ANL-6494




LEGAL NOTICE

This report was prepared as an account of Government sponsored
work. Neither the United States, nor the Commission, nor amy
person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness
of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed
in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus,
method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission"
includes any employee or contractor of the Commission, or employee
of such contractor, to the extent that such employee or contractor
of the Commission, or employee of such contractor prepares, dis—
seminates, or provides access to, any information pursuant to his
employment or contract with the Commission, or his employment with
such contractor.



ANL-6494

Reactor Technology
(TID-4500, 17th Ed.)
AEC Research and
Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois

CRITICAL STUDIES OF A FAST REACTOR CORE CONTAINING
DEPLETED URANIUM AND SODIUM AS DILUENTS

(ZPR-III Assembly 36)

by

J. M. Gasidlo, J. K. Long, and R. L. McVean

Idaho Division

January 1962

Operated by The University of Chicago
under
Contract W-31-109-eng-38



Fa) " o MG R Tl




TABLE OF CONTENTS

II. DESCRIPTION OF ASSEMBLY 36 . . . . . . v vt v v v i e n s
Asssihe L HPRETIT Eae ity i srhd s bl o sl e e e s e e o s
B. The' Unit Module of Assembly 36. . : . . . oo+« - - = olie o
III. THE CRITICAL EXPERIMENT . . . . . . .. .. ... ......
A SmApprioachitor@riticaln LIS SL 8L L 5 v o mw s e s s v

B. Comparison of the Calculated and Experimental Values
of the Gritical Mass . 5 ate oo o g ouie
G Control RoddCalibration: & ok s . 5 c « @ o aie s w5 56 s 8%
D. Worth of Edge Core Material . . . ... ... ..........
VA NENSSTIONCRAMIOSEGE .8 s e s o8 G e
A. Central Fission Counter Measurements . . .. ... ... ..
Bt Eoil Trradiations, « i 2. o e e
V. RADIAL FISSION TRAVERSES . . . . . . ... ...t
NVIZH REACTIVITY COEEFICIENTS o o0 st o oy ol 25 5 e -
A. Central Reactivity Worths . . . . .. ... ... .........
B " FdgesMeasurements .. L
VIS PROMPE NEUERONLIIEETIME ol o e o il e oomoms & - s
VT DTS GIISSIOIN - o s am e s o o8 = o 8 a0 1ol s st wiies 1ol s Sete e i
NEHENOWIHIEDEMENIES e o e e L e i feaa o Bl oide ol e oo

REBERENGES, N L o S la S8 nnl S 0 IR0 g LG IR B8 L s

10
11

12

12
14

15

16

16
20

22

22

22

23



‘o
gy

lg\‘

....... .....>sh.;.iilv‘lu1o&%sgm1q
........... 'éiouu
........... slgsfreeny edold L pagedly rm.l‘llﬂ“
............ C oo o .. mbetisibasrl fie
LEL ST

_ef Y IAMEIAK wwcu PaL

ghstiaE® 1!3 wIR m
&t "‘dh‘fﬁt?r’\ b n-wMMu w‘ﬁﬂ il

EVE MR :Eﬁzt:i .in.:rmm

..... o _mm af Hee

aen.f!:v iatowotivy L-d)"ﬁ v hotsloylss pdt (olncai?)
e ; D e anaEE Lﬂw&sf.') SJ!.

o ..u-untssmﬂn:)baﬁl

ZRERIVEAT t&oraarq

. Bidmaly n(jbuﬂ.)s g



Z
2

—

O v 0w N o U R W

1014
1l
IV.

VI.
VII.
VIII.

IX.

X

LIST OF FIGURES
Title

IhelZPR-MINCritical Baciliby . . . oie o ot nw o o s 5 s v e s
Typical Core and Blanket Drawers . . .. .............
Top View of the Core Drawer Loading Master. . .. .. .. ..
Approachitol@nutacal 5 S0 S B R DL .
Outline of the Critical Core - Half #1. . . .. ... ........

BhefIMhouR CUIVE | &« « I o - o o5 e 2 s ok o b

Location of Edge Core Material Substitutions . . ... .. ...
Location of Foils During Irradiations. . . . ... .........
U?*® Radial Fission Rate Traverse. .. . ..............

U?%® Radial Fission Rate TTaverse. . . . . . . . ... ... ....

LIST OF TABLES
Title

Volume Fractions of the Unit Module. . . . . .. .........
Parameters of thellCritical Core. . - v o o o0 v o o s oo o o o e
Edge Core Material Substitutions (Assembly 36) .. ... ...
Calculated Central Neutron Spectra of Assemblies 22 and 36 .

Comparison of Central Fission Ratios (Assemblies 22
AndSS 6y e i e e e e el DR

Results of Foil Irradiations (Assembly 36) ... . . .. ......
Radial Fission Traverses (Assembly 36) . ... .........

