
ANL-6542 ANL-6542

Argonne Bational Xaboratorj]
AN INTRODUCTION TO 704 FORTRAN

by

G. S. Pawlicki

LEGAL HOTICE

This report was prepared as an account of Government sponsored
work. neither the United States, nor the Commission, nor any
person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness
of the information contained m this report, or that the use
of any information, apparatus, method, or process disclosed
m this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus,
method, or process disclosed in this report.

As used m the above, "person acting on behalf of the Commission"
includes any employee or contractor of the Commission, or employee
of such contractor, to the extent that such employee or contractor
of the Commission, or employee of such contractor prepares, dis­
seminates, or provides access to, any information pursuant to his
employment or contract with the Commission, or his employment with
such contractor.

A N L - 6 5 4 2
Mathennatics and

Computers
(TID-4500, I 7th Ed.)
AEC R e s e a r c h and

Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Il l inois

AN INTRODUCTION TO 704 FORTRAN

by

G. S. Pawlicki

International Institute of Nuclear Science and Engineering

March 1962

Operated by The Univers i ty of Chicago
under

Contract W - 51 - 1 0 9 - e n g - 3 8

AN INTRODUCTION TO 704 FORTRAN

by

G. S. Pawlicki

ABSTRACT

It is hoped that this paper will permit the reader to
begin to program computations on the 704 computer without
referring to the Fortran Manual. Only a fraction of the pos­
sibilities of Fortran are described, but at all t imes an effort
has been made to indicate where only a partial expose' has
been made. Many specific examples are included to i l lus­
t rate the word descriptions of Fortran programming. No
information is supplied concerning operation of the 704 con­
trol console and accessor ies . These functions are performed
by personnel of the Applied Mathematics Division. The main
body of the paper is devoted to Fortran programming, and an
appendix, which gives specific information concerning pro­
cedures of the Applied Mathematics Division relative to the
use of the 704, is included.

FORTRAN is an abbreviation of the name "Formula Trans la tor ."
It is called a formula t ranslator , because formulas written almost like
ordinary algebra a re read from a hand-punched set of IBM cards by the
704 acting as a t ransla tor , and a set of cards is punched which serve to
operate the 704 as a computer. The set of hand-punched cards is called the
"Source Deck." The source deck is translated by the computer, which punches
a translated deck of cards called the "Object Deck." The process of p r e ­
paring an object deck from the source deck is called "Compiling." At
"Object Time," that i s , when a problem is being solved, the object deck is
placed in the card reader , possibly followed by hand-punched "Data Cards"
which supply numerical data required by the program. Data can also be
read fronn magnetic tape, but this will not be considered.

The IBM cards used in the source deck and for data have a row of
printed numbers from 1 to 80 which identify the 80 columns into which r e c ­
tangular holes can be punched. The holes, which are punched in a single
column, a re coded to represent a unique character . The charac te rs are
the symbols - + , () * . / as well as numerals and capital l e t t e r s . At the
top of each column is a space in which the card-punching machine also prints
the character corresponding to what has been punched. Columns 73 to 80 in­
clusive arc not read by the computer and can therefore be punched with iden­
tification such as numerical sequence of source cards and identification of
cards as data and their sequence.

To d e s c r i b e the use of columns 1 through 72, probably it is best f irst
to d i s c u s s the form of numbers which can be entered as data. Numbers can
be entered as f loating-point dec imal numbers in normal or exponential r e p ­
resentat ion , i n t e g e r s , and octal numbers . Only dec imal and integer r e p r e s e n ­
tation will now be cons idered . The normal decimal representat ion of a
number will henceforth be re ferred to as "Floating Point." An integer r e p ­
resented without a dec imal point will be cal led "Fixed Point." Any number
is represented by punched holes in a certain s e r i e s of columns on the IBM
c a r d s . The number of columns ass igned to a speci f ic number is cal led
the F ie ld Width.

The 72 co lumns avai lable for numerica l input of data can be divided
into any d e s i r e d number of fields of any width des ired . The source deck
must contain a FORMAT statement which instructs the computer in which
way it should interpret the data card. The speci f icat ion in the FORMAT
statement for the f loating-point format is

n F w • d

where n is the number of identical f ields to be read (the f irst field begins
with column 1 '.); F is the code letter for f loating-point representat ion; w is
the field width; and d is the number of p laces to the right of the dec imal point.

The speci f icat ion of a f ixed-point number in a FORMAT statement is
of the form

n I w

where n and w are as previous ly defined and I is the code letter for f ixed-
point representat ion . In punching a data card with a number, the s ign p r e ­
cedes the number. A floating-point number can be punched anywhere within
the field. With a f ixed-point number the number must be at the right s ide of
the f ield; o t h e r w i s e , the blank spaces at the right end of the field, read by
the computer as z e r o s , would alter the number by powers of ten. In both
representa t ions , if the numerica l s ign is m i s s i n g , the computer a s s u m e s
that the number is pos i t ive .

Only s i n g l e - l i n e format for numerica l quantit ies will be descr ibed .
The s o u r c e card for a FORMAT statement might be punched as fo l lows:

Column I Blank

Columns 2 - 5 A Statement Number located anywhere
in this f ield, an integral number with­
out s ign.

Column 6 Blank

Column 7 onward to 72 might be punched as fo l lows:

FORMAT (3 F 6 .2 , F 5.4, 12, 314).

