Argonne Pational Laboratory
A FORTRAN PROGRAM TO ANALYZE
MASS SPECTROMETER ION OPTICS

by

Kurt Kaiser

LEGAL NOTICE-

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

ANL-6903
Mathematics and
Computers
(TID-4500, 35th Ed.)
AEC Research and
Development Report

ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60440

A FORTRAN PROGRAM TO ANALYZE MASS SPECTROMETER ION OPTICS

by

Kurt Kaiser

Chemistry Division

August 1964

Operated by The University of Chicago under Contract W-31-109-eng-38 with the U. S. Atomic Energy Commission

TABLE OF CONTENTS

	Page
ABSTRACT	 4
INTRODUCTION	 4
INPUT DATA	 5
PROGRAM OUTPUT	 9
SAMPLE PROBLEM	 12
REMARKS	 16
THE FORTRAN PROGRAM	 17
REFERENCES	 24

Page

19

LIST OF FIGURES

Title

No.

IV.

1.	Figure Showing the Trajectories of Two Ions through an Electromagnetic Sector Field	5
2.	Radial Section of a Magnetic Sector	6
3.	Toroidal Electrostatic Sector Field	6
4.	A Tandem Sector Field System	8
5.	Figure Illustrating the Direction and Energy Focusing Curves and the Angles these Curves Make with the Optic Axis	11
6.	100 in. Radius Double Focusing Mass Spectrometer	12
7.	First-order Approximation to the Ion Trajectories for the Argonne 100-in. Mass Spectrometer	15
8.	Fortran Program Flow Chart	18
	LIST OF TABLES	
No.	Title	Page
I.	Input Data Card Format	8
II.	Input Data for Sample Problem	13
III.	Sample Problem Output	14

Fortran Program Listing

Fortran Program Flow Chart	

A FORTRAN PROGRAM TO ANALYZE MASS SPECTROMETER ION OPTICS

by

Kurt Kaiser

ABSTRACT

A Fortran program is described for the computation of ion-optical aberration coefficients through second order for any number of tandem electric and magnetic sector fields, such as those used in multistaged mass spectrometers. Also computed are the image positions and their magnifications, the system mass dispersion, and the inclinations of the direction- and energy-focusing planes with respect to the optic axis.

INTRODUCTION

Since 1950 extensive studies have been made of the ion-optical properties of tandem electric and magnetic sector fields by Johnson and Nier, (1) Voorhies, (2) Hintenberger and König, (3) Ewald and Liebl, (4) Tasman, Boerboom, and Wachsmuth, (5) and others. These studies formed the basis for the computer program described herein, although other results were derived when needed.

This program considers ions having the following initial conditions different from those of ions which traverse the systems optic axis (see Fig. 1):

- (1) an initial angle to the optic axis $\alpha \ \mbox{in the radial direction;} \\ \alpha_z \ \mbox{in the axial direction;}$
- (2) a different velocity or energy $V = V_0(1+\beta) \text{ or }$ $E = E_0(1+\gamma);$
- (3) a different mass $M = M_0(1 + \gamma);$
- (4) an initial displacement to the optic axis δ in the radial direction; δ_z in the axial direction.

Fig. 1. Figure Showing the Trajectories of Two Ions through an Electromagnetic Sector Field. The initial displacement of ion A to the optic axis is resolved into the radial component δ and an axial component δ_z . Also, its initial direction to the optic axis is resolved into radial and axial components α and α_z , respectively.

The program calculates ion trajectories as functions of α , β , γ , δ , α_z , and δ_z . In the radial plane the trajectories are given as power series to second-order terms, and in the axial direction to first-order terms. In field-free regions the trajectories are straight lines given directly by the program output. Points along the trajectories in the sector fields can be found by subdividing the field into a number of tandem sector fields, zero distance apart, and reading out computed data for each edge of the subfields.

The electric sectors may have curved boundaries and toroidal shape, which includes cylindrical and spherical analyzers as special cases. The magnetic fields are assumed homogeneous, but can have non-normal entrance and exit, as well as circularly curved boundaries.

INPUT DATA

The input data to this program are punched on cards, one card for each field in the system. For convenience these data are divided into three types, each of which is discussed below.

TYPE I DATA: A set of parameters for each field specifying its configuration:

(1) For a homogeneous magnetic field, as shown in Fig. 2, the relevant parameters are the field radius r_m , the beam-deflection angle ϕ_m , the

radii of curvature of the entrance and exit boundaries, R', and R", and the entrance and exit angles ϵ ', and ϵ ". A radius of curvature is positive (negative) if the sector boundary is convex (concave) towards the field-free region. Consider a perpendicular drawn to the sector boundary where it intersects the system optic axis. Then the angle ϵ is positive (negative) if the optic axis is on the same (opposite) side of this perpendicular as the sector center of curvature.

Fig. 2. Radial Section of a Magnetic Sector Field. In this figure R' is positive, R" is negative, ϵ ' is positive, and ϵ " is negative.

(2) For a toroidal electric field, as shown in Fig. 3, the parameters are the radius $r_{\rm e}$, described by the optic axis, the beam-deflection angle $\phi_{\rm e}$, the radii of curvature of the entrance and exit boundaries, RI and RII, and two parameters, c and R'e, describing approximately the electric field in the neighborhood of the optic axis. Again, the radius of curvature of a boundary is positive (negative) if the sector boundary is convex (concave) towards the field-free region.

Fig. 3. Toroidal Electrostatic Sector Field.

The entrance boundary has a positive curvature with its center of curvature in the Median plane.

The two parameters c and R'e are defined as follows:

and

$$R'_{e} = \left(\frac{\partial R}{\partial r}\right)_{r=r_{e}, z=0}$$

where R is the radius of curvature of an equipotential surface near the optic axis and the other symbols are as defined in Fig. 3. The values of c and R_e^t for a general toroidal sector are discussed by Tasman⁽⁶⁾ and Albrecht.⁽⁷⁾ To first order,

$$c = \frac{r_e(a+b)}{bR_a + aR_b},$$

and

$$R_e' = \frac{R_a - R_b}{a + b}.$$

Two special types of toroidal electric fields are frequently used: the cylindrical analyzer which has c=0 and $R_e'=1$, and the spherical analyzer which has c=1 and $R_e'=1$.

TYPE II DATA: A set of parameters describing the relation of each field to its neighbors (see Fig. 4):

- (1) On the card for the first field, one enters the distance from the source slit to the first field entrance boundary (ℓ) .
- (2) On the rest of the cards for the system, one enters the distance from the exit boundary of the previous field to the entrance boundary of the field considered (d), and also whether the deflection is in the same or opposite sense as that of the previous field.
- (3) On the card for the last field in the system, one enters the distance (ℓ ") from the exit boundary to the point where the program is to calculate the aberration coefficients. Henceforth, this point will be referred to as the collector point and the plane perpendicular to the optic axis at this point as the collector plane.
- (4) On each field card enter the sequence number of each field along with the total number of fields in the system.

Fig. 4. A Tandem Sector Field System

TYPE III DATA: Digits for controlling the following program options:

- (1) For a single symmetric field, the program can calculate both the entrance and the exit distances (ℓ ' and ℓ "), so the point of first-order angle (α) focus is the collector point.
- (2) For any system of fields, the program can calculate the distance (ℓ ") from the last field to the point of first-order angle (α) focus and use it as the collector point.
- (3) The aberration coefficients can be calculated in terms of energy differences η rather than velocity differences β .
- (4) The coefficient and ray trace arrays, described under output, may be read out if desired.

A detailed listing of the data card format is given in Table I.

