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A PROCEDURE FOR THE EVALUATION OF
NEUTRON-SCATTERING CROSS SECTION
IN THE INCOHERENT APPROXIMATION

by

V. Z. Jankus

Using some simplifying assumptions about the details of phonon-
frequency distribution, we evaluated exactly the contributions of 25 phonons.
By means of these contributions, the differential scattering cross section
o(E - E', 8), the scattering law S(a,f), or inelastic-scattering matrices and
transport cross sections for multigroup calculations may be calculated. In
the evaluation of multigroup parameters use is made of an asymptotic ex-
pression when the phonon expansions fail to converge.

When the phonon-frequency distribution is considered dependent on
the direction of polarization (as in graphite), then averages over all direc-
tions are obtained.

I. INTRODUCTION

The basic ideas underlying present scheme of evaluation of the
inelastic neutron cross section have been explained briefly in a paper pre-
sented at a meeting of the American Nuclear Society.(l) This report is
intended to complete the presentation of the procedure, which is oriented
towards computer application. Thus, in addition to a brief derivation of
mathematical formulae, this report includes descriptions of calculational
procedures which may be used with a computing machine. Some meas-
ures taken are obviously somewhat arbitrary and have been included in
this description for the sake of completeness.

Essentially, we propose to evaluate the inelastic-scattering cross
section in the incoherent approximation for a simple cubic Bravais lattice.
The main formula'?) does not depend on the polarization of the phonons.

The basic part of the procedure (see Chapter III) is the evaluation
of repeated convolutions to obtain contributions due to 25 phonons. To
avoid errors in multiple integrations, it is assumed initially that the phonon-
frequency distribution plw) is such that

plw)

fle) = wsh ((»7 2kT)



can be represented by a broken line with break points at integral multiples
of A w. (UsuallyAa) is much smaller than kT.) Then the multiphonon contri-
butions are determined exactly by a simple procedure [see Egs. (16) and

(17)].

Having the multiphonon contributions we can calculate differential
scattering cross sections o(E ~E', 0), the scattering law S(a,B), or inelastic
scattering matrices and transport cross sections to be used in multigroup
calculations. In all these cases it is assumed that contributions of neg-
lected phonons decrease in a geometric progression. A correction term is
added if it is smaller than 10% of the total. Otherwise, it must be con-
sidered that the expansion using only 25 phonons is unsatisfactory for the
determination of o(E = E',8) and S(a, f. Fortunately, this is unlikely for
experimentally observable energy and momentum transfers.

In the evaluation of multigroup scattering matrices, integration over
scattering angle 6 has been performed analytically, and o(E -~ E') is com-
puted by use of the multiphonon expansion if it converges satisfactorily;
otherwise, an asymptotic expression has been chosen to fit the region of
drop-off of the inelastic cross section at high energies, |E - E'I =
p(ﬁ T /f' )2. It is not good for much larger energy transfers. How-
ever, the inelastic cross section in that region is very small, and thus
the error is not expected to affect the subsequent flux calculations. In the
instances in which the energy change is finite but the incident energy is
very large, the asymptotic expansion may not be good, but in this case the
multiphonon expansion still converges (provided e = 4a,g(0), as seen
in Appendix B). In any case, the value of this nearly elastic cross section
is not expected to effect great changes in the reactor flux.

Similar asymptotic expressions have been used previously by
Schofield and Hassit(2) and by Sjslander.(3) However, they have used this
approach to evaluate individual multiphonon contributions. In our pro-
cedure this expansion is used for the main formula as a whole, thus saving
an appreciable amount of computation.

Although in our main formula it is assumed that phonon-frequency
distribution is independent of polarization, for general polycrystalline
media one can consider that p(w) depends upon the direction of polarization
and upon the kinds of atoms of the lattice. Then the inelastic-scattering
cross section can be obtained by using our main formula repeatedly for
various directions and averaging the obtained results. Currently, this has
been attempted for graphite only where results depend only on the angle of
the momentum-transfer vector with crystalline planes in graphitel(‘l)
Averaging over this angle is done as the last step for the first two calcula-
tions and in the evaluation of multigroup scattering matrices averaging over
this angle is done immediately prior to averaging over initial energies.
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II. INITIAL CALCULATION OF SEVERAL PARAMETERS

For simple cubic Bravais lattice the differential scattering cross
section in the incoherent approximation can be written{2,4) ag

(1)

o(E~E', 8) = (o, /87) (E/E)V? f_. dt exp {-it(E - E') + uy[g(t) - g(0)])
where E and E' are initial and final energy of the neutron; 6 is the angle of
scattering; Op is the cross section for a bound atom; u is the ratio of neu-

tron mass and the mass of the atom; 7y is proportional to the square of
momentum transfer:

Y= E+E'- 2cos8 EE' §

and g(t) is a Fourier transform:

-iwt

(t) = : d—@-T—pM
g . _/:mu:exp("k'l')-le

Here plw) is assumed to be an even function of w. It is proportional to the
number of modes of vibration of energy w, and it is normalized to unity,
that is,

jo.wp(cu) do = 1

Further, k is the Boltzmann constant, T the absolute temperature, and
[exp (/kT) - 1]7} is the average occupation number for a phonon of
frequency w-.

Operation with complex quantities in g(t) can be avoided by shifting
the path of integration. Substituting T = t' + (i/2kT), rearranging terms,

and omitting primes, we can rewrite Eq. (1) as

2
olE~E', 8) = (op,/87*NE'/E)V* exp (((E - E')/2kT] - uyg(0)) f dt exp {-it(E-E') + py&;(t)))

where G(t) is the even function defined by

G(t) = j;w f(w) cos wt dw (3)

g(0) = Gli/2kT) = j;w f(w) chlw/2kT) dw (4)



and

Pw)
wsh(u)/sz)

f(w) =

In the present formulation of the problem, p((b) will be given in
unnormalized form at equidistant points:

pu(jAa)) el for 1=j=m-1

It will be assumed that

polo)i=10" and o (GADEN= 0 for i =m
u u

Then we can compute
A i £ 1 (5)
j = f. = , fo 1=3j =m- y
faliad)i= 4, jAw sh(j Awy/2KT) § :
assuming f, as given. If p is approximately parabolic for w= Aw,

L 2kT
ol o) (Acu)z

If we assume now that f;; has values given by Eq. (5) for integral
multiples of Awand is linear in between, we can compute easily the
normalization factor N, g(0), and G(t). With this assumption, f, is really
a weighted sum of shifted rooflike functions:

fu :ij c(l) (w - jAw) 5

where c(l) (w) is a broken-line function equal to one for w=0 and vanishing
for all other integral multiples of Aw. G(t) is then

o0

G(t) = /(; f(w) coswt dw

20w 1 - cos Awt |1
= - ————— — + . .
N Bot)? S fo E fJ cos jAwt ; (6)
j=1

since
oe]

Aw @ 1 A
/ dw c(l)(w) coswt = 2 dw|l - — ) coswt = 2 05 IC [ ]g
=2 b Aw (Awt)?



