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SPECTRAL REPRESENTATION AND
CRITICALITY PROBLEM OF
A TWO-REGION CELL TRANSPORT OPERATOR

by

Israel Pollack and
Erwin Bareiss

1. INTRODUCTION

A two-region reactor cell for slab geometry has been studied in
Ref. 1 by the method of spherical harmonics. This paper uses the approach
introduced by K. M. Casel2) for the solution of the transport equation to
determine accurate conditions for the criticality of a two-region fuel-
moderator assembly with reflecting boundaries.

A set of equations developed by A. Kuszell(3) will be used to de-
termine the spectrum of the corresponding transport operator and the
corresponding singular eigendistributions for each region. Introduction
of appropriate boundary conditions yields a system of integral equations
from which the criticality condition and the spectral coefficients for the
representation of the vector flux in eigenfunctions can be derived. The
derivation of the integral equations is achieved in a new way, namely, by
the introduction of an auxiliary function that circumvents the nonanalyticity
of a certain function that would occur in the conventional treatment. The
results will be compared with those obtained By the method of spherical
harmonics for the same problem.

It is assumed that scattering is isotropic and that the fuel-
moderator assembly obeys the one-speed Boltzmann equation with constant
coefficients:

oil=d) 1 o -
= ) S ;jfl (ACHTLTA (1)

where the index i denotes the respective region, ¥; stands for the neutron
density, u is the cosine of the angle between the neutron velocity and the

x axis perpendicular to the plane, £; is the neutron mean free path, which

is to be considered constant throughout the region i, and cj is the number

of secondaries per collision, also considered constant throughout the region i.



II. EIGENVALUES AND EIGENDISTRIBUTIONS
OF THE BOLTZMANN EQUATION
In accordance with K. M. Case's results, the solution of Eq- (1)
can be expressed on each region i as

Vo) = af e AVig ) + 2 AVigy 1, n)

1
+[ Ai(V)e_x/ﬂiV(bi(u,v)dv, (2)
1
where
¢ (w,v) = C—ZI-V—]_J—# + Aj(v) 6(u-v). (3)

All integrals involving the term 1/(v - ), where v and u are real,
are to be understood in the sense of Cauchy's principal value. A rigorous
mathematical derivation for the existence of Eq. (2) is given in Ref. 4.

The function Aj(v) is given explicitly by

= -1
Ai(¥) = 1 -cjvtanh™ v, (4)

for the continuous spectrum -1 =vp =+1.

The discrete spectrum consists only of +vj, which are the two
roots of

ci¥j tanh~! (1/p;) = 1. (5)
If ci is greater than one, v; is purely imaginary. If c; is less than one,

Vi is real and greater than one. Hence, for the discrete spectrum, the
eigenfunctions of Eq. (1) reduce to

o, (p,2v;) = 7 . (6)

The constants a;t and the functions A;j(¥) are determined by the
given boundary and interface conditions.
III. PROPERTIES OF EIGENFUNCTIONS

A. Kuszell derived the following equations between the eigen-
functions for any regions i and k:
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1
f by 149) Bilpem) Al = M0) M) B =) + = S (7
-1

1 1

) i - Sk
By (i, 2v;) bp(p,v) dp s vo; (v, 4v4); (8)

ci -k Vi¥k

I+

for i # k,

1 2 'LJ1 -V
f pobi(p,2v;) Dy (i, 4vy) die = : (9)
-1 o S5 :
iTvi[vf-ll - l] = i‘ViNi for i = k;
1
ck - ¢i Yi'k
f.l pdy (u,2v;) Pl 3vi) dp = 2 —>— T (10)

1 1 _ 1
f ud; (1, £75) duf Q(n) ¢(p,n) dn = Clc,ckf nQm) ¢;(n.2v;) dn;  (11)
-1 - =

1 1 1

1 1 2
f s (u,v) de Q(n) ¢y (pwm) dn = Vl}\i(v) A(v) + ﬂT' CiCkV?‘]Q(V)

1 1

- " 1
, e i [ n(n) dn
2 a8 n-v

. 1
- N QW) + =Sy f l’?)_(i’)%”_
-1

(12)

Equations (11) and (12) are valid for any function Q(n) that satisfies
a Holder condition.

When i = k in Egs. (7-10), the orfhogonality relations derived by
Case are obtained.

These relations are independent of the boundary and interface con-
ditions. To check the consistency of the two equations of Eq. (9) as
G = Ci» the following relation, which can be easily derived from Eq. {5),
is helpful:
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(o bl L

-

@, 5 = N;. (13)
In addition, note that

b (-patvy) = ¢5(u3vi) (14)
and

¢ (-piv) = ilp,-v), (-1 =v=1). (15)

With the aid of Eqs. (3) and (6), Kuszell's relations [Eqs. (7-12)],

and assuming ¥;(x,u) is given in the form of Eq. (2), we obtain the following
set of transformations for -1 =v = 1:

ok
f e (i) Y40, 1) dp = iviNia{‘e"x/Eivi, (16)

1

1
f s () ¥ (1) dpe = VN5 (v) Ay (v) e'x/ziv, (17)
=31

1
§ e Bl 3 i +_-x/b;v;
s oty = g ST | T e

1
Vi G oy /s
3 + Vo aieX/ S f n*n- Aj(n)e x/bin anf »
=%

i TR
(18)
and
; A v
A% SO ‘ —x [l L2 7
/:l #‘ﬁk(#»v)%(x:#) du = v _Zlivi—l_va:’e x4y 4 —i+l aj ex/zlvl
; £
Ul -x/8;
’ f_l 77 Ailn) e x/kin dn]
i - k| 2N (v) ey
il l:ci - ok e Al /4, (19)



The consistency of Egs. (16) and (18) when ¢ = c; can easily be
established by Eq. (13). A similar consistency exists between Egs. (17)

and (19).

