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ABSTRACT

The analysis of gamma-ray spectra measured with a scin-
tillation counter with an anticoincidence annulus is described in detail, In
particular the problem of the determination of the energy and intensity of
gamma rays from such measurements is considered. The shapes of the
full-energy peaks in observed complex spectra are studied and an attempt
is made to justify their description in terms of a Gaussian "response func-
tion." The details of the statistical analysis of complex gamma-ray
spectra are given and, finally, procedures which have been used to con-
firm the validity of error estimates in energy and intensity measurements

are described.



1. INTRODUCTION

This report deals mainly with the analysis of data taken with
a scintillation spectrometer with an anticoincidence annulusl for the deter-
mination of energies and intensities of gamma rays. In an effort to utilize
the full accuracy of this apparatus a program of analysis of observed spec-
tra was developed for the digital computer GEORGE at the Argonne National
Laboratory. The details of this method of data analysis as well as some
experimental results which have been obtained by use of these methods are
included in this report. The primary aim of this investigation is the estab-
lishment of realistic limits for the accuracy that can be attained with a
crystal spectrometer in various energy and intensity measurements. The
discussion begins with a brief description of the anticoincidence spectrome-
er.;

The main detecting crystal is a cylinder of NaI(T1) about 2.4
in, in diameter and 6.0 in. long. It is optically coupled to a Dumont 6292
photomultiplier. If degraded photons resulting from Compton scattering or
annihilation radiation escape from the center crystal, they are detected in
a crystal annulus enveloping the main crystal, The annulus is a hollow
cylinder, also of NaI(T1l), with an 8-in., o.d., a 2.5-in, i.d., and a 12-in,
length. Six photomultipliers are coupled to one end face of the annulus. In
Fig. 1, we present an exploded view of this apparatus.

Signals from the center crystal are fed through a conventional
linear amplifier to a multichannel pulse-height analyzer of the type designed
by Schuman and McMahon, & The six photomultipliers which are coupled to
the annulus feed their signal through a common preamplifier and a linear am-

plifier to an anticoincidence gate of the analyzer. A pulse corresponding to

a loss in energy of 30 kev or more in the annulus is large enough to prevent
the analysis of a pulse from the center crystal.
The spectra obtained with this anticoincidence spectrometer

are characterized by the suppression of those contributions from Compton
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d pair-production processes which do not contribute to the full energy
and pair-

k. Thus the full energy peak of the gamma rays is apparently enhanced
peak.

relative to the lower-energy portion of the spectrum. The improvement

i i i 24
in the spectrum is illustrated in Fig. 2 which is a spectrum from a Na

source,

The full-energy peaks of a ''corrected spectrum'' can be des-
cribed approximately by a Gaussian function and the essential feature of the
analysis is the estimation of the values of the parameters that characterize
this analytic function, (A ''corrected spectrum'' is one from which the con-
tributions from natural, or room, background and from other gamma rays
have been subtracted in the neighborhoods of the full-energy peaks of
interest.) The methods of obtaining such ''corrected spectra' from observed
spectra are discussed in Sec, II. Also in Sec. II is given the prescription
for the determination of the parameters of the Gaussian function which ap-
proximates the full-energy peaks in such spectra.

Section III is devoted to the study of the response of the scin-
tillation spectrometer, i.e., to the derivation of the conditions necessary
for an observed pulse-height distribution to approach a Gaussian form. The
validity of this approximation for conditions which pertain in an actual ex-
periment as well as the problem of calibration of the pulse height scale in
terms of the energies of known gamma rays are described in Sec. IV, An
experimental determination of the dependence of the widths of the line

shape on the energy is also presented in Sec, IV,

In Sec. V it is shown that the error estimates for the values

of the parameters of the Gaussian function are realistic in two types of

eéXperiments, one is an experiment to determine the energy of a gamma

ray and the other, an experiment to measure the intensity of a gamma ray

from a radioactive source, These considerations indicate that within the

interval from about 0, 1 Mev to 3.0 Mev €nergy measurements of about 0 1%

accuracy are possible with this System and that measurements of relative

intensity are accurate to within about 0, 5%
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The calibration of the pulse height scale in terms of gamma-

i " in statistical
s an example of a multiple error problem

ray energy i %
s formulation which is sufficiently

eneral to
estimation, A least-square g

include such problems is outlined in an appendiX.

II. ANALYSIS OF COMPLEX SPECTRA

In a typical experiment, the observed gamma ray spectrum

mbled in some way to yield quanti-

The

is a complex one which must be unscra

tative information about the nuclear parameters being studied.

analysis which is described in this section was developed for two specific
experiments, however, the methods are applicable to a wide range of ex-
periments with the scintillation spectrometer.

In Fig. 3 is shown a spectrum of gamma rays from radio-
active sources of Na24, Cel4s, Y88 and Bi207, The results of this study
have been published, but are included here as an example of the analytic
method, The purpose of this experiment is to measure the energies of the
gamma rays from Cel44 in terms of some 'standards' from Na24, Y88,
and Bi207, The spectra from all the sources must be accumulated simul-
taneously in order to reduce spurious effects such as variation of the gain
with counting rate. As shown in Fig., 4, which is an abbreviated decay
scheme of Cel44, the two gamma rays with lower energy are in cascade
and the sum of their measured energies should equal, within experimental
error, the measured energy of the crossover transition, This experiment,
then, provides a quantitative check on the analytical procedures,

A second type of experiment which is of interest is the study
of the variation in intensity of a gamma transition with some other parame-
ter in the experiment such as time or energy of bombarding particle, In
Fig. 5 two gamma-ray spectra from the F19(p, ay)O16 reaction are shown,
In this experiment the interest is in the variation in the yield of the 6. 1-,

6.9-, and 7. 1-Mev gamma rays with proton energy,



As will be shown in Sec. IV the response of a scintillation
spectrometer to a source of monoenergetic gamma rays gives a full energy
peak which to a good approximation is Gaussian in shape. However, even
for this simple source the observed response exhibits a secondary peak
from Compton processes in which the incident gamma ray is back-scattered
and escapes through the entrance aperture of the spectrometer system. For
such processes the energy remaining in the crystal gives rise to a peak
which is lower in energy than the full-energy peak by the mean energy ¢ of
the escaping quantum., This mean energy loss can be calculated in terms
of the energy of the incident gamma ray and the geometric arrangement of
the detector system. If the mean solid angle for such escape is sufficiently
small, the response of the spectrometer to these Compton processes should
also be Gaussian with an energy spread only slightly larger than the width
of the full-energy peak.

These considerations lead to the postulate that the observed
pulse-height spectrum near the full energy peak from a source of mono-

energetic gamma rays can be described in terms of a set of functions of

the form
Fj('&) = fA dx f(x;a), j=1,2, ..., N, (I11. 1)
J
where
f(x;8 ‘X_QZ\.E + { (X_u2+6)2]' 1. 2
(x;a) = a,exp o, a, exp [— ‘k—aa J A (II. 2)

In these expressions Fj( t-l.) represents the number of counts in the _jth channel
of the pulse-height analyzer, Aj is the width of the jth channel, § is the mean
energy carried off by the degraded photon in a Compton process as discussed
in the preceding paragraph, k is an input parameter which corrects for the
difference in width of the second peak, and 2 is a vector with five components

which are the parameters of the response function (II.2), If A.is defined to
J



Fig. 3. Response of system to simultaneous exposure to a source
containing several different activities and also the response to the
corresponding isolated sources. Full scale corresponds to about
3 Mev.

a. Response of scintillation spectrometer to the
gamma rays of Na24, Cel44, Y®8 and Bi207,

b. Spectrum of isolated source of Na24

c. Spectrum of isolated source of Cel44

d. Spectrum of isolated source of Y88

e. Spectrum of isolated source of Bi207

f. Spectrum of isolated source of Zn55, This spec-

trum was used to simulate the gamma ray at 1. 06 Mev of Bi207
g. Room background accumulated in a length of

time about 10 times longer than required to accumulate the data

for the other spectra.
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] A i
be the interval from j-1toj+%, then a, and a, are Tespaciivcly the mean

position and width (in units of channel number) of the full-energy peak,
a.a_ is proportional to the area of the full-energy peak, a,a, is propor-

158
tional to the area of the back-scattered peak, and a_is a constant

background.

Gonsider now the measured spectrum from a source of
monoenergetic gamma rays. The spectrum is represented by a set of
countsc A, j=1, 2, . . . , N, where Aj is the channel interval defined
above a.an Jc is the average value in the channel of the number of counts
per unit puli:e-height interval. From the data it is possible to obtain a
"hest' estimate of the vector a and of the corresponding set of response
functions Fj(;f). For the present a ''best' estimate of a is defined as that

vector for which the function Q(a..) is a minimum, where
Q(a) = E'J_ AJ,Z [e - Fj(a’)]2 E (11. 3)

The Aj2 are weighting factors determined from the counting statistics of

the observed spectrum as specified in Sec. III. The rationale of this defi-

nition is also discussed in Sec. III,

The analysis discussed above is applicable only to the case
of a spectrum which results from a single source of monoenergetic gamma
rays. In what follows, this type of spectrum will be designated as a

''simple spectrum" and a spectrum that includes gamma rays of more than

one energy will be called a '"complex spectrum." For complex spectra it

1s necessary to modify the above approach. To effect this modification we

attempt to isolate a set 'of equivalent simple spectra from a measured
complex spectrum by subtracting from the measured spectrum all contri
butions other than that from the particular gamma ray of interest, This
leads to a consideration of the background in the neighborhood of .a i
lar full-energy peak that results from the Presence of gamma rays}:zrtlcu-

different energy in the measured spectrum



As long as the separation between photopeaks in the com-
plex spectrum is much larger than the instrumental line widths, photopeaks
at lower energies contribute negligibly to the background in the neighbor-
hood of a given full-energy peak. However, because of incomplete suppres-
sion of Compton and pair processes by the anticoincidence feature of the
spectrometer, there can be an appreciable contribution in the neighborhood
of the photopeak from gamma rays of higher energy. Thus, at least in the
case of gamma rays whose energies are well separated, we need consider
only the contribution from higher-energy gamma rays in any estimation of
background in the neighborhood of a given full-energy peak.

In many measurements, the observed complex spectrum
results from several different radioactive sources so that it is possible
to measure the component simple spectra separately. For complex spec-
tra resulting from many transitions of a single nuclear species, the
component simple spectra may be simulated, in special circumstances,
by sources of monoenergetic gamma rays with appropriate energy. On
the other hand, there are complex sources for which this is not feasible.
The subtraction of background due to the *tails' of other gamma rays is
considerably less arbitrary in those cases where such auxiliary measure-
ments are possible. For this reason two subtraction procedures are
used. The first one takes advantage of the additional information provided
by the measurement of the component spectra and differs from the pro-
cedure used to analyze spectra for which no such auxiliary measurements
are possible. The details of these methods are described in this section
as Programs I and II. First, however, the correction of a measured spec-
trum for natural background will be considered.

It is always possible to determine the natural (or room)
background spectrum in an obvious manner. It seems desirable, there-
fore, to include the subtraction of this background in any data-preparation
procedure so that the resulting isolated lines, i.e., the component simple
spectra, should be approximated by the functions Fj(a.) in Eq. (II. 1) with

ag approximately equal to zero.

13
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Correction for Natural Background

Although these subtraction procedures are simple and
straightforward, the details are quite tedious and their exposition necessi-
tates an inordinate amount of symbology which we now introduce. Many
of the definitions are given in terms of sets, However, this is merely a
convenient notational device and no use whatever is made of any set-
theoretical operations.

: >

Let the observed (complex) spectrum consist of a set L_

of counts chj; 1€,

The corresponding room-background spectrum will be denoted by W, where
M= pas =Lz, ..., N

1f Tc and Tb denote the counting times for the measurements eand ,16

respectively then the spectrum corrected for room background is the set
(63, /AN g 1) /a0 AT SR
{JJ CJ.JJle,...,N},

where for each index j the corresponding value j'is to be determined such

that j and j' refer to the same gamma-ray energy and A, and A, refer to
3 1!
the same interval in energy. The possible inequality between jand j' and

between A. and 1 1
en ; n Ajl can arise because of slight changes in gain of the am-

plifier or of the photomultiplier tube in the ti

me interval between the
measurements e and y

It is possible to insure experimentally to a good approxima

tion against a relative displacement of the zero position of the two
spectra

and thus to maintain a constant value for the ratio i'lj for chang in th
€S 1n the



gain of the system. A measure of the value of this ratio can be obtained
as follows: Spectrum)fé usually contains some identifiable structure that
is also evident in \_:; This structure provides a means of calibrating the
gain of the spectrometer. In the event such structure is not present, this
calibration can be provided with a radioactive source before and after the
measurements of@ andﬂé . Suppose such a calibration, or '"mark, "
exists iné atiii= T and inﬁ“; dtag = T+ p. Since these '"'marks' corre-

spond to the same energy it follows that
i'= i1 +p/7), (II. 4)

and the spectrum corrected for room background consists of a set of ele-

ments of the form

BEAN=Ho, - (T Ep /T b/ T AL =L, e, N .5
cJJ[J C(PJ)J.b]JJ (I1. 5)

Since j' is not necessarily an integer, an interpolation formula is used for

in Eq. (II.5). This is given as

the evaluation of bj’

bj.=b + (b -b)\)(j'-X). NG L (IL. 6)

A A+l

where \ is an integer and j' is related to the integer j by Eq. (II. 4).