Replacing t in Eq. (6) by i/2kT, we obtain

g(0) é‘/‘ fule) ch pom do
o

m-
_ 20w f2kTV\? Aw Z
"N (Aw) (ChzTr ) =t f Ch’sz - 1)

Then, differentiating both sides of Eq. (7) with respect to 1/2kT, we obtain
the normalization factor N:

- m-
2kT
j; [, (@) weh 5= do f o (@) do -N-ZAw(Aw) ( = - ) Z 5

J=1
, [2kT Aw 2kT Aw
* 2(8a) ( w) [‘hz_ﬁ"‘(Aw)(Chzk_r' ‘)]

m-1
1 Aw
L3 AP § e
1z Z p et g B (8)
=

Thus, after having found f. from Eq. (5), N from Eq. (8), and g(0) from
Eq. (7), we are ready to "normalize" f(w):

ffx) - A: ! (9)

and to proceed with multiphonon expansion.

Since asymptotic expansion may be used in further calculations
simultaneously with evaluation of Eqgs. (5), (7), and (8), we compute also
two other constants needed in Chapter V, Section C. These are the
derivatives of G(t) evaluated at t = -i/2kT. Taking Eq. (7) and differentiating

it twice with respect to 1/2kT, we obtain



a, = [ dw p(w) (coth ZkT)

20w® (2kTN [ Do Z sz ol
N \bw ZkT ZkT

=t

2

2 2 iy A
20w (zm‘) g Lo, (Zk ) <Ch ® 1) Z :

N Aw 2kT Aw 2kT

2008 (2kT\? Aw 2kT Aw 2KkT)? Dw
es e e e
! (Aw) [Ch 2KT 4<Aw> shoer * O\ 2w/ \B kT
m
1 Y
Ellegta Z £j chi g : (10)

Differentiating once again, we have:

a; = [ do p(w) w?

_ 200 (2kT? h w
- N Aw ZkT

1001 |

j:l

2A w* [ 2kT\? Aw 2kT Aw Z - . A
g ey 2 NS o L [ERT 1 e
N (Aw ) T v R S Y hi oxT

2A0° [ 2kT\? Aw 2kT Aw 2kT\? Aw
Gkt [ Ses et e = = %
PN (Am) I:h 2T " *\2w )P aT o\ aw ) (PRt 1)

el
4 2 J 2
204 <2kT) {Sh Aw 6(ZkT>Ch A (ZkT) o Lo

2kT Aw 2kT

m-

2kT\? Aw Aw
- Z4(H) (Ch 2kT ) Z fjehi v | - (11)



In these expressions the first term is dominant. Evaluating other coeffi-
cients in front of ¥ symbols, we gain accuracy expressing the needed
parameters in power series of the small constant Aw/lk’r.

At this stage we have computed g(0), a,, a,, f(.l). and the scaling
factor. For graphite g(o). a;, ay, and fj(' are calculaeed separately for
perpendicular vibrations using p;, and for vibrations in the planes using
2. Then, for every set of directions, [, the appropriate quantities are
found by interpolating linearly with {* as described in Appendix C. Finally,
for each [ the calculations proceed as is described in Chapters III, IV,
and V.

III. THE MULTIPHONON EXPANSION

The multiphonon expansion of Eq. (2) is obtained by expanding
exp yG(t) in a power series.

o(E = E', 8) = (0p/8m)(E'/E)"? exp {[(E - E')/2kT] - uyg(0)}

n.

f exp i(E - E')t dt z (“V')n [G() ™ (12)
n=o

Using Eq. (6), with the understanding that f_j = fj. we can express

n
m -1
r 2n
G = (L"fo—:f&) z Igl) exp ijAwt (13)
j:-m#l

as a product of two functions. The first function is independent of the

specifications of the problem and has a Fourier transform which is an
even function of the argument; this is nonvanishing only for argument

values smaller than nAw. In Appendix A we have computed a table of

transform values for integral multiples of Aw:

1 2n
Aw 2 sindwt/2 . Awt ) . (n)
2m f ( Bwt ) e (" - Rt Lo

The second factor of Eq. (13) is a weighted sum of exponentials. By
means of the abbreviation



m-1 n n(m-1)

z fﬁl) exp (ijawt) = z F§n) exp(ijAwt) ; (15)

j=-m+i j=-n(m-1)

n y :
we find weighting factors F§ by an iterative procedure:

ol
an) = z fi‘) anll) for 0=j=n(m-1), ... (16)
i=-m+t1

where it is understood that

F(n) = F(n) and F(n) = 0 for |j|> n(m-1)
¥ il J

Now substituting Eq. (15) into Eq. (13) and using Eq. (14), we obtain easily
the Fourier transform of [G(t)[™:

©o n=1
Aﬂ—‘“ dt cos jAwt [G(O)T* = Z cin) Fgr_l)v = f§n) : (17)
o v=-n+1

for 0 =j =n m-1. Here again it will be understood that

(n) (n)

= f ° and fj = 0 for ]jIan
J

Thus, the multiphonon contributions are determined using Eqs. (16) and (17).

This calculation of multiphonon contributions by means of Eqs. (16)
and (17) is based on the assumption that f can be represented as weighted
sum of an elementary function displaced repeatedly by a constant interval.
The coefficients ¢/ have been evaluated by assuming that this elementary
function is rooflike. If Dirac's ¢-function was chosen for the elementary
function, the expressions for g(0), N, and a, would be much simplified, and
Eq. (17) would be unnecessary. Only some simple modifications of present

Egs. (7), (8), (10), (11), and (14) would be needed if f was approximated by
a step function.



