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ABSTRACT

A treatment of spin-orbit effects in some semi-
conductors is given using the effective mass me thod
and orthogonalized-plane-wave type wave functions.

In this formalism, the spin-orbit splitting of va -
lerce states in the crystal is expressed directly in
terms of either experimental or calculated values of
the spin-orbit splitting of the atomic core states.
The calculation yields values in good agreement with
experiments for the splitting at F25, for Si and at

both I and L for Ge. A demonstration is given

25 S
of the enhancement of the spin-orbit splitting (@i
valence states in the crystal over the corresponding
atomic value.

The shift in the g-tensor due to spin-orbit
interactions is studied in Si and Ge. Because of
crystal selection rules, the usual two band approx-
imation to the effective mass sum rule 1is inadequate
for Si and, in particular, the core state must be

considered. When all important states are included,

the calculations yield values in good agreement with
1
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experiment. In the case of Ge, s is N Fonnd N th et eare
states do not contribute appreciably to the g-tensor.
However, the calculated value for the Slaalitiy - alim TEaE
transverse component of the g-tensor has an opposite
sign to the measured one.

A certain matrix element of the deformation po-
tential for Si is also evaluated based on the measured
shift in the g-value due to strain. The result is

compared with other deformation potentials A TS S
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I. INTRODUCTION

The effects of spin-orbit (s-0) coupling on the
electronic properties of crystals have been discussed
by several authors.l_6 For semiconductors, these
properties are largely determined by the nature of
the conduction and valence band edges. In semicon-
ductors where these band edges are of p atomic sym-
metry and split under the s-0 interaction, knowledge
of the magnitude of their s-o splittings becomes nec-
essary in any quantitative calculations. Although
there have been recently several direct measurements

7 and G68 by

of the valence state s-o splitting for Si
optical experiments, there Hailigele o Nany s cuan=
titative estimate in theory. In this work we attempt
to estimate the s-o splitting of valence states in
crystals by treating the s-o0 interaction as a per-
turbation on the crystal states described by orthog-
onalized-plane-wave (OPW) type wave functions, which
are well suited to most semiconductors. But prior to
this calculation, we treat the s-o splitting of the
atomic valence wave function, which, just like an OPW
crystal wave function, consists of a smooth part plus

i
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occupied core orbitals. 1In this way, we can make a
comparison between the splitting in the atom and that
in the crystal and then demonstrate why the splitting
gets enhanced in the crystal. Since both the atomic
valence wave function we use and the OPW crystal wave
function contain core orbitals, the s-o splitting of
valence states in the atom and in the crystal can be
expressed in terms of the s-o splitting of the atomic
core states in our formalism. We apply the splitting
calculations to crystalline Si and Ge and obtain val-
ues in good agreement with experiment.

The effect of s-o interaction on the magnetic
resonance is first of all a shift in the disebrepie
g-value for conduction (or valence) electrons from
the free electron value of 2.0023. Furthermore, when
for some semiconductors like Si and Ge the conduction
band edge consists of several valleys lying in equiv-
alent positions along certain symmetry directions in
the Brillouin zone (B.Z.), the s-o interaction intro-
duces an anisotropy into the single valley g-value,
which can be expressed as a tensorial ojulzmiel pye  Hale =
oretical treatment of the g-tensor for semiconductors
or semimetals has been done in the framework @i vlars]
effective mass approximation. In the absence of crys-
tal wave functions, a two level approximation e sche

effective mass sum rule was further assumed to evaluate
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the g-tensor for certain materials.3_5 In other words,
for semiconductors, it was assumed that the major con-
tribution to the g-shift for conduction (valence) elec-
trons came from the s-o splitting of the nearest va-
lence (conduction) level. Roth in this way has obtained
excellent quantitative agreement with experiment for
the longitudinal g-shift in Gre)1L and the isotropic
g-value for InSb.3 However, the two level approxim-
ation is not always adequate. A typical semiconductor
which illustrates this failure is Si. The Si valence
s-o splitting at the conduction edge is very small due
to special selection rules, and consequently, its con-
tribution to the conduction g-tensor is by no means
dominating. Therefore, we attempt to do a more care-
ful analysis. We still work with the effective mass
approximation in evaluating the g-tensor, but we use
OPW crystal wave functions to calculate all the matrix
elements involved in the effective mass formalism.
With the exception of the transverse component of the
g-tensor in Ge, excellent agreement with experiment
is achieved. Since effective mass parameters are in-
volved in the g-tensor calculation, we Slliseutime liticeNe
section to discuss their evaluation from OPW wave
functions.

The spin resonance line-width in semiconductors

is largely due to a spin-lattice relaxation. Roth9 has
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proposed a spin-lattice relaxation mechanism for Si,
which is caused by the modulation of fthe single valley
g-tensor by strain. Using the measured value for a
parameter in the proposed mechanism, we evaluate a
certain shear deformation-potential matrix element.
The result is compared with another deformation-poten-
tial matrix element obtained either from conductivity
measurement or from measurement of spin-lattice relax-
ation rate due to a second mechanism proposed by Rothl‘L
and by Hasegawalo independently.

Part of the work on Si has been reported else-

where.11
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II. SPIN-ORBIT SPLITTING OF ATOMIC STATES

It is our aim to treat in this section the s-o
splitting of atomic valence states in a formalism re-
lated to the method we adopt later for the crystals
so that we can see how the s-o splitting of energy
levels differs in the atom and in the crystal.

The one electron Hamiltonian as derived from re-
ducing the Dirac equation to its non-relativistic
2

1imitl takes the following form

W= }2 ki é’g—o
2
12 h 2
A== +7V+ Nl
o 2m 8m202

h T
oo 757 GZVXE) Rl
4m=C
e temnhfs_o is the s-o coupling in which g is the
Pauli spin operator. For atomic case where the po-
tential V has spherical symmetry, Hs-o takes the fam-

iliar form

e Sites (2529
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where 5 = %g. The matrix of }%—o with respect to one
electron states specified by quantum number n,j and 3

is diagonal and has as its elements
<n, 5,016 _ 103,05 = 5 ,<h8>5

with
i __“ dr 2
3 P 2 Ir ( 3)

where Pnz/r is the radial wave function for the state,
and is normalized according to f:;PnZ2 diz =il

The atomic H-F wave functions have been calcu-
lated for many substances. With the tabulated wave
functions we can evaluate numerically the one electron
s-o coupling strength by (2.3). However, for atomic
valence states we choose to take a different approach
here. The valence radial wave function Pnﬂ can be

represented by a smooth function which is orthogonal-

ized to all the occupied core states with the same

: 2n'+1
2a n'!' -ar
I N[' = fac - % BtPtz} (2.4)

where N is a normalization factor and n' and a are two

symme try

adjustable parameters. The coefficients Bt’ as deter-

mined by the requirement that Pnﬂ be orthogonal to the
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core states, is