Preparation for Analysis of Full-Energy Peak: Program I

We now consider the subtraction of the degraded radiation
from higher energy gamma rays in those cases in which all of the compo-
nent simple spectra of the complex spectrum have been measured
separately. In this program, the possibility is neglected of perturbations
by its one-quantum escape peak on the photopeak being analyzed. This ap-

proximation is permissible for gamma-ray energies less than about 3 Mev



since for these energies the one-quantum escape peak is well resolved
from the photopeak. Also at these energies the cross sections in Nal for
the creation of pairs is relatively small. The modifications necessary
for the inclusion of these processes are considered in Program II.

Let the complex spectrum e consist of r full-energy peaks
and let the parameter vector (i.e., the vector for .which Q in Eq. (II. 3) is
a minimum) for the ith line in e be denoted by B.(l).. The measured sim-
ple spectrum for the ith line in e is denoted by e(l) and the corresponding
parameter vector by E(i).)

(1),

nents of the r vectors E is, of course, the goal of this analysis. Let the

The determination of the values of the compo-

r lines in e be numbered in order of decreasing energy such that

2
ﬁ2(1)>l32( )>. 5! >‘32(r)’

i)

where ﬁz(l) is component no. 2 of ;-3’(1 , and let the measured spectrum
C‘i(l) whose full-energy peak is centered at a2(1) correspond to the full-

energy peak ine centered at ﬁ2(l). Reference to Fig. 3 may be helpful
at this point,

Consider first the subtraction from the line in e at f32( )

of the tail of the higher energy line at 52( ). In order to carry out this

) i
subtraction the spectrum e_( ) is first normalized-r to the intensity of e

] . 2
in the neighborhood of 62( ) by multiplying each element in e(l) by the

T If the sources for the simple spectra have lifetimes long com-

: €lr measurements, the correction for

the influences of these various peaks can be made in the manner des-

cribed above for natural background. However
s

: : if these sources de a
appreciably during the course of the experiment o
s

these subtraction pro-



(l

ratio of the intensities of the two spectra; i.e., by the factor N ), where

N L g (g (1), ()

(Since the superscript (1) refers to the highest energy line ine, there is

no subtraction of the tails of higher energy lines in the neighborhood of
=
this peak and values of the components of [3( ) can be obtained in the same

manner as in the case of a simple spectrum.) The contribution from the

: 5 () . (=) . .
tail of the line centered at {'12 to the line centered at [32 in is the
1 il
corresponding tail in e( ) multiplied by N( ). Thus in the neighborhood
(2)

the spectrum corrected for the influence of the higher energy line

at B is

(0 ()

ElA =NER e il AL (11. 7)
3ol J

J

(1)

where c A, is an element ofe and cj| Aj is the corresponding element

I
in e(l).J Again a distinction between j and j' is made to allow for drifts
and changes in gain during the interval of time between the measurements
e

To a good approximation, the electronic apparatus can be
adjusted to make the pulse height of the full energy peak proportional to
the energy of the incident gamma ray. For purposes of background sub-

traction, therefore, this proportionality is a valid assumption. The

condition then that j and j' refer to the same energy is
i=kj',
() (1)

where, since a, and B, refer to the same gamma-ray energy

e B T

117



Expression (I, 7) can be rewritten as

- 1 1 ic
G o Mg, M, e Pca, Mo} 6. a, (1. 8)
14

where

: (L)
Again, since j'is not necessarily an integer, the value of cj| is calcu-

lated from the formula

el s (C)\+1(1) = Cx(l))(j' - A, kSR,
where \ is an integer.

In order to facilitate the remainder of this discussion we

make the following definitions:

e

J (i,T:eyB)E{szj, cA:j<j<jil<as<N, a=j},

a a

where cJAJ is defined by Eq. (IL. 5) and ¢ A is an uncorrected element in

e. This setet/ then is the spectrume corrected for room background
’8 in the closed interval [J,J] :

ek T N
i dTal =

<j<jjl<a<N, a=#j}

where ¢ A is defined by Eq. (II.8) with ¢ A in eand c. me
|

Again c A is an uncorrected element in e The set >4den0tes i
e com-
plex spectrum Q
(i+1)

corrected in the closed interval \is J]
of ﬁz for the tail of the peak at [3 (1)

in the neighborhood



We are now in a position to outline the sequence of steps
by which the vectors E(i) are obtained from a set of measurements con-
sisting of the complex spectrum 8, the room background ‘ﬂ, and the
family of simple spectra G(i). Recall that the r lines in(e are numbered
in order of decreasing energy and that the isolated spectrum correspond-
ing to the ith line in @ is G(i). The steps of the subtraction procedure
are as follows: (1) The spectrum G is corrected for room background
and the resulting spectrum, namely-:j (J,T 6)8 ), where [:],T] is a prede-
termined interval about [32(1), is used to estimate the values of the compo-
nents of [.-3. Y in such a way that they will satisfy the conditions associated
with Eq. (II. 3). The summation in Eq. (II.3) is to be taken over the inter-
val L]_,T] (2) The isolated spectrum e(l) is corrected for room back-
ground and the resulting spectrumcj(_j_,T: ell/ﬁ) is used to estimate the

(2

values of the components of a (3) The influence of the gamma ray of

highest energy is subtracted from the entire spectrum @to give
1)!
e‘s,d(l,N: e\e ))

where

e(l)'EJ(l,Nze(l\)/ﬁ )

The set of elements, @ ', represents the original complex
spectrum with all influence of the highest energy gamma ray subtracted

out, Thus e‘ is a complex spectrum whose highest energy peak is that
(=)

and it is possible to analyze this spectrum to obtain the

= (&)

centered at BZ

components of B. in exactly the same manner in which B. was obtained

from G. Obviously this closed cycle of steps can be used to exhaust the
=)

lines in G and so to obtain the entire family of parameter vectors ~

1)



Preparation for Analysis of Full Energy Peaks: Program II

We again consider a complex spectrume consisting of
full-energy peaks with associated parameter vectors B ). However, we
no longer assume that the complete family of component simple spectra
have been measured, nor do we assume that all full-energy peaks in
are sufficiently well separated that there is negligible contribution in the
vicinity of a given peak from a neighboring peak at lower energy.
Originally this program was formulated to analyze photo-
peaks associated with gamma rays with energies in the neighborhood of
7 Mev from the F19(p, ay)O16 reaction. Some typical spectra are shown
in Figs. 5, 6, and 7. At these energies two additional complications
arise. First, the one-quantum escape processes associated with each
full-energy line are not negligible; and second, the back-scattered events
leave enough energy in the crystal to distort the low energy side of the
full-energy peak. Both of these possibilities are considered in the present
formulation.
Let ,gdenote the room background spectrum associated

with the measurement e and consider the set f(_] 33 e \f3 ) where the

(i
interval [j, J] includes both [3 ) and {3 (5 ), Within this interval there

may be a non-negligible contribution from the four peaks representing the

back-scattered and one-quantum escape events associated with both full-
energy peaks. We assume that, for each channel j included in uT] the

contribution to the number of counts due to these secondary events can be

approximated by four Gaussians which are given by an expression of the
form

J-3.\2
dj = Ak exp | - .
K=l i G- 5

Sin - i n -
ce the one quantum €scape peak is 511 kev lower in energ tha t
y 1ts as

sociated full-energy peak and the back-scattered peak is lower
in energy
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than its full-energy peak by a calculable amount (about 250 kev), the four
mean positions jk in Eq. (II.9) can be estimated provided the relation be-
tween pulse height and energy is known. Further, the intensity, i.e., the

product A and width 5 of each of these peaks can be calculated from

KKk’
the corresponding parameters of the associated full-energy peaks provided
the response of the counter system to an isolated full-energy peak has been
determined for gamma rays in this energy region.

Let ngj be an element of‘:(i,T; 6>ﬁ) and consider the

set

{ngj - dJ_Aj: Ji<is<ij}, (II. 10)
where dj is obtained from Eq. (II.9). This set represents the partial spec-
trum of two full-energy peaks after it has been corrected for room back-
ground and for all secondary events, Although the room background is
generally negligible in this energy region, we include its effect for com-
pleteness, This set can be described in terms of the quantities Fj(c-f)

defined in Eq. (II. 1) provided the second term in Eq. (II. 2) is reinterpreted
to represent the full-energy peak associated with the line i = 2 in f Thus
if @ is the vector which minimizes Q(a.) in Eq. (II. 3), the components of the

=) =(2

vectors f3 and ) associated with the two full-energy peaks are

G T O R

L B B L I L I
and

8.y 5 0o

The energy difference § as well as the width ratio k are treated as known

in this discussion, However, there is no difficulty in considering § as an
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additional parameter, the value of which is to be determined in the same
manner as are the values of the components of a.

In order to extend this analysis to photopeaks of lower

Z e
energy in the measured spectrumi_ it is necessary to subtract from
the contribution from the lines i = 1 and 2. In order to carry out this sub-
(x) . .

traction we assume that a spectrum, say e , of an isolated line has been
measured for a gamma-ray energy somewhere in the neighborhood of the

(1) (=}

energies associated with the photopeaks centered at B and ]32 The
proposed procedure is as follows, The spectrum ex) is shifted and
normalized so that it is superimposed first on the peak ati = 1 in e and
then on the peak at 1 = 2. The two spectra calculated in this manner are
then used to subtract from e the entire contribution from its two photo-
peaks from the gamma rays of highest energy. In the example considered
here, the gamma rays from F18(p, ay)O15, the e(x) spectrum is obtained
by selecting the proton energy such that the yield of the 6. l-Mev gamma
ray is much more intense than the 6.9- and 7. 1-Mev gamma rays. Fig., 6
has been used as @(x) in the analysis of our data on this reaction.

First let us consider the details of this subtraction for the
contribution to G from the gamma ray whose full-energy peak is the line

o A(x)'
i=1, Let Q' and C_ denote the following spectra

Gi'agf(ybnésﬁ) and G?x)'s;ﬁ(l,N:éﬂxEﬁBL

and let a denote the Parameter vector

()" E and®

. Further, let E i
Q@x). | " and E, denote respectively the energy of the line
in and the i = 1 line in E '. Correspondin
E, in e' is the energy Ex in e(x)l

corresponding to the single line in

g to an arbitrary energy

, Where

E = “E, + E
= E -E_+ E_.
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1
If the channel number corresponding to EX in e‘(x) is 1 and that corre-
sponding to El in e‘ il thien

kn = ke - k(g - 5),

2
where k and k' are the proportionality constants giving the energy in terms
of pulse height for Gx)' and e', respectively., The necessary adjustments
on the apparatus can be made to establish this proportionality to a good ap-
(X)Aj(X)

proximation. If c.'A, denotes an element ine' and c, an element in
J

X 1
e( ) , the spectrum ' corrected for all influences of the line i = 1 is

(1) (%) )
c

3 -j)/k; 1 £j <N}. (1L

te'a-8," A Jayagin = a,- ke,
JiegT T 2

In order to determine the relation between corresponding channel widths

A.and A , it is necessary that there exist identifiable channel numbers,

J mn 1
say r in éx) and s in e', such that they correspond to the same energy.

In this case,

k' =z/s
and

A= (KRN = (r (s)A .
mn J J

!
The set that results from this normalizing and shifting e(x) to match the

- 1)!
intensity and mean energy of the i = 1 line ine' will be denoted by (+) g

1.6

=y

8“" = {Bl(l)ﬁs(l)k-cn(x)Aj/(ul%h i) = s k‘(ﬁz(l)-j)/k; 1 < j < N}.

By an entirely analogous procedure it is possible to normal-

. : (x)' i . . e
ize and to shift e so that it is superimposed on the i = 2 line in 43
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.(2)" : ;
Denote this spectrum as \;( ) . Then in C/' the influence of the two lines

1 1
i=landi=2is simply the sum of corresponding elements in 6( ) and
(&)
(27", Thus the set
1 ) 2 2)!
o) (@) (1,00 o P ¢ a1

" = - -W, A 15‘5N;W. % i j
@ielisen vy 187 SSITE ! ;

represents the original spectrum e corrected for natural background and
for all contributions from the gamma rays associated with the lines i = 1
and i = 2. The highest energy line ine” is the line i = 3 in the original
spectrum.

1f the photopeaks in e" are sufficiently well separated and
the corresponding component simple spectra can be measured, the setE"
can be analyzed by means of the procedures outlined in Program I, In those

cases in which there is a non-negligible contribution from one-quantum-

escape processes a term of the form
Aexp{-(j - jp/og)2} A
0 d

should be subtracted from each element in G_” in order to correct for
these contributions. If any of the conditions necessary for the application
of Program I are not satisfied, it is possible to analyze the highest energy
lines in e" by repeating the steps given above as Program II with S nre-

placing the setj(i,?; eyﬁ ) wherever it occurs,

The Fitting Procedure: The Newton-Raphson Iteration Method

Th @ defined 1
e vector a defined in Eqs, (II, 1) and (II, 2) describes the
response of the spectrometer to an isolated source of monoe ti
nergetic
gamma rays. The ''best estimates" aﬂ* of the components of @ h
. a have been
defined
efined (thus far as an ad hoc assumption) to be those values f hi
or which the

quadratic function Q(a), E 1 i i
, Eq. (IL. 3))atta1ns 1ts minimum value. Since the
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energy of the gamma ray, the intensity of the source, and certain physical
properties of the spectrometer system are functions of the components of

this vector it is of some interest not only to justify this definition but also

to obtain a measure of the accuracy to which such estimates can be calcu-
lated for given spectral data.