Central Reactivity Coefficients of Fissionable Materials
(AcsemblyB6) e S s o - i s s Ee s S s e s e e

Central Reactivity Coefficients of Nonfissile Materials. . . .

Comparison of Effective Cross Sections in Assemblies 22
NG DD BRIy S O o i e S R TR

Edge Redctivitys Goefficientsec L o .10 0 of o ciiis 0 v 0 o s

12
1]

15
15
15

L
18

20
21



e e |
L wmmrsmm-o

- Rt

: 4 S ! ... mEewEsl) Jaialiﬂ,,hn‘

i, ] L qerestd gaibdnd THNETO Sead a3 ¥ m-«‘i’
S N S C e i) 91 damotegh

(% g - oD Lsmmm\ gia Yo
- amo adl
. ::nﬂndm han ieuﬁﬂ

... eaoltutitedad laie3edl sel) 9#3 6 ond
- Lanoiapibecal grieugl MieT in M.

: S . .sarseRr sast unfﬁlﬂ)ﬂl&'ﬂ-
yg y ) L, e o .. .eezaveyl easd na:sqﬁ_mmr
zinsmims hEna 'q:ii;i.! sEa 1o s seed

EEIRAT HO'TRIL |

i3] T ¥

| .. .,'_'-':'Q - 3 L . 2To Lt.ﬁi::‘:ammlt

d ,_EA : '_",'- 5 &1 i c .., 188 gldmrssa ) =,nmlunﬂ‘edw Mnu“

y OB & Kars S5 asfdoyeaeA o Btiangd rmw;;m ,l‘m

E! . .{: L 8% asildmeead | saltail noiasl IL'LMIH
[‘r‘_‘. E1 . u : . Fote WS e A -
' 5 . (A€ vldiriomy A anaulibam M.‘

v

- - e 5 1
ok of ' . ..~ . s f.‘“"”*‘”‘l H’a‘la\'iﬁtl ~ g

ilwrroipt SldBNGTAL T o sl iotlealh A

3 "L
Al ISRl wlsaiinait fa ;L-'):u)fﬂ.aw p
) £5 mussd ai gunl g epad m
: i
:v - s b - F o
[s W



CRITICAL STUDIES OF A FAST REACTOR CORE CONTAINING
DEPLETED URANIUM AND SODIUM AS DILUENTS

(ZPR-1II Assembly 36)
by

J. M. Gasidlo, J. K. Long, and R. L. McVean

ABSTRACT

Critical studies were performed with a metallic,
fast reactor core designed to investigate the effects of re-
placing highly absorbing U?*® diluent with high-scattering,
low-absorbing sodium diluent. The fuel was 15.7 w/o en-
riched U?*® and the core contained 18.2 v/o sodium and
12.68 v/o stainless steel. The experimental program was
designed to measure the effect of the material replacement
on spectral indices, which consisted of the standard fission
ratios, foil irradiations, and a large number of central re-
activity coefficients. Other measurements included the
Rossi-o, radial fissiontraverses, and edge reactivity worths
of a few samples.

I. INTRODUCTION

Assembly 36 was similar to Assembly 22, a previous ZPR-III core
described by Long e_ta_l.(l) Assembly 22 contained a 7:1 ratio of depleted
to enriched uranium in the core. Assembly 36 was constructed by re-
placing a portion of the depleted uranium in the unit module of Assembly 22
with canned sodium. This reduced the ratio of depletedto enriched uranium
to 5:1. The purpose was to determine the effect on the critical size and
spectral indices caused by replacing highly absorbing diluent with highly
scattering diluent.

I1I. DESCRIPTION OF ASSEMBLY 36

A. The ZPR-III Facility

The ZPR-III is a critical assembly divided into two halves for ease
of loading. In the separated or shutdown state the value of kg¢f is small.
The principal feature of each half is a matrix consisting of a 31 x 31 array
of horizontal stainless steel tubes, each 2.177 in. sq and 33.5 in. deep.
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A complete set of neutron and gamma detectors, which drive the reactor
instrumentation, is located on the top of each matrix, and five fuel-bearing
control-safety rods enter each matrix from the rear. Figure 1 is a photo-
graph of the machine. A complete description of the ZPR-III facility has
been given by Cerutti et ﬂ,(z)

FIGURE 1

THEN ZPR-TINCRIMEEC AT E ACTL Ty

Reactor cores are simulated in the ZPR-III by loading drawers,
containing core and blanket materials, into both matrices. Typilcal drawer
loadings are shown in Fig. 2. Each core drawer is loaded with ¢-in.-thick
plates of various materials, in the desired proportions and arrangement,
to a length of half the core. Then the core drawers are inserted into the
matrices in a repetitive pattern called the unit module. Each matrix con-
tains half of the core, usually in the form of half of a horizontal cylinder,
and the two halves are brought together to form the complete core assembly.