Table I

INPUT DATA CARD FORMAT

Card Columns	Format	Fortran Symbol	Explanation	Punched on
1-6	F6.0	Q	Field deflection angle in degrees (øe or øm)	all cards.
7-12	F6.0	R	Field radius (r _e or r _m)	all cards.
13-18	F6.0	DA	The distance from the source slit to the first field (ℓ_e^* or ℓ_m^*)	card for the first field only. Not necessary at all if 1 is punched in CC77.
19-24	F6.0	DB	The distance from the previous field to the present field (d)	all cards except the one for the first field.
25-30	F6.0	DC	The distance from the last field to the point where an aberration coefficient summary is desired (collector point) (ℓ_e^n or ℓ_m^n)	card for the last field only. Not necessary at all if 1 is punched in CC76.
31-36	F6.0	R1	The radius of curvature of the entrance field boundary (R' or $R_{\mbox{\scriptsize I}}$)	all cards that do not have a 2 or 3 punched in CC74.
37-42	F6.0	R2	The radius of curvature of the exit field boundary (R" or R_{Π})	all cards that do not have a 2 or 4 punched in CC74.

Table I (Contd.)

Card Columns	Format	Fortran Symbol	Explanation	Punched on
43-48	F6.0	El	e' indegrees for a magnetic field 0. for a cylindrical electrostatic field 1. for a spherical electrostatic field c parameter for a toroidal electrostatic field	all cards except those magnetic field cards that have ϵ ' = 0.
49-54	F6.0	E2	ε" in degrees for a magnetic field 1. for a cylindrical or spherical electrostatic field R _e parameter for a toroidal electrostatic field	all cards except those magnetic field cards that have ϵ " = 0.
55-59	5X	a the N	Not used	
60	11	19	1 in this column if the printer is to bring up a new page before doing any more printing	those cards where this option is desired.
61-66	I6	К1	The field number (fields to be numbered sequentially beginning at the source end)	all cards.
67-72	16	K2	The total number of fields in the particular system considered	all cards.
73	Il	Il	1 for a magnetic field, blank for an electric field	all cards.
74	п	12	1 if R1 and R2 (CC 31-42) are both <u>not</u> equal to infinity. 2 if R1 and R2 (CC 31-42) are both equal to infinity. 3 if R1 (CC 31-36) is equal to infinity and R2 (CC 37-42) is <u>not</u> equal to infinity. 4 if R1 (CC 31-36) is <u>not</u> equal to infinity. R1 (CC 37-42) is <u>equal</u> to infinity.	all cards.
75	11	13	1 if the deflection is in the opposite sense as the previous field, blank if it is in the same sense	all cards except the one for the first field.
76	11	14	1 if the program is to calculate the distance from the last field to the image plane which gives first-order angle focusing - this distance will be printed out (dabeled DC) and used in subsequent calculations.	card for the last field wher this option is desired.
77	II	15	1 if the program is to calculate the distance from the source to the first field - this feature can be used for a <u>single</u> symmetric field only.	field card on which this option is wanted.
78	11	16	1 if the aberrations are to be obtained in the η (energy) representation, blank for aberrations in the β (velocity) representation	all cards, blanks or ones must be used consistently throughout a system.
79	I1	17	1 for the coefficient print feature	card for field for which thi option is desired.
80	I1	I8	1 for the ray trace print feature	card for field for which thi option is desired.

Notes:

- 1. CC abbreviation for card column(s).
- 2. The distances required above may be measured in any consistent unit.

PROGRAM OUTPUT

For each field-free space this program calculates the radial displacement y to second order and the axial displacement z to first order as a function of $\alpha,~\beta,~\gamma,~\delta,~\alpha_{\rm Z},$ and $\delta_{\rm Z}.$ This is accomplished by calculating certain constants for each field, then altering the aberration coefficients by use of these constants with a subprogram.

After each field is calculated the coefficients may be read out through a program option. This feature is called the coefficient print.

If this option is elected, thirty-six coefficients are read out for each field, in the order C_1 to C_{18} , then D_1 to D_{18} . This output is labeled by C followed by the field number. Specifically, the C's and D's are defined by the following equations, where the superscript

l refers to the first field of a system, ℓ refers to the last field of a system, and N refers to the Nth field of a system:

$$\begin{split} \mathbf{Y}^{\mathbf{N}} &= \mathbf{r}^{\mathbf{N}} \left[C_{1}^{\mathbf{N}} \alpha + C_{2}^{\mathbf{N}} \beta + C_{3}^{\mathbf{N}} \gamma + C_{4}^{\mathbf{N}} \left(\frac{\delta}{\mathbf{r}^{1}} \right) + C_{7}^{\mathbf{N}} \alpha^{2} + C_{8}^{\mathbf{N}} \alpha \beta + C_{9}^{\mathbf{N}} \beta^{2} + C_{10}^{\mathbf{N}} \alpha \gamma + C_{11}^{\mathbf{N}} \beta \gamma + C_{12}^{\mathbf{N}} \gamma^{2} \right. \\ &\quad + C_{13}^{\mathbf{N}} \alpha \left(\frac{\delta}{\mathbf{r}^{1}} \right) + C_{14}^{\mathbf{N}} \beta \left(\frac{\delta}{\mathbf{r}^{1}} \right) + C_{15}^{\mathbf{N}} \left(\frac{\delta}{\mathbf{r}^{1}} \right)^{2} + C_{16}^{\mathbf{N}} \alpha_{z}^{2} + C_{17}^{\mathbf{N}} \alpha_{z} \left(\frac{\delta}{\mathbf{r}^{2}} \right) + C_{18}^{\mathbf{N}} \left(\frac{\delta}{\mathbf{r}^{2}} \right)^{2} \right] \\ &\quad + \mathbf{X}^{\mathbf{N}} \left[\mathbf{D}_{1}^{\mathbf{N}} \alpha + \mathbf{D}_{2}^{\mathbf{N}} \beta + \mathbf{D}_{3}^{\mathbf{N}} \gamma + \mathbf{D}_{4}^{\mathbf{N}} \left(\frac{\delta}{\mathbf{r}^{1}} \right) + \mathbf{D}_{7}^{\mathbf{N}} \alpha^{2} + \mathbf{D}_{8}^{\mathbf{N}} \alpha \beta + \mathbf{D}_{9}^{\mathbf{N}} \beta^{2} + \mathbf{D}_{10}^{\mathbf{N}} \alpha \gamma + \mathbf{D}_{11}^{\mathbf{N}} \beta \gamma \right. \\ &\quad + \mathbf{D}_{12}^{\mathbf{N}} \gamma^{2} + \mathbf{D}_{13}^{\mathbf{N}} \alpha \left(\frac{\delta}{\mathbf{r}^{1}} \right)^{2} + \mathbf{D}_{14}^{\mathbf{N}} \beta \left(\frac{\delta}{\mathbf{r}^{1}} \right) + \mathbf{D}_{15}^{\mathbf{N}} \left(\frac{\delta}{\mathbf{r}^{1}} \right)^{2} + \mathbf{D}_{16}^{\mathbf{N}} \alpha_{z}^{2} + \mathbf{D}_{17}^{\mathbf{N}} \alpha_{z} \left(\frac{\delta}{\mathbf{r}^{2}} \right) + \mathbf{D}_{18}^{\mathbf{N}} \left(\frac{\delta}{\mathbf{r}^{2}} \right)^{2} \right], \\ \\ &\quad Z^{\mathbf{N}} = \mathbf{r}^{\mathbf{N}} \left[\mathbf{C}_{5}^{\mathbf{N}} \alpha_{z} + \mathbf{C}_{6}^{\mathbf{N}} \left(\frac{\delta}{\mathbf{r}^{1}} \right) \right] + \mathbf{X}^{\mathbf{N}} \left[\mathbf{D}_{5}^{\mathbf{N}} \alpha_{z} + \mathbf{D}_{6}^{\mathbf{N}} \left(\frac{\delta}{\mathbf{r}^{1}} \right) \right]; \end{split}$$

In these equations r is a field radius, X^N is the distance along the optic axis measured from the exit boundary of the Nth field, and Y^N and Z^N are the displacements measured in a plane located at X^N perpendicular to the optic axis. Note that Y^N is positive on the opposite side of the optic axis from the field center of curvature, Z^N is positive if above the optic axis, and (X^ℓ, Y^ℓ, Z^ℓ) are the coordinates in image space.