We can write Eqs. (18) and (19) as follows:

: i - Ck
Py (i, 2vye) Yo p) dp = 2V —— Y3 (%, 2V ) (20)
o | : 3

1 . .
f ub (s v) Pyep) du =V . - o [wi(x,v) . {c- C_l - Nik(v) - )‘i(v)}Ai(V) e-x/l iV] 2
- i g =Cp

(21)

where ¥; can be considered an analytic extension of the function ¥;(x,u) as
given by Eq. (2) into the complex p plane. Hence, it will have only
symbolic, but no physical, meaning.

These last equations will be used to obtain a formulation of the
critical problem and to determine the expansion coefficients in Eq. (2).

IV. THE CRITICAL PROBLEM OF A TWO-REGION SLAB
WITH REFLECTING BOUNDARIES

We consider a two-region infinite slabyof a multiplying (c > 1.0)
and an absorbing (c < 1.0) medium, a simplification of a fuel rod consisting
of uranium plates immersed in water. We restrict the discussion to a

single cell as illustrated in Fig. 1.
Uranium Water Uranium Water

II Region 1 RegionZ|

' |

b

cell

Fig. 1. Reactor Cell and Coordinate Axis Representation

11
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The symmetry of the problem suggests a coor
dicular to the plane interface with its origin at one of the interfaces. The
half-thicknesses of the regions are -y, and ¥2i the material constants of
the regions are ¢, and £,, and c, and &, respectively,

dinate axis perpen-

The solution of the general periodic problem seemed quite cumber-

some, and therefore this paper is restricted to the two-region slab with
reflecting boundaries.

On the reflecting boundaries, we impose the condition

Yilyi, ) = ¥ilyi,-) (22)
for i = 1,2. Because of continuity, the interface condition is
2l/l(o:#) = %,(0,u). (23)

Eq. (22) implies periodicity.

Because we have a complete set of eigenfunctions, Eq. (22) can be
written in equivalent forms:

1 1
j poilur £ i) Yilyip) du =f udi (L, +v3) ¥ilyi,-p) du, (24)
-1 -1
and
1 1
/ HBi(av) Yi(yiop) du = / s (1) ¥4 (ys.-p) du, (25)
il -1
for i=1,2.
If we apply Eqs. (14) and (16) to Eq. (24) and, similarly, Eqs. (15)
and (17) to Eq. (25), we obtain
iviNia%e+yi/zivi = iviNiafeiyi/ﬂivi, (26)
and
wxrs S By £
W) Ai(0) YV < unym) Aoy VAV, (27)
for i = 1,2. Since Nj;(v) and N; are nonvanish

ing quantities (except when

ci = 0), Egs. (26) and (27) and hence Eq. (22) are satisfied if
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£ . 3.2/ hvi,
(28)
A;(v) = Av) SR - 12,

o
where 3; is an arbitrary constant and A;(v) is an arbitrary even function
in v, which have to be determined.

We now apply transformations on the interface condition, Eq. (23),
similar to those used for the boundary conditions, Eq. (22). Again, be-

cause we have a complete set of eigenfunctions, Eq. (23) can be written
in equivalent forms:

1 1
f wp,(u, £v,) ¥1(0,p) du = f by £v,)%(0,1) du, (29)

1 -1

and

1 1
f udz(i,v) 9 (0,p) dp = f up, (e, v) ¥2(0, 1) di. (30)
=t -1

If we apply Eq. (20) to the left-hand side and Eq. (16) to the right-
hand side of Eq. (29), and similarly apply Egs. (21) and (17) to Eq. (30),
and then make the substitutions of Eq. (28), we obtain

Clc_l Cz ¥1(0,27;) = Nzgzein/ﬂsz' (31)
and
< ; 221 y,(0,v) +{ ) - )‘1(1’)}10\1(11) eh/lﬁv] = bR o/ bV,
l B (32)
where
== w =

A similar set of equations can be obtained by interchanging the indices one
and two.
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V. REDUCTION OF THE SYSTEM TO A SINGULAR INTEGRAL
EQUATION WITH ONLY ONE UNKNOWN
FUNCTION AND ONE COMPATIBILITY CONDITION

The purpose of this section is to eliminate the unknown constant a,

and function .&z(‘u) in Eqs. (31) and (32) and rewrite the equations in dimen-
sionless form.