IV. CALCULATIONS OF DIFFERENTIAL SCATTERING CROSS
SECTION AND SCATTERING KERNEL

If E and E' are integral multiples of Aw:
E = iAw; E' = i'Aw

the inelastic-scattering cross section may be obtained substituting Eq. (17)

into Eq. (12):

= | -E' = ! B / ' W dw S 1 (
o(E = iaw -E' = i'Aw,8) (ob/hmn)((/l)v' (..p[(...)n—r-w,(o)]) Lzl;?(m)n ‘(?-)v)] (18)

The leading term in Eq. (12) for n = 0 is a Dirac &-function and represents
purely elastic cross section:

oel(E = ijAw-E' = E,0) = (ob/477) exp [-2ug(0)Awi(l-cos8)] . (19)

Since contributions of only 25 phonons have been considered in evaluating
the sum of Eq. (18), we assume that remaining terms az, a7 - - - decrease
in geometric progression, and to the sum of 25 terms we add the value of
estimated remainder:
2
az
R = =,
a4 - a2

if it is smaller than 10% of the sum. Otherwise, convergence is considered
unsatisfactory. Actually, the remaining terms decrease somewhat faster
than in geometric progression, and values obtained are slight overestimates.

Instead of the differential scattering cross section, we may evaluate
the scattering kernel 5.{7) This is a function of energy and momentum
change, and is connected with the differential scattering cross section by

o(E-E', 8) = s(ab/4n)(£'/£:)'“ (kT)"! * exp [(E - E')/2kT]

Using Eq. (18) we see that

_ kT S () n)
8§ = = exp [-ryg(0)] ) . (20)
o Xp L-lY8 nz:l n! ig.g )/Aw

And it can be computed easily for any change og momentum and energy
change in integer multiples of Aw. Egelutaﬁ(-’ prefers to consider S
as a function of two dimensionless parameters: one proportional to the
change of momentum, squared,

11



a = py/kT

another proportional to the change in energy:
B = |E-E'/kT.

Thus our calculation may be used to evaluate S for any given @ and for
any sequence of values B, till Eq. (20) stops converging according to our
criterion.

Quite often for evaluation of the cross section the Placzek(8)
expansion is used. It consists of expanding exp{uy[g(t) - g(0)]} in power
series of L and performing the Fourier transform term by term. This
expansion has been found very convenient for evaluation of the total
cross section. We can understand that this should be so by keeping ¥
constant and integrating over all real values of energy change €. Then

Jde [(exp ict) {exp uv[g(t) - g(0)]}at = 2m

and we need only the first term of power series in [(n=0) to evaluate
this integral. Similarly, if we again (incorrectly) let € assume all posi-
tive and negative values, we need only (n+1) terms to evaluate the n-th
moment:

Jet de [(exp ict) {expluv(g(t) - g(0))]} dt

However, the Placzek expansion converges poorly for purely elastic cross
sections:

[(exp iet) {exp[-uyg(0)]} at

and therefore converges poorly for purely inelastic cross section. Indeed,
if one uses only a number of terms of order {7y g(0) (when it is large),
either the elastic or total inelastic cross section becomes negative. Since
here we are interested in the value of the cross section for a specified
energy change, we have preferred multiphonon expansion with considerably
better prospects for convergence as seen in the Appendix B.

V. CALCULATION OF MULTIGROUP INELASTIC MATRICES
AND TRANSPORT CROSS SECTIONS

To obtain the multigroup inelastic matrices and transport cross sec-
tions, we perform the integration over direction of scattering, 6, analytically.
Either the multiphonon expansion is used if it converges satisfactorily, or
an asymptotic expression is used. Integration over final energies and
averaging over initial energies is performed numerically.
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A. Calculation by Multiphonon Expansion

Integrating Eq. (18) over the angle of scattering, we obtain

ol <i'aw) = [op /augl0) (Aw)h) exp (i-1') Aw/2KT Z [g(0))™™ 4-) )

({oxp (@2l VI - IV} {1+ 5 un(008a(VT - VTN + .t 2 lg(0)aul /T - VF)F)
~{exp L-ug@aa( /T + TP} {145 ual0a (VT - VT 4+t 2 up(0)a( /T + m'r'}).

(21)

Similarly, integration over € of the purely elastic cross section, Eq. (19),
gives

Oeplinw) = [op /4ug(0)awi] {1 - exp[-4ug(0)Awi]} . (22)

We evaluate Eq. (21) using 25 terms and estimate the remainder by means
of the assumption that neglected terms decrease in geometric progression
as in Chapter IV. If the remainder turns out to large, we switch to the
asymptotic formula of section B below. As seen in Appendix B, the multi-
phonon expansion is expected to be good even at very high energies if the
energy change is not large and a sufficient number of phonons has been
used; (25=) nmax 2 4a,g(0).

In this part we evaluate also the transport cross section. We define
the contribution of inelastic scattering to the transport cross section as

o (E) = [dE' o, (E~E) = [dE' [o(E ~E"8) (1 - cos6) 2mdcos 8
r
And we obtain O“(E - E') using Eq. (18):

oy (E~E') = [on /8u*g(0)* 82?4 V) exp [(i - i*) 6/ 2k T]

2 {“ll“”l“‘" e O O U ol

({.-pl.u.«omwm- /r-m} {. b d @Bl VT - b (0BT - JF)‘)“}

-{oxv [-ug(0)awl /T + ST )‘1}{: ‘= p.(o)Aw(./' v S o—w.(o)m»(ﬁ + 1) })

(23)
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(?—)i' = 0. Since evaluation of Eq. (23) may be
performed at the same time as evaluation of Eq. (21), not much additional
computation is required. Also, the computation may be arranged so that
evaluation of the long sum is done only for i >i' and the results used for
upscattering, i' >i. Later integration over final energies of the transport
cross section is described. To this sum we add also the contribution of
purely elastic scattering:

where it is understood that f

B [0, /8(ug(0)Awi)?] - {1 - [1 + 4ug(0)awi] exp [-4ug(0) Awil}
i (24)

B. Calculation by an Asymptotic Expression

When energy change and initial energy are large, the multiphonon
expansion fails to converge, and we use an asymptotic expression to calcu-
late 0(E -~ E'). The asymptotic expression can be obtained in a closed form
by integrating Eq. (2) over the directions of scattering:

o(E ~E') = (op/8muE) I:m{exP [— i(E-E'") (t e 211T>:|}

exp (UVE + VE') [Glt) - g(0)]} - exp {W+E - VE')?[G(t)-g(0)]}
G(t) - g(0)

(26)

We know that for very large energies the cross section approaches the cross
section of a free atom. The downscattering cross section is appreciable only
when E - E' $ (VE + \/T‘:-' )? and very nearly vanishes for larger energy
losses. Thus, it seems that the behavior of the cross section in the drop-off
region is most important when energies are not so very high. In this region
the integral of the first term is very much larger than the integral of the
second term (4 < 1), as one can see clearly by trying to apply the method of

steepest descent. To obtain the first term we expand G(t) in Taylor series
about the point t = -i/ZkT:

i 1 i 2 i i B il i 4
G(t) = g(0) +ift + — ) - — £ N TR AN on
(t) = g(o) 1< ZkT> = az( ZkT) 3!a3<t ZkT) = a4<t+ZkT> £
(27)

g(0) = Jdwp (w) <coth %)i g = fdwp(w) (coth %—) W
1 = fdwp(w)

where

a3 = [dwp(w) of

are constants evaluated in Chapter II.

dt .



