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STABILITY ANALYSIS OF EBR-II
by

H. H. Hummel and L. T. Bryant

ABSTRACT

Calculations have been made for predicting the reso-
nance of EBR-IIto oscillator measurements to be made during
startup of the reactor. Because of assumptions made in the
calculations, which are believed to be justified by the design
of the reactor, the only feedbacks are promptnegative ones.
No instability in the calculated behavior is therefore possible.

The radially lumped pin model gives good results
for EBR-II pins for frequencies up to 2 to 3 radians per sec-
ond because of the short pin time constant, of the order of
0.1 sec.

1. ASSUMPTIONS AND CALCULATIONS

Calculations have been made for predicting the behavior of EBR-II
during oscillator measurements to be made during startup of the reactor.
Because of assumptions made in the calculations, which are believed to
be justified by the design of the reactor, no instability in its operation
appears possible.

The design of EBR-II has been discussed in detail elsewhere.(1)
A vertical section of the reactor is shown in Fig. 1. A drawing of the
core subassemblies is shown in Fig. 2. The core region of a normal
subassembly contains 91 pins each 14.22 in. long. The fuel is uranium
metal approximately 50% enriched in U®5 and containing 5 wt-% simulated
fission products (this alloy is referred to as fissium). The fuel pins are
0.144 in. in diameter and are surrounded by a sodium bond, 6 mils thick,
and a Type 304 stainless steel clad, 9 mils thick. The upper and lower
blankets contain similar but larger pins, 19 to a subassembly, the uranium
diameter being 0.317 in. in this case. Above and below the core are cool-
ant header regions in which sodium is redistributed between core and

blanket pins.

The following description of the subassemblies and their method
of support has been reproduced from Ref. 3.
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"All core subassemblies are identical in size and shape
(hexagonal). The dimension across outside flats of each sub-
assembly is 2.290 in. The center-to-center spacing of the sub-
assemblies is 2.320 in. The resulting nominal clearance between
flats of adjacent subassemblies is 0.030 in. Each core subassembly,
as well as each inner blanket subassembly, is provided with a
"button" on each of its six flats; the buttons are positioned so that
they lie in a horizontal plane 1.00 in. above the core (fuel) center
line. These buttons protrude a nominal 0.014 in. from the sub-
assembly flat. The button flats are 0.375 in. in diameter. The
dimension across opposite button flats of each subassembly is held
to 2.318 £ 0.002 in. The resulting nominal clearance between button
flats of adjacent subassemblies is 0.002 in.

"The subassemblies are positioned and supported in the
reactor by their lower adaptors, the ends of which pass through
holes in the upper plate of the support grid and engage in the axially
aligned holes in the lower plate. The portion of the adaptor which
rests on the upper plate is of the shape of a truncated sphere; the
upper edge of the plate hole, on which the adaptor rests, is cham-
fered conically. This arrangement provides a continuous line contact
for subassembly support. It has been established experimentally
that lateral movement of the upper part of the subassembly (or of the
lower end of the adaptor) is accommodated by pivoting of the sub-
assembly about this area of contact; that is, lateral movement of the
subassembly in the region of contact with the upper plate does not
occur unless a very large force is applied. The reason for this is
that the latter movement can take place only in accompaniment with
an upward shifting of the entire subassembly, due to the conical
shape of the support seat. Consequently, application of lateral force
in or above the region of the core section produces only a pivoting
of the subassembly until the lower end of the adaptor closes the
lower plate hole clearance (0.0042 in. radially), and, thereafter,
results in bending of the subassembly. Lateral movement of the top
end is unrestricted up to nominal displacement of 0.030 in., when
contact with the adjacent subassembly is made; if the adjacent sub-
assembly also undergoes displacement, restriction is not effected
until after correspondingly greater displacement."