B e
2a n'! -ar
=\]—1—2—2FTTJOPtEr e dr (2.5)

In the core region, the wave function P , fm (2,00 dle
dominated by its core terms; i1f we are to calculate
the s-o integral-inz in (2.3) by using the wave func-
tion in (2.4), we can neglect the smooth part. Then
the s-o splitting Anﬁ of the one electron valence
state can be expressed in terms of that pit Sche 'eare

states as

2 2 2

s % BoA N°Z BB, ><(<1& s>J Ty
i
1 dv
gt ) XTI ﬁw e o Lo SE

The second term is usually smaller than the SR eNEs
For neutral Ge, the atomic H-F wave functions

have been calculated by Piper.13 We use his tabulated

wave functions for Pnﬂ in (2.3) and also for constructing

the atomic potential V to obtain the atomic s-o split-

ing for the various states. The atomic potential V

i1s assumed to be pure Coulomb potential. Mheny %% in

(2.3) can be obtained from the tabulated radial wave

functions by —

av e L
el o 7
dr r2

e
Zﬂwnﬂké%nﬂ (r)dr} (=27

191
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where Z is the atomic number and Yo is the number of
electrons occupying the state specified by quantum
number n and £. The summation is extended over all
occupied states.

The calculated splittings for the core states
are listed in Tabe I together with the core splitting
for Si. The calculated value for the atomic 4p split-
ing is A4p = 0.5 ev. This is to be compared with the
experimental value of A4p = 0.18 ev deduced from spec-
troscopic term values with a configuration of
4se4p2 3P;14 the experimental value is about 20%
greater than the calculated value. On the other hand,
we can fit Piper's tabulated wave function reasonably
well by (2.4) with the following values for the para-

meters.

N = 1.002
M= 4
a= 1.85
Bep = .006520 (2.8
BSp == 1987

Then, from (2.6), (2.8) and core splittings in Table I
we obtain A4p = 0.15 ev, which is exactly the value
obtained from the original tabulated g iEiae waleiale - laie)

op - 3p interference term (second term in (22@)) s
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12

A4 amounts to 0.01 ev.
%

In our later discussion of the crystal case, we
shall evaluate the band s-o splitting for Ge at the
center of the B.Z. We are then going to compare the
crystal result with the atomic result obtained by (2a6)
Through this explicit comparison we hope to illustrate
the enhancement of the s-o splitting above atomic val-

ues found experimentally in certain crystals.
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III. SPIN-ORBIT SPLITTING OF ENERGY BANDS

In the framework of the one electron theory, the
Hamiltonian for an electron in a crystal is given by
(2.1). It is well known that the eigenstates ofh{o
are represented by Bloch functions and the energy
eigenvalues form bands in the BiVZ. due Go thesper=
iodicity of the crystal potential V. There are dif-
ferent methods for calculating eigenfunctions of KO
in practical casesg, but by far the most successful method
for getting valence state wave functions in semiconduc-
tors is the OPW method. The crystal valence wave fune-
tions in terms of OPW's may be separated into a 'smooth'
plane wave part and a core part similar to the atomic
valence function (2.%4)

o

wk =

e a( 1K ) (k) > + 2 b%,t l¢5,t°‘> i

Here o is a symbol for the irreducible representation
used to denote the symmetry of the wave function, 5
is the wave vector and E is the reciprocal lattice
vector. Plane waves are expressed by (5{%). e
symbol |>a denotes a properly normalized symmetrized

combination of plane waves. The second term in (Zod),

13
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14

is the core part, which comes from orthogonalization

and takes the following form

B g e Bty o
d

r-R_-d) 2L
E \‘SN N vl v ( )

X

20 M

N

FHEE Xta is the atomic core wave function with symmetry
specified by a, g is the position of the atom with
respect to the lattice vector Rn’ N in the normaliz-
ation factor is the number of :;it eells in the erys—
tal and s denotes the number of atoms per unit cell.
The normalization of the wave function is such that
both Xta and wka are normalized to one over the whole
erystal.

For some semiconductors, the s-o coupling strength

is small compared to the energy gap. In chissease,

A

8-0
Then in order to evaluate the energy band splitting,

in (2.1) can be treated as a perturbation term.

we must first take matrix elements of }&—o Wil res—
pect to states wka]i>, where |+> and |-> are the two
spin eigenstateéwof gr: An s-o matrix element using
wka in (3.1) can be separated into three parts:
ﬂZmely, the matrix element between two plane wave
parts, between a plane wave part and a core part, and
between two core parts. The last one gives the most

important contribution. For example, in Si the
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core-core term is found to be about 96% of the whole
matrix element. In Ge, because it has a larger core,
the core-core term is even more important. Therefore,
for the purpose of evaluating the s-o matrix element,
we represent the valence wave function by LcsNeone
part only. In this way a general matrix element of

M;—o takes the following form:
Q. B a¥ B a B
<7//% ih‘fs_olwz = wtzt,bk,tbk,t'Q(t Ihilxt'> (3:3)
B o

To obtain the right hand side of the above equation

we have assumed that there is no overlap between the
core orbitals centered around different lattice points.
The operator hi in <Xta]hilxt?> is used to denote a
definite component of h determined by the symmetry o
and B.

We notice that the matrix element <Xta]hi|XtB>
is connected with the s-o splitting of the core states.
Therefore, the s-o splitting of the crystal valence
states like that of the atomic valence state, can 1012
expressed in terms of the splitting of all the occupied
core states, the magnitude of which can be obtained
either from x ray data or from calculation using a
model crystal potential and tabulated atomic wave
functions. The coefficients bi,t can be expressed in

~

terms of the plane wave coefficients aa(g+5) i (65 )
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and the orthogonalization coefficients Bt(5+5) used in

the usual OPW band calculation:

140 s
k+§)em~ (3.4)

~

“a( 1+ !By (

where o in the summation sign indicates that this is

a symmetrized sum for o irreducible representation.

e
e 5
in (3.3) depends on the number of terms we take in the

From (3.4) it is seen that the magnitude of (bi )
s

expansion into symmetrized combination of OPW's for
the valence wave functions. Any truncation of the
infinite secular determinents arising in the OPW method
not only leads to unavoidable errors to the energy
eigenvalues but also to larger errors in the s-o
gplliviiuaE, THaEmEsiRns: i ciaky calculation of the s-o
spiliteing, it ds advisable To study the convergence.

In order to illustrate the general procedures
outlined above and to make explicit use of the crystal
symmetry we take up in the following section diamond

type crystals.
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IV. DIAMOND TYPE CRYSTALS

There have been extensive studies on the energy
bands for crystals with diamond structure. In partic-
ular, the band structures without s-o coupling forNEd
and Ge are sketched in Fig. 1 and Fig. 2 respectively
For both substances, the valence edge is at F25,.

