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NOMENCLATURE
English British Metric English Brit'ish i
Letters Description Units Units Letters Description Units nits
a Outer plate support radius 1% cm Mta Tangential bending moment per unit . ;
i length at outer plate support radius 1bf—1n./1n. kgf-cm/cm
b Radius of uniform load on inner ;
concentric circle and/or inner M¢p Tangential bending moment per unit ; h
plate radius in. cm length at inner plate radius 1bf—in./1n. kgf—cm/cm
d Radius of uniform load on con- 1= Constant force Ibg kg¢
centric circle sl ) cm R e et Toad ik o
C, Constants of integration for ou?:er l/in. l/cm g Senias of plate o 2%
portion of plate, bounded by uniform .
C, . : in. cm E ; 3
load on concentric circle and outer v Shearing force per unit circum-
C; plate support radius. in. cm ferential length 1bf/in. kgf/Cm
Cy Constants of integration for inner 1/in. 1/cm W Uniform load on a concentric circle
i iform B
Cs por;non of plati, .bourldceld l;);duril;ner o s of plate 1bg kg
Fa = Canen LT : w Deflection of plate ins (chaet
Ce plate radius in. cm
: i if
D Flexural rigidity of plate, symbolically Nl ?eflecttlo.n Of_ pl?te at uniform load on .
Eh’/12(1 - v?) lb¢-in. kgf-cm DLCeltLOHC LIS in. cm
foge ; Greek British Metric
Modulus of elasticit 1bs it kgf/cm?
A 2 : i gf/ Letters Description Units Units
h Uniform plate thickness 13 cm
v Poi ] i
k Deflection conatznt oisson's ratio
i i 2
kq Maximum defle: ‘i :onstant 9 max Maximum unit stress 1bg, kgf/cm
o Maximum bend: ment constant e L it R g L by, kgs/cm?
i Radial bending- @ :i  at constant s Radial unit stress at inner plate radius 1bg kgf/CmZ
kt "Tangential benc . .- >ment constant S b B e lbg kgf/cmz
Nl Maximum bendi': : nent per unit (0] Bending angle — o
length lbg-in. /in. kgf—cm/crn
M, Radial bending ! t per unit length lbf-in./in. kgf—cm/cm
Mra Radial bending moment per unit length
at outer plate support radius lbf—in./in. kgf-Cm/Cm
M.p Radial bending moment per unit length
at inner plate radjus lbf-ln./m. kgf—cm/Cm
M¢ Tangential bending moment per unit Py
o lbf-m./m. kgf-cm/cm

length



BENDING OF CIRCULAR PLATES
UNDER A UNIFORM LOAD
ON A CONCENTRIC CIRCLE

by

J. C. Heap

ABSTRACT

The basic equations of deflection, slope, and moments
for a thin, flat, circular plate subjected to a uniform load on
a concentric circle were derived for four generalized cases.
Fromthese generalized cases, six simplified cases were de-
duced. The four generalized cases have the uniform loadact-
ing on a concentric circle of the plate between the inner and
outer edges, withthe following boundary conditions: (1) outer
edge supported and fixed, inner edge fixed; (2) outer edge
simply supported, inner edge free; (3) outer edge simply sup-
ported, inner edge fixed; and (4) outer edge supported and
fixed, inner edge free.

INTRODUCTION

Analyses of thin, flat, circular plates subjected to bending were es-
sential in the design and development of experimental equipment for the
Argonne National Laboratory Zero Gradient Synchrotron. Plate thickness
was minimized since the absorption of high-energy particles depends upon
the thickness and material.

-~

Because there were more supports than necessary to maintain sta-
bility of the plates, the solution of statically indeterminate plates was in-
evitable. Removal of redundant support would impair not only the structural
integrity of the plates, but also that of affiliated components. Superposition
is the usual procedure for solving statically indeterminate problems; how-
ever, frequently the generalized equations of deflection, moments, or slope
must be known for the analysis.

This paper presents four generalized cases for a uniform load acting
on a concentric circle of a thin, flat, circular plate (schematically depicted
by Fig. 1), for solving statically indeterminate plates. The four generalized

-~



cases are: (1) outer edge supported and fixed, inner edge fixed; (2) outer
edge simply supported, inner edge free; (3) outer edge sl?nply supported,
inner edge fixed; and (4) outer edge supported and fixed, inner ed.ge free.
From these four generalized cases, six simplified cases are derived. The
first four simplified cases have the uniform load along the inner plate
radius, and boundary conditions complying to the four generalized cases.
The last two cases are for a solid plate where the outer edge conditions
are fixed-supported and simply supported.

w
e

ok B

Fig. 1

UNIFORM LOAD ACTING ON A CONCENTRIC
CIRCLE OF A THIN, FLAT, CIRCULAR PLATE;

1 SCHEMATIC DIAGRAM

by

A computer program was developed for resolving deflections and
moments of these ten cases and for assisting in the solution for statically
indeterminate circular plates. When only one or two computations are re-
quired, various dimensionless terms in the developed equations have been
computed and tabulated to simplify deflection, moment, and slope calculations.

The cases have been numbered VII through XVI since this is a con-
tinuation of the investigation initiated in Ref. 1. Moreover, this consecutive
numbering of the cases eliminates confusion that could arise between the
deflection-moment computer programs. )

SYSTEM OF UNITS

In this presentation, the unit force-mass system is used since it
provides a compromise between the :ilbsolute and gravitational systems
and is automatically a self-containing reference system. A comprehensive
analysis of this system is contained in Ref. 2.



