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ABSTRACT 

The analytic and computational framework on homo-
nuclear diatomic molecules for Hart ree-Fock-Roothaan cal ­
culations is presented. Several approaches to calculating 
the wave function are sketched, as well as methods of com­
puting molecular proper t ies from the wave function. The 
efficient organization of these calculations for existing digital 
computers is emphasized. Typical resul ts obtained through 
the application of the programs and techniques developed are 
presented for the fluorine molecule. 

INTRODUCTION 

Although many calculations have been performed on diatomic mole­
cules, few have been of sufficient depth and scope to establish the useful­
ness of the mathematical model. This work presen ts the analytic and 
inescapable, computational framework for Har t ree-Fock-Roothaan calcu­
lations on diatomic molecules. Once the necessa ry one- and two-center , 
one- and two-electron integrals are available,t^/ different types of wave 
functions can be constructed for diatomic nnolecules. Among these types 
of calculations a re straight LCAO (Linear Combination of Atomic Orbitals) 
valence bond, atoms in molecules, l imited configuration mixing, and self-
consistent field molecular orbital calculations. The methods discussed in 
this paper apply to the calculations of analytic, self-consistent, field-wave 
functions for homonuclear diatomic molecules by the Roothaan method. 
The analysis for the self-consistent field equations is well documented, 

*Based on work performed under the auspices of the U.S.A.E.G., and 
by Advanced Research Projec ts Agency through the U. S. Army Re­
search Office (Durham) under Contract No. DA-11-022-ORD-3119, 
and by a grant from the National Science Foundation, NSF GP-28. 

**NSF fellowship, 1961-1962. 



and the programs available for atoms(2-4) remain virtually intact when 
linked to the calculation of the diatomic matrix and supermatr ix e lements . 
The methods employed to evaluate these elements were presented 
recently.(1) 

Even with the present, la rge-memory, high-speed, digital computers , 
the calculations presented in this paper would be intractable unless con­
siderable attention was given to possible economies m the analysis and 
organization of the matr ix and supermatr ix computations. What follows 
will present such an organization for the calculation of self-consistent , 
field-wave functions and propert ies for homonuclear, diatomic molecules , 
and the specific application of these programs to the fluorine molecule. 



I. CHOICE OF UNITS, COORDINATE SYSTEMS, 
AND ATOMIC BASIS FUNCTIONS 

Atomic units will be used through this paper. In this system, the 
unit of length is the Bohr (0.52917 A) , the unit of energy the Har t ree 
(2RoJic = 27.20974 eV), and the unit of charge that of the electron, e". 
In these units , the electronic Hamiltonian for a diatomic molecule is 

p p<v 

The sums are over the electrons of the molecule. The two centers will 
be designated by subscripts a and b, and their mutual separation by R. 
The quantities T^I^ and rj^^ a re the distances from nuclei a and b 

The position of the electrons with reference to the two centers will 
be described in t e rms of the following three^ ' coordinate systems: 

1. Car tes ian coordinate sys tems, centered on nuclei a and b 
and on the midpoint between a and b, respectively. The Zg. and z ,̂ 
axes a re chosen to lie along the internuclear axis pointing toward one 
another. 

2. Spherical coordinates, centered on nuclei a and b. The 
atomic orbitals a re usually defined in t e rms of these coordinates. 

3. Prola te spheroidal coordinates, with foci on nuclei a and b. 
These coordinates a re defined in t e rms of the spherical coordinates by 

I = (i-a + rb)/R; Tl = (ra - rb)/R; 0 = «a = *b- (2) 

The normal ized complex STO's (Slater Type Orbitals) are used 
throughout this paper . The STO's designated by Xap),(x °^ ''̂ b̂oXa ii^'^^'^ate 
the triple n, £, m and are given by 

(n, i , m ) = (2C)n+!/z[(2n)!]- ' /^rn-ie- ' ;rY^^(0,0), (3) 

where the spherical coordinate system is centered on nucleus a or b, 
and the Y „ (9,0) a re the normalized, complex, spherical harmonics 
defined by 

Y i m O ' * ) = ^£mi''°^ e)1'm(*)' 

and 

3)^(0) = (2^)-'/^ei'"*'; (4) 



and the normalized associated Legendre functions are defined by 

^ ^ fli 1 r2i + i . {£- myy 
^im(=°^ )̂ - ^ L ^ {£ + m)!j 

x ( - s i n e ) - r - ^ l ^ ' " ( c o s ^ e - i ) ^ . (5) 
^ Ld cos 9i 

where - i s m ^ £ . 