Now, if we substitute Eq. (27) into the integrand and introduce a
new variable of integration,

- =_\/¥,,(Ji-: +JE') a, (t + 2.;_'!‘)

we see that the integral in Eq. (26) is very nearly equal to

Glt) - gl0)

ix - "_—.‘_x‘"__."__‘z—lz!X,".. -
2ul/E + JE) JWE +JEP I at
exp 'Zﬁ.ﬁ'“(ﬁ-Oﬁ)ix-x'- i
ag 2UVE + JER I 3

- 18 e
OW‘ 3 .:x 0} dx

fd exp {-.u:‘ E') (: + 2;—7) +u(VE + JE' ) [Glt) - g(o)]}
t =

If we assume now that

\/E-JE-M(JE—*«/E')=

ﬁ# a, K (28)

is finite, while 2u(VE + J/E')?/a, = =, and expand the integrand in power
series, we find that leading term reduces to a standard form. 9) The
value of the integral can be obtained easily from the integral

fndx exp [-2in x - x*] = /Fexp (-1f)

by integration with respect to the parameter 7 The constant of integration
is determined from consideration of the value of the integral for large
positive 7. Then the method of steepest descent shows that the integral
vanishes when the path of integration is below the pole. We obtain, thus,

f—‘-:% exp [-2inx - x*] =7(1 - erfn) . (29)

Integration of succeeding terms is elementary. Collecting the terms, we
obtain for E ~ E',

15



e = 1 a2 2 as 223 2
0(E——E)~(0b/8pE){l erfn-\/ﬂ— /men _[H;\_:_;gn

2
1 as 1o aj 2 23 30
+<§ —33-3—4)773*6_47)5] +} . (Bek
3 a; az

Equation (30) is considered unsatisfactory and not usable when 7) becomes
so large and positive that the second term is larger in absolute value than
the first. Neglected values are considered vanishingly small. In practice,
we have neglected the last term for simplicity, and we have used Eq. (30)
only for downscattering. Upscattering has been obtained from Eq. (30)

by means of detailed balance:

9(E' ~E) = o€ ~E") £ exp [-(E - E')/kT]

For large energies otr(E —E') can be calculated in a very similar
way. Direct integration using Eq. (2) for o(E - E', 9) gives

ctr (E-E') = IU(E —~E', 0) (1-cos 8) 27dcos 6 = (ab/8w@)f e [_i((:;:)_E')( ()t ! 21:_1")]
t) - g(0

1
, {[Z : m} e [H(VE 5 /B e el

1

- m exp [u(VE - V/E')? (G(t)>g(0))]}

Here again the integral of the second term is very small, and we can evalu-
ate the first term by the same procedure as previously. An additional

singular integral is encountered and is evaluated by integrating Eq. (29)
with respect to the parameter 7:

dx
fxT exp (-2inx - x%) = Zﬂ{n[l-erfn] -\/% exp (-772)}

The result of this integration is a sum of two series. The first one is just
twice the series of Eq. (30), representing predominantly backward scattering
forNEN=NIN (/BN /2 second series represents the deviation



iy

from backward scattering and tends to cancel the value of the first series
when E' - E and scattering becomes nearly forward. Thus, simultaneously
with Eq. (30), we may evaluate also

. -nt I.‘n 2y P
‘) = 4 - - Sm———— 1 R
o (E~x) « loy/@E) (1-ertn TVE +JE) i el
_ JVE + JE A, i 1 -7 A TR
N/ mEE i SR AT

[JW (tr(w-”’:—::ne—n]O..}) (31)

C. Integration over Final Energies and Averaging over Initial Energies

To develop multigroup scattering cross sections, we numerically
integrate over final energies E' and average over initial energies E by
means of Simpson's rule. Thus, in every energy group there has to be an
even number of elementary intervals. At first, integrations over E' are
performed for every value of E. The results of these integrations, for
every value of E, are inelastic cross sections for every energy group and
scattering contribution to the transport cross section o,. To obtain the
latter, we integrate over E' of Egs. (23) or (31) and add the elastic con-
tribution Eq. (24). Toeconomize the calculations, for every pair of values,
E and E', the evaluation of inelastic cross section and transport cross
section for up- and down-scattering is done at the same time, and the
results are multiplied with appropriate coefficients and accumulated.
Integration begins with E = E' = Aw. Then E is kept the same and E'
increases till maximum value is reached or the asymptotic formula
Eq. (30) fails and the cross section is considered negligible for larger
values of E'. At the end of this step, we have a complete set of cross
sections for E = Aw. In the next step, we start with E = E' = 2Aw and
end up with a complete set of cross sections for E = 2Aw. We continue
in this way, always starting evaluation on the diagonal, till the maximum

value of E is reached.

After finishing integration over E', with the first value of [, we
pick up the next value of £, as explained in Appendix C. Interpolation takes
place for new values of contstants 1), g(0), a,, and ay; we repeat the calcula-
tions of Chapter V sections Aand B, and integrate over final energy E'. The
results of this integration are immediately multiplied with appropriate
weighting factor for each / and immediately added to the previous values.

Final results may be used to obtain standard multigroup cross-
section sets for reactor regions having various flux shapes. In this, last,
part of the procedure, the complete transport cross section:
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o, = O,

is calculated. The capture cross section is assumed to be proportional to
E"Y2 and its value for 2,200 m/sec neutrons is assumed as given. Then
Oc, the diffusion coefficient (l//:} Otr), and the inelastic scattering cross sections
for every group of final energy E' are averaged in every group of initial
energy E, weighting each with a chosen flux. So far three forms of the flux
have been chosen in each group:

1. Hardened Maxwellian:
¢ = (CE/KT) exp (-CE/kT),

where C is a number somewhat larger than one. This form is convenient
for groups of lower energy.

