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English
Letters

A

§

max

Description

Area

Outer plate support and load
distribution radius

Inner plate and/or load distribution
radius

Constants of integration for variable
load over entire actual plate or
bounded by circles of inner radius
and outer plate support-load radius

Constants of integration for inner
portion of solid plate, variable load
over plate bounded by circles of inner
radius and outer plate support-load
radius

Flexural rigidity of plate,
symbolically Eha/l 2018R)

Modulus of elasticity
Uniform plate thickness

Second moment of area per unit
length, symbolically h*/12

Maximum de sonstant

Maximum be: yment constant

Maximum ber ment per unit
length
Radial bendin t per unit

length

t per unit length
load radius

Radial bending
at outer plate

Radial bending moment per unit length
at inner plate and/or load distribution

radius 4

Description

Tangential bending moment per unit

Tangential bending moment per unit
length at outer plate support-load

Tangential bending moment per unit
length at inner plate and/or load

Shearing force per unit circumfer-

Distance within plate thickness from
middle surface along a normal

Description

NOMENCLATURE
British Metric English
Units Units Letters
o cm? M¢
length
in, cm
Mta
i cm radius
M
tb
l/in. I/cm -
in. cm distribution radius
in, cm
12 Constant force
I/in. I/Cm r Radius of plate
in. cm
in, cm A%
ential length
W Deflection of plate
Ibg-in. kge-cm
S
lbf/in. = kgf/crnz
in, cm Greek
Letters
in.4/in. cm4/cm
En Radial unit strain
i Tangential unit strain
0 Tangential angle
lbf—in./in. kgf-cm/crn v Poisson's ratio
ol Maximum unit stress
lbf-in./in. kge- cm/cm
L Radial unit stress
lbf-in./in. kge- cm/cm o, Tangential unit stress
[0) Bending angle
lbf-in./in. kgf-cm/cm

Metric

British
Units Units
e Esasm oo
1bs-in./in. kgg-cm/em
1bf—in./in. kgg-cm/cm
lbf-in./in. kgf-cm/cm
lbg kg
in. cin
lbf/in. kgf/cm
gt cm
i, cm
British Metric
Units Units
in./in. cm/cm
in. cm/cm
rad
/.
i kgf/cxnz
ferv 2 2
-1n. kgf/cm
/-2
S in. kgf/cmz
rad rad
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BENDING OF CIRCULAR PLATES UNDER
A VARIABLE SYMMETRICAL LOAD

by

James C. Heap

ABSTRACT

The basic equations of deflection, slope, and mo-
ment for a thin, flat, circular plate, under a symmetrical
variable load, for a constant force divided by the square of
the radial distance, have been developed. Six cases have
been derived. The first four cases cover the variable load
acting over the entire plate, viz., (1) fixed, supported, outer
edge and fixed, inner edge, (2) simply supported, outer edge
and free, inner edge, (3) simply supported, outer edge and
fixed, inner edge, (4) fixed, supported, outer edge and free,
inner edge; and the final two cases are for a solid plate hav-
ing the acting variable load bounded by circles of an inner
radius and the outer support-load radius; i.e., (5) fixed, sup-
ported, outer edge and (6) simply supported, outer edge.

INTRODUCTION

In the design and development of the experimental apparatus for the
Argonne National Laboratory Zero Gradient Synchrotron, the deflection,
slope, and moment equations for a thin,flat,circular plate under a variable,
symmetrical, electrical force had to be derived to establish structural in-
tegrity. The effect of a variable electrical force imposed on the thin, flat,
circular plate is not presented in the
commonly used references. It was
therefore necessary to derive the
required equations,

This paper presents a treat-
ment for six cases of varying load
distribution in which constant force,
divided by the radial distance squared
(schematically delineated in Fig. 1),
acts on a thin, flat, circular plate.
In the first four cases the variable
load is assumed to act over the en-
tire actual plate; in the last two
Fig. 1. Variable Symmetrical Load cases, solid plates are considered