In Sec.III it is shown that the '"best estimates, ' as defined
above, are actually maximum-likelihood estimates and as such they are
asymptotically normal and efficient estimates. The variance-covariance
matrix associated with their joint probability distribution is given in a
form suitable for numerical calculation. Before considering these points,
however, let us first outline the numerical procedure that is used to mini-
mize the function Q(a.).

The conditional equations for the evaluation of the vector
components that minimize Q(a) are conveniently written in the form

Ql‘(a’ )= 0, Mg il s o i o (II. 12)

-
where, for each component a, of a,

n

Q '(a) aQ (E)/Baf =2 ZJ_AJ,Z [Fj(a’) - chj] BFj/aaI . (1. 13)
The vector H* specifies the point in five-dimensional parameter space
for which Q(a) attains its minimum value.

The Newton-Raphson method of iteration consists in generat-
ing a sequence of successive approximations {:p: p = 0SSR S e which
converges to the limit -(-1.*. The convergence of this sequence depends, of
course, on the accuracy of the initial approximation (_1.0. For the cases

of interest here, we have found that a sufficiently accurate initial approxi-

mation can be obtained by visual inspection of a measured spectrum.
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lue
Once the components of a 2 P have been found for any valu

o Yy urrence
i the next term in the sequence is generated by means of a rec
p’

formula obtained from the expansion

i == W pti _ B 0. 14
Q2 ) = 0=0@P)+ Ty, (& Pl te a5 g (I1. 14)

where

92F(T) aFj(a') BFJ.(E’) 1 )
- ol he j ool ST AN S (11, 15
" =2 ey E(a) scAlls—r
Q,,"(@) = 2 .82 [F, i) Bapa_ b0 da_ |

: =2 () "
If we let Q'(p) denote the column vector with components QZ‘(a ) and Q" (p)
. : -p :
denote the real symmetric matrix with components Qﬂm"(a ) the solution
of the set of equations (II. 14) can be written

TP TP Qe R (II. 16)

P

where [Q"(p)]_l is the inverse of the matrix Q'"(p) and a ~ is to be inter-

preted as a column vector,

The concept of convergence of a sequence of vectors de-
pends on the choice of a vector norm., In the consideration of the condi-

tions sufficient for asymptotic stability of the recurrence relations (II. 16),

. . . . ol
it is convenient to define the norm of a as

7] = max o] -

/4

It is then possible to construct a compatible matrix norm in terms of which
the conditions for stability of the sequence {Ep p=0,1,.. .} are rela-
tively simple — at least compared with the corresponding conditions which
are obtained for the customary definition of vector norm. A complete dis-

cussion of this aspect of the iteration procedure is too lengthy to be

included in this report, However, it should be mentioned that in the cases
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considered here the repeated application of Eq. (II. 16) generates a se-
quence which converges in the sense that for sufficiently large values of

p, the condition
JZ° TP <

can be satisfied for any ¢ which is larger than the 'round-off" error of the
computation,

Figure 8 is a flow diagram of the numerical analysis of a
complex spectrum, The fitting of the highest-energy photopeak and all
isolated photopeaks is actually done three times; once with the background
spectrum shifted with respect to the spectrum of interest as indicated by
an input datum and twice more with the background curve displaced one
channel each way from the initial "guessed'' position. The best fit (i.e.,
the one which gives the lowest value of Q(;)) is the only one saved., In
the subsequent fitting of all lower energy photopeaks the background spec-
trum is held fixed in the position that yielded the best fit for the highest
energy photopeak.,

The computer printout consists of the identification of the
photopeak and the experimental run, the values of u;", the value of Q(c-f*),
the error matrix for the joint dist}'ibution of the estimates QJZ* as deter-
mined by the reciprocal of the matrix B defined below by Eq. (III,95), and
the correlation matrix containing the correlation coefficients for the esti-
mates, Also printed for each channel involved in the fitting procedure
are the calculated and observed (corrected) counts together with their
difference divided by the standard deviation of the observed counts, This
latter information is printed also for twelve channels to either side of the

interval specified for the fitting routine.
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Fig. 8.' Flow

diagram of the computational procedure.



I1II. THE RESPONSE OF A SPECTROMETER
TO MONOENERGETIC GAMMA RAYS

As is well known, the response of a scintillation spectrome-
ter to a monochromatic gamma ray takes the form of a broad pulse-height
distribution. This instrumental distortion of the incoming pulse must be
understood if observations made with a crystal spectrometer are to be prop-
erly interpreted. In this section we attempt to find an analytic expression
which adequately describes this pulse-height distribution., Such an expres-
sion will be called the ''response function' of the spectrometer system.

As described previously, the spectra obtained by use of a
scintillation spectrometer with an anticoincidence annulus are character-
ized by the suppression, relative to the full energy peak, of those events
in which only a part of the energy of the incident gamma ray is converted
to the output pulse of the counter. This should make possible a more
nearly unique interpretation of the observed response at least in the neigh-
borhood of the full energy peak.

Because of the complex nature of the physical processes
that contribute to the formation of the output pulse, the problem of obtain-
ing the actual response function cannot be tackled directly. However, the
properties of this distribution function can be summarized in terms of its
moments or other statistical parameters, Several authors3 have treated
this problem by the use of probability generating functions and have ob-
tained expressions for the first and second moments of the response func-
tion. In this formalism, however, the algebra becomes intractable when
moments of higher order than the second are considered.

With the help of moment and semi-invariant generating
functions we have obtained expressions for the first four semi-invariants
(or equivalently for the first four moments) of the response function,
From these expressions it is possible to obtain conditions that are neces-

sary in order that the response function approach a Gaussian form and

54
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also to estimate the extent of deviations of the observed response from
normality in practical experimental situations, Suchidewiafions can be of
importance in the interpretation of many measurements, For example,

the coefficient of skewness of the response function is related directly to

the question of the linearity of the energy calibration of the pulse-height
spectrum,

In the derivation of expressions for the semi-invariants
that characterize the response function it is necessary to repeat some of
the considerations contained in previous works on this subject. In partic-
ular, the treatment of the formation of the output pulse as a cascade of
three events is taken from the review article by Breitenberger.3 The
reader is referred to this work for a more detailed account of these pro-
cesses than is given here,

Before we consider the processes by which an output pulse

is generated in a spectrometer we briefly review some of the properties

of semi-invariants and of moment and semi-invariant generating functions.

Moment and Semi-invariant Generating Functions

Let X denote an integer-valued random variable with proba-

bility distribution given by

Pr {X =n} = P - (III. 1)

The moment generating function QX(K) for this distribution is defined by

. %3 | g
=Lpet, (IIL. 2)

where the s
ummation extends over all integers n for which P, is nonzero

The corresponding semi-invariant generating function ¥ (
terms of Q (K) by the relation

k) is defined in

\IIX(K) =1n QX(K) ’ (111, 3)
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The lth semi-invariant )\X(J) of this distribution is obtained from \IJX(K)
by differentiating this function j times with respect to k and evaluating

the result for g equal to zero, 1i.e.

F)

J
; d"¥_(k) :
(i) _ X _ (J)
e =¥, (0). (II1. 4)
dg
k=0

The first four semi-invariants are related to the central moments of the

distribution through the equations

xx(l) = (X) , (II1. 5a)

R o (II1. 5b)

A )= UK - (X)), (111, 5¢)
and

Ay ] = (X - (X% - 3[UX - (X122, (1L 54)

where the expectation brackets are defined in the usual manner, viz.,

K \ K
(XY = Znn P - (111, 6)

(1) (2)

The coefficients of skewness Yx and excess Yy of the distribution

are defined by the relations

(2).3/2

My (S)/[xx ] (IIL. 7a)

x be
and
(2),2

(2):)‘x(4)/[)‘x A (I1, 7b)

L

The utility of generating functions arises from the simple
manner in which they combine to describe certain compound distributions.
We shall have need for the generating functions corresponding to the fol-

lowing possible ways of compounding a distribution from sequences of

0 RN e Bl
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a) Alternative events. Suppose an event consists of a se-

quence {Xi; i=1 2, .} of basic events Xi such that at each trial one

and only one of the Xi occur, If qi is the relative (normalized) frequency

of occurrence of the alternative X, in a long sequence of such trials, then
1

the moment generating function corresponding to the composite event

SRR . .} isgiven by
1
) W ) (i) ng
Qi) = ) a; @y (k)= )oa )y p &K, (111, 8)
1

where p () is the probability that Xi takes on the value n. The correspond-
n

ing semi-invariant generating function is obtained from QX(K) as indicated

in Eq. (IIL. 3).

b) Simultaneous events. Consider the finite sequence

{Xi: i=1,2, ..., N} of independent random variables X., where,
i

for each value of i,

Pr{X =n} =p () (I11.9)

n

Let S denote the random variable defined as

S=2 X, . (I11. 10)

The moment and Semi-invariant generating functions for the variable S
are

N
Q4(k) = ..-:/ 2y (k) (III. 11)

Wes i

and

N
Wlcli= )i
5 igl qIXi(K) ’ (111, 12)
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where

(x) Z P T (11, 13)

In the sequence considered here the number N of independent random varia-
bles is fixed.

c) Cascade events, Consider next a sequence
{Xi: i=1, 2, .. .} of mutually independent random variables with the

common distribution

= = . 11, 14
Pr{X, =k} =p,_ ( )
Let SN denote the random variable defined by
N
= ) T 15
Su= 0 X (111 15)

where N is also a random variable, independent of the X, , with the distri-
i

bution
Pr {N = n} = g - (111, 16)

The moment and semi-invariant generating functions for the variable SN

are
Qg (k) = QN(‘I’X(K)) (111, 17)
N
and
‘I‘SN(K) = ‘I’N(‘I’x(")) 5 (I11. 18)
where

NOEDN A (1L, 19)
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and

, kK (1I1. 20)
¥, (K) = 1n VPt

e results to the case of a sequence of sim-

Let us apply thes

ple Bernoulli trials, i.e., consider a sequence of two-valued random

variables {X,: X, =0 T s e e e .} where, for each value of i,
i i 2

Pr {X. =1} = p, (111, 21a)
i 1
and
Pr{X =0} ="1-p = (III. 21Db)
i i
The moment generating function for the variable X,1 1S
K
= 1 - . 111, 22
8¢ lel=pe” #{1 -p;) ( )

1

If the relative frequency of occurrence of the alternative event Xi is given

as q., the generating function for the sequence is

N
24k :AE q, 2y (K) = Pet (1 =)0, (111, 23)

i=1 i

where

N
P=) ap, . (IT1. 24)
a="1

Thus a sequence of alternative Bernoulli trials is also a Bernoulli trail

with probability given by Eq. (III.24), As pointed out by Breitenberger,

this seemingly trivial result has an important application in the discus-
sion of the photon transfer efficiency of a scintillation counter,
For : i
a sequence {Xi' X,1 =0 R = RN R o

il

Bernoulli trials with the common distribution
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Pr {iX =1} = p., (1rr.25)

the random variable

N
& = Z % (I11.26)
has the moment generating function

o

Qslk) = [pe€ + (1 - p)]™ . (111.27)

If the product Np = ¥ remains finite as p approaches zero, the generating

function (III.27) approaches the limiting form
Qg(k) - exp {v(ek - 1)} . (111.28)

This is the moment generating function for a random variable S that obeys

the Poisson distribution
Pr {S=s} =vS e V/s!, (111.29)

where p is the expected value of s. The semi-invariant generating func-

tion for the Poisson distribution is
Yg(k) =vlek - 1) . (111.30)

Application to the Scintillation Counter

The mechanism by which an output pulse is generated in a
scintillation counter system can be discussed as a cascade of three

processes:
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i) The absorption of energy by the phosphor and the subsequent emission
of photons.

ii) The collection of these quanta at the cathode of the photomultiplier
tube and the resulting ejection of photoelectrons by the
cathode.

iii) The subsequent multiplication of these photoelectrons by successive
dynode stages in the photomultiplier tube.

Given the generating function corresponding to the probability distribution

of each of these processes, the above methods of compounding sequences

of events can be used to obtain the generating function for the distribution
of the output pulse for an incident monoenergetic gamma ray. Each of
these cascade events will be considered separately in an effort to obtain
reasonable approximations to their generating functions.

a) Genera}ign of light quanta in the scintillator. One of

three primary processes may take place when a gamma ray photon trav-
erses a Nal crystal. These are photoelectric absorption; Compton
scattering, or pair production. In each of these processes energy is
transmitted to electrons in the crystal and these energetic electrons
interact with the atoms of the crystal. Ultimately a fraction of this exci-
tation energy is emitted as light in a wave length band which the photo -
multiplier can detect and amplify. Here it will be assumed that the entire
energy of the incident gamma ray is transmitted to the crystal in each of
these primary processes. Such an assumption is strictly valid in the case
of photoelectric absorption provided that the energetic electrons thus

produced, do not escape from the crystal nor produce bremsstrahlung

which escapes from the crystal. The assumption is applicable also to

¢ . 2 ; .
he case of pair production if neither particle of the pair €scapes nor pro-

quanta must be stopped

within th i
€ crystal. The assumption of complete energy transfer in the case
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of Compton scattering is equivalent to the '"thick case'' approximation dis-
cussed by Seitz and Mueller.4 If { represents the efficiency with which

a luminescent crystal converts the excitation energy it receives into light
quanta, the average number x of light quanta produced by an incident

gamma ray of energy E is given by
x=tE, (II1. 31)

For a thallium-activated sodium iodide crystal, ¢ is of the order of
104 /Mev and is assumed to be independent of the energy of the incident
gamma ray.

