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COMBINED FORCED AND FREE TURBULENT CONVECTION
IN A VERTICAL TUBE

by

M. S. Ojalvo and R. J. Grosh

ABSTRACT

An analytical study was made of turbulent heat transfer in avertical
circular tube under the conditions of combined forced and free convection
with uniform heat flux at the wall.

The basic conservation laws are reduced to three coupled, linear
integro-differential equations in which the parameters are: Prandtl number
Pr; Rayleigh number Ra; and friction Reynolds number Re*. The following
values of these parameters were investigated: Pr =1,10,100; Ra = 0,16,81,
100,256,400,625,800; and Re* = 0,10% 10%,10°,

The IBM-704 digital computer was used to solve 3 equations for the
fully developed velocity profile, temperature profile, and pressure drop
when the above parameters were fixed in value. An extension of these re-
sults yields the mixed-mean-to-wall temperature difference, Nusselt num-
ber, and Reynolds number for a given problem.

The case of pure forced-convection, laminar heat transfer is realized
when Re* = 0 and Ra = 0. The solution for this case checked exactly with
well-known previous results.

Ordinarily, Re* = 0 implies that the wall shear stress T, is zero.
This is not so in this problem, for Re* has no meaning in laminar flow. It
is made zero in order to have a zero eddy diffusivity, i.e., setting Re* = 0
in laminar-flow problems is just a convenience in the numerical solution,
and should not be used for any further implications.

Problems of laminar heat transfer under combined forced and free
convection are realized by making Re* = 0. Here again the solution checked
previous results exactly.

For pure forced-convection, turbulent heat transfer problems, Ra =
0. On comparing the results upon solution of this type of problem with the
universal velocity and temperature profiles, it was found that they fell be-
low the accepted curves in the buffer zone and turbulent core, although
agreement was obtained in the laminar sublayer. This discrepancy is due
to the fact that too high a value of eddy viscosity is used in the buffer zone
and in part of the turbulent core.



Too high a value of EM/V also increases the Nusselt number above
that calculated by the Dittus-Boelter equation. However, these results for
the Nusselt number are fairly close to the upper limit of experimental values.

The results for turbulent heat transfer in combined forced- and free-
convection problems showed that the pressure drop parameter C and the
Nusselt number Nu increase by approximately anorder of magnitude as Re*
increases from 0 to 10® to 10% to 10°. The Prandtl number Pr had a smaller
effect on C and Nu, such that the former decreased and the latter increased
as Pr increased. Increasing Re* decreased the mixed-mean-to-wall tem-
perature difference $M by approximately an order of magnitude for the Re*
change given above. Increase of Pr had a smaller effect on decreasing M
than increasing Re*.

The temperature-difference profile tended to become smaller and
flattened as Re* increased. Increase of the Prandtl number had the same
effect, but to a lesser extent. The temperature difference at the center of
the tube approached zero as the Rayleigh number increased.

The velocity in the center of the tube was lowered and became more
and more negative as the Prandtl number decreased and as the Rayleigh
number increased. Increase of Re* had the same effect, i.e., lowered and
negative velocities in the center of the tube, for Pr = 1; but, for Pr = 10
or Pr = 100, the velocity in the center of the tube became less negative when
Re* was increased from 10* to 10°.

INTRODUCTION

Convection heat transfer is accomplished by virtue of the movement
of a fluid, which carries heat to or from a surface. The convecting fluid
may move solely because parts of it have a different density than other
parts. For most fluids a lower density results when the temperature is
increased. The hotter part will rise due to an increase in the buoyant
force, and will be replaced by the colder and more dense parts. Convec-
tion which occurs due to this natural movement of a fluid is called "free
convection." More generally, free convection is due to a difference of
body forces in different parts of a fluid. These body forces may come

about because of gravity or rotation in the most common applications of
engineering problems.

If, in addition, the convecting fluid is pumped or blown past the
heat-transmitting surface, a situation of combined "forced" and free con-
vection exists. The term forced convection is used to describe the limiting

fsituation when the buoyant force is negligible compared with the pumping
orce.



There are many other ways in which a convection heat transfer
problem may be classified. Conditions may be steady or unsteady. The
flow may be either laminar or turbulent. The heat-transmitting surface
may be at a constant temperature, may have a specified temperature
variation along its length, or may have a uniform or specified heat flux
along its length. The flow may be fully enclosed or external to a surface.
If the fluid is flowing in a tube, the cross-sectional shape may be round,
rectangular, square, triangular, annular, or some other shape. At a
cross section, velocity and temperature profiles may be similar to the
corresponding profiles at other cross sections (known as the region of
"fully developed" flow and heat transfer) or they may be changing. In
addition, uniform or nonuniform volume heat sources may or may not be
present within the fluid. Finally, the tube may be inclined at any angle
with the vertical.

The problem considered in the present study is one of combined
forced and free convection in turbulent flow. The configuration chosen
was that of a vertical, round tube with upward flow and uniform heat
flux at the wall. Volume heat sources will not be considered. Only the
case of fully developed flow and heat transfer was treated analytically
and compared with available results.

This problem has practical importance in the cooling of nuclear
reactors and turbine blading, and in process heat transfer. Its solution
will show the effect of free convection on turbulent forced convection;
and also the effect of turbulence in laminar flow and heat transfer, combined
forced- and free-convection problems. The solutions to this fairly general
problem can also be used to check the following special cases:

1. pure forced convection, laminar flow;
2. combined forced and free convection, laminar flow;

3. pure forced convection, turbulent flow.



SURVEY OF THE LITERATURE

Heat transfer applications in which both forced and free convection
are present, i.e., in channels in which the flow is parallel to the direction
of the gravity or centrifugal body force, have been rather recent. As‘a
result, the characteristics of such systems have been determined, pri-
marily during the last 20 years, and much interest in this field continues
at the present time.

Theoretical Investigations

All of the theoretical investigations have been for the laminar flow
case. Martinelli and Boelte * presented an analysis for developing
flow. They concluded that the flow conditions immediately adjacent to the
solid-fluid interface apparently control the rate of heat transfer. Pigford(41)
examined the same case, but included the influence of temperature on
viscosity as well as on density. The Nusselt numbers calculated increased
substantially above that for the case of constant viscosity. The results
were about the same as those predicted earlier by Martinelli and Boelter
when Pigford considered the viscosity to remain constant.

Ostroumov(38) treated the round-pipe problem for the cases in
which the axial temperature gradient was constant, both positive and neg-
ative. Many other solutions were given for different geometries, but in-
ternal heat sources were not considered nor were Nusselt numbers
calculated. Hallman(18) agreed with Ostroumov's solution of the case
for constant wall heat flux addition with upward flow, but pointed out an
error in the calculation of the mixed-mean-to-wall temperature difference
because of an incorrect integration. In addition to predicting velocity and
temperature profiles, Hallman also calculated Nusselt numbers and pres-
sure drops. He treated cases in which volume heat sources were present
as well as those in which volume heat sources were not present.