The conduction edge for Si lies at 50 = (A,0,0) along
A, with A = 0.85 %LTB, and that for Ge lies at L.

1

For these substances,bfs in (2.1) can be treated as

-0
a perturbation term. Therefore, using the method out-
lined in the above section, we try to evaluate the
splitting of the valence states at positions in the
B.Z. corresponding to both the valence edge and to

the conduction edge, or at F25, and A5 for Si and

T and L ione (60

251 3!
The diamond structure consists of two inter-
penetrating face-centered cubic sublattices. We take

as the origin of our coordinate system a point mid-

way between two adjacent lattice points and distinguish

17
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the core orbitals in (3.2) centered around the two
sublattices by a superscript 1 or 2 and denote the
valence wave function by its core part only. 1In
accordance with these conventions we list in the

following some useful wave functions

;
i 25 2 o i 3 e
B~z S i b N 0

i,
o5t i 2
Rl (et ) (3.1)
A A
v _ 5 T 2 5 1 2
857 = P “(95,7=90, ) st G )
A A
i 2
+ By 5(¢%Z'?;)+bép5(¢3y 3y )
L ST el Shnte e P
L b3d (¢zx ~%2x Josk béd (¢yx +¢yx ) (k.2)
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i)

1 1 2 1 2
% b33,y'2'(¢y'2',+—¢y'2',-) ¥ (b3d,y'2') (¢y'Z',-_¢y',+)
I L
31 1 2 1 *, 1 2
& bsd;y'xl(¢ylxix+_¢y'xl:_) . (b3g,Y'X') (¢Y'X',——¢Y'Z',+
L L bt 3'(¢1 +¢2 ) o (b|L3')* 1 2 )
gl = A Ol Ban 7 e — 2p (¢2z‘,-+¢22',+
L3, 1 2 Lyt %, 1 2
+ by 3 (05,0 #9050 ) - (0370 (93,0, 49350 4)
Lo 7 2
E b3g,y'2‘(¢y'2-2'2,+'¢y'2—2'2,—)
L
31 *, .1 2
5 (b3d,y'Z‘) (¢y'2_z.2,__¢z‘x',+)
IL
3t il 2
=5 b3d,ylxl(¢zlxl,+_¢ZIX|’_)
L3v ¥R 2

(bSd,y'X') (¢Z'X',—_¢z'x',+)

(%-3)

We have used the irreducible representation symbols
to denote the wave functions with superscripts spec-
ifying the symmetry type. The wave functionsL3‘ are
expressed in terms of primed coordinates in which x!
refers to the (1,1,1) direction. We have omitted the
subscript k of ¢, in (4.1) and @.2), but in (4.3) we

have used the subscripts + or - to specify 5 being
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20
(2,52 25 i (s =-. It is also to be noted that
we have only included core states up to the atomic 3d
state in the wave functions. Some of the coefficients
b and b! will later be given explictly in terms of
a( |k+kl) , and B, (k+K) -

At Tppy

The valence state F25, is six fold degenerate
(spin degeneracy included). When we treat'ﬁs_o as a
perturbation on KO in (2.1), we only take into consid-
eration the three degenerate orbital states, one (@i
which is given explictly in (4.1), and the two spin
eigenstates |+> and = G g,- With respect to these
states, the only nonvanishing matrix elements of ﬁs—o

airew

arsy

T
N VZ = _ ~ s 2512
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together with their complex conjugates. The Hamiltonian

3l dharsral 21 (6 v (o) igehvagatyed

0 0 0 0 =S = \
0 0 S -ig* 0 o
0 S* 0 = 0 0 \
0 is =5 0 0 0
oLt 0 0 0 0 S
\-s* 0 0 0 S* o/

(4.5)
This matrix can be reduced to two identical 3 X 3
matrices. In other words, the s-o split levels are
at least doubly degenerate. This Kramer's degeneracy
is due to space inversion and time reversal symmetry
of the Hamiltonian. After diagonalization of the Ham-
iltonian, we see that the F25, state splits into two,

for which the energy shifts are:

AE. = iS (quartic degenerate)
and

AE, =-2i8 (doubly degenerate) (4.6)

2
Since most of the s-o matrix elements in S are connected
with the atomic core s-o splittings, the valence s-0

splitting in the crystal can be conveniently obtained
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through the splitting of the core states A2p’ A3p and

A as follows

3d
e igp IbF25'I2 BytIbg 25 jerm 3]b'F25'|2 A
s-0' 25! 2p pt f3p” 5134 3d
+ 6(R (b 225') b 25 S e

According to (3.4), the coefficient b's in terms of
plane wave and orthogonalization coefficients are

equal to

Il

2
3

I B F

2517 5 o5t 1
Pop, 3p 1[1— a 25'({3) B,y 3,(73) + 2 a 2 (2)By, 4 (2)
e K

l

e (4.8)

5= 2 o B5(r3)

F 1
A 5a(3) + V3 a (202) B3(202)

Here we have used orthogonalization coefficients which
depend only on the magnitude |5+§l of the wave vectors,
given in units of 2m/a in the argument of B, . The
variation of Bt(5f§) with the directions of a set of
wave vectors of the same magnitude has been absorbed
into the numerical factors in (4.8).

In any quantitative evaluation of the splitting
according to (4.7), we first need the sSplitc

of F25,
ting of the core states. This can be obtained either
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from experimental x ray data or from calievlation s s0n
the experimental side, Tomboulian and Cadyl6 have com-
pleted the identification of the x ray emission lines
2p3/2—a25 and 2p%—>25 for the second row of the per-
iodic table. Their value for the 2p s-o splitting of
31 is listed in the first line of Table I. By invoking
Slater's rule that the missing electron gives an extra
screening charge of 0.3 ev, we can use Tomboulian

and Cady's values to estimate the 2p splitiing sin neu-
tral Si (second line of Table Bk A= sReriGerSiere 0 5
only an experimental value for the 2p core s-o split-
1naliakes Hojys Tyren17 from K-emission data. This value and
the corrected value for neutral Ge are also listed.

On the other hand, to calculate the core s-0
splitting we assume that the crystal potential has
spherical symmetry in the vicinity of each atomic
Sevell Whien ke evalinescantbe obtained by (2.3).

We have already done this for Ge in Section ITI and we
calculate now the 2p core splitting for Si baged on
crystal potential and atomic core wave funetiens used
by Kleinman and Phillips18 in their Si band calcu-
lation. All the calculated results are liscedin
Table I. In all the subsequent calculations we shall
use the corrected experimental value for Ghe ST 2p
core s-o splitting and the calculated values for the

three Ge core (2p, 3p and 3d states) splittings.
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To obtain the plane wave and orthogonalization

T IE
251 , 25!
B 3 and b3d
in (4.8) for Si, we rely upon K and P's crystal wave

coefficients for the evaluation of b

functions. For Ge, we use the H-F atomic wave func-
i ent oy Piper13 and a computer program furnished by
F. Bassani and M. Yoshimine to run the Ge OPW crystal
wave function on an IBM 704 computer. We include in
the appendix a brief discussion on this calculation
and a list of the orthogonalization and plane wave
coefficients. The corresponding Si values may be
obtained from K and P.

