

Since olc,t) is small even for c= 2.00, it is possible to estimate
the correction term in Eg. (48) without introducing an appreciable error in
t;. Noting that I, << Ij, we can rewrite (46d) as

ale,t) = = - 1)I; . (59)

C4
2
An examination of the integrand of I; shows that the greatest contribution
to this integral comes from the neighborhood of the upper limit. Also,
near V= 1,

Consequently,
1, ~X—4“’—)(iﬂ) B (59a)

where Ep(x) is the exponential integral,
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and from Eq. (59)

(c - 1) X*(0)
2 rée

alleds) = Est) . (59b)

Substitution of (59b) into (48) and use of (54) gives

A E; (tzvl) (60)

it =
1 0 cr

The values of t'l from Eq. (60) are also given in Table I for com-
parison. In all cases, t is in units of mean free paths. The conclusion of
major interest derived from these results is that evea for the extreme
case of ¢ = 2.00 the first-order transport corrections for t is of the order
pffonlyi2¥per-cent:

The numerical results for the neutron density are summarized in
Table II. A plot of p(x) vs x for three values of c is given in Figs. 2
and 3. In Table II we have also tabulated the ratio

Po(X) T h(X)

Pl(X) i o1(x) ’ G

which serves as a measure of the contribution of the first-order transport
correction to the asymptotic density.

Table I

NEUTRON DENSITY AS A FUNCTION OF POSITION

c=101 =110 c=130 c = 1.60 c=2.00
xb

Po P1 PolP1 Po P Pol P1 Po P1 Pol P1 Po e Pol P1 Po [ PolP1

0 1.000 1.000 1.000 1.000 0.9978 | 1.002 1.000 0.9804 | 1.020 1.000 0.9525 1.050 1,000 0.9247 1.082
0.25 | 0.9345 | 0.9345 1.000 0.9547 | 0.9517 | 1.003 0.9742 | 0.9490 | 1.023 0.9783 | 0.9208 1.054 0.9837 | 0.9054 1.086
050 | 0.7485 | 0.7485 1.000 0.8231 | 0.8170 | 1.007 0.8842 | 0.8556 | 1.032 0.9143 | 0.8518 1073 0.9352 | 0.8468 1.104
0.75 | 0.4722 | 0.4718 1.001 0.6177 | 0.6018 | 1.026 0.7453 | 0.7008 | 1.064 0.8104 | 0.7309 1.109 0.8562 | 0.7417 1.154
0.85 | 03342 | 0.3332 1.003 0.5217 | 0.4972 | 1.049 0.6774 | 0.6202 | 1.094 0.759 | 0.6628 1.144 0.8166 | 0.6836 1195
0.95 | 0.1985 | 0.1916 1.036 0.4130 | 0.3689 | 1.120 0.6022 | 0.5183 | 1.1619 0.7015 | 0.5700 1.230 0.7729 | 0.6113 1.264
100 | 01215 | 0.099 1.254 0.3577 | 0.2844 | 1.1257 0.5640 | 0.4430 | 1271 0.6712 | 0.5202 1.289 0.7495 | 0.5706 1313

For c close to unity, a procedure similar to that leading to Eq. (60)
gives for h(x)

h(x) = - e [E,(b-x) + E,(b + x)] , (62)

For c = 1.10, the maximum difference in the values of pl(x) from Table II

and from Eq. (62) is about 2.4 per cent. Since the constant B is negative,
h(x) is positive and increases with ¢ and x. The maximum correction to
po(x) therefore occurs at the boundary, which, of course, was anticipated.
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Finally, the angular density was computed as a function of u at the
origin and at the boundary for three values of c. The results are shown in
Figs. 4 and 5. Qualitatively, the shape of zp(x,#) has the following features.
At the origin, 1(0,u) always has a maximum which occurs at p = 0. At the
boundary, a maximum appears only when c is greater than a certain value
and shifts from higher to lower values of y as c increases. This behavior
is explained by the nonuniformity of the source distribution vpr(x). As c
increases, p(0) - p(b) decreases, so that the source is more uniform and
the peak value moves towards p = 0.

Quantitative verification of these observations can be easily obtained
in the zeroth-order approximation. Thus, by letting dz///d# = 0, we find

Bnax = | Vol tan (x/2|vol) (63)
and
VYolx,u ) = = L (64)
max 2 1+ tan® (x/2|wo])
For x = 0,  fmax = 0 and %(0,0) = c/2.
For x = b, a maximum exists only if
| 2nllEe /ala) = (64a)

Using Eq. (9), this condition reduces to
@o] =72
and corresponds to ¢ = 1.13. Thus, for c¢ < 1.13, ¥4(b,u) increases

monotonically, whereas for ¢ &1.13 it has a maximum. For c >> 1, Eq. (64)
becomes

and the maximum value approaches c/Z.

VI. CONCLUSIONS

We have shown that the one-dimensional critical problem can be
treated exactly by means of Case's normal mode expansion method. The
method which can be used to compute these quantities to any desirable
accuracy, provides exact expressions for the neutron distribution and
criticality condition.
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Moreover, the results are adaptable to systematic approximations. In
particular, it was shown that a zeroth-order approximation for the expan-
sion coefficients leads to the results of diffusion theory and that first-
order transport corrections are possible even by hand calculations.