Ostrach's analysis(37) was for 2 plane, parallel surfaces in the
direction of the body force with linearly varying wall temperature. Viscous
dissipation was included in the energy equation. It was found that a mod-
ified Rayleigh number (usual Rayleigh number multiplied by the reciprocal
of the specific heat ratio) and a dimensionless parameter (usual Rayleigh
number multiplied by Bfy b/CpJ)** were of significance in this problem.
Representative dimensionless velocity and temperature distribution were
given, from which Nusselt numbers were calculated.

*Numbers in parenthesis refer to the BIBLIOGRAPHY.

**¥The nomenclature is given in Appendix A.



Various other geometries and cases may be summarized briefly in
the following paragraph.

Han(19) considered the case of rectangular tubes with uniform
axial temperature gradient and uniform peripheral wall temperature by
applying the method of undetermined coefficients and using a double
Fourier series. Tao(54) introduced a complex function, directly related
to the velocity and temperature fields, in treating the case of a vertical
channel of constant axial wall temperature gradient, with or without heat
generation. The analysis of Lu(27) was for heat-generating flow, i.e.,
with the presence of volume heat sources, in vertical pipes with circular
sector cross sections. He applied the finite Fourier sine transform and
finite Hankel transforms to the nondimensionalized Navier-Stokes and
energy equations. Sparrow, Eichhorn and Gregg(53) presented an analysis
for boundary layer flow, employing similar solution theory, and Acrivos(1)
utilized the Polhausen-Von Karman integral method in considering external
flows along a vertical isothermal plate. Morton's analysis(33) was for
uniformly heated horizontal pipes with flow at low Rayleigh numbers. His
approximate solution was based on expanding the dimensionless Stokes
stream function, dimensionless velocity, and dimensionless temperature
difference as power series in the Rayleigh number. He found that the
Nusselt number is increased by the secondary flow resulting from buoyancy,
and the increase depends upon the Rayleigh-Reynolds product squared.

Experimental Investigations

Not quite so much effort has been expended in obtaining experimental
data in combined forced and free convection as in the special cases of pure
forced or free convection. These may be considered limits at either end
of the case of combined forced and free convection. McAdams'(31) and
Jakob's(25) chapters on these subjects provide a wealth of references for
these limiting cases.

Hallman(18) designed and built and experimental apparatus to
measure the laminar heat transfer in a vertical tube with uniform wall
heat flux and no internal heat generation. The experimental, fully de-
veloped Nusselt numbers checked very well with his analysis for positive
Rayleigh numbers in the range from 27 to 2700. The Nusselt numbers
fell about 10% above his predicted curve for negative Rayleigh numbers
ranging from -50 to -115. Thermal entrance lengths for positive
Rayleigh numbers were found to be shorter than for pure forced convec-
tion, whereas those for negative Rayleigh numbers were found to be
longer than those for pure forced convection. Hallman also observed a
transition to a fluctuating flow under certain conditions. Asymmetric
distributions of wall temperature were found for negative Rayleigh
numbers, which became more severe as the Rayleigh number became
more negative.
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Clark and Rohsenow(5) found that the effects of free convection on
the nonboiling heat transfer process were significant; these effects caused
a2 transition from laminar to turbulent flow at the surface to occur at
Reynolds numbers in the range from 60,000 to 100,000. Local surface
coefficients of heat transfer were presented for degassed, distilled water
flowing upward in a vertical tube, 9.4 in. long and 0.180 in. in inside

diameter.

Wetjen(61) reported some measurements of average heat transfer
coefficients in water and glycerine flowing in an upward direction through
a vertical tube with a length-to-diameter ratio of 50. No quantitative
evaluation is possible because the published data are insufficient for the
calculation of the parameters used in the present investigation.

Eckert, Diaguila, and Curren(“) and Eckert, Diaguila, and
Livingood(lz) conducted experiments in turbulent, combined forced- and
free-convection flow of air with length-to-diameter ratios ranging from
5 to 40. Limits of the forced-flow regime, free-flow regime, and mixed-
flow regime were established and were found to depend on the Reynolds
and Grashof numbers. In addition to their own data, they used those of
Martinelli and Boelter,(30) and of Watzinger and Johnson.(59

Superposed forced and free convection of air in stationary hori-
zontal and vertical rectangular ducts was experimentally investigated by
Altman and Staub.(2) Heat transfer and pressure-drop results were
plotted as Colburn "j" factors and friction factors versus Reynolds
numbers. When their data were compared with the criterion of Eckert,
Diaguila, and Livingood,(lz) the majority of the data fell into the mixed-
flow region. The maximum values of the experimental heat transfer
coefficient in this mixed-flow region were as much as twice the values
calculated using free- or forced-convective relations alone.

Gross(15) and Gross and Van Ness(16) presented data for laminar
heat transfer in a vertical tube in which some effects of combined forced
and free convection were present. The data of Poppendiek(42) and

Poppendiek and Winn(43) also showed some effects of free convection on
forced convection.

Jackson, Harrison, and Boteler(24) performed experiments of
superposed free and forced laminar convection for air in a vertical tube.
Since the Martinelli and Boelter(3o) equation did not correlate their
data satisfactorily, they analyzed the system from an overall viewpoint.

This analysis led to the derivation of an equation that fit the experimental
data.

. Holman and Boggs(23) recently conducted heat transfer experiments
using Freon 12, near the critical state, in a vertical tube which was part of
a natural-circulation loop. Their analysis, based on overall conditions,



was for laminar and for turbulent flows. Experimental results were obtained
for the case of turbulent flow only.

Collis and Williams(6) determined the importance of combined con-
vection for heat transfer from horizontal wires for flow at very low
Rayleigh numbers. They found that free convection is significant when,
roughly speaking, the Reznoldn number is less than the cube root of the
Rayleigh number. Yuge( 2) investigated heat transfer between spheres
and air. He presented empirical formulas for forced, natural, and com-
bined convection, and used a graphical procedure to predict the heat trans-
fer in combined natural and forced convection.

In studying natural-convection instabilities, Hanratty, Rosen, and
Kabel(20) injected a thin stream of dye into water flowing through a ver-
tical tube. The flow field was visually observed, and the value of the
Grashof number divided by the Reynolds number was used as a criterion
to describe the velocity profile. Mori's experimentsuz) showed, for
forced convection on a horizontal isothermal plate, the effects of natural
convection upon the local coefficient of heat transfer are less than 10%
if |Gry| = 0.083(Rex)z". This estimate applies to both sides of the plate,

Van Putte(56) investigated heat transfer to water in the near-
critical region by means of a natural-convection loop. The Dittus-
Boelter equation was found to be inadequate for correlating his results.