By multiplying the two expressions of Eq. (31) by e+y2/zzvz, respec-
tively, and subtracting, we obtain

¥1(0,v,) e'yz/ﬁzvZ - (0, -v,) e"Z/[’ZVz — (33)

4 .
In a similar manner, we eliminate A,(v) from Eq. (32). We rewrite
Eq. (32) as

$1(0,v) e-YZ/EZV + {[Cx/(C1 - cz)] Ny(v) - Xl(V)}

Ry IOy BY e M) el

If we replace v by -v in this equation and take the difference of the

two, we obtain, upon noting that Ny,(v), A,(v), and A,(v) are even functions
of v,

$(0,v) e'Yz/[sz - (0, -v) QYZ/I/ZU + 2{[¢1/(C1 - c2)] Nyp(v) - )\1(1’)}

sinh(yl/llv - y/lzv) A](y) = 0.

(34)
Equations (33) and (34) may be expressed in explicit form by
elementary algebraic manipulations. They are, respectively,
vlgl[slnh(yl/llvl E Yz/gzvz) 3 Sinh()'1/21v1+)’z/’ezvz)
G T
Eae sinh(yl/ﬂm-yz/ﬁ V.
+f nA,(n) ) dn = 0 (35)
a1 s :

and

o [Sinh(h/zxvl - v/ 4,v)
"2y

v - v

. sinh(yl/ﬂlyl + yz/gzy)]
S M SR Y e )

VitV

3 [Zle(V)/(Cx =l KI(V) sinh (yl//dlv - YT/E?_V)

158 B sinh(y/ﬂn- v
+f nAy(n) ln - VYZ/ 2 )dn .0 (36)
]




o
A similar set of equations for A,(v) can be obtained by interchang-
ing the indices one and two.

The parameters can be made dimensionless by introducing the
half-thickness of the region in units of mean free paths:

'YI/el’

t, = v/ ba (37)

t

We also introduce the function B,(v) defined as:

o

3,B,(v) = A,(v) cosh(t,/v). (38)

Hence, Eqgs. (35) and (36) are, respectively,

3 [sinh(t,/v,n/vz) _ sinh(t,/7 - t/vz)]
1

V) =V, 1/1+VZ

By(n) dn = 0, (39)

+f1 n  sinh(t, M+ to/V3)

jane V2 cosh(t;/n)

and

sinh(t,/v, +t/¥)  sinh(t;/v, - t,/¥)| = 2Np(v) sinh(t,/v +t,/V)
"1 o Bl(v)

v, -V - vtV c, - C; cosh(t,/v)
»

B,(n) an = 0. (40)

1o sinh(t,/n + t,/V)
).

g e cosh(t,/n)

Equation (40) is a singular integral euqation for the unknown func-
tion B,(v) with the compatibility condition Eq. (39), which we call the
"criticality condition."

We write

sinh(t,/n+t,/v) _ sinh(t/v+t/v) | sinh(ty/n +t,/v) _ sinh(ty/V + t/)
cosh(t,/) cosh(t,/V) cosh(t,/7) cosh(t,/7)

- sinh((t; + t;)/V] + [tanh(t,/7) - tanh(t,/v)] cosh(t,/v).
cosh(t,/v) (41)

15
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If we insert Eq. (41)

under the integral in Eq, (40) ang rearrange terms,
we obtain

= 1
Niz(v) By() + &Z—Qf 5 Biln) dn = £(0), (42)
-y
where
ci-c; cosh(t,/v) (43)
Hv) = -— sinh[(t, + t,)/V] g,
and
sinh(t,/v, +t,/V)  sinh(t,/v, - t,/V)
gv) = v Vy - ¥ E v, + v
+ cosh t—z l tanh(tl/‘q) 3 tanh(tl/V) nB,(n) an. (44)
B n=-v
VI

TRANSFORMATION INTO A FREDHOLM INTEGRAL EQUATION

Equation (42) is a singular integral equation for B,(V), which we
shall transform into an equivalent Fredholm equation of the second kind.
The method consists in applying the Hilbert transformation on ¥B,(¥) and
reducing Eq. (42) into a Hilbert problem. The solution of the Hilbert prob-
lem furnishes an integral equation of the second kind for B,(v)

We set

1
% i o f 200 o, (45)
-]

This choice is prompted by the ease of ¢
The function R has the following proper

a) It is analytic in the complex plane with cut from

b) It vanishes at infinity as 1/z.

omparison with the method of Case.
ties:

=1 ta +1.

The limit values of

R as =z approaches th
Muskhelishvili.(5)

€ cut are given by
These are known as Plemelj's

formula:



€1~ C2
2

Ri(v) = % vB,(v) +

O Sa0 1 nB a
1 zpf NB,(n) T), (46)

2mi s Ay

where P denotes that the integral is to be taken as Cauchy's principal
value. Adding and subtracting these expressions, we obtain

RY(v) + R (v) (47)

< dalbo P ! nB,(n) dn
i NV
-1
and

RY(v) - R (v) = (c;-c;) vBy(v). (48)

We now substitute these equations into Eq. (42), collect similar terms,
and obtain

[Ny, + (cp - cz) mi/2] RY - [Ny, - (c1-¢2) miv/2] R™ = (e - ) v (V)

(49)
The coefficients of R* can be written as
M) A;(¥) = N+ (ey-¢2) miv/2, (50)
and
sz aa (o) = My = (cl-cz)'niv/z. ‘ (51)
The validity of these equations can be shown readily. We set
SO i.a
Ai(z) = 1+Tz[ln_z=l-ciztam oty (51a)
Then, by Plemelj's formula,
£ C3 ! dn i
x—i(v) = 1+7vP -[1 n-viTciv' (51b)

But by definition,

17



and

Nik = Ai(v) Ae(v) + (1%/4) cicia?.