This method of treating transport problems appears to be quite
powerful. Its applicability to more complicated problems remains a
question for investigation.
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APPENDIX A

Proofs for the Identities of X(z)

1. First Identity:

1
(1) dp
X(z)zfl__
0 S

where
_c _pX (W
2 S
T £

Proof. Since X(z) is analytic over the whole plane with a branch cut
on the real axis segment (0, 1) and behaves as l/z at infinity, we can use
Cauchy's theorem to write

X(z) = ZIT: 1 X—(Zz%dfl (A.1)

where the contour C consists of two parts, as shown

in the accompanying figure. If C; is taken at infinity
and C, around the cut, Eq. (A.1) reduces to
C,
/—\\ 1
il d
c X(z) = =—— —CE [xhu) - x-
TN xw s gh [ 2 e - xew)
:J 0
L -
[ D0
271 W=z
0
But from Eq. (22) we have
+ .
_i___lzg(p)_lz% : (A.3)
M) - e

Inserting (A.3) into (A.2) gives the first identity.

2. Second Identity:

3 l-cztanh 'z
el (28 - 2% (1 - ¢)
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Proof: This identity was proved by Case by using the properties of X(z).
Here we show that it also follows from the definition of E5(2)

1 I'(z)
L 23
X(z) = T e (23)
Consequently,
4 7=
e _i_f_z_z eF(Z) I'(-z) (A.4)
But from Eq. (23a), we can write
1
Il znG(“)
= = — d 1 A5
I'(z) + I'(-z) o e e (A.5)
The integral in (A.5) was evaluated in Appendix A of Ref. (1):
Lol Il= e el
I'(z) +T'(-z) = In 3 3 (A.6)
Vo - Z Il =&

Substitution of (A.6) in (A.4) completes the proof. Moreover, at z = 0 the
identity reduces to

1

e g

x%0) =

from which we obtain Eq. (54). Also, by taking the limit as z—= Vg, we find

l—vé(l-c)jl

2
1 -

X(we) X(-¥0) = 3 7T {

%) =

1 2
2 1—1/3

3. Third Identity:

1
X(z)=exp[-%/ g(c,p)<1+-1£_L‘uz->ﬁn(,u-z)dp:| ;
0

where



Proof: In Eq. (23) let
Gly) = S

where

B(u) = arg |:>\(,u) + ﬂTZ_lji] (A.8)

and 6(0) = 0, 6(1) = 7. Then

e(g [
/J,-Z

Integration by parts gives

I'(z) = (1 - z)-7 d—uﬂn(u-z)du : (4.9)
0
But
2
do _cem i >
i 2 g(c,u)<l iy I (A.10)

Combining (A.9), (A.10), and Eq. (23), we obtain the third identity.

A similar procedure can be used to relate the ratio 'X(—vo)/X(vo)
to the Milne problem extrapolation distance:

! 2
Zo = Vo— gle, ) (1 + —CJ“—Z> tanh™? <—1“L—>du . (A.11)
2 1 - M Yo
0

From equations (23) and (A. 8), we have
Hlevp) s L-ng i ZVO __P— du
X(Vo) 1+vo - 5

Mg irn 2 <.i. = “) A 12
b exp l:ﬂ_/ 6 () tanh 7 d,ujl ; (A.12)
0

Integrating by parts and using (A,10) for de(p.)/dp gives

X—)i(%}o%) = i ;ZZ exp [2 tanh'l(l/vo) = (@ zo/vo)]

B (A.13)
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4. Fourth Identity:

0
© 1 putd
X(-p) = — . :
(-4) 21-0/_1 (vé - w?) X(u')(u' - w Ry

Proof: This integral equation follows directly from the first two identities.
From the second identity we find

X 1 I 1
A1) _CTiy " 1-c 70 -pz X(- ) ? (A.14)
%

Substitution of (A.14) into the first identity and changing u to u' gives the
integral equations.



APPENDIX B

Approximations for the Coefficients A'(v)

1. Convergence of the Neumann Series:

We first investigate the convergence of the series (36). Thediscus-
sion follows the method given in Tricomi,(é) since the kernel K(V,OL)
clearly satisfies the required property of square integrability. The
parameter ) is chosen as

>\=—Z—(l—c) { (B.1)

The general solution of Eq. (35) is

o]
AG) = ALY+ D B0, 0)
n=1
= 1
1 =1 '
= Aqll) # % X Kn(v,oe) AL () il o (B.2)
=1 0
The convergence properties of (B.2) are examined by investigating the
series
0
=)
H(v,o; A) = - z DR () o) B (B2
n=1

Define the norm of the kernel by

i
H K? |l = / / K? (v,a) dv da
o Jo
1 1
= f Fiv) dv = GXa) da = N* (B.4)
0 0
where N? is an upper bound and
1 1
) = f Ki(v,a) da; Gia) = f 1 (( phien) @l s (B.4a)
0 0
By Schwartz'inequality, it follows that
|x