Distribution on Circular with a variable load over the plate

Plate; Schematic Diagram bounded by circles of inner radius




and the outer plate-load radius. The six cases are: (1) outer edge sup~
ported and fixed, inner edge fixed; (2) outer edge simply' supported, inner
edge free; (3) outer edge simply supported, inner edge fixed; (4) outer
edge supported and fixed, inner edge free; (5) outer edge SFPported and
fixed, solid plate; and (6) outer edge simply supported, solid plates

or ascertaining deflections
deflections, moments, and
quired, various dimension-
d in

A computer program was developed f
and moments. To simplify the determination of
slopes when only one or two calculations are re
less terms in the derived equations have been computed and.presente
tabular form. The maximum deflection constants for the six'cases are
graphically depicted. Bending-moment diagrams for these six cases have
been obtained for a set of parameters. The maximum deflection and :
bending-moment constants are presented in a table for rapid computations
using prescribed conditions.

SYSTEM OF UNITS

In this presentation, the unit force-mass system is used since it
provides a compromise between the absolute and gravitational systems,
and is automatically a self-containing reference system. Reference 1 con-
tains a comprehensive analysis of this system.

SUPPOSITIONS

1. The plate under consideration'is assumed to be perfectly elastic,
isotropic (modulus of elasticity and Poisson's ratio are the same in all di-
rections), and homogeneous.

2. The plate initially is flat and of uniform thickness.

3. Maximum deflection in comparison with thickness is small, say
no more than half the thickness.

4. Deformation of the plate is symmetrical about the cylindrical
axis.

5. During deformation, the straight lines in the plate initially paral-
lel to the cylindrical axis remain straight but become inclined.

6. The middle surface of the plate is not strained by bending.

7 All forces, loads, a;xd reactions are parallel to the cylindri-
cal axis.



8. Shear effect on bending is negligible, thickness limited to no
more than one-quarter of the least radial dimension.

9. Structural damping effect is neglected.

10. Temperature is uniform throughout the plate, and thermal equi-
librium exists between the plate, the surrounding medium, and the support.

THEORETICAL ASPECT

The ensuing theoretical compendium has been included with several
thoughts in mind, viz., (1) it is an abbreviated version, (2) it relates all
necessary formulas, and (3) it eliminates acquiring a reference if a quick
review is desired. The derived bending moments, slope, and deflection
equations are the ones ascribed to Grashof and Poisson (see references 2

and 3). Additional reading on the theory is contained in references 2
through 6.

The pertinent unit-strain equations, according to Hooke's law for

plane stress and the geometric relations illustrated by Fig. 2, are
Or Ot do Ot Oy ")

- . ; (1)

Ct:E--‘UE =y

Fig. 2. Bending-Deflection Relationships for
Element on Thin, Flat, Circular Plate



i i tains
Solving for the radial and tangent1a1 unit stresses, one obtai

d AW
Or:ﬂ.(_¢.+ >'

Lt
1 =02 dr T
Ey <¢ d¢>

Oy = ——|— + v .

t e T dr

i distances
If it be assumed that unit stresses are p.roportlor:ia; 1:aon:11'1eEq g -
from the middle surface, then, through use of'Figs. ch a;lr;‘e
radial and tangential bending moments per unit leng

(2)

h/

89 L%y
M, =f Gl y dA/unit length = D P o
-h/2

e ¢ do (3)
M, =f Y% dA/unit length = D (3 - vdr 5
-h/s

Fig. 3. Forces-Moments Acting on Element
of Thin, Flat, Circular Plate



where

3
D - El E Eh

L=y 12(1 -7

Summation of the moments about the center tangential axis of the element
shown in Fig. 3 gives

dM, e
IM; = 0 = Mr+—d;—-dr (r + dr)d6 - M, r d6 -ZMtdrT

dv dr dr
+(V+Edr>(r+dr)2d9+Vr2 de, (4)

where the trigonometric sine function has been assumed equal to the angle.
Rearrangement of terms and neglect of higher-order derivatives of Eq.(4)
yields

dM, M, - M;
dr * r e s

The equilibrium equation in terms of the bending angle and radius
is now ascertained by taking the derivative of the first expression in Eq. (3),
substituting this expression and the expressions of Eq. (3)into Eq. (5); thus,

d?¢ 1 dp ¢ _dfld L e SE
drZ+ r dr rt —dr[r dr (r(b)] D 2D (6)