Hence, Egs. (50) and (51) follow immediately if one considers that
AiC = Ac) = € - .

Similarly, one obtains

+

N;;(v) = A1 (¥) A (). (52)

We can now write Eq. (42) as
MATRY - AR = (e - cp) V(). (53)
If this equation is divided by AJA; = N,,, we obtain

AR R (>4 [l o
1+ | e S 2 vey(v). (54)
A2 Az Nz,

Since the function X,(z)/);(z), or its inverse, is not analytic in the complex
plane cut from -1 to +1, we introduce the auxiliary function
vi - 2% M (z)

Pz =
B Ao

R(z), (55)

where +1; and +y, are the only zeros of \,(z)

and A,(z), respectively. Hence,
we can write Eq. (53) as

vi-1v2c -,
vf - 12 Ny,(v) vE(v) (
From this, we obtain

S G V; S5 £,(¢) &
Ak = - e il 50, TN
o f_, Vi L2 N(0) £ -5 9 e

and hence,

e Vf -zt Ax(z)
R(z) = —vi v ZZ_XI(Z) T(Z) (58)
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The function R* can then be written as

RE() = Lo cz}ivfl(V) +vi = v"'k_zi (ey-c2) [Pvi-C2 (0 ¢ P
oo AR ey PR 22 )\;—’ 2mi o ve-t? NealC) E= %
‘ ' (59)

By Eqs. (47) and (48),
RT - R~ = (c;- c;) vBy(v).

Substituting the right-hand side of Eq. (59) into the last equation, collecting
similar terms, simplifying, and using Egs. (50), (51), and (52), we obtain

B,(v) - N;,(v) p Cp - C; vi -2 /1 V% -¢? £,(0) L a.

Ny (v) Npp(v) ™! - 2Ny, (V) v - V2 &, YE L Nz (C) € -V
(60)

Since f,(v) is an even function, we can write Eq. (60) in an equivalent form:

N, N, ! ITETE  Ee = f _ 2 Ng,(£)

2 2 M 2 _r2
Bl(v) % Nj, f _C]'Czl’l'V f L_E__f!(_clc.#_z_dc (61)
2 0 ¥ =¥

This is a Fredholm integral equation of the second kind for B,(v). We give
Eq. (60) in explicit form. To this end, we write Eqs. (43) and (44) as

1
fi(v) = (Cl‘Cz)[al(V) ok jil By(v,M) Bl(ﬂ)-dﬂ], (62)
where
v, cosh(t,/v) [sinh(tl/vlﬂ/v) sinh(t,/v; - t,/v)]
2(v) = - 2 sinh[(t, +t) /] v, -V % Y +v g
(63)
and
n cosh(t,/v) cosh(ty/V) tanh(t,/n) - tanh(t,/v) (64)
Biipn = 2 sinh[(t, + t)/7] g .
Upon setting
A =c - C (65)
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Ny, (v) ' V1 - vy ) e
K, (v,n) Ny, (v) Npp(v) b -1 V; -v? Vf - L2 Nu(V) Ny(0) £ - v 9
and

Nj,(v) % . Vf - v V; 5 CZ a,(€) );dc]
% B >\[NU(U) Na,(v) ek EI, vi - vk EE N (v) Ngo(€) € - v

(67)

Eq. (60) becomes
By(v) - f_i Ki(v,n) By(n) dn = Fy(v), (68)

where the kernel K,(V,7n) is bounded. The interchange of integration to obtain
K,(v,n) is legitimate, although the integrals in Eqs. (66) and (67) are to be
understood in the sense of Cauchy's principal value. Explicit equations for
K, (v,7) and F(v) are derived in Appendix A.

To give Eq. (61) in explicit form, we write Eq. (62) as

£(v) = Afa,(v) + jo‘ % (v,n) By(n) an], (69)

where

cosh(t,/1) cosh(t,/v) Vtanh(t,/n) - 7 tanh(t,/v)

N = G R 5/ nt -2 ;

(70)

and a,(v) and X are given by Egs. (63) and (65), respectively. The kernel
of the integral equation becomes

1
Ny, (v) f e V—g -8 v1(&:n) (s
Hiyim) = N (V) Npp(v) e A o v3-v¥ul g2 Ni(v) Npp(l) 2 - 02 -
(71)
and F,(V) becomes
le('l/) : Vf o vz U: - CZ O’-I(C) 2
- Le e XI:NU(V) N, (v) ) -2 0 vi-vi vt o g2 Ny (v) Npa(8) £2 - o2 dC].

(72)



Hence Eq. (61) can be written as
1
Byw) - 1 [* Ea(vm) Bafn) an = Ga(¥).

The remarks after Eq. (68) apply here as well.
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VII. REFORMULATION OF CRITICALITY CONDITIONS FOR
c; < 1 AND ¢, >1 AND SUGGESTED USE OF EQUATIONS

For computational purposes, one prefers to deal with real numbers.
If we restrict c) to a value less than one, and c, to a value greater than one,

then after some algebraic manipulations, Eq. (39) becomes

ta

vV . t) t, ty . i
—— | ¥ = = h== =
f p I z|z [l z' Sin lcos T_[Z V) cos lsmT—]--Z ]

B1(n)

: - [val L -2 in o2 sh—tl T dn
= i - co .
TR 2 |:VZ Fin n cos v, s v, 7 |cosh (t]/’f)) (A
9 74

Equations (73) and (68) already contain only real arguments under these
assumptions. Therefore, if we assume values for c;, c;, and t;, we can
follow the outline in Table I for finding the value of t;, which we consider
the critical parameter, and for evaluating the flux and criticality condition.