SR VA |= |Fo)]| |G(oc)| NEG (B.5)

Sl
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Inserting (B.5) into (B.3) we find

co
|Han) - Kmal= A 50 @l 2, al® (5.
m=0
The geometric series in (B.6) converges if
IaN| <1 . (B.7)

It remains now to estimate the upper bound N. Using the behavior
of X(-v) near v = 0 and v= 1 and of g(c,v) from Ref. 4, it readily follows
from (B.4) that

2t
el =i = ™ (B.8)

Substitution of (B.1) and (B.8) in (B.7) yields

1 & ; (B.9)

where t and c are related by the criticality condition and Eq. (9). Since in

practical applications ¢ < 2, the convergence condition of Eq. (B.9) is clearly

satisfied.
2. Error Analysis:

An upper bound of the error introduced by keeping the flrst n terms
of the series in (B.2) will now be estimated. First we note that A ( V) =0
and the kernel K(v,a) is positive for ¢ > 1. From this it follows that
Q)n(v) = 0. In view of the fact that A is also negative, the series in (B.2) is
alternating and can be written as

Z X () = Z i a (¥) . (B.10)
n=1 n=1

where an(v) is positive and a i+ <ag. By the well-known theorem of
convergent alternating series of this type, the error made in stopping at
n terms is less in absolute value than the first term neglected. Thus, if
we denote the absolute value of the error by €n(7J), then

e, <a ()

n+l

<Ml (B.11)



Using the definition of ¢,(¥) and Eq. (B.5) we find

|¢n+l<v>|s|F(v>HN|“"fo Gl |Alw)] 4o . (5.12)

A rough estimate of the upper bound of the factors onthe right of (B.12)
gives

| vol®
2

| 9y = et E,(t) | X3(0)|| 4,(0)] IN" T p(v) (B.13)

where we have defined

(lvol® +v%) X(-1) glc, V)
W) = 2 B.l3
p(¥) e (B.13a)
and E,(t) is the exponential integral tabulated in Ref. 4. Finally, substitution
of (B.13) in (B.11) and use of the explicit expressions for X(0), | AN|, and
A'I(O) gives

n+ti -nt
eal) < 220 (2) 131 ST 00) (5.14)

where B is the constant given in Eg. (49a). In particular, the upper bound
of the error in the first approximation is

Solv) < 2acr— el E.(v) p(v) (B.15)

B
Z Joop

and the expansion coefficients can be written as

i = o ) B = ) R (B.16)

1 1
Furthermore the actual value of A'(v) lies between A(v) and A (V) +€o(V).
In Table BI we give values for the lower and upper bounds of A'(v), viz,

A'(v) = A (v)

| Bl
Alw) +=
1(v) 4 [vol2

A'(v) Efu)inl)es

where we have used the normalization of Eq. (53).
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Table BI

BOUNDS FOR A'(v)

c = 2,00 c = 1.10
v — —
a0 | 20 | A | AW
0 -0.586 -0.430 -0.160 -0.158
0.4 -0.143 -0.0922 -0.0814 -0.0806
0.8 -0.0303 -0.0108 -0.0368 -0.365
1.00 0.00 0.00 0.00 0.00

The exponential nature of Eq. (B.14) indicates that these bounds will
be reduced considerably in the next higher approximations. Also, since the
contribution of terms involving A'(v) on the observables p(x) and P(x,u) was
shown to be small for 1 = ¢ < 2, small errors in the coefficients can be
neglected in the computations of these quantities.

Another result of interest follows from the above discussion. By
taking the limit of Eq. (B. 16) as c — 1 and recalling that in this limit both
t and |vo| become infinite, we find

Lim A'(y) = 0 (B.17)
c—=1

from which we conclude that A(p) = 0 at ¢ = 1.

3. Another Approximation Technique:

A method which gives higher-order estimates to the Fredholm
Equation

1
A'(w) = Ayp) + kf K(v,a) A'(a) da (35)
0
consists of approximating the integral term by a Taylor expansion of Al()
about & = V:

dA'(v) L

= (B.18)

Al(a) = A'(¥) + (@-Y)

Since the zeroth and first approximations to ¥(x,.) correspond to A'(v) = 0
1

and A'(¥) = A,(v), respectively, they remain unaltered. For the next

approximation we keep the first term of (B.18). This gives

1
AY(v) = A(v) + XA'(v)f K(v,a) do
0



or

ANY)

(B.19)
1 -xﬂl K(v,a) da

Al =

Keeping the first two terms of (B. 18) results in a first-order differential
equation for A'(v):

dA"(v
—d(T)- + P(A'(v) = Q) (B.20)
where
1
xf K(v,a) da - 1
P(v) = : (B.20a)
X/ (v-a) K(v,a) do
0
and
1
Aq(v)
Q1) = - —71 . , (B.20b)
xf (v-a) K(v,a) da
0
which are known functions of v. Since
A1) =0 and K(l,a) =0
it follows that
A (=N 0 (B.21)

The solution of (B.20) subject to (B.21) is

v v
A'(v) =/ Q(v') exp <- L P(s) ds>dV’ . (B2

35
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