THEORETICAL DEVELOPMENT
From Ref. 1, 3, or 4, the fundamental equations for thin, flat, cir-

cular plates subjected to symmetrical loads are as follows: (1) The radial
and tangential bending moments per unit length are

_p(d8 , ).
Mr-D(dr ¥ vr)'

- p(L L4\
Mt-D(r +v ) (1)

and (2) the equilibrium equation is

d’ 149 ¢ _df1 d e
y s el potele _EE[?T(”’)] i (2)

where ¢ = -dw/dr and D = Eh’/lZ(l-vz).

From Fig. 1, the shearing force per unit tangential length at any
radius for the outer portion is

=W
V—ZTr' {3)

and for the inner portion is
vV = 0. (4)
Substituting these shearing forces into the equilibrium equation, integrating

thrice, and taking the derivation of the ¢ expression, one obtains, for the
outer portion of the plate, d = r = a,

dw ~ W 1 Cy o
b i My '41r13r(1"r'?)+ Bt 5
C C
ﬂ:— (lnr+l)+—l--—z—,
dr 4D Z z T2
2 Cl 2
w:SWDr(lnr-l)-—‘;-r -Cylnr + Cg; (5)

and for the inner portion of the plate, b =r =d,
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Cy Cs
-—dW S0 s ===
dr 2 v

C
S _—44-r2 G i (6)

Upon substitution of the appropriate portions of E(I:ls. (5) and (6) into
Eq. (1), the moment equations become, for the outer portion,

C z
Mr=-lv[(1+u)1n r +%(1- u)] + D[—;-(Hu) - ;5(1-1/)];

&7
& G
Mt:—Zvﬂll:(l+v)lnr——;—(l—v)]+D[—Zl(lJr V) +-;-25(1-v)]: (7}

and for the inner portion,

o G
N D[—Z'(1+ V) -—Z(l-v)];

b

C C
M = D[—{-(l+v) + —:(l - v)] (8)

GENERALIZED CASES

The four generalized cases presented in tabular form (Cases VII
through X) were derived by applying the appropriate expressions that fulfill
the continuity and boundary conditions. The integration constants were de-
termined from the first and third expressions of Eqs. (5)and (6), and from the
expression of Egs. (7) and (8). The upper right corner of each tabulated case
shows the continuity conditions and/or boundary conditions.



Description

Q&E praig Outer edge supported and fixed.

Inner edge fixed.

Uniform load on a concentric
circle of plate.

bl

w
dw
dr

dw
dr

dw

dr

M
]

Hswndssy Conditions

= 0 whenr = a
= 0 whenr = a
= 0 whenr = b

Continuity Conditions

whenr = d
inner portion of plate

same as outer portion

Inner portion of plate, b=r=d

Moments

M

Slope

& -2 (o) [t b2

Outer portion of plate, d=r=a

Moments
2 2
w a 1 (1-v||b
My W ‘“"’( 2 z) z ('.—J[—z
a -b a

;R 2
w a 1[1-v){p° b d 1
M, = Zn"’(—z_IJ E{m}“i'_z’(“_z)]' -(l-—)o\n-o
a -b r a T a
s B B
Slope
ORI 73 DG | M O ) |
dr SR lA Nl Y R TE AT B Z|\ 2 "2
a” =b a x a r r
Deflection
2 2
i, ol ly L E
bafbus Y z
a“-b a

11
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Description Boundary Conditions
CASE ¥VIIT S
Outer edge simply supported. w = 0 whenr = a
w Inner edge free. Mr = 0 whenr =
Uniform load on a concentric Mr = 0 whenr = b

circle of plate.

Continuity Conditions

} whenr = d
dw X ‘
T inner portion of plate
d-= b o
Mr same as outer portion
Inner portion of plate, b=r=d
Moments
2!
a 1+v|[b a

In—= 42 - 2 =
" a = )(az) fin3) 1=

w =
max

Outer portion of plate, d=

Moments

=
4m
s

B
b b r b a
- z)fln—+—z \ns-—?ma]
2 2 2
+2 ) h- T b OB a
2) e[ RS S
r

w
Mt i (1+v) (

ta

Slope

dw
dr

Deflection

b)(l—)kb_z) (“v( d_l)]’(:’_zj—ia—z) In % :—Z(nng.:_i.ng).z(;j:)(g_)




CASE IX

leaefb

Description

Outer edge simply supported.

Inner edge fixed.

Uniform load on a concentric
circle of plate.

Boundary Conditions

- = 0 whenr = a
_ 0 whenr = a
dw

_— = 0 whenr = b

Continuity Conditions

w whenr = d
= inner portion of plate
M same as outer portion

Inner portion of plate, b=r=d

Moments

Outer portion of plate, d

Moments

w
M " &

=

Slope

dw Wr
dr

Deflection

1
z

=r=a

wg -2fizd ) o) ]
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supported and fixed.

Uniform load on a concentric
circle of plate.

Boundary Conditions

- =
dw

— =
dr

M -

0 whenr = a

0 whenr = a

0 whenr = b

Centinuity Conditions

whenr = d
inner portien of plate

same as outer portion

Inner portion of plate, b=r=d

Moments

w
M_ = —
4

Outer portion of plate, d =r=a

Moments




SIMPLIFIED CASES

From the four generalized cases, six common, simplified cases
were readily ascertained. The equations for the first four simplified cases
were obtained by using the equations for the outer portion of the plate and
letting d = b. Cases XI, XII, XIII, and XIV were derived from Cases VII,
VIII, IX, and X, respectively. Using the equations for the inner portion of
the plate and making r = b = d, enables the inner boundary equations to
be checked. For Cases XV and XVI, the equations for the inner and outer
portions were obtained by setting b = 0. Case XV was derived from
Case VII and then verified by Case X. Case XVI was formulated from
Case VIII and checked by Case IX.