In Eq. (3), n is taken as being a positive integer and C is completely 
flexible. 

The normalized, associated Legendre functions a re related to the 
unnormalized, associated Legendre functions by 

The P^j^(x) functions are defined by 

i-\'"^ i/zm ,i'^+m I, 

^£r.M-^ii-^^)^ jj^i-'-^^- (6) 

For the calculation of the exchange integrals , we make use of s imilar 
functions defined for 1 s x s <=° by 

A ^ (-V^ , , i+m „ 
p - ( x ) = L L ( x ^ - l ) . / - . d _ ^ ( x ^ . l ) i . (,) 

Z^i'. °^ 

Details of these considerations a re presented elsewhere.(^) 



II. REVIEW OF GENERAL THEORY 

The total N-electron wave function is put forth as an ant isymme-
tr ized product of MSO's (Molecular Spin Orbitals),\2^ 

$ = (Nl)'/2 ^ [ ' ' ' ^ V N , (8) 

where [1,2, . . . ,N] indicates the operation of "alternation" and 

f'i = 'p^M^^- (9) 

where the superscript p stands for the space and spin coordinates of the 
;Uth electron, and the subscripts /c and i label the different MSO's and 
MO's (Molecular Orbitals), respectively. In the following, the superscript 
p and subscript /c are dropped in order to simplify salient features of 
the MO 0W/(;) for the homonuclear diatomic molecule. In the expansion 
form of the self-consistent field method, the molecular orbital 0i is ex­
panded in ternns of a set of suitable functions called basis functions Xp, 

Î  pCip, (10) 

where the C^p are the expansion coefficients which are determined by the 
variational procedure. It is convenient to group the basis functions Xp 
according to the symmetry of the molecular orbital 

>̂P -'>^pXa. (11) 

so that 

*iXa = I ^ p X a C a p . (12) 
P 

where X is the symmetry species and a is the subspecies of symmetry X. 

The total electronic energy of the system is expressed in te rms of 
matr ices and supermatr ices , whose elements are one- and two-electron 
integrals over the basis functions Xp-^a' and suitably-defined density 
mat r ices built from the coefficients Cĵ ĵ ^p.'̂ "^) The variational principle 
is applied to minimize the energy with respect to the linear pa ramete rs 
CĴ ^ . By proper manipulation, the variational equations determining the 
coefficients Cĵ -xp can be written in the form of pseudo-eigenvalue equa­
tions. These equations are customarily solved by the iterative SCF (Self-
consistent Field) procedure. A complete and authoritative discussion of 
the SCF equations and process for atoms has been given by Roothaan and 
Bagus.('4) The reader is encouraged to refer to this work for details since 
the formalism for atoms is virtually the same as that for molecules. 
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III. APPLICATION TO THE HOMONUCLEAR DIATOMIC MOLECULE 

For the homonuclear diatomic molecule, two-center ^r^^^^iyJH'^ 
functions belonging to the rotation-reflection group D^h -̂̂ ^ ini;r 

Xpxa = (l/^)(>^apA£x + ^X^bp^a^' ^^^^ 

where the subscripts a and b refer to the two atoms. For Xp^ to have 
proper symmetry, X,p. „ must be the mi r ro r image of Xbpxa when ret iectea 
through a plane midway between atoms a and b and perpendicular to the 
internuclear axis. The parameter o^ is determined by the gerade or un-
gerade symmetry of the basis function Xp^^ and is given by a^ - (-) tor 
g symmetry and Ox = i-)"''^ ' f°r p symmetry. 