With the core splittings and coefficients b and
b', we evaluate the s-o splitting of the F25, state
for Si and Ge by successively taking more and more
plane waves in (4.8). The convergence of the cal-
culation is shown in Fig. 3. After about 80 plane
waves the calculated splitting is expected to change
by no more than 7%, because the plane wave coefficients
for any higher X are very small. This expectation is
represented by dotted lines in Fig. 3 indicating
approximate convergence. In the study of convergence,

we have neglected the contribution from 2p - 3p inter-

G

s?o; this is to be corrected

ference term in (4.7) to A
in the final result. The s-o splittings for Ge and

Si thus obtained are Agfo(r%,) - 0.042 ev and
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25,) = 0.29 ev. They are to be compared with
B

the experimental values of As—o(F25') = O ol

Ge
AS_O(F

.0004 ev' and,Agfo(F = 0x3 ov. > The agreement in

25!)
both cases is good. In the calculation for Agfo(FEB,)

we find that the 3d state contributes only 2% (of
opposite sign to the contribution from p states) and
the 2p state 4% to this value.

As T is of atomicp symmetry type, we compare

251!

Ge (Tps,) with Aﬁg of Section IT. We notice that

5-0
according to calculations the splitting in crystal is

about 2 times larger than that in the atom. To see

r
how this enhancement comes about we compare bt25' o
(A 5ieh) yatactal NB2p in (2.6). The average value of the
Toey
orthogonalization coefficients Bt(l5+§]) in bt29 is

about the same in magnitude as the corresponding Bt

for the atomic wave function. However the rest of
bt25', which ig essentially a summation of plane wave
coefficients, adds up to 1.78 for about 80 plane

waves in (4.8) while in the atomic case N = 1.02.
Physically, this difference in normalization constants
means that the wave function in crystal gets contracted
in the core region of each atomic site. bt Bl
contraction which gives rise to an enhancement of the
s-o splitting. For Si, the same enhancement is noticed;

Si

the atomie splitiing A3p = 0.038 ev from spectroscopic
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term valuesllL with the configuration 3s2 3p2 3P. Saliics
at present there are no atomic H-F wave functlons cal-
culated for neutral Si, it is not possible to carry

out a calculation similar to what we did for Ge in
Section II to demonstrate the enhancement.

Along A. for Si

5

The s-o splitting of the energy bands along A5 in

diamond structure solids has been qualitatively dis-
cussed by Englert.l9 Although he uses tight-binding
type wave functions while we use OPW crystal wave
functions, the qualitative features of our results
are the same since they all depend on the crystal
symmetry only.

For simplicity we consider explicitly the case
for Si in this section. We first consider the region
near the zone edge X4 and then the region near F25"
In the former region, we are far away from the zone
center. Then in studying the s-o splitting EIRRIE A5
valence band, we only need take the two degenerate
states A5y and A5Z into consideration, one of which
is given in (%4.2). With respect to these states, the

only nonvanishing matrix elements ofé{s_o ligzi e

A A
41182 > = (Ipg 21310y, 21%) x

Ay Iy 1X0,> (4.9)
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and their complex conjugates. Then, the degenerate

A5 state splits into two states, each doubly degenerate

(Kramer's degeneracy), and the splitting is equal to

a8t (A

A
5 .
L 21 A2p51 (4.10)

A
) =5 Mg 212 - 1o

5 2p

In terms of parameters in OPW type band calculations,
JAN
the coefficients b 5 and b/l 5 ZUEEH
2p 2p

A A
®2p it JE‘i{{g%IE a O({ 6%+2) ngd 8242) +
; . )
b S T ey 5 2
e FriEen) my,( 1) %)
oS - [ <SR B, ) +

- aAS(‘/(a_l)%i) B, (,/(’5-1)2+4)+....]
V/k6—1)2+4 g

()
using the direction independent orthogonalization co-
efficients as in (4.8). Here (6+1,0,0) is the pos-
ition in the B.Z. under consideration in units of
2m/a. MAccording to the terms listed in (Ao aan) , HeE
difference in lbgpA5] and 1béA51 is due to one con-
taining the (6+1,2,0) set of glane waves and the

other the (6-1,2,0) set. The first thing to be noted
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b5 b5
SR thab ot Xu(ézo), lbzp | is equal to ]bép {. Then,

according to (4.10)

LEHGmC (4.12)
which is consistent with the prediction by Elliott1
using the theory of the double group. Next, we go
away from X, toward the zone center but keep |6 small.
By (4.10) and (4.11), the s-o splitting of the A5

state reflects the properties of the wave functions
through the difference between b2pA5 and béiS. How-
ever, the orthogonalization coefficients and the num-
erical factors in |b2pA5| and ]béiSI are not sensitive
functions of k; their product only changes about 1%
when Ié] changes from O to 0.5. Therefore, the dif-
ference is mainly due to the coefficients a 5. The
secular determinants for A5 and X4 in the OPW method
have identical off-diagonal elements; only their di-
agonal elements %;(5+§)2 differ. Therefore, by using

perturbation technique, we can establish that

a3/ (s+1)%8) = & "([B) (1+ Bl

a By (1- 2lsl),  (4.13)

25 [(5-1)2)
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when & is small. It is then evident from (4.10) that

A (A

e is proportional to lé] if higher order terms

5)
are neglected. To determine the proportionality con-
stant, we calculate the s-o splitting of A5 e B Ghe
conduction band edge ko for Si (6=-0.15 at 5). iihe

calculation using the band parameters of K and P

establishes that

Si
5-0

RE ALY 00 ip1NASY (T (near X))

(4.14)

5) 25,) >

where 6 is in unitsof 2m/a as before.

We now go to the region in the v enn Gy O
e = 0. Tirst we would like to mention that although
there is a splitting for F25,, the lower doubly de-
generate level goes to A7 (in the notation of the
double group) associated with the orbital state Ay, -
BoEt aamta s Sthe orbital state A5 is concerned, the
splitting is zero at the zone center. In the vicinity
of k = 0, we have to take the Ay, state into consid-
eration when studying the s-o splitting @5 A5. The
conduction state Al does not have much influence since
the conduction-valence energy gap 1is about 30 times
larger than the A5 s-o splitting. Using the three
states A5y, ABZ, 55
the s-o Hamiltonian and get the energy shift Tor

and A as a basis we diagonalize
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the A5 level as:

= il .
Al Ml e ?IEAS EA2!+ AL (Tos1)
=
e (17 T 2
_ BoEbt B GE G
(EA5 EA2'+ ) '§ AS—O(FQS') ’

In getting (4.15), we have assumed that all band
parameters appropriate to small 5 are given by those
Chib 5 = 0. Furthermore, in the vicinity of 5 = 0

E and E are given in terms of hole effective

A A
5 2!  2g,21

mass parameters Sel that

B, (k) - By (k) = (M-1)%° (4.16)

The values of M and L for Si as deduced from experi-

18,22 are M= -6.1 and L = -2.8 in units of

ments
h2/2m. Therefore, we can use (4.15) to get a quan-
titative estimate of the s-o splitting for A5 near

the center of the B.Z.