FIGURE 2

TYPICAL CORE AND BLANKET DRAWERS

B. The Unit Module of Assembly 36

The unit module of Assembly 36 was modeled from that of Assem-
bly 22 to facilitate the comparison of results. The unit module of Assem-
bly 22 consisted of a single drawer containing 2 columns of enriched uranium
and 14 columns of depleted uranium loaded to a depth of 10 in., followed by
the depleted uranium axial blanket. To form the unit module of Assembly 36,
four columns of depleted uranium were removed and replaced with canned
sodium. However, the inventory of sodium cans of the proper length was
insufficient to load 10 in. of core in each drawer. Fourteen inches of core
material per drawer was therefore chosen because of the availability of
7-in.-long sodium cans. Figure 3 is a top view of the core drawer loading
master. The volume fractions of the unit module are given in Table I.
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FIGURE 3
TOP VIEW OF THE CORE DRAWER LOADING MASTER






Table I

VOLUME FRACTIONS OF THE UNIT MODULE

Assumed Volume Fractions
Density,

Material gm/cm3 Unit Module DSN Calculation Blanket
2= 18.75 0.09374 0.0941 0.0019
28 19.0 0.5003 0.5050 0.8330
Na 0.84 0.1823 0.1840 =
Stainless Steel 7.85 0.1217 0.1218 0.0731

III. THE CRITICAL EXPERIMENT

A. Approach to Critical

The critical mass of Assembly 36 was calculated by the DSN code(3)
using the 16-group cross-section set* of Yiftah, Okrent, and Moldauer.(4)
The volume fractions used in the calculation of critical mass are also
given in Table I. The calculated critical mass for a homogeneous sphere
was 200.8 kg. Allowing a -5% correction in mass for heterogeneity and a
+12% correction in mass for the conversion from a sphere to a cylinder,
the estimated critical mass of Assembly 36 was therefore ~214 kg.

The approach to critical was performed in the usual manner of
adding core drawers at the radial edge of the core. The graph of the ap-
proach to critical is shown in Fig. 4, and the outline of half No. 1 for the
just-critical core is shown in Fig. 5.

~
T

CONTROL RODS OUT

fo)

FIGURE 4
APPROACH TO CRITICAL

RELATIVE INVERSE COUNT RATE

CONTROL RODS IN

o | I I I
160 180 200 220 240

TOTAL LOADING (kg u235)

*Hereafter referred to as the YOM set.
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FIGURE 5
OUTLINE OF THE CRITICAL CORE HALF #1

B. Comparison of the Calculated and Experimental Values of the
Critical Mass

Assembly 36 went critical with a total loading of 243.7 kg U?*® and
control rod No. 10 withdrawn 2.774 in. Using the control rod calibration
and the worth of an edge core drawer (see Sect. III-C and D), the reactor
was 44.7 Ih or 1.005 kg U?* supercritical. Therefore, the just-critical
mass was 242.7 kg U%%. A shape-factor correction of 0.89 in mass was
estimated from data reported by Loewenstein and Okrent(5) for the length-
to-diameter ratio (L/D) 1.44 of the critical core. This yielded a calculated
critical mass of 214.3 kg when combined with the -5% mass correction due
to heterogeneity. Various parameters of the just-critical core are given
in Table II, together with the volume fractions of Assembly 22 for
comparison.

It was found experimentally that an increment of core material at
the radial edge of the core was worth 42.4 Ih/kg on the average, as de-
scribed in Sect. III-D.
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Table II

PARAMETERS OF THE CRITICAL CORE

Assumed Total Volume Fractions
Density, Mass,

Material gm/cm3 kg Assembly 36 Assembly 22
u23s 18.75 243.70 0.09372 0.0942
y2E 19.0 1,304.65 0.4951 0.701
Na 0.84 21.234 0.1823 -
Stainless Steel 7.85 138.07 0.1268 0095

Calculated Critical Loading 214.3 kg
Calculated Critical Volume 121.9 liters
Loading at Criticality 243.701 kg
Inhours Supercritical 44.7 Th

Last Drawers Were Worth Aol Ih/kg et
Supercritical by 1.005 kg
Just-critical Loading 242.7 kg
Just-critical Volume 138.12 liters
Height 7.5 e
Radius 24.8 cm
Radial Blanket ~ 358 cm
Axial Blanket 35 e

If one inhour is taken to be worth 2.26 x 10 °Ak, then the proportionality
between edge core material and reactivity,

Ak AM

& B
is established. Indeed, substituting the above figures in the relationship
gives