At this time twelve first-order coefficients: W_1 to W_6 for the entrance boundary, and W_1 to W_6 for the exit boundary, may be printed out. These twelve are labeled by R followed by the field number. This option is called the ray trace. The W's are defined by the equations

$$Y^{N} = W_1^{N} \alpha + W_2^{N} \beta + W_3^{N} \gamma + W_4^{N} \delta$$

and

$$Z^{\mathbf{N}} = W_5^{\mathbf{N}} \alpha_{\mathbf{Z}} + W_6^{\mathbf{N}} \delta_{\mathbf{Z}}.$$

Just before the program summary a line labeled RS is read out, which contains W_1 to W_6 calculated at the collector point.

After the last field calculation has been completed, the program begins a summary calculation. This summary includes the aberration coefficients for the collector plane and other constants of the system. Eighteen coefficients B_1 to B_{18} , labeled S1, are read out. They are

defined by the equations

$$\begin{split} \frac{\gamma^{N}}{r^{\ell}} &= B_{1}\alpha + B_{2}\beta + B_{3}\gamma + B_{4}\!\!\left(\!\frac{\delta}{r^{1}}\!\right) + B_{7}\alpha^{2} + B_{8}\alpha\beta + B_{9}\beta^{2} + B_{10}\alpha\gamma + B_{11}\beta\gamma + B_{12}\gamma^{2} \\ &+ B_{13}\alpha\!\!\left(\!\frac{\delta}{r^{1}}\!\right) + B_{14}\beta\!\left(\!\frac{\delta}{r^{1}}\!\right) \!\!\!\! + B_{15}\!\!\left(\!\frac{\delta}{r^{1}}\!\right)^{2} + B_{16}\alpha_{Z}^{2} + B_{17}\alpha_{Z}\!\!\left(\!\frac{\delta_{Z}}{r^{1}}\!\right) + B_{18}\!\!\left(\!\frac{\delta_{Z}}{r^{1}}\!\right)^{2} \end{split}$$

and

$$\frac{Z^{N}}{r^{\ell}} = B_{5}\alpha_{z} + B_{6}\left(\frac{\delta_{z}}{r^{1}}\right).$$

Following the S1 readout is the last output record, labeled S2, which contains the following six constants in order;

- (1) the position of the axial focusing plane, i.e., the distance X^{ℓ} to the point where B_5 = 0;
 - (2) the system mass dispersion per $\Delta M/M$;
- (3) the radial image magnification (measured at the point of α focus, i.e., where B_1 = 0);
- (4) the axial image magnification (measured at the point of $\alpha_{\rm Z}$ focus, i.e., where B_5 = 0);
- (5) the angle ψ_{α} that the direction-focusing curve makes with the optic axis;
- (6) the angle ψ_{β} (or $\psi_{\,\eta})$ that the velocity (energy)-focusing curve makes with the optic axis.

The angles ψ_{α} and ψ_{β} (or ψ_{η}) (see Fig. 5) are defined as follows: the locus of points of direction or α focus described as an ion mass or γ is varied will be a surface in image space. The intersection of this surface with the system median plane is the direction-focusing curve χ_{α} . The slope, in degrees, of the tangent to χ_{α} at its intersection with the optic axis is ψ_{α} . The X^{ℓ} coordinate of this point is the one for which $B_1=0$. In a completely analogous manner, the velocity or energy parameters χ_{β} and ψ_{β} (or χ_{η} and ψ_{γ}) may be defined. The X^{ℓ} coordinate for the intersection of χ_{β} or χ_{γ} with the optic axis is that value which makes $B_2=0$. The angle ψ_{β} (or ψ_{γ}) is of most interest for systems which are "double focusing," that is, where B_1 and B_2 both equal zero for the same value of χ_{γ}^{ℓ} .

Fig. 5

Figure Illustrating the Direction and Energy Focusing Curves and the Angles These Curves Make with the Optic Axis. In this figure ψ_{α} is positive and ψ_{β} is negative.

SAMPLE PROBLEM

As an example of the use of this program consider the Argonne 100-in. mass spectrometer, shown pictorially in Fig. 6. This instrument consists of a 100-in.-radius, 75° spherical electrostatic analyzer, followed by a 100-in.-radius, 110° magnetic analyzer.

Fig. 6. 100-in. Radius Double Focusing Mass Spectrometer

The parameters to be used in this example were read off Fig. 6 and punched on data cards as in Table II. The program output listing is shown in Table III, in which the second S1 and S2 outputs are for the energy (η) rather than the velocity (β) representation used in the preceding output records.

The ray trace feature was used to calculate the curves plotted in Figs. 7A and 7B. For this calculation the electric and magnetic sectors were each divided into ten subfields zero distance apart. The ray trace output for these twenty fields gave enough points to plot the curves. This output takes into account <u>first</u>-order* terms only, i.e., rays an infinitesimal distance away from the optic axis. In the figures the dimensions measured perpendicular to the optic axis can be considered greatly magnified. For this reason the magnetic sector boundaries are shown at right angles to the optic axis rather than inclined as they look to rays at a finite distance away. However, the calculation does take into account the focal properties of non-normal entrance and exit from the magnetic field.

^{*}Second-order terms could easily be taken into account by calculating the curves directly from the coefficient print feature.

Table II

INPUT DATA FOR SAMPLE PROBLEM

								CO	T CODE			
PROGRAM		PROBLE	M		ORIGI	NATOR		D	ATE		PAGE	OF
	1		2	3		4		5	6		7	8
1 2 3 4 5 6	7 8 9 0 1 2	3 4 5 6 7 8	90123,4	5 6 7 8 9 0	1 2 3 4 5 6	789012	3 4 5 6 7 8	901234	5 6 7 8 9 0	123456	789012	3 4 5 6 7 8 9 0
1 1 17151.	1 11 0,01.	1 12161.18		ши	11111	1111	11111.	1 1 1 11.	11111	11111	11112	12, 1, 1, 1, 1
1 1111101.	1 1110101.		1 1 13161.	1 12141.15	1-1514171.		1 13161.15	1 1-13151.		11112	11112	1,4,1, , ,1,1
1 1 17151.	1 1110101.	1 12161.18		11111		بببب	11111.	1 1 11.	11111	11111	11112	12111111
1 111101.	1 1110101.		1 1 13 161.	1 12 41 . 15	1-1514171.		1 13161.15	1 1-13151.		11112	11112	1,4,1, ,1,
			سس							بسبنا		
				1111		1111	1111		шш.			
			шш					1111				
	11111				11111							
11111	шш		шш	1111	11111	بببنا	11111	1111	шш			шш
			ш	1111		4444						
1111			11111	1111			1111		11111			шш
				11111				11111		11111		
		11111	1111	1111		1111	1111	1111				mmn
1111		11111	1111	1111		11111	1111	11111	11111		11111	1111111
	11111	11111	1111	1111	11111	11111		1111				111111
1111						11111	11111	1111	11111		1111	1111111
											11111	1111111
							11111					111111
								7				
1 2 3 4 5 6	7 89 0 1 2	3 4 5 6 7 8	901234	567890	123456	789012	3 4 5 6 7 8	901234	567890	1 2 3 4 5 6 7	890123	3 4 5 6 7 8 9 0
	1		2	3		4		5	6		7	8

AMD-9 (9-60)