It is convenient at this point to drop the convention of using
capital letters to denote random variables. Let x be the random variable
whose value is the number of light quanta produced in a Nal crystal by a
gamma ray of energy E.

The nature of the luminescence process itself is not com-
pletely understood and it is difficult to justify any particular distribution
for the variable x. However, the general features of this process satisfy
the conditions for a Poisson distribution as may be seen by considering
the production of x quanta as a sequence of simultaneous Bernoulli trials
each with the same probability for the production of a light quantum, It
is therefore assumed that the semi-invariant generating function for the

random variable x is
L
\Ifx(ic) =x(e” - 1). (111, 32)

b) Collection of light quanta. Only a fraction t of the light

quanta produced in the crystal contributes to the initiation of the secondary
emission avalanches at the first dynode of the photomultiplier. Specifically,

a successful photon transfer is a cascade of four Bernoulli-type events:
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(1) The light quanta find their way (with probability e) from the phos-
phor into the optical system which guides them toward the cathode of the
photomultiplier. (2) Some of the quanta in the optical system arrive

(with probability f) at the cathode. A fraction (1 - f) of these quanta are

lost by absorption and reflection en route from the phosphor to the cathode.

(3) A light quantum striking the cathode releases (with probability p) a
photoelectron, (4) Photoelectrons from the cathode initiate (with proba-
bility c) secondary emission avalanches at the first dynode. Since each
step in this sequence is a Bernoulli event, the entire process of photon
transfer i1s also a Bernoulli event with probability t for successful trans-
fer of the photon from the phosphor to the first dynode of the photomulti-
plier tube. Furthermore, by Eq. (III. 23), this transfer efficiency is just
the product of the individual probabilities for each step in the sequence,

HEN =

t = efpe . (III,

Successive scintillations, however, never occur at exactly
the same point inside the phosphor and photons produced at different
points have different escape probabilities. This implies that the proba-
bility t will vary from one scintillation to the next, Let {ti: i1=1,2, ..
denote the sequence of possible transfer probabilities for each photon in a
given scintillation and suppose that a given value t. occurs with relative
frequency q in a series of many scintillations, The transfer efficiencies
thus form a sequence of alternative events such that for each photon one

and onl i i
nly one of the ti occur, The moment generating functions for these

alternatives are

_ K
Qti(x) =te’ +(1- ti) (111

forrall ¢
i

33)

-}

.34)
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c) The cascade of secondary electrons. The photoelectron

that arrives at the first dynode produces several secondary electrons., In
a multistage multiplier tube, these secondaries in turn become primaries
with respect to another dynode and on impact produce several secondaries
each. Because of the random nature of the process at each step the cumu-
lative effect on the output pulse after a given number of multiplication
stages can also be treated as a cascade of events, Such a calculation has
been carried out by Woodward, : However, the only property which we
shall assume for this distribution is the existence of finite semi-invariants
of all orders, In the discussion that follows \I/m(x) will denote the' semi-
invariant generating function for the tube gain variable m and )\m(']) the

corresponding jth semi-invariant.

Semi-invariants of the Pulse-height Distribution

If an incident gamma ray of energy E initiates the emission
of x light quanta from the phosphor, the number Sx of photoelectrons which

arrive at the first dynode is given by
SIS (I3 5)

The generating functions for the distributions of the random variables x
and tk are given respectively by Eqs. (IIL. 32) and (III. 34), If m, denotes
the tube gain for the ith such photoelectron the resulting pulse height q is
obtained as the sum of the SX values mi, 1,

s
g= Y m, . (111, 36)

The m, are assumed to have a common distribution defined by the semi-
i
invariant generating function \IJm(K). Reference to Eq. (III. 17) reveals

that the moment generating function Qq(x) for the pulse height g can be
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expressed in the form

Q (k)= Qe (¥_(k)) . (111, 37)
q S m
x
According to Eqs. (IIL 8) and (III. 17) and the discussion preceding Eq,

(1III. 17), the moment generating function for Sx is

= (111, 38)
Qg (k) = Ziqux(\yt_(K)) )
X -

where 9 is the frequency with which the transfer probability ti occurs,

The 9 are normalized such that
‘g, =1. (III. 39)

Combining these results leads to the expression

¥ (k)
Y _ Y o m
Qq(K) = ZiquX(\IJti(‘IJm(K))) = Ziqi exp {x ti(e - 1)}, (I11. 40)

for the moment generating function of the random variable q. Expressions
(III. 32) and (III. 34) have been substituted for the generating functions Qx

and \Itt in obtaining this last relation,
i : : ;
The first four semi-invariants of the pulse height distribu-

tion are obtained from Egq., (III. 40) as indicated in Eqs. (III. 3) and (III. 4).

The result is

xq(l) -3 "t(l)"m(l) ) (11, 41a)
T N (MR PPN N (1. 410)
s Py BB L)

3w P O, SR W PO N
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and
T N N I T S O N L )
q € m m m m m m m
pra P O Cliagn (Y3 (50 ()2 4 ()
+6§3xt(3)[(xm(1))4+(xm(1))2xm(2)]+§4xt(4)(xm(l))4, (III. 41d)

(3) (3) ()

where )\q s )\m , and )\t denote respectively the semi-invariants of the
distributions of the random variables q, m, and t. The semi-invariant

)\t(J) is defined by Eq. (III. 5) in terms of the moments (tJ) where

J j
() = )at - (11, 42)

The relative variance ﬂq of the pulse-height distribution
2 Tye
is defined as the ratio )\q( )/()\q( )) . From Eqs. (III.4la) and (III. 41b),

it follows that

_ o =) (e (@) (e =
4)(% (O IS R 35 WAV MR I VAN

(), _ ) e ()
=4 a4 e,

t

(I11. 43)
where 4)t and ‘& are the relative variances of the distributions of t and
m

m, respectively., The coefficients of skewness and excess are defined in

terms of the semi-invariants by Eq. (III. 7). For the pulse-height distri-
bution, these coefficients can be obtained from Eqs. (III. 4la) through

(III. 41d). They are

(®)
Y(l):j) _3/2![ 1'*:f'd)m-FAm 34)t(1+jjm)+A(a)1 ,

+
q q [ = )\t(l))Z = )\t(l) t

(II1. 44a)
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&l (4) =2 (2}
1+64)m+3j)m2+41\m( )+Am ﬂ(7+18ﬂm+3ﬁm t4a )

(5} 4] -2 = + = pe
Yq “)q (x xt(l)) i
(2
By (Hj)m) + pt9) (I11. 44b)
At N t g
(x )\t )
where
(i) (3) (L2955 (II1. 45a)
" =X /()\m ey
and
() . () (1).] III. 45b)
B, =k /(>\t e (

In principle, at least, each of these statistics can be measured as a func-

-1
tion of the energy E =

X of the incident gamma ray, In Sec. IV are

. A) ang 1%
given the results of such measurements of g an Yq -

The Response Function

The standardized jth semi-invariant ) (J)/(xq

(2))i/2 for

)
q

the q distribution as defined by its generating function (III, 40) behaves for

large values of x as

N (
q

where the remaining terms are of the firs

ratio At(J) is zero for j »

invariant of order greater than two vanishes for th

condition, if it is satisfie

j)/(xq(z))j/z ~ At(j)+ 3 (11, 46)

t and higher order in 1/x. If the

3, then as x approaches infinity each semi-

€ q distribution. This

d, uniquely determines the asymptotic form of
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6
the pulse-height distribution to be Gaussian. 1In this case the asymptotic

frequency function for the random variable q becomes

q-qo)?‘]

1 1

J dq , (I11. 47)
where
B (S (L)
g = x)\m )\t (III. 48a)
and
CHER qoej)q- (III. 48Db)

Note that the asymptotic values of the coefficients of skewness and excess
are zero provided the third- and fourth-order semi-invariants of the t
distribution vanish,

Deviations of an observed response function from this
simple asymptotic form depend not only on the assumptions explicitly men-
tioned in this derivation but also on many factors which have been ignored
in the discussion. For example, the electronic equipment was not men-
tioned although it is always a source of small parasitic fluctuations. Many
of these "secondary'' effects are discussed in reference (3). It is quite
obvious that, for any given experimental setup, the nature and extent of
any differences between the observed response function and the simple
form of Eq. (III. 47) must be obtained experimentally.

One direct method of obtaining such a measurement is to
compare a measured full-energy pulse-height distribution with the Edge-
worth distribution, viz.,

() (2)

'q 3)

At R T T

(gstmnis (ITT =0



where f(q) is the Gaussian function (III. 47) and
Xq) = (-1 H (@) fa) . (11L. 50)

Here H (q) is the Hermite polynomial of order v.

i The results obtained in preliminary measurements of this
kind are discussed in Sec, IV, At this point it suffices to say that Eq.
(III, 47) satisfactorily describes the observed pulse-height response for

values of q that satisfy the inequality
|a-q,] S 2.5¢ . (IIT, 51)

These limits correspond to roughly 97% of the total number of counts in
any full-energy peak. (The word "satisfactorily' in the above context
means that the measured deviations from Eq. (III. 47) were such that they
could be attributed to expected statistical fluctuations in counting, This

will be discussed in Sec. IV,)

Maximum-Likelihood Estimates

The present problem of obtaining estimates of the values
of the components of the vector a differs from the usual problems in sta-

tistical estimation in that the total number of events in the spectrum, i.e
» l.e.,
the value of N @,0,, 1s not specified in advance, As a practical matter,

the entire observed spectrum {c A: j = oo o s N} must be truncated

(somewhat arbitrarily) so that only the data included in the subset

il

G. = {CJ-AJ- ep i€} (II1, 52)

1s available for the estimation of the values of a , In this subsection we

truncated spectra. Also the limiting form of the Joint probability distri-

bution of these estimates is discussed
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For the present we treat the background subtractions as
nonrandom processes. The modifications necessary for the inclusion of
these corrections as statistical processes are given in the subsections
which immediately follow this subsection,

First we consider the probability of observing the data rep-
resented by the set e Let m be the total number of counts actually
observed in e, i.e.

m= ) ey (I11. 53)

je€
Given that the total number of counts in the complete (nontruncated) spec-

trum is N, the probability of obtainingeas a measured result is

Pr{€|N} = ¢ ).(1 P m77—']—r (III. 54)

where pj, the probability of a single count occurring in the jth channel, is

[-(x-a>2
(@) = itz N0
e

(I1I. 55)

and

p = >( p. . (I11. 56)
: J
Je

[In Eq. (III. 55) and throughout this section we use the notation f(a.) to indi-
cate a function of one or more of the components of the vector a. In many
instances where there is little chance of confusion, the dependence of f on
@ will not be written explicitly as, e.g., in Eq. (III. 56).] In the present
problem N is itself a random variable whose distribution is assumed to be
that given by the Poisson law

Pr{N} = e Ml 3 (II1. 57)



i 1 number of counts in the nontrun-
where M = a 0, is the expected tota

cated spectrum, The probability of observing the truncated spectrum e

with no a priori knowledge of the value of N, other than the obvious con-

dition that

N=>m,

is given by a combination of probability distributions, namely,

C.
Pr{C} = OZO,Y Pr{€|N} Pr{N} = eMP 7y (Mp,) . cjf : (111, 58)
N=m ie®

The mean value, variance, and covariance of the variables cj in this dis-

tribution are respectively

c. = Mp , var(c,) = Mp., and cov(c,c.,)=0. (I1I. 59)
J J J J Ji
This is most easily shown by observing that the moment-generating func-

tion for the probability distribution Pr{&} is

9(5.: @) = exp{-Mp - Y ps)} . (I11. 60)
J : a4
je€
The maximum-likelihood estimates az* for the values of
a, are defined by the condition that the probability Pr {/‘D} of obtaining the
observed result ebe a maximum for a, = aﬂ*. The resulting set of con-

ditions for the determination of the estimates is then

-

) ' g ] aFj(a*)
Sy e = 0, 5, II1, 61
e ‘.Fj(a;“) 5a, ( )

In the derivation of Eq. (III. 61) we have used the relation

F(a) = M(a)pj(ﬁ’) (II1. 62)

which follows from the definition, Eq. (II, L) of F(;)
vk



From the definition of the weights Aj2 in Eq. (IIL. 3) cou-

pled with Eq. (IV. 13) it follows that

49

AJ?L.; l/var(cj) ~ 1/F(a ). (II1. 63)

With this result, the conditional equations (III, 61) for the maximum-
likelihood estimates are seen to be completely equivalent to the conditional
equations (II, 10) for the minimization of Q(-a.).