=g o 1
42.4 x2.26 x 10 —m q )

or a value of 0.234 for q. An approximate comparison can then be made
between the observed critical configuration and the calculated multiplication
of a blanketed sphere having the same composition and mass. The neutron
multiplication of the sphere was calculated to be 1.031 by means of the

YOM cross-section set, and the DSN code in the S8 approximation. With

a shape-factor correction of 0.89, a heterogeneity correction of 1.05 (both
figured on a mass basis), and the above value for q, the calculated k for

the observed critical configuration was 1.016.
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C. Control Rod Calibration

The control rod was calibrated in the usual manner by determining
the period corresponding to an incremental change in the rod position.
Core drawers were added at the radial edge to allow calibration over the
central and outer portions of rod travel.

Effective delayed neutron fractions have been calculated for several
of the ZPR-III assemblies. Using the data of Keepin et ﬂ.,(é) Meneghetti(”
has shown that the effective delayed neutron fractions of typical ZPR-III
assemblies varies only slightly from a value of 0.0073. The calculated
value for an assembly containing a 5:1 ratio of depleted to enriched uranium
is 0.0074. Meneghetti(7) has also shown that the inhour curve is identical
for a variety of ZPR-III assemblies in the period range of the rod calibra-
tion measurements (T>60 sec). Therefore, a ZPR-III inhour curve cal-
culated for a prompt neutron lifetime of 8 x 1078 sec and a total Beff of
0.0073 was used to convert periods to inhours. The inhour curve is shown
in Fig. 6 and the rod calibration in Fig. 7.

80 —

60 —

WORTH (inhours)

ROD WORTH (inhours)

40 -

30 -

20 —

10 20 30 40 60 80 100
PERIOD (sec)

ROD POSITION (in)

FIGURE 6 FIGURE 7
THE INHOUR CURVE CONTROL ROD CALIBRATION
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D. Worth of Edge Core Material

The outline of the critical core was ""rounded-off," by means of the
use of half-drawers. Since the sodium inventory is limited to 2-in.-high
cans, horizontally divided half-drawers were formed by loading the plates
of material across the drawer instead of in the usual vertical loading. With
the fuel plates loaded horizontally in these drawers, an experiment was
performed to determine whether or not there was a measurable effect from
the different orientation. This was done by measuring the worths of a
horizontally divided half-drawer and a vertically divided half-drawer in
positions 1 and 2 of Fig. 8. These two locations reflect into each other on
either side of a 45° line drawn through the center of the core, and hence
any measurable difference between the worths of half-drawers loaded into
these two positions should be entirely due to the difference in orientation
of the fuel plates.

| 2 3 4.5 6 7 8 9 1010 1213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3|

N<X£<C—A0WIJIODUVOZIMCXC-—IONMMOO D>

FIGURE 8
LOCATION OF EDGE CORE MATERIAL SUBSTITUTIONS

Since the fuel column is inside the sodium inthe inner half of a
vertically divided drawer and outside the sodium in the outer half of a
vertically divided drawer, a third measurement was performed in position
3 to determine whether or not there was any significant effect due to ma-
terial locations in the half-drawers.
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The results of all the measurements are summarized in Table III.
Table III

EDGE CORE MATERIAL SUBSTITUTIONS (ASSEMBLY 36)

s Reactivity
Drawer Location Worth* Mass Coefficient _ Ak/k
and Description (Iht 0.5) (kg) (Ib/kg U®®) 97 AM/M
1. Inner half of a hori- 85.4 1.9194 445t .3 0.245 t 0.002
zontally divided drawer
2. Inner half of a verti- 81.6 1.9194 42.5t .3 0.234 t 0.002
cally divided drawer
3. Outer half of a verti- 77.4 1.9194 40.3 t .3 0:222 0002

cally divided drawer

*The t 0.5 uncertainty in the reactivity measurement is described in
Sect. VI in the discussion on reactivity coefficients.

IV. FISSION RATIOS

A. Central Fission Counter Measurements

The experimental fission ratios were determined from absolute fis-
sion counters(8) (2 in. in diameter by 1 in. long) loaded into the first inch
of the central drawer in each half. The same U?® fission counter was
maintained in one half while counters containing various fissionable mate-
rials were alternately loaded into the other half. The measurements were
made at power levels of 0.5 to 10 watts, and the data were reported as the
ratio of the total counts of a given counter to the standard U?*® counter.
The data were then reduced by a set of simultaneous linear equations in-
volving the isotopic concentrations of the counters.