Referring to Fig. 1, the shearing force per unit tangential length
at any radius within the load distribution region, b = r = a, is established
as

o
vV = : %Zﬂrdrzgln-{, (7)
2Tr b ;o s b

and for the unloaded region, 0 = r = b, is
WV =80 (8)

The general equations for the load-distribution region, as a con-
sequence of substituting Eq.(7)into Eq.(6)and then integrating, are
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d Bl 2 .
aklie R g Y - b)| + Cyr;
o Y D ‘{2 e - il )] g

dw By oy % Z 1] 1.+ Oz,
e e LA S = t=(n )« 4 ==l o T ’

= [0) <D [(ln b) In 5 (Inb) 5 2 z

2 2 C

v =55 [(1“§ - 1) - (wb+ %] " T QU p

The general equations for the unloaded region obtained by substi-
tuting Eq. (8) into Eq. (6) and integrating, are

d
= (mg) = Cyr;

dr
dw Cy Cs
- — et + -
Fol e ;
&
w o= - 4—“rZ-Cs,lnr+C6. (10)

If Eq. (3) is used and the derivative taken of the second expressions
of Eq. (9) and Eq. (10), the bending-moment equations for the loaded region

become
P 2 1 - . 1 f1 =~
Mo = - R )+ (152) 105 - 0nvr - J(32)]
o+ % (1+v) - CZZD (1-v);
T
e s e, r ot 1 f R
M; = I (1+v) [(lng) = (m) lng = (Inb)* + 3 (1+v)]
0 G5
== (1+v) + == (1-v), (11)

g

and the bending-moment equations for the inner region become

M, = D [%(1+,v) - (l-y)];

r2
Mes=4I) [%(IHJ) + %5 (1—.1/)], (12}

Tbe six cases presented in tabular form in the following pages
were derived by using the appropriate equations that fulfill the continuity



conditions and/or boundary conditions. The equations used in obtaining the
integration constants were the last two expressions of Egs. (9) and (10),
plus the first expression of Egs. (11) and (12). The continuity conditions
a.nd/or boundary conditions for each case are shown in the upper right cor-
ner of the tabulations. As an example, consider Case III. The boundary
conditions are

w =20 when r = a;
My =0 when r = a;

dw

- By 0 when r = b. (13)

Hence, the three equations to be solved for the constants are

0 = %—% [(m%- 1)2 -(lnb)z+%] - %az- C, Ina + Cs;
0 = - P(l+'u)[(1n%)z+ (%)m%— (Inb)? - %(LZ)]
+ %(l+v)-+D(l-V).
a
8= - % [ (Inb)? + %] + Sy 2, (14)

where the second and third expressions of Eq. (9) and the first expression
of Eq. (11) were used.

To facilitate the moment, slope, and deflection computations, vari-
ous terms in the derived formulas have been computed and are related in
Table I.

