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COMBINED FORCED AND FREE TURBULENT CONVECTION 
IN A VERTICAL TUBE 

by 

M. S. Ojalvo and R. J. Grosh 

ABSTRACT 

An analyt ical study was made of turbulent heat transfer in a ver t i ca l 
c i rcu lar tube under the condit ions of combined forced and free convect ion 
with uniform heat flux at the wall . 

The basic conservat ion laws are reduced to three coupled, l inear 
integro-di f ferent ia l equations in which the p a r a m e t e r s are: Prandtl number 
Pr; Rayle igh number Ra; and frict ion Reynolds number Re*. The following 
va lues of these p a r a m e t e r s were invest igated: Pr = 1,10,100; Ra = 0 ,16 ,81 , 
100 ,256 .400 .625 .800; and Re* = 0, l o ' , 10*. 10*. 

The IBM-704 digital computer was used to so lve 3 equations for the 
fully deve loped ve loc i ty prof i le , t emperature profile, Jind p r e s s u r e drop 
when the above p a r a m e t e r s w e r e fixed in value. An extens ion of these r e ­
sul ts y i e lds the m i x e d - m e a n - t o - w a l l t emperature di f ference , N u s s e l t num­
ber, and Reynolds number for a given problem. 

The c a s e o f pure forced-convec t ion , laminar heat transfer is rea l i zed 
when Re* = 0 and Ra = 0. The solut ion for this case checked exact ly with 
wel l -known prev ious r e s u l t s . 

Ordinari ly , Re* = 0 i m p l i e s that the wall shear s t r e s s T ^ is z e r o . 
This i s not so in this problem, for Re* has no meaning in laminar flow. It 
is made zero in order to have a z e r o eddy diffusivity, i . e . . sett ing Re* = 0 
in laminar - f low prob lems is just a convenience in the numer ica l solution, 
and should not be used for any further impl i ca t ions . 

P r o b l e m s of laminar heat transfer under combined forced and free 
convect ion are rea l i zed by making Re* = 0. Here again the solution checked 
prev ious re su l t s exact ly . 

For pure forced-convec t ion , turbulent heat transfer p r o b l e m s , Ra = 
0. On comparing the resu l t s upon solution of this type of problem with the 
un iversa l ve loc i ty and temperature prof i l e s , it was found that they fell be ­
low the accepted c u r v e s in the buffer zone and turbulent c o r e , although 
a g r e e m e n t was obtained in the laminar sub layer . This d i screpancy is due 
to the fact that too high a value of eddy v i s c o s i t y is used in the buffer zone 
and in part of the turbulent c o r e . 



Too high a value of eyjv also increases the Nusselt number above 
that calculated by the Dittus-Boelter equation. However, these resul ts for 
the Nusselt number are fairly close to the upper limit of experimental values. 

The results for turbulent heat t ransfer in combined forced-and f ree-
convection problems showed that the p ressu re drop parameter G and the 
Nusselt number Nu increase by approximately an order of magnitude as Re 
increases from 0 to 10^ to 10* to 10*. The Prandtl number P r had a smal ler 
effect on C and Nu, such that the former decreased and the lat ter increased 
as Pr increased. Increasing Re* decreased the mixed-mean- to-wal l t em­
perature difference 0M by approximately an order of magnitude for the Re 
change given above. Increase of P r had a smaller effect on decreasing 0M 
than increasing Re*. 

The temperature-difference profile tended to become smal ler and 
flattened as Re* increased. Increase of the Prandtl number had the same 
effect, but to a lesser extent. The temperature difference at the center of 
the tube approached zero as the Rayleigh number increased. 

The velocity in the center of the tube was lowered and became more 
and more negative as the Prandtl number decreased and as the Rayleigh 
number increased. Increase of Re* had the same effect, i .e. , lowered and 
negative velocities in the center of the tube, for Pr = 1; but, for Pr = 10 
or Pr = 100, the velocity in the center of the tube became less negative when 
Re* was increased from 10 to 10 . 

INTRODUCTION 

Convection heat transfer is accomplished by virtue of the movement 
of a fluid, which car r ies heat to or from a surface. The convecting fluid 
may move solely because parts of it have a different density than other 
par ts . For most fluids a lower density results when the tempera ture is 
increased. The hotter part will r ise due to an increase in the buoyant 
force, and will be replaced by the colder and more dense pa r t s . Convec­
tion which occurs due to this natural movement of a fluid is called "free 
convection." More generally, free convection is due to a difference of 
body forces in different parts of a fluid. These body forces may come 
about because of gravity or rotation in the most common appUcations of 
engineering problems. 

If, in addition, the convecting fluid is pumped or blown past the 
heat-transmitting surface, a situation of combined "forced" and free con­
vection exists. The te rm forced convection is used to descr ibe the limiting 
situation when the buoyant force is negligible compared with the pumping 
f o r c e. 



There are many other ways in which a convection heat transfer 
problem may be classified. Conditions may be steady or unsteady. The 
flow may be either laminar or turbulent. The heat- transmitt ing surface 
may be at a constant temperature , may have a specified temperature 
variation along its length, or may have a uniform or specified heat flux 
along its length. The flow may be fully enclosed or external to a surface. 
If the fluid is flowing in a tube, the cross-sect ional shape may be round, 
rectangular, square, tr iangular, annular, or some other shape. At a 
c ross section, velocity and temperature profiles may be s imilar to the 
corresponding profiles at other c ross sections (known as the region of 
"fully developed" flow and heat transfer) or they may be changing. In 
addition, uniform or nonuniform volume heat sources may or may not be 
present within the fluid. Finally, the tube may be inclined at any angle 
with the vert ical . 

The problem considered in the present study is one of combined 
forced and free convection in turbulent flow. The configuration chosen 
was that of a vert ical , round tube with upward flow and uniform heat 
flux at the wall. Volume heat sources will not be considered. Only the 
case of fully developed flow and heat transfer was treated analytically 
and compared with available resul ts . 

This problem has practical importance in the cooling of nuclear 
reactors and turbine blading, and in process heat t ransfer . Its solution 
will show the effect of free convection on turbulent forced convection; 
and also the effect of turbulence in laminar flow and heat transfer, combined 
forced- and free-convection problems. The solutions to this fairly general 
problem can also be used to check the following special cases: 

1. pure forced convection, laminar flow; 

2. combined forced and free convection, laminar flow; 

3. pure forced convection, turbulent flow. 



SURVEY OF THE LITERATURE 

Heat transfer applications in which both forced and free convection 
are present, i.e., in channels in which the flow is paral lel to the direction 
of the gravity or centrifugal body force, have been ra ther recent . As a 
result, the character is t ics of such systems have been determined, p r i ­
marily during the last 20 years , and much interes t in this field continues 
at the present time. 

Theoretical Investigations 

All of the theoretical investigations have been for the laminar flow 
case. Martinelli and Boeltei^^°^* presented an analysis for developing 
flow. They concluded that the flow conditions immediately adjacent to '^e 
solid-fluid interface apparently control the rate of heat t ransfer . Pigfordl ) 
examined the same case, but included the influence of tempera ture on 
viscosity as well as on density. The Nusselt numbers calculated increased 
substantially above that for the case of constant viscosity. The resul ts 
were about the same as those predicted ear l ier by Martinelli and Boelter 
when Pigford considered the viscosity to remain constant. 

Ostroumov(38) treated the round-pipe problem for the cases in 
which the axial temperature gradient was constant, both positive and neg­
ative. Many other solutions were given for different geometr ies , but in­
ternal heat sources were not considered nor were Nusselt numbers 
calculated. Hallman(-^°) agreed with Ostroumov's solution of the case 
for constant wall heat flux addition with upward flow, but pointed out an 
e r ror in the calculation of the mixed-mean-to-wall temperature difference 
because of an incorrect integration. In addition to predicting velocity and 
temperature profiles, Hallman also calculated Nusselt numbers and p r e s ­
sure drops. He treated cases in which volume heat sources were present 
as well as those in which volume heat sources were not present . 