This FORM.'VT statement could be used to specify reading of a data
card . The data card would have 3 fields of 6 columns, a field of 5 columns,
a field of 2 columns, and 3 fields of 4 columns. The spelling, commas, and
parentheses a re essential parts of the statement and in all other types of
statements to be described.

^ Il a Fortran statement requires more space than the columns from
7 to 72, a statement can be continued on a second card by punching column 6.
Up to 9 continuation cards can be used. With the exception of zero, what is
punched in column b is immaterial and can even be the same on all continu­
ation cards in the entire program, since the computer merely reads the
cards in the order in which they are stacked in the source deck. Only one
statement can be punched on a single card. The statement itself need not
s tar t in column 7, and any number of blanks can be inserted anywhere in a
statement. The statement number is an integral number without a sign and
can be located anywhere in the columns from 2 to 5. Statement numbers
uniquely identify statements and need not be in any numerical sequence.

Numerical quantities in FORTRAN can be numerals or identified
with a letter name. A floating-point constant has a decimal point whereas
a fixed-point constant must not. The l i teral expression for a number can
consist of a se r ies of not more than 6 charac te r s , which can be both le t ters
and numerals with certain res t r ic t ions . The first character must be a
let ter . A fixed-point number name must begin with let ters I, J, K, L, M, or
N, and floating-point number names must not begin with these le t te r s . A
good rule is to avoid the use of F as the last character to prevent possible
confusion with names of functions which are discussed on page 6.

Both floating- and fixed-point variables can be subscripted with up
to 3 subscr ip ts . The subscripts must necessar i ly be fixed-point numbers
without sign. Subscripts cannot take on zero or negative values. The fol­
lowing examples completely cover limitations of naming and ari thmetic
operations for subscr ipts :

algebraic

^J,k,l

"a

ci+2,m

' j .m

Pzi-i

FORTRAN

A(J,K,L)

X(IA)

C (I + 2, M)

I(J,M)

P(2*I-1)

As previously mentioned, an equation can be punched in A form which
looks very much like ordinary a lgebra . The algebraic symbols used are +. -,
*. **. / . (). and =• These symbols represent addition, subtraction, mult i ­
plication, exponentiation, division, parentheses, and equality. As an example,
the algebraic '-xv-'-ision

y = (ax' + bx + c) '

could be writ ten as a FORTRAN Ari thmet ic Statement as fol lows

Y = (A»X»*2 + B*X + C)»*3

The mode of all t e r m s (i . e . , fixed or floating point) on the right s ide of the
equal s ign must be the s a m e ! An except ion is that an exponent of a f loating­
point number can and should be fixed point if it is an integral number. The
mode of the left s ide need not be the same as the right s ide . When the right-
s ide mode is different from the l e f t - s ide mode, the s tatement impl ies a con­
v e r s i o n of the r ight - s ide quantity into the mode speci f ied by the left s ide .
In the e x a m p l e above, if the left side were I, 1 would be equal to Y truncated,
to an integer .

In writ ing a FORTRAN ar i thmet ic s tatement , the var iab les , constants ,
and equal symbol can frequently be thought to have the same meaning they
have in a lgebra . Actual ly , the var iab les in FORTRAN are spec i f icat ions of
m e m o r y locat ions rather than the numbers t h e m s e l v e s . The quantity c o m ­
puted by using the contents of m e m o r y locat ions speci f ied on the right of the
equal s ign are to be s tored in the location spec i f ied on the left of the equal
s ign. Thus the equal sign real ly has the meaning "store ." This is best
i l lustrated with the s tatement

A r A -f B

Algebra ica l ly this only holds true for B = 0; however, in FORTRAN the re ­
sults of the summing of the contents of m e m o r y locat ions A and B are to be
s tored in m e m o r y locat ion A.

The use of parenthese s in FORTRAN is very much like their use in
a lgebra; that i s , after encountering a left parenthes i s , the computer will p e r ­
form the indicated a lgebraic operat ions up to the right parenthes i s , independ­
ently of any further a lgebraic operat ions outs ide of the p a r e n t h e s e s . Thus,
in the prev ious s tatement for Y, the quantity in the parentheses is computed
and then ra i sed to the third power.

In the absence of parenthese s or within parentheses the order in
which the a lgebra ic operat ions are performed is exponentiation, mul t ip l i ca ­
tion or d iv i s ion , and finally addition or subtract ion. Thus BB = A*B**C + X
a lgebra ica l ly means the s ing le variable cal led BB equals (a • b<:) + x.

P a r e n t h e s e s are frequently n e c e s s a r y to write an ar i thmet ic s t a t e ­
ment proper ly , and when in doubt it is probably wise to use them even if
they are not abso lute ly n e c e s s a r y . To i l lus trate some c a s e s in which paren­
t h e s e s are n e c e s s a r y , cons ider the following a lgebraic e x p r e s s i o n and their
FORTRAN representat ion:

a(»» + c) A • • (B + C)

a(b • c) A • • (B • C)

(a • b)*^ (A * B) *• C

An expression like

a^ • c A**B*C

could have been written with extraneous parentheses as (A**B)*C. When­
ever two of the charac ters +, -, / , *, *•, appear consecutively, it is neces­
sary to separate them with parentheses. Consider the following relationship
which would not be ambiguous in algebra:

y = x . -2 . - + 4.6 ;

this would have to be written in FORTRAN as

Y = X* (-2 .) - (+4.6)

An example of an expression containing a subscripted variable
might be

y = â + b j " Y = A(I)»*2 + B(J)**M

where the parentheses a r i se because of the FORTRAN subscripting notation.