For a given symmetry X, the subspecies a permi t s two values, 
namely, a = ±m;^, where m^̂  is the value of the projection of orbital _ 
angular momentum on the internuclear axis. Henceforth the notation m;̂  
in lieu of -mj^ will be used. The introduction of symmetry basis functions 
permits considerable computational economies. 

The variational principle is applied to minimize the total energy of 
the molecule yielding the Roothaan equations determining the l inear co­
efficients Ci^p. The expression for the total energy of the molecule is 
given by\3,4J 

E = H ^ D T + ^ D ^ t ^ D x - JD^QODQ + —• ^^^^ 

In the above expression, the elements of the H nrtatrix (which is a 
collection of all one-electron integrals between basis functions and is con­
sidered as a supervector) and the (P and C supermat r ices (which are 
ordered collections of all two-electron integrals between basis functions) 
are only dependent upon the set of basis functions Xp> ~ employed. The 
total density nnatrix D'p and the open-shell density mat r ix Dg, however, 
are constructed from the expansion coefficients Ci^r>i which a re determined 
by the self-consistent field process.^- ' ' 

The bulk of the diatomic SCF calculation is the evaluation of the 
matr ix elements H, and the supermatr ix elements <^^pq,urs and 
^Xpq.urs ' where X and jd designate the symmetry of the basis functions, 
and p, q, r, and s label the functions within a given symmetry. Fo r 
the homonuclear diatomic molecule, 

"Xpq - d x ' / x * x a [ - i ^ - ^ ' ^ ^ ' " ' ^ b ' ) ] X q , , d V , (15) 



Apq,Mrs = (dxd^)-' Z / / X^Xa(l)>^rV^(2)(lA'^) 
a/3 

X Xq^a(l)XsMp(2)dVidV2, (16) 

and 

'̂ ^XPq.Mrs = K V " ' Z//Xp*^(l)X,*^p(2)(l/r, ,) 
a/3 

X >^rM/3(l)Xqxa(2)dV:dV„ (17) 

'''xpq.M'^s = J^xpq.pTS - J '^^pq,;urs' 

'?Xpq,Mrs " °'J^XP<i:Prs " "^P '*-^x.pq,/irs' (18) 

where d;̂ ^ and d„ are the dimensions of the representation X, and the 
basis functions are given in te rms of atomic functions by Eq. (13). In 
Eqs. (18) thf parameter a and /3 are the vector coupling coefficients appro­
priate to the open-shell s tructure of the molecule. 

Equation (13) indicates that H reduces to a sum of one- and 
two-center one-electron integrals , which can be evaluated in a straight­
forward manner. However, the evaluation of the supermatrix elements, 
<̂ APQ Urs and 'C, pq uis' presents a formidable computational problem 
for any large molecular calculation. One economy that makes these cal­
culations feasible in practice is that no single, two-electron integral is 
ever computed as such. Instead, the scalar product of a total symmetrized 
charge distribution with a one-center potential yields all coulomb(5,6) and 
hybrid^-''"/ integrals contributing to a given supermatrix element. Simi­
larly, all exchange' ' ' ' contributions are evaluated as the scalar product of 
a pair of two-center exchange functions, symmetrized for the homonuclear 
diatomic molecule. Another important principle that leads to considerable 
economy is to confine all numerical work to a manifold of points charac­
ter is t ic of the molecule being studied and chosen to be physically significant. 
Finally, the saving and interlacing of reusable information during a lengthy 
calculation leads to a significant extension of computer capacity (particu­
larly during the variation of orbital exponents). 
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IV. CALCULATION OF THE MATRIX ELEMENTS 

We write down the explicit expressions used for the evaluation of 
matrix elements, H,pq and S,pq, for the homonuclear diatomic molecule, 
although the methodfemployed may be easily used to evaluate mat r ix e l e ­
ments for other operators. The formulas are 

Sxpq = < l - l / X p * ^ J q , , d V ; (19) 

"xpq = '̂ X' lI^xJ^^' ' b̂%Xa<̂ ^̂  (̂ °̂  

••^xpq 
a 

« X p q = ^ X p q - ^ " X p q - ( " ^ 

If we now introduce the explicit form of the symmetry basis 
function given by Eq. (13) and car ry out the summation over a, we obtain 