The central fission ratios were calculated from the central neutron
spectra of the DSN calculations and the YOM cross-section set. The cen-
tral neutron spectra of Assemblies 22 and 36 are given in Table IV for
reference. The calculated and measured fission ratios are summarized
in Table V.
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Table IV

CALCULATED CENTRAL NEUTRON SPECTRA OF
ASSEMBLIES 22 AND 36

Lower Lower
Energy Assembly Energy Assembly
Limit ————— Limit
Group (Mev) 36 225 Group (Mev) 36 22%
1 3.668 0.0226 0.020 9 0.067 0.0498 0.048
2 2,225 0.0397 0.034 10 0.0407 0.0392 0.043
5 1535 0.0625 0.054 121 0.025 0.0094 0.008
4 0.825 0.1146 0.109 12 0.015 0.0067 0.007
5 0.5 ()38 @y (01,11 13 0.0091 0.0018 0.002
6 0.3 0.2031 0.209 14 0.0055 0.0004 0
7 0.18 0.1527 0,157 15 0.0021 0 0
8 0.11 0.1052 0.108 16 0.0005 0 0
*Taken from Long et al.(1)
Table V
COMPARISON OF CENTRAL FISSION RATIOS
(Assemblies 22 and 36)
Assembly 36 Assembly 22(¢)
Isotope
(1) Calculated(2) Measured(P) Calculated(2) Measured
0 1.58 1.47 t1.4% 1.59 1.53
= 0.394 0.312 1% 0.370 0.293
G @127 0.094 t 1.1% 0.105 -
Ee 0.0469 0.041 T 1.1% 0.040 0.036
Pu?3? 1.25 1.19 t1.4% 1.24 1Ll
Pu?40 0.387 0.337 £ 1% 0.366 0.333

(a)The YOM set was supplemented by values taken from BNL-325 cross
sections for U%** and U¥®.

(b) The limits quoted with the measured fission ratios represent 95%
statistical confidence (two standard deviations) in the ratio of the
total counts of the associated fission counters. These limits do not
contain the uncertainties in the isotopic concentration of the fission
counters.

(c)These values were taken from Long et Q.(l) The data were taken so
that the maximum uncertainty associated with the total counts of the
fission counters is 1% for one standard deviation.

13
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B. Foil Irradiations

Depleted and enriched uranium foils were irradiated in the core
center and edge for radiochemical analysis to determine the U?*%:U?3" fis-
sion and capture ratios. Natural and enriched uranium foils were wrapped
in aluminum foil and placed across the top of four core drawers at the
midplane. Three enriched foils were placed across the top of core drawer
2-P-16 while three natural foils were placed on top of 1-P-16. Three en-
riched and natural foils were also placed across the top of core drawers
2-Q-16 and 1-Q-16 to provide average values for the core center. Simi-
larly, a total of six enriched and six natural uranium foils were placed on
top of core drawers 1-P-12, 2-P-12, 1-Q-12, and 2-Q-12 to provide aver-
age edge values (see Fig. 9). The foils were then irradiated for 20 watt-
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FIGURE 9

LOCATION OF FOILS DURING IRRADIATIONS

The radiochemical analysis of the foils was performed by S. B.
Skladzien at Argonne, Illinois. The U?%8.:U%" fission and capture ratios
were determined from the total induced activity of Mo’ and Np?*?, re-
spectively. The results are summarized and compared with calculations
in Table VI
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Table VI

RESULTS OF FOIL IRRADIATIONS
(Assembly 36)

og(UB8) 0o (U8)
Average og(U?) 0 ¢(U?*)
Radius
Location (cm) Measured Calculated* Measured Calculated*
Center 2.8 0.046 t 7% 0.047 0.097 t 5% 0.112
Edge 22.0 0.036 t 7% 0.037 0.099 t 5% 0.117

*These values were calculated from the central and edge neutron
spectra of the "k" calculation and the YOM cross-section set.

V. RADIAL FISSION TRAVERSES

The blanket and core drawers in half No. 2, column 16 (see Fig. 5)
were modified to accept a 1.27-cm-OD vertical thimble approximately 0.8 cm
back of the midplane. Thus, as the fission counters were driven down
through the thimble, they passed between large parallel sheets of core ma-
terial formed by the vertically loaded plates in each drawer lining up through-
out the core.

The U?® and U?® fission counters were 1.1 cm in diameter with active
volumes of 5.1 cm in length. The traverse mechanism was set so that the
center of the radial traverse occurred when the center of the active volume
of the fission counter was located at the midplane of the core. Thus, the
data represent fission rates integrated over 2.5 cm on either side of the
indicated radial position. The isotopic analysis of the U%*5 counter was
93.2% U235, 6% U?** and 1% U?3®, whereas the U?*® counter contained only
80 ppm U?°. No correction for the minority isotopes has been applied to
the data. The results are summarized in Table VII and shown graphically
in Figs. 10 and 11.