Boundary Conditions

CASE XT Description
Outer edge supported and fixed. w = 0 when r
,_'w\ Inner edge fixed. g_w = 0 e
r
Uniform load on inner concentric
circle of plate. dw
dr = 0 whenr
4—0‘—|
Moments
2 2 2
w J a b 1-vi b
Mr A -1+ (14 v) Z) o=t In +(l+u} 5 lnb
l a -b a r
2
W 1 b a
M:a'ﬂ 'E*zz'“E
a -b
1 2
M = Mo Z_Zlnb
2 2 3
W b r [1-v) b a|
= — = 1 S Lt b r b a
S R ( e e e
a T
M = . =
ol RN e M
Slope
e
dr =
Deflection
w = 2
In= il (ln—) In=
a




Description

Outer edge simply supported.
Inner edge free.

Uniform load on inner concentric
circle of plate.

Boundary Conditions

0 whenr = a
0 whenr = a

0 whenr = b

Moments

Slope
dw e
dr 4nD
Deflection

17
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Description
Outer edge simply supported.

Inner edge fixed.
Uniform load on inner concentric
circle of plate.

Boundary Conditions

0 when r

0 when r

0 when r

Moments
2 2
W 14y 1 2| b b a
e Z[(l+v z)z*z“‘b*
+v  BE 7 .
Tav © 2
a
2
w 1 il 1l 5
M = = e e R e
max o T [z\ az) = it
i
a
W 14y (v
M = — -
t 4m l+v‘b_z 1+v
T
a
A 1+v 1 p2| »?
ta  2m 0§ 2 e L
el DV a a
Ty 2
a
M, = vM




cription

Outer edge supported and fixed.
Inner edge free.

Uniform load on inner concentric
circle of plate.

Boundary Conditions

dw

dr

M
T

@ whenr

0 whenr

0 when r

Mu = vM'.
Slope

g | M

dr 4nD
Deflection

2

¥ = B

w -

max

2

o
a

2 2
b 1-v|, a b =
-—z)omln;- 3 In= +=
r a

=
al;
i
g
==
E
5
llv
%
b
:
G
2o
<
’l’
¥
.
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Boundary Conditions

CASE XV Description
Outer edge supported and fixed. w = 0 whenr = a
w Solid Plate. %\_: 5 0 o B i
7 == Uniform load on a concentric
1 circle of plate. :—:' = 0 whenr = 0

Continuity Conditions

.l w when r =d
d
dw 2 i
= inner portion of plate
a
Mr same as outer portion

Inner portion of plate 0<r<.d

Moments
w T dZ
- = It S . = i +18; = 9: 3
Mr = Mt = Mrd Mtd = (1+v) 1nd 5 1 :z (Maximum when a/d>3.13; v )
Slope
aw __wr [,a 1 4
a5y axD o[ R B T2
a
Deflection
wal (1 @) 2f) (&, ) e
bl Pl e z e A
a a a a

1 (g
max ~ BiD |2 vl
a a
Outer portion of plate

Moments

2
d
= -¥ ( -—) (Maximum when a/d<Z3.13; v = 0.3)

t
M = vM
ta ra
Slope
e T Wt g T (] HeowE
FrinE el e el
T a
Deflection
s WaZ 1 (l*dz) (l rz) dz+r2\]1 a
" 8D |2 ) R (B | B
¢ a az aZ azl #



CASE XWI e c o Boundary Conditions
Outer edge simply supported. w 0 whenr = a
w Solid plate. € 0 whenr = a
r— e,
Uniform load on a concentric circle dw
-— 0 whenr = 0

‘ of plate. dr

-I w
d

dw
dr

M
r

Continuity Conditions

whenr = d
inner portion of plate

same as outer portion

Inner portion of plate 0=r=d

Moments

Slope

dw
dr 4nD

Deflection

Waz
8nD

Outer portion of plate d=r=a

1 1=y ﬁ-ﬁ +2
2 |l+v 2 2 r
r a

Moments

w
M_ = (4v)

rs—inhey fr-=w——y
-

w
M, = g (1+v)

Slope
2 2
e lf (l-%) *(::V)(l-%) +1n =
dr 4nrD . v &
Deflection

P WAZ 1 rZ 3+v l_-_j ﬁ _d_z_‘rz nd
¥ =g (2| Z) THv TR 2 i Lt

21
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DESIGN CONSIDERA TIONS

Normally, either the maximum bending moment or the maximum
deflection establishes the design criteria for thin, flat, circular plates. The
maximum deflection can be expressed by a formula of the type

Wmax = Waz/Eh3. 9)
The maximum bending moment can be represented by the expression

Mmax = kmW, (10)
where "maximum" denotes magnitude only, or maximum absolute value.

Since the absolute maximum bending moment determines the maxi-
mum unit stresses, its location and magnitude must be known. Because of
the complexity of the moment equations for the four generalized cases and
the dependency of Poisson's ratio upon the material and other parameters,
only the absolute maximum bending moment of Case VIII could be established
by studying the derived equations for any combinations of a/b and d/b or
a./d ratios and Poisson's ratio. The maximum bending moments for Cases XI,
XII, XIII, and XVI, the four simplified cases having any Poisson's ratio and
a/b or a/d ratio, were resolved by examining the equations. Theoretically,
Poisson's ratio has a value from zero to one-half; e.g., for materials like
paraffin and rubber,the ratios are almost one-half; for cork, the ratio is
approximately zero. Poisson's ratiowas takentobe 0.3, asis normally done,
and the maximum bending moment and its location were determined for
simplified Cases XIV and XV.