Two vital factors affecting the safety of a fast reactor, which are
both dependent in its specific design, are bowing of the fuel elements and
the presence of a large delayed negative reactivity coefficient.(2) Such a
delayed coefficient would be expected to be caused by expansion of an upper
supporting structure and result in outward movement of the fuel. Because
of the method of bottom support of the EBR-II subassemblies, it is assumed
that no such effect takes place. The question of bowing in EBR-II has been
discussed in Ref. 3. This matter is currently under reconsideration, but
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no bowing effects have yet been incorporated into the feedback model. It is
not believed that these effects will prove to be significantly large. There

is some question about how large the radial clearances between subassem-
blies will actually be. It is believed that under operating conditions probably
no clearances will exist and that the core will expand radially according to
the local subassembly wall temperature, assumed to be the same as the local
coolant temperature. The calculations have been performed with and without
the radial expansion feedbacks to illustrate the magnitude of the effect
involved.

There are adequate experimental and theoretical results to indicate
that the Doppler effect will be insignificant in EBR-II, and it has therefore
been ignored. The sodium void coefficient, which has been found to be
positive in certain large reactors,(4,5) is strongly negative in EBR-IL

Because of the large sodium inventory in the primary coolant tank,
the temperature of the sodium entering the reactor has been assumed to be
constant.

Because of the above assumptions, no prompt positive or delayed
negative reactivity coefficients are present in the feedback model, and the
predicted behavior is therefore quite stable. The assumed feedback is a
prompt negative one due to unrestrained thermal expansion of fuel and
steel and to coolant expansion.

No non-linearities are present in the feedback model used so far.
Limited bowing would be one possible source of non-linearity. Another
possible source of non-linearities is phase transformation in the fuel. It
is believed, however, that this will be too sluggish in the case of fissium
to affect the results of oscillator experiments.

2. TEMPERATURE CALCULATIONS

Oscillating temperatures in the EBR-II fuel pins have been calculated
both with an IBM-704 code prepared for Long,(é) by means of the exact inte-
gration technique of Storrer,(7) and with an analog computer. These calcu-
lations were made for two-region pins, the inner region being the metallic
fuel and the outer, the homogenized sodium bond and steel clad. Although
the digital computer technique is more accurate, its application is limited
to linear problems in which time dependence can be separated out. Use of
the analog is desirable because it permits study of the effect of non-linear
feedbacks (although none has so far been assumed in EBR-II) and of non-
linearity in the kinetics equation.
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Because of limited capacity of the analog, a simplified temperature
calculation must be made when it is used. It has been found that acceptable
accuracy in temperature calculation for the EBR-II core is obtained for
frequencies up to 5 radia.ns/sec with the use of steady-state radial tempera-
ture distributions; that is, the oscillating component of the temperature in
a fuel pin at a given axial position is equal to the oscillating coolant temper-
ature at that point plus a source-produced term which has the same ratio
to the oscillating source as it would have in the steady state. The solution
in this approximation for the oscillating temperature of the coolant Tc(z)
as a function of axial variable z for a heat source a(z) per unit length of
pin has been given by Storrer(7) as

e-Xz/v /o' a(z|)e>\z‘/v i

AT (1 +iwTy)

5 (1)

T (z) = T_(0) e'“/" +

where h is an overall heat transfer coefficient defined so that h(T, - T¢)

is the total heat transferred per unit length of pin, T, being the "lumped"
fuel temperature; v is the coolant velocity; w is the frequency, radia.ns/sec;
Tas Cc/h, where C_ is heat capacity of coolant per unit length; and 7¢ is

a fuel pin time constant, which represents the ratio of heat stored in the pin
per unit temperature rise of the fuel to heat lost per unit temperature differ -
ence between fuel temperature and coolant temperature. This is related to
the ratio of the average fuel temperature (relative to T¢) to the temperature
at the outside of the pin (rela.tive to TC), and this ratio is contained in the
constant h, which can be defined as

=R R e (2)
where R is the outer radius of the pin and hp is the coolant film heat

transfer coefficient.

Storrer's development was for an unclad fuel pin, and for this case

1 1
=— 3
8mk = 27mRhp (3)

L
h
where k is the thermal conductivity of the pin.