Ostrach's analysis(3^) was for 2 plane, parallel surfaces in the 
direction of the body force with linearly varying wall t empera ture . Viscous 
dissipation was included in the energy equation. It was found that a mod­
ified Rayleigh number (usual Rayleigh number multiplied by the reciprocal 
of the specific heat ratio) and a dimensionless parameter (usual Rayleigh 
number multiplied by j3fx b/CpJ)**were of significance in this problem. 
Representative dimensionless velocity and temperature distribution were 
given, from which Nusselt numbers were calculated. 

•Numbers in parenthesis refer to the BIBLIOGRAPHY. 

**The nomenclature is given in Appendix A. 



Vkrious other geometries and cases may be sumnnarized briefly in 
the following paragraph. 

Han^'*'' considered the case of rectangular tubes with uniform 
axial temperature gradient and uniform peripheral wall temperature by 
applying the method of undetermined coefficients and using a double 
Fourier s e r i e s . Tao(54) introduced a complex function, directly related 
to the velocity and temperature fields, in treating the case of a vert ical 
channel of constant axial wall temperature gradient, with or without heat 
generation. The analysis of Lu(^^) was for heat-generating flow, i.e., 
with the presence of volume heat sources , in vertical pipes with circular 
sector c ross sections. He applied the finite Fourier sine transform and 
finite Hankel t ransforms to the nondimensionalized Navier-Stokes and 
energy equations. Sparrow, Eichhorn and Gregg ' ' ^ ' presented an analysis 
for boundary layer flow, employing similar solution theory, and A c r i v o s O 
utilized the Polhausen-Von Karman integral method in considering external 
flows along a vertical isothermal plate. Morton's analysis(53) was for 
uniformly heated horizontal pipes with flow at low Rayleigh numbers . His 
approximate solution was based on expanding the dimensionless Stokes 
s t ream function, dimensionless velocity, and dimensionless temperature 
difference as power ser ies in the Rayleigh number. He found that the 
Nusselt number is increased by the secondary flow resulting from buoyancy. 
and the increase depends upon the Rayleigh-Reynolds product squared. 

Experimental Investigations 

Not quite so much effort has been expended in obtaining experimental 
data in combined forced and free convection as in the special cases of pure 
forced or free convection. These may be considered limits at either end 
of the case of combined forced and free convection. McAdams'(^ ' ' and 
J a k o b ' s ' ^ ' ' chapters on these subjects provide a wealth of references for 
these limiting cases . 

Hallman^'" ' designed and built and experimental apparatus to 
measure the laminar heat transfer in a vertical tube with uniform wall 
heat flux and no internal heat generation. The experimental, fully de­
veloped Nusselt numbers checked very well with his analysis for positive 
Rayleigh numbers in the range from 27 to 2700. The Nusselt numbers 
fell about 10% above his predicted curve for negative Rayleigh numbers 
ranging from -50 to -115. Thermal entrance lengths for positive 
Rayleigh numbers were found to be shorter than for pure forced convec­
tion, whereas those for negative Rayleigh numbers were found to be 
longer than those for pure forced convection. Hallman also observed a 
transition to a fluctuating flow under certain conditions. Asymmetric 
distributions of wall temperature were found for negative Rayleigh 
numbers, which became more severe as the Rayleigh number became 
more negative. 
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Clark and Rohsenow(5) found that the effects of free convection on 
the nonboiling heat transfer process were significant; these effects caused 
a transition from laminar to turbulent flow at the surface to occur at 
Reynolds numbers in the range from 60,000 to 100,000. Local surface 
coefficients of heat transfer were presented for degassed, distilled water 
flowing upward in a vertical tube, 9.4 in. long and 0.180 in. in inside 
diameter. 

Wetjen(^l) reported some measurements of average heat t ransfer 
coefficients in water and glycerine flowing in an upward direction through 
a vertical tube with a length-to-diameter ratio of 50. No quantitative 
evaluation is possible because the published data are insufficient for the 
calculation of the parameters used in the present investigation. 

Eckert, Diaguila, and Current H) and Eckert , Diaguila, and 
Livingood(l2) conducted experiments in turbulent, combined forced- and 
free-convection flow of air with length-to-diameter ratios ranging from 
5 to 40. Limits of the forced-flow regime, free-flow regime, and mixed-
flow regime were established and were found to depend on the Reynolds 
and Grashof numbers. In addition to their own data, they used those of 
Martinelli and Boelter,(30) and of Watzinger and Johnson.(59) 

Superposed forced and free convection of air in stationary hor i ­
zontal and vertical rectangular ducts was experimentally investigated by 
Altman and Staub.(2) Heat transfer and pressure -drop resul ts were 
plotted as Colburn " j " factors and friction factors versus Reynolds 
numbers. When their data were compared with the cr i ter ion of Eckert , 
Diaguila, and Livingood,(-^^) the majority of the data fell into the mixed-
flow region. The maximum values of the experimental heat t ransfer 
coefficient in this mixed-flow region were as much as twice the values 
calculated using free- or forced-convective relations alone. 

GrossV^^' and Gross and Van Ness(l°) presented data for laminar 
heat transfer in a vertical tube in which some effects of combined forced 
and free convection were present. The data of Poppendiek(42) and 
Poppendiek and Winn(43) also showed some effects of free convection on 
forced convection. 

Jackson, Harrison, and Boteler(24) performed experiments of 
superposed free and forced laminar convection for air in a ver t ical tube. 
Since the Martinelli and Boelter(30) equation did not corre la te their 
data satisfactorily, they analyzed the system from an overall viewpoint. 
This analysis led to the derivation of an equation that fit the experimental 
data. 

Holman and Boggs(23) recently conducted heat t ransfer experiments 
using Freon 12, near the crit ical state, in a vert ical tube which was part of 
a natural-circulation loop. Their analysis, based on overall conditions. 
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was for laminar and for turbulent f lows. Exper imenta l resu l t s were obtained 
for the c a s e of turbulent flow only. 

CoUis and Will iamst'') de termined the importance of combined con­
vect ion for heat transfer from horizontal w i r e s for flow at very low 
Rayle igh n u m b e r s . They found that free convect ion is s ignif icant when, 
roughly speaking, the Reynolds number is l e s s than the cube root of the 
Rayle igh number . Yuge(^^) invest igated heat transfer between s p h e r e s 
and a ir . He presented empir i ca l formulas for forced, natural, and c o m ­
bined convect ion, and used a graphical procedure to predict the heat t r a n s ­
fer in combined natural and forced convect ion. 

In studying natura l -convect ion ins tab i l i t i e s , Hanratty, Rosen, and 
Kabel^^'" injected a thin s t r e a m of dye into water flowing through a v e r ­
t ical tube. The flow field was v i sua l ly observed , and the value of the 
Grashof number divided by the Reynolds number was used as a cr i t er ion 
to d e s c r i b e the ve loc i ty profi le . Mori ' s experiments!^^) showed, for 
forced convect ion on a horizontal i so thermal plate, the effects of natural 
convect ion upon the local coeff ic ient of heat transfer are l e s s than 10% 
if ICrjjl s 0.083(Rex)'"*. This e s t i m a t e appl ies to both s ides of the plate. 

Van Putte(^^) invest igated heat transfer to water in the n e a r -
cr i t i ca l region by means of a natura l -convect ion loop. The Dit tus-
Boel ter equation was found to be inadequate for corre la t ing his r e s u l t s . 

A few inves t iga tors have conducted exper iments for no net through 
flow and no internal heat generat ion in ver t ica l pipes in which the hotter 
fluid is below the co lder fluid. They are: Ostroumov;(38) Martin;!^'') 
Eckert , Diaguila, and C u r r e n ; ( ' l ) Hahnemann;( 17) Hartnett and Welsh;(21) 
and Slavnov.(51) 
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ANALYSIS 

The problem to be analyzed is combined forced and free turbulent 
. . . . . action in a circular tube whose axis is paral lel to the direction of the 
body force. There is to be a net through flow. convec 

Assumptions 

In addition to the description of the problem given above, the follow-

ing assumptions are made: 

1. Axial symmetry exists for the momentum and heat t ransfer . 

2 All fluid propert ies , except density, are constant in the ex­
pression for body force. A mean density is used for all other 
density t e rms . 