FORTRAN has 5 types of functions, of which only 3 will be considered.
These 3 are open (or built in) functions, closed (or l ibrary) functions, and
ari thmetic statement functions. These 3 functions have the same rules for
their naming and for referring to them (calling).

The names of these 3 types of functions consist of 4 to 7 alphabetic
or numeric charac ters of which the first must be alphabetic and the last is
F . A function can have one or more arguments, but the function is single-
valued. The mode of the arguments may be fixed or floating, and the mode
of the function value can be either fixed or floating. If the value of the
function is fixed point, the function name must begin with X. It is desirable
to name a function with a sequence of le t ters which suggest its meaning.

To i l lustrate the naming of functions, we can consider the algebraic
statement for y previously used:

y = (ax' + bx + c) '

and define an Arithmetic Statement Function. The statement to be punched
could be

YFUNF (X) = (A*X»*2 + B»X + C)*»3

The name YFUNF is fol lowed by i ts argument X in p a r e n t h e s e s . YFUNF has
a value which is floating point (no X at start of name) . Its argument on the
left s ide c l e a r l y shows that the argument is floating point and, we note that
to the right s ide of the equal s ign the s tatement is c o r r e c t l y written in the
s a m e mode . As defined above , YFUNF has the argument X and has A, B, and
C a s p a r a m e t e r s . If the left s ide of the statement had been written
YFUNF{X,A,B,C) , the function would have 4 arguments .

To have the argument floating and the function value fixed point, the
s tatement would be

XYFUNF (X) = (A*X**2 + B*X + C)**3

If we wished to have a f ixed-point argument and floating-point function,
we might write

YFUN2F (I) = (JA*I*»2 + JB*I + JC)**3

Note that the absence of X at the beginning of the name means that the value
of the function is f loat ingpoint . The argument in parentheses i s fixed point,
and to the right of the equal s ign the ar i thmet ic manipulations have the f ixed-
point var iable 1 and the 3 f ixed-point coeff ic ient JA, JB, and JC to give a
f i xed-po in t -mode ar i thmet ic e x p r e s s i o n cons i s tent with the mode of the
argument of the function in parentheses on the left side of the = s ign .

The fourth poss ib i l i ty i s to have fixed-point argument and fixed-point
value for the function:

XYFUN2F(I) = (JA»I**2 + JB*I + JC'I)**3

In FORTRAN as in ordinary a lgebra we can put in any l e t t er s or
numbers for the argunnent of a function, and so if the 4 foregoing functions
are defined in a program, they may later be ca l led by ar i thmet ic s ta tements
a s fo l lows:

ALPHA = 2.5 + YFUNF (7.2)

BETA = 6.3 + YFUNF (Y (K))

GAMMA = 5.75 + YFUN2F(J)

DELTA ^ 20.5 + YFUN2F(31)

lOTAl a 20 + XYFUNF(2 .6)

IOTA2 = 25 + XYFUNF (7.)

LAMDAl = 31 + XYFUN2F(IT)

LAMDA2 = 436 + XYFUN2F(39)

The built-in and l ibrary functions are defined within the 704 and. just as the
foregoing functions were utilized in ari thmetic statements, so l ibrary functions
can be used by appropriately indicating the function name and its arguments .
Seven l ibrary functions with floating-point values and arguments are

LOGF

SINF

COSF

EXPF

SQRTF

ATANF

TANHF

natural log of the magnitude of the argument

sine (angle in radians)

cosine (angle in radians)

exponential function

Plus square root of the magnitude of the argument

-7T/2 < arctangent in radians •; 7r/2

hyperbolic tangent

Table I, taken from the FORTRAN manual, l ists the built-in functions in the
704 FORTRAN, and their use is probably self-explanatory.

Type of Funclion

Abaolule value

Truncation

Remaindering
(s ee note below)

Choosing
largea i value

Chooaing
• nnalleai value

Floai

F I X

Trant fer
of sign

Poattive
di f ference

Definition

| A r | |

Sign of Arg
t i m e s larges t
integer s | A r g |

Argi (mod
Arg ,)

Max (Arg | ,
Ar«j1

Min (Arg | ,
A r g ,)

f l oa t ing M
fined number

Same « •
XINTF

Sign of Argi
t i m e t 1 Argi l

Arg, . -Min
(Arg, , Arg,)

Number
of Arge

1

1

2

1 2

E 2

1

1

2

Z

Name

KiSF

XAB:;F

imr
jaifTF

MODF

XMDDF

MAJtJF

MAXIF

nuuioF
XMAXIF

HIKIF

niriF
XWIIOF

noiiiF

FLO«IF

XFIXF

SIONF

ICIORF

DDIF

XDIMF

Modi

A r g u m e n t

F l o a t i n g

F i x e d

F l o a t i n g

F l o a t i n g

F l o a t i n g

F i x e d

F i x e d

F l o a t i n g

F i x e d

F l o a t i n g

F i x e d

F l o a t i n g

F i x e d

F l o a t i n g

F i x e d

F l o a t i n g

F l o a t i n g

F i x e d

F l o a t i n g

F i x e d

e o f

F u n c t i o n

F l o a t i n g

F i x e d

F l o a t i n g

F i x e d

F l o a t i n g

F i x e d

F l o a t i n g

F l o a t i n g

F i x e d

F i x e d

F l o a t i n g

F l o a t i n g

F i x e d

F i x e d

F l o a t i n g

F i x e d

F l o a t i n g

F i x e d

F l o a t i n g

F i x e d

NCTTE: The function MODF (Arg, , Arg,) la defined aa Arg, -
(A r g | / A r g , | Arg , . where | x | ' Integral part of x

Reproduced by p e r m l a i l o n from IBM Reference Manual - 704 FORTRAN
Programming S y i t e m . (^ 19J8, I9»9, 1961 by InternaUonal B u a l n e i i Ma-
chiaea Corp.