11



TABLE 1

COMPUTATION TERMS

2 2 2 2 2 2l 2 2 2 2 2

a b b b a a a a b a b a b a a

T - 1- 1+ In = ln = Ins=-1 ln = - 1 = [in v T = Le=s] In= ln— In ln

b e a2 22 o A b = 2z = &) 2z [ N ( iz) b [i=3) 2.2 3] o2 [ bl
1.0 1.00000 | 0.00000 [ 2.00000 [ oo oe [ 0.00000 |0.00000 -1.00000 | 1.00000 0.00000 0.00000 0.00000 0.50000 0.00000 0.50000 0.00000
1.1) 0.82645 [ 0.17355 | 1.82645 | 4.76190 | 5.76190 [ 0.09531 | 0.00908 | -0.90469 | 0.81846 0.07877 0.00750 0.17408 0.45386 0.04324 0.54917 0.05232
1.2 0.69444 | 0.30556 | 1.69444 [2.27273 [3.27273 | 0.18232 | 0.03324 |-0.81768 | 0.66860 | 0.12661 0.02308 0.30893 0.41436 0.07555 0.59668 0.10879
1.3 0.59172 [0.40828 | 1.59172 | 1.44928 | 2.44928 | 0.26236 | 0.06883 -0.73764 | 0.54411 0.15524 0.04073 0.41760 0.38023 0.09975 0.64259 0.16858
1.4 0.51020 | 0.48980 | 1.51020 | 1.04167 | 2.04167 | 0.33647 | 0.11321 |-0.66353 0.44027 0.17167 0.05776 0.50814 0.35049 0.11793 0.68696 0.23114
1.5 0.44444 | 0.55556 | 1.44444 | 0.80000 | 1.80000 | 0.40547 | 0.16441 .59453 | 0.35347 0.18021 0.07307 0.58568 0.32438 0.13153 0.72985 0.29594
1.6 | 0.39063 | 0.60937 | 1.39063 | 0.64103 | 1.64103 | 0.47000 | 0.22090 .53000 | 0.28090 0.18360 0.08629 0.65360 0.30128 0.14160 0.77128 0.36250
1.7 [ 0.34602 | 0.65398 | 1.34602 |0.52910 | 1.52910 | 0.53063 | 0.28157 |-0.46937 0.22031 0.18361 0.09743 0.71424 0.28076 0.14898 0.81139 0.43055
1.8 | 0.30864 | 0.69136 |1.30864 |0.44643 [ 1.44643 | 0.58779 | 0.34550 [-0.41221 | 0.16992 0.18142 0.10664 0.76921 0.26241 0.15424 0.85020 0.49974
1.9 0.27701 [0.72299 [1.27701 | 0.38314 | 1.38314 | 0.64185 | 0.41197 |-0.35815 | 0.12827 0.17780 0.11412 0.81965 0.24592 0.15784 0.88777 0.56981
2.0 0.25000 | 0.75000 | 1.25000 |0.33333 |1.33333 | 0.69315 | 0.48046 [-0.30685 | 0.09416 0.17329 0.12012 0.86644 0.23105 0.16015 0.92420 0.64061
2.1| 0.23676 | 0.77324 | 1.22676 |0.29326 1.29326 [ 0.74194 | 0.55047 [-0.25806 | 0.06659 0.16824 0.12482 0.91018 0.21758 0.16143 0.95952 0.71190
2.2 0.20661 | 0.79339 | 1.20661 |0.26042 | 1.26042 | 0.78846 | 0.62167 [-0.21154 | 0.04475 0.16290 0.12844 0.95136 0.20533 0.16189 0.99379 0.78357
2.3 | 0.18904 | 0.81096 |1.18904 |0.23310 [1.23310 |0.83291 | 0.69374 |-0.16709 | 0.02792 0.15745 0.13114 0.99036 0.19415 0.16171 1.02706 0.85545
2.4 0.17361 | 0.82639 |1.17361 |0.21008 | 1.21008 | 0.87547 | 0.76645 [-0.12453 | 0.01551 0.15199 0.13306 1.02746 0.18392 0.16102 1.05939 0.92747