3. Viscous dissipation and axial heat conduction are negligible 
compared with the heat conduction in the radial direction. 

4. There is a uniform heat flux at the wall. 

5. There are no volume heat sources . 

6. The velocity and temperature profiles are fully developed. 

7. There is single-phase flow. 

8. The eddy diffusivities of momentum and heat are in constant 
proportion. 

9. The eddy diffusivity of momentum is given by a modification 
of Reichardt 's equation(45,46) and is based on the experimental 
data of Nikuradse,(35) Reichardt,(45,46) Nunner,(36) Laufer,(26) 
and many others. (See Appendix B.) 

Basic Equations 

The basic equations employed are the continitity, Navier-Stokes, and 
energy equations in cylindrical coordinates. An equation of state is also 
used. 

On the basis of the above assumptions and description of the problem, 
the conservation laws reduce to 

- ^ = 0 , Continuity ( l )* 

*The nomenclature is given in Appendix A. 
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dx gc r dr V [g,. g^ J d r / 

- ^ = ^ = 0 

N a v i e r -
}• Stokes 

(Momentum) 

Pm<^p" 
dt I / r, 1 dt \ ,, 

(2) 

(3) 

(4) 

(5) 

The equation of state to be u sed is ( see Appendix C) 

P =Pw [l - P (t - tw)] . 

Deve lopmen t of Equa t ions 

Equation (I) i n d i c a t e s that 

u = u(r) . (6) 

Further , equations (3) indicate that 

P = P(x) (7) 

If these facts and equation (5) a r e u t i l i zed , equa t ion (2) ccin be w r i t t e n as 

P m ^ M U{'[ 8c gc t)^^.^i(^-^.)-?.^'^i: (8) 

The boundary condition of un i fo rm wall heat flux plus the a s s u m p ­
t ions of constant spec i f ic heat and a fully deve loped t e m p e r a t u r e prof i le 
require that 

Ot . , , 
•r— = A (a constant) 
ox 

Equation (9) i s developed in Appendix D. in which a new v a r i a b l e d is 
introduced and defined as 

e = e ( r ) = t(x.r) - t («•?) = 'W 

(9) 

(10) 

In t e r m s of this new variable , equations (4) and (8) become , 
re spec t ive ly , 

a c u A 
•^m p -i(r[k.p^CpCHj|;) ( 1 1 ) 

and 
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1 d / 

T77l' 
jj_ P m e M ( r ) 

d r 

du(r) 
d r W e„ 

r) 
dp(x) . p A_ (12) 

The dens i t y p^ a p p e a r i n g in th i s l a s t e q u a t i o n is a c t u a l l y a func t ion 
of X. We wil l c o n s i d e r the so lu t ion of t h i s e q u a t i o n t o g e t h e r wi th e q u a t i o n (11) 
to obtain u and 9 at a fixed va lue of x; t h u s , we sha l l c o n s i d e r p^ c o n s t a n t . 
By eva lua t ing the so lu t ions at d i f fe ren t v a l u e s of x and by u s i n g a p p r o p r i a t e 
p h y s i c a l p r o p e r t i e s at e a c h x, we ob ta in r e s u l t s c o n s i s t e n t wi th our a s s u m p ­
t ion of " loca l ly fully deve loped" flow and hea t t r a n s f e r . With t h i s p r o c e d u r e 
it i s s een that the r i g h t - h a n d s ide of equa t ion (12) i s a funct ion of x a l o n e , 
and the le f t -hand s ide is a function of r a lone ; h e n c e , e a c h s ide m a y be s e t 
equal to some cons tan t . T h u s , 

dp 
dx Pw 

32 u^^fiC 
(a cons tan t ) (13) 

a n d 

J__d_ 
r dr 

- ^ + Pm e M 
' Be 

(14) 

The p r e s s u r e - d r o p p a r a m e t e r C in t h e s e equa t ions was c h o s e n b e c a u s e 
it t ake s on the va lue of unity for the s p e c i a l c a s e of p u r e f o r c e d -
convec t ion l a m i n a r flow, as d e s c r i b e d by Ha l lman . (1° ) 

In o r d e r s y s t e m a t i c a l l y to solve the g e n e r a l s e t of p r o b l e m s d e ­
s c r i b e d , equa t ions ( l l ) and (14) a r e n o n d i m e n s i o n a l i z e d by u s i n g the 
following defined t e r m s : 

Tl = 2 r / D 

0 ^ 2 k e / p ^ u ^ C p A D 2 

U - "An. 

Ra = pJ^p•^v/3gCpAD*/l6/Lik 

Thus , equa t ions (12) and (14) b e c o m e 

1 d / 
• - ^ r 

d i m e n s i o n l e s s 
r a d i u s 

d i m e n s i o n l e s s t e m ­
p e r a t u r e d i f f e r e n c e 

d i m e n s i o n l e s s 
v e l o c i t y 

R a y l e i g h n u m b e r 
( d i m e n s i o n l e s s ) 

7] drj V 
1 + ^H U 

2 

(15) 

(16) 

(17) 

(18) 

(19) 

a n d 
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_L ± ( J , . iMldUN .^^^^.3C . (20) 

In a c c o r d a n c e with a s s u m p t i o n (8), we will uae 

• a = > —; r-7 (^1) 

CM ^ * Vftl ^ ' " P ( - O l r j V P r ) 

a s g iven by Lykoudis.!^**^ Thus we may r e w r i t e equa t ion (19) a s 

1 d / f, _ *-Mld.?\ U , , , . 

Boundary Cond i t ions 

The fol lowing bounda ry cond i t ions a r e used: 

U( l ) = 0 (23) 

• (1 ) = 0 (24) 

dU(0) 
dT) 

d0{Q) 
dT) 

U'(0) = 0 (25) 

s * ' (0) = 0 (26) 

T h e s e cond i t ions c o m e f rom the phys i ca l p r o b l e m . E q u a t i o n s (23) 
and (24) s t a t e that the fluid ve loc i ty and t e m p e r a t u r e at the wall of the tube 
(T] - I) a r e equa l , r e s p e c t i v e l y , to the wall ve loc i ty and wall t e m p e r a t u r e , 
I .e . , an app l i ca t i on of the n o - s l i p bounda ry condi t ion in a c o n t i n u u m . 
E q u a t i o n s (25) and (26) c o m e f rom the fact that hea t and m o m e n t u m a r e not 
t r a n s f e r r e d a c r o s s the c e n t e r l ine ( T] = 0) of the tube , due to ax ia l s y m m e t r y , 
r e s u l t i n g in a z e r o s lope for the t e m p e r a t u r e and ve loc i ty p r o f i l e s at the 
c e n t e r l i ne . 

D i s c u s s i o n of E q u a t i o n s 

E q u a t i o n s (20) and [ll) a r e the m o m e n t u m and e n e r g y e q u a t i o n s , 
r e s p e c t i v e l y . T h e s e a r e 2 s e c o n d - o r d e r , l i n e a r , coupled d i f f e r en t i a l 
equa t i ons which a r e to be so lved for U and 0 a s funct ions of rj. B o u n d a r y 
cond i t i ons (23), (24), (25), and (26) a r e to be s a t i s f i e d . In addi t ion , the 
va lue of the p r e s s u r e - d r o p p a r a m e t e r C m a y a l s o be ob ta ined if we u s e 
the fol lowing fo rm of the cont inu i ty equa t ion : 
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U = / UT]dri =1 . (^'^' 
m 

Two obvious p a r a m e t e r s in our e q u a t i o n s a r e the P r a n d t l n u m b e r 
P r and the Ray le igh n u m b e r R a . T h e s e a r e u s u a l d i m e n s i o n l e s s g r o u p s . 
It should be not iced , howeve r , tha t Ra is def ined in t e r m s of the a x i a l 
t e m p e r a t u r e g r a d i e n t A and tha t R a = Gr P r when the G r a s h o f n u m b e r Gr 
is a l so defined in t e r m s of A [ see O s t r a c h ( 3 7 ) ] a s Gr ^ p ^ P w /3g ^ D / i b p . 