Table VIT
RADIAL FISSION TRAVERSES
(Assembly 36)
U235 Traverse U238 Traverse
Fission Counter Total Total
Position (cm) Counts Normalized Counts Normalized
58.4 (Void/Blanket Interface)
55.8 904 * 3. 0.027 * 0.001 631 12.6% 0
45.7 2,753 £ 2.6 0.082 * 0.002 310% 57% 0.010 * 0.001
3.6 6,922 2.2% 0.205 * 0.005 1398+ 2.7% 0.044 % 0.001
254 17,187 + 2.0% 0.510 + 0.010 9842t L1% 0.310 * 0.003
24.8 (Blanket/Core Interface)
203 22533 % 1.9% 0.669 * 0.013 18364 0.9 0.579 £ 0.005
15.2 213131 1.9% 0.812 £ 0.015 24,281 £ 0.8% 0.766 * 0.006
10.2 31417 £ 1.9% 0.932 * 0.018 28,464 % 0.8% 0.898 * 0,007
76 32,364 £ 1.9% 0.960 * 0.018 29,873 0.8% 0.942 £ 0.008
il 32,886 * 1.9% 0.976 * 0.018 30,719 % 0.8% 0.969 * 0.008
25 34,034+ 1.9% 1.010 £ 0.019 31,366 * 0.8% 0.989 * 0.008
0 33,300 £ 1.9% 0.988 £ 0.018 31,982 % 0.8% 1.008 * 0.008
25 34418 1.9% 1.021  0.019 31,204 0.8% 0.984 * 0.008
5.1 32,926 + 1.9% 0.977 % 0.018 30675 0.8% 0.967 * 0,008
7.6 31,520 * 1.9% 0.935 £ 0.018 29,3431 0.8% 0.925 £ 0.007
10.2 29,842 £ 1.9% 0.885 £ 0.017 28,669 ¢ 0.8% 0.904 + 0.007
15.2 26,594 £ 1.9% 0.789 % 0.015 23341t 0.8% 0.739 £ 0.006

15
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VI. REACTIVITY COEFFICIENTS

A. Central Reactivity Worths

il Measurements

The central reactivity measurements in ZPR-III normally fall
into two groups, one of small volume (2 in.?) fissionable samples and
the other of larger volume (8 in.?) nonfissile samples. The nonfissile
materials require larger samples due to their generally low worths in

fast cores.

50
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b7

The fissionable samples were loaded across the front % in. of
the central drawer in each half of the core. The reference was run with
two 5 x 2 x 2-in. plates of aluminum loaded in each central drawer, one of
63% density and the other 45% density. The enriched uranium sample in
each central drawer consisted of one -:3— x 2 x 2-in. plate sandwiched between
two 11—6 x 2 x 2-in. plates of 100%-density aluminum. The aluminum mass
in this sandwich was nearly equal to that of the reference run. The Pu?*?
and U?*? samples were contained in 5 x 2 x 2-in. aluminum cans. Again,
the total mass of the aluminum cans was nearly equal to that of the alumi-
num used in the reference. The measured values are given in Table VIIIL.

Table VIII
CENTRAL REACTIVITY COEFFICIENTS OF
FISSIONABLE MATERIALS
(Assembly 36)

Reactivity Coefficient

Mass Worth

A.  Sample (kg) (1ht0.5) (Ih/kg) (Ih/g-mole) r(c)
93.1% Enriched 0.2878 60.5 21052
99.8% Depleted  2.378 -21.9 ~9.2.F .2
U?3 Mixturel2 0.2266 94.6 4igia
Pu?39 Mixture(P) 0.1860 71.5 384 t 3

B. Isotopic Values
PED 0.2684 22512 52.9 1t .5 0.03583
gt 2.373 o 7 £ e St L0 SN OR00 268
U2 0.2212 428 t 2 99.8 t .5 0.03381
Pu?? 0.1758 402 t 3 96.1 t .7 0.03390

(a) The isotopic concentrations were 97.40% U? and 2.60% U8, The
isotopic value was calculated assuming that all of the reactivity
effect was due to the U2,

(b) The isotopic concentrations were 94.51% Pu?®?, 5.11% Pu?*?, and
0.38% Pu?*!, The isotopic value was calculated assuming that Pu
has approximately % the worth of Pu?’,

240

()R is the ratio of [(v-1) of - 0cl (calculated) to the observed worth
in Ih/g-rnole.