In summary, we see that at the zone center, the
S—e.splitting for A5 is equal to zero. As we move away
from the center, the splitting increases and then
decreases to zero again at the zone edge. A sketch of

S
A (A5) vs. k

. is given in Fig. 4.

X
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AGnE nrand Along A, for Ge
) T

To evaluate the s-o splitting at L3' Ror\Ge, We

scills Creat }%—o as a perturbation on the doubly

(orbital) degenerate state L3,, the wave functions of
which are given in (4.3). The calculated results vs.
number of plane waves taken for the basis functions

is again shown in Fig. 3. We take as our calculated

Ge

result As—o(Lg') = 0.18 ev after putting in correction

due to 2p - 3p cross term. The most recent experimental

value from a reflectivity measurement by Cardona and

Ge

. 08 e teilntithe ealeylalbiony

Sommers8 e AR

3')
we find again as in the calculation for AS?O(F25,) that
the most important state which contributes BoRiche

valence state (both F25, and L3,)

the 3p core state. The 3d state contributes a value

splEfinsNaREGENE S

of less than 1% and 2p a value of about 4% of the

total splitting. These facts are readily understand-
able. First, the 3d state is not important because
there should not be too much d character in the crystal
valence states we are considering, which evolve mainly
from the atomic 4p state. Second, the 2p state does

not contribute appreciably because 1t has a small
radius, resulting in small values for the 2p orthogonal-
ization coefficients B2 -

P
Next, we discuss qualitatively the behaviour of
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the s-o splitting of A3 in going from F25, to L3,

along the (111) axis in the B.Z. In examining (4.1)

and (4.3) we see that F25, contains bonding p character
(antibonding d character), or ¢pl - ¢p2 type wave
functions while L3, contains antibonding p character
(bonding d character), or ¢p1 + ¢p2 type wave functions.
Along A3 there is no inversion symmetry in the group

of the k vector; hence, both bonding and antibonding
types are allowed in the wave function. Somewhere

along A the weight of the two types must be equal.

3’
Then, according to procedures which lead to (AL 1N, elars

s-o splitting should vanish at this point. This shows

that the s-o split levels along A3 have a cross-over.

We shall see in Section V that under a two band approximation
the longitudinal g-tensor for conduction electrons in

Si is related to the s-o splitting of the A5 valence

state and is larger than the free electron g-value 2.0023.

When we go from A_. to L3,, we encounter a cross-over

5
in the s-o split levels. Since the s-o splitting at
L3, is related to the longitudinal g-tensor for con-
duction electrons in Ge, it becomes smaller than P02
under a two level assumption which is consistent with

experiments.
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V. g-Tensor

As we have seen in the last section, there
exists a Kramer's degeneracy in the energy bands of
diamond type crystals even with s-o interaction. How-
ever, if we put the crystals under a magnetic field
of strength H, the two fold degeneracy 1is &1 & e dmaiie

Hamiltonian in (2.1) then has an additional term

nj=

R =

B g&H (5.1)

where B is the Bohr magneton. In the absence of s-o
interaction, g becomes a scalar quantity and is equal
6 2500234 (O1ay Eihis) ©)blalzie daizhately, aliol additienteo™ea
diamagnetic contribution, the orbital motion of the
electron under a magnetic field changes the value of
g from 2.0023 through s-o coupling. For some semi-
conductors when the conduction band edges consist of
several valleys and lie along symmetry axis instead
of at the origin of the B.Z., the electron energy
surface may no longer be a sphere even if the crystal
possesses cubic symmetry. In this case, s-0 inter-

action introduces anisotropy into the g-value and

38
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makes it a tensorial quantity as indicated in (5.1).

To obtain in theory the dependence of g on the details
of the orbital motion of Bloch electr&ZS is in general
a difficult task because the magnetic interaction can
not be treated as a perturbation on Bloch states which
have a quasi*continuous energy spectrum. For Na, Yafet2
used a cellular method to solve numerically the mag-
netic Schrodinger equation to obtain the g-factor.

For paramagnetic ions embedded in crystalline salts,

we abandon the band picture and regard the electron

as localized at the ion position. Then, with respect
to the discrete atomic states, the electronic inter-
action with crystalline field and magnetic field can

be treated by perturbation theory. This localized
electron picture does not apply to conduction electrons
in semiconductors. Nevertheless, since only states

in the immediate vicinity of band edges are important,
we can ignore the k dependence of the g-tensor and use
the effective mass approximation. In this approximation,
general formula for the g-tensor are contained in
several paper'sn’5 and need not be repeated here. For
some semiconductors like Si and Ge, details of energy
band structure are known and use can be made of the
symmetry properties of various states to obtain

selection rules for the matrix elements involved in
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the effective mass formalism. In this way Roth
derived the following formula for the g-shift of con-

duction electrons in Si and Ge by treating ag—o as a

perturbation.
5gﬁi - 6g>" = Re %Z|¢?v Ei;E;;<Al]P Y ><al¥ [0, 427>
X <A;ZIPZ]A1>
IR <0, In 18} el
mlu sV EOL.LEOV ' ¥ 2

vZ
x <agfle,la>

i 4
og = foE = Re —= 3
i V2 mlu, Eoquv

<&, 1P, I&Z <A“Zlh [Al>

v
x <oyl lar>
e <8, Ih ]A“z><A“Z]P IA o
mi IgH E
L,V oW ov
v
x <a 1P [a)>
¥ Re 2 5 ziz—a P Cle o
VR ou Eov
v
x <afflnofa> (5.2)
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and
agﬁe - 5855 - Re E% 5 gp—<Iy e, 1257 ><L e %?'>
sV ou ov
e e >
+ Re é%u? EOLLEOV<L Ihx,ng><Lgle,|L§?
X <L§?'|PZ,|L1> :
6g?e = 6g g1 = Be JL D <L 1P, ng?' <L3, ]h i

u,v ol oV

5
X <Ly Py, 1T>

1

ml

+ Re o = g5y Ing B >al® e g >
W,V Eo fov

v
o <L2,|PX,lL1>

4 wz' vz'
+ Re =y 2 E——E——<L .4 IL ><L IP Iz

5 vEell=oV

Wizl
x <L ]hy|L1>v - (5.3

In (5.3), the primed coordinate x!' is used to denote
the (1,1,1) direction, which is the principal axis of
the electron energy ellipsoid in Ge. The expression

contains the linear momentum E matrix elements from
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the effective mass approximation and the matrix elements
@i Q from s-o coupling. See Figs. 1 and 2 for relevent
energy levels. Note the core states with superscript
Iltll.