An e m p i r i c a l equa t ion for &-yJv i s g iven in A p p e n d i x B, i . e . , 

e j ^ / v = 0.0667 Re* (0.5 +T]2) (I - T]̂ ) for 0 < T] < ( l - - ^ j (28a) 

= M. 
(28b) 

w h e r e 

a n d 

Re* s D u * / v , f r i c t i on R e y n o l d s n u m b e r (29) 

u * = y ' T . ^ g ^ / p . ^ , f r i c t i on ve loc i t y . (30) 

Thus a th i rd p a r a m e t e r , the f r i c t ion Reyno lds n u m b e r R e * , is i n t r o d u c e d . 

Ex tens ion of R e s u l t s 

The solut ion of equa t ions (20), (22), and (27) wi l l y i e ld U and 0 as 
functions of r\ for a given se t of v a l u e s of the p a r a m e t e r s : Ra , P r , and R e * . 
The p r e s s u r e - d r o p p a r a m e t e r wil l a l s o be ob t a ined . 

These r e s u l t s m a y be e x t e n d e d by c a l c u l a t i n g the fo l lowing usefu l 
quan t i t i e s : the axia l p r e s s u r e d r o p (p - po)/(x - xo); the d i m e n s i o n l e s s 
m i x e d - m e a n - t o - w a l l t e m p e r a t u r e d i f f e r ence 0 ; the N u s s e l t n u m b e r 
Nu; and the Reynolds n u m b e r Re . 

Hallman(18) g ives equa t i ons for the f i r s t t h r e e of t h e s e q u a n t i t i e s . 
They a r e : 

Po 32piu Co 
X - Xo T^2 

D g c 

3A 
— (x - Xo) (31) 

w h e r e the s u b s c r i p t " 0 " r e f e r s to a r e f e r e n c e ax ia l pos i t i on a long the tube 
at which the t e m p e r a t u r e and ve loc i t y p r o f i l e s a r e fully deve loped : 
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11 *Ui idT) . (32) 

' 0 

and 

Nu - hD'k = - 2 « ' ( l ) / 0 ^ . (33) 

An txpiiBsion for the Reynolds number is derived in Appendix E. 
The result is 

Re s 21 = — ; i K e j 34 
V 8C + 2Ra«^ 

where the + sign is for upward flow and the - sign is for net downward 
flow. 

Method of Solution 

At first, it was decided to use the formal method of Frobenius 
by expressing U and •} as infinite power ser ies in r). and trying to deter­
mine the coefficients of these se r ies . The indicial equations had repeated 
roots; therefore. the solutions could be expressed as 

0 = (InnjX a„^n * Y. Cn^-" ' '" ("> 
0 0 

and 

U = (Inr,) I b „ r , " > y d „ n " ^ ^ (36) 
0 0 

[see Wayland'^O)). 

Conditions (25) and (26), which state that the derivatives of these 
functions are to be zero at r, = 0, could not be satisfied because of the 
In T; term in the equations for f and U'. i.e., 

C = ( In r , )^ na„ r , " - ' + i ^ a„ , , " + X ( n + m)C„,," + m - ' (37) 
T 0 

U- = {lnr,)Y, nbnT,"-' + - ^ i>n^" + Z (n+£)d„T)"+^ "' (38) 

In the method attempted next, the assumed variation of t-jy /̂v with 
T) was simplified so that it was constant in the central section of the tube, 
zero in the laminar sublayer, and linear between the two. The momentum 
and energy equations could then be combined into a form of Besse l ' s 
equation, as in Hallman's analysis . (" ' ) and <i Nolution obtained for the 



c e n t r a l sec t ion and the l a m i n a r s u b l a y e r in t e r m s of B e s s e l f u n c t i o n s . An 
infinite s e r i e s so lu t ion was u s e d for the s e c t i o n b e t w e e n the above two. 
All the boundary condi t ions w e r e able to be s a t i s f i ed , but a t r e m e n d o u s 
amoun t of a l g e b r a was r e q u i r e d to s e t up 29 l i n e a r a l g e b r a i c e q u a t i o n s m 
29 unknowns . Even a f te r t h e s e 29 equa t ions a r e so lved by m e a n s of a 
d ig i ta l c o m p u t e r , m u c h work would have to be done to f ina l ly ob ta in the 
ve loc i ty and t e m p e r a t u r e p r o f i l e s , C, 0 ^ , Nu, and Re - a l l for only one 
se t of p a r a m e t e r s . 

A t h i r d me thod of so lu t ion involved a s t i l l f u r t h e r s i m p l i f i c a t i o n of 
€. /v so that it was cons tan t in the a r e a be tween the l a m i n a r s u b l a y e r and 
the c e n t r a l sec t ion of the tube . Th i s led to j u s t a l i t t l e l e s s w o r k than w a s 
involved in the second me thod . 

A few o the r m e t h o d s of so lu t ion w e r e e x p l o r e d , s u c h a s a s s u m i n g 
a ve loc i ty prof i le for the l a m i n a r s u b l a y e r and p o s s i b l y for the buffer 
zone, too, but t he se did not w o r k out we l l b e c a u s e the R e y n o l d s n u m b e r had 
to be known beforehand . Actua l ly , Re is a funct ion of the o t h e r p a r a m e t e r s 
and quant i t i es in a given p r o b l e m , as shown by equa t ion (34). 

F ina l ly , s ince it a p p e a r e d tha t the u s e of a d ig i t a l c o m p u t e r would 
be m o s t d e s i r a b l e , the following m e t h o d of so lu t ion was d e v i s e d to exp lo i t 
the advan tages of such a m a c h i n e by d e c r e a s i n g t r e m e n d o u s l y the a m o u n t 
of hand ca l cu la t ions n e c e s s a r y , and t h e r e b y d e c r e a s i n g the p o s s i b i l i t y of 
e r r o r s in such a long, t ed ious p r o b l e m a s t h i s . 

As s t a ted p r e v i o u s l y , the independen t p a r a m e t e r s a r e Ra , Re* , 
and P r . The f r ic t ion Reyno lds n u m b e r R e * d e t e r m i n e s the va lue of 
^ M A ^® ^ function of T), and the P r a n d t l n u m b e r P r d e t e r m i n e s the va lue 
of CT. With t he se quan t i t i e s fixed, the m e t h o d of so lu t ion p r o c e e d s a s fol lows ; 

1. Ul = 2(1 -Tl^) (39) 

i s a s s u m e d as an in i t ia l g u e s s . Th i s equa t ion s a t i s f i e s the con t inu i ty 
equat ion (27), as well as bounda ry cond i t ions (23) and (25). It i s the 
l imi t ing ca se of the p a r a b o l i c p rof i l e in p u r e f o r c e d - c o n v e c t i o n l a m i n a r 
flow. 

obtain 
2. Equa t ion (22) i s i n t e g r a t e d wi th the a id of condi t ion (26) to 

(40) 
1 + C T P r ^ 
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3. Equation (40) i s integrated subject to boundary condition (24) 
to obtain 

^ s r*' dTi (41) 

as a function of T). 

4. Equation (20) i s integrated to obtain 

-2Ra I 0T)dT| 
4T]C 

77^ 
(42) 

where condition (25) has been ut i l ized. 

The parameter C must have a numerica l value if the digital c o m ­
puter is to be used . As prev ious ly d i s c u s s e d . C has a value of unity for the 
l imit ing c a s e of pure forced-convec t ion laminar flow. A part icular numer ica l 
value of C will have to be a s s u m e d in a given problem. 

obtain 
5. Equation (42) is integrated subject to boundary condition (23) to 

""O' dr) (43) 

as a function of T). 

6. The continuity equation (27) is checked to s ee if it is sa t i s f ied . 
If U^ does not sat isfy this equation, the value of C is to be changed until it 
d o e s . 