In s u m m a r y with regard to the use of the 3 c l a s s e s of functions d e -
s c r i b e d , the part of a s tatement which c a l l s the function c o n s i s t s of the function
name fol lowed by a ^ist^ of the arguments separated by c o m m a s and in paren­
t h e s e s , as for ins tance ,

SOMEF (X, Y, Z(I))

Whenever a var iable is subscr ipted , it is n e c e s s a r y to a s s i g n a suf­
ficient number of m e m o r y locat ions for the array . The a s s i g n m e n t of m e m o r y
locat ions i s done with a DIMENSION s ta tement .

For ins tance , if in a problem we have the subscr ipted var iab le s A(l) ,
B(I.J), and C(1,J,K). which would be I - , 2 - , and 3 -d imens iona l a r r a y s , r e ­
s p e c t i v e l y , where I takes on va lues from 1 to 5, J va lues from 1 to 4, and K
va lues from I to 3, then 5 m e m o r y locat ions are required for A(l) , 20 l o c a ­
t ions for B(I,J). and 60 locat ions for C(I,J,K). The DIMENSION statement
for this spec i f i c example would be

DIMENSION A(5), B(5,4) , C(5,4,3)

In the s o u r c e deck, the DIMENSION statement must appear before
the f irst s tatement which r e f e r s to the subscr ipted var iab le .

A s i m p l e problem will now i l lustrate the use of the s ta tements which
have been d e s c r i b e d and to introduce a few other s t a t e m e n t s . The problem
will be to have the program read 5 data c a r d s , each of which has a s ingle
value of an angle in radians , and to have the computer evaluate the s ine ,
c o s i n e , and tangent of these a n g l e s , and form a four-co lumn tabulation c o n ­
s i s t ing of the angle , i ts s ine , c o s i n e , and tangent.

Columns 2 to 5 Columns 7 to 72

1 DIMENSION A(5)

2 FORMAT (F10.5)

3 FORMAT (4F10.5)

4 READ 2, (A(I), I = 1,5,1)

5 DO 9 I = 1,5,1

6 SI = SINF (A(I))

7 CO = COSF (A(I))

8 TA = SI /CO

9 PRINT 3, A(l) ,SI,CO,TA

10 STOP

" END (0 ,1 ,0 ,0 ,1)

10

The s ta tements have al l been numbered for e a s e of descr ipt ion ,
though only s ta tements 2, 3, and 9 require s ta tement numbers for execut ion
of this program Statement I s a y s that a "subscripted var iab le A, i . e . ,
-•Vngle. wil l require 5 m e m o r y loca t ions ." Statement 2 s a y s ; "a s ingle
f loating-point number occupying a field of width 10 with 5 p laces to the
right of the d e c i m a l point." This s tatement wil l be used by s tatement 4 to
instruct the computer how to read data c a r d s . Statement 3 s a y s , "4 f loating­
point numbers , each occupying a field of width 10 with 5 p laces to the right
of the d e c i m a l point." This s tatement is used by s tatement 9 to instruct
the computer how to type the value of angle , s ine , cos ine , and tangent.
Statement 4 has not been prev ious ly explained; it can be read "Read data
cards according to the spec i f i cat ion of s ta tement 2 (i . e . , FORMAT statement);
what is being read def ines the value of subscr ipted var iable A(l) where the
index I begins with 1, and runs to 5 in s teps of 1." This read statement ,
at object t i m e , wil l cause 5 data cards to be read because of the way the
index I and FORMAT were spec i f i ed . The numbers read a re s tored in the
computer m e m o r y .

Statement 5 has not prev ious ly been explained. It can be read "do
the instruct ions spec i f ied by the s ta tements following up to and including
s ta tement 9, and then repeat this s e r i e s of instruct ions as governed by the
index I which is to take on the va lues I to 5 in unit s t e p s . " Thus in our
c a s e the DO statement s p e c i f i e s that s u t e m e n t s 6 to 9 are to be executed
5 t i m e s ; each t ime it repeats the index I is increased by unity. We can say
the DO statement has defined a loop which is to be c i r c l e d 5 t i m e s . The
last number (l) which defines how 1 is incremented need not appear in s ta te ­
ments 5 and 4 because its a b s e n c e impl i e s that it is unity. Within the DO
loop the index number I is ava i lable for use in f ixed-point ar i thmet ic e x ­
p r e s s i o n s . After the DO loop is sat i s f ied , the index number I is no longer
defined.

Statements 6 and 7 are s i m p l e ar i thmet ic e x p r e s s i o n s which define
f loating-point v a r i a b l e s in t e r m s of the l ibrary functions SINF and COSF.
Note that in naming the var iab le s SI and CO, it is forbidden to name them
SIN or COS, s ince a var iab le must never have a name which is that of a
defined function without the t ermina l F.

Statement 8 is an Ari thmet ic Statement that TA the tangent is the
s ine divided by the c o s i n e .