Table I contains various terms in the derived moment, slope, and
deflection formulas to facilitate computations.

To eliminate numerous laborious hand computations, a computer
program was developed. This Argonne National Laboratory program
2117/PAD146 computes and tabulates the deflection constants, the radial
moment per load, and the tangential moment per load at predetermined r/b
or r/d ratios, and for any given combination of values for v and ratios
a/b and d/b or a/d. For Cases VII through XIV, the tabulated values of
r/b range from one to the selected value of a/b, in increments of 0.1.
Also, Cases VII through X include r/b = d/b. For Cases XV and XVI, r/d
varies from zero to the selected value of a/d,'also in increments of 0.1.

To acquire a better insight into the bending moments of these ten
cases, especially the four generalized cases, numerical data for the radial
and tangential moments divided by the load, plus the deflection constant,
were ascertained with the aforementioned program. The following data



TABLE 1

COMPUTATION TERMS

2 2 2 2 2 2 2 2
. b - a a a b a b a b a a a
b iz wg [beg) [eE-r [med-) (B bed [ b3 “—z) g | 2P hegl =7 gl [ g
a a a a a’-b a -b a -b

1.0| 1.00000 | 0,00000 | 2.00000 oo oe 0.00000 | 0,00000 | -1,00000 1.00000 0.00000 0, 00000 0. 00000 0.50000 0. 00000 0.50000 0. 00000
1.1 | 0.82645 | 0.17355 | 1.82645 | 4.76190 | 5.76190 | 0.09531 | 0.00908 | -D.90469 | 0.81846 0.07877 0.00750 0.17408 0.45386 0.04324 0.54917 0,05232
1.2 | 0,69444 | 0.30556 | 1.69444 | 2.27273 | 3.27273 | 0.18232 | 0.03324 .81768 | 0.66860 0.12661 0.02308 0.30893 0.41436 0,07555 0.59668 0.10879
1.3 | 0.59172 | 0.40828 | 1.59172 | 1.44928 | 2.44928 | 0.26236 | 0.06883 L73764 | 0.54411 0.15524 0.04073 0.41760 0.38023 0.09975 0.64259 0.16858
1.4 | 0.51020 | 0.48980 | 1.51020 | 1.04167 | 2.04167 | 0.33647 | 0.11321 |-0.66353 | 0.44027 0.17167 0.05776 0.50814 0.35049 0.11793 0.68696 0.23114
1.5| 0.44444 | 0.55556 | 1.44444 | 0.80000 | 1.80000 | 0.40547 | 0.16441 |-0.59453 | 0. 35347 0.18021 0.07307 0.58568 0.32438 0.13153 0.72985 0.29594
1.6 | 0.39063 | 0.60937 | 1.39063 | 0.64103 | 1.64103 | 0.47000 | 0.22090 |-0.53000 | 0.28090 0.18360 0.08629 0.65360 0.30128 0.14160 0.77128 0.36250
1.7 | 0.34602 | 0.65398 | 1.34602 | 0.52910 | 1.52910 | 0.53063 | 0.28157 |-0.46937 | 0. 22031 0.18361 0.09743 0.71424 0.28076 0.14898 0.81139 0.43055
1.8 | 0.30864 | 0.69136 | 1.30864 | 0.44643 | 1.44643 | 0.58779 | 0.34550 |-0.41221 | 0.16992 0.18142 0. 10664 0.76921 0.26241 0.15424 0.85020 0.49974
1.9 | 0.27701 | 0.72299 | 1.27701 | 0.38314 | 1.38314 | 0.64185 | 0.41197 |-0,35815 | 0.12827 0.17780 0.11412 0.81965 0.24592 0.15784 0.88777 0.56981

2.0 0.25000 | 0.75000 | 1.25000 |0.33333 | 1.33333 | 0.69315 | 0.48046 |-0.30685 0.09416 0.17329 0.12012 0.86644 0.23105 0.16015 0.92420 0.64061

2.1 0.22676 | 0.77324 | 1.22676 | 0.29326 | 1.29326 | 0.74194 | 0.55047 |-0.25806 | 0.06659 0.16824 0.12482 0.91018 0.21758 0.16143 0.95952 0.71190
2.2| 0.20661 | 0.79339 | 1.20661 | 0.26042 | 1.26042 | 0.78846 | 0.62167 |-0.21154 | 0.04475 0.16290 0.12844 0.95136 0.20533 0.16189 0.99379 0.78357

2.3] 0.18904 | 0.81096 | 1.18904 |0.23310 | 1.23310 | 0.83291 | 0.69374 |-0.16709 0.02792 0.15745 0.13114 0.99036 0.19415 0.16171 1.02706 0.85545

2.4 0.17361 | 0.82639 | 1.17361 | 0.21008 | 1.21008 | 0.87547 | 0.76645 |-0.12453 | 0.01551 0.15199 0.13306 1.02746 0.18392 0.16102 1.05939 0.92747

2.5 | 0.16000 | 0.84000 | 1.16000 |0.19048 | 1.19048 | 0.91629 | 0.83959 |-0.08371 | 0,00701 0. 14661 0.13433 1.06290 0.17453 0.15992 1.09082 0.99952