2.5 [ 0.16000 | 0.84000 [1.16000 |0.19048 [1.19048 |0.91629 | 0.83959 [-0.08371 | 0.00701 0.14661 0.13433 1.06290 0.17453 0.15992 1.09082 0.99952
2.6 | 0.14793 | 0.85207 |1.14793 |0.17361 [1.17361 |0.95551 [0.91300 |-0.04449 | 0.00198 0.14135 0.13506 1.09686 0.16589 0.15851 1.12140 1.07151
2.7 0.13717 [0.86283 |1.13717 [0.15898 | 1.15898 | 0.99325 [ 0.98655 [-0.00675 | 0.00005 0.13624 0.13533 1.12949 0.15791 0.15684 1.15116 1.14339
2.8 | 0.12755 | 0.87245 | 1.12755 | 0.14620 | 1.14620 | 1.02962 | 1.06012 0.02962 | 0.00088 0.13133 0.13522 1.16095 0.15053 0.15499 1.18015 1.21511
2.9 0.11891 | 0.88109 |1.11891 |0.13495 |1.13495 | 1.06471 | 1.13361 0.06471 | 0.00419 0.12660 0.13480 1.19131 0.14369 0.15298 1.20839 1.28659
3.0 | 0.11111 (0.88889 [1.11111 [0.12500 |1.12500 [1.09861 | 1.20694 | 0.09861 | 0.00972 0.12207 0.13410 1.22068 0.13733 0.15087 1.23594 1.35781
3.1 0.10406 [0.89594 |1.10406 [0.11614 |1.11614 | 1.13140 [1.28007 | 0.13140 |0.01727 0.11773 0.13320 1.24913 0.13141 0.14867 1.26280 1.42874
3.2 | 0.09766 | 0.90234 |1.09766 [0.10823 |1.10823 | 1.16315 [1.35292 | 0.16315 | 0.02662 0.11359 0.13213 1.27674 0.12588 0.14642 1.28904 1.49935
3.3 0.09183 | 0.90817 [1.09183 10.10111 [1.10111 [1.19392 | 1.42544 | 0.19392 | 0.03760 0.10964 0.13090 1.30356 0.12072 0. 14413 1.31464 1.56957
3.4 | 0.08651 (0.91349 | 1.08651 |0.09470 |1.09470 [1.22378 | 1.49764 | 0.22378 | 0.05008 0.10587 0.12956 1.32965 0.11589 0.14182 1.33967 1.63947
3.5 0.08163 | 0.91837 |1.08163 [0.08889 |1.08889 |1.25276 | 1.56941 | 0.25276 | 0.06389 0.10226 0.12811 1.35502 0.11136 0.13950 1.36412 1.70891
3.6 | 0.07716 | 0.92284 [1.07716 |0.08361 [1.08361 |1.28093 | 1.64078 | 0.28093 | 0.07892 0.09884 0.12660 1.37977 0.10710 0.13719 1.38803 1.77797
3.7 | 0.07305 | 0.92695 |1.07305 |0.07880 |1.07880 | 1.30833 [1.71173 | 0.30833 | 0.09507 0.09557 0.12500 1.40390 0.10310 0.13489 1.41143 1.84661
3.8 | 0.06925 | 0.93075 [1.06925 |0.07440 [1.07440 [1.33500 | 1.78223 | 0.33500 |o0.11223 0.09245 0.12342 1.42745 0.09933 0.13261 1.43432 1.91483
3.9 | 0.06575 | 0.93425 |1.06575 |0.07037 [1.07037 |1.36098 | 1.85227 | 0.36098 |0.13031 008948 0.12179 1.45046 0.09578 0.13035 1.45675 1.98261
4.0 | 0.06250 | 0.93750 | 1.06250 | 0.06667 |1.06667 | 1.38629 | 1.92180 | 0.38629 | 0.14922 0.08664 0.12011 1.47293 0.09242 0.12812 1.47871 2.04993