Next we consider some properties of the joint probability
distribution of the estimates (11*. The meaning of a probability distribu-
tion for these components is the following. From a sequence of similar
measurements select the subsequence which resulted in the same spectrum
€' Then the distribution of the estimates aﬂ* over this subsequence is the
joint distribution in which we are interested. The necessity of this defini-
tion may be understood by a consideration of the meaning of the averaging
process carried out below in Eq., (III.75). Actually, we must content our-
selves with a discussion of this distribution in the limit in which the
number of independent measurements in the above subsequence approaches
infinity,

Let

o&a') = 1In Pr{e} = ) InL(c |T), (111,
J.‘Ee j JI

where, from Eq. (III. 58), it is seen that Lj(cj[(-f) is the Poisson distribu-
tion for observing c, events in channel j when the average number of such

events is ij = Fj' i,e.,

-F (a

J

) e f
G J ==
L,(cjla) =e [Fj(a)] /Cj! . (III.

64)

65)
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The notation L (e Ia) is used to denote the conditional distribution of cJ

when the values of the components of @ are given, Consider the Taylor

expansion
5
s (3) :fxf(a 7 Z * 308 PR R
da - da /-— m 8a 9a0a &
7 /! i m=1 £ m a

where the az' are the 'true values'' of the components of :, the a *Aare
the corresponding maximum-likelihood estimates, and the vector a is
defined such that ﬁ\l exists in the interval ((11*, 0.1’) for all values of £. By
definition of maximum-likelihood estimates the first term on the right-
hand side of Eq. (IIL. 66) vanishes and, if O'JZ* converges stochastically to
le for all £, the coefficients asz/auﬁaam)/\ converge stochastically to
(GZX/BQIBam>_ . Here the subscript on %the "expectation brackets' de-
notes that the a%relraging process is to be carried out under the hypothesis
that a, = aﬁ‘ for all . The joint distribution of the a['ﬂ is not affected by
the substitution of this expectation value so that in the limit Eqs. (III. 66)

become
- 5
aof(a)) = N (a'-a 9B P .
By )z, o8, m T m B =L, (111 67)
where
=~ (el
By = 40 x(“)/aaza°m>.. , Lm=1,...,5, (I11. 68)

a '

Carrying out the averaging process leads to
i(a 9lnL (c. (1)
< Z’BlnL(c ]a)/8a§> %Z’L(C |2 | )
o9 a

E@ {Z’ Lj(cj|&°)} =0, (I11. 69)

-
a !
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since
' Ljc.lan=1, 111, 70
i AL ( )
and
I ol S BIE ]
ezt [ , oL
= N M L,(c_la‘)———‘;‘:) =) ) == L a7y
S =y e SR 30.28(1 S c! [L_ 8(11 da
€€ i mf = Je€  "j |7 m] =,
where
9L, [c ] 8E;
a_aJ:"FJ'”'fL' (I11. 72)
(S R s B
From the definition of expectation value and Eq. (III.59) we obtain
L (c.|@') [c. - F.(3")]? = var(c,) = F,(3") . I, 73
Do, Lyte; &N [e; - B(@] (c;) = Fi(a) ( )
J
The substitution of Eqgs. (III, 72) and (III. 73) into Eq. (III.71) gives
[c. ]?eF. @F | OF, OF
— e gl J _J\ SRRy A R S 74
Bﬁm . LJ da_ da Z F. 9a Oa ‘ i P vl
Je — l_ ] J m 1,/ = JeE=t ) J4 m - =

=
Let (B ) denote a component of the reciprocal of the symmetric matrix
whose components are defined by Eq. (III. 74). The solution of the set of
equations (III, 67) for a ' - a * is then
m m

s

’ -1 VD e

o '-a *= )1 (B77),, @)/ 0a) , m=1...,5. (III. 75)
— al

The components of the error matrix which specify the joint asymptotic

distribution of the u * are obtained by carrying out the averaging process

over a subset of measurements yielding the spectrum@ as discussed

above. The result is
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5
-1 -1 oL 8N gt
{fa,, " =% Hila b ar*)> i 2 21 ® o )rt<aa1 Ba /' B
,t= a' (I11. 76)
since

L. 9L
GEL) gy et e

) .
zuta-,JeeJth

Probability Distribution of the Corrected Counts

In this subsection we consider the probability distribution
of the counts c A, in any of the spectra corrected for "background' by the
methods discusseJd in Sec. II. Knowledge of this distribution is necessary
in order that these background subtractions can be included as random
processes which can contribute unequal weights to the data points cJ.AJ_ in
the estimation of the values of the corresponding response parameters a,.

Let us assume that the counts aj actually measured in the
Jth channel obey a Poisson distribution, the expected value of aj being de-
noted by :j-' Further, let us suppose that the associated background
counts bj for this channel also obey a Poisson distribution with expected
value b_J Each of the subtraction techniques discussed in Sec. II can be

written in the form

, (I11. 78)

where Oj is a numerical constant for any channel and the c, are elements
of the corrected spectrum. The probability distribution of the c. is most
easily obtained by the introduction of characteristic functions

The characteristic function for the Poisson distribution is

8, () = exp{f(e'’- 1)} | (I11. 79)
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where Z is the expected value of the Poisson-distributed variable ¢{. The
characteristic function for the random variable c. defined by Eq. (III. 78)

J
is

¢ (t) = ¢_(t) ¢, (-6t) = exp {Z(eit- 1) E(e'iet- n}. (111, 80)

Let us consider the distribution of the quantity £, where

c-(a-6b)
= III. 81
A R S0
The characteristic function for this variable is
O = 2B Lo S wfavess ) L5l o e B
£ 1a+92b L 1© Ya+6%b |
-t2/2 i = gh
=e exp = _—___3/2' S O . (I1I. 82)
* (a+62b)

=N ~t2[2
As a approaches infinity the characteristic function ¢§(t) approaches e /

which is the characteristic function of a variable that is normally distribu-
ted with zero mean and unit variance. This is a necessary and sufficient
condition that the variable §, defined in Eq. (III.81), be similarly distri-
buted. This follows from the fact that there exists a one-to-one
correspondence between a distribution and its characteristic function. If
two distributions are identical, then their characteristic functions are
identical and conversely. Thus the corrected counts, Eq. (III.78), are
asymptotically normally distributed with mean gj - ngj and variance
a.t 6.2b, .
J J ]

The above arguments are easily extended to those cases in

which the corrected counts Cj are obtained from the observed counts a, by
J
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a series of '"background" subtractions. For example, if

c.=a.-6b, - ej'bj' Sp (11I. 83)
g

where each of the measured quantities aj, bj’ bj‘, . . . are distributed
. 1
according to a Poisson law with expected values aj, bj’ bj h o D Do

respectively, then c. is asymptotically normal with mean value
’ J

c.=a . -6pb, - ej'Ej' -, (I11. 84)
GO

and variance

varle)=2, + 5,26, +0.2b," +. . . . (111. 85)
j IR o SR

In the above derivations the factors GJ. are assumed to be

determined with an error that is negligible compared with that for the bj'

Estimates Based on Corrected Spectra

In terms of counts ¢, which have been corrected as outlined
J

in Sec. II, the results of the previous subsection show that the quantities

t.=( )/ [v )l/2 1I. 86
=(c - a
g iBge el [vanie.J] (I11. 86)

are, in the limit of large cj, distributed according to the normal law with

zero mean and unit variance, Let
@:{cj:iﬂ'sj} (I1I. 87)

denote that portion of the corrected simple spectrum that is used to esti-

mate the values of the components of the corresponding parameter vector a,
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If the counts c, for each channel j are assumed to be statistically independ-
J

ent of the corrected counts in neighboring channels, the quadratic

x2(a') = 2 BE= % [c;- F(u')]a/var(c ) (11, 88)
_]€
is asymptotically distributed as chi-squared provided a'is chosen such
that, for every j ine,
c. =F(a) . (I11. 89)
J J

Equation (III, 89) may be considered to be a definition of the 'true values'
of the vector components (11‘

Let the conditional limiting distribution function of the Cj

be denoted by ¢(cj [ @), where

- 1 1(5° Fj(-a.)>2
¢(cjlu) = Uj\/_ZTT exp{—z et J (I11.90)

J

with
crj2 = va.r(cj) 3 (II1.91)

The probability of observing the resulte is

pr{C} - 7¢j(cj]3) ; (I11. 92)
je€

and the maximum-likelihood estimates ul* for the values of aﬂ are obtained

as the solution of the set of equations
-k -

c.-F(a 0F (a
91lnPr {e} _ j j( ) J( )

3 2 %) =
% e %

(111.93)



where

w2 = TR, 0. Bl K s (1I1.94)
J I il &

Except for the additional terms in the expression for the variance, the

conditions given by Eq. (II1. 93) are identical to those defined by Eq.

(III. 61) in the case in which the background subtractions are treated as

nonrandom processes. By analogy with the previous results, Eqgs. (111, 74)

and (III. 76), the error matrix for the joint distribution of the estimates a['-‘

is the reciprocal of the real symmetric matrix B whose components are

defined as

i oF, BFJ,
i g il 111, 95)
Blm i E .2 Oa 9a :
Je J { m a’l
Summary

The results obtained in this section are based on the follow-
ing major assumptions: (1) The response of the spectrometer to a source
of monoenergetic gamma rays can be described by the functions Fj((-l.) de-
fined in Eq. (II.2). (2) The corrected counts Cj are statistically independ-
ent for all channel numbers j. (3) There are no random or systematic
fluctuations in the channel widths Aj for different channels., (4) The
""background' subtractions can be carried out, as indicated in Eq. (III.83),
with negligible uncertainty in the factors 6,

The first of these assumptions can be subjected to experi-
mental test and, as discussed in Sec. IV, some effort has been expended
to verify the analysis in relation to this assumption. However, since a
separate examination of all of these assumptions is impossible, an attempt

was made to take account of these possible perturbations through a normal-

ization of our error estimates by the criterion of external consistency. In
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order to explain the present application of this criterion, we summarize
the steps which we followed to obtain the estimates aﬂ* and the associated
error matrix,

Let us consider a corrected spectrum econsisting of data

for n+ 1 channels, where for eas defined in Eq. (III. 87)

e (II1. 96)

The estimates aﬂ* are obtained as solutions of the set of equations (II. 12)

with Aja given by
Aj2 = cz/crjz ) (I11.97)

where 02 is a constant, independent of channel number, defined as the
weight associated with a measurement of unit variance. In the pth itera-
tive solution of Eqgs. (II. 12), o—jz is obtained from the previous iteration

as

c2=F(@? *)y+02b +... . (II1. 98)
J J J i

The error matrix is evaluated as the inverse of the matrix B, where

h aFj 8FJ_
= 2(a el
B, = Zé Aj foseh fE st . (I11.99)
je m

2 ~
a

We have followed the usual procedure of approximating a variance by sub-
stituting the sample values ul* for the unknown population values al'.

Let the quadratic defined in Eq. (III, 88) take on the value
Xa(-ﬂ,.*) for the sample values az*. Since this quantity is distributed (at
least approximately) as chi-squared with n- 5 degrees of freedom, its

expected value is n- 5, If the calculated value XZ(ET) is much greater
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the experiment itself or the assumptions listed above must be

On the other hand, if XZ((-I.") is much less than n-5

than n - 5,

considered suspect.

the agreement must be considered fortuitous. Thus the nir’:nahzatlon is
carried out by choosing ¢2 in Eq. (II1.97) to be either x2(a )/(n - 5) or

1, whichever is larger.

El

1V. EXPERIMENTAL INVESTIGATION OF THE RESPONSE FUNCTION

The practical value of the analysis developed in Sec, III
depends on the accuracy with which a Gaussian function represents the
response of a spectrometer system to monoenergetic gamma radiation.
Although the discussion in Sec. III shows that under certain conditions
the asymptotic form of the response function is normal, it is necessary
to investigate the validity of this approximation for the conditions that
actually prevail in an experiment, Obviously any significant difference
between the observed response and its functional representation can lead
to biased estimates for the values of the parameters of the assumed func-
tion and consequently to systematic errors in determinations of gamma-
ray energy and intensity,

A number of the results derived in Sec, III can be subjected
to direct experimental test, We now consider three specific examples,
namely, (i) the representation of the shape of observed response by the
Gaussian function, Eq. (III.47); (ii) the energy dependence of the width of
the response curve, Eq. (III. 43); and (iii) the relation between the mean
pulse height of a line and the energy of the associated gamma radiation,
Eq. (III. 31).