Table I

GENERAL OUTLINE FOR NUMERICAL EVALUATION
OF FLUX AND CRITICALITY CONDITION

Step Operation Ref. Eq.
1 Determine ¥, and ¥,. Use Fig. 2 (5)
2 Assume B; = 0
3 Determine t;. Use Fig. 3 (74) and (84)
4 Determine G;(V) or F,(v) (72) or (67)
5 Determine improved B,(v) (73) or (68)
6 Determine improved value of t,; (74)
il If t; is not sufficiently accurate, repeat
steps 4, 5, 6, 7. Otherwise continue with
step 8.
8 Determine A,(v)/%,. Choose convenient 3, (38)
) Determine %z (31)
10 Determine A,(v) (32)
11 Determine aii and Ax(V) for i = 1,2 (26,27)
12 Determine y; and y, (37)
13 Determine ¥;(x, u) fori = 1, 2 (2,3,4,6)




VIII. THE SPECTRUM OF THE Pp-APPROXIMATION

This section will be devoted to a comparison of our method with the
well -known method of spherical harmonics.

We assume [see Ref. 1, Eq. (19b)]

2m+ 1

Y(xop) = ==— Fm(x) Pm(K- (75)
m=0
We can write in the Pp-approximation for ¥(x,H),
& x/os
e Z A;viHp, (vj) e LTRSS S o P R (76)
§

where the Vj's are the roots of the characteristic equation
(1-c)v if 0

Lo o 2

2 by 3
= Q.
m (2m+1l)v m+l
»
n (2n+l)v n+l
0
(77)
The Hm(vj)'s are determined by the recurrence formulas [see Ref. 1,
Eq. (32a)]
H_1 = 0, Ho = 1;
mH,,_, + (2m+1) v;Hmy + (m+1) Hpy, = 0o m = 0,1,2, ..., n-1,
(78)

and the coefficients Kj are determined from the boundary conditions.
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Hence, we can write, for the Pp-approximation of Eq. (781

n
Yx,p) = Z chbj(p,vj) ex/vj, (79)
1=
where
o Zm + 1 BT {0 (80)
o= 3 I ) v o)
m=0

This is formally the discrete analog to the representation of Eq. (2) that
one would obtain if one expanded eigenfunctions ¢j(l-i,V) in the first n
Legendre polynomials, insert them in Eq. (2), and collect similar terms.

The characteristic equation, Eq. (77), was solved with the aid of a
computer for two specific values,

e =0 010235923
and
cp = 1.020497037.

These values were chosen to coincide with the arbitrary choice of v; and v,
used in the numerical example described in Section X. Due to round-off
errors, it was necessary to use many significant digits. Table II lists the
discrete spectrum for various P, -approximations for both c; and c,. The
value of v, = 2.0 was not obtained until Ps, while the corresponding value
of 3 = 4i was obtained in the P4-approximation as 3.99991i, with no
improvement through P,,.

Table II
DISCRETE SPECTRUM OF P,-APPROXIMATION

Discrete Spectrum, +

P, -approximation, n cz = 1.020497037 c; = 0.91023923
i 4.03259 i 1.92706
2 3.99939 i 1.99505
3 3.99992 i 1.99964
4 3:99991 1 1.99997
) 3.99991 i 2.00000
6 3.99991 i 2.00000
7 3.99991 i 2.00000
8 3.99991 i 2.00000
2 3.99991 i 2.00000

10 3.99991 i 2.00000
11 3.99991 i 2.00000
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Tables III and IV give the eigenvalues corresponding to the continuous
It is evident from the pattern that ever-increasing

spectrum for c; and Cz.

Pp-approximations

are required to span the continuous spectrum -1=v=+].

Table III

CONTINUOUS SPECTRUM OF Pp-APPROXIMATION
FOR ¢, = 0.92023923

Continuous
Spectrum

+

L

10

0

0
0
0
0
0
0
0
0
0
0
0
0
102
0
0
0
0
0
0
0
0
0
0
0
0

.000000
.141314
.172143
.220028

.304233
.306859
#a19513
.413137

.488687
.495178
.497039
.585367

619943
653053
01039
.704899

0164919
.807049
.808691
.841494

.866271
.902312
.925730
.941743

.953148
.961544

*k

*x

*

*

* %

*x

*k

* K

*k

*k

* %

*k
*x

*k

*k

*k

* %

* X

* ok
*k
*k

* ¥ *x * %

*k

* %

*k

* %
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Table IV

CONTINUOUS SPECTRUM OF P,,-APPROXIMATION

FOR c, = 1.020497037

Continuous
Spectrum

+

Ll

10

.000000
»143518
.175402
.225304

311774
.314057
.386750
.418696

.504548
.506454
25 285
.592413

.630010
6593173
.713245
.717818

.771681
.814150
.818021
.845921

WBi5523
.907274
.929251
.944324

.955095
.963047

>0 ===l — = R o B > o S = 0 e il Eiles ) e B8 e Dl e Pl i e JE = 8 e Ji o = Rl o Y