Statement 9 has not been prev ious ly explained; it can be read "Print
on the output printer (typewri ter) according to the spec i f i cat ions of FORMAT
s ta tement 3, the 4 quantit ies A(l), SI, CO, and TA."

If It is de s i rab le to print out the 5A(I) va lues before eiilcriiig the
DOIoop, a PRINT Statement could bf placed between s ta tements 4 and 5:

PRINT Z, (A(l), 1 .. 1,5)

11

This would print the 5 values of A(I) on 5 successive l ines. Note that the
PRINT statement above and the READ statement 4 have the nature of a DO
loop. Note that the list of variables in PRINT and READ statements requires
parentheses only if the statements define an index and require looping.

Statement 10 will be executed after the DO loop is satisfied,
effect at object time is to stop the computer.

Its

The END Sutement is the physically last card in the source deck.
It essentially separates independent programs whose source decks are put
into the card reader at the same time during compiling. At the Argonne
National Laboratory, the numbers 01001 are the normal END statement spec­
ifications. Note that the computer performs the program in the sequence of
the source deck cards except for the change caused by statements such as DO.

FORTRAN has a number of different conditional branching statements,
of which onlv one will be considered. The statement

IF (A) 5,20,30

can be read "If the variable or expression A is negative, skip in the program
to statement 5; if it is zero, skip to statement 20; and if it is positive, skip to
statement 30." Care iriust be exercised in testing floating-point expressions
for zero because of truncation and round-off e r r o r s which are normally in­
troduced into a calculation. Fixed-point ari thmetic, on the other hand, is
exact, and the skip on zero presents no difficulties.

The unconditional branch statement is GO TO.

The following problem will serve to il lustrate the use of IF and GO
TO statements . The problem is to factor 5 quadratic equations by means of
the quadratic formula. The roots of the equations can be either real or com­
plex. The block diagram of the program is as follows.

1 S« lAM IM Oulfwl fwa^l. DMWIMT |

1 "NW" h
' 1 '

\rmtm(mtimttt$ |

1 *>«> 1
1

1

hHCMI
ai i i i i tci

1

1 "O r i

t^ <IC
1

, ' ; ,
> _) t tMtM iHt

1
CtavukSiit taab |

1 1
•KiNIMl 1

1

1 0010 1

inwn oo Mt It UlllfMt
llOf

1

In. 1

DIMENSION A(5). B(5). C(5)

5 FORMAT (3 F 10.5)

6 FORMAT (4 F 10.5)

READ 5, (A(I), B(I), C(I), I = 1,5)

DO 9 1 = 1 , 5

D = B(I)«*2 - 4.*A(I)»C(I)

IF(D)10,4,4

•0 Rl = -B(I) / (2 .*A(I))

R2 = Rl

All = SQRTF (D) / (2 . * A (I))

AI2 = -Al l

CO TO 9

* Rl = (-B(I) + SQRTF(D)) / (2 .*A(I))

R2 = (-B(I) - SQRTF(D"))/{2-*A(l))

All = 0.

AI2 = 0.

9 WRITE OUTPUT T A P E 2, 6, Rl , All , R2, AI2

END FILE 2

STOP

END (0,1 ,0 ,0 ,1)

In the foregoing program, the IF statement t e s t s if the d iscr iminant
b - 4ac is negat ive , z e r o , or pos i t ive . If it i s negat ive , the program beg in ­
ning with s tatement 10 i s fol lowed, s ince the roots are complex . After the
complex roots are found, the GO TO statement te l l s the computer to execute
s tatement #9, which r e c o r d s the roots on magnet ic tapes , and then the p r o ­
g r a m cont inues until the DO loop is sa t i s f i ed .

If the d i scr iminant is z e r o or pos i t ive , the roots are real , and the IF
s tatement s a y s that the program for finding the real roots begins with s t a t e ­
ment #4 . If the d i scr iminant was z e r o or pos i t ive , s tatement 9 fol lows i m ­
media te ly after the roots have been de termined , and no GO TO statement is
n e c e s s a r y to have the next s tep in the program be the recording of the roots .

The output s ta tement 9 has not prev ious ly been explained. It can be
read: "Write on output tape number 2, according to FORMAT st.Ttcmcnt 6,
the numbers R l , A l l , R2, AI2." The rules for l ist ing the output quantities
a r e the s a m e as for PRINT s t a t e m e n t s . Each tape unit has a ten-pos i t ion
switch which identif ies the tape number, but at Argonne-, Lijie number I is

not to be used . Since magnet ic tape recording is much faster than the "On
i>ne" printing (on the Printer d irect ly a s s o c i a t e d with the 704), the t ime
c h a r g e s on the 704 are reduced. The recorded output tape is later read and
printed by an "Off l ine" printer for which there is no additional charge at
the Argonne computer c e n t e r .

The END FILE statement marks the output tape number 2 after all
the output has been recorded . The END FILE mark on the tape is used to
stop the off - l ine pr inter . At the Argonne computer , the convention i s not
to include a REWIND s tatement for the output tape, so that the computer
operator can record the output from s e v e r a l prob lems on the s a m e reel of
tape

Thus far, a major part of the descr ipt ion has been concerned with
introducing var ious types of s ta tements and descr ib ing the form m which
they are wri t ten , some further mention must be made of r e s t r i c t i o n s .