7. The function U^ is checked against Ui by comparing U'( l ) with 
U'(I) to s e e if they are within 0.1% of each other. 

8. Equations (32). (33) and (34) are used to calculate 0 , Nu, and 
Re, r e s p e c t i v e l y , if the above check is sa t i s fac tory . The resu l t s are then 
printed out as given in Step 10 below. 

9. If the check in Step 7 is not sa t i s fac tory , U{ i s used as an 
initial a s sumpt ion , replacing U| in going through the procedure again, 
s tart ing at Step 2. 
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10. Printout Title 

Problem Number 
Parameters : Ra Re* Pr 

U, 

0 

Nu 

0 

Re 

It should be noted that both Uj and Uj are printed out to ensure 
that the criterion used for checking them in Step 7 is valid. 

These steps may be shown in a simplified flow diagram Figure 1, 
for the calculation. A complete flow diagram is shown in Figure 2. 

INPUT 

Ro , Rf , 

DATA 

Pr , a- , C 

^ 

CALCULATE 

[|+%-] = l + .0667ReVl+7fxi-7/l "l 

[l+trPr^]'l+.06€7O-PtRe'^-^+?;*){ |_7f)J 

[;:S,"4„}"-^'^'^^' ,„ 
ASSUME U|: 2(1-7} ) 

REPLACE U, 

WITH U2 

CALCULATE (h'--JSLMUM-;-^ 
2 77U.*q-Pf^J 

PRINT OUT RESULTS 

CALCULATE (^ '^i^'^'H 

CALCULATE 

CALCULATE ^'f^ iT) 

SEE IF 

.495<j^'Uj'77dTJ<.505 

CALCULATE <^„.*u.«. .^ ^ , ' , „ , „ , ,,. 

COMPARE Uj (I) WITH U) (1) 

Figure 1 

Simplified Flow Diagram of the 
Calculations 
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CALCULATED RESULTS 

Table 1 lists the following resul ts : C , - 1 Re, and Nu for all 
problems which the IBM 704 digital computer was able to solve. 

RESULTS FOR A l l COMPLETED PROBLEMS 

Input Parameters Calculated Results 

-'/>m 

A. Laminar flow, pure forced convection 

52 
51 

81 
256 

B. [2m 

0 
0 

nar flow, combined forced and free convection 

3.13 
6.84 

0.0974 
0.0761 

5.13 
6.57 

50 

0 
0 
0 
0 
0 
0 
0 
0 
0 

c 

300 
300 
500 
500 
500 
103 
103 
104 
10< 
105 
105 

Turbulent flow, pure forced 

1 
10 

m 
1 

10 
100 

1 
10 
1 

10 
1 

10 

4.1 
4.1 
4.1 
6.1 
6.1 
6.1 

10.1 
10.1 
69 
69 

560 
560 

convection 

0.019 
0.0095 
0.0083 
0.013 
0.0053 
0.0045 
0.0074 
0.0030 
0.0010 
0.0W)32 
0.00O13 
0.000025 

2.760 
2.760 
2.760 
5.100 
5,100 
5,100 

12,400 
12,400 

180,000 
180,000 

2.2t».000 
2,200,000 

26 
53 
60 
39 
94 

HI 
67 

165 
480 

1,560 
3,900 

20,300 

83 
84 
95 
85 
86 
97 
87 
88 
99 
43 
44 

101 
45 
46 

103 
41 
40 

105 
4 
5 
6 
7 
9 

23 
107 
25 

109 

111 
125 
126 

29 
113 
31 

33 

131 
132 
133 
134 
135 
136 

100 
100 
100 
100 
100 
256 
256 
256 
256 
256 
256 
400 
400 
400 
400 
400 
400 
625 
625 
625 
625 
625 
625 
800 
80O 
800 
800 
800 
800 

D. Turbulent flow, combined forced and free convection 

103 
103 
103 
104 
104 
10'' 
lOS 
105 
105 

103 
103 
103 
104 
104 
104 
105 
105 
105 
103 

103 
104 
104 
105 
103 

103 
10̂  
104 
105 
105 
103 
103 
10" 
104 
105 
105 
103 

103 
Iffl 

104 
105 
105 
103 

103 
104 
104 
105 
105 

1 
10 

loo 
1 

10 
lOO 

1 
10 

loo 
1 

10 
lOO 

1 
10 

m 
1 

10 
loo 

1 

10 
1 

10 
10 
10 

100 
10 

100 
10 

100 
10 

100 
10 

lOO 
10 

loo 
10 

100 
10 

1[« 
10 

100 
10 

100 
10 

IOD 
10 

100 

17.1 
13.0 
12.5 
132 
90 
85 

1170 
690 
630 

35 
24 
22 

290 
167 
146 

2700 
1160 
910 
39 

27 
320 
190 

1290 
50 
48 

340 
310 

2200 
1600 

67 
68 

460 
440 

3000 
2200 

89 
99 

610 
640 

3800 
3100 

104 
122 
710 
790 

4400 
3800 

O0064 
0.0030 
0.0025 
000090 
0.O0O32 
0.000025 
OOOOll 
0.00O024 
0.000014 
0.0052 
0.0028 
0.0025 
000084 
000030 
0.00024 
0.00012 
0000023 
0.000014 
0.0053 
0.0028 
0.00087 

0.00030 
0000023 
O0028 
O0025 
000031 
0.00024 
0.000023 

O0031 
O0025 
000035 
000025 
0000025 
0.000013 

0.0026 
0.00042 
000026 
0.000028 
0.000014 
O0O40 

0.00047 
000027 
O0[e031 
0000014 

7,300 
9.600 

10.000 
94.000 

139.000 

im.m 
1,100.000 
1.800.000 
2,000.000 

3.600 
5.200 
5.600 

43.000 
75.CC0 
85.TO 

470.000 
1.100,000 
1.4O0.0O0 

3,200 
4,600 

39,000 
67,000 

970,000 
2.50O 
2,600 

36.000 
40.000 

560.000 

1.870 
1.850 

27,000 
28.000 

420.000 
560,000 

1,400 
1.270 

20,500 
19,600 

325,000 
400,000 

1,210 
1,030 

17.600 
15.800 

280.000 
330.000 

78 
168 
196 
550 

1.580 
2.000 
4,4J0 

20,700 
36,500 

96 
177 
198 
600 

1.650 
2,000 
4,300 

21.800 
36,400 

95 
176 
570 

1,660 
21,900 

176 
200 

1,600 
2,050 

22,000 

162 
200 

i.im 
2,000 

20,400 
37,000 

138 
190 

1.200 
1,900 

17,700 
36,000 

1Z4 

183 
1,060 
1,830 

15,900 
35,000 
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Part A c o n s i s t s of the problem in laminar flow, pure forced convection; 
part B has 2 prob lems in laminar flow, combined forced and free convec ­
tion: part C c o n s i s t s of 12 prob lems in turbulent flow, pure forced convec ­
tion; and, f inally, part D has 47 prob lems in turbulent flow, combined forced 
and free convect ion 

The original IBM printout sheets for all these prob lems are kept 
with a copy of this t h e s i s in a loose leaf binder at the School of Mechanical 
Engineering Library, Purdue Univers i ty , Lafayette, Indiana. A Fortran 
l i s t ing . Table for Location of Var iab les , and a Share Assembly Program 
(SAP) Listing are a l s o included in the binder. 

D i s c u s s i o n and Comparison of Resul ts 

The 3 prob lems of parts A and B, Table I. check exactly with 
Hallman's r e s u l t s C ^ ) for laminar convection. 

Prob lem 3 was chosen as typical of the problems in part C. The 
universal ve loci ty and temperature profi les of Eckert and Drake(^^) were 
used to check the va lues of U and c in this problem. The equations needed 
for this compar i son are 

u+ = ^ , (U) . (44) 

(At*) = 2 Pr Re» ( .') , (45) 

and 

Y+ = ^ R e M l - r i ) . (46) 

These equations are eas i ly der ived from the definitions of the various di­
m e n s i o n l e s s quanti t ies . 