As noted earlier our pPrimary interest in these investiga-
tions is the practical one of establishing realistic limits for the accuracy

that can be attained in various energy and intensity measurements with a

crystal spectrometer, However, it is possible that some of the present
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techniques could be used in the investigation of some of the remaining
questions concerning the mechanism of energy conversion and transfer

in crystals.,

The Line Shape

A large amount of data for gamma rays in the energy in-
terval from 100 kev to 3 Mev has been analyzed as described in Secs. II
and III. For each full-energy peak, the minimum value of Q was com-
puted from Eq. (II, 3) and compared with the expected value of the corre-
sponding chi-squared distribution, Examples of the results of these
calculations are shown in Figs. 9(a) and 9(b). For the relatively small
sample represented by these data, the agreement must be considered
satisfactory and indicates that there is no significant difference between
the shape of a Gaussian function and the measured shape of an instrumen-
tal line., (By ''significant' in this context we mean that the observed
deviations are generally smaller in magnitude than the random variations
which must be expected from ordinary counting statistics,) In each of
these comparisons the observed line was truncated such that the extreme

channel numbers xe satisfy the inequality
xe—a2121.6a3 ) (Iv.1)

where a, and a, are defined by Eq. (II.2). This condition guarantees that
at least 97% of the counts in the full-energy peak are included in the ana-
lyzed data.,

As shown in Sec. III, the vanishing of the coefficient of
skewness yq(l) is a condition which must be satisfied if the response func-
tion is Gaussian, We have analyzed several observed lines by use of an
Edgeworth distribution [Eq. (III. 49) with yq(a) set equal to zero] in place

of the Gaussian function in the first term of Eqg, (II.2). The values of
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Fig. 9(a). A comparison of the observed distribution of min (Q) and the
theoretical chi-squared distribution. The histogram shows the distri-
bution of the minimum values of Q, Eq. (II.3), calculated for 20 re-
sponse curves at an energy of 2.1 Mev. The data were grouped in 19
channels. The continuous curve is the corresponding chi-squared dis-
tribution for 14 degrees of freedom.,
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Fig. 9(b). A comparison of the observed distribution of min (Q) and the
theoretical chi-squared distribution for 20 response curves at an ener-
by of 1.0 Mev, The data were grouped in 14 channels so that the cor-
responding chi-squared distribution has 9 degrees of freedom.
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Y () which were obtained are shown in Fig, 10. Obviously very little
q
conjecture

basis of these results. However, it should be emphasized that no special

concerning the behavior of this coefficient is justified on the

effort was made to obtain data of sufficient statistical accuracy to carry
out this analysis. In fact the lines that were analyzed in this manner
contained less than twice the number of counts routinely taken in an ex-
periment. A more precise determination, particularly of the asymptotic
behavior of this coefficient, would be of some interest,

For our present purpose we observe that these results in-
dicate a small positive skewness in the observed line shape. However,
at least for the number of counts usually obtained, the resultant deviation
from a Gaussian shape is less in magnitude than the random fluctuations
which can be attributed to counting statistics. The possibility that a non-
zero coefficient of skewness introduces a bias in our estimates of mean

channel positions is considered below.

The Line Width

The energy dependence of the relative variance ZJ of the
response line, as predicted by Eq. (III. 43), was investigated by ];lotting
the observed values of {)q against the reciprocal energy E™? of the inci-
dent gamma ray. The results are shown in Fig. 11. The break in the
predicted linearity of this curve occurs in an energy interval, roughly
from 200 kev to 400 kev, where the Compton cross section for Nal
becomes larger than the photoabsorption cross section. The region of
nonlinearity is thus a region of transition from predominantly single to
predominantly multiple excitation processes within the crystal,

; Similar measurements have been reported by Bisi and
Zappa, They also observe a break from linearity, but at a somewhat
higher energy, Furthermore,

their results show an increasing deviation

from linearity with increasing energy of the incident gamma ray, On the
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Fig. 11. The observed values of 4)q as a function of 1/E. The quantity (W/E)2 is the square of the

ratio of observed width to energy of a response line. This is proportional to the relative variance

Q



other hand our results, which cover the same range of incident energies,
are in good agreement with a linear law for all energies outside of the
transition region mentioned above,

In order to explain the results of their measurements Bisi
and Zappa assume that, insofar as the contribution to the photopeak at E
is concerned, an event giving rise to a Compton electron with energy El
and a photoelectron with energy E - El can be treated as the simultaneous
absorption in the crystal of two independent quanta with energies E:L and
E - El . Itis of interest to consider a derivation of the expression given
by these authors for the relative variance of the pulse-height distribution
in this latter case.

We use the notation introduced in Sec. III, where x. is now
the number of light quanta produced in the phosphor for a gamma ray of
energy Ei. The number EJX of photoelectrons that arrives at the first
dynode as a result of the incidence of two gamma rays with energy E, and

E-E, = E2 is
x X
d,- 3 )
= E’ tNg et 2 t q, . (IV.2)
x 2 k "k i k *k
The resulting output pulse q is
qli= q. . (IV.3)

The moment-generating function for the q distribution of this process

becomes

- bl ¥ (k)
2 (k) = 0 ja;a; exp {(x,t; +% ¢ )(e Siad R (1V. 4)

and the corresponding semi-invariant of order two is
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=
2 e b ()
A (B (Zl +§2) xt(l) ((xm(l))z + )\m( )} - (%, + %) [xm A, }

q L

2
(4))2 Xt +xt] . (1v. 5)

O ) Zy, %y Dy XY
If we assume that the two quanta are absorbed in completely uncorrelated

events, the double sum in the last term on the right-hand side of Eq. (IV.5)

can be evaluated to give

= — SR M2 -, (1).2 — (1).2 6
: = + 2 X\ g (IV. 6)
Ei,j qiqj [xlt_1 + xztj] = xl2()\t I ()\t ) x X ( g )
and the associated relative variance is
[P +4)
4 -4) - + 0 av.7)
q t = T ) (+)

[ (xl+x2) J x A

Using Eq. (IV.7) with —;cl proportional to the average energy
of the Compton electron and considering that a fraction of the pulses that
contribute to the full-energy peak at E arise from photoabsorption, Bisi
and Zappa calculate values of the relative variance which agree quite well
with their measured values.

The data shown in Fig. 11 do not exhibit the curvature at
higher energies which is predicted by Eq. (IV.7) and which is observed by
Bisi and Zappa. The present data were obtained with a considerably larger
crystal than was used by Bisi and Zappa. Thus for incident gamma rays of
given energy, a larger fraction of multiple-excitation processes should
contribute to our full-energy peak and a correspondingly larger deviation
from linearity with increasing energy would be predicted by Eq. (IV. 7).

For crystals of the size used in the present experiment the
multiple events contributing to the full-energy peak are about equally divided

between those that involve three or more collisions in the crystal and those
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that involve two collisions for incident energies above about 0.7 Mev,
These excitation processes of higher multiplicity should be considered in
the calculation of the variance ljjq. In the case of three statistically in-
dependent events which contribute to the full-energy peak, the relative

variance of the q distribution becomes

ﬂ :D [ ;1;2 +x,x +x,.x_ ] 1 +j/m
A e ST (e L L
9 t (x1+x2+x3) J )\t (xl+x2+x3)

The numerical calculation of variances when these higher order processes
are considered requires knowledge not only of the relative contribution to
the full-energy peak from each of these processes but also of the distribu-
tion of energies at each stage of a given multiple event. We have not
carried out such a calculation.

However, from Eq. (IV.8), it seems likely that processes
of higher multiplicity would further increase the curvature of 4) as the
energy of incidence is increased. If this is true the dependence of j/q on
energy, shown in Fig. 11, is not explained by Eqs. (IV.7) and (IV. 8).

The assumption of complete statistical independence of
events in a Compton process, which is necessary for the application of
Eq. (IV.7), is difficult to justify in these calculations., However, the
apparent existence of a well-defined region of nonlinearity, which is also
a region of transition from single- to multiple-excitation processes, sug-
gests that some effect such as that suggested by Bisi and Zappa is
contributing to the observed variance. One possibility is the following
purely qualitative explanation. If we drop the assumption that the number
x of light quanta resulting from a gamma ray of given energy E follows a
Poisson distribution, then the relative variance of the response line be-

3
comes

(1+4/ )
ﬁq:j/tunﬂt)(d/x-iHT)Tm : (IV.9)
t X
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where{} is the relative variance of x. If for single-excitation processes
ﬁ decreases with increasing energy, Eq. (IV.9) would predict roughly the
energy dependence ofﬂ which is observed in Fig. 11. For incident ener-
gies above the trans1t10n region, the main contribution to 4} would be from
the lower energy events in multiple processes and these Would show a much
less pronounced dependence on the incident energy than would the single-
excitation processes. It is also quite probable that more complicated energy
dependences of ﬂt and Wm are involved. Obviously these questions require

further investigation.

The Energy Calibration of the Spectrometer: The Two-Error Problem

It is well known that the size of the output pulse from a scin-
tillation counter is closely proportional to the energy of the incident gamma
ray. This is also the prediction of Eqgs. (III. 31) and (III. 4la). However,
because the labeling of the pulse-height channel corresponding to zero

energy is arbitrary, Eq. (III.4la) must be written in the form
o= a+ba2 5 (IV.10)

where a, is the channel number for the mean pulse height of the full-

energy peak at energy E, a is the energy corresponding to channel
number zero, and, in terms of the notation of Sec, II1,

- (1) ((55)
b_l/(g)\t >\m ). (IV.11)

In our investigation of the relation between pulse size and

energy in the interval from 500 kev to 3000 kev, we find that the specific

scintillation daz/dE is not constant, as would be predicted by Eq. (IV, 10)

provided b is independent of energy, but rather varies as
da

2

9E * A-BE ° W T
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where B/A S IO-S/kev. In fact, when the spectrometer is calibrated with
a set of standard gamma-ray energies in the energy interval from 500 kev
to 3000 kev it is found that this calibration gives in the region of about
2000 kev a measure of the energy about 0. 5 percent higher than a simple
linear calibration between two standards at 1400 kev and 2750 kev.

A partial explanation for this observed nonlinearity is the
fitting procedure of Sec. III, which is used to estimate the value a, of the
mean position., If the full-energy peak is a skewed distribution, a, will
be somewhere between its mean a and its mode 9+ These statistics are

related by the coefficient of skewness y, as
a=q, - v,9,/V8, (IV. 13)

where ay is the width of the distribution as defined in Eq. (II.2), If we
assume that it is q, instead of E which is actually being interpreted as a,
in Eq. (IV, 10), then for Y, > 0 the specific scintillation would show an
apparent decrease with increasing energy as predicted by Eq. (IV. 12).
However, from the results of the analysis by means of the Edgeworth
series we find that the upper limit of deviations from linearity, i.e.,
deviations from constant slope, as a result of this effect is about half of
the deviation actually observed. This result is in qualitative agreement
with similar considerations published by Wrightl° for much lower inci-
dent energies.

Apparently the observed nonlinearity cannot be attributed
entirely to the method of analysis and it is necessary to conclude that this
is a real property of the scintillator system. Several plausible mecha-
nisms have been suggesteda’ o to explain the decrease of da2/dE with
increasing values of E. Thus far, however, it has not been possible to
predict the energy dependence of the coefficient b in Eq., (IV.11) from
these '"models.' Itis hardly necessary to point out that this constitutes
the main limitation on the use of a crystal spectrometer in the determina-

tion of energy.



As an interpolation formula for the energy corresponding

to a given mean pulse height we have used the relation
= = 1V, 14
E=a+ba, +ca2, ( )

The only a priori justification for a relation of this form is that it provides
a first approximation to Eq. (IV. 13). However, we have found that the in-
clusion of the quadratic term in Eq. (IV. 14) improves the energy calibration
of the pulse height to an extent greater than would be expected by the intro-
duction of an additional term which is completely arbitrary. A discussion
of the data on which this statement is based is given in the next subsection,

In the energy calibration of the pulse-height scale, we are
given the structural relation (IV, 14) and a set of n measurements (Ej’ aj)
where uj is the mean pulse height corresponding to an incident energy EJ,.
(In the remainder of this section we drop the subscript "2'" in the designa-
tion of mean pulse height,) The problem is to estimate the values of the
coefficients in Eq. (IV. 14) from these data,

This problem differs from the usual estimation problem in
that both "coordinates' Ej and uj are measured quantities and as such are
subject to errors of observation. The general problem of estimation
under such conditions has been discussed by Wald. 19 In the present case,
in which the variances var (u.j) and var(EJ_) of the measured quantities are
assumed to be known, the general principle of least squares gives an ef-
ficient and unbiased estimate of the values of the coefficients in the struc-
tural relation. An outline of the general principle of least squares is
given in the Appendix.

In the present case the principle of least squares requires
that the estimated values e-j and a.J, be determined from the measured values

Ej and aj such that the quantity

( = 2 _ 2)
S = 3 (e‘_i L \
A Tvar E, vara | (IV. 15)

1



be a2 minimum subject to the conditional equations

e.-a-ba, -ca2=0, 1= 2RSS e o A (IV.
1 1 1

Deminglza has shown that the minimum value of S is distributed as chi-
squared provided that the observations are random and that Eqs, (IV. 16)
are the correct relations for the true values of the coordinates., The
number of degrees of freedom of the chi-squared distribution is given as
the number of observed pairs minus the number of structural-equation
parameters whose values are to be estimated.

The method of least squares is particularly convenient in
the present problem since it is the only known method of adjustment in the
related problem of energy determination which is considered in the next
section,

We return to the point mentioned at the end of the previous
subsection. A calibration of the pulse-height scale over the energy inter-
val from 0.51 Mev to 2,75 Mev was made according to the principle of
least squares for five ''standard' energies Ei. Hence the number of de-
grees of freedom for the theoretical distribution of S is 2 in the case of
quadratic interpolation and 3 in the case of linear interpolation. For a
series of eight such determinations, the computed values of S varied
from about 3 to 20 for quadratic interpolation and from 30 to 80 for
linear interpolation. The average ratio of values of S for these two cali-
bration functions is 5.9. If equal validity is assumed for both interpola-
tion formulae, the expected value of this ratio is 1.5. This indicates
that the quadratic term in Eq, (IV, 14) improves the agreement to an
extent greater than would be expected if this term represented an arbi-
trary free parameter.

Even for quadratic interpolation, however, the distribution

of observed values of S does not agree with the theoretical chi-squared

il

16)
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distribution as well as might be expected if Eq. (IV.14) were an accurate

representation of the relation between energy and pulse height.