2.6 0.14793 | 0.85207 | 1.14793 |0.17361 | 1.17361 | 0.95551 | 0,91300 |-0.04449 | 0.00198 0.14135 0.13506 1.09686 0.16589 0. 15851 112140 1.07151

2.7 0.13717 | 0.86283 | 1.13717 |0.15898 | 1.15898 | 0.99325 | 0.98655 |-0.00675 | 0.00005 0.13624 0.13533 1.12949 0.15791 0.15684 115116 1.14339

2.8 0.12755 | 0.87245 | 1.12755 | 0.14620 | 1.14620 | 1,02962 | 1.06012 0.02962 | 0.00088 0.13133 0.13522 1.16095 0.15053 0.15499 1.18015 L2151

2.9 0.11891 | 0.88109 | 1.11891 |0.13495 | 1.13495 | 1.06471 | 1.13361 0.06471 | 0.00419 0.12660 0. 13480 L1913 0.14369 0.15298 1.20839 1.28659

3.0] 0.10011 |0.88889 [1.11101 0.12500 |1.12500 | 1.09861 | 1.20694 0.09861 | 0.00972 0.12207 0.13410 1.22068 0.13733 0.15087 1.2359%4 1.35781

3.1 | 0.10406 | 0.89594 | 1.10406 |0.11614 |1.11614 | 1.13140 | 1.28007 0.13140 | 0.01727 0.11773 0.13320 1.24913 0.13141 0. 14867 1.26280 1.42874

3.2 0.09766 | 0.90234 |1.09766 |0.10823 |1.10823 | 1.16315 [ 1.35292 0.16315 | 0.02662 0.11359 0.13213 1.27674 0.12588 1.28904 1.49935

3.3 ] 0.09183 | 0.90817 |1.09183 |0.10111 | 1. 10001 | 1.19392 | 1.42544 0.19392 | 0.03760 0.10964 0.13090 1.30356 0.12072 131464 1.56957

3.4 | 0.08651 | 0.91349 | 1.08651 |0.09470 |1.09470 | 1.22378 | 1.49764 0,22378 | 0.05008 0.10587 0.12956 1.32965 0.11589 1.33967 1.63947

3.5 0.08163 | 0.91837 [1.08163 |0.0i 9 | 1.08889 | 1.25276 [ 1.56941 0.25276 | 0.06389 0.10226 0.12811 1.35502 0.11136 0. 13950 1.36412 1.70891

3.6 | 0.07716 | 0.92284 |1.07716 |0.08361 |1.08361 |1.28093 | 1.64078 0.28093 | 0.07892 0, 09884 0. 12660 1.379717 0.10710 0.13719 1.38803 1777197

3.7 | 0.07305 | 0.92695 |1.07305 |0.07880 | 1.07880 | 1.30833 L7173 0.30833 | 0.09507 0.09557 0. 12800 1.40390 0.10310 0. 13489 141143 1.84661

3.8 | 0.06925 | 0.93075 [1.06925 | 0.07440 |1.07440 | 1.33500 | 1.78223 0,33500 | 0.11223 0.09245 0.12342 1.42745 0.09933 0.13261 1.43432 1.91483

3.9 | 0.06575 | 0.93425 | 1,06575 |0.07037 |1.07037 | 1.36098 | 1.85227 0.36098 | 0.13031 0.08948 0.12179 1.45046 0.09578 0.13035 1.45675 1.98261

4.0 | 0,06250 | 0.93750 | 1,06250 | 0.06667 |1.06667 | 1.38629 | 1.92180 0.38629 | 0.14922 0.08664 0.12011 1.47293 0.09242 0.12812 1.47871 2.04993
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were used: (1) Poisson's ratio equals 0.3 for all cases; (2) a./b for Cases. VII
through XIV, and a/d for Cases XV and XVI, range from 1..5 through 4.0, in
intervals of 0.5; and (3) the uniform load on a concentric circle for tl.'xe four
generalized cases is equally positioned at two locations between the inner
and outer plate radii i.e., the third distance of d = b + (a - b)/3 or d/b =
(a/b+2)/3, and d = b + (2/3)(a-b) or d/b = (2a/b+1)/3.

Numerical values of the maximum deflection constant and maximum
bending moment per load are tabulated in Table II using the stipu}ations of
the preceding paragraph. Figures 2, 3, 4, and 5 depict the bending moments
per load for the generalized cases for a/b ratios of 2.0, 3.0, and 4.0. tl‘he
bending-moments-per-load diagrams for the six simplified cases are illus-
trated by Figs. 6 through 11.

The following statements can be made for the maximum bending
moment and its location, with the aforementioned prescribed criteria:

Case VII. M, has the maximum bending moment for all ratios
studied.

Case VIII. My, has the maximum bending moment for all ratios
studied.

Gase M.}, has the maximum bending moment for all ratios
studied.

Case X. My, has the maximum bending moment for all ratios
studied.

Case XI. M, has the maximum bending moment for all ratios
studied, as predicted from equation study.

Case XII. M has the maximum bending moment for all ratios
studied, as predicted from equation study.

Case XIII. M.} has the maximum bending moment for all ratios
studied, as predicted from equation study.

Case XIV. The maximum bending moment must be established
according to specifications. My, has the maximum bending moment from

a./b = 1.5 through 2.5, and then Mtp has the maximum bending moment from
3.0 through 4.0. The transition a/b ratio is approximately 2.6.