Figure 3 shows the comparison of u''̂  and -(At+) with the universal 
ve loci ty and tennperature prof i l e s . The values in problem 3 fall below the 
universal profile in the turbulent core and buffer zone, but coincide exact ly 
in the laminar sublayer . 

Upon invest igat ion of this d i screpancy , it was found that the value 
of Cyji/v used in the buffer zone and in part of the turbulent core was too 
high. The value C w / v = 0 in the laminar sublayer is quite good, however. 
The variat ion of c fj^/v with Y* is shown in Figure 4. 
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40 60 80 100 200 

Figure 3. Comparison of Problem 3 Results 
with Universal Velocity and Tem­
perature Profile 

Figure 4. Variation ° n ^ r ^ th Y"'". 

All of the problems in part C with a Prandtl number of 1 or 10 are 
plotted in Figure 5, which shows the variation of Nusselt number with 
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Reynolds number. The D i t tus -Boe l t er equation for pure forced-convec t ion 
turbulent heat transfer is a l s o shown, with dashed l ines indicating the range 
of exper imenta l resu l t s according to Giedt.C'^) In both Prandt l -number 
c o m p a r i s o n s , the resu l t s of the present analys i s lie above the curves of 
the Di t tus -Boe l t er equation. This d iscrepancy is due, again, to using too 
high a value of ejy^i/v in the buffer zone and p a r t of the t u rbu l en t c o r e . 

ncTNOios NuHsca R> • 

Figure 5. C o m p a r i s o n of R e s u l t s with D i t t u s - B o e l t e r 
Equa t ion and E x p e r i m e n t 

Figure 6 shows the effect of f ree convec t ion on tu rbu len t fo rced 
convect ion. 

HIVNOLDt NUH4CI* 

(Nu)Ra 
Figure 6. Variation of ^^ _̂ _ with Reynolds Number 

(Nu) Ra = 0 
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These curves show that, for a given Rayleigh number, the ratio (Nu)Ra/ 
(Nu)Ra = 0 increases as the Reynolds number is increased and as the 
Prandtl number is decreased. At a given Reynolds number and Prandtl 
number, a higher ratio is obtained with a higher Rayleigh number. 

Figures 7, 8 and 9 show results for the problems in turbulent flow, 
combined forced and free convection. 

,Nu VALUES 

I FOR flo'O 

- |—I M I Ml 1—I M I MH 

RB*=IO', Pr »I00 

fle'-IO'. Pr MO 

RB'- iO ' .Pr- l 

RAYLEIGH NUMBER . Ra-—> 

J 1 I I \<\\^ \ l / 

R«*-IO* ,Pr '100 

Re = IO*.Pf'10 

Ra -10 ' , Pr-lOO 

Ra 'MO' , Pr-IO 

Figure 7 

Variation of Nusselt 
Number with Rayleigh 

Number 

Rt • 0 
(LAMINAR) 
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Figure 8. Variation of Pressure Drop Param­
eter with Rayleigh Number 
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[ - (J)^ VALUES 

FOR Ha'O 

1 1 M I T 

-Re -IO",Pr=l 

Rf=iO*,Pr = l 

R^MO'.Pf = I 

RAYLEIGH NUMBER, Ro -

uUJ_ ± 

R..0 
(LAMINAR) 

Re'IO'.Pr=IO 

R*=IO'.Pr = lOO 

Re =10*. Pr-10 

Re*=IO* .Pr =100 

Rr- IO* , PrslO 

R8=I0* , Pr.lOO 

Figure 9, Variation of Mean Temperature Dif­
ference with Rayleigh Number 

The Nusselt number is plotted against Rayleigh number in Figure 7. 
The lowest curve is for laminar flow. The Nusselt numbers are increased 
by approximately an order of magnitude as Re* is increased from 0 to I 0̂  
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to lO^tolO". Increas ing the Prandtl number has a s m a l l e r effect on increas ing 
the N u s s e l t number than increas ing Re*. Increasing the Rayleigh number 
continually i n c r e a s e s the Nusse l t number in laminar flow. The resu l t s for 
turbulent flow do not show this behavior; increas ing the Rayleigh number 
s e e m s to have very l ittle effect on the Nusse l t , and, indeed some d e c r e a s e 
is noted in the Nusse l t number above a Rayleigh number of approximately 
400. 

It was noticed in the solution of these prob lems with the IBM 704 
digital computer that difficulty was exper ienced when the Rayleigh number 
was above 400. For ins tance , no solution was obtained for a problem in 
which Ra - 625 and Re* = 0. The i teration p r o c e s s s e e m e d to o sc i l l a t e . 
Sinnilar action was noted for prob lems where Ra = 4096, 10*, or lO' with 
any value of Re* or Pr ; or for prob lems where Ra = 256, 400, 625, or 800 
with any value of Re* and Pr = 1. Solutions were obtained for lower Ray­
leigh n u m b e r s , however , or when the Prandtl number is increased to 
10 or 100. 

An attempt was made to analyze what was happening within the 
IBM 704 during the running of these unsuccess fu l problems by examining 
the intermediate printout between s u c c e s s i v e i terat ions . It was found that 
the progrann was doing what was cal led for, but that the veloci ty profile 
o sc i l l a ted or d iverged in the i teration p r o c e s s . 

It is evident that further work is required to explain this anomaly. 
P o s s i b l y , another digital computer , such as the IBM 7090, can handle this 
problem better than the IBM 704. At any rate, the re su l t s for prob lems 
with Rayle igh numbers of 400 and above should be suspect . 

F igure 8 shows the p r e s s u r e - d r o p parameter C plotted against 
Rayleigh number. Again, the bottom curve is for laminar flow, and C in­
c r e a s e s by approximate ly an o r d e r of magnitude as Re* is increased from 
0 to lO' to 10* to 10*. In genera l , d e c r e a s i n g the Prandtl number has a 
s m a l l e r effect in increas ing C than increas ing Re*. Increas ing the Rayle igh 
number has a great effect on increas ing C for all values of Re* 

The d i m e n s i o n l e s s m i x e d - m e a n - t o - w a l l temperature dif ference 
if^jj is presented in F igure 9. The top curve is for laminar flow, and (frn 
is d e c r e a s e d by an order of magnitude, approximate ly , as Re* is i n c r e a s e d 
from 0 to lO' to 10* to lO'. Increas ing the Prandtl number has a l e s s e r 
effect on d e c r e a s i n g 0,^, than increas ing Re*. Final ly , increas ing the Ray­
le igh nunnber a lways d e c r e a s e s 0rn '" laminar flow, but s e e m s not to have 
much effect in turbulent flow. Again, the resu l t s for a Rayleigh number 
above 400 should be suspect . 

Representat ive ve loc i ty and temperature prof i les are shown in 
F i g u r e s 10 through 17. 
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The effect of Re* is shown in Figures 1 0 and 11 for a Prandt l 
number of 10 and a Rayleigh number of 256. As Re* increases from 0 to 
10' to 10^ the velocity in the center of the tube decreases and becomes 
more negative. The velocity in the center of the tube becomes less nega­
tive when Re* is increased from 10* to 10=, however. 

This action is due to the extra increase in e M / V and in a A {SM/V), 
which is equal to e H / « . ^^ ^^* ^^ 1"^"^^^^^. Since the Prandtl number is 
10 there is a large transport of heat between adjacent layers of fluid and 
the temperature difference profile is made quite flat. For a given Rayleigh 
number, the body force tending to create a negative velocity in the center 
is decreased. Thus the center velocity becomes less negative. 

Figures 12 and 13, for Pr = 1 and Ra = 81, show somewhat the same 
behavior as in the 2 previous figures, except that now the velocity in the 
center of the tube becomes more and more negative continuously as Re* 
is increased. Because the Prandtl number is unity, the t empera tu re -
difference profile is made not quite so flat as in the case for a Prandtl 
number of 10. The body force, therefore, is greater in the center of the 
tube, and the velocity consequently becomes more negative continuously 
as Re* is increased. 