2. The flux is assumed to be proportional to the N-th power of
energy:

¢ « (E/xT)N

3. The flux is given numerically for every value of energy within
the group, for which cross sections are calculated.

Calculation of the cross sections for every couple of E and E' that
can be expressed in integral multiples of A®w may be too time consuming
and, indeed, unnecessary if energies are large. From the leading term in
Eq.(30) wesee that the extent of the drop-off region at large energies is
proportional to the square root of the initial energy. Thus, at high energies,
the elementary interval of integration may be allowed to increase propor-
tionally to the square root of energy. The increase, however, must be
such that the number of elementary integration intervals in every group
is even.
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Appendix A
EVALUATION OF ¢

After a change of integration variable Eq. (14) can be written as

1 e sin x\*"
c(:) == (T-) exp(-2ivx)dx . (A-1)

This integral can be evaluated exactly by changing slightly the path of in-
tegration to avoid x = 0, expanding (sin x)*™ in power series of exp ix and
finding the residue of each term. In this way we obtain

m, 1
‘¥ "

n-v-i

[(a- ) (l:) (n=w=1)i01 4 (l;) (n-v-2)8"1 . (z;) (n-w-3)80"0 4, .4 (-l)""’"( o )(l)“"] .

(A-2)

We see also while deriving this formula that c(yn) = 0 for |y| = n. Fur-
ther, we can show simply, starting with Eq. (A-1) and summing over all
integer values of v, that

n-1
™42 Z -y . (A-3)
v=1

Table A-1 contains values of c1(;n) derived by direct evaluation of
Eq. (A-2). All values contained therein satisfy Eq. (A-3) coincident with
8-place accuracy. For 1 =n =11, values of (2n-1)! c(J‘ were found exactly.
By this time, however, the calculations were involving numbers as high in

order of magnitude as 10*%, The ensuing calcula-

tions (12 = n = 25) were continued with the inten-
n|v Digits Lost " "

tion of guaranteeing only 8-place accuracy.
l: : l! Since the series in Eq. (A-2) is alternating
15| 0 4 in sign and since the binomial coefficients increase
20| 0 6 with successive terms, there was a tendency toward
i: : : cancellation dependent upon the values of n and v.
25 | 10 1 For a given value of n this tendency reduced with
25 | 15 1 increasing values of v. It increased, however,
25 | 20 0 with increasing values of n. The adjoining tabula-

tion is intended to exemplify this effect. The third
column designates the number of digits lost from the largest term in the
respective series.