V. EXPERIMENTAL TESTS FOR CONSISTENCY

On the basis of the experimental results which have been
discussed thus far, it is not possible to state with assurance that the as-
sumptions associated with the analysis are valid to within the statistical
uncertainties expected in a given measurement. It thus remains to deter-
mine whether the analysis provides realistic estimates of the accuracy of
a given result. Fortunately it is possible to test the analytic error esti-
mates in both energy and intensity measurements by means of well
established physical principles, namely the laws of conservation of energy

and of the exponential decay of a radioactive source.

Measurement of Energy

The transitions from the 2, 18-Mev state to the ground state
in Nd144 6 shown in Fig. 4, provide a consistency check on the estimated
accuracy of our energy measurements, If the small difference in recoil
energy is neglected, the sum of the energies of the two transitions in cas-
cade to the ground state must equal the energy of the crossover transition,
We have measureds the energies of the cascade gamma rays to be
1487.0 + 1.1 kev and 696.7 + 0.6 kev, and the energy of the crossover
transition to be 2186.0 + 2.2 kev. This latter value is to be compared
with the sum of the energies of the cascade gamma rays, which is
2183,7 + 1.7 kev. If the difference between these results is treated as
a sample drawn from a normal population with zero mean, it is easily
shown that 4 out of 10 similar experiments will result in a difference at

least as large as that observed.

- 9
A description of these measurements has been published.

However, some of the details of the analysis which were not included in

the published work deserve mention,



The problem of energy calibration differs fromthe problem
of energy determination in that for the latter case one of the energy values,

say En+ 1’ is considered as an unknown, In order to indicate how the prob-

lem of energy determination is treated, suppose that the pairs (EJ., aj) for

j=1,2, ..., nhave been measured as has the mean pulse height a 2l
n

corresponding to an energy value En+ 1 which we wish to determine, Let

the quadratic S be defined as

1 n+1
2 i?l b RSl ) + 12:)1 (a;-a,)2/var(a) . (V. 1)

In this case the principle of least squares requires that S be minimized

subject to the conditions

o= o1y i (V.2)

%

e-a-ba-ca2=0
1 i i

where g 2 well as a, b, and c are now considered as unknown param-
eters. A method for the solution of this problem is given in the Appendix.
A further complication is introduced by the following experi-

mental situation which frequently arises in practice. The energy values,

say E and E , are determined in terms of n '""'standard' energies E ,
n+l n+2 j
j=1,2, ..., n, asin Eqgs. (V.1) and (V.2). Then a subset of the origi-
nal "standards, ' say E,, j=1, 2, . . ., n-2, are used in conjunction
with the values En+ 1 and En+ > to determine a new energy value En+ 3
Let the original conditional equations be
e.-a-ba, -caz2=0, J =1, 2,0 s, ntZ, (8
J J J

are parameters whose values are to be

where a, b, c and o

+ Bpane +2
estimated; and let the conditional equations for the second measurement be

e.-a'-b'B.-c'B.2, =Ml S SN SR AR T R R L R o
i il i
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ers whose values are to be esti-
where a', b', ¢!, and e 43 are paramet

mated, Obviously, the equations of this second set are not observationally

i ined only in terms of the re-
independent since e and e g ars determine y

maining e, in Egs. (V. 3), However, there is a related set in which the
1

1 1 i
2n+ 1 equations in the seven unknowns a, b, c, a', b', ¢, and en L1

namely,
e,~ 4= ba,=ca.2=0, =2 (V. 5a)
J j J
e, = a'-bip, ~c'p.2 = 0; i=1,2, ..., n-2,n+3, (V,5b)
1 il J

and
a+ba t+tca2-a'-b'p.2=0, j = n+l, n+2 , (Vi- 5el)

J il J

are observationally independent and can be treated in the same manner as
described above.

The least-squares formalism described in the Appendix is
applicable to the case in which the conditional equations are not independent,
However, in this case the weight matrix, Eq. (A. 14), is not diagonal and

the computation becomes somewhat lengthy.

Measurement of the Lifetimes of Radioactive Nuclei

In order for a counter to register an incident gamma ray,
it is necessary that no gamma ray has arrived at the counter during a
preceding time interval of length 7. This interval of time during which
the counter is unable to register an incident pulse is called the resolving
time, or dead time, of the counting system. For a system which includes
a multi-channel analyzer of the type used in the present measurements,
this resolving time depends linearly on the energy ¢ of the recorded pulse,

Sl

TE:TO+K€’ (V,f))
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where T, and g are constants. If the radioactive source is such that the
counting rate for the entire measured spectrum exceeds ~ 102 counts/sec.
it is necessary to take explicitly into account this finite resolving time in
any determination of relative intensities and, consequently, in any mea-
surement of the lifetime of a radioactive decay. This can be done in a
manner similar to that proposed by Schiff, . Several features of the pres-
ent measurements, however, make it desirable to reconsider this problem
in some detail.

Let Ae(t) denote the expected rate at which gamma rays of
energy ¢ are incident on the sensitive portion of the detector. For a
radioactive source which emits gamma rays of energy ¢ with decay con-
stant )\e we have

-\t
A(t)=B +Nxe ¢ , (V.7)
€ € € €

where B 1is a constant (with respect to the time t) background rate and N
3 €

is a constant that depends on the strength of the source for emission of

gamma rays of energy ¢ at some arbitrary zero time and on the geomet-

rical arrangement of the experiment. The expectation that a gamma ray

with energy ¢ arrives at the counter in the time interval t - 7 to tis
¢

G(t-7,t)= dt A (t) . (V.8)
€ € 3
E=7
€
If the distribution of the number of gamma rays with energy ¢ incident on
the counter in any time interval is Poisson, then the chance at time t that
no such gamma ray has arrived at the counter during the preceding inter-
val of duration 7 isexp{-G (t -7 ,t)}.
€ € €
Suppose we wish to determine the value of the decay constant
)‘E corresponding to a particular gamma-ray energy E contained in the spec-

trum of energies e. In an observation interval T K to T + ATj we expect to
J J

count a number nj(E) of these gamma rays where
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T,+ATj
n.(E) = fT b Jat At exp {-)) G (t- 7 0} (V.9)
J
The summation on ¢ in Eq. (V.9) is over the entire observed spectrum
and it has been assumed that the decays corresponding to different values
of ¢ are independently distributed. In terms of the values u'lj and a3j of

the first and third components of the vector a estimated, as discussed in

Sec. 1I, for the photopeak at energy E we have

_ V. 10
nj(E) =N a)j oy * bj(E) ( )
where
T AT,
b(E) = By [ P Jatexp {-)IG (t- 7 ,t)} (V.11)
J T. P € 3
j

is the number of background counts in the observed spectrum at energy E.
Let d, denote that fraction of the jth counting interval during
which the counting sirstem is in a state such that it is not capable of regis-
tering an incident gamma ray. Most multi-channel pulse-height analyzers
record a separate measure of this total dead time deTj., For reasonably

small values of d. we have
J

(o]
dAT =) n ()7 , (V. 12)
I ¢

where njo(e) is the number of gamma rays of energy ¢ which would have
been counted in the jth interval if the dead time of the counter were zero,
If a given spectrum consisting of M separate full-energy
peaks is measured for L separate intervals AT, there are ML equations
of the form (V, 12) which describe the results o% the experiment, For each

of the M values of ¢ corresponding to a full-energy peak there are at most

n " >
two "unknowns Ne and )\e, If the values of 'ro and g in Eq, (V. 6) are also
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to be determined from the data, we have L(M + 1) conditional equations
which contain at most 2(M + 1) unknowns., Equations (V.9) and (V, 12)
thus constitute an overdetermined set for L > 2. However, for a com-
plex spectrum consisting of many photopeaks the solution of this set of
equations becomes involved and requires a series of decisions which

are impractical to code for a digital computer, For example, the value
of each ﬁe in Eq. (V.9) must be obtained from the observed bj(e) by solv-
ing Eq. (V.11l). Also the factor AE(t) in Eq. (V.9) must include as back-
ground not only the natural background rate ﬁE but also any contribution
from the tails of neighboring photopeaks. Variations in the decay rate of
these additional backgrounds prevent their inclusion in the constant term
ﬁE. This is also true for each of the terms Ae(t) contained in the factors

Ge in Eq. (V.9). For these terms, however, there is the additional com-
plication that the resolving time must be properly correlated with the
observed pulse height for each of the backgrounds.

For all practical purposes it is obvious that such compli-
cations must be avoided in order to obtain a measure of the decay constant
of any radioactive source., This imposes a limitation either on the maxi-
mum counting rate in any experiment or on the complexity of the spectra
which can be measured. These two limitations actually are not independ-
ent, For a spectrum containing many photopeaks the counting rate in the
peak of interest may be a small fraction of the total counting rate. If this
latter is limited to less than 10° counts/sec it may be impossible to ob-
tain a number of counts in the photopeak during a practical counting inter-
val that are sufficient for statistically significant results. However, it
is usually possible to design the experiment such that enough of these
complications are avoided that the analysis becomes practical.

For example, suppose that the decay constant )\E correspond-
ing to radiation of energy E is to be measured. Let the energy values ¢ of

the various photopeaks in the measured spectrum be divided into two sets
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i 1 E cond
such that one set § contains all peaks of energy ¢ with )\e = )\E and a se
set §', the complement of ¢, contains the remaining photopeaks, For all ¢
in §' assume that )\E is sufficiently less than )\E that the variation in source
strength for these gamma rays can be neglected over any single observation

interval AT.. This implies for all observations j and for all ¢ in &' that
J

X ATJ, << (V.13)
€
In this case the expected decay rates can be written
] for c¢e¢§'
A (t) = € At (V. 14)
5 B +N Xx_ce for ¢¢&
€ ¢ E
From Eq. (V. 8) it follows that
BT for ¢e &'
€ ¢
_ = Vi l5
G -7 ,t) S (V. 15)
Bt +Nx_7 e ¢ for ee§,
€ ¢ ¢ E ¢
where we have introduced an approximation
AT
E
B T pel (V. 16)

E ¢

which must be valid in order to obtain useful data,
The expected number of gamma rays of energy E actually

counted in the Jth interval, Eq. (V, 9), can now be written in the form

T.+AT, =% q N ts
afBl= 5 Ta (%*NEXEQ Flealuing e Y v
Tj L _] . -
where
XIS E NGTE ; Y= E ﬁe‘re . (V. 18)

L
€e = ce C
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Here (/ is the entire observed spectrum, i.e,, the union of § and §'. The

number of gamma rays of energy E which would have been counted on the

jth interval if the dead time of the counter were negligible is
0 = T =
n0(E) = BAT, + Nply, - v,) (V. 19)

where

N =
N ; )\EATj

In terms of this notation Eq. (V. 12) becomes
d AT, - UAT + vy =y ). (V.21)
e im X e
Equation (V. 17) can be integrated to give
= = = = il = - - V.22
n,(E) - by(E) = (NL/ALX) exp {-Apy X -0 }[1 - exp {-ApX(y, - v, )}, )
where, by Eq. (V. 10),
(E)-b(E)=Jmw a .a_. . (V.23)
n(E) - b(E) =7 a oy,

Combining these equations and eliminating the quantity ¢ by means of the
relation (V. 21) we obtain
%

£ £ e 1= 2 4 .

J o (NE/XEx) exp{ Ap¥aXx *+ Xy, ya)/ATj}[ exp{ ApX (v, v, 1
(V. 24)

This is the desired relation between the observed intensities, Eq. (V.23),
and the '"unknowns'" )\E and NE.

It is usually possible to introduce approximations which

considerably simplify the relation (V. 24). Since Eq. (V. 19) may be
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written

- V. 25)
Npx(yy - y,) = (xEx/NE) (nJ.°(E) [SEATJ_) , (

i i alue of the resolution time
where x/NE is of the order of the maximum Vv

T , it is easily seen that for
(V.26)
njO(E) < -re/)\E 5

Eq. (V.24) may be written

d, ApYX  Xy,- ya)/ATj ,
NLEL e R e . (V.27)

Similarly, if the average counting rate in the photopeak at energy E is

such that
T V.28
nJ_(E)/ATj << 18/ E’ ( )

we have, neglecting second order and higher terms in both n_'rE/AT, and
T s
nj)\E TE

dj )\Ey2x ;
= = 1+ - AT . V.29
NE oyptgse " e NE(Yl yo) [1+x{y -y,) J.] ( )

We have used the above procedure to measure the decay
time of several radioactive nuclei. In each of these measurements the
counting rates were such that the approximation (V. 29) could be used
with negligible error. Given a sequence of L. such measurements of
alj u.3j and dj for the same source, one can use the principle of least
squares to obtain estimates of NE and A\_,. The least-squares criterion

E
is simply the minimization of S, where
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L, ( 1 -4 Ay X 2 b
2 = 1+ - )

Z' llul.]a?’.] e NE(Y:L v )( X(Yl Yg)/ATj /var(uljfl3j)i
j=1 =
(V.30)

It is assumed that the uncertainties associated with the measured values
Tj,ATj, and dj are negligible compared with the uncertainty in the value

alj a3j and

). (V.31)

)= a

var (alj a3J

@var.a_ + @ _2var a 2a_a
- a2vara, +2a, 3cov(o.l,a

1 3

The variances and covariances on the right-hand side of Eq. (V.31) are
estimated as described in Sec, II.