Figures 14 and 15 show the effect of using different Prandtl number 
fluids for a Rayleigh number of 81 and Re* = 10=. As the Prandtl number 
is increased from 1 to 10 to IOO, the velocity and tempera ture profiles 
are made more flat. This behavior is consistent with the explanation 
given in the previous cases. 

The effect of varying Rayleigh number is shown in Figure 16 and 
17 for a Prandtl number of unity and Re* = 10'*. As the Rayleigh number 
is increased from 0 to 16 to 81 to 100, the velocity in the center of the 
tube decreases in a continuous manner, and eventually becomes negative 
for the highest 2 Rayleigh numbers. The shape of the t empera tu re -
difference curve also changes continuously to lower values in the center 
of the tube as the Rayleigh number is increased. The Rayleigh number 
is a measure of the extent of the free-convective effect, and the observed 
behavior of the velocity and temperature profiles as Ra is increased is 
therefore expected. 
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SUMMARY AND CONCLUSIONS 

The effect of the parameters Re*. Pr , and Ra on Nu, C, -0m' ̂ - and 0 
profiles is summarized in Table 2. 
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All cases of laminar heat transfer, pure forced convection or com­
bined forced and free convection, check exactly with accepted resul t s . There 
is a discrepancy between accepted results and the cases of pure forced-
convection turbulent heat t ransfer . It was therefore concluded that the val­
ues of eddy viscosity used were somewhat in e r ro r . Further investigation 
substantiated this conclusion, as shown in Figure 4. 

It is a well-known fact that higher-Prandtl-numbcr fluids will in­
crease the Nusselt number in pure forced-convection turbulent heat t r ans ­
fer. This same result is obtained, with lower pressure drops, in combined 
forced- and free-convection turbulent heat t ransfer . 

Recommendations 

The following recommendations are made in order to extend the re­
sults of this study and to make them more accurate: 

1. Isothermal wall conditions, negative Rayleigh numlicr.s, and 
volume heat sources should be considered. 
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2. A more complete investigation should be made of the fact that 
the IBM 704 cannot handle problems with a high Rayleigh number and low 
Prandtl number, in general. Problems in which Re* = I0^ also, cannot be 
solved satisfactorily. Possibly, the program for the digital computation 
could be rewritten to overcome these difficulties. 

3. A better equation for <LyJv should be obtained so that the uni­
versal velocity and temperature profiles may be more closely approached 
in pure forced-convection turbulent heat transfer problems. 

4. The relation used for a = e H A M ^̂  admittedly not very good, 
since it was developed for liquid metals , which have low Prandt l numbers . 
Other relations should be investigated, even those where a varies with 
radius, since a digital computer can handle this variation. 

5. Finally, experimental verification is required for the problems 
of combined forced and free turbulent convection in a vert ical tube. 
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Appendix A 

NOMENCLATURE 

Any cons i s tent se t of units may be used. A typical set for eng ineer ­
ing ca lcu lat ions is indicated. 

A axial t emperature gradient in fluid -r— , F / f t 

b d i s tance between two plane paral le l s u r f a c e s , ft 

( ^ ^ ^ W ^ ) D ^ « C 
C p r e s s u r e - d r o p p a r a m e t e r , — . d i m e n s i o n l e s s 

^ 3 2 u m / i 

Cp speci f ic heat of fluid at constant p r e s s u r e , B / l b ^ F 

D tube inside d iameter , ft 

f̂  negat ive of the X-component of the body force per unit m a s s . Ibf/lb^j^ 

g a c c e l e r a t i o n due to gravity , f t / h r ' 

gc d imens ional constant in Newton's Law, 4 .17x lO' f t - lbm/ lbf -hr 

Gr Grashof number, P m PwPg AD*/l6f i ' , d i m e n s i o n l e s s 

h heat transfer coeff ic ient . q j , / - e r n ' B / h r - f t ' - F 

J mechanica l equivalent of heat . 778 f t - lbf /B 

k thermal conductivity of fluid. B / h r - f t - F 

Nu N u s s e l t number, hD/k . d i m e n s i o n l e s s 

p stat ic fluid p r e s s u r e . Ibf/ft ' -abs 

Pr Prandtl number . Cp^/k = " A - d i m e n s i o n l e s s 

a" heat transfer rate per unit area at wall of tube, B / h r - f t 
^w 

r radial coordinate , ( D / 2 ) - y . ft 

R gas constant of a perfect g a s . f t - l b f / l b ^ - R 

Ra Rayle igh number, p ^ p ^ P g CpAD*/l6Hk, d i m e n s i o n l e s s 

Re Reynolds number . D UmA . d i m e n s i o n l e s s 

Re* frict ion Reynolds number . Du*/u , d i m e n s i o n l e s s 

t static fluid t emperature , °F 

At+ d i m e n s i o n l e s s t emperature di f ference , (t - iy()Pm'^p^*/'iw 

T absolute t emperature , 'R 

u fluid ve loc i ty paral le l to tube axis at radius r, ft/hr 

u* frict ion ve loc i ty , VT^SC/Pvi-^^/^^ 
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+ 
u 

y+ 
a 

dimensionless velocity u/u* 

U dimensionless velocity, u/ujj-i 

V specific volume, ft /ibj^ 

X distance measured along axis of tube upward from start of heated 

length, ft 

y coordinate measured radially from tube wall, T ^ - r, ft 

dimensionless distance from wall, y u*/v 

thermal diffusivity, k/pCp, ftYhr ^ 

/3 thermal coefficient of volume expansion, — \̂  5 t / p ' ft^-F 

e eddy diffusivity, it^/hr 

T) dimensionless radius, 2r/D 

e radial temperature difference, t-t^, F 

(Li dynamic viscosity of fluid, Ibj^/ft-hr 

V kinematic viscosity of fluid,fi/p , ft /hr 

p mass density of fluid, Ibj^/ft 

a ratio of eddy diffusivities, EH/^M' dimensionless 

T fluid shearing stress, Ibf/ft 

0 dimensionless temperature difference, 2 kS/pj^ Uĵ  Cp AD 

f angular coordinate in cylindrical coordinate system, radians 

Subscripts 

av average 

H heat 

m mixed-mean (also called mixing cup or bulk) 

M momentum 

o reference axial position along tube 

W at wall of tube 

X based on the distance X (rather than diameter D) 

Superscripts 

differentiation once with respect to the independent variable, T) 

per unit area 



Appendix B 

THE EDDY DIFFUSIVITY OF MOMENTUM 

The empir i ca l e x p r e s s i o n which will be used for the ratio of the 
eddy diii'visivitv of inoinentum • t^^ to kinematic v i s cos i ty V is given as 
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.\l — ^ = 0.0OO7 Re* (0.5 t r | ' )( l-7)') ( B - l a ) 

for 

Or (• • i^-) 

for 

'̂ M 
V 

(• - 1 ^ ) -̂  

( B - l b ) 

which is equation (28a. b) of the ANALYSIS. This equation c o m e s from 
Reichardt's work.l"'^''**') al lowance being made for a laminar sublayer 
O s y + s 5. which corresponds to [l - ( 1 0 / R e * ) ] £ r) s I. It is plotted in F ig ­
ure B- l together with the exper imental resul ts of Nikuradse ,(^5) 
Nunner.(3°) Laufer.(26) and Reichardt.('*5 •* )̂ Some scatter is observed 
in these r e s u l t s , but Reichardt's equation corre la te s the data fairly wel l 
cons ider ing that the resu l t s are based upon an experimental ly determined 
velocity profi le . The ve loc i ty -prof i l e data of 4 invest igators may agree 
very we l l , but the s lopes of the 4 curves may have large d i s a g r e e m e n t s , 
as noted by Lykoudis in a d i s c u s s i o n of S le icher ' s paper.(52) 

1 0 

hf<"i?^°' 
n^ 
• i 

I 
• 

, - . — ' 
^rT' > '̂  

-c-tft-) 

Figure B- l 

Variation of Eddy Viscos i ty 
in a Tube 

O REOONOTS 04TAM.4*! 
O WRUIUOKS OATAOD.raOi KMjafTIM(«M 

• L«U««» D .T . I l . l ) "™ ' " " " " " 
COMVL*nO*l UTILIIIO 

14/TCII RElCHAHOn 

There is further ev idence , however, that tho curve given by the 
equation ( B - l ) is of the c o r r e c t qualitative shape. Corcoran, Opfell, and 
SageC) say that "the eddy v i s cos i ty is zero at the wal l , but i n c r e a s e s 
rapidly to a maximum roughly midway between the wall and the center of 
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the conduit. This behavior is character is t ic of all turbulent flows with 
an incompressible fluid." Reichardt 's empir ical equation follows this 
shape exactly. In addition, the general shape of the curves of Schlinger, 
Berry, Mason, and Sage,(49) of Page, Schlinger, Breaux, and Sage,{^'^> 
and of Page, Corcoran, Schlinger, and Sage(40) agrees with that of equa­
tion (B-l) . Their maximum value of eu is about 30% higher than the 
maximum value given by this equation. 