19
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Table A-1
COEFFICIENTS OF cff)
n | v| e (g |n|v|cxi0t [q | n|v]|cx109]q | nfv]|cx0|q|nfy|clxa09|aq|n]y|cx109]|q
1 | o] oo oooo | o |10 a|229 8669 | 3| 1412|1232 137 |20 | 18] a[veor er90 | 2 [ 21| 2[ 1207 ssos | 1 [ 23] 15 [ 3238 6105 |16
5| 1134 1319 | 4 13 | 9.183 6902 | 29 5 | 3456 1876 | 3 3| 5.9% s216 | 2 16 | 8548 1443 | 19
2 | o666 6667 | 1 62069 393 | 6 6 (5105 am | 4 4|28 0313 | 2 17 | 8.580 3055 | 22
1 1666 6667 | 1 7| 9468 3295 | 9| 15| 02510 4851 | 1 7|50 208 | 5 5 | 5013 6241 | 3 18 | 2371 1955 | 25
8 | 4309 8160 |12 12063 0735 | 1 8| 3177 89% | 6 6|11 2268 | 3 19 | 1034 7610 | 29
3| 05500 0000 | 1 9| 8.220 6352 |18 2| 1141 4088 | 1 9 | 1228 aam | 7 7| 1678 6922 | 4 20| 2469 7009 | 3
1| 2266 6667 | 1 3| 4210 9370 | 2 10 | 2708 7243 | 9 8| 1693 120 | 5 21 | 2,941 2906 | 43
2833 33 | 3 |1 | 0|29 269 | 1 4| 108 5923 | 2 11 | 3,084 8030 | 11 9| 1173 4829 | 6 2 | 8359 6509 | 57
1| 2242 8008 | 1 5| 1574 3122 | 3 12 | 1562 9703 | 13 10 | 5.400 8361 | 8
4 | ofa793 607 | 1 2| ool 9429 | 1 6| 1407 a5 | 4 13 | 2775 4497 | 16 1 | 1577 7967 | 9 |24 | o 1988 4680 | 1
1|233 0952 | 1 3| 2505 1983 | 2 7830 229 | 6 14 | 1.140 7854 | 19 12 | 2753 5017 | 11 1[ 1757 43%5 | 1
2| 2380 923 | 2 4| 351 1077 | 3 8 | 2481 8502 | 7 15 [ 4841 729 | 24 13 | 263 7162 | 13 2| 1212 %71 | 1
3| 1984 1269 | 4 5| 2.3 1201 | 4 9| 3509 3851 | 9 16 | 3.325 1955 | %0 1 | 1232 738 | 15 3| 6512 8957 | 2
6| 7.48 518 | 6 10 | 2009 1861 | 11 17 | 9.677 5929 | a1 15 | 2.340 6061 | 18 4| 2713 8567 | 2
5 | 04304 1776 | 1 78158 790 | 8 11 | 3.23 5913 | 14 16 | 1.353 3108 | 21 5 | 8721 5228 | 3
1| 243 495 | 1 8 | 2038 %83 |10 12 [ 7.760 2485 18 | 19 | 0| 2232 9949 | 1 17 | 145 0840 | 25 6| 2145 1351 | 3
2 | 4025 5731 | 2 9| 4104 7002 |14 13 | 6.071 9897 | 23 1| 191 3383 | 1 18 | 1090 2884 | 30 7| 3998 1124 | 4
3| 1383 3174 | 3 10 | 1957 2941 | 20 14| 1130 9962 | 31 2| 1.1% 8001 | 1 19 | 6573 5640 | 38 8| 5.575 9006 | 5
al2755 7319 | 6 3| 5456 4285 | 2 0 | 2,989 3107 | 50 95727 3232 | 6
2| of2803 269 | 1 (16| 0243 533 1 4 |17% 7629 | 2 10| 4.247 5324 | 7
6 | 03939 2% | 1 12195 6830 | 1 1| 2022 454 | 1 5|42 6622| 3 |22| 02006 203 1 1| 228 z92 | 8
1| 2439 6028 | 1 2| Lo 7418 | 1 2| 1160 7955 | 1 6 | 6.966 6316 | 4 1| 1814 878 | 1 12 | 7.903 5283 | 10
2 | 5520 2020 | 2 3| 2997 4159 | 2 3| 4561 4397 | 2 7 | 7890 4769 | 5 2| 1210 7259 | 1 13| 1844 3836 | 11
3| 3.823 &786 | 3 a|a%2 309 | 3 4| 1210 4051 | 2 8| 5.958 7571 | 6 3| 6146 2968 | 2 14| 2672 6183 | 13
4 |5.100 6092 | 5 5| 4473 1411 | 4 5| 2120 17198 | 3 9| 283 1681 | 7 4| 232 1280 | 2 15| 2.238 8184 | 15
5 | 2:505 2108 | 8 6202 508 | 5 62392 959 | 4 10 | 8474 0266 | 9 5| 821 1776 | 3 16 | 9.821 6928 | 18
7| 3.967 97 | 7 7| 1659 42% | 5 11 | 1.404 9088 | 10 6| 1465 0822 | 3 17 | 1958 2622 | 20
7 | 03653 7086 | 1 8| 263 673 | 9 8| 6676 1530 | 7 12 | 1181 4668 | 12 7| 2.309 5246 | 4 18 | 1433 730 | 23
12417 8341 | 1 9| 3633 8306 |12 9| 1430 378 | 8 13 | 429 4269 | 15 8| 2626 5640 | 5 19| 2743 7287 | 71
2 6797 a%8 | 2 10 | 3204 8470 [ 16 10 | 1434 6824 | 10 14 [ 5.23 18% | 18 9| 2108 233 | 6 20| 7.658 153 | 32
3 [7.312 2%6 | 3 11| 3868 1701 |23 11 | 5.483 9217 | 13 15 | 1371 163 | 21 10| 1161 1275 | 7 21| 1028 0904 | 37
4 | 236 24 | 4 12 | 5.584 3506 [ 16 16 | 3.271 4818 | 26 11| 4.2%0 %08 | 9 2| 5441 7959 |
5 1313 3086 | 6 |13 | 0 [269 5977 | 1 13 | 7510 &51 | 20 17 | 9.98 5722 | 33 12 | 9.722 984z | 11 23| 3866 6285 | 60
6 [ 1605 9043 |10 1| 2149 8081 | 1 14 | 2611 6085 | 25 18 | 7.265 a602 | 44 13| 1321 4073 | 12
2 | Logs 5617 | 1 15 | 1216 1250 | 3 14| 9719 2876 | 15 | 5 | 0 1948 5379 | 1
8 | 0342 a5 | 1 3| 342 9354 | 2 20| o2 s | 1 15 | 3.406 1660 | 17 11730 5825 | 1
12381 2319 | 1 4|63 0 | 3] 17| 02359 5908 | 1 1| 1877 616 | 1 16 | 4.696 5446 | 20 2| 1211 579 | 1
2 |7.859 5252 | 2 5 | 7.30 905 | 4 1] 1983 6513 | 1 2| 1208 357 | 1 17 | 1876 1225 | 23 3 [ 6672 5185 | 2
3| 1150 2274 | 2 6| 4885 9z | 5 2| 1176 0260 | 1 3| 570 0915 | 2 18 | 1:280 4183 | 7 4| 2880 7194 | 2
4 [ 6.485 4898 | 4 7| 135 1864 | 6 3| 4885 0147 | 2 4| 1989 2809 | 2 19 [ 5.433 3385 | 33 5| 9.700 5958 | 3
5 | 1057 2008 | 5 8173 3005 | 8 4| 1405 5748 | 2 5| 5.00 6835 | 3 20 | 1455 9388 | 40 6| 25% 7828 | 3
6 | 2504 599 | 8 9| 7.116 6678 |11 5| 2753 9216 | 3 6| 98 7613 | 4 21 | 1655 2108 | 53 7| 5.0 0586 | 4
7 7647 1635 |13 10 | 5.456 8031 |14 6 | 3586 667 | 2 7| 1176 2589 | 4 8 (7719 2206 | 5
11 | 2163 2358 |18 73003 3305 | 5 8| 10% 1473 | 5| 23| of20% %79 1 9| 8805 399 | 6
9 | 0323009 | 1 12 | 6.446 9503 | 26 8| 154 3189 | 6 9| 6.076 5838 | 7 1[ 1785 4951 1 10| 7.400 4034 | 7
1|23 %74 | 1 9| 4572 7586 | 8 10| 2274 1955 | 8 2| 1212 172 | 1 11| 4486 692 | 8
2 (8731 1640 | 2 |14 | 0] 2597 6616 | 1 10 | 7.108 2216 | 10 11| 5.1% 2689 | 10 3 (637 90| 2 12| 1911 1153 | 9
3| 1607 3921 | 2 1| 2105 5470 | 1 11| 5,048 209 | 12 12 | 6.446 309 | 12 4| 2500 8901 | 2 13 5531 2635 | 11
4 (133 8125 | 3 2|17 o35 | 1 12| 1311 8221 | 14 13| 4.029 05%8 | 14 5| 7759 5416 | 3 14| 102 1160 | 12
5 4182 1568 | 5 3| 3833 0006 | 2 13 | 8475 7895 | 18 14| 1056 6743 | 16 6| 1789 2568 | 3 15| 1208 763 | 14
6 [ 3564 3001 | 7 48330 7168 | 3 14| 6401 6643 | 22 15 | 8.858 2838 | 20 73079 7509 | 4 16 | 7.998 918 | 17
7 | 3684 5271 10 5 [ 1110 0319 | 3 15 | 9.892 4570 | 28 16 | 1.480 8858 | 23 8| 38%9 4517 | 5 17| 2724 a682 | 19
8 | 2811 4572 |15 6| 8639 5093 | 5 16 | 1151 633 | 38 17 | 1986 7421 | 28 9| 3565 1314 | 6 18| 4113 3833 | 22
7| 3656 2% | 6 18 | 2695 1612 | 35 10| 2.298 024 | 7 19 | 2.200 0616 | 25
10 | 03066 9310 | 1 8| 7.505 8578 | 8 [ 18] 02203 6171 1 19| 4902 4697 | @7 11| 104 6704 | 8 20| 297 6807 | 29
1 (2290 4565 | 1 9 | 6.381 8009 | 10 1 [ 194 6400 | 1 12 | 2.949 2901 | 10 21| 5.209 7672 | 34
2 (9.4 925 | 2 10 | 163 7825 |12 2| 1187 8567 | 1| 21| 0212 8065 | 1 13 | 536 7858 | 12 22| 3.9% 0199 | 40
3 | 2078 149 | 2 11 | 6.999 6612 | 16 3| 5182 9380 | 2 1| L& 521 | 1 1| 5712 6175 | 14 23| 9254 7568 | 49
2| 1683 9747 | 63

If n is large and ngn) appreciable, the Central Limit Theorem can

be used.(é)

tained by the following replacement in Eq. (A-1)

The values predicted by the Central Limit Theorem are ob-

sin x

X

exp

6

X

so that in this approximation

(5]

- 00

dx exp

XZ

- 2ivx

exp

S




Numerical values obtained with this approximation with n = 25 have been
computed and displayed along with the correct values in Table A-II. Agree-
ment is definitely poor for larger values of v.