A few investigators have conducted experiments for no net through
flow and no internal heat generation in vertical pipes in which the hotter
fluid is below the colder fluid. They are: Ostroumovi(38) Martin;(29)
Eckert, Diaguila, and Curren;(11) Hahnemann;(17) Hartnett and Welsh;(21)
and Slavnov.(51)

11
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The

ANALYSIS

problem to be analyzed is combined forced and free turbulent

convection in a circular tube whose axis is parallel to the direction of the

body force.

There is to be a net through flow.

Assumptions
el e

In addition to the description of the problem given above, the follow-
ing assumptions are made:

%
2.

o ~N o U B

Axial symmetry exists for the momentum and heat transfer.

All fluid properties, except density, are constant in the ex-
pression for body force. A mean density is used for all other
density terms.

Viscous dissipation and axial heat conduction are negligible

compared with the heat conduction in the radial direction.

There is a uniform heat flux at the wall.

There are no volume heat sources.

The velocity and temperature profiles are fully developed.
There is single-phase flow.

The eddy diffusivities of momentum and heat are in constant
proportion.

The eddy diffusivity of momentum is given by a modification

of Reichardt's equation(45’46) and is based on the experimental
data of Nikuradse,(35) Reichardt,(45»4(?) Nunner,(36) Laufer,(Z(’)
and many others. (See Appendix B.)

Basic Equations

The basic equations employed are the continuity, Navier-Stokes, and
energy equations in cylindrical coordinates. An equation of state is also

used.

On the basis of the above assumptions and description of the problem,
the conservation laws reduce to

Ou
x

0 , Continuity (1)*

*The nomenclature is given in Appendix A.
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35-*9;'; gl ?Bé;(r[ﬁ-* 8¢ ]37) :m;ier- @
tokes

Op _ op _ (Momentum)

AT X 0 (3)

PmSpY % = %(r[k + pmcpe:H] g—:_-) Energy. (4)

The equation of state to be used is (see Appendix C)

P =Py [l -B(t- tw)] . (5)

Development of Equations

Equation (1) indicates that

u=u(r) . (6)
Further, equations (3) indicate that

p=rplx) . (7)

If these facts and equation (5) are utilized, equation (2) can be written as

li( n Md_“) 8( )-ﬂ g
r dr r[gc+ gc dr *Pwﬁgct tw, 'dx+pwgc - (8)

The boundary condition of uniform wall heat flux plus the assump-
tions of constant specific heat and a fully developed temperature profile
require that

ot

=" A (a constant) . (9)
X

Equation (9) is developed in Appendix D, in which a new variable 6 is
introduced and defined as

6 =0(r) = tx,r) - !(x.lz)) =t-ty g (10)

In terms of this new variable, equations (4) and (8) become,
respectively,

1 dé
pchuA -—;(r[ki»pmcch]a) (11)
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ii K pmeM(r) du(r) g i dp(x) g 12
rdr<r[§+ dr dr -"pW[3 8¢ Cle ) S dx +pW‘gT (12}

The density Py appearing in this last equation is actually a function
of x. We will consider the solution of this equation together with equation (11)
to obtain u and 6 at a fixed value of x; thus, we shall consider py constant.
By evaluating the solutions at different values of x and by using appropriate
physical properties at each x, we obtain results consistent with our assump-
tion of "locally fully developed" flow and heat transfer. With this procedure
it is seen that the right-hand side of equation (12) is a function of x alone,
and the left-hand side is a function of r alone; hence, each side may be set

equal to some constant. Thus,

d 320 iE
= Py £ = z_m_ (a constant) (13)
dx S DF 5
and
i__d_ _H (= du g - 2
. dr(r[g + Py M];) + py B0 = -32u,uc/DPg. . (14)
o c Ec

The pressure-drop parameter C in these equations was chosen because
it takes on the value of unity for the special case of pure forced-
convection laminar flow, as described by Hallman.(18)

In order systematically to solve the general set of problems de-
scribed, equations (11) and (14) are nondimensionalized by using the
following defined terms:

dimensionless

iy Zr/D radius (15)
# =26/ Py AD? R
s s
e pmpwbspt it | SRy

Thus, equations (12) and (14) become
el £

and
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In accordance with assumption (8), we will use
1

€H 6 <

—_— =g = — 21

M w2 z n¥exp (.017n%/Pr) oy
as given by Lykoudis.(28) Thus we may rewrite equation (19) as

1 d ( M do) U

n n"[ ”"um]dn P (22)
Boundary Conditions

The following boundary conditions are used:

u(1) =0 (23)

#(1) =0 (24)

du(o) _ )

= U =0 (25)

d¢(0) A

s 0) =0 26

- =9 (0) (26)

These conditions come from the physical problem. Equations (23)
and (24) state that the fluid velocity and temperature at the wall of the tube
(n = 1) are equal, respectively, to the wall velocity and wall temperature,
i.e., an application of the no-slip boundary condition in a continuum.
Equations (25) and (26) come from the fact that heat and momentum are not
transferred across the center line (7) = 0) of the tube, due to axial symmetry,
resulting in a zero slope for the temperature and velocity profiles at the
center line.

Discussion of Equations

Equations (20) and (22) are the momentum and energy equations,
respectively, These are 2 second-order, linear, coupled differential
equations which are to be solved for U and ¢ as functions of 7. Boundary
conditions (23), (24), (25), and (26) are to be satisfied. In addition, the
value of the pressure-drop parameter C may also be obtained if we use
the following form of the continuity equation:

15
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1
U :f Undn =1 . (27)
m
0

Two obvious parameters in our equations are the Prandtl number
Pr and the Rayleigh number Ra. These are usual dimensionless groups.
It should be noticed, however, that Ra is defined in terms of the axial
temperature gradient A and that Ra = Gr Pr when the Grashof numbfr GrZ
is also defined in terms of A [see Ostrach(37)] as Gr =p .y oy Pg AD /16/4 .

An empirical equation for EM/V is given in Appendix B, i.e.,

10
ep/v = 0.0667 Re* (0.5 +1?) (1 - me) " for 0= <(1 -Re*) (28a)

"
(=}

for(l-——lo)snsl 5

€M/V Re¥*
(28b)

where

Re* = Du*/v ; friction Reynolds number (29)
and

u* = /TWgC/pW , friction velocity . (30)
Thus a third parameter, the friction Reynolds number Re*, is introduced.