Table III

SAMPLE PROBLEM OUTPUT

C 1	1.03528933 1.03528933 -0.02614593 -0.96602072 0.76733677 -0.00004911	1 • 48236198 0 • 25881901 0 • 000000000 3 • 73205088 0 • 09591587 1 • 93185167	0.00000000 -0.00004912 0.00000000 -0.93301272	0.25881901 3.86389310 0.00000000 -0.26774917
	-0.00004911 -0.03407404 -1.25884443 0.99997631	-0.96592584 0.00000000 2.93185155 -0.23296295	-1.03534018 0.00000000 -0.24999997	3.03542511 0.00000000 0.03472601
R 1	26.8000000 26.8000000 0.0000000	0.0000000 1.0000000 0.25881901	0.00000000 103.52893304 103.52893304	1.00000000 148.23619794 0.25881901
C 2	-0.36573166 -0.43555374 -10.52564577 1.82385587 -2.26343107	-1.24278774 -1.81704510 -0.70047860 -2.17157112 -0.32902210	0.67101010 0.19775253 -2.61798160 0.57892024	0.93908818 -9.78742093 -0.16775250 -0.33628085
	1.49091663 -1.07108789 0.81198440 -3.41156817 2.62351919	5.06829209 -2.17244144 -0.74548292 9.73563290 -0.21561004	-0.0000004 -0.60531209 -1.56822031 -1.72109583	-1.09397747 12.63628107 0.0000003 -0.33287384
R 2	-103.52716495 103.52716495 67.10100965	-217.78285810 -0.08891429 0.93908818	-0.00000000 -36.57316597 -43.55537433	0.08891429 -124.27877381 -1.81704510
RS	-0.04570846 -69.79702763	-0.10561756 -2.34929325	67•10100859	0.67106371
S1	-0.00045708 -0.69797028 -10.32670959 0.98802167 -1.62066887	-0.00105618 -2.34929325 -0.88312192 0.21365894 -0.38184657	0.67101009 0.04945107 -3.00219557 0.15725176	0.67106371 -6.69153207 -0.16775250 -0.41783494
S2	-40 • 66461282 48 • 56350975	67 • 10100859 48 • 56285248	0•67072831	-0.93363020
S1	-0.00045708	-0.00052809	0.67101009	0.67106371
31	-0.66797028 -2.66548765 0.98802167 -1.62066887	-2.34929325 -0.88312192 0.10682947 -0.38184657	0.04945107 -1.50109779 0.15725176	-3.34576604 -0.16775250 -0.41783494
s2	-40.66461282 48.56350975	67 • 10100859 48 • 56285248	0.67072831	-0.93363020

A. Radial Plane

B. Axial Plane

Fig. 7. First-order Approximation to the Ion Trajectories for the Argonne 100-in. Mass Spectrometer. These plots were found by use of the ray trace feature of the program. Note that the distance in the radial and axial directions are shown greatly magnified.

REMARKS

The program described in this report is primarily for system analysis. It would be considerably more difficult to write a general computer program for system synthesis since each designer may wish to optimize different parameters. A few special syntheses of general interest have been intensively studied by groups in Germany and the Netherlands. (8)

No account is taken of the fringing fields, except for the Z or axial focusing effect of non-normal entrance into magnetic fields. In this case the fringing fields act as thin lenses with focal length equal to the field radius divided by the tangent of ϵ (defined in Fig. 2). The fringing field of electrostatic analyzers is usually eliminated by the use of Herzog end shields.(9) The effects of the magnetic fringing fields can be taken into account by finding a field without fringing effects equivalent to an actual field and using this equivalent field in the computer calculations. Some help in finding this equivalent field can be found in the paper by Coggeshall and Muskat (10)

From the discussions given in the papers listed at the beginning of this report one can see that the second-order radial coefficients depend on the radii of curvature of the field boundaries, but that the first-order coefficients and the general system properties do not. In fact, the second-order coefficients are linear functions of the reciprocals of these radii. With curved field boundaries, the ions traveling off the optic axis see slightly more or less field than those moving along the optic axis. Balestrini and White(11) have suggested the use of magnetic shims to give the same effect as the curved field boundaries. An alternative suggestion made by C. Stevens(12) is to use small coils, similar to Hemholtz Coils, at various places along the ion path in the magnetic field. These coils have the advantage that the current through them can be varied, thus allowing some "tuning" of the instrument. The following example illustrates the use of this program in planning these methods of aberration correction.

 $\underline{Solution} \colon$ Since $B_{11},\ B_{12},$ and B_{22} are linear functions of the reciprocals of the coil strengths, they can be written as

$$B_{11} = \frac{C_1}{R_1} + \frac{C_2}{R_2} + \frac{C_3}{R_3} + C_4;$$

$$B_{12} = \frac{C_5}{R_1} + \frac{C_6}{R_2} + \frac{C_7}{R_3} + C_8;$$

$$B_{22} = \frac{C_9}{R_1} + \frac{C_{10}}{R_2} + \frac{C_{11}}{R_3} + C_{12},$$

where the C's are constants, and R_1 , R_2 , and R_3 are the coil field strengths. To find the C's, set all three R's equal to infinity and obtain C_4 , C_8 , and C_{12} by use of this program. Next, take any three linearly independent sets of (R_1, R_2, R_3) and calculate the B coefficients for each set. This procedure gives three sets of three linear simultaneous equations which can be solved for the nine remaining C's. At this point we have,

$$B_{11} = \frac{71.67}{R_1} + \frac{61.09}{R_2} + \frac{2.981}{R_3} + 0.1805;$$

$$B_{12} = \frac{301.5}{R_1} + \frac{372.7}{R_2} + \frac{20.26}{R_3} - 6.140;$$

$$B_{22} = \frac{317.2}{R_1} + \frac{568.4}{R_2} + \frac{34.42}{R_3} - 9.747.$$

The magnetic field is broken into two separate fields, zero distance apart, for calculating the effects of the middle coil. Setting the B's equal to zero and solving for the R's yields a physically unrealizable result. However, the stated problem of making B_{11} = 0 and $\left|B_{12}\right|$ + $\left|B_{22}\right|$ a minimum, subject to the conditions $\left|R_{1}\right| \ge 10$, can be solved by straightforward linear programming methods. (13) The solution is R_{1} = -28.912, R_{2} = 23.528, R_{3} = -10, and minimum of $\left|B_{12}\right|$ + $\left|B_{22}\right|$ = 2.755. Other simple synthesis problems can be handled by similar methods.

THE FORTRAN PROGRAM

The program was written in "basic" Fortran through use of the most elementary forms of Fortran statements. All input-output statements are written for cards and are enclosed by lines of asterisks. This program should be easy to adapt to any computer installation. The program running time is negligible, the CDC 3600 machine at Argonne compiled the program in 35 sec and calculated about 120 fields per minute. A program flowchart (Fig. 8) and listing (Table IV) follow.