Now T¢ is given by Cl/h, where C, is the heat capacity of the pin
per unit length. Then X is given by
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T T
w i i 2 2
= ———— =y i | i h :
A ¥ 2 AT WA <l = 'rfu)> (4)
f c c

In order to obtain improved accuracy in phase-shift calculations
over that for the bare pin model, the EBR-II pin is treated as having two
radial regions, a fuel region 1, and a homogenized bond and clad region 2.
In this case Eq. (1) still applies, but it is necessary to modify the defini-
tion of A to the following:

o (DTfT'f ’Tf
PR : —, 202
1 + w?r? 7 +1<1+T+w7—f> : (5)
f c c
in which
= = Cl + cz[(Tz = Tc)/Tl = Tc)] (6)
f h y
C, +C,
U
A= (7)

and h is found from Eq. (2) by using the two-region steady-state tempera-
ture solution with a constant heat source in region 1, rather than by using
Eq. (3).

The phase shifts in EBR-II core temperatures relative to the power
are very nearly linear in @ up to 2-3 radians/sec. This is to be expected
when typical values of constants for EBR-II are examined for a coolant
velocity of 537 cm/sec, the average full-flow value. In this case,

7. = 0.104 sec

T'f = 0.136 sec

T = 0.0410 sec
C
! -
Tf/TC 3.32

and

z/v = 36.12/537 = 0.0672 sec (for full height of core).

For low frequency XA is approximately

X:iw(l+z'f—> ’ (8)

e

10
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the terms in a’ being small. The coolant transport lag in the core is then
of the order of [1 + ('T‘%/Tc)] z/v, which is 0.29 sec. A complete discussion
of the validity of lumped parameter models and of low-frequency approxi-
mations for a bare fuel pin is given in Refs. 7 and 8.

The application of the bare pin approximation, using Eq. (3) for h
and the definition of T according to Eq. (7), leads to a value of T¢ of
0.087 sec. This would not make X significantly different from the value
given by Eq. (5) at low frequency, since h divides out of the term linear
in ®. An error of 20% would be produced in the part of the phase shift
independent of coolant velocity because of the iwTf term in Eq. (1). It has
been found that Eq. (1) with the use of Egs. (5), (6), and (7) gives phase
shifts very accurately in the low-frequency range.

Solutions for coolant temperature in the core by means of the
radially lumped model have been obtained with the analog computer, using
four axial segments in the core. Equation (1) is the continuous solution
for this case. This is compared with the rigorous solution from the
IBM-704 in Figs. 3 to 6. Although agreement is not perfect, the analog
computation is seen to be a reasonable approximation.

~
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Fig. 3

Amplitude of T(z) in EBR-II Core in °C for

Oscillations of 1% of Full Power Multiplied
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The problem of calculating large temperature phase and amplitude
changes which can occur between the reactor core and an upper support-
ing structure can be an important one for reactor stability. It has been
found to be so in studies of EBR-I, Mark II.(9 The radially lumped pa-
rameter model is probably of limited usefulness in attacking this problem.
In this case, since there is no source, the steady-state temperature dis-
tribution is a constant, so that T) = T, = T(R):

The term 1/87k in Eq. (3) would not apply inthe case ofa one-region
pin with no heat source. For fast reactors the frequency range of greatest
interest for stability is below ~1 radian/sec. In this frequency range, if
heat transfer is from the coolant to relatively thin pieces of metal, ampli-
tude attenuation can probably be neglected and the phase calculated from

c
X=iu)(l+c—l\:-> : 9)
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where Cjpq is the heat capacity of the metal per unit length. This is equiv-
alent to assuming that metal and coolant at a given z are instantaneously
at the same temperature. This assumption was made in this paper in deal-
ing with the coolant header gap regions immediately above and below the
EBR-II core. If heat transfer is to thick pieces of metal or to material of
low thermal conductivity, the lumped parameter model probably cannot be
used at all, as temperature phase shifts in the solid material and amplitude
attenuation will be large, even at low frequency. In this case, the exact
solution of Storrer\7) must be employed.