21



CASE I Description Boundary Conditions
Outer edge supported and fixed. w = Owhenr
P Inner edge fixed. :_- D s
F} Variable load over entire actual y/
plate, g.; = Owhenr
~Ib —‘]
a
Moments
2 2
t a a R T 1-v r 1
e [(l“b) '“‘b][“lnv rz} (=5 -l75] =5 *
e, 2
M, - (‘”El - ln% (Maximum when a/b > e)
2 2
M, = ; 1+ _g'_z [b_z !] (Maximum when a/b < e)
a -b a
2 2
P a a a 1-vi b 1-v v
Sl =g ity ot [(“’E’ '"‘b][ i ] - ) +fi5) =g + nv}
M!b = VMrb; Mtl B er.
Slope
dw
dr 7
Deflection
-
w = -lag
- W

13
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CASE I Description Boundary Conditions
Outer edge simply supported. w = Owhenr = a
Inner edge free. Mo Owhenr = a
£l Variable load over entire actual Sy e M
rz plate. 4
|
ERY
~—a
Moments
2 2 3
=L e b" a a Ly Tk
i oo A (lnb] *(l' Z)(Z Z)(I“b) '14.,’[‘“1:
r a“-b
2 2 2 2
e x b a a) 1-v r
M, = z0+v -(mb) +(1+ z)(z z) ‘lnbl f—l‘v’[lng.',
r a"-b
Mmax =My, = = 1+ v) a n3) +[l-v Ly
: 4 2 .2 1+ v] 140
a -b
P a % . 1 1
M = = (1+v) & L R HEE
ta 4 TR [ ( b (1“,) ] “V)}
Slope
2 2
dw SRRy, e T 1 ey B 1+ 2
dr 4D{ (lnb] +l1nb) S l+v]+_z l-:] (ln ) 4ln§
r
Deflection
2 2 2 2
Pa x T - 2
w = = (= [mI-1 - g a a 0 a
sl U b - az)(al.bz){[lnb) * ) wg
a 2
: bt o] 2] - 5 i)
a
Pa -
Ymax " nd Z_ ay [ty a <
‘max 8D 1 #v) R (lnbl l.v](lnb) +in




cription Boundary Counditions
Outer edge simply supported. w = Owhenr = a
P Inner edge fixed. Mr = Owhenr = a
'—é Variable load over entire actual a
plate. d_‘r' = Owhenr = b

Moments
2 2
P r T v r 1 a Eaab et
Mr 2 2(11” -‘h‘;) 5 l+v| ln; o 1+v X [(lnbl P lOv) lnb 1+v
2 2
P 1 1+v a & 1 b ;.
M = 2| —] ) jof) +mg -3 (1-—- (Maximum, ¥ = 0.3)
- b2 z
o | i [ b :
T 108
2
‘Ov’i{
P S e e e [ ey [m] L-v 1
My il e 'I‘“EI 10vl "% T+v sin T+ v T+v
TP
“
Mg e,
r 2
M, (1+v) 2 L (m’]Z e g ﬁ\
sl L =% 7 G S
s le‘b a 5 B a“!
=y
Slope
b2
tom ]
dw Pr r 14w 1
dw S L I o
ar ok Gl 8 IR s bz [l-v]( b] l-vJ
{ LGP )
Deflection % :l ]
Pa rz T al ul n_) (lovl (1 ' 1 ]>
w X (lng-ll 2 -1 -k——b : "’J
T R )

1-v

b b a
( ) i 2
w = i b_i—(ln%-llz4 ZZ b 1¢w|(1n%l o\n%.
. -
Z
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A
C SE N Description Boundary Conditions
Outer edge supported and fixed. w = Owhenr = 2
. d
P Inner edge free d_;_w TR e & e
I'_z Variable load over entire actual
M = Owhenr = b

plate. A

Moments
5E n2 Lo
M, - e (el - 5 e g o
v
-1
Ma e & 1a 1 bz
T 2 1#(1+Vbz ns -3 |1-=3| |(Maximum when a/b < 3.56; v = 0.3
sl -
a
P 2
M =t s - = ik T
t 3 00 (-fmg) + () wE -
b
M =
ta
Slope
dw
dr .
Deflection
w =
w =

max




QA§E b Description Boundary Conditions

Outer edge supported and fixed. w = Owhenr = a
Solid Plate.
:—' = Owhenr = a
Variable load over plate bounded o
by circles of inner radius and outer dw
plate radius. ar Onkanz » 0