Of the s ta t ement s d e s c r i b e d , the FORMAT and DIMENSION s t a t e ­
ments are ca l l ed non-executable s t a t e m e n t s , that i s , they do not cause an
operation to be per formed . The first s tatement after a DO statement must
not be a non-executab le s ta tement . The last s tatement of a DO loop must
not be a s ta tement which t rans fer s control , as does GO TO. When a control
transfer s tatement is the last executable s tatement in a DO loop, the non­
executable dummy statement CONTINUE is made the last statement of the
DO loop.

The s u c c e s s i v e s ta tements between the DO statement and the last
s tatement of the DO loop define the range of the loop. Frequently , other
DO s t a t e m e n t s occur within a DO loop. When this o c c u r s , the range of the
e a r l i e r DO s tatement encountered must extend up to or beyond the range
of any DO loops defined within the range of the first DO loop. This says
that DO s ta tement s must be nested; there cannot be just a partial over lap
of ranges of DO loops .

Transfer into a DO loop from s ta tements outside of the range of a
DO loop can only be made to the DO statement itself , and not to any other
s ta tement in the range of the DO loop. With a s ingle DO loop, t rans fers
ar e permit ted to s t a t e m e n t s within the range of the loop. If there are nested
DO s t a t e m e n t s in a program, any t rans fer s to the inner DO s ta tements can
only be to the DO s ta tement s i t se l f so as not to violate the rule in regard to
t rans ferr ing stated above. The cal l ing of any function or subroutine involves
a transfer out and then back into a program; this sort of transfer is permitted
within the range of a DO loop provided the subroutine returns to the same
part of the loop and that the subroutine docs not alter the value of i n d i c e s .
It should a l s o be emphas i zed that no s tatement within a DO loop must r e d e ­
fine the i n d i c e s . It should be noted that all r e s t r i c t i o n s apply to entering
DO loops and not to exi t ing.

Some mention should be nrtade of size limitations of numbers. A
fixed-point number must be less than or equal to 2". A floating-point
number can be between 10*" and 10''* or zero; however, the computer car­
ries only 8 significant digits.'.' A greater number of significant digits on a
data card are not read.

The maximum length of a FORTRAN statement is 660 characters or
blanks, and requires 9 continue cards. The maximum number of characters
and blanks which can be printed on a single line is 120. The length of a
single tape record on output tape is also 120 characters and blanks. A tape
record is prut .d nn-hne as a single line.

Whene\er .m .Xrithmetic Statement Function is defined, it must pre­
cede the first executable statement in the program.

It IS frequently convenient to include comment card in the source
deck. Comment cards are punched with a C in column #1 , and any comments
such as program name. date, and program author are punched in columns 2
through 80 on any number of cards in succession. Comment cards at the
beginning are a convenient way for the operator to identify the program be­
ing compiled, since the comment cards and all the statement cards are
printed during compiling. Comment cards produce no effect upon the object
deck.

In writing FORTRAN, care must be taken not to confuse the letter O
with the numeral zero, which are punched differently on a card. The letter
O should be written as 0 . The letter I and the number I can also cause
trouble although this is due more to careless writing. The printing on a
punched card is different for I and 1 , so no confusion results.

Acknowledgments

The author appreciates the suggestions and comments of numerous
people in the Applied Mathematics and International Institute divisions. The
author is particularly grateful to Mr. Burton Garbow of the Applied Mathe­
matics division for his detailed review of the original manuscript. Suggested
rephrasing of certain parts of the text which might be more satisfying to an
experienced 704 user have not been incorporated in the final form of the
paper in the hope that its forna is more comprehensible to a novice.

15

APPENDIX

Some additional information on p r o c e d u r e s of the Argonne computer
center wil l now be given. This will In- hflpful in . . i rrvmg through a program
to the final solut ion of the problem

The program is most convenient ly wri t ten on the form shown in
Figure I. Data are wri t ten on the form shown in F igure 2. The f o r m s are
avai lable in the s tat ionery s ec t ion of the Building 203 s t o c k r o o m .
Room R129 on the main f loor .

After preparing the wri t ten p r o g r a m , the s o u r c e cards can be
punched in Room C055 in the basement of Building 203 After an initial
keypunch prac t i ce per iod , s o u r c e c a r d s should be punched by the g i r l s
in Room C055. A r r a n g e m e n t s for card punching should be made with
Lead Data Transcr ip t ion Operator , Room C055. Extens ion 2876. Other
card punches are located in var ious other d iv i s ions of the Laboratory, in­
cluding one in Building 25A, Extens ion 2294. Genera l ly , at each card-
punching machine a supply of blank IBM cards is avai lable . F igure 3 shows
a sample s o u r c e card and a data card.

The IBM 704 computer is current ly insta l led in Room DOOl in the
basement of Building 203. In the s a m e room is a 1401 computer which is
programmed to check cards of the source deck. The checking of a source
deck IS re f erred to as " P r e - p r o c e s s i n g . " An applied mathemat i c s m e m o
is avai lable which includes a l i s t of e r r o r s checked by the p r e p r o c e s s o r
and the code name by which they are identified. There is no additional
t ime charge for p r e p r o c e s s i n g and, s ince it great ly i n c r e a s e s the proba­
bility that the program will work on the 704, all source decks should be
p r e p r o c e s s e d . The 1401 is scheduled for p r e p r o c e s s i n g from 1030 to
1115 and from 1500 to 1545; if requested , the 1401 operator wil l check
the r e s u l t s and, if it appears that the program can be compi led , wil l p lace
the deck in the next compi l ing batch. Compiling is a c c o m p l i s h e d from
1200 to 1300 (if requested) during the day; a l s o , compil ing is done at night
for pickup the next morning.