Table A-11

EVALUATION OF c“f” x 109 BY ALTERNATIVE METHODS

By the By the Theorem of | By the Method of 1o 4V s @2
¥ | Longhand Method Central Limits Steepest Descent | ~ 2n|8 ()2 c 2 3
- a L {
0 1.949 1 1.954 1 1.949 1 0.0030
1 1.9 1 1.733 1 1.730 1 0.0030
2 1.212 1 1.209 1 1.210 1 0.0030
3 6.673 2 6.637 2 6.659 2 0.0031
4 2.881 2 2.865 2 2.883 2 0.0031
5 9.701 3 9.730 3 9.670 3 0.0031
6 2.531 3 2.599 3 2.527 3 0.0032
7 5.071 4 5.462 4 5.048 4 0.0032
8 7.719 5 9.029 5 7.745 5 0.0033
9 8.805 6 1.174 ] 8.829 6 0.0033
10 7.400 7 1.201 6 7.419 7 0.0034
11 4.487 8 9.662 8 4.464 8 0.0035
12 191 9 6.115 9 1.902 9 0.0036
13 5.531 11 3.045 10 5.534 11 0.0037
14 1.042 12 1.192 11 1.041 12 0.0038
15 1.208 14 3.673 13 1.207 14 0.0038
16 7.999 17 8.902 15 7.965 17 0.0037
17 2.724 19 1.697 16 2.710 19 0.0035
18 4.113 22 2.545 18 4.096 22 0.0031
19 2.200 25 3.002 20 2.200 25 0.0026
20 2.918 29 2.785 22 2.914 29 0.0022
21 5.210 34 2.033 24 5.218 34 0.0018
22 3.934 40 1.167 26 3.930 40 0.0017
23 9.255 49 5.272 29 9.234 49 0.0017
24 1.644 63 1.873 31 1.645 63 0.0017

A better approximation procedure for the whole range of values

v/n would be the Method of Steepest Descent. By this method, the ex-

tremum of the function 2n In

sin x

- 2vxi is obtained, the path of integra-

tion is shifted to pass through this maximum, and the integral is evaluated

f(r) =Insh7-1InT g

and, equating the result to v/n,

1

F(To) =C0th7'o-— =%

To

under the assumption that v/n remains constant while n increases towards
infinity. The extremum T, of our function is found to lie on an imaginary
axis, and its position is obtained by differentiating

(A-4)
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From this equation 7, was found for every value of 'u/n, and csjn) was com-
puted according to the formula

IV 12

f

= gnfo_i 1nnﬂfo+i l_",__ LA (fo)
2 2n |8 (flo')z 24 ()3

n)

In cgj +... , (A-5)

where the values of f and its derivatives have to be evaluated at T = Ty.
The results of this calculation with n = 25 are also displayed in Table A-II.
It is evident that this procedure gives reasonable agreement over the whole
range of values of V/n. The disagreement between these approximate
values and the exact values is due, at least in part, to insufficient accuracy
in the determination of 7, from Eq. (A-4) (four places were used most of
the time). In Table A-II we have given also the value of the last term used
in Eq. (A-5). One certainly should expect the fractional error in cU} due
to truncation of series Eq. (A-5) to be less than the last term used.



Appendix B
THE METHOD OF STEEPEST DESCENT AND CONVERGENCE
OF MULTIPHONON EXPANSION

For large energy values we have used formulae based upon a Taylor
series expansion of G about the point t = -i/2kT. This expansion gave rea-
sonable approximation in the vicinity of E-E'= u(/E +/E")% however, the
error is considerable for other values of the ratio E'/E. As we have seen
in Appendix A, we can expect good accuracy for any ratio E'/E if we use
an expansion of G about a variable point t = -iT chosen to obtain the steep-
est descent in the integrand. Formulae obtained by this method are dif-
ficult to evaluate numerically. But they present a clear picture of the cross
section at large momentum transfers, when multiphonon expansion requires
many terms.

In the method of steepest descent, we use a Taylor expansion of G(t)
about a variable point, t = -i7, on the imaginary axis:

G(t) = G + G'i(t+iT) - % G"(t+iT)? - % G"mi(t+i7)* + 217 Giv(t+irT)* + ...
T ) : (B-1)

where coefficients

(n) . &2 do plw)
- drn wsh w/2kT i

are all positive. To evaluate o(E-~E',6), a value of T is chosen so that the
integrand in Eq. (2) is an extremum:

E-E' =puyG' . (B-2)

Upon introducing a new variable of integration,

x = /-;-uyG" (t+ir)

and expanding the integrand in Eq. (2) in powers ofJG“/Zy'y, we obtain
)i : + uylG() - glo)]} = - u dx exp
dt exp -(E-E')i (l " KT wy B “‘YG“
1 G 2, G" g)lciv
{- uyG' (T‘ - m) +uy (G - g(0)] - x* - ‘\/Zp‘—’y-jl g x 4’(z“.y 3 (FT"‘ t ..
2 1 i -x*
= /“70" exp {p'y [-G' (T - m)’ G - g(O)]} fdx e
Gz, G 5, (G| [1GY .. 2 G
{l-\/;,ic—”;x 4(2“7) [3 T ¥ oxe

9

}



Thus, after integration, we have

o(E~E',0) = (op/872)(E'/E)V? (4m/2uyG")V/?

1
© exp {[.LV[— G < = m) + G - g(O)i|}
G" iGiV iG'"Z
{1 * 2uvy [12 G"3 T 12 G"“:\+ } ’ {Bz3)

a convenient expression for large momentum transfers when multiphonon
expansion becomes impractical.

By contemplation of Eq. (B-3) we can make a judgment on the num-
ber of phonons necessary to obtain the differential cross section. It is rea-
sonable to expect that, when Eq. (B-3) is approximately valid, this number
is roughly equal to the number of terms required in the power series ex-
pansion of exp (uyG). Thus the largest contribution is expected for n =puyG.
Since

dZ

dn?