Extension of Results

The solution of equations (20), (22), and (27) will yield U and ¢ as
functions of 7) for a given set of values of the parameters: Ra, Pr, and Re*.
The pressure-drop parameter will also be obtained.

These results may be extended by calculating the following useful
quantities: the axial pressure drop (p - po)/(x - %¢); the dimensionless
mixed-mean-to-wall temperature difference ¢, the Nusselt number
Nu; and the Reynolds number Re.

Hallman(18) gives equations for the first three of these quantities.
They are:

1 BT(x=xo):| : (31)

(e

where the subscript "0" refers to a reference axial position along the tube
at which the temperature and velocity profiles are fully developed:



O = zfoundn y (32)
0

and
Nu = hD/k = -Z¢'(l)/om . (33)

An expression for the Reynolds number is derived in Appendix E.
The result is

Re m —m . _3Ret)®
v 8C + 2Rad, =

(34)

where the + sign is for upward flow and the - sign is for net downward
flow.

Method of Solution

At first, it was decided to use the formal method of Frobenius
by expressing U and ¢ as infinite power series in 7, and trying to deter-
mine the coefficients of these series. The indicial equations had repeated
roots; therefore, the solutions could be expressed as

¢ = (lnn)z a,n® #2 G dy i (35)
[
and
U = (lan) Xban” + 3 an"*" (36)
0

[see Wayland("o) ].

Conditions (25) and (26), which state that the derivatives of these
functions are to be zero at 7 = 0, could not be satisfied because of the
In 1) term in the equations for ¢' and U', i.e.,

“MI)Z’ nann"" + i Z a,n" +Z {n + m)C matmsl (37)
L) Iy

¢l

U'

(lnn)z: nban" " + = Z b,n™ + Z (n+ £)dnt L=
T 5 e - (38)

In the method attempted next, the assumed variation of CM/V with
7)was simplified so that it was constant in the central section of the tube,
zero in the laminar sublayer, and linear between the two. The momentum
and energy equations could then be combined into a form of Bessel's
equation, as in Hallman's analysis,(18) and a solution obtained for the

17
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central section and the laminar sublayer in terms of Bessel functions. An

infinite series solution was used for the section between the above two.

All the boundary conditions were able to be satisfied, but a tremendous

ebra was required to set up 29 linear algebraic equations in
Even after these 29 equations are solved by means of a

ch work would have to be done to finally obtain the

, Nu, and Re - all for only one

amount of alg
29 unknowns.
digital computer, mu
velocity and temperature profiles, C, (bm
set of parameters.

A third method of solution involved a still further simplification of
€M/'LJ so that it was constant in the area between the laminar sublayer and
the central section of the tube. This led to just a little less work than was

involved in the second method.

A few other methods of solution were explored, such as assuming
a velocity profile for the laminar sublayer and possibly for the buffer
zone, too, but these did not work out well because the Reynolds number had
to be known beforehand. Actually, Re is a function of the other parameters
and quantities in a given problem, as shown by equation (34).

Finally, since it appeared that the use of a digital computer would
be most desirable, the following method of solution was devised to exploit
the advantages of such a machine by decreasing tremendously the amount
of hand calculations necessary, and thereby decreasing the possibility of
errors in such a long, tedious problem as this.

As stated previously, the independent parameters are Ra, Re¥*,
and Pr. The friction Reynolds number Re* determines the value of
€M/v as a function of 7, and the Prandtl number Pr determines the value
of 0. Withthese quantities fixed, the method of solution proceeds as follows:

1. Uy = 2(1 ~7?) (39)

is assumed as an initial guess. This equation satisfies the continuity
equation (27), as well as boundary conditions (23) and (25). It is the
limiting case of the parabolic profile in pure forced-convection laminar
flow.

. 2. Equation (22) is integrated with the aid of condition (26) to
obtain

n
1
?f U;ndn
(Dv = 0
¢ (40)

€
o Rz ]




3. Egquation (40) is integrated subject to boundary condition (24)
to obtain

¢ =fno'dn (41)
1

as a function of 7.

4. Equation (20) is integrated to obtain

P -2Ra ‘/:'b'f)dn 4NC

U = “ , (42)
3 T]|l+TMI II*TI

where condition (25) has been utilized.

The parameter C must have a numerical value if the digital com-
puter is to be used. As previously discussed, C has a value of unity for the
limiting case of pure forced-convectionlaminar flow. A particular numerical
value of C will have to be assumed in a given problem.

5. Equation (42) is integrated subject to boundary condition (23) to

obtain
U, i/a U} dn (43)
1

as a function of 7).

6. The continuity equation (27) is checked to see if it is satisfied.
If U, does not satisfy this equation, the value of C is to be changed until it
does.

7. The function U; is checked against U, by comparing U;(l) with
Uj(1) to see if they are within 0.1% of each other.

8. Equations (32), (33) and (34) are used to calculate ® 4 Nu, and
Re, respectively, if the above check is satisfactory. The results are then
printed out as given in Step 10 below.

9. If the check in Step 7 is not satisfactory, U; is used as an
initial assumption, replacing U, in going through the procedure again,
starting at Step 2.

19



10, Printout Title

Problem Number

Parameters: Ra Re* 12 o
n U, U, @
| ‘
1l 0 0 0
@ Dm Nu Re

It should be noted that both U, and U; are printed out to ensure
that the criterion used for checking them in Step 7 is valid.

These steps may be shown in a simplified flow diagram Figure 1,
for the calculation. A complete flow diagram is shown in Figure 2.

CALCULATE
1459 1+.0667 RAL+7FX1=77)
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[ieopeg]-i 10
0sM<(1—1%)

2
ASSUME  U;= 2(1-7) )
]
CALCULATE ¢p'= 2 T)d
27 |1+ 0 Pr:

REPLACE U,

WITH U,

caLcuLaTe ¢ =["p'an

Figure 1

CALCULATE Simplified Flow Diagram of the
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PRINT OUT RESULTS VEsl

—lﬂuaz Uy () WITH U} (1)

IF_WITHIN 0.1%

CALCULATE ¢m Nu,Re
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CALCULATED RESULTS

Table 1 lists the following results: @ =0l RengancFN! for all
problems which the IBM 704 digital computer was able to solve.