* %

*k

* %

* %

*x

*%

*%

* %

* %

* % * % * %

*k
*k

*k
* %

*k
* %
*%

* %

*k
* %

* ¥

* %

*%
* %
*k
*k

* ¥

IX. CRITICALITY CONDITION FOR P,

From Eqgs. (26) and (27) of Ref. 1, we
condition for the P)-approximation as*

-APPROXIMATION AND

COMPARISON WITH RESULTS OF SECTION VII

can read off the criticality



27

(1/v,) cosh (1/71) t; sinh (1/v,) t,
+ (1/v)) cosh (1/v,) t; sinh (1/m) t, =0,
1% = 301-cy),  1/vE = 3(1-c2)s s

where appropriate changes have been made to conform with the notation of
this paper. A comparison with the results of Section VII reveals that Eq. (81)
is identical to the criticality condition of Eq. (74) if we set By(v) = 0.

If we solve for cij, we obtain

¢ = 1 - (1/v)%/3. (82)
On the other hand, Eq. (5) yields, upon expansion,

ci = 1 - (1/v)%/3 - 4(1/v5)*/45 - ... (83)

Hence, the approximations improve with increasing V; or, equivalently, as
ci approaches the value of one.

Equation (74) therefore provides a means of accurately estimating
the error of the approximate solution.

X. NUMERICAL EXAMPLE

Let us assume that the values of ¢y, cz» and t, are specified. The
values of ¥; and V, can then be determined by Eq. (5) or a set of curves as
shown in Fig. 2. If we make the following substitutions in Eq. (74):

wos l vz/v,|, v = |t,/v1|. ke |tz/v2|, (84)

and set B,(¥) = 0, we obtain, as a first-order approximation of the
criticality condition,

(85)

cosh v sin w - u sinh v cos w = 0,

or

(86)

w = arctan(u tanh v).

This is a convenient formula for plotting curves of w versus v for the
parameter u. A few of these are plotted in Fig. 3. These curves provide

a quick way of determining v and consequently tj.
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w

Fig. 3. First-order Approximation
of Criticality Condition

As an example, let us select the following values:

c; = 0.91023923,

cp = 1.020497037,

and
tia= 2.0,

We easily determine V; and ¥, from E(i (5)

to be +2.0 and +4.0i, respec-
tively. With these values, we find w =

0.5, and from Fig. 3 for the curve
u = 2, we obtain the corresponding value of 0.28 for v, Hence, t; = 0.56.



With this value of t1,
H,(v,n). It is easy then to calculate B,

the results.

T G, (v)
B,w)

0.06
Tc_) H,(0,7)
= 005F
T
Z
_ 004}
x
3- 0'03-
[
z vy H,(9,7)
-

001

0 o1 oz 03 o4 05 06 o7 o8 09 10
v
Fig. 4. The Functions Gy(v), By(v),
and H,;(v,7n) for Various
Values of v for t; = 0.54
H(v)

This gives a slightly higher value tha
To verify this, let us solve for a lpwer bound of B,(v).
are both positive and A is negative,
If we substitute G,( v) for By(V)

procedure.
H,(v»n) and

1
=/ H,(v,n) dn.
0

Gy(v)

positive and consequently less than G,(V).

in Eq. (68), we obtain a lower bound for B;(V).

_Bl(V) =

Iterating, we obtain a second up

a first upper bound]:

B = - |x|f‘ Hy(vim) Buln) dn + Gi(v).
0

If we take the difference of the two estimates,

1
: lef Hy(v 1) Gu(n) dn + G
0

we may now proceed to calculate a;, vy, G,(v), and
(v) and make use of Eq. (74) to check

Alternatively, these
values may be determined for
a number of values of t;. Then
we plot the left- and right-hand
sides of Eq. (74). The inter-
section determines the exact
value of t;.

Figure 4 represents
the plots of Gy(v), Hy(vm), and
By(7), a lower limit for B,(v)
for t; = 0.54. The value of
B,(v) was determined by the
use of the simplified formula

G,(v)

B,(v) = I_-THW’(B”

where

n would be obtained by an iterative

Since
B,(v) must be

We may then write

(88)

per bound for B,(¥) [G1(v) being considered

(89)

the result is

1
1B.(v) - Bi(W| = + lklf Hl(v.n)[G;(n)—gl( n)]dn.
0
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Since |Gy(V) - By(¥)| = 0.003785 and maximum value of H is 0.54, the
maximum difference between the upper and lower bounds of B,(V) is

IBy(v) - By(¥)| < 0.11(0.54) (0.003785) < 0.00023.

The error is consequently less than 0.5% for v < 0.8. For
v > 0.8, By(v) approaches G;(v), and both are identically zero when v = 1.0.
Table V compares the values of B;(v) when t, = 0.54,

Table V

COMPARATIVE VALUES OF B,(v), B,(v),
AND APPROXIMATE SOLUTION FOR B,(v)

v By(Y) B,(v) B,(v)
0.0 0.06013126 0.06025902 0.0603942
0.9 0.04955709 0.04958148 0.049786

Figure 5 is a plot of the left- and right-hand sides of the "criticality
condition" Eq. (74) from which we obtain an exact value of t; = 0.5383. The
first-order approximation, which is equivalent to the P;-approximation,
gives an error of 4%.