An appl icat ion for authorizat ion to obtain use of the 704 must be
filed with the Applied Mathemat ics Divis ion in the d iv i s ion off ice, R o o m B 1 5 3 ,
Building 203 , by m e a n s of form AMD 6, AMD then e s t a b l i s h e s a job number
and job t ime c a r d s are sent to the computer room. Argonne National Labo­
ratory e m p l o y e e s should b e c o m e acquainted with the policy of their Div is ion
m re lat ion to authorizat ion of computer use . Use of the 704 by persons not
employed by Argonne is authorized by the Divis ion sponsor ing the person.

The spec i f i c t ime at which the computer is to be used is scheduled
at the connputer room or by cal l ing the scheduler a t E x t e n s i o n 2877. Re­
q u e s t s for t ime of 15 min or l e s s from 0830 to 1200 are made after 1200 of

the preceding day; requests for t ime from 1300 to 1600 a r e made prior to
1200 of that day. The schedule is written on the blackboard in the computer
room. T i m e on the 704 can be scheduled from 1700-2400 for per iods of
t ime g r e a t e r i i ! =. mm

Whenever tune is scheduled, a t ime card and a set of ins truct ions
for the computer operator must be provided. F o r m AMD 5 is used for the
ins truct ions . The n e c e s s a r y information on the form is the following:

(A) The nature of the run, that i s , whether it is compi l ing , compu­
tation, or both.

(B) Does the program have on- l ine printing or punching 7

(C) Does it have output on magnet ic tape and, if so , which tape
switch number sett ing should be made? It should be spec i f ied
if a s ing le or double copy should be produced by the off- l ine
printer . The s ingle and double copy are re ferred to as 1 or
2 part paper, r e s p e c t i v e l y . If the tape is to be saved , what
identif ication should it have on its label? (Label information
should include the name of the job, the name of the person who
reques ted that the tape be saved, and the date after which the
tape can be r e u s e d .) If no labeling information is provided,
it is a s s u m e d that the tape need not be saved.

(D) Does the program use any data cards?

(E) What are the s e n s e switch se t t ings? (This introduction has
not c o v e r e d s e n s e swi t ches , so one m e r e l y says they are all
up.)

(F) What is e s t imated duration of the run? The operator should
be informed when to stop a run, part icularly if the program
is new, to avoid wasting t ime on a program which may m a l ­
function. For programs which have been prev ious ly run
s u c c e s s f u l l y , the operator can be told to a l low the program
to run to complet ion and the t ime required can be predicted
with reasonable accuracy .

After compil ing, the s o u r c e and object decks and the printed s h e e t s
produced by the compi l er are on distribution s h e l v e s in D-OOl where they
can be picked up.

The of f - l ine printing from magnetic tapes is routinely done during
the day within an hour and a half of the complet ion of the computer run.
The printed output can be picked up from the s h e l v e s adjacent to the
1401 computer .

PR08(.EM

^ COMttfHT

S T A T M I H T
NUHSCS

A M O . I . I T . . .)

DATE

FORTRAN STATEMENT

PACE Of PftOCRAMMER

lOCMTIflOkTIOM

Figure 1

IBM Fortran Programming Form (reproduced by permission of International Business Machines Corpora
tion.

7 0 4 I N P U T D A T A

F O I M I

cotr coDf.

PROGRAM

i '
1 > I 4 S < 7 n ' t 1 1

_L .J .J l l l l l i i l

_1_1 I 1 i 1 I • i • •

. 1 1 1 1 1 1 1 1 f 1 1

' ' • ' • • • • ' F 1

• • • • • • • • • • 1

' I • 1 1 I • ' ' 1 1

- L 1 1 1

'
I I I I ,

1 1 . • . I .

• • I I I I

- l - l - l l l l l l i i l .
1 2 3 4 3 4 7 t9 0 1]

1

AHO • '« mo

PROBLEM

]

ORIGIN AT OR

1 i <

J 4 5 » 7 l f | o i J] 4 } » 7 r i l o 1 2 J 4 5 4 7 « »[0 1 J 1 4 } (7 • t

> • > ' ' > 1 1 1 1 1

^ • • 1 1 1 ' 1 1 1 1 1
J 4 5 4 7 8 9 |0 1 2 3 4

1̂

1 1 1 1 1 1 1 1 1 1 1

' • • I l l

1 1 1 I 1 1 1 1 1 1 1

1 1 I l l

* ' ' '
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 i 1 1 1 1

. 1 1 . 1 1 1 1 1 1 1

I I I .

I I I I

5 4 7 1 9

, 1

0 I 3 3 4 S 4 7 S 9

3

1 1 1 1 I i 1 1 1

I I I I I I I I

1 1 1 1 1 1 1 1 i

I I I I I I I I

1 ' '

f i l l '

LJ 1 1 1 1 1 1 1 ,

l - t J 1
0 1 2 3 4 S i 7 a

4

DATS

0 1 2) 4 J 4 7 I 4

[

— ' ' 1 1 1 1 _

' • • • ' I I I 1

1 M i l l

L- l - l - 1 1

' • ' 1 1 1 1 1 1 j

0 1 2 3 4 5 4 7 1 9

5

PAce or

| O I 2 2 4 5 « 7 t » ! o i 2) 4 » « J . J «

' ' • • • • • • • ' 1

' 1 ' ' I l l

1_

L_

0

4

• ' ' ' • • 1 1

l l l l l i i l

' ' ' ' I I I I I I I

' I I I I I I I ' 1 ,

• 2 3 4 5 4 7 1 9 0 1 }

7

1 — ^

I I I I I I I .