Table 1
RESULTS FOR ALL COMPLETED PROBLEMS
Input Parameters Calculated Results
Problem
e Ra | Re* | Pr c | $m [ Re | Nu

A. Laminar flow, pure forced convection
[ E | o E [ w | o [ - | ux 0

B. Laminar flow, combined forced and free convection

52 81 0 - 313 0.0974 - 5.13
51 26 0 - 6.84 0.0761 - 6.57
C. Turbulent flow, pure forced convection

19 0 300 il 4.1 0.019 2,760 %
120 0 300 10 41 0.0095 2,760 53
121 0 300 100 41 0.0083 2,760 60
122 0 500 1 6.1 0.013 5,100 39
123 0 500 10 6.1 0.0053 5,100 9%
124 0 500 100 6.1 0.0045 5,100 111
a 0 103 1 10.1 0.0074 12,400 67
48 0 103 10 10.1 0.0030 12,400 165
3 0 104 1 69 0.0010 180,000 480
49 0 104 10 69 0.00032 180,000 1,560
%2 0 10 1 560 0.00013 2,200,000 3,900
50 0 10° 10 560 0.000025 2,200,000 20,300

D. Turbulent flow, combined forced and free convection

83 16 103 1 17.1 0.0064 7,300 8
84 16 103 10 130 0.0030 9,600 168
9% 16 103 100 125 0.0025 10,000 19
85 16 104 1 132 0.000%0 94,000 550
86 16 104 10 90 0.00032 139,000 1,580
97 16 104 100 85 0.000025 148,000 2,000
87 16 105 i 1170 0.00011 1,100,000 4,440
88 16 10° 10 690 0.000024 1,800,000 20,700
9 16 105 100 630 0.000014 2,000,000 36,500
3 81 103 1 3 0.0052 3,600 %
“ 81 103 10 % 0.0028 5,200 bz
101 81 103 100 2 0.0025 5,600 198
&5 81 104 1 290 0.00084 43,000 600
% 81 104 10 167 0.00030 75,000 1,650
103 8l 104 100 146 0.00024 85,000 2,000
a 81 105 1 2700 0.00012 470,000 4,300
) 81 105 10 1160 0.000023 1,100,000 21,800
105 81 105 100 910 0.000014 1,400,000 3,400
B 100 103 1 39 0.0053 3,200 9%
5 100 103 10 27 0.0028 4,600 176
6 100 104 1 320 0.00087 39,000 570
7 100 104 10 190 0.00030 67,000 1,660
9 100 10° 10 1290 0.000023 970,000 21,90
23 256 103 10 50 0.0028 2,500 176
107 256 103 100 48 0.0025 2,600 200
5 256 104 10 30 0.00031 36,000 1,600
109 256 104 100 310 0.00024 40,000 2,050
2 26 109 10 2200 0.000023 560,000 22,000
11 26 105 100 1600 0.000013 760,000 37,000
125 400 103 10 67 0.0031 1,870 162
126 400 103 100 68 0.0025 1,850 200
127 400 104 10 460 0.00035 27,000 1,440
128 400 104 100 440 0.00025 28,000 2,000
129 400 105 10 3000 0.000025 420,000 20,400
13 400 105 100 2200 0.000013 560,000 37,000
29 625 103 10 89 0.0036 1,400 138
113 625 103 100 99 0.0026 1,270 190
31 625 104 10 610 0.00042 20,500 1,200
115 625 104 100 640 0.00026 19,600 1,90
33 625 105 10 3800 0.000028 325,000 17,700
117 625 105 100 3100 0.000014 400,000 3,000
131 800 103 10 104 0.0040 1,210 124
132 800 103 100 122 0.0027 1,030 183
133 800 104 10 710 0.00047 17,600 1,060
134 800 104 100 790 0.00027 15,800 1,830
135 800 105 10 4400 0.000031 280,000 15,900
136 800 105 100 3800 0.000014 330,000 35,000
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Part A consists of the problem in laminar flow, pure forced convection;
part B has 2 problems in laminar flow, combined forced and free convec-
tion; part C consists of 12 problems in turbulent flow, pure forced convec-
tion; and, finally, part D has 47 problems in turbulent flow, combined forced
and free convection.

The original IBM printout sheets for all these problems are kept
with a copy of this thesis in a looseleaf binder at the School of Mechanical
Engineering Library, Purdue University, Lafayette, Indiana. A Fortran
listing, Table for Location of Variables, and a Share Assembly Program
(SAP) Listing are also included in the binder.

Discussion and Comparison of Results

The 3 problems of parts A and B, Table 1, check exactly with
Hallman's results(18) for laminar convection.

Problem 3 was chosen as typical of the problems in part C. The
universal velocity and temperature profiles of Eckert and Drake(13) were
used to check the values of U and ¢ in this problem. The equations needed
for this comparison are

ot =22 () (44)

(At*) = 2 Pr Re* (¢) , (45)
and

Y* = L Re* (1-1) . (46)

These equations are easily derived from the definitions of the various di-
mensionless quantities.

Figure 3 shows the comparison of ut and -(At*) with the universal
velocity and temperature profiles. The values in problem 3 fall below the
universal profile in the turbulent core and buffer zone, but coincide exactly
in the laminar sublayer.

Upon investigation of this discrepancy, it was found that the value
of cM/v used in the buffer zone and in part of the turbulent core was too
high. The value eM/v = 0 in the laminar sublayer is quite good, however,
The variation of € \y/v with Y* is shown in Figure 4.
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‘All gf the problems in part C with a Prandtl number of 1 or 10 are
plotted in Figure 5, which shows the variation of Nusselt number with
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Reynolds number. The Dittus-Boelter equation for pure forced-convection
turbulent heat transfer is also shown, with dashed lines indicating the range
of experimental results according to Giedt.(14) In both Prandtl-number
comparisons, the results of the present analysis lie above the curves of

the Dittus-Boelter equation. This discrepancy is due, again, to using too
high a value of €)(/v in the buffer zone and part of the turbulent core.
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Figure 5. Comparison of Results with Dittus-Boelter
Equation and Experiment

Figure 6 shows the effect of free convection on turbulent forced
convection.
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These curves show that, for a given Rayleigh number, the ratio (Nu)Ra/
(Nu)Ra = o increases as the Reynolds number is increased and as the
Prandtl number is decreased. At a given Reynolds number and Prandtl
number, a higher ratio is obtained with a higher Rayleigh number.

Figures 7, 8 and 9 show results for the problems in turbulent flow,
combined forced and free convection.

l l[l,||l | ||l||]1_—

TTIrT

T

100,000

—|Re=10°, Pr=100

tRe"=10°%, Pr=10

Nu

X Re'=10%,Pr=1|

[:4

© o

-+

= =

2 Re'=10*, Pr =100 Figure 7

1,000 .