Case XV. The maximum bending moment must be determined
according to specifications. My has the maximum bending moment from
1.5 through 3.0, and then the constant moments of the inner portion of the
plate (My = Mg = Myq = Mtd) predominate from 3.5 through 4.0. The transi-
tion a/b ratio is approximately 3.13,

.Case XVI. Moments of the inner portion of the plate were maximum,
constant, and equivalent for all ratios as predicted from equation study.



TABLE II

MAXIMUM DEFLECTION AND MOMENT CONSTANTS WHERE v = 0.3

% _—a/b; = Case VII Case VIII Case IX Case X
a/b a/d
d 2a/b+1 kd km kd km kd km kd km
b 3
1.5 1.167 1.286 | 0.0046 | -0.0246(0.3391 | 0.1332| 0.0209 | 0.0459 0.0121 | -0.0353
y 1.333 1.125 0.0015 | -0.01510.1665 | 0.0649| 0.0115 | 0.0224 0.0033 | -0.0176
2.0 1.333 1.500 | 0.0168 | -0.0374|0.4350 | 0.1531| 0.072% | 0.0779 0.0397 | -0.0507
v 1.667 1.200 | 0.0054 | -0.0228|0.2122 | 0.0730| 0.0394 | 0.0371 0.0108 | -0.0258
2.5 1.500 1.667 0.0302 | -0.0451/0.4655 | 0.1683| 0.1257 | 0.1001 0.0647 | -0.0579
: 2.000 1.250 | 0.0096 | -0.0273)|0.2266 | 0.0788| 0.0674 | 0.0469 0.0174 | -0.0302
3.0 1.667 1.800 0.0425 | -0.0502(0.4740 | 0.1801 | 0.1707 | 0.1162 0.0832 | -0.0616
. 2.333 1.286 0.0134 | -0,0304(0.2311 | 0.0833| 0.0909 | 0.0537 0.0224 | -0.0329
3.5 1.833 1.909 0.0531 | -0.0537|0.4744 | 0.1897 | 0.2074 | 0.1284 0.0963 | -0.0637
y 2,667 1.313 | 0.0165 | -0.0325|0.2319 | 0.0867 | 0.1099 | 0.0587 0.0260 | -0.0347
4.0 2.000 2.000 0.0621 | -0.0563|0.4718 [ 0.1975| 0.2369 | 0.1378 0.1054 | -0.0650
% 3.000 1.333 0.0192 | -0.0341| 0.2314 | 0.0895| 0.1250 | 0.0624 0.0286 | -0.0360
Case XI Case XII Case XIII Case XIV Case XV Case XVI
a/b
km kd km kd km k(‘l km kd km kcl km
.5 [ 0.0064 0.0366 | 0.5186 | 0.2067 [0.0249 [0.0713 [ 0.0241 | -0.0534 | 0.0424 |-0.0442 | 0.2281 | 0.0574
2.0 | 0.0238 0.0675 | 0.6721 | 0.2469 | 0.0877 | 0.1256 | 0.0810 | -0.0757 | 0.0876 |-0.0597 | 0.3383 | 0.0926
2.5 | 0.0435 0.0940 | 0.7213 [ 0.2814 |0.1530 | 0.1674 | 0.1333 | -0.0849 | 0.1188 | -0,0669 | 0.3995 | 0.1182
3.0 | 0.0620 0.1171 | 0.,7337 | 0.3114 | 0.2095 | 0.2009 | 0.1721 0.1122 | 0.1401 |-0.0707 | 0.4372 | 0.1384
3.5 | 0.0783 0.1375 | 0,7316 | 0.3379 | 0.2559 | 0.2559 | 0.1990 0.1426 | 0.1551 0.0821 | 0.4620 | 0,.1552
4.0 | 0.0923 0.1558 | 0.7238 | 0.3617 | 0.2938 | 0.2523 [0.2172 | 0.1701 | 0.1660 | 0.0946 | 0.4794 | 0.1695

s?
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RADIAL AND TANGENTIAL MOMENTS PER UNIFORM LOAD ON CONCENTRIC CIRCLE

FOR CIRCULAR PLATE HAVING FIXED SUPPORTED OUTER EDGE

AND FIXED INNER EDGE
(CASEYIL, v = 0.3)
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RADIAL AND TANGENTIAL MOMENTS PER UNIFORM LOAD ON CONCENTRIC CIRCLE

FOR CIRCULAR PLATE HAVING SIMPLY SUPPORTED OUTER EDGE
AND FREE INNER EDGE
(CASE YOI, v - 0.3

L2



a/b=40,d/b=2.000 Siss |
= a/b=3.0,d/b= 1.667 =
— a/b=20,d/b= 1.333 —— o =
—  a/b=40,d/b=3.000 — T' -
- a/b=30,d/b=2.333 22l o |
|  a/b=20,d/b=1.667 0.100—] a/b=4.0, d/b=2.000
: a/b=3.0,d/b= 1.667
e = a/b=2.0,d/b=1.333 =
= == e a/b=4.0,d/b=3.000 =
= e a/b=3.0,d/b=2.333 -
= SElES D ra/b=2.0,d/b=1.667 £
— Qa1
<
= - —t 23]
I == = 2
— /8 4+ 5
— i = 2
— / @g050——— 2
> s il e
o 4 e / _N o
/ / > o
= p 3 ilogs 2
—// / 0.025 —— A —[\\\ S
=5 / e e \ N 2
l— / / sl 100 /,//T\\ ﬁ =l
= LB v T £
5 s 5 e o O 0 el I L LE RS P o
4.0 3.0 20 1.0 0 1.0 2.0 30 4.0
r/b r/b
FIG. 4