Fig. 8. Fortran Program Flowchart

Table IV

FORTRAN PROGRAM LISTING

```
IOP
                                                                                                                                    001
000
               ION OPTICS OF TANDEM ELECTRIC AND MAGNETIC SECTOR FIELDS WRITTEN BY KURT KAISER 9-63
                                                                                                                            IOP
                                                                                                                                    002
                                                                                                                                    003
                                                                                                                            IOP
                                                                                                                                    004
          DIMENSION F(2.20).C(2.18).S(18).T(2.18).W(2.6) PI=.017453293
                                                                                                                            IOP
                                                                                                                                    006
                                                                                                                                    007
C
     ****************
                                                                                                                            IOP
                                                                                                                                    008
00
       READ INPUT DATA CARD

1 READ 2.0,R,DA,DB,DC,R1,R2,E1,E2,19,K1,RK2,11,12,13,14,15,16,17,18
2 FORMAT (9F6.0,5X11,216.811)
                                                                                                                                    009
                                                                                                                            IOP
                                                                                                                            IOP
                                                                                                                                    010
                                                                                                                            IOP
                                                                                                                                    011
                                                  RESTORE PRINTER IF 19=1
                                                                                                                                    012
                                                                                                                            IOP
C
     IOP
                                                                                                                            IOP
                                                                                                                                    014
                                                                                                                            IOP
                                                                                                                                    015
                                                                                                                                    016
                                                                                                                            IOP
                                                                                                                            IOP
     69 GO TO(4.5.6.7).12
                                                                                                                            IOP
                                                                                                                                    018
                                                                                                                            IOP
                                                                                                                                    019
         P1=R/R1
       4
          P2=R/R2
G0 T0 8
                                                                                                                            IOP
                                                                                                                                    020
                                                                                                                            IOR
                                                                                                                                    021
                                                                                                                                    022
       5 P1=0.
                                                                                                                            IOP
          P2=0.
                                                                                                                            IOP
                                                                                                                                    024
          GO TO 8
       6 P1=0.
P2=R/R2
G0 T0 8
7 P1=R/R1
                                                                                                                            IOP
                                                                                                                                    025
                                                                                                                            I OP
I OP
                                                                                                                                    026
                                                                                                                                    027
                                                                                                                                    028
                                                                                                                            IOP
                                                                                                                                    029
       P2=0.
8 IF(I1) 50.39.40
                                                                                                                                    030
031
032
                                                                                                                            IOP
                              MAGNETIC SECTOR CALCULATION
-
                                                                                                                            IOP
     40 Q=PI*Q
                                                                                                                            IOP
                                                                                                                                    033
          E1=PI*E1
          E2=PI*E2
          G=COSF(E1)
D=COSF(E2)
T1=SINF(E1)/G
T2=SINF(E2)/D
P1=•5*P1/(G*G*G)
                                                                                                                            IOP
                                                                                                                                    035
                                                                                                                            IOP
IOP
IOP
                                                                                                                                    036
                                                                                                                                    037
                                                                                                                                    039
                                                                                                                            IOP
                                                                                                                                    040
          P2=.5*P2/(D*D*D)
                                                                                                                            IOP
                                                                                                                                    041
                                                     ZEES MAGNETIC
          Z1=SINF(Q)
Z2=COSF(Q)
Z3=Z1*Z1
Z4=Z2*Z2
                                                                                                                            IOP
                                                                                                                                    043
                                                                                                                                    044
                                                                                                                            IOP
                                                                                                                                    045
                                                                                                                            IOP
                                                                                                                                    046
           Z5=1.-Z2
Z6=Z1*Z2
                                                                                                                            IOP
                                                                                                                                    048
           Z7=-.5*Z3
Z8=Z1*Z5
          Z8=Z1*Z5
Z9=-.5*Z5
Z10=-.5*Z1
Z11=Z2-Z4
Z12=.5*Z11
Z13=Z4-Z3
                                                                                                                            IOP
                                                                                                                                    050
                                                                                                                            IOP
                                                                                                                                    051
                                                                                                                            IOP
                                                                                                                                    052
                                                                                                                            IOP
                                                                                                                                    053
          Z13=Z4-Z3
Z14=Z2-Z13
Z15=T1*T1
Z16=T2*T2
Z17=T2*Z16
Z18=T1*T2
Z19=T1*Z16
Z20=Z15*Z16
Z21=T2*Z15
Z22=T1*Z17
                                                                                                                            IOP
                                                                                                                                     055
                                                                                                                                    056
                                                                                                                            IOP
                                                                                                                            I OP
I OP
                                                                                                                                    057
058
059
                                                                                                                             IOP
                                                                                                                                     060
                                                                                                                            IOP
IOP
IOP
                                                                                                                                     061
                                                                                                                                     062
                                                                                                                                     063
                                                                                                                                     064
                                                    F(I,J) MAGNETIC
C
                                                                                                                             IOP
           F(1,1)=Z1
F(1,2)=Z2+Z1*T1
                                                                                                                                     066
                                                                                                                             IOP
          F(1,2)=Z2+Z1*T1

F(1,3)=Z9

F(1,4)=F(1,2)

F(1,5)=Z5

F(1,6)=Z12=Z7*Z16

F(1,7)=Z6+2,*Z12*T1+Z1*Z15+Z6*Z16+Z3*Z19

F(1,7)=Z6+2,*Z12*T1+Z1*Z15+Z6*Z16+Z3*Z19

F(1,8)=Z7+Z6*(T1+Z19)+Z15*(Z12-•5*Z2)+•5*(Z4*Z16+Z3*Z20)+P1*Z1

F(1,9)=Z8*(1,+Z16)

F(1,9)=Z3-Z6*T1+Z11*Z16+Z8*Z19

F(1,11)=Z7+•6*Z5*Z5*Z5*Z16

F(1,12)=Z9

F(1,13)=Z5*T1

F(1,14)=Z9*Z15

F(1,15)=Q
                                                                                                                             IOP
                                                                                                                             IOP
                                                                                                                                     068
                                                                                                                             I OP
I OP
                                                                                                                                     069
070
071
                                                                                                                             IOP
                                                                                                                                     072
                                                                                                                             IOP
IOP
IOP
                                                                                                                                     073
074
075
076
                                                                                                                             IOP
                                                                                                                                     077
                                                                                                                             IOP
                                                                                                                                     078
                                                                                                                              OP
           F(1.15)=Q
                                                                                                                             IOP
                                                                                                                                     080
           F(1.16)=1.-Q*T1
```

```
F(2:1)=Z2+Z1*T2

F(2:2)=-Z1+Z2*(T1+T2)+Z1*Z18

F(2:5)=Z1+Z5*T2

F(2:4)=F(2:2)

F(2:4)=F(2:5)

F(2:4)=F(2:5)

F(2:6)=Z10+Z12*T2-Z6*Z16+Z3*(P2-.5*Z17)

F(2:6)=Z10*T1+Z6*(T2-Z17-2.*Z19)+Z2*Z15+2.*Z12*Z18-Z13*Z16

1+Z1*Z21-Z3*Z22+2.*P2*(Z6+Z3*T1)

F(2:8)=Z7*(T2+Z15*Z17)-...*Z4*(Z17+Z21)+Z6*(Z16+Z18-Z20-Z22)

1-Z13*Z19+P2*(Z4+2.*Z6*T1+Z3*Z15)+P1*(Z2*Z1*T2)

F(2:9)=-Z6*T2-Z14*Z16+Z8*(2.*P2-Z17)

F(2:10)=Z1-Z2*T1+(Z3-Z2)*T2-Z16*(2.*P26-Z1)-Z18*(Z1+Z6)-Z11*Z17

1-Z14*Z19-Z8*Z22+2.*P2*(Z11+Z8*T1)

F(2:11)=-Z1+(Z7-Z5)*T2-Z8*Z16+Z5*Z5*(P2-.5*Z17)

F(2:13)=2.*(Z10*T1+Z9*Z12)

F(2:13)=2.*(Z10*T1+Z9*Z18)

F(2:14)=Z10*Z18-T1-T2

D0 55 [=1.2]

F(2:15)=1.-Q*T2

F(2:15)=1.-Q*T2

F(2:15)=1.-Q*T2

F(2:15)=1.-Q*T2

F(2:15)=1.-Q*T2

F(2:15)=1.-Q*T2

F(2:15)=2.5*F(1.10)

F(1:18)...5*F(1.10)

F(1:19)=.5*F(1.5)

F(1:19)=.5*F(1.5)

F(1:19)=.5*F(1.11)

F(1:10)=F(1:17)

F(1:10)=F(1:18)

F(1:11)=F(1:20)

F(1:20)=F(1:20)

F(1:20)=F(1:20)

F(1:20)=F(1:20)

F(1:20)=F(1:20)

F
                                                                                                                                                                                                                                                                                                                                            I OP
I OP
                                                                                                                                                                                                                                                                                                                                                                  081
082
                                                                                                                                                                                                                                                                                                                                                                  083
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                   085
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                  086
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                  088
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                  089
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                  090
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                  091
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                   092
                                                                                                                                                                                                                                                                                                                                                                  093
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  095
                                                                                                                                                                                                                                                                                                                                                                  096
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                  097
                                                                                                                                                                                                                                                                                                                                           IOP
IOP
IOP
                                                                                                                                                                                                                                                                                                                                                                  098
                                                                                                                                                                                                                                                                                                                                                                  099
                                                                                                                                                                                                                                                                                                                                                                  100
                                                                                                                                                                                                                                                                                                                                                                  101
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  102
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  103
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                  104
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                   105
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                   106
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  107
                                                                                                                                                                                                                                                                                                                                             IOP
                                                                                                                                                                                                                                                                                                                                                                  109
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  110
                                                                                                                                                                                                                                                                                                                                           IOP
                                                                                                                                                                                                                                                                                                                                                                 112
                                                                                                                                  ELECTRIC SECTOR CALCULATION
C
                                                                                                                                                                                                                                                                                                                                                                 114
              39 A=SQRTF(2.-E1)
                                                                                                                                                                                                                                                                                                                                            IOP
                           Q=PI*Q
G=SQRTF(E1)
                                                                                                                                                                                                                                                                                                                                           IOP
                                                                                                                                                                                                                                                                                                                                                                  116
                                                                                                                                                                                                                                                                                                                                                                 117
118
119
120
121
122
                           F1=Q*G
E2=E1*(1•+E2)
RE=E1*E2
                                                                                                                                                                                                                                                                                                                                           IOP
                                                                                                                                                                                                                                                                                                                                           IOP
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                          IOP