Special drawers were loaded into the central matrix tube in
each half for the nonfissile sample measurements. These drawers allow
2 x 2 x 1-in.-thick samples to be inserted and removed in the first inch of
the drawer without removing the core drawer. The reference was run with
the sample volume void and all of the values reported are relative to void.
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A sample of depleted uranium of large volume was included in
this series of measurements because of the large uncertainty in the worth
of a small sample. The boron carbide samples contained 9.9% chemical
impurities which were regarded as making no measurable contribution to
the reactivity worth. The boron was enriched to 90.7 a/o in B!?, but the
results are based on the total amount of boron carbide in the sample, with
an assigned molecular weight of 52. The physicum samples, designated
Ph-I and Ph-II, are mixtures of metals, oxides, and salts of stable,
naturally occurring elements selected to simulate the nuclear effects of
fission products according to criteria listed in a paper by Long et g.(‘?)
The formulae of these two mixtures corresponded to (Ph-I) O; 5,9 and
(Ph-1I) O, 46 with molecular weights of 142.2 and 136.1, respectively.

The results of the nonfissile sample measurements are given in Table IX.

Table IX
CENTRAL REACTIVITY COEFFICIENTS OF NONFISSILE MATERIALS

Reactivity Coefficient

Mass Worth - Oeff
Sample (kg) (In £ 0.5) (Th/kg) (1h/g-mole) (mb/atom)
Al 0.3506 = AL -13.1t 1.4 -0.35 T 0.04 202 s
Ss 1.0172 -12.5 -12.3 T 0.5 -0.69 t 0.03 —23.4 T D9
@ 0.1964 ~0.1 ~0.5t 2.5 0.006 T 0.03 0.2t1.0
Na(2) 0.0912 - 0.4 =4 455 ~0,.10 £ 0,13 -3.41t 4.4
Al,O4 0.3551 - 2.8 -7.9 T 1.4 -0.8] £0.14 Z27 5
Be 0.2407 8.9 B2 0.33 T 0.02 11.3 1 0.6
Li(@) 0.0549 -11.9 Al L (.06 51t 2
Nb(a) 0.4896 -15 Lo _2.84 % 0.09 96 t 3
ph-1(2)*  0.232 - 6.7 -28.9f2.2 4.0 tes -140 t 11
ph-11(2)* 0.210 L e 31,8 524 S48t 03 148 t 11
Mo 1.2798 -26.6 -20.8 T 0.4 -2.00 T 0.04 (5l 118
Y 0.5821 = —it.2 1t 0.9 -0.64 T 0.08 S227003
Ag 0.6831 -46.8 —68.6N @ ~T.39 £0.08 -251 £ 3
Ta(a) 1.0044 41,2 41105 -7.427%0.09 B2t 5
Bloc* 0.03217 -55.9 -1,928 * 17 -100.3 t 0.9 -3400 t 31
Th?3? 1.5117 -32.6 -21.6 1 0.3 -5.01 t 0.07 U0 i
CH, 0.00687 6.8 990 t 73 117 s Al 475 t 34
Pb 1.475 3.2 =2 2 0l 8 0 6N 006 ~l5 =D
Zr 0.8460 = (5,5 -7.9 T 0.6 (0, 72 0 22400
Bi 1.2762 £ 2.8 2.2t 0.4 -0.46 £ 0.08 =16
(¢] S2ARE AN B4 08054 ol s gl

(a) These samples were canned in stainless steel. The sample mass is
that of the named material only. The sample worth has been cor-
rected for the effect of the stainless steel, and the reactivity coef-
ficient is for the named material only.

*These samples are described in the text.
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The reactivity worths were determined from the difference in
the critical position of the control rod for the sample and reference runs.
In ZPR-III, the control rods (fuel-removal type) must be withdrawn and
the halves of the reactor must be separated to insert the sample. Re-
producibility in the control rod position is better than * 0.005 in. (less
than £ 0.1 Th), whereas the uncertainty in the closure of the halves is
1 0.5 Ih. The uncertainties in the reactivity coefficients were calculated
from the latter value.

2. Comparison of Results

The sample worths and reactivity coefficients of Assemblies 22
and 36 can be compared directly because of the nearly identical critical
masses and volumes. However, a simple comparison can be made between
reactors of differing sizes through the use of one-energy-group perturba-
tion theory. In the first-order approximation, the reactivity effect of a
fissile sample can be described by the equation

[(v-1)0f-0c] ¢*(x) NgaVv
vof ¢p2(r) NodVv ’

Ak fsample

-

fcore

The denominator is a constant for a specific core and, if the sample volume
is in the center of the core where the spatial flux distribution can be norma-
lized to 1, the equation can be written as:

Ak e
L LD orodd Ny
where
e 2
= fcore vof ¢ (r) Nc dv )

n
[(v-1) o5-0c]= ) [(v5-1) Bgme, | Oy =
J=1

N;¢ = number of atoms in the perturbation sample

For nonfissile samples, for which v and of are 0, the equation reduces to

1
k X (_ Oeff) Nt ’
where Ogff is an effective cross section, which includes the effects of energy
downscattering. The central reactivity worth can be expressed in this form,
since there is no contribution from the transport cross section due to the
zero flux gradient.
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The average value [(v-1) of- oc] was calculated from the
central DSN spectrum (see Table IV) for each of the fissile samples. These
results are tabulated in column R of Table VIII. The effective cross sec-
tions were calculated by multiplying each reactivity coefficient by
[(=1) of- oc]/ih/g-mole (Pu?*?) because the relatively high and constant
cross section of Pu?®? in the high-energy range is less susceptible to errors
in the neutron energy spectrum. A value of - ggff was calculated for each
of the reactivity samples measured in Assembly 36. These values are
included in Table IX. A comparison of the effective cross sections of re-
activity samples measured in both Assemblies 22 and 36 are given in Table X.