Effective Mass

From the formula for the g-tensor in the effective
mass formalism like (5.2) or (5.3), we see that any
calculation of the g-tensor involves calculation of
s-o0 and momentum matrix elements. Calculation of s-o
matrix elements from OPW crystal wave functions has
already been discussed. We now discuss the evaluation
of electron effective mass with OPW type wave fune cions,
which involves the calculation of momentum matrix
elements.

We rewrite the OPW function in a general form
without explicitly specifying its symme try

1) x

~

= . EBt(g+§)¢t’%+'1§J (5.4)

= 2
~ k
~
5 : St a :
where ¢t,%+§ is defined similar to ¢t,5 Sl (2e2) il
the normalization is such that the plane wave part of

wk is normalized to 1 over the whole space. The
~

momentum matrix element is then evaluated
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Wy Rln> /<y = <wk}wk> 4

~

A
k k
o t(m+5)Btr(mf§?<Xt|ElXt'>J (5.5)

where

e Bi(g+g>3t<g+g')]<5.6>

A i

., * 1
<y%|w5> =K2K'a(5+g) a(x+K')| o

~ T

=

Since absolute square of the orthogonalization co-
efficients is small compared with 1, the last two
terms in (5.5) are normally negligible. 1In addition,
the normalization factor in (5.6) may counter-balance
the two additional factors due to the core orbitals
depending on the sign and the magnitude of the
momentum matrix element <thzlxé>. This cancellation
has been found by K and P in their calculation of the
electron and hole effective mass for Si.l8 In a
similar calculation for Ge in this section, we hope
that this cancellation still prevails. Therefore, we

shall take the plane wave part only for the OPW wave

function and at the same time neglect the core
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contribution to the normalization factor.
The two components of electron effective mass

in Ge are given by

e g1 (2
R | e (1R B
m¥’ Ge 0 Eou i Rigevil ol
m 2 1 2
(‘E-I')E)Ge = +'ﬁ 2 E l<L1‘PX|]Lg|>1 (57)
hoTou

A two level approximation is sufficient forsthe
cwabuesiler @it (Bl | fHens m/mz the relevent two levels
are the conduction band Ll and the valence band L3,;
flomr m/m; they are Ll and Lé,, which lies above the
conduction band in energy. By using the experimental

25 *
energy gap value E. - E S NONI e e = Romiemn (m el el
o S t

our calculated gap value E - E.1 = —lISEe s e v flore
5 Sl
m/mz, the effective mass components are found to be
* * X
(m/mt)Ge = 12 and (m/mﬁ)Ge - 0.52. Comparing these
7 ; 24 *

with the experimental values oIt (m/mt)Ge = 12 and
(m/m;)Ge = 0.61 from cyclotron resonance, we see that

the agreement is satisfactory. Our calculated value

M8 ey dtene 13 _ E.1 is probably too small in mag-
Ly L7

nitude. A better energy gap value may improve the
*
agreement in the case of (m/mﬂ)Ge.
Phillips,l5 using the crystal wave function for

Ge obtained by his interpolation scheme, evaluated
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(m/mz)Ge to be 6.7, or only about one half of the ex-
perimental value. It 1is suspected that this is due
to a computational mistake rather than usage of an
incorrect value for the energy gap as conjectured by
Phillips in his paper.

The Ge hole effective mass parameters have not
been calculated here because we are not going to
consider the g-factor for holes in this work. e
calculation of electron and hole effective mass tensor

18

components for Si has been done by K and P.

Two Band Approximation

From (5.2) and (5.3), we would think it natural
that the s-o splitting of the nearby valence band
should be responsible for the shift in the g-value of
the conduction electron. Then, in theoretical eval-
uation for the conduction g-tensor, the momentum
matrix elements involved can be obtained from the
effective mass and the spin-orbit matrix element from
the measured splitting of the valence band, or the
atomic spin-orbit splitting. AiliseRssslieNene reyssaD
involved may sometimes be obtained from optical data.
In this way, agreement between the estimated g-value
and the experimental one provides us with another
internal consistency check of the one electron theory.
Roth's calculation along this line for 6g” in (}e4

gives good agreement with experiment. Also, her
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estimated value for the spin-orbit splitting at L3,
for Ge4 was confirmed by our detailed calculation and
by the experiments of Tauc and Abraham8 and the recent
ones of Cardona and Sommers.8 In this section, how-
ever, we shall demonstrate a case where two band
approximation is no longer suRfietienice
Let us assume a two band case for Si. Then, we

have for the longitudinal shift

5gﬁl =B e (E

S5 fg

___E_A_)E [<a, [ (62512 <aYln, |aZ> (5.8)
From K. and P.'s calculation only A5 contributes
appreciably to the electron effective mass at Al.

Then the value of the momentum matrix element in (5518))]
can be taken from the effective mass. The s-0 matrix
element has been calculated for ko in Section IV and

[a¥ 2%
the energy gap can be taken from Kow 2nde Pl sibane

calculation. If we take (%f*)Si = 5.2,25 L EA =
1L

4.7 ev,18 and A, o = .0011 ev from (4.14), the -
magnitude of 5gn is evaluated to be .98 X 10_3.

Next we consider the question of sign. From (5.8)
we see that the sign of 6g“ is determined by the sign

of %<Ag|hX|A;>, which can be related to the atomic

core s-o matrix element by
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A A
Ao Z iy 52 5(2y 1
3a¥In (82> = (13217 (o017 T < B> 1(5.9)

From (4.6) and the fact that the quartic degenerate
state, which corresponds to an atomic P3/2 SCabenrilEes
above the doubly degenerate one at I', it is readily
established that the sign of %<Xy|hxlxz> is negative.
Furthermore, from the discussion of s-o0 splitting and
specifically from (4.11) and (4.13), we see that
|béi51 & |b22]at k. Then according o580 5gﬁi
has a positive siE;. The question of sign for 6gﬁi
was first pointed out by Yafet.26 A rough estimate
for 6g?i in the two band case gives it a negative
value,—the magnitude of which is one fiffth of that of
6g”.