IOP
IOP
                           E2=1.+E2
B=3.*(E1-1.)-.5*RE
                            D=E1+RE
                           F2=0*A
                                                                                                                                                                                                                                                                                                                                           IOP
                                                                                                                                                                                                                                                                                                                                                                  124
                                                                                                                                                  ZEES ELECTRIC
C
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                 125
                           Z1=SINF(F2)
                                                                                                                                                                                                                                                                                                                                           I OP
I OP
                                                                                                                                                                                                                                                                                                                                                                 126
127
128
                            Z2=COSF(F2)
                            Z3=SINF(F1)
                            Z4=COSF(F1)
                            Z5=Z2*Z2
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  129
                                                                                                                                                                                                                                                                                                                                           IOP
IOP
IOP
                                                                                                                                                                                                                                                                                                                                                                 130
131
132
133
                            Z6=Z4*Z4
Z7=Z1*Z2
Z8=Z3*Z4
                            Z9=A*A
                           Z9=A*A
Z10=3.*Z9
Z11=A*Z10
Z12=Z9*Z9
Z13=3.*Z12
Z14=A*Z13
Z15=B+Z9
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                 134
                                                                                                                                                                                                                                                                                                                                           IOP
IOP
IOP
                                                                                                                                                                                                                                                                                                                                                                  135
                                                                                                                                                                                                                                                                                                                                                                 136
137
138
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  139
                                                                                                                                                                                                                                                                                                                                                                  140
                                                                                                                                                                                                                                                                                                                                            IOP
                            Z16=2.*B-Z9
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  141
                            Z17=B-2.*Z9
                           Z18=2.-3.*E1
Z19=Z18-2.*E1
Z19=Z18-2.*E1
Z20=Z5*Z17
Z21=3.*F2*(2.*8+Z9+Z12)
Z22=Z1.*Z21
                                                                                                                                                                                                                                                                                                                                           IOP
                                                                                                                                                                                                                                                                                                                                                                  142
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  144
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  145
                                                                                                                                                                                                                                                                                                                                                                 146
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                           IOP
                            Z21=Z2*Z21
                                                                                                                                                                                                                                                                                                                                                                  148
                                                                                                                                    F(I.J) ELECTRIC
C
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  149
                           F(1.1)=Z1/A
                                                                                                                                                                                                                                                                                                                                           IOP
IOP
IOP
                                                                                                                                                                                                                                                                                                                                                                  150
                           F(1.2)=Z2
F(1.3)=0.
F(1.4)=Z2
                                                                                                                                                                                                                                                                                                                                                                 151
152
153
                      F(1.4) = Z2

F(1.5) = Z2*(1.-Z2)/Z9

F(1.6) = (Z15-Z2*Z16+Z20)/Z13

F(1.7) = (Z1*Z16-2.*Z7*Z17)/Z11

F(1.6) = (Z16-Z2*Z15-Z5*Z17)/Z10

F(1.6) = ((Z13+4.*Z10+Z16)*Z1+4.*Z7*Z17-Z21)/Z14

F(1.10) = ((2.3+4.*Z10+Z16)*Z1+4.*Z7*Z17-Z21)/Z14

F(1.11) = (20.*Z15+Z13-(16.*Z15+Z16)/(2.13)*Z2-4.*Z20-2.*Z22)

1/(A*Z14)

F(1.12) = (E2*(2.*E1*Z2+Z18-Z6*Z9)/(2.*Z19)+Z2-1.)/Z9

F(1.13) = G*E2*Z8/Z19-Z1*D/(A*Z19)

F(1.14) = (0)*(Z6*Z9-Z2*Z18-2.*E1)/(2.*Z19)+E1*(Z2-1.))/Z9

1+.5*F(1.1)*P1

1F(E1) 10.11.10
                                                                                                                                                                                                                                                                                                                                                                  154
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                           IOP
IOP
IOP
                                                                                                                                                                                                                                                                                                                                                                  155
                                                                                                                                                                                                                                                                                                                                                                 156
                                                                                                                                                                                                                                                                                                                                                                  158
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  159
                                                                                                                                                                                                                                                                                                                                           IOP
                                                                                                                                                                                                                                                                                                                                                                  160
                                                                                                                                                                                                                                                                                                                                                                 161
                                                                                                                                                                                                                                                                                                                                           IOP
                                                                                                                                                                                                                                                                                                                                                                 162
                                                                                                                                                                                                                                                                                                                                            IOP
                                                                                                                                                                                                                                                                                                                                                                  164
                                                                                                                                                                                                                                                                                                                                           IOP
                                                                                                                                                                                                                                                                                                                                                                 165
                            IF(E1) 10.11.10
```

```
11 F(1.15)=Q

GO TO 12

10 F(1.15)=Z3/G

12 F(1.16)=Z4
                                                                                                                                                                                             166
167
168
                                                                                                                                                                                 IOP
                                                                                                                                                                                 IOP
                                                                                                                                                                                             169
              F(2,1)=Z2
F(2,2)=-A*Z1
F(2,3)=0
F(2,4)=F(2,2)
                                                                                                                                                                                 IOP
                                                                                                                                                                                             170
                                                                                                                                                                                 IOP
                                                                                                                                                                                             171
                                                                                                                                                                                 IOP
                                                                                                                                                                                             172
           F(2.4) = F(2.2)

F(2.5) = 2.*Z1/A

F(2.6) = Z16*(21-Z7)/Z11

F(2.7) = Z16*(1.*Z2-2.*Z5)/Z10

Z7=Z7*Z16

F(2.8) = (Z1*Z15+Z7)/(3.*A)

F(2.9) = (2.*Z16*(2.*Z5-Z2-1.)+Z22)/Z13

F(2.10) = ((2.*Z15+Z10+Z13)*Z1-4.*Z7+Z21)/Z11

F(2.11) = ((4.*Z15+2.*Z10-Z13)*Z1-4.*Z7-2.*Z21)/Z14

F(2.12) = F(1.13) - F(1.1)+.5*F(1.15)*F(1.15)*P2

F(2.13) = D*(2.*Z6-Z2-1.)/Z19+F(1.15)*F(1.16)*P2

F(2.14) = D*(2.*Z6-Z2-1.)/Z19+F(1.15)*F(1.16)*P2

F(2.14) = D*(3.*Z1*Z18/A-G*Z8)/Z19-E1*Z1/A+.5*(F(2.1)*P1

+F(1.16)*F(1.16)*P2)

F(2.15) = Z4
                                                                                                                                                                                             173
                                                                                                                                                                                 IOP
                                                                                                                                                                                             174
175
                                                                                                                                                                                 IOP
                                                                                                                                                                                 IOP
                                                                                                                                                                                              176
                                                                                                                                                                                 IOP
                                                                                                                                                                                 IOP
                                                                                                                                                                                             178
                                                                                                                                                                                 I OP
I OP
                                                                                                                                                                                             179
                                                                                                                                                                                             180
                                                                                                                                                                                             181
                                                                                                                                                                                 IOP
                                                                                                                                                                                             182
                                                                                                                                                                                IOP
                                                                                                                                                                                             183
                                                                                                                                                                                             184
      1+(1.16)*F(1.16)*P2)
F(2:15)=24
F(2:16)=-G*73
D0 56 !=1.2
IF(16) 50.59.60
60 F(1.5)=-5*F(1.5)
F(1.9)=-5*F(1.9)
F(1.10)=-5*F(1.10)
F(1.11)=-25*F(1.11)=-125*F(1.5)
F(1.11)=-25*F(1.11)=-125*F(1.5)
                                                                                                                                                                                IOP
                                                                                                                                                                                IOP
                                                                                                                                                                                             186
                                                                                                                                                                                 IOP
                                                                                                                                                                                             187
                                                                                                                                                                                IOP
                                                                                                                                                                                             188
                                                                                                                                                                                IOP
                                                                                                                                                                                             189
                                                                                                                                                                                IOP
                                                                                                                                                                                             190
191
192
                                                                                                                                                                                IOP
                                                                                                                                                                                 IOP
                                                                                                                                                                                IOP
                                                                                                                                                                                             193
       59 F(I • 17) = 0 • F(I • 18) = 0 • F(I • 19) = 0 • 56 F(I • 20) = 0 •
                                                                                                                                                                                             194
                                                                                                                                                                                IOP
                                                                                                                                                                                             195
                                                                                                                                                                                             196
                                                                                                                                                                                IOP
         9 IF(K1-1) 50.13.14
                                                                                                                                                                                IOP
                                                                                                                                                                                             198
C
                                                                         FIRST FIELD SUBPROGRAM
                                                                                                                                                                                IOP
                                                                                                                                                                                             199
       13 IF(K2-1) 50.15.16
15 IF(15) 50.16.17
17 A=F(1.2)+F(2.1)
DA=R*(-A-SORTF(A*A-4.*F(1.1)*F(2.2)))/(2.*F(2.2))
                                                                                                                                                                                IOP
                                                                                                                                                                                            200
                                                                                                                                                                                IOP
                                                                                                                                                                                            201
                                                                                                                                                                                IOP
                                                                                                                                                                                            202
                                                                                                                                                                                IOP
       16 DA=DA/R
                                                                                                                                                                                            204
                                                                                                                                                                                IOP
              DS=DA*DA
                                                                                                                                                                                IOP
              DO 18 I=1.2
C(I.1)=F(I.1)+F(I.2)*DA