V 
Sherwood and Woertz(50) indicate that the eddy diffusivity is 

nearly constant in the central section. Their maximum value of e M / 
is about 50% higher than the maximum value given by equation (B- l ) . 
It should be noticed that the curve of this equation is fairly constant 
(within ± 10%) over the middle 80% of the tube. This fact also agrees 
with Clauser 's statement(lO) that "the very simple assumption of con­
stant eddy viscosity accurately predicts the behavior of the outer 80% 
to 90% of turbulent (boundary) layers ." The experimental work of 
Wattendorf,(58) who determined turbulent velocity profiles in fully 
developed Couette flow between concentric cylinders, again indicates 
that the eddy viscosity is fairly constant in the middle 80% of the space 
between the walls. 

The question ar ises as to the applicability of equation (B-l) to 
combined forced and free turbulent convection. All of the experiments 
cited were presumably carr ied out in the region of predominantly 
forced convection. Unfortunately, experiments to determine G M / ^ ^^ 
a function of radius in free convection or combined forced and free con­
vection could not be found. Yet, except where the flow becomes unstable 
due to a high negative Rayleigh number [Bosworth(4)], the fact that a con­
dition of turbulent flow exists is the controlling factor. 

Holman and Boggs,(23) for instance, in their natural-c i rculat ion 
heat transfer loop, use the usual friction factor to determine the shear 
friction forces in setting up a dynamic force balance. Murgatroyd(34) 
used the results of the group at the California Institute of Technol-
ogyW'39,40,49; fQj. eddy diffusivity in forced-convection flow, although 
he was concerned with a problem involving free convection only. He 
obtained fully developed velocity and temperature profiles for turbulent 
flow in a long, round vertical or paral le l -s ide cell containing a heat-
generating fluid and having isothermal walls. 

Townsendv-'^) considers turbulent flow in a tube to be composed 
of 2 regions, one near the solid boundary and the other in the central 
region. The region adjacent to the wall is one "within which the total 
shear s t ress is nearly constant and whose motion is determined almost 
entirely by the shear s t ress and the fluid viscosity." The motion in the 



45 

central region is de termined by the fr ict ion veloci ty u* and the tube 
radius . There fore , s ince the turbulent motion throughout the tube depends 
only on the fr ict ion ve loc i ty , fluid v i s c o s i t y , and tube radius , it is a s s u m e d 
that there is no dif ference in the value of <" M / ^ '" pure forced convect ion 
than in e i ther pure free convect ion or combined forced and free convec ­
tion Exper imenta l work will be required to test this assumption. 

If la ter , and better , exper i inenta l va lues of e M / I ^ for combined 
forced and free convect ion become avai lable , these va lues can eas i ly be 
incorporated into the method of solution outlined in the ANALYSIS. 
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Appendix C 

EQUATION OF STATE 

If we expand p in a Taylor ser ies in t about the reference t em-
e t-̂ r. we obtain:^-''': 

But 

fi{ii)----Ati • "=-̂ ' 
Therefore, 

P = P w - P p w ( t - t w ) + T ^ | . (t-tw)'+--- (c-3) 
t 

p = P w ( i - | 3 e ) . (c-4) 

where 6 has been previously defined as t - tw^nd only the f irs t 2 t e rms of 
the Taylor ser ies have been used. This is equation (5) in the ANALYSIS, 
which may also be obtained by using finite differences for the differentials 
in equation (C-2) above. For a gas which obeys the perfect gas law, 
pv = RT, the equation of state may be written as 

P = p. ( l - 4 ) , (C-5) 

where T is the absolute temperature . 
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Appendix D 

THE LONGITUDINAL TEMPERATURE GRADIENT 

The temperature of the fluid is a function of x and r in the problem 
cons idered . But. for fully deve loped velocity and temperature prof i les , 
the temperature dif ference t? is a function of r only: 

?(r) 5 t ( x , r ) - t (^4)- t - tw ( D - l ) 

Now, 

ae(r) ^ jj ̂  at dtw 
dx d x 

(D-2) 

"** ( - M 
dx ' \d)c Jj. 

(D-3) 

Therefore , the temperature gradient in the d i r e c t i o n of flow is independent 

of radial locat ion. 

The heat balance for the s t e a d y - s t a t e condit ion in our p r o b l e m 
s tates that the rate at which heat is added at the wal l is equal to the r a t e 
at which heat is taken away by the fluid. In symbol ic fo rm (see F ig ­
ure D - I ) , 

q;;, (TTDdx) 
• D / 2 

u 2:: r dr c dx 
P OK 

(D-4) 

from which 

dx • 

qw D 

r D / 2 
Z c pp rn / 

J 0 

u r dr 

(D-5) 

The mean veloci ty is defined as fo l lows: 

^D/2 fD/Z r D / 2 
/ u (2Tir) d r 8 I u r d r 

7TDV4 
(D-6) 
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• X,-

F i g u r e D- 1 

Heat Ba lance for an E l e m e n t of F lu id 

Equat ion (D-5) can t h e r e f o r e be w r i t t e n as 

5t _ 4 q;^ (j3_.^j 

Sx CpPj^I^Uj^ 

Since al l quan t i t i e s on the r i g h t - h a n d s ide of equa t ion (D-7) a r e c o n s t a n t 

in our p r o b l e m . 

St 
Sx A (a cons tan t ) (D-8) 
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Appendix K 

REYNOLDS NUMBER 

A dynamic force balance may be set up with the aid of Figure E - 1 . 
Equating forces in the downward d irect ion to those in the upward direct ion 
(• TW for upward flow, - r w ô"" downward flow) 

t r w ( - D d x ) . ( p . ^ d x ) ( ^ D^) . . . ^ ( j D ' ' ^ j ^ ^ P ( T ° ' ) 

(E-1) 

from which 

i £ - d £ . - I I W . _B. (E-2) 
dit " dx " * D ••' •" gc 

Since 

J2 "m >̂  

from equation (13) 

(E-3) 

-D' gc [- ^ ^ (•:w-.>:m) ^ J 
(E-4) 

32 ,. Un, 

Using 

Tw = u*2 ,CTv/gc •• .-W-.-m = PW^^m = ^m = Pm "m ^pAD^ -m/^^ 

and the definitions of Re, Re*, and Ra. we obtain 

t (Re*) ' Ra - m (E-5) 
C = 8 Re 

t (Re*) ' (E-6) 

•*' " 8C + 2Ra 4 m 

i/hich is equation (34) in the ANALYSIS. 
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ftt Figure E-1 

Forced Acting on an Element of Fluid 

It should be noted that the Rayleigh number Ra can be positive or 
negative. Only the quantities /3 and A, in the definition of Ra, can change 
sign. The quantity 13 is usually positive for most fluids of engineering 
interest. Water, for instance, has a negative value of /3 only between 32°F 
and 39°F. For wall heat addition to the fluid, A is positive for upward flow 
and negative for downward flow. 