I I I I I I I

'<<••••

- '—*—*~
• • • • • • •

I I I I I I I

' 1

- 1 1 1

• • ' ' ' • 1

• ' ' ' • 1 1
3 4 5 « 7 t 9 a

a

Figure 2

. I I I .
| i i n
I

m i l l

4 « 4 4 4

I

mm

JIHCHSICN linS'.

li-l—I |_J_
I I I I F O R T R A N S T A T E M E N T ••fatoca

I Mii|iiinfTTiIrriTTi1111111111111rirrfrooooooooeooooa• ot• oaonrrranIniT

I 11 ri'i'i'rrr.'rrrrr;'?""""""""""*""''"*""""**"**"" """»•"•"""-""••"-••"'•'^'-'"•'••"
n n i i n n i | n i i i i u i M i n n i n i M i i i i i i i i n i i i n i i i 111 i i n i i n n i

' f i m i i i i i i n i j i i u m i n i i n n i i n i i n n m n m u]] } ! ! ! } } 12111277 n i n i i

j j l J J l | l[l 1 J J J 1 J) J J J J J 1 J 1 J 1 J J i) 1 J J 3 J 3 1 J) U J)) 1 1 J 1 1 J 1 1 J J J J J J J 1 J J)) J , , , , J 1 J , j ' l 1 n J J J I

*1'
SS S S IjllS S S | | S S S | S S i | S s s s s S S 5 5 S S S S S S S S S S 5 i s

| 4 | 4 4 4 4 4 4 l l | « | M « 4 I I H « « 4 M 4 H M 4 4 m i l 4 4 4 « < 4 « 4 < « 4 « « 4 4 4

M 1 1 m i l i 111 ((| ((t ((1 1 (1 1 c ((t ((I (1 1 e (1 1 ((I

i n i m n m i I

l l l l l l l l l l l l l l l l l | l | M | | | | | | | | | | , | , , , , , , ,

i5S5555555555555S5S5555555SiS!55S555SJ

((i t ((I S S I i 111 (((i (I i S ((I i (t 6 (t t ((C ((i

m i i i i i i i i i i m i niiiiiiinii.11111111

1 1 1 1 1 1 1 1 1 1 1 I I I I • I a 1 1 I I • 111 a i i i i i a i a I I a I

I i a a | a a i i i i i i i i a a a ! a a i ; o a g i o 9 e i i o g o g i o a i t o o o o o o o i i o o o o o o o o o : a a o o i o i i a o o o o o o i i i i o | | |

i i a a a a a i o a a a a a a a o i i o a o g g o e o i i o o o a a o o o o t i o o i i o o o i i o o Q o o o i i o o o o i i i i i i o a o o o o o o o o o o o o .

i i M i l i a a a a i i a g a a a a i a i a e a a t o g g e o g o o o g ' o g o g o o g o g g o g g o o g a o g g g g g g o o g g o o o o o o a o ' |

i a i | i i a a a i i 6 a o o g o g g g o g o o g o o g o o g g o g g o i e o o g o o . o o g o g o o g g o o g ! o o g g o o g o a g o o o o o o o o | | |

i i i i i a a a a g i a o g g o o g g o o g o o g o g g o o g g g g g o l g o g . o o c o g g g g g o o o o g g o o g o o o o o g g o o g o o o o o

i i a . i | i g a a g a a a a o g i o a a o o g o e o o o g o o o o o o o g g g o g o G o o g o g o o o g o o g o o ' g g o o o g g o o o o o o] i i

l a a i a g o g i i a a g g o g e i g o g o e o g o o o o o o g o o g g o g g o g o g g i i g o g g o g g o o a a a 0 0 a 0 0 0] Q 0 0 g g 0 0 o |

• oaaaa |ggoaaaaoggo9ogggggggoo>!gggocoogoooogog i iogoogggggggooooogaogggoggg '

i ia |aaagaoaataagiaa!ggajagooggggggggggo'aog:googogoooogggggiogggggggooggoggogg^

l a a i i i a a i i a a o g i a a a a j a a a g g o g g g g g g g o g g g o ' g g i i o i i o g o a o o a o g g g g g

l o o a l a a a a a g g g g g g g o g g g g o g g o g g g o o g o o o g g g g g g g o g g o g o o g g o g g

ooa aaggggogggggggo

0 g g g g g g g g g g 0 0 g 0 0 0 o'

Mogggaggaoaoaoaagoooggoogooggggoogooioooigogaogogo.ogg.ggg.ggggggggoggoggggaa'
i 1 J . 1 I I . . « - . J U M n M i i « , « a n i i n M n » j ' j i n j i i i . } U M » M i i a » « . > .] u i . « a i , « • » . , u u M U M i i i . w a . i k r u M U M i H « i t i i r ;

Sample FORTRAN Statement
card. Note difference in
printing of capital letter I
and the numeral one. The
letter O and zero can only be
distinguished by the punched
holes.

Sample data card. Note that
a different type of card is
normally used for the source
cards and data cards

Figure 3

IBM Forms 888157 and 893099 (reproduced by permission of International Business Machines Corporation).