C(I.2)=F(I.5)
                                                                                                                                                                                            206
                                                                                                                                                                                IOP
                                                                                                                                                                                            207
             C(1.2)=F(1.5)

C(1.3)=F(1.3)

C(1.4)=F(1.4)

C(1.5)=F(1.15)+F(1.16)*DA

C(1.6)=F(1.16)+F(1.7)*DA+F(1.8)*DS

C(1.8)=F(1.9)+F(1.10)*DA

C(1.8)=F(1.9)+F(1.10)*DA

C(1.10)=F(1.11)

C(1.11)=F(1.12)

C(1.11)=F(1.12)

C(1.12)=F(1.20)

C(1.13)=F(1.20)

C(1.14)=F(1.10)

C(1.14)=F(1.10)

C(1.15)=F(1.8)

C(1.16)=F(1.12)+F(1.13)*DA+F(1.14)*DS

C(1.16)=F(1.12)+F(1.13)*DA+F(1.14)*DS

C(1.16)=F(1.12)+F(1.13)*DA+F(1.14)*DS

C(1.18)=F(1.14)
                                                                                                                                                                                            208
                                                                                                                                                                                IOP
                                                                                                                                                                                            209
                                                                                                                                                                                IOP
                                                                                                                                                                                            210
                                                                                                                                                                                            211
                                                                                                                                                                                IOP
                                                                                                                                                                                            212
                                                                                                                                                                                           214
215
216
217
218
                                                                                                                                                                                IOP
                                                                                                                                                                                I OP
I OP
                                                                                                                                                                                IOP
                                                                                                                                                                                IOP
IOP
IOP
                                                                                                                                                                                           219 220 221
                                                                                                                                                                                           222
                                                                                                                                                                                IOP
                                                                                                                                                                                           223
       18
                                                                                                                                                                                IOP
             RB=R
W(1.1)=DA*R
                                                                                                                                                                                IOP
                                                                                                                                                                                           225
                                                                                                                                                                                IOP
                                                                                                                                                                                            226
              W(1.1)=DA*R
W(1.2)=0.
W(1.3)=0.
W(1.4)=1.
W(1.5)=DA*R
                                                                                                                                                                                IOP
                                                                                                                                                                                           227
                                                                                                                                                                                           228
                                                                                                                                                                                IOP
                                                                                                                                                                                IOP
                                                                                                                                                                                           231
232
233
234
235
              W(1.6)=1.
                                                                                                                                                                                IOP
      DO 61 J=1.6
61 W(2.J)=R*C(1.J)
W(2.4)=W(2.4)/R
                                                                                                                                                                                IOP
                                                                                                                                                                                IOP
                                                                                                                                                                                IOP
                                                                                                                                                                                IOP
                                                                                                                                                                                           236
                                                                                                                                                                                          237
238
239
240
      **************
                                           PUNCH COEFFICIENT PRINT OR RAY TRACE
                                                                                                                                                                                IOP
     30 FORMAT (///)
                                                                                                                                                                                IOP
                                                                                                                                                                                IOP
                                                                                                                                                                                IOP
                                                                                                                                                                                           241
                                                                                                                                                                               IOP
                                                                                                                                                                                           242
                                                                                                                                                                                IOP
                                                                                                                                                                                           244
                                                                                                                                                                               IOP
                                                                                                                                                                                           245
                                                                                                                                                                                IOP
                                                                                                                                                                                           246
                                                                                                                                                                               IOP
                                                                                                                                                                                           247
                                                                                                                                                                               IOP
                                                                                                                                                                                           248
      21 RA=R
                                                                                                                                                                               IOP
                                                                                                                                                                                          249
              IF(K2-K1) 50.23.1
                                                                                                                                                                               IOP
                                                                                                                                                                                           250
```

```
C
                           MORE THAN 1 FIELD COMBINATION SUBPROGRAM
    MORE THAN 1

14 DO 44 J=1.6

W(1.J)=R*C(1.J)+DB*C(2.J)

IF (13) 50.44.82

82 IF (J-5) 83.44.44

83 W(1.J)=-W(1.J)

44 CONTINUE

W(1.J)=W(1.J)-W(1.J)
                                                                                                 IOP
                                                                                                        251
252
253
                                                                                                 IOP
                                                                                                  IOP
                                                                                                        254
   IOP
                                                                                                        255
                                                                                                 IOP
                                                                                                        256
        W(1.4)=W(1.4)/RB
W(1.6)=W(1.6)/RB
U=RA/R
                                                                                                 IOP
                                                                                                        257
                                                                                                 IOP
                                                                                                        258
                                                                                                 IOP
                                                                                                        259
                                                                                                 IOP
                                                                                                        260
                                                                                                        261
                                                                                                 IOP
                                                                                                        262
                                                                                                 TOP
                                                                                                        263
                                                                                                 IOP
                                                                                                        264
                                                                                                 IOP
                                                                                                        265
                                                                                                 IOP
                                                                                                        266
267
                                                                                                 IOP
                                                                                                 IOP
                                                                                                        268
                                                                                                 IOP
                                                                                                        269
                                                                                                 IOP
                                                                                                        270
                                                                                                 IOP
                                                                                                 IOP
                                                                                                        272
                                                                                                 IOP
IOP
IOP
                                                                                                        273
                                                                                                        274
                                                                                                        275
                                                                                                 IOP
                                                                                                 IOP
                                                                                                        278
                                                                                                 IOP
                                                                                                        280
                                                                                                 IOP
                                                                                                        281
                                                                                                 IOP
                                                                                                        282
                                                                                                 IOP
                                                                                                        283
                                                                                                 IOP
                                                                                                        284
                                                                                                        285
                                                                                                 ÎOP
                                                                                                        286
                                                                                                 IOP
                                                                                                        287
                                                                                                 IOP
                                                                                                        288
                                                                                                 IOP
                                                                                                        290
                                                                                                 IOP
                                                                                                        291
                                                                                                 IOP
                                                                                                        292
                                                                                                 IOP
                                                                                                        294
                                                                                                 IOP
                                                                                                        295
                                                                                                        296
                                                                                                 IOP
                                                                                                 IOP
                                                                                                 IOP
                                                                                                        298
                                                                                                 IOP
                                                                                                        300
301
302
                                                                                                 IOP
                                                                                                 IOP
                                                                                                 IOP
                                                                                                        303
                                                                                                        304
                                                                                                 IOP
                                                                                                        305
                                                                                                        306
                                                                                                 IOP
                                                                                                        308
                                                                                                 IOP
                                                                                                        309
                                                                                                        310
                                                                                                 IOP
                                                                                                        311
                                                                                                 IOP
                                                                                                        312
        GO TO 20
                                                                                                 IOP
                                                                                                        313
C
                                               SUMMARY
    23 S(1)=-RA*C(1.5)/C(2.5)
                                                                                                 IOP
                                                                                                        315
   S(3)=1./C(2.1)
S(4)=1./C(2.5)
IF(15) 50.32.31
32 IF(14) 50.33.31
31 DC=-RA*C(1.1)/C(2.1)
                                                                                                 IOP
                                                                                                        316
                                                                                                 IOP
                                                                                                        318
                                                                                                 IOP
                                                                                                 IOP
                                                                                                        319
                                                                                                        320
                                                                                                 IOP
                                                                                                 IOP
                                                                                                        321
    322
                                        PUNCH DC
                                                                                                 IOP
    IOP
                                                                                                        324
                                                                                                 IOP
                                                                                                        325
                                                                                                       326
                                                                                                 IOP
                                                                                                        327
   33 D0 64 J=1.6
64 T(1.J)=R*C(1.J)+DC*C(2.J)
T(1.4)=T(1.4)/RB
                                                                                                 IOP
                                                                                                        328
                                                                                                 IOP
                                                                                                        329
                                                                                                 IOP
                                                                                                        330
       T(1:4)=T(1:4)/RB
T(1:6)=T(1:6)/RB
DC=DC/RA
S(7)=C(1:3)+DC*C(2:3)
S(8)=C(1:10)+DC*C(2:10)
S(9)=C(1:11)+DC*C(2:11)
                                                                                                 IOP
                                                                                                        331
                                                                                                 IOP
                                                                                                       332
                                                                                                        334
                                                                                                 IOP
                                                                                                 IOP
                                                                                                        335
```