RADIAL AND TANGENTIAL MOMENTS PER UNIFORM LOAD ON CONCENTRIC CIRCLE

FOR CIRCULAR PLATE HAVING SIMPLY SUPPORTED OUTER EDGE
AND FIXED INNER EDGE
(CASEIX v - 0.3)

8¢



_lTlll||l(|||| e
[~ a/b=4.0, d/b=2.000 Sl
— a/b=3.0,d/b=|.667 ——
| a/b=2.0,d/b=1.333 |
— a/b=4.0,d/b=3.000 eulles
| a/b=3.0,d/b=2.333 Y,
a/b=2.0,d/b=1.667 P,
e w
g 2 2
o
8 s e a
z|3
gy & &
-
o © = é
sz €
-t o
e w
T (o]
-0025—— ! w —
o a/b=2.0, d/b=1.333 e
i Lu/b=3.0,d/b=l.667 g
a/b=40, d/b=2.000
a/b=20,d/b=1.667
S vl a/b=30,d/b=2.333 iy
YT - 0/b=40,d/b=3000 —
L I!IIIHI
1.0 0 1.0 2.0 30

FIG. 5

RADIAL AND TANGENTIAL MOMENTS PER UNIFORM LOAD ON CONCENTRIC CIRCLE
FOR CIRCULAR PLATE HAVING FIXED SUPPORTED OUTER EDGE
AND FREE INNER EDGE
(CASEX, v~ 03

67



Al

RINpOE R

IIH}IHI‘IIH

T

1.0 2.0
ey /B r/b

FIG. 6

RADIAL AND TANGENTIAL MOMENTS PER UNIFORM LOAD ON INNER CONCENTRIC CIRCLE
FOR CIRCULAR PLATE HAVING FIXED SUPPORTED OUTER EDGE
AND FIXED INNER EDGE
(CASEXI, v = 0.3)

3.0

4.0

(0}9



llilbllllyllll X, ||l|\|lll,llll_
035—1——
030 —1——
025— 1
o w
T, -
o T
I0.20—— &
sz e o«
S <
M, S 1 3
v o ~4— - &
a/b=4.0 0.15—— &
a/b=3.5 = w
a/b=3.0 e
a/b=25 1
a/b=2.0 —f—
a/b=1.5 °"°__xl—
005 |
3.0 2.0 1.0 0

r/b
FIG. 7

RADIAL AND TANGENTIAL MOMENTS PER UNIFORM LOAD ON INNER CONCENTRIC CIRCLE
FOR CIRCULAR PLATE HAVING SIMPLY SUPPORTED OUTER EDGE
AND FREE INNER EDGE
(CASE XII, v - 03)

1€



_Hl!\\lll‘l\“ L
—_ 025—4——
L2 M, =
= W " . S
= a/b=4.0 e |G
o a/b=3.5 e Lt

a/b= 3.0 Lo

a/b=2.5 o
= a/b= 2.0 TlES
== a/b= 1.5 =
e O
& gl= - TF

x

2 o R
HS s |z ] e
— Olo——_\l
— S
P4 AL VI A

3.0 2.0 1.0 (o]

D
FIG. 8

RADIAL AND TANGENTIAL MOMENTS PER UNIFORM LOAD ON INNER CONCENTRIC CIRCLE
FOR CIRCULAR PLATE HAVING SIMPLY SUPPORTED OUTER EDGE
AND FIXED INNER EDGE

(CASE XTI, v = 0.3)

2g



FIG. 9

RADIAL AND TANGENTIAL MOMENTS PER UNIFORM LOAD ON INNER CONCENTRIC CIRCLE
FOR CIRCULAR PLATE HAVING FIXED SUPPORTED OUTER EDGE
AND FREE INNER EDGE
(CASE XI¥, v - 0.3)
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RADIAL AND TANGENTIAL MOMENTS PER UNIFORM LOAD ON CONCENTRIC CIRCLE
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STATICALLY INDETERMINATE CIRCULAR PLATES

The derived equations will now be applied to solving statically inde-
terminate, thin, flat,circular plates subjected to various loadings.

Numerical Example 1

The structural integrity of the copper diaphragm shown by Fig. 12
is to be determined. The following criteria apply: outer plate and load
radius, a = 4.00 in.; inner plate and load radius, b = 2.00 in.; plate thick-
ness, h = 0.125 in.; constant force, P = 324 lbf; maximum permissible
unit stress, Omax = 6,000 lbf/in.?‘: modulus of elasticity, E = 15.0 x 10° lbf/
in.2; and Poisson's ratio, ¥ = 0.33.

e

FIG. 12

STATICALLY INDETERMINATE DIAPHRAGM SUBJECTED
/ TO A SYMMETRICAL VARIABLE LOAD

Since the required deflection formulas are known, the method of
superposition is used to obtain the redundant reaction, R, at the inner
radius. The deflection at the redundant support being zero, it is possible
to write

Zw = 0 = w(variable load) - w(redundant load). (11)

If the maximum deflection formulas of Case I, Ref. 1, and Case XI of this
paper are substituted in Eq. (11), the result is

2 2 2
s (ln%- 1) L. (1ni)
az az = b

2
O E- 2 ()
/i al a? - b2 b

kg(variable load)

¥ kq(redundant load) = (12)

where the k.d‘s are maximum deflection constants available from Refs. 1,3,
4, 5, and this paper, or are obtained from the program in this paper and



in Ref. 1. Usage of kg from published tables is permissible in this case
since the D's cancel and ¥ normally taken as 0.3, is absent from remainder
of the deflection equations. Using the aforementioned programs,