- ~JRe =10*,Pr=10 Variation of Nusselt

2 = : :

] J Number with Rayleigh
]

> _ Number

\— Re*=10%, Pr=100
- Re™=10%,Pr=10

R&=10" , Pr=1|

[ 1)

e e -
i o S|

[ —— T Re&=0%Prsl
 i—eu

L Sl ue o

= Re™= 0
—| (LaMINAR)
S J
'NII VALUES —
FOR Ra=0 [~ =

(l 1go
RAYLEIGH NUMBER,Ra —— e
i LIl el ll‘l’




l T l E 1 T" r ) I T I 1 ll‘
C RSa0* P10
= 10" Pre100
" a0 1
i / -~ ]
o / RS 10%, Pre100
Rt 10*, Prei0

B rf]frv‘

10, P
7t

|

PRESSURE  DROP PARAMETER € =

Tndo
(LAMINAR)

P B S

1

] g Ll
MAYLEIGH NUMBER  Ro ——e

© vases T
_u-oE ‘ -
-

- -
]

Figure 8. Variation of Pressure Drop Param-
eter with Rayleigh Number

27



? R R S

Re*-0
(LAMINAR)

I

T
| / = s S

.01

T
/
LU,

— | % =
Re =10" ,Pr=1 R:rlo’,Pr=I0

Lo N == “R¥:10%,Pr=100

F—— " Ré&10%Pr:=I

Re=10*, Pr=10

MIXED-MEAN-TO-WALL TEMPERATURE DIFFERENCE , —®,
|
|
|
|
|
Nl

Re*=10*, Pr=100

® .

a Eiwe e

= L —

>

@

.;, = TR0t Pl

a L000|=—= — =i
= =

w € 3

o [ =

R&=10° , Pr=10

-_ ]
e d)m VALUES [ — ‘

NEGATIVE
T
| (\ !

FOR Ra:0 RE%10° , Pr=100
00001 IO\IOHDD
= RAYLEIGH NUMBER, Ro —= =
[ W S [ ] [

Figure 9. Variation of Mean Temperature Dif-
ference with Rayleigh Number

The Nusselt number is plotted against Rayleigh number in Figure 7.
The lowest curve is for laminar flow. The Nusselt numbers are increased
by approximately an order of magnitude as Re* is increased from 0 to 103



to 10*t0 10*. Increasingthe Prandtl number has a smaller effect on increasing
the Nusselt number than increasing Re*. Increasing the Rayleigh number
continually increases the Nusselt number in laminar flow. The results for
turbulent flow do not show this behavior; increasing the Rayleigh number
seems to have very little effect on the Nusselt, and, indeed some decrease

is noted in the Nusselt number above a Rayleigh number of approximately
400.

It was noticed in the solution of these problems with the IBM 704
digital computer that difficulty was experienced when the Rayleigh number
was above 400, For instance, no solution was obtained for a problem in
which Ra = 625 and Re* = 0. The iteration process seemed to oscillate.
Similar action was noted for problems where Ra = 4096, 10%, or 10° with
any value of Re* or Pr; or for problems where Ra = 256, 400, 625, or 800
with any value of Re* and Pr = 1. Solutions were obtained for lower Ray-
leigh numbers, however, or when the Prandtl number is increased to
10 or 100.

An attempt was made to analyze what was happening within the
IBM 704 during the running of these unsuccessful problems by examining
the intermediate printout between successive iterations. It was found that
the program was doing what was called for, but that the velocity profile
oscillated or diverged in the iteration process.

It is evident that further work is required to explain this anomaly.
Possibly, another digital computer, such as the IBM 7090, can handle this
problem better than the IBM 704. At any rate, the results for problems
with Rayleigh numbers of 400 and above should be suspect.

Figure 8 shows the pressure-drop parameter C plotted against
Rayleigh number. Again, the bottom curve is for laminar flow, and C in-
creases by approximately an order of magnitude as Re* is increased from
0to 10° to 10* to 10°. In general, decreasing the Prandtl number has a
smaller effect in increasing C than increasing Re*. Increasing the Rayleigh
number has a great effect on increasing C for all values of Re*.

The dimensionless mixed-mean-to-wall temperature difference
bm is presented in Figure 9. The top curve is for laminar flow, and ¢,
is decreased by an order of magnitude, approximately, as Re* is increased
from 0 to 10° to 10* to 10°. Increasing the Prandtl number has a lesser
effect on decreasing ¢, than increasing Re*. Finally, increasing the Ray-
leigh number always decreases ¢, in laminar flow, but seems not to have
much effect in turbulent flow. Again, the results for a Rayleigh number
above 400 should be suspect.

Representative velocity and temperature profiles are shown in
Figures 10 through 17.
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The effect of Re* is shown in Figures 10 and 11 for a Prandtl
number of 10 and a Rayleigh number of 256. As Re* increases from 0 to
103 to 10%, the velocity in the center of the tube decreases and becomes
more negative. The velocity in the center of the tube becomes less nega-
tive when Re* is increased from 10% to 10°, however,

This action is due to the extra increase in em/v and in 0A (e M),
which is equal to € H/oc, as Re* is increased. Since the Prandtl number is
10, there is a large transport of heat between adjacent layers of fluid and
the temperature difference profile is made quite flat. For a given Rayleigh
number, the body force tending to create a negative velocity in the center
is decreased. Thus the center velocity becomes less negative.

Figures 12 and 13, for Pr = 1 and Ra = 81, show somewhat the same
behavior as in the 2 previous figures, except that now the velocity in the
center of the tube becomes more and more negative continuously as Re*
is increased. Because the Prandtl number is unity, the temperature-
difference profile is made not quite so flat as in the case for a Prandtl
number of 10. The body force, therefore, is greater in the center of the
tube, and the velocity consequently becomes more negative continuously
as Re* is increased.

Figures 14 and 15 show the effect of using different Prandtl number
fluids for a Rayleigh number of 81 and Re* = 10°. As the Prandtl number
is increased from 1 to 10 to 100, the velocity and temperature profiles
are made more flat. This behavior is consistent with the explanation
given in the previous cases.

The effect of varying Rayleigh number is shown in Figure 16 and
17 for a Prandtl number of unity and Re* = 10%*. As the Rayleigh number
is increased from 0 to 16 to 81 to 100, the velocity in the center of the
tube decreases in a continuous manner, and eventually becomes negative
for the highest 2 Rayleigh numbers. The shape of the temperature-
difference curve also changes continuously to lower values in the center
of the tube as the Rayleigh number is increased. The Rayleigh number
is a measure of the extent of the free-convective effect, and the observed
behavior of the velocity and temperature profiles as Ra is increased is
therefore expected.
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SUMMARY AND CONCLUSIONS

The effect of the parameters Re*, Pr, and Ra on Nu, C, -¢m, U, and ¢
profiles is summarized in Table 2.