Continuity Conditions

w whenr = b
dw
= inner portion of plate
Mr same as outer portion
Inner portion ot plate, r = U to r = b
Moments
2 2!
Mo M = 2 e -md 4L b B ovaximuns when a/be 6,55 vix 0;3)
r t rb tb 4 bl b 2 i(’.
Slope
dw Pz Ll bZ
v, - 4—D“m§] “inEes (1.—2)
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CASE 1[ Description Boundary Conditions
Outer edge simply supported. w = 0 whenr = a
P Solid Plate. Mr = 0 whenr = a
?5 Variable load over plate bounded A
by circles of inner radius and outer o = 0 whenr = 0
plate radius.
I Continuity Conditions
# w whenr = b
; ;;;7 dw "
= inner portion of plate
b=
M same as outer portion
— T

Inner portion of plate, r = 0 to r = b

2

Moments
% sy 3 P - 11-v
T o e e e Y fi=g) "2 1+vlll-—2
Slope
d P e - £
CRR | IR TR S|
a
Deflection
Tz 2| 2 . 2 2 2z
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e N R R N B
a a
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o 2 P 2 2
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% a
s e o i 2 2
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v =3 0-w Zlni-(l-—z)
a
Slope
el Bl e [T e - 2
ar 41)[ fng) + flng] +mg + e RLE ";(1"_ '% “;:)(“:—z)]
Deflection
y Pa’ 2 2 2 2 2
R X [ .(1..3.1]].f_z{lngp(].:_z.[(g;v n




DESIGN CONSIDERATIONS

Normally, the maximum deflection and the maximum bending mo-
ment are the major design criteria. For these six cases, the maximum
deflection can be represented by a formula of the type

Winagx =okg Pa?/EX®, (15)

The maximum bending moment in all six cases can be expressed by the
form

Mmax = km P, (16)

where "maximum" signifies magnitude only, or maximum absolute value.

Figure 4 depicts the maximum deflection constant for the six derived
cases for ratios of the outer plate support and load-distribution radius, to
the inner plate radius and/or load-distribution radius, from one through
four. The determination of these deflection constants is based on a Poisson's
ratio of 0.3. Numerical values of the deflection constant, calculated for sev-
eral values of the ratio a/b and v = 0.3, are tabulated in Table II.
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Since the bending moment must be an absolute maximum in deter-
mining the maximum stress, location and magnitude of the bending moment
are a prerequisite. Because of the complexity of the moment equations,
and because Poisson's ratio depends upon the material and related param-
eters, only the absolute maximum bending moment of Case VI could be
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verified by the customary mathematical procedures. Theoretically, v
Poisson's ratio can have a value from zero to 0.5; e.g., Poisson's rat.lo 1Sd
approximately zero for cork, and nearly 0.5 for materials like paraffin an

rubber.

TABLE II

MAXIMUM DEFLECTION AND MOMENT CONSTANTS WHERE v = 0.3

Case Case II Case III Case IV Case V Case VI

e kd km kd km kd km kd km 1(cl km kd km

1.5| 0.009 | -0.049 [ 0.693 | 0.273 | 0.041 | 0.094 | 0.025 | -0.072 | 0.041 -0.064 | 0.309 | 0.076
2.0 0.057 | -0.132 | 1.591 | 0.565 | 0.254 | 0.287 | 0.148 | -0.185 | 0.159 [ -0.159 | 0.827 | 0.212
2.5| 0.141 | -0.215 | 2.326 | 0.857 | 0.605 | 0.510 | 0.344 | -0.287 | 0.304 | -0.248 | 1.346 | 0.360
3.0 | 0.246 0.311 | 2.912 | 1.140 | 0.993 | 0.736 | 0.538 | -0.374 | 0.453 | -0.327 | 1.827 | 0.507
3.5 0.360 0.422 3.390 1.413 1.401 0.956 0.73% -0.448 0.596 -0.397 2,263 0. 649
4.0 | 0.478 0.536 | 3.790 | 1,675 | 1.798 | 1.169 | 0.907 0.585 | 0.731 -0.459 | 2.658 | 0.785

To obtain a better insight into the bending moments for these six
cases, Figs. 5 through 10 show the radial and tangential bending moments
divided by the force constant, where a/b = 1.5 through 4.0 in intervals of
0.5, and v = 0.3. Table II lists the maximum bending moments computed.
These maximum moments are located at the outer plate radius, or the
inner plate and/or load-distribution radius, for values of a/b equal to 1.5
through 4.0 in increments of 0.5, where again Poisson's ratio is 0.3.