Sxpq = />^^pxa^aqxa<iv + ° X f ^Uxa^hqxa'^y: (23) 

"xpq = /^IpXa'^a'Xaqxa'JV + ^ x / x * p ; , a ^a'Xbq^adV 

+ ^xJ^lpXa ^£'^bqxa<^V + />^lpxa -"b'^aqxadV- (^4) 

^XPq = - i / ^ l p x a ^ ^aqxa^V - I a ^ / X * p , ^ A X^q^dV. (25) 

The one-center integrals occurring in Eqs. (23-25) are easily computed by 
using the functions('*) 

Vi(x) = x - i - ' i l = / dr r i e - ^ < (26) x-i-'il = f 
Jo 
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The two-center coulomb integral I ^^•pxa^i^^^^-lXa'^^ '" '̂̂  ^^ computed by 

applying the Laplace expansion(l) to r^ ' . 

The remaining two-center integrals a re of the type | Xjp- M X^qxa'^^' 

where M is a one-electron operator . They are computed via the auxiliary 
functions L^^^^ {T,p).^ 1 • S) 

The various one-electron p rograms were amalgamated into the di­
atomic mat r ix p rogram in a straightforward manner. Note that all integrals 
reduce to analytical express ions . The main programming consideration was 
to avoid any redundant computation. In any event, the evaluation of the one-
electron mat r ix elements constitutes only a small fraction of the total 
computation t ime. 
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V. REDUCTION OF THE SUPERMATRIX ELEMENTS TO 

INTEGRALS OVER CHARGE DISTRIBUTIONS 

After the explicit form for Xp-, given by Eq. (13) is introduced 
into Eqs. (16-17), it is clear that the general supermatr ix element may be 
considered to be the sum of electrostat ic interactions of charge d i s t r ibu­
tions built from products of atomic basis functions. A given charge d i s t r i ­
bution occurs in many supermatr ix elements, and these distr ibutions will 
be used to achieve great computational economy in the evaluation of the 
supermatr ices . The charge distributions that a re par t icu lar ly useful for 
the homonuclear molecule are 

Oa „ = --y* Y 
"pXa.rp^ Z^apXaBirpli' 

(27) ^PXa.rM/3 ''lU^apxa^br/i/S + °X^bpXa-^ar;Li/3-

It is easily established that 

«p,a,rMP = i-)"-'^^;X.a,r^-r (28) 

which holds for charge distributions with the superscr ip t a or ab. 

If we recast the expressions for the supermat r i ces ^ and iC 
given by Eqs. (16-17) in te rms of the above charge distributions (27) 
obtain 

as 

we 

•^xpq./irs '^xpq.Mi's •*" ,!^XPq.Mi's; 

<XPq,prs = '^xpq.prs +<Xpq.pTS-

where 

<i^xpq,urs -\_ XPq.Mrs l«PXa.qXa(') |«*2p,3^/3(2)+ « - ^ , 3 ^ ^ ( 2 ) + n*b^,,^p(2)] 

[«?M/3,s,^(l) |«p*,-,.q,j2) . "*,-„^q,^(Z) . «p*,V,,„(Z)]^ + fi! 

'•Apq,/irs - d̂  ' | ^{["pVr , / . ( l ) |«*^„ ,3 , ;3(2) . n*ab_ ,3, 

(29) 

y ( 3 0 ) 

^ ° ^ ° M % t a , s , , ( 2 ) ] ^ [ « , ^ ^ , 3 ^ , ( I ) | f i ; a ^ , , ^ , ( Z ) 

+ "D?^r„A(2) + a,o„fi*b PXa.rju/3 \"li' PXa ,r.>^^J}' 
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and 

P'^ Xpq,/irs 

XPq.M^s 

'-A nab ( 
"pxa.qxa^ 

0*ab I 
rpji.sp^ 

i v 2 [ ab 
PXa,r/iP 

: i) n*^b (2)1. 
qXa,s/i/3 J 

(31) 