+00I
t ),
vitlnl +Left-hand side of Eq, (74) —
of
=001
Fig5
é -002 -
3 Numerical Value of Each Side of
£ -oo3f Criticality Condition as a Func-
tion of Criticality Parameter, t,
-004 |
i i el ‘
v, +Right-hand side of g (74) —>
-0.06
-007

1 L L L
052 053 054 055 056 057
Y

XI. CONCLUSIONS

This study has shown that Case.'s method can be used to determine
the flux distribution and criticality condition for a two-region reactor cell
with reflecting boundaries. Anequation is derived that can be used to
determine the accuracyof anapproximate solution. A first-ordera
mationis shown to be equivalent to the P,-ap
harmonic method.

: pproxi-
proximation of the spherical
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APPENDIX A
Explicit Equations for K, (v, 1) and F,(v)

We consider the integrals in Egs. (66) and (67) and give explicit
expressions for them. To this end, we evaluate first the integral
; V2 - 2
2mi g(z) *a(2z)

dz (A1)

along a closed contour consisting of a very large circle around the origin,
and so deformed that all singularities of g(z) and the interval -1 to +1 are
excluded (see Fig. 6); i.e., we establish a domain where g(z) is analytic.
We assume that

g(z) = 0(z™% for |z| = =,
and
gt(z) = glz)” on (-1,+1).

We note that (V3 - zz)/xz(z) is also analytic in this domain. Hence, the
integral (Al) is equal to

the integral over the large circle in the positive direction

+ the sum of the residues of g(z) (V3 - zz)/Xz(z)

+ the integral around the slit (-1, +1) in the negative direction.
»

The first term will be negligible if we take the circle large enough. The
second term will depend on the special form of g(z).

Fig. 6

Singularities of
Integrand in (A4)




The integral for the last term is

+1 B S -1 12 2 22ile
il Va - % 1 2% 'y
e 3 [g(z) XZ(Z)] dz + Z_m_[H [g(z) "a(2) ] dz =

1 I
5 | g(z)(vz-z‘)[x;(z) -X;_-(z):, az -
Ay g s e
2 o N, (z)
because
X;(Z) - X2 (2) = imc,z by Plemelj's formula,
and

Ai(z) A7 (2) = Nu(z) by Eq. (52).

Hence, by Cauchy's Theorem,

AR 2 g(z2) (w2 - zl)}
o A ) s S e eSS IC A3
I g(¢) N (C) td 5 z ReS{ (2 (A3)

1

To evaluate Eq. (66), we consider the integral
1 Z
15 <Hle 131(517)) &
sillie 0 E A4)
[1 V- Null) E-5 " (

We write ,(¢,n) as follows [see Eq. (64)]:

pulem) =2 cosh (t,/f) cosh (t,/t) tanh (t,/n) - sinh (t,/£)
11Em 2 n-¢ sinh [(t1+tz)/c.] '

(A5)

Then,

T (2 (v-2) (A6)



The residues of the integrand in Eq. (A4) are

a) from the simple poles where

peczii= 0,
78 B(—tvlrn) V% - 'U?l'
i =57 _— E
1 2r,(v31) M (0) (AT)
b) from the simple poles where
.+ L
sinh - R 0
z
These are
Ao
zk = —, k = #1, *2, 3, (A8)
ki
Hence,
: h (t / ) 2
e g S08 el Bk s cosh (tx/zk) tanh (tl/'r)) sinh (tl/Zk)
M-zK)(zk-v) b+t cosh [(t, +1,)/2) ]
2 2
V2 - 2k 1
2 2 . (A9)
Yy = 23 )\(Zk)
We note that
cosh iz = cos z,
sinh iz = i sin z,
tanh™! (iz) =4 tan™! z,
XZ(Z) = x‘Z(_z')r
and
cosh [(t; +t2)/2] = (-1)k.
We combine ry and r_j to sk, which will be real:
(A10)

Sk = l'k . o r_k.
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After some algebraic manipulations, we obtain

= (_l)k+l |Zk|Z T)(Vﬁ - zi) cos (tz/zk)
ty + t (0 - 2z)) (V° - zf()(vi - Zi() A2(zy)

{(nv- |2y [?) cos (t1/|z]) tanh (t,/n) - |2, |(n+v) sin (tl/lzkl)}»
(Al1)

with
Aa(zi) = 1 - (cz/2) lzgel tan™ [1/2,].