From these moment diagrams, numerical computations, and speci-
fied conditions, the following general statements can be made concerning
the maximum bending moment and its location:

Case I. From Fig. 5, either My, or Myp is the maximum. Equating
the absolute My, and Myp equations and solving, one finds 1n a/b =1, or
a/b e = 2T BR8N Therefore, My, is the maximum when a/b < e,
and M,y is the maximum when a/b > e.

Case II. My, yielded the maximum bending moment for all ratios
of a/b = 1.5 through 4.0 for the conditions imposed.

Case III. M_,, had the maximum bending moment for this case with
Ve= 8,

Case IV. Here the maximum bending moment must be established
according to specifications. With v = 0.3, My, is the maximum when a/b
is 3.56 or less, and My}, is the maximum when a/b is greater than 3,56,

Case V. M;, was the maximum calculated bending moment through-
out the range covered. Transition a/b ratio is about 6.55, v = 0.3,
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Calculations for plotting Figs. 5 through 10 were performed with
the CDC 3600 computer using Argonne National Laboratory program 1837/
PAD 143. For any given combination of values for v and the ratio a/b,
this program computes and tabulates the deflection constants and the radial
and tangential moments per force in all six cases where r/b ranges from
1 to the selected a/b in increments of 0.1.

NUMERICAL EXAMPLE

Determine the optimum, uniform, plate thickness, the maximum
bending moment, and the maximum bending stress of a symmetrical,
variably loaded, flat, solid, circular, copper plate where the maximum
permissible deflection is half the plate thickness. The variable load has
the form P/rz acting on a surface bounded by circles of an inner radius
and the outer edge support. Because of the construction of the outer end
edge support, the plate is considered to be simply supported. Given plate
and load specifications are: outer plate and load radius, a = 40.85 cm
(16.083 in.); inner load radius, b = 21.50 cm (8.465 in.); and load constant,
P =150 kgf (330.7 lbf). The following mechanical properties apply for the
specified copper: modulus of elasticity, E = 10.55 x 10° kgf/cmz (15.0 x
10° 1bg/in.?); and Poisson's ratio, v = 0.33.

Referring to the tabulated equations of Case VI, transposing the
maximum deflection equation, and substituting the flexure rigidity expres-
sion into the transposed equation, the following equation is ascertained for
the uniform plate thickness:

Pa2 (1 - p2 2 ) 2 1/4
e dia -y Hasy BN s f2iv\f .B% (a7)
BE it a? b 1+v a2

From the maximum bending-moment equation and the rearranged equation,

the following terms containing Poisson's ratio are first computed:

l1-v 3+v

i 0.50376; Y O 2.50376;
2+v 1A 7
ELs 1.75188; 2 = 0.33250;

2 2
3Pa2(1-v2) 3(150 kg)(40.85 cm)®(1-0.337)
ik ) B £ = 0.63426 cm®. (18)
+ 10.55 x 10° kgg/cm?

To use Table I, the ratio of the inner load radius to the outer
radius is

a/b = 40.85 cm/21.50 cm = 1.900. (19)
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Hence, using Eq. (17), computed terms, and Table I, the required
thickness is

1/4
h = {0.63426 cm* [(2.50376+0.27701)0.64185 - 1.75188(0.72299)] }

= {0.32870}"% = 0.757 cm (0.298 in.). (20)
The maximum moment becomes
M, .y = (150 kgg cm/cm)(0.33250)[0.41197 + 0.50376(0.64185)

- (1/2)(0.50376)(0.72299)] = 27.59 kgg-cm/cm. (21)

Using this obtained maximum moment, the maximum unit stress is

6(27.59 kgf-cm/cm)

i

max = 2

(0.757 cm)?

1

+288.9 kg;/cm? (4,110 1bg/in ?). (22)
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