Since the minimum value of S in Eq. (V.30) is distributed
as chi-squared with L - 2 degrees of freedom, i it is possible to judge the
validity of the error estimates in Eq. (V.31) by comparing a series of ob-
served values of min (S) with the expectation value of this quantity. Such
a comparison is shown in Table I. The agreement is seen to be quite
satisfactory.

In a similar manner,

maximum likelihood estimates of NE TABLE I. A comparison of the
observed minimum values of S, Eq,
1 df Eq. . ’
2 )\E “enpe caloulated from By (V.30), and the corresponding expect-
(V.29) on the assumption that for ed values x2 for a series of deter-

. minations of mean life.
each observation the number of

counts in the photopeak at E is dis-

X2 min (S)
tributed according to the Poisson
law, The results of some measure- 8 6.2
ments15 of the decay times of 8 3.0
radioactive nuclei are shown in 7 Il 3
Table II, In each case, the stand- 10 13,5
ard deviation associated with the 5 653
calculated value of the half-life has 5 6.8
been normalized to external consis- 9 2.8

9 b5

tency.




TABLE II. Measured half-lives

Radioactive Chemical Half-life
source form By least squares By maximum likelihood
Cl3s MgCl, 37.12 £ 0. 18 min 37, 18=-E0021Vmin
Cl38 NaCl 37.53 £ 0,60 min 57,75 £40.9/0  mim
K42 KF 12,47 £ 0,07 hz 12.42 £ 0.06 hr
Na24 NaF 15.05 £ 0.05 hr 15504 +:0.05 hr

Discussion and Conclusions

The experimental results presented in this section indicate
that our calculated error estimates are realistic, This means that with
sufficient care an accuracy of about 0. 1% can be obtained in the measure-
ment of gamma-ran energies in the interval from 0,5 Mev to roughly 3.0
Mev with a scintillation counter of the type used in the above experiments,
There is little doubt that the energy interval in which 0. 1% measurements
are feasible can be extended downward at least to 0, 1 Mev, A similar
analysis of mean-life data indicates that the relative intensity of a source
(i.e., the product a 0.3) can be measured with an accuracy of about 0, 3%
to 0. 5%.

In order to improve the accuracy with which energy can be
determined with a scintillation spectrometer, it is obviously necessary
that the relation between the energy of an incident gamma ray and the size
of the resulting output pulse be determined with greater precision than we
have been able to attain. As indicated by the results discussed at the end
of the last subsection the inaccuracy of the interpolation formula (IV, 14)
is the major source of uncertainty in energy measurements. There exist
several possible sources of nonlinearity in the mechanism of light forma-

tion and transfer within the crystal. However, the observed deviations



from linearity seem to be of the order of magnitude which might be ex-
pected from nonlinearities in the electronic equipment necessary to these
measurements., Certainly this prosaic possibility should be investigated.

In the determination of the absolute strength of a gamma-
ray source, an error of 0.5% in the measured value of a a,is insignifi-
cant compared with the uncertainty in any calculated value of the
photoefficiency of a given experimental setup.

Both the attainable accuracy and the range of applicability
of these techniques for measuring mean lives deserve further investiga-
tion., Certainly an accuracy of about one percent is easily achieved in
such measurements whenever the mean life is (1) sufficiently long that
no special precautions need to be taken in the measurement of time
intervals but (2) sufficiently short that a decay can be measured before
drifts and other time-dependent instabilities become a source of uncer-

tainty,

APPENDIX, THE LEAST-SQUARES FORMALISM

None of the standard works on statistical estimation seem
to formulate the principle of least squares with sufficient generality to
include all the applications considered in this report. Hence a brief out-
line of such a formulation is given in this appendix.

Let {xi: i=1, 2, ..., n}denote a set of observed values

B >

B »

of the variables {n,: i=1, 2, . .., n}. Suppose that these variables are
34

related by a family of v structural equations
e = = 1
gK(‘nl,---,T]n-Yl,--n,Yr) 0, K= 1,2, . o, v AT
which involve r unknown parameters Yo Let {ca: =12 .. ]

be a set of estimates for the values of these r parameters and let

P e = LR n} be a set of estimates for the values of the
1
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variables., Let R, denote the ith residual, i.e.,
4 b
(A.2)

and let Ai2 be the weight which is associated with the observed value x.

so that
A_Zot_ 1 [var (=), i =R 2 o (A.3)
i i

where var (x.) is the variance of x . Finally let Q denote the weighted
i i

sum of the squares of the n residuals, i.e.,

3 s BR S (A.4)
=1 * 7

The principle of least squares requires that the estimates

X, and &L be determined subject to the set of conditional equations
i
gK(X,”»,X:c 2w & 5 C )= 0 K= L 2 v (A5

such that the quadratic Q is a minimum,
In order to carry out the least-squares prescription it is

convenient to introduce the following notation:

K1

o B R -
o BCug( s X ey, .en, ) k=12,

gKO:gK(xl’"'"’X:Clo"°°’co)’ =152 SR (A, 6c)

and

a a a’ CI.:l, Z,,..r, (A.,éd)

2]
4= axg(x S N SR N IR e e e L (A )

«ow,via=1,2 r, (A, 6b)
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where the CG.O are the initial values of the parameters Ca' We will need
the numerical values of the quantities gKi and hKa and, since these depend
on the estimates which we are attempting to evaluate, the procedure is
necessarily an iterative one., It is usually sufficient to use the observed
values X, for Xi in the initial iteration and we assume that values CU.O can
somehow be found such that the conditions necessary for the stability of
the iterative sequence are satisfied,

Expansion of Eq. (A. 6c) in a Taylor series about the esti-

mates X and ¢ leads to
it a

where the conditions expressed by the set of equations (A, 5) have been used
and residuals of order two and higher have been neglected. Denoting by
6f the variation of a function f with respect to the estimates, we obtain

from Eqgs. (A.4) and (A.7)

n

1 = 2 =

260 = ) AR 6R =0 (A.8)
1=1

and
n r
R ! = =glt Zicsacs. - A,
W E gKi 6Ri it azl hKa SAQ 0, k=1, ¢, P (A.9)
1= —

We multiply the gth equation of the set (A.9) by the arbitrary Lagrange
multiplier IK and add the resulting v equations to Eq. (A.8) to obtain

. |

R, R h = 0] A, 10

EA +Ezgia+221KKuu ( )
i= L | =

This equation contains n+r variations of which only n+r -v are independ-

ent because of the conditional equations (A.5). We choose values for the

# such that the coefficients of v of the variations in (A, 10) vanish, The
K
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remaining n+r -v variations are independent so that, with this choice of

the £ , all of the coefficients in Eq. (A. 10) vanish and we can write
K

v
-2
= f G 1:1,2,...,:1,
Ri Ai 2 Kg’(l
=1
and
v
OF= £ ‘hg chetll i A oo i
2 K Ka
K:l
The substitution of the right-hand side of Eq. (A. 11) for the Ri in Eq
gives
n v T
-2
= ; L =12, ...
Sy gt R LI i , v
=l g=1 a=1

The r +v equations (A. 12) and (A. 13) are the normal equations for th

""unknowns'' Aa and [/

(A, 11)

(A, 12)

5 (AL T)

SA(EANIS

eYikr

At this point it is convenient to define (a) the v X v sym-

metric matrix f, the components of which are

(c) the (v +r)-dimensional column vector‘g, where

gtO’ t=1,2, ..., v

B

vt L w42, vt

o o

(A. 14)

(A. 15)

(A.16)
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(d) and the (v + r)-dimensional column vector , where
4, HES IS o v
y :
./t B (A.17)

A, =it a =2
a

r.

3 8 w8 g

The normal equations (A. 13) and (A. 14) can be written in terms of these

s, (A. 18)

where Jis a (v +r) X (v +r) matrix

t

matrices as

= | . (A.19)
| H 0 ,/‘

-~
Here H is the transpose of the matrix H and 0 is the r X r null matrix.

o ) b e e — i < 7
If the inverseso@ and (H 0‘7_ H) of the matrices {

~ ,-1 =1
and H H exist, the left inverse J of the matrix J exists and is
given by
v il S R s SR R T TR
- ( & -&L HHX H) H AT HHIZ H) )
J = | (A. 20)
~ Ll L i =1 ~ el e I I
\ (HL H) HL -(Hot " H) )

]
The solution of Eq. (A. 18) for the vector Z(, which contains as its compo-
nents the values of the Lagrange multipliers ZK and of the iterates c s can

be written as

’uzJ’l . (A.21)

In component form this matrix relation gives

L
10‘ T t?l(J )crt gtO
i_\ 7(-1 i\; if-l 5 (E’K_lH_l s il jA.ZZ)
_t—li( ot K, =1 a,p:l( ~ o ikl ) ]aﬁ Hﬁf )Ht &0
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iz il
Aa: 2 b )v+a,tgt0
t=1 (A, 23)
v E = 1 _1 T
: tZ}czl ﬁ?l [ ]ﬂﬁ Hxﬁ(x- Jyt Bro *

where ¢ =1, 2, . . . ,vand a=1, 2, ..., T,

The estimates Xi are obtained from Eq. (A.11l) with the
values of the Lagrange multipliers obtained from Eq. (A.22). The esti-
mates c are given as the solutions of Eq. (A.23). Obviously the values
of Xi and e e be used in an iterative manner in the evaluation of the
derivatives defined by Eqs. (A. 6a) and (A. 6b)., Similarly, the values e

0

can be used for the initial values c, in Eq. (A. 6c) at any stage in the

iteration process.
The values of the elements of the error matrix associated
with the joint probability distribution of the ¢ can be estimated as follows.
a

, we

Since the set of equations (A.23) remains valid for any value of ¢ ©
a

can write forta= 1,2, .. .

T

]

L
1 aﬁHKﬁ("f e R

where the Y, are the '"true values'' of the estimates ¢ . If the notation
a

(gt> indicates the average value of gt(xl, « Vel B R Yol s o s yr) for

n
a long series of measurements of the n-tuple (xl, s =% 5 X.); then to a
n
first approximation its value is
(gt):O, = R R ) (A. 25)
and
n
(g.g..) = (%, - n)x, -
5t 1,221 ti t_] ;- j T]j)>
n (A. 26)
DIERRON ¢ i
= B8y By A o L. SN



From Eq. (A.24) it follows that

v r
((y -c Nv,- = ! HZ 1)’ He "H)
g Cu(Yﬁ cﬁ)> t,z}ycyt";{r,ﬂ E,E'E‘:l i ]“‘ IiH & ) ]ﬁE'
1 il
* HKE HK'e'(Df )Kt (o\e )K't' <gtgt') (A 2T)
= [(Eof_lH)-llaﬁl a0 LA IS e

Thus the variance and covariance of the estimates ¢ are
a

e =l =il
var(c ) = (HZ  H) s a=1,2, ..., r, (A 28a)

and

~ 1. oo
cov(ca, Cﬁ) = [(Hf H) ]aﬁ’ ay PSRN P s e BN (AN R

As an example of the application of this formalism to prob-

lems of the type considered in this report, consider the set of m observed

pairs {(x ,xK+m): k=1,2, ..., m}, where the "true value"
(71 by nx+m) of the gth pair satisfies a structural equation of the form
P K
= - s =0, =l R 20 S L (AT
B =i = g K (A.29)

The problem is to obtain estimates c, and c, of the values of the parame-
ters vy, and Vo in the structural equations from the observed data, This
is obviously a special case of the 'two-error-problem' which was intro-
duced in Sec. 1V,

From Egs. (A. 6a), (A.6b), and (A. 6c) we obtain

e e (A. 30a)
By ==t (A. 30Db)
L , (A.30c)



90

and

= ., (A. 30d)
Exo K
where kg and i take on all integral values from 1 to m. For the initial itera-

tion we have set cl0 and c2° equal to zero and have used the observed values

X for the estimates X . The residuals calculated by Eq. (A.1l) are
K+m K+m

-2
LA, D=l R 2,
R = o e (A=31)
1 c d A i=m+l, m+2, , 2m,
2i-mi
where
-2
A, = var(x.); 3 =1 1Lee 2 =, 2m. (A. 32)
1 1
The equations (A, 13) now become
Y T
gKO- vy cy T c, C2xx+m’ K= L2 — oy al (A.33)
so that
=2 ~E
£ = i, 2 =
’ (gKO c, C2xK+m)/(AK tic, AK+m), K= 12, . m, (A, 34)

Finally from Eqs. (A. 12) we obtain the normal equations for the estimates

c. and S These are

1
m
K?I {(xx ¢y - szx+m)/(AK_2 + C22AK-+2m)] =0} (A, 354
and
5[
Kg L bm P S B 4 1 K_z § iy K-fm)} = 0. (A.35b)
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obtained as solutions of these equations can be used

obtained from Eq. (A.11)

The values c, and 3

for ¢ % and ¢ % and the estimates X and X
| 2 K Ktm
can be used for the evaluation of the derivatives h in the next iteration,
Ka

It is interesting to note that the normal equations (A, 35a)
and (A.35b) are the conditions for the minimization of a quadratic S of the

form

-2

m
2 -2
Y - y 2 A. 36
s KZ‘,’l(xK e el As S e BA L ( )

provided the denominator is considered constant in the variation of S with

respect to the estimate c,-
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