The methods that will be used to evaluate these supermatr ix elements divide 
them naturally into two c l a s ses . The first c lass , Eqs . (30), consisting of the 
coulomb and hybrid integrals , will be evaluated as scalar products between 
two vectors - one having as i ts components the values of a reduced charge 
distribution, the other having as its components the weighted values of the 
electrostat ic potential ar is ing from a one-center charge distribution. Both 
of these vectors occur over a two-dimensional manifold of points used for 
numerical integration. The second c lass , Eqs. (31), consisting of the ex­
change in tegra ls , will also be evaluated as scalar products between two 
vectors ; however, for this c lass the components of each vector are the 
values of a weighted exchange function over a one-dimensional manifold of 
points. This exchange function is obtained through the analysisVl/ recently 
presented, organized specifically for distributions of the form fip,„ ruS ' 
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VI. THE COULOMB AND HYBRID INTEGRALS 

For the evaluation of the supermatrix contributions <^^pq,^rs' ^"-^ 
'<^>pq urs . the analysis given recently(l) ^ ^ s organized for the computation 
of large batches of integrals and for the symmetry D^h' Since the in tegra­
tion over the angle 0 is done analytically, the functions necessa ry for the 
numerical evaluation of the coulomb and hybrid integrals need to be tabu­
lated only over a two-dimensional manifold of points. The selection of this 
manifold is strongly influenced by the part icular two-dimensional integration 
scheme used. In principle, this integration can be performed over any two-
dimensional coordinate system; in pract ice, however, the accuracy and r e ­
liability obtained depends strongly on the specific choice of the manifold. 
After various attempts, it was found that a grid constructed as the direct 
product of two gaussian grids over the prolate spheroidal coordinates ? and 
T) was the most satisfactory of those grids tried. 

Since all numerical work for the evaluation of the coulomb and 
hybrid integrals is confined to the chosen manifold, which will be refer red 
to by P, it is useful to define the reduced atomic basis functions X 
by means of 

apxa :P) 

X apXa' (P , Xapxa(P)e^«*X/2^. (32) 

From these reduced atomic basis functions, we can build the reduced, 
one-center, charge distributions. 

2pXa,rpp(P) = T^apXa(P)SrMp(P)' 

and a reduced, symmetrized, two-center, charge distribution, 

2pXa,r^^(P) = ^,.^apXa(P)2brM^(P) + ^X^bpXa(P)2^arMi3(P)-

> (33) 

At this point it is convenient to limit considerations to the use of a = mj, 
and /3 = ±m^, and to the only combination of the reduced distributions of 
Eqs . (3^) that will appear in the working formulas for the supermat r ices 
of the homonuclear diatomic molecule. We accordingly define reduced 
homonuclear distributions by 

Gpl r^ 'P) = 2^Xmp,,rMm^(P) + 5pXm^,rpm^(P) + ^^X^pQ^Xm^.Tprr^^iPh 

O'- (p) = oa 
"Pxr/Li^^' 3pxm^,rp.rn^^ 

m„(P) + Qpxmx.rp^^,^^^ + °X0M5pxm^,rMm^ m^(P). 

34) 

It is easily shown from the proper t ies of the spherical harmonics( l '9 ) that 
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Q'pxrp^^^ - ( - ) " % W ( P ) - (35) 

The second quantity necessary for evaluating the coulomb and 
hybrid integrals as scalar products over the manifold P is the weighted 
potential arising from a one-center distribution. These weighted potentials 
may be developed from the familiar( l) one-center potentials obtained by 
the integration over the coordinates of one electron. 