3. REACTIVITY COEFFICIENTS, OPEN AND
CLOSED LOOP TRANSFER FUNCTIONS

Calculations of transfer functions have been carried out so far only
on the analog. Core temperatures have been calculated for a single repre-
sentative pin, whereas coolant gaps and blankets have been lumped both
radially and axially. The reactivity coefficients of expansion of fuel, steel,
and sodium were obtained from material replacement measurements in
ZPR-III on an EBR-II mockup. 10) These reactivity coefficients are given
in Table I for a core divided into eight axial slices, which were lumped
into four slices for the feedback calculations.

Table I

EBR-II REACTIVITY COEFFICIENTS FOR |SOTHERMAL EXPANSION(@)

(-§1x 105/"0)

3T
Coolant Radial
Axial . Structural
: Displacement(b) ]

. Egapain e oA
Fuel Steel Expansion Expansion Fuel Steel

Core-Az, cm

(from bottom)
0- 4.52 0.017 0.008 0.135 0.017 0.100 0.019
4.52- 9.03 0.060 0.006 0.115 0.015 0.142 0.013
9.03-13.55 0.086 0.004 0.108 0.014 0.157 0.009
13.55-18.06 0.100 0.003 0.101 0.013 0.174 0.006
18.06-22.58 0.098 0.003 0.101 0.013 0.168 0.006
22.58-21.09 0.080 0.004 0.108 0.014 0.141 0.009
27.09-31.61 0.059 0.006 0.115 0.015 0.125 0.013
31.61-36.12 0.027 0.008 0.135 0.017 0.087 0.019
Core Total 0.527 0.042 0.918 0.118 1.094 0.094
Gap, Unlag?ed 0.008 0.157 0.054

Gap, Lagged(c) 0.005 0.115

Upper Blanket 0.016 0.004 0.103 0.013 0.032 0.008
Radial Blanket 0.104 0.051 0.128 0.066 0.216 0.102

(a)Assumed coefficients of expansion - Sodium Volume 2.9 x 10°310¢
Steel Linear 1.9 x 10-5/°C
Fuel Linear 18 x1079/0C

All expansions except axial fuel assumed proportional to local coolant temperature.
(b)This effect is cancelled if radial structure expansion occurs.

‘C)Lag is 0.24 sec at full flow of 537 cm/sec and is inversely proportional to
coolant velocity.
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5

The lack of symmetry of fuel worth about the core midplane found in the
measurements is presumably due to a similar dissymmetry in EBR-II
geometry. The coefficients are divided into those which are based on no
radial expansion and those which are associated with unrestrained radial
expansion. Lumped coefficients are given for the upper coolant gap, upper
blanket, and the radial blanket. The unlagged and lagged components of
the gap feedback and the lag time were obtained from use of the tempera-
ture variation through the gap obtained as described above.

The amplitudes and phases of the reactivity feedbacks relative to
the power are given in Tables II and III. Feedback for the radial blanket
was found to be negligible above w = 0.1 radian/sec. Large axial phase
shifts are expected to occur in this case because of the low coolant flow
rate. A more refined treatment is clearly desirable here.

Table I
AMPLITUDE OF REACTIVITY FEEDBACK OF EBR-II AT FULL POWER

v = 270 cm/sec v = 537 cm/sec

Radial Expansion No Radial Expansion Radial Expansion No Radial Expansion

Frequency w,
radians/sec 0.1 10 2! 5.0 0.1 10 250] 5.0 01 1.0 2.5 5.0 0.1 10 2.5 5.0

Feedback,
SkIBI(Snno)

Na in Core 0391 0377 0322 0211 0200 0192 0164 0112 0219 0214 0197 015 0.111 0110 0101 0.080
U in Core 0164 0158 0.132 0087 0164 0159 0132 0087 0117 0115 0104 0078 0.115 0114 0104 0079
Total Core 0555 0534 0.455 0308 0362 035 0297 0199 033 0330 0300 023% 0229 0224 0205 0159