Table X

COMPARISON OF EFFECTIVE CROSS
SECTIONS IN ASSEMBLIES 22 AND 36

- Oeff (mb/atom)

Material 22 36
T 3284 t 15 3383 917
wies 1772t 12 1793 T 17
2t -84 t2 04 20 .7
P39 3238 t 17 3258 T 24
C -10.8 1 0.9 (@] am il
Al SIS e ~N2 A
SS -23.8/ T 0.9 -23.41 0.9
Zr -34.7t 1.5 “PA
Ag =22 25
Bi 2713 -16 13
Y 30t 3 —22:53
Be -4.81 0.6 11.31 0.6
BI°C -3130 T 26 -3400 * 31

B. Edge Measurements

The worths of a number of reactivity samples were measured near
the edge of the core in core drawers 1 and 2-P-13 (see Fig. 12). Both the
fissile and nonfissile measurements were performed exactly as described
for the central measurements, and all comments on the central worths are
equally applicable to the edge values. The results of the edge measurements
are summarized in Table XI.
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FIGURE 12

LOCATION OF REACTIVITY MEASUREMENTS

Table XI

EDGE REACTIVITY COEFFICIENTS

Mass Worth

Sample (xg) (tht 0.5)
93.1% Enriched 0.2878 35.9
99.8% Depleted 2.3780 -1.5
U?3? Mixture 0.2266 54.1
Pu?*? Mixture 0.1860 42.3

Isotopic Values

e 0.2684
T7ea8 2.3730
U 0.2212
Pu??? 0.1758

Nonfissile Materials
Al 0.3506 5.0
SS 1.0172 20
Na 0.0912 1.8
Al O 0.3551 7.2
Th?32 1.4885 -10.2

Reactivity Coefficient

(1h/kg) Ih/g-mole

125t 2
-0.63 £ 0.21

239t 2

227t 3

134t 2 31.5 t 0.5
—0)enl 22 Ol -0.22 t 0.05
246t 2 57.3 £ 0.5
238t3 56.9 T 0.7
143t 1.4 0.39 t 0.04

2.7 £ 0.5 0.15 T 0.03

20t 6 0.46 £ 0.14
20,3t 1.4 2.07 £10.14
-6.9 £ 0.3 -1.60 t 0.07
28.6t 3.4 0.46 t 0.05

2
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VII. PROMPT NEUTRON LIFETIME

The average prompt neutron lifetime was determined by the Rossi-a
method. The equipment and the experimental technique have been described
by Brunson e_til.(lo) The measured Rossi-a at delayed critical was
(9.4 £ 0.1) x 10* sec™. For an effective p of 0.0074 t 4%, calculated for a
5:1 ratio of enriched to depleted uranium, the prompt neutron lifetime is

(7.9t 0.4) x 1078 sec.

VIII. DISCUSSION

The primary effect of replacing part of the depleted uranium in
Assembly 22 with sodium is an increase in the neutron flux in the high-
energy region. The top three groups in the calculated spectra were 12 to
15% greater for Assembly 36 as compared with Assembly 22. Also, the
fission ratios of the threshold detectors Pu?¥®, U?**, and U?*® were greater
by 1%, 3%, and 13%, respectively, in Assembly 36. The measured U?*? fis-
sion ratio decreased slightly, whereas that of Pu?®*? was increased slightly.
This is probably due to the shift in neutrons up to the high-energy groups,
maintaining the Pu®*? fission rate due to its constant cross section in that
region, while decreasing the U?* fission rate due to its decreasing cross
section.

It is also interesting to note that the effective cross sections in
Assembly 36 were generally similar to those in Assembly 22, with two
outstanding exceptions for carbon and beryllium. The amount of depleted
uranium removed must have been sufficient to result in a balance between
the increased absorption in the U?%® and the increased fission rate in the
U?%® because of the general degradation of the neutron spectrum by the
carbon. The larger increase in the worth of the beryllium sample is
probably due to a similar condition accompanied with an increased (n,2n)
reaction rate because of the increased proportionof neutrons in the high-
energy groups.
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