We do not combine the r,,, as in (Al0) since inapplications one may des-
L echo?
ignate the vj(i = 1,2) such that v, is real. Therefore, the kernel K of

Eq. (66) is
1 N,(v) 1 -2 3
Ki(v,n) = m ﬁﬁu(vm) = CIC;ZCZ vé : Zz rvl e gl B
(66')
Similarly, Eq. (67) yields
Sifece e (1) 12§ -2 3
F(v) = m N0 a,(v) - & - [Fvl +—r-1/1 + kZ:l Sk] , (67")
where
ey T Zvl(i ;ji - cosh it,/.vl) sinh [(t, - tz)/vl],
2(vy sinh [(t, +t,)/v,]
e (v} - z§) [EeT cosh (tl/zk)
k (Zk-v)(Vi-Zf() )\z(Zk) 2

ti+t; cosh [(ti +1t,)/2, ]

[sinh (t,/vl + tz/zk) sinh (t,/vl 2t/ o)
V) -z Vi 2z i

t) + ¢,

z = 9
5 ki



_S'k = -fk + ?_k:

and
2
K A 2vylzil® V3 - zk)
5k = DT+ 9208 - 20) halzy)

cos (t,/zk) [‘Ul sin (tz/|zk|) cos (tl/Vl) = lzkl sinh (t,/V) cos (tl/izkl)l

(t) +t2) 05 - 2%)

35



36

and

APPENDIX B

Reduction of Equations for Computer Programming

To facilitate programming for numerical computation, some of the
pertinent equations were rewritten. These follow:

_ [-(v/v, tanh (t;/v,) - tanh (t;/v)] cosh (t,/v;)

1 = 0;
) [1-(v/v))?] [tanh (t,/v) +tanh (t,/v)] ol 4
al(o) Y -COSthl/Vl.

3 -(v/n) tanh (tl/’n) + tanh (tl/v) .
b TRy R
% (tl/v)cosh (t,/y)'z+ tanh (tl/v) :
hEn ) = 2[tanh (t,;/v) + tanh (t,/V)] ° s
71(0,7’)) —S(( B
Bvan)l =0, v £ 0.

The function Nji(v) defined in Eq. (12) was transformed into

civ 1+V CkV 1+v (CiV)(CkV)
: = B st +1 - — =R Bl
Nik [ > IOgl_v ][ > logl_v+1] + > T

Njk(0) = 1,

Nik(1) = o =>>Gy(1) = H,(1,1) = 0.
Equation (71) was rewritten as

N2 (V)

o Ny (V) Ngo(v) N(%n)

vi-v: 1 vz Lz y(L,m)
= Xy% - p2 N”(V)f v; e l\lIzz(z)_ CCZ mET dat.

(63')

(70")

(717)



The integral in Eq. (71') was calculated by removing the singularity.

Upon setting

e C
{(r) _¥ £z (&7 e, (B1)

PE - ' Nzz

a typical graph of which is shown in Fig. 7, the integral in Eq. (71') can

be written as
1 t V-0 4 v+ ¢
‘[ f(0) gy ot = j‘ ﬁmgrt;:dcﬁl_éf@>gr;;dc
0 0

1 e
+ ()53 db. (B2)
-fv+5 el

The first and last integrals on the right-hand side of Eq. (B2) are
straightforward and present no difficulties. Since

g

£z - y?

1

¥ 1
23C e

ey

+

o=

the middle integral on the right-hand side of Eq. (B2) can be written as

v+6 v+ v+
5 =1f £(t) Lf £€(8) q¢. B3

»

0.2 //—T

-f(g) 01—

Fig. 7. f(£)as a Function of Lforn =0.1 and t; = 0.56

Again, the first integral in Eq. (B3) presents no problems. If we subtract

and then add £(v)/2(L - v) to the last integral in Eq. (B3), we obtain
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v+0 2%} V46
! #) ;1 £(8) - £(v) ﬂ_vzf dr
Efu-é E‘Vdi_zfv-é SEN e s

The last integral in Eq. (B4) is zero when taking Cauchy's principal value.
The first integral in Eq. (B4) can be reduced by expanding f(£) in a Taylor
series about ¥; i.e.,

v+é
%f : {f'(v)+_(cz‘,”)f"<y>+(__¢;_}’)2f"'(v>+...}dc
”

3

=57 +f—8f"‘(v) o (B5)

Uponusing the secant approximation for f'(v), i.e.,

1 e
6f'(v) = s{E(v+8) - £l - 6)} - il

Eq. (B5) reduces to

v+6 3
%f } &# dq = MM\;M o 6_9 fl|l(V) o (Bé)
u-

If f"(£) is of bounded variation, we may truncate (B6) after the first term.

The numerical evaluation of the integral in Ed (719

carried out by trapezoidal integration to an accurac
form:

§ =y "y £ s € l ﬁc
e B & f N S,
/; f(ﬂ)cz_vz £ \/0 ()Qz_vzd +,[v+éf(C)C - df

V46 .
+‘/V-6 Z_(fz(ci—)—l/)dc +%[f(l’ +6) - f(v_é)], (B7)

was then
y of 1% in the following



where f(£) is given by (Bl).

Equation (72) was rewritten as

AN (v)
Gil) = N6) M) 1)
1
eV - f vi - () o (72")
v3 - VA Nu(v) J, 13 -C% NaoC) g2 -v2

The integral was evaluated in a manner similar to that of Eq. (71').
Typical graphs for the functions o4(v) and y,(v,7) and the integrand of
Eq. (72') are shown in Figs. 8 through 11.

0.8—

0.6

- ()

04

02

7 S e I D G S

(o] [N 02 03 04 05 06 ‘07 os 09 10
v

Fig. 8. ai(v), Eq. (63'), as a Function of
vfort, = 0.56and t; = 2.0

0.3

AL

0.2

Fig. 9. Yi(vn), Eq. (70'), as a Function of
v for Various Values of 7, where
t, = 0.56 and t; = 2.0
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