Upper Gap
(Unlagged) 0.080 0077 0.062 0037 0060 0057 0.047 0028 0048 0.047 0042 0031 0036 0035 0031 0023

Upper Gap
(Lagged)(@) 0.042 0039 0032 0018 0042 0041 0032 0018 0024 0024 0021 0015 0024 0024 0021 =

Upper Blanket 0.059 0050 0.035 0017 0.049 0043 0029 0015 003 0031 002 0016 0.029 0.025 0.021 0.014
Radial Blanket 0.033 & - - 0013 = = - 0.021 = = - 0009 -
Total 0760 0.689 0530 0312 0523 0.478 0.354 0195 0460 0430 0378 0274 0325 0308 0267 0.184

[a)Lag is 0.48 sec at 270 cm/sec, 0.24 sec at 537 cm/sec coolant velocity.

Table I
PHASE LAG IN DEGREES OF REACTIVITY FEEDBACK OF EBR-II RELATIVE TO POWER

v = 270 cm/sec v = 537 cm/sec
Radial Expansion No Radial Expansion Radial Expansion No Radial Expansion

Frequency w,
radians/sec 0.1 10 2.5 50 01 10 2.5 50 01 1.0 25 50 01 10 25 5.0

Feedback

Phase

Na in Core 18 173 401 654 19 177 407 66.2 12 120 287 50.4 11 119 290 512
U in Core 14 174 398 630 15 176 4.0 626 13 122 291 50.5 EIRN]7. 3 29,98 39,0
Total Core 18 174 41 647 18 175 403 648 12 122 289 504 103 T2 AR 201 50.6

Gap(Unlagged 23 227 526 848 24 29 524 83 10 151 31 6l6 13 136 353 614
Gap (Lagged) 55 489 1207 2135 34 493 1216 2241 38 2.9 696 1350 18 304 6938
Upper Blanket 38 587 1315 2304 61 608 1333 2%.1 38 367 82 1412 43 379 791 1391
Radial Blanket 47.3 - 3 = 46.4 = = = 284 = =
Total 41 29 489 699 34 244 515 701 24 139 349 585 25 158 363 605
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The 537-cm/sec case corresponds to average full flow in the core.

Amplitudes for both velocities are given as (6kFB//3)/(6n/no), where
‘SkFB/B is the amplitude in dollars of the oscillating reactivity feedback
for oscillation at full power, and 6n/no is the fractional change in power.
In calculating the closed loop transfer function at reduced power, which
would be necessary at reduced flow, the amplitudes in Table II are to be
multiplied by the fraction of full power at which the reactor operates.

In Figs. 7 and 8, the EBR-II closed loop transfer function phase

and amplitude are given for the various assumptions made in the feedback.

The amplitude in this case is (6n/no)/(<5kApp/B), where ékApp/B is the
applied oscillating reactivity in dollars. The phase is that of the power

relative to the applied reactivity. As expected, there is no indication of
the formation of a resonance.

- ——— ———— Vc = 537, NO RADIAL STRUCTURAL
2 EXPANS10N
————————Vc = 537, RADIAL STRUCTURAL
il EXPANSI0N
_______ Vc = 270, NO RADIAL STRUCTURAL
e - EXPANSION

———— ——— —— Vc = 270, RADIAL STRUCTURAL
oIk EXPANSION

2ERO POWER TRANSFER FUNCTION

an/n,
Kapp/B
-]

AMPL I TUDE, 5

0 Lol it | LSS T V| e
-001 .01 o 1.0 10
@, RADIANS/sec

Fig. 7
Amplitude of Closed Loop Transfer Function of EBR-IIL
Curves for v = 537 cm/sec for Full Power. Curves

for v = 270 cm/Sec for Full Power x 270/537.
112-815
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Fig. 8

Phase of Closed Loop Transfer Function of EBR-II
112-817

Further work planned on EBR-II dynamics include the performing
of more detailed calculations for linear feedback with the aid of the
IBM-704. A study of the possible effect of subassembly bowing is also
planned.
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