1 Mg ol
In = (uyG)" = - e

one would obtain the value of the exponential within about two per cent if
one uses

nmax = (V/EyG + 1)% . (B-4)

Actually, applying the method of steepest descent to each term of the phonon
expansion we see that the "half-width" is somewhat smaller and that

Nmax 2[4/,LWG +\/‘1 = (G'Z/GG")]Z (B-5)

would be satisfactory. Thus, for large uy G only comparatively small num-
ber of phonons at the end of expansion contribute significantly towards the
sum. The second term in Eq. (B-3) is then

1 _1 3c¢ivgr - sGm? 1 3GivG" - 5G™2

12 1yG 2G13 B 2G"3

If 7 (and the ratio ]E-E‘] /u’\/) is very large, this term is approximately equal
to - 1/12n,,, and Eq. (B-3) joins quite smoothly our expansion of nmax(=25)
phonons. However, for smaller 7 this term can be considerably larger in
absolute value. In such cases, one could try to approximate every multi-
phonon term by a Gaussian (or modified Gaussian) distribution. And, indeed,
one can demonstrate(2) that such an approximation is good for individual
terms. However, the number of terms required for evaluation of o(E—E', 6)



is large. And, since the Gaussian distribution depends only on the second
derivative of G, it cannot be depended upon to yield correctly the second
term of Eq. (B-3), which requires knowledge of higher derivatives. Thus,
at present we remain with the unpleasant need to evaluate exactly many
terms in multiphonon expansion in some cases (as for graphite at high tem-
peratures) if we want to join smoothly the method of steepest descent to the
multiphonon expansion.

In evaluation of o(E—~E') we encounter also both multiphonon expan-
sion and an asymptotic expression. Multiphonon expansion here needs to
be used also at very high initial energies if energy loss is not large. When
|E-E'] is fixed finite and u(VE +/E')? keeps increasing, we can no longer
nelgect the second term in Eq. (26). (The asymptotic expansion for it does
not "converge.") Indeed the appropriate procedure for such a case would
be to neglect the first term, since “(,/E +/E')? is large and [G(t) - g(0)] is
negative. Since

BWE - JE) = u(E-EV/VE +/E)

is small when |E-E'| is finite and (VE +J/E')? is large, we can expand our
integrand in a power series in u:

exp {M./- JE)? [G(t) - g(O)]} 1 u(E-E')?
L G(t) - g(0) "G - gl0) " WE +JE)

! R (0 -s(0) - ..

and integrate term by term. Fourier transformation of

SRR TR
g(0) - G(1) ~ g(0)

will now give the main inelastic contribution, Thus, the inelastic cross sec-
tion is approximately equal to

o(E~E')= (ob/Ban)f dt exp - (E- E')( ZkT) [m 3(0)]

. ale iy S [ew]
" (ab/&rul-:)—g(—é‘) : fdt '-'xP[' (E-E )(‘ ¢ ZkT)] nz=:. [s(OJ
(B-6)

Since the nearest zero of g(0) - G(t) is located at t = -i/2kT, for large values
of (E-E'), Eq. (B-6) gives correct value for the inelastic cross section:
(ob/4uE). The same value, of course, is obtained also from Eq. (30) when

#(ﬁ +J/E E')? is large and 7) is large negative.
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Applying the method of steepest descent to each term of Eq. (B-6),
we see that the largest term, S,, is obtained for n = g(0) lE-EV | If nis
large,

dn? "R %7 g(0) [E-EY axg(0)-1

Thus

2
temax = (/BB g0) + /280)-1) (B-7)

terms should be satisfactory for the evaluation of Eq. (B-6). When the first
term in Eq. (B-7) becomes smaller than the second, the number of phonons
given by Eq. (B-7) is insufficient. It seems that one needs about 4[a,g(0)-1]
terms even for small energy loss. Moreover, we believe also that for

[E—E“ [ z a, Eq. (B-6) will have approached its limiting value. Thus, if we

use nmax = 42,2(0), we should have a fairly smooth transition between multi-
phonon expansion and the asymptotic expression.
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Appendix C
AVERAGING OVER DIRECTIONS OF POLARIZATION FOR GRAPHITE

For calculation of the scattering cross section from polycrystalline
graphite p used in the initial formula, Eq. (2), can be represented as an
interpolation:

p=p B +p(1-1£% , (C-1)

between frequency distribution perpendicular to the planes of crystal lat-
tice, p;, and frequency distribution in the planes, pz.(3) The scattering
cross section then is obtained upon integration of the final results for
cross section over the directions of lattice orientation, 0 = £ =1. Actu-
ally, in Chapter II, calculations of v, g(0), a;, and ay are performed
separately for both sets of values Aj and p,j, and a common scaling
factor is determined. Then, for every needed value of £ appropriate
quantities i, g(0), a;, and a, are determined by an interpolation pro-
cedure, Eq. (C-1).

Since evaluation of the cross section is a quite elaborate and long
process, we have chosen a Gaussian(11,12) integration process. We notice
here that our integrand is an even function of £. Thus, if we would expand
the limits of integration from -1 to +1, we would not need actually to cal-
culate the values of the integrand for negative values of £. Thus (con-
sidering only Gaussian integration schemes with even numbers of values
for I), we see that by actually calculating the integrand value at n points
we approximate the integrand with a polynomial of degree 4n-1. (Or, we
can say that we approximate our integrand with a polynomial which coin-
cides with the integrand at 3n points, of which 2n are chosen arbitrarily.)
We can see easily that this integration scheme is exact for a Placzek ex-
pansion (in powers of ) that neglects terms with u*" and higher powers.

It is also exact for expansion of S in a power series of a up to and in-
cluding the term with a*™!. These considerations lead us to believe that
only a few points are needed for quite satisfactory integration over £.
Indeed, in several previous calculations graphite has been approximated

by a cubic crystal, using only the total frequency spectrum, and thus essen-
tially using only one point in our Gaussian integration scheme. Upon con-
templating the increase of accuracy obtained by using the Placzek expansion,
we believe that the additional labor required in using at least two points is
well justified. The values of £ and corresponding weighting coefficients(13)
have been given in Table C-1.



Table C-I

CONSTANTS FOR GAUSSIAN INTEGRATION
OF AN EVEN FUNCTION

(n) (n)

n Ly W

1 0.57 135027 1.00000000

2 0.33998104 0.65214515
0.86113631 0.34785485

3 0.23861919 0.46791393
0.66120939 0.36076157
0.93246951 0.17132449

4 0.18343464 0.36268378
0.52553241 0.31370665
0.79666648 0.22238103
0.96028986 0.10122854

5 0.14887434 0.29552422
0.43339539 0.26926672
0.67940957 0.21908636
0.86506337 0.14945135
0.97390653 0.06667134
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