Table 2
SUMMARY OF EFFECTS IN COMBINED FORCED- AND FREE-CONVECTION PROBLEMS
“fl o=l W ¢ -ém U Profile $ Profile
Increasing Re* Lowers velocity in Flattens curve
Pl center of tube making and makes tem-
It more and more neg- perature dif-
ative ference approach
e10
» Pri0er 0 Increases Increases Decreases Same as above except Same as sbove
center velocity be-
comes less negative
when R Itlsa“
from 10° to
Increasing Pr
» L Flattens curve Flattens curve
Tow
o Laminer No effect No effect No effect No effect No effect
flow
Increasing Ra
LR ( Lowers the velocity Makes the tem-
flow slowly for slowty for in the center of the perature dif-
Raww Rawp o tube, eventually ference in the
6 6 making it negative center approach
er0
» I:n. Increases | Increases | Decreases | Same as atove Same as above

All cases of laminar heat transfer, pure forced convection or com-
bined forced and free convection, check exactly with accepted results. There
is a discrepancy between accepted results and the cases of pure forced-
convection turbulent heat transfer. It was therefore concluded that the val-
ues of eddy viscosity used were somewhat in error. Further investigation
substantiated this conclusion, as shown in Figure 4.

It is a well-known fact that higher-Prandtl-number fluids will in-
crease the Nusselt number in pure forced-convection turbulent heat trans-
fer. This same result is obtained, with lower pressure drops, in combined
forced- and free-convection turbulent heat transfer.

Recommendations

The following recommendations are made in order to extend the re-
sults of this study and to make them more accurate:

1. Isothermal wall conditions, negative Rayleigh numbers, and
volume heat sources should be considered.
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2. A more complete investigation should be made of the fact that
the IBM 704 cannot handle problems with a high Rayleigh number and low
Prandtl number, in general. Problems in which Re* = 10°, also, cannot be
solved satisfactorily. Possibly, the program for the digital computation
could be rewritten to overcome these difficulties.

3. A better equation for EM/V should be obtained so that the uni-
versal velocity and temperature profiles may be more closely approached
in pure forced-convection turbulent heat transfer problems.

4. The relation used for 0 :EH/GM is admittedly not very good,
since it was developed for liquid metals, which have low Prandtl numbers.
Other relations should be investigated, even those where 0 varies with
radius, since a digital computer can handle this variation.

5. Finally, experimental verification is required for the problems
of combined forced and free turbulent convection in a vertical tube.
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Appendix A
NOMENCLATURE

Any consistent set of units may be used. A typical set for engineer-

ing calculations is indicated.

y'ﬂ

o0
£

axial temperature gradient in fluid % , F/ft

distance between two plane parallel surfaces, ft
dp g ) 2
- =} D

(d.x Pw e B¢

ressure-drop parameter,-
P PP 32 upy K

specific heat of fluid at constant pressure, B/lby, F

tube inside diameter, ft

negative of the X-component of the body force per unit mass, 1bf/lbm

acceleration due to gravity, ft/hr?

dimensional constant in Newton's Law, 4.17x 10° ft-1by,/1bg-hr?

Grashof number, Pm Pwgg AD*/164* , dimensionless
heat transfer coefficient, q:‘"/-em. B/hr-ftz-l-"
mechanical equivalent of heat, 778 ft~lbf/B

thermal conductivity of fluid, B/hr-ft-F

Nusselt number, hD/k. dimensionless

static fluid pressure, lb(/ftz-abs

Prandtl number, cpu/k =v/a, dimensionless

heat transfer rate per unit area at wall of tube, B/hr-ftl
radial coordinate, (D/2)-y, it

gas constant of a perfect gas, It-lb(/lbm-R

Rayleigh number, o, PwPBg CPAD‘/lbp.k. dimensionless
Reynolds number, Dum/v ., dimensionless

friction Reynolds number, Du"'/‘u. dimensionless

static fluid temperature, °F

dimensionless temperature difference, (t- tw)Pm cpu‘/q{}v
absolute temperature, °R

fluid velocity parallel to tube axis at radius r, ft/hr

friction velocity, ~/Ty, gc/Pw.ft/hr

, dimensionless
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Y+
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3

o5 B o=

“E

dimensionless velocity u/u*
dimensionless velocity, u/um

specific volume, ft3/lbm

distance measured along axis of tube upward from start of heated

length, ft

1
coordinate measured radially from tube wall, 3D - r, ft
dimensionless distance from wall, yu*/v

: o 2
thermal diffusivity, k/pcp, ft /hr ps

thermal coefficient of volume expansion, % (%’) . LT
eddy diffusivity, ft%/hr

dimensionless radius, Zr/D

radial temperature difference, t-tyw, F

dynamic viscosity of fluid, 1bm/ft-hr

kinematic viscosity of fluid,/J_/p , ftz/hr

mass density of fluid, lby, /ft®

ratio of eddy diffusivities, €H/€M, dimensionless

fluid shearing stress, lbf/ft2

dimensionless temperature difference, ZkQ/pmum cp AD?

angular coordinate in cylindrical coordinate system, radians

Subscripts

average

heat

mixed-mean (also called mixing cup or bulk)
momentum

reference axial position along tube

at wall of tube

based on the distance X (rather than diameter D)

Superscripts

differentiation once with respect to the independent variable, 7

per unit area



Appendix B
THE EDDY DIFFUSIVITY OF MOMENTUM

The empirical expression which will be used for the ratio of the
eddy diffusivity of momentum ¢ )¢ to kinematic viscosity v is given as

€
TM = 0.0667 Re* (0.5 + n?)(1-1%) (B-1a)
for
10
0x n< (1 - A2)
[
—V—: 0 (B-1b)
for

10
(l'Re.)—"‘_‘l N

which is equation (28a, b) of the ANALYSIS. This equation comes from
Reichardt's work,(45,46) allowance being made for a laminar sublayer
0<y*=5, which corresponds to [1-(10/Re*)]=7 =1. It is plotted in Fig-
ure B-1 together with the experimental results of Nikuradse.(35)
Nunner,(36) Laufer,(26) and Reichardt.(45,46) Some scatter is observed
in these results, but Reichardt's equation correlates the data fairly well
considering that the results are based upon an experimentally determined
velocity profile. The velocity-profile data of 4 investigators may agree
very well, but the slopes of the 4 curves may have large disagreements,
as noted by Lykoudis in a discussion of Sleicher's paper. 52)

10
b0 :
T3 B 3
€y 2 . w e
ks - H Figure B-1
.
5 Variation of Eddy Viscosity
° 2 4 " o A9 A"(. & in a Tube
R

O RECWADTS DATA48,48)

O MKURADSES DATA 03) reow BCHUCHTING (48)
5 MAMWERS  DATA(S)

& LAUERS  DATA(pe) [ "%0M Wezt (1)

There is further evidence, however, that the curve given by the
equation (B-1) is of the correct qualitative shape. Corcoran, Opfell, and
Sage”) say that "the eddy viscosity is zero at the wall, but increases
rapidly to a maximum roughly midway between the wall and the center of
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the conduit. This behavior is characteristic of all turbulent flows with
an incompressible fluid." Reichardt's empirical equation follows Fhis
shape exactly. In addition, the general shape of the curves of Schlinger,
Berry, Mason, and Sage,(49) of Page, Schlinger, Breaux, and Sage, 39
and of Page, Corcoran, Schlinger, and Sage(40) agrees with that of equa-
tion (B-1). Their maximum value of €)f is about 30% higher than the
maximum value given by this equation.