In short, assuming a two band case for Sl o A
calculated values for the conducticn g-tensor do not
show any agreement with the experimental values27 which
not only give a negative 6gu but also a 6gl larger
in magnitude than 6g”. For Ge, however, é—two band
calculation gives a negative ég” consistent with ex-
periment. This reversal in sign from Si to Ge s
reflected in the s-o split levels for the valence band

by the cross-over along A3 discussed in Section IV.
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Calculation of g-Tensor

From the failure of a two-band approximation,
we see that the problem of g-tensor in Si 1s com-
pililca pedi s not possible to evaluate the
shift purely from experimental parameters. For Si, we
use K and P wave functions to calculate some of the
matrix elements involved. First of all, because of
the selection rule <X4n|h]X4n> - 0, we expect that
the largest contribution comes from the interband s-o
matrix element <A5n]d£%n'> ~ <X4nlh|X4n'>. TGRS
found that the most important terms in the g-shift RoR
3i involve matrix elements of this form when one of the
levels involved belongs to the 2p core state, which
is far below the conduction band. The reason that
such a low lying state can make important contributions
to the g-shift is due to the small magnitude of the
s-o splitting of the valence A5 state at 53’ which
we have calculated in Section IV. Therefore, the gain
in s-o matrix element by going to the 2p core, even
after being off-set by the loss due to the energy
denominator, still gives dominating contributions.
In the calculation of the momentum matrix element
between valence states, we follow the discussion
in effective mass evaluation and use the plane

wave part of the crystal wave Punetvion. In the
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evaluation of the momentum matrix element involving

core states, we use the Slater type analytic wave

functions for the core used by WOodruff.28 See Table

IT for the relative importance of different terms in

calculating the Si g-tensor. The calculated results

for 6gﬁi and 5g?i are listed in Table III together

with thedir expe;imental values by Wilson and Feher.27
After the investigation for Si, we come to ask

ourselves whether a two band approximation is sufficient

for Ge, especially, what is the role of the various

core states involved. For this investigation, we

use our own Ge crystal wave function. We do not want

to consider any term in Eq. (5.3) which contains core

S GoibE SR EWACES (these are very small because-.of the

square of a large energy denominator involved). So

we have to mix one of the valence states to the con-

duction state by a momentum operator and then mix this

valence state to one of the core states by the s-o0

operator in order to get any appreciable contribution

to the g-tensor. Since we have seen in the previous

section that there is largely 3p character in the va-

lence states involved, we need only consider the 3p

core state. Investigation along this line shows that

the core contributions to both 6gﬁe and 6g?e are

negligible. Then, a two band approximation (Ll and
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L3, states in Fig. 2) should be sufficient for 5gﬁe.
For ég?ethe most important contribution comes from
Ghe fi;st term in the appropriate formula in (5.3)
when the three bands involved are Ll’ L3, and Lé,
of Fig. 2. The contribution from other terms is very
Sl dha jeEheiglEbiEhg Agl’ atid Roth's4 original notation
amounts only to 1% of the most important term. ey
verifies Phillip's conjecture as mentioned in Rothls
paper. Since there are very few bands involved, we
can use the experimental values for the effective
mass and the s-o splitting in the calculation of
conduction g-tensor whenever this is appiticablc s The
calculated values are listed in Table III.

It is to be noticed that the calculated value
flor 6gl has the right magnitude but the wrong sign
as coﬁ;ared with the experimental one by Wilson and
Feher.29 Several possible causes for this discrepancy
may be mentioned. The one-electron approximation and
the effective mass formalism have been tested in many
ways in other experiments and in the other parameters
calculated here, with good agreement between experiment
and theory. The present calculation is rather insen-
sitive to the band structure because the most important
energy denominator EL - E is taken from experiment,

L
il it
and because the momentum matrix elements are close to
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those of nearly free electron wave functions. Further
there is no selection rule for the s-o matrix elements,
which are normal. It therefore appears most likely

that an error in sign has been made. A careful search

has been made, but with no success.
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VI. Spin-Lattice Relaxation in Si

Roth9 has proposed a spin-lattice relaxation
mechanism for donor electrons in Si, which 1is the
whole relaxation mechanism when the magnetic field is
in the (100) direction (x-direction). This mechanism,
according to Roth, arises from the interaction which
is responsible for the modulation of the single valley
g-tensor values when the crystal is under uniaxial
stress along the (111) direction. The interaction

takes the following form:
0= a 5 eyz(oyHZ+ozHy) By eill: perm.} (G

where B is the Bohr magneton and Eyz is the yz com-
ponent of the strain tensor. When the Si sample 1is
put under stress in the (111) direction, the AE' state
which is very close to the Al conduction band edge
gets mixed into Al through the shear deformation po-

tential component Eyz if the effect of crystal deform-
47
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ation on the electronic states is treated by perturbation
theory. Roth argued that in view of the small energy

gap between A and Ay, a2t the band edge (0.35 ev
according to our calculation), the most important terms
in the parameter A should involve A2' at least twice

and are equal to

e <A2,IPXIA2.><A2,]EyZIA1>

A = =——
3m 2
Ejor Ei5

o y 7 Z
{%AIIPYIA5 ><byg ]hylA2,> i <Al]hylA5 ><bs IPy|A2,>}
(6.2)

We have investigated all the remaining terms in the
perturbation expansion for A, paying particular attention
to the core states and we have estimated itz daEalic

net contribution amounts to no more than 10% of the

two terms already listed in (6.2). Wilson and Feher27
in their experiments measured the change in the con-
duction g value when the Si sample is put under stress
along the (111) direction and hence the parameter A.

On the other hand, we have calculated all the s-o and
momentum matrix elements and energy gap values involved
il Ay Skl olalealie experimental value st = (@it s DOt
we then get a value of EENc RO <A2,lEyZlAl>. This

is to be compared with the intraband shear deformation
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potential matrix element E, = <Al]Eyy[Al> = 7 ev from

conductivity measurements.BO
Wilson and Feher27 also measured the relaxation

rate due to the mechanism in (6.1) and compared the

experimental value with the value obtained by theoretical

formula after putting A = 0.44 from the measurement of

shift in g-value due to strain. They found that the

theoretical relaxation rate is too slow by about a

factor of 2. In other words, if we are to estimate A

from the relaxation rate measurement, assuming the

proposed mechanism, we would get a value for A 2 times

larger than O.44. This in turn gives a value for

<A2,|EyZ]A1> 2 times larger than what we estimated.
Roth14 and Hasegawalo have independently proposed

another mechanism for the donor spin-lattice relaxation

in Si, which is caused by the change in g=value due

to valley repopulation and depends primarily on

g“ = gl. Wilson and Feher’27 in their experiment also

measufgd the relaxation rate due to this mechanism.

[Ufhalalzd elalz atial measured value, Yafet26 then estimated

E2 involved to be 20 ev. Comparison of this value

with 7 ev from conductivity measurements gives us an

idea about the range of error we should expect by

estimating deformation potentials from spin-lattice

relaxation measurements.
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The author was informed that Hensel31 was con-
ducting an experiment to determine the change in Si
electron effective mass due to strain mixing of
Al and A2,, which will provide a check on our calculated
results for the deformation potential matrix element.