0.05538
R = 324 550522 = 771 by (13)

The maximum bending moment for the redundant load occurs at the
inner radius, while the maximum bending moment for the variable load
occurs at the outer radius for a/b = 2.0, per Ref. 1. Therefore, moments
at the inner radius and outer radius must be computed. By superposition,
the moment expressions and numerical values at the inner radius and outer
radius become, respectively,

oz 2a* a\s a
M = =<1l + (ln—) - 1ln —
S 4{ A bz[ o b]}
Rl i a]
e In—|;
ZW[ e T
ZM,p, = -17.0 in.-1b;/in.; (14)

and

2 2 2
M, 213 {1 S [3 (m%) - I %]}
aZ A bZ aZ

SM;, = 9.8 in.-lbg/in. (15)
From these computations, the maximum unit stress occurs at the inner
radius; thus,

6 M ;
o,y = 3 e oo, 6(-17.0) _ + 6,530 1bg/in.2, (16)
h? (0.125)?

The imposed unit stress criterion has not been met; hence, the design must
be revamped before the analysis is continued.
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Numerical Example 2

Determine the uniform plate thickness, the radial and tangential
bending moment diagrams, the maximum unit bending stress of the
symmetrically loaded, statically-indeterminate, circular aluminum plate
illustrated by Fig. 13. Specifications are: outer plate and load radius,

a = 61.2 cm; redundant support radius, d = 40.8 cm; inner plate and load
radius, b = 24.0 cm; maximum permissible deflection at inner plate radius,
Wrmax = 0.08 cm; variable load constant, P = 147 kg¢; inner circular edge
load, W = 1,430 kgs; modulus of elasticity, E = 70.3 x To* kgf/cmz; and
Poisson's ratio, ¥ = 0.3.

w

SR ey

FIG. 13

STATICALLY INDETERMINATE CIRCULAR PLATE SUBJECTED TO
SYMMETRICAL VARIABLE LOAD AND UNIFORM INNER EDGE LOAD

To determine the redundant reaction at radius d, the method of
superposition is used again; i.e., the deflection at this support is zero.
Mathematically,

Zwq = 0 = w(variable load) + w(inner load) - w(redundant load)
' Pa? 2
= kg(variable load)—i + kq(inner load)
Eh? Eh?
2
~ky(redundant load) 22 (17)
Eh?

where the ky's are deflection constants at d to be determined. If a hand
computer or the programs mentioned in Ref. 1 and this paper are used, the

following constants are obtained from the appropriate equations of Cases III,
XIII, and IX:

kg(variable load) = 0.45998; kq(inner load) = 0.11126;
k4(redundant load) - 0,08287; (18)



where a/b = 2.55, a/d = 1.5, and d/b = 1.70. Hence, Eq. (17) becomes

0 = 0.45998(147) + 0.11126(1430) - 0.08287R, (19)

from which,
R = 2736 kgg. (20)

The required plate thickness can now be determined; i.e.,

ZWinax = Wmax(variable load) + wmax(inner load)
-Wmax(redundant load)

Pa’ Wa?

= k (variable load) — + k (inner load) —

e Eh3 max Ehj
Ra?

-k hax(redundant load) —, (21)

Eh’

where the kyax's refer to the maximum deflection constants of the cases
used. From the program results, or by hand computation,

kmax(variable load) = 0.63442; kmax(inner load) = 0.15914;
Kmax(redundant load) = 0.1126. (22)

If the proper values are inserted in Eq. (21), and the equation is solved for
plate thickness, the result is

(61.2)% 1/3
= [0.63442(147) + 0.15914(1430) - 0.11126(2736)]
0.08(70.3 x 10%)

= [1.0937]*3 = 1.030 cm. (23)

The radial and tangential moments are ascertained by superposition;
vig.;

My = My(variable load) + My (inner load) - M (redundant load)

1

ky(variable load) P + ky(inner load) W - ky(redundant load) R;

SM¢ = M¢(variable load) + M¢(inner load) - M¢(redundant load)

1l

k¢(variable load) P + k¢(inner load) W - k¢(redundant load) R.

(24)
Figure 14 depicts the superpositioning of the moments.
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From Fig. 14, the maximum unit stress at the inner radius becomes

6ZM
i o Sy 5.7 +564 kgg/cm?. (25)

h? (1.030)%

DISCUSSION OF GENERALIZED CASES

Cases VIII and X of the four generalized cases are partially de-
picted in Ref. 5 as Cases 59 and 60. When the ascertained edge moment
equations of Cases VIII and X were converted to unit stress expressions,
Oy = 6Mt/h7' or O, = 6Mr/hz, equations analogous to those in Ref. 5 were
obtained, with the exception of signs. However, upon transformation, the
maximum-deflection expressions did not concur. Because of these
maximum-deflection discrepancies, extensive checking was performed.

The original derivations of the four generalized cases were attained
by solving the moment equations and/or the integrated equations of the
equilibrium equation with the imposed boundary and continuity conditions
for the six unknown constants. Since agreement with Ref. 5 could not be
achieved, these four cases were completely rechecked by the ANL Applied
Mathematics Division to check the validity of the mathematics. As a further
check, the author employed superposition by using derived slope and deflec-
tion formulas having uniform moments along the inner and outer edges in
combination with one of the generalized cases to obtain another case.

The author of Ref. 5 has indicated that the deflection formulas of
Cases 59 and 60 should be modified. Modifications will be incorporated
in later editions of Ref. 5.
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