Sherwood and Woertz(50) indicate that the eddy diffusivity is
nearly constant in the central section. Their maximum value of € v
is about 50% higher than the maximum value given by equation (B-1).
It should be noticed that the curve of this equation is fairly constant
(within t 10%) over the middle 80% of the tube. This fact also agrees
with Clauser's statement(10) that "the very simple assumption of con-
stant eddy viscosity accurately predicts the behavior of the outer 80%
to 90% of turbulent (boundary) layers." The experimental work of
Wattendorf,(58) who determined turbulent velocity profiles in fully
developed Couette flow between concentric cylinders, again indicates
that the eddy viscosity is fairly constant in the middle 80% of the space
between the walls.

The question arises as to the applicability of equation (B-1) to
combined forced and free turbulent convection. All of the experiments
cited were presumably carried out in the region of predominantly
forced convection. Unfortunately, experiments to determine eM/v as
a function of radius in free convection or combined forced and free con-
vection could not be found. Yet, except where the flow becomes unstable
due to a high negative Rayleigh number [Bosworth(4)], the fact that a con-
dition of turbulent flow exists is the controlling factor.

Holman and Boggs,(23) for instance, in their natural-circulation
heat transfer loop, use the usual friction factor to determine the shear
friction forces in setting up a dynamic force balance. Murgatroyd(34)
used the results of the group at the California Institute of Technol-
ogy(7:39140’49) for eddy diffusivity in forced-convection flow, although
he was concerned with a problem involving free convection only. He
obtained fully developed velocity and temperature profiles for turbulent
flow in a long, round vertical or parallel-side cell containing a heat-
generating fluid and having isothermal walls.

Townsend(55) considers turbulent flow in a tube to be composed
of 2 regions, one near the solid boundary and the other in the central
region. The region adjacent to the wall is one "within which the total
shear stress is nearly constant and whose motion is determined almost
entirely by the shear stress and the fluid viscosity." The motion in the



45

central region is determined by the friction velocity u* and the tube
radius. Therefore, since the turbulent motion throughout the tube depends
only on the friction velocity, fluid viscosity, and tube radius, it is assumed
that there is no difference in the value of €)/v in pure forced convection
than in either pure free convection or combined forced and free convec-
tion. Experimental work will be required to test this assumption.

If later, and better, experimental values of € )y/v for combined
forced and free convection become available, these values can easily be
incorporated into the method of solution outlined in the ANALYSIS.
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Appendix C
EQUATION OF STATE

If we expand p in a Taylor series in t about the reference tem-

perature ty, we obtain:\°/:

f 3 PRl S G
ol = Io|tW+ ——a_%lt (t-tw) + > atz e (t tw) F g ( )
But
SO e T ) G2
B—V(Bt)p—_p(at>p : (e=2)
Therefore,
2
o =ow - Bow(t-ty) +5 SB| (b P s (c-3)
t
or
p=pw(l-g6) (C-4)

where 6 has been previously defined as t-twand only the first 2 terms of
the Taylor series have been used. This is equation (5) in the ANALYSIS,
which may also be obtained by using finite differences for the differentials
in equation (C-2) above. For a gas which obeys the perfect gas law,

pv = RT, the equation of state may be written as

pep (o) =

where T is the absolute temperature.



Appendix D
THE LONGITUDINAL TEMPERATURE GRADIENT
The temperature of the fluid is a function of x and r in the problem

considered. But, for fully developed velocity and temperature profiles,
the temperature difference & is a function of r only:

8(r) = t (x,r) - z( .%): t-tw . (D-1)
Now,
3
or
Otw (3t
= -(3), (-3)

Therefore, the temperature gradient in the direction of flow is independent
of radial location.

The heat balance for the steady-state condition in our problem
states that the rate at which heat is added at the wall is equal to the rate
at which heat is taken away by the fluid. In symbolic form (see Fig-
ure D-1),

D/2 ot
qy (mDdx) = | pm u2nr dr cp-é—x-dx i (D-4)
[
from which
D
% o . (D-5)

= /Z
2 cpPfm urdr
0

The mean velocity is defined as follows:

f/z / %
u(2nr)dr 8 urdr
'] - ; (D-6)

Um = 7D/4 - O
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ar,m_‘,_f-ﬂf( Figure D-1

Heat Balance for an Element of Fluid

Equation (D-5) can therefore be written as

ot %aw
ox ¢pPm DUm ;i (D=7

Since all quantities on the right-hand side of equation (D-7) are constant
in our problem,

gt;: AEN(G iconstant) (D-8)



Appendix E
REYNOLDS NUMBER
A dynamic force balance may be set up with the aid of Figure E-1.

Equating forces in the downward direction to those in the upward direction
(+ Tw for upward flow, - 7w for downward flow)

¢ rwten (50 (5 0) o (50 ) o ol50)

8¢
from which (E-1)
3p dp __ iTw
Semoaoa e
Since
-D‘ 8¢ (ilz + p -s-)
= dx w
Cs= s —Bct | (E-3)
from equation (13)
4Tw
-D* ge [7 -2 ° (Pw-Pm) Eg:]
(E-4)

Cs=
32 pum

Using
Tw=u* pw/Bc i Pw-Pm = PwFfm i fm = PmUm cpAD? 6 /2k

and the definitions of Re, Re*, and Ra, we obtain

1 (Re*)? Ra ¢m
C="%Re ~ 3 {%-8)
or
+ (Re*)?
Re (E-6)

Re = €+ 2Ra o

which is equation (34) in the ANALYSIS.
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® i P ‘Ii Figure E-1
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It should be noted that the Rayleigh number Ra can be positive or
negative. Only the quantities B and A, in the definition of Ra, can change
sign. The quantity f is usually positive for most fluids of engineering
interest. Water, for instance, has a negative value of  only between 32°F
and 39°F. For wall heat addition to the fluid, A is positive for upward flow
and negative for downward flow.
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