Bl

TABLE I
CORE STATE SPIN-ORBIT SPLITTING

Si EiE
2p Exp. (ev) 6 T2 31
Corr. exp. (ev) 0.60 27
calc. (ev) 0.52 30

3p calc. (ev) 4.0

3d calc. (ev) 0.57




(va) .ofms
o8 (va) .ofso

¥e. 0 {va) .ofse




5

TABLE IT

RELATIVE MAGNITUDE OF CONTRIBUTIOKS TO g-TENSOR IN Si

Term in (5.2)

Relative magnitude

involving: with respect to first

term in 6gﬁi

sg <byloylag”>, g In 185>, ag®lp, 18> 1
<y Ipy 185175, <V In, 165", <aglp,1y> 0.7
ayloglag’>, <oV Inylagt®, g P e, 18,> 0.7
<ty lpylas™s, <as¥n la5%>, g®lp,lay> -2.6
yloy1a7>, gl In,lag" >, s, lay> 2.6
58| @y lp, 857>, <aglo 1o, <ag®In¥]a,> -0.5
<y 1p 185> @ Plnglag >, <aptleglsy> 0.3
by 1p, 18557, a5 In 167>, <My l8,> -0.2
a,lp, 1857, <b5%Inglay ™, ;" lpyla,> -3.1
<y lp, 18,525, g % Ingla, ™, ;"o 18> -0.3

Note:

The first term in o6g, 1is the
in the two-band approximatign.

only one contributin
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TABLE IIT
G-TENSOR
%8| o
cal. =R OO -0.0036
St exp. - .0028 -0.0040
Gl =1l © +0.069
Ge exp. =il A -0.082
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APPENDIX

Band Calculation for Ge

A band calculation for Ge is done by the orthogonalized
plane wave method. The crystal potential is assumed
to be composed of two parts, coulomb part and exchange
part. For the coulomb potential a superposition of
atomic charge distribution is assumed. The atomic H-F
wave function for Ge is furnished by Piper. For the

exchange potential we adopt Slater's approximation

ex(

173
J

V() = -6| 3 p(E) (8.1)
lumping both core and valence charge densities together.
The valence wave function is orthogonalized to atomic
core wave function and the orthogonalization coeffi-
cients At are listed in Table IV. Note that the
orthogonalization coefficients Bt in all the formulae

related to the s-o splitting in this paper differ from

the listed A_ by a factor of {2 (B= J?At). This is
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because there are two atoms per unit cell for diamond
structure and we have included a l/ﬂ§_factor in the
core function ¢i,t in (3.2) to have it properly
normalized. By taking Vooo = -2.58 ry according to
F. Herman (Physica 20, 801, 1954), we have obtained
the energy eilgen-values (Table V) and eigen-vectors
for states at ' and L. The energy bands thus obtained
agree qualitatively with a similar calculation by
Herman, except that our calculation gives a F15 state
lower than P2, state in energy, in contradiction with
both Herman's calculation and experiment. However,
an adjustment of the value 10 Vooo can bring down F2,
relative to F15 state and produce a value for the
conduction-valence gap at I' and L in agreement with
experiment. For the most crucial gap value ELl— EL3,
in our g-tensor calculation we have used experimental
value. Moreover, the calculated crystal band s-0
splitting value depends primarily on the magnitude of
the orthogonalization coefficients, the accuracy of
which depends on that of H-F atomic core wave function.
The plane wave coefficients are not even sensitive to
band calculations for different substances of the
same crystal structure. For example, comparing the
3i result by K and P and the Ge result by us, we

often find agreement to at least the first figure
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between the corresponding plane wave coefficients for
some of the important states. Therefore, no attempt
has been made to recalculate the eigen-values and
eigen-vectors with different choices of Vooo' The
calculated values for the plane wave coefficients 1E(04i¢

various states of Ge are contained in Table VI.
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TABLE IV

ORTHOGONALIZATION COEFFICIENTS FOR Ge

15+5|2 Al Ao Agg -185, -1Ag, Azq
0 .00469 .03287  .15285  .00000  .00000 . 00000
3 .00468 .03193 .12669  .00560 -.08660 . 15462
L .00468 .03167 .11920 .00641 -.09390 .20933
8  .00467 .03066  .09385 NOESHE T=l0505 .28967
i .00466 . 02994 ol .01006 - .10479 .29512
12 .00467 .02970 07427 .01043 -.10393 .29310
16  .00L6h .02879  .05892  .01169 -09848 .27682
19 . 00463 .02813  .04952  .01246 -.09330 .26109
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TABLE V

ENERGY EIGEN-VALUES (IN Ry. FOR Ge)

LE' Ll L3, 1"25, Ll 1"15 I"2,

1l SR

—l o -1.523 =TT =1.036 =0.82% —0.792 -0.765

-0.730

—(0). s
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TABLE VI

PLANE WAVE COEFFICIENTS FOR GE

() o Fast Fot F1s
(000) 0.977

(&) -0.361 . 796 974 .990
(200) .669 .536

(220) 0.007 -.006 .51lb
(311)1 0.061 -.148 .099 LIl
(311}, -.073 110
(222) 0.018 -.094 .076 .026
(k00) 0.038 .020
(331); =007 —. 006
(331)5 .068 = (ol

o it T Ly I, i

(a2 alzel aiae)) NS .946 .190 . 178
(S 1ol = el SElE alglle) Sl oleRl) =aEls
(22 e/l .160 .249 - .149 12860 508 " —T055
(572 iLeate) = 0E3 .025 .188 eleel L oallon =BG
(5/2 3/2 3/2) Sl ol — 025 . 119
(5/2 3/2 1/2) - .097 . 047 .085 .022 -.254 . 049
(5/2 3/2 1/2) .13%4 .4o5
(5/2 3/2 3/2) - .058 -.03% .128 .058 -.106 -.0T74
(5 /20 5/201/2) S5 e il E e e G e =010,
(7/2 1/2 1/2) .070 . 034 L& 080 041

i/
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Figure 1. Sketch of energy bands of Si along
[100] axis of the Brillouin zone, after Kleinman
and Phillips. Superscript t is used to denote the
2p core states.
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Figure 2. Sketch of the energy bands of Ge along
[111] axis of the Brillouin zone, after our own band
calculation. The positions of T',, and L, states have
gntally Observed gap

been adjusted to fit the experim
The core states are not shown.

values.
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Figure 3. Convergence of the calculated spin-
orbit splitting values vs. number of orthogonalized
plane waves taken in the wave function. The dashed
lines indicate expected convergence.
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Figure 4. Sketch of the spin-orbit splitting
of the Ar valence band of Si. The dashed curve
represen%s interpolation from the calculated results.
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