	IF(5(8)) 53.54.53 54.5)=90. 5(6)=90.	I OP I OP	336 337 338
	GO TO 57 53 S(5)=ATANF(-C(2:1)*S(7)/S(8))/PI S(6)=ATANF(-C(2:2)*S(7)/S(9))/PI	I OP I OP	339 340 341
	57 DO 35 J=1•18 35 C(1•J)=C(1•J)+DC*C(2•J)	IOP	342
С	S(2)=RA*C(1,3)	IOP	344
000	**************************************	I OP	346 347 348
	66 FORMAT(/4X4H RS 4F18.8/8X2F18.8) 67 FORMAT(/4X4H S1 4F18.8/(8X4F18.8)) 68 FORMAT(/4X4H S2 4F18.8/8X2F18.8)	IOP	349 350
	IF (18) 50.51.49 49 PUNCH 66.(T(1,J).J=1,6)	IOP	351 352
	51 PUNCH 67 (C(1,J),J=1,18) PUNCH 68 (S(J),J=1,6)	IOP	353 354
00	**************************************	IOP	355 356
	GO TO 1 50 STOP	I OP I OP	357 358 359
	END	100	239

REFERENCES

- E. G. Johnson and A. O. Nier, <u>Angular Aberrations in Sector Shaped Electromagnetic Lenses for Focusing Beams of Charged Particles</u>, Phys. Rev. 91, 10 (1953).
- H. G. Voorhies, Second-order Aberrations in Sector Shaped Electromagnetic Analyzers, Rev. Sci. Instr. 26, 716-717 (1955); 27, 58 (1956).
- 3a. L. A. König and H. Hintenberger, Über die Abbildungsfehler von beliebig begrenzten homogenen magnetischen Sektorenfeldern, Z. Naturforsch. 12a, 377-385 (1957).
- 3b. H. Hintenberger and L. A. König, Mass Spectrometers and Mass Spectrometers and Mass Spectrometery (Ed. by J. D. Waldron), Pergamon Press (1959).
- H. Ewald and H. Liebl, <u>Die Bildfehler des Toroidkondensators</u>,
 Z. Naturforsch. 12a, 28-33, 588 (1957).
- 4b. H. Liebl, Die Schnittwinkel der Richtungs- und Energiefokussierungskurven bei doppelfokussierenden Massenspektrographen, Optik 16, 19-26 (1959).
- 5a. H. A. Tasman, A. J. H. Boerboom, and H. Wachsmuth, <u>Calculation of the Ion Optical Properties of Inhomogeneous Magnetic Sector Fields</u>, Z. Naturforsch. <u>14a</u>, 121-129, 816-827 (1959).
- 5b. H. A. Tasman, <u>Ion Optics of Mass Spectrometers with Virtually Enlarged Radius</u>, PhD. Thesis, Leiden (1961).
- 6. H. A. Tasman, op. cit., 5b, 64-66.
- R. Albrecht, <u>Das Potential in doppelt gekrümmten Kondensatoren</u>,
 Z. Naturforsch. <u>11a</u>, 156-163 (1956).
- H. A. Tasman, op cit., <u>5b</u>, Ch. 7. H. Hintenberger and L. A. König, op. cit., <u>3b</u>: H. Liebl and H. Ewald, Z. Naturforsch. <u>14a</u>, 199-200 (1959).
- 9. R. Herzog, Ablekung von Kathoden- und Kanalstrahlen am Rande eines Kondensators, dessen Streufeld durch eine Blende begrenzt ist, Z. Physik 97, 596-602 (1935).
- N. D. Coggeshall and M. Muskat, The Paths of Ions and Electrons in Non-uniform Magnetic Fields, Phys. Rev. 66, 187-198 (1944).
- 11. S. J. Balestrini and F. A. White, Workable Magnetic Shim to Correct Second-order Aberration in a Mass Spectrometer, Rev. Sci. Instr. 31, 633-636 (1960).
- C. Stevens, Correction Coils for Second-order Focusing with the Argonne 100 inch Radius Mass Spectrometer, Paper No. 48, meeting of ASTM Committee E-14 on Mass Spectrometry, June 1962.
- A good introduction to this subject is given in the book by G. Hadley, <u>Linear Programming</u>, Addision-Wesley (1962).

ARGONNE NATIONAL LAB WEST

3 4444 00009054 8