^PX^p^^) = / "pxm^, r / im^( l ) ( lAi2)dVi ; 

Upxrj^(2) = / n f ; , ^ ^ , r ^ m ^ ( l ) ( l A i a ) d V i , 
(36) 

where the above integration is performed analytically in a spherical co­
ordinate system centered on nucleus a. The definition of the potential, 
Eqs. (36), has been limited to center a, since reference to only one center 
is necessary for the final evaluation of the integrals due to the D„,jj 
symmetry of the distributions, Eqs. (34). The specific reference to 
electrons 1 and 2 in Eqs. (36) is only necessary to define these potentials 
formally. Once defined, they may be considered as functions of three 
dimensions and the reference to the coordinates of electron 2 dropped. 
Since we will need only the dependence of this function over the manifold 
P , we define the reduced potentials Ug ^(P) by 

U± , , , (P ,0 ) = y p \ , , ( P ) e - ^ ( - ^ ^ - M ) * . (37) 

F r o m this reduced potential, we construct the reduced weighted potentials 
over the manifold P defined by 

yJxrpiP) = W(P)y±^rM(P)' (^8) 

where W(P) is the weight factor necessary for the numerical integration 
over the manifold P. It a r i ses from the gaussian weight factors and the 
volume element in the prolate, spherical coordinate system. 

For the ^ supermatrix, only the limited class of distributions 
ni-t^^ and potentials Vi^a^ are needed. We therefore introduce the ~PXHX '̂  r-f/C^A. 
abbreviated notation defined by 

Sxpq(P) = QptqX^P)^ Xxpq(P) = YpxqX^^)- ^''^ 



The working expressions for the coulomb and hybrid integral contributions 
then become 

Xpq.prs YxPq ' 5/irs ''' YjL/rs ' 2xpq' 

'^XPq.prs - 2 VJIXPM = -L(v+ + (-)'^p V- ) • 0' + 
I ^^xppr ^ y I "^ ixpp^' -xqps 

+ i.{V+ + ( - ) ' "M V " ) • o' + 
2^~Xq/iS ^ ^ ' -Xqps' iixp/ir-

(40) 
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VII. THE EXCHANGE INTEGRALS 

The exchange supermatrix contributions, ^ ^pq Mrs and f^j^-pn urs> 
were evaluated by a straightforward application of the methods presented 
recently, vl) Again the incorporation of the D^h symmetry of the charge 
distributions ^\(^^-rpE> i"to the analysis leads to significant computational 
economies. Both Jf ^pqurs and '^^pq nrs can be considered as special 
cases of the general integral 

^pXa,r|U/3;mv7,n(c6 = [ ̂ p Xa,r|U p(l) I ̂ rr?v7 ;n«; 6(2)J , (41) 

where V and K indicate symmetry species, and 7 and 6 subspecies. It is 
computationally convenient to formulate this integral as the scalar product 
of two vectors over a one-dimensional manifold of points, where the mani­
fold is defined by the numerical aspects of the exchange integral analysis. 
Each of these vectors arises from an exchange function determined by a 
charge distribution. 

It is easily shownll,7) that the basis function product Xap XaXbrpP 
may be expanded in prolate spheroidal coordinates by 

(-)P(iR)^(e-ri^)XapXaXbrM-/3 = (-)'^K^b^(?, ^)e-P ^-'"P^ 

X [ie - i)(-n'- i)Y $a (0 )* -p (0 ) , (42) 

where 

0.(1, T]) = Y, I 
n j 

^njevK 

and 

M = a - /3. 

The normalization factor K^b. the parameters p and T, and the expansion 
coefficients anj are determined by the product Xa.pXa^hTp-^- Since the 
distribution n*^b „ is a linear combination of two basis function products 
which differ only by the inversion of the centers a and b, it may be ex­
panded by 

{\R)H^'-^')^t^,rp^ - (-) '^Kab[(e^-l)(^^-l)]^'^ 

X 4'a(0)<I'-p(«)e-^^ X [oxCB{i.r,)e-'^P'^+ a^a)( ?,-r])e-^P^]. (43) 
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The in t roduct ion of these expanded d i s t r i b u t i o n s into e x p r e s s i o n (41) is 
followed by fami l i a r steps.(l.^) F i r s t the N e u m a n expans ion for l / r i 2 is 
in t roduced and the t r i v i a l i n t eg ra t i on ove r the a n g l e s 0; and 02 p e r f o r m e d . 
Then, the r e s u l t s of the analy t ic i n t e g r a t i o n s ove r Ti^ and Tf^ a r e e x p r e s s e d 
in t e r m s of the aux i l i a ry funct ions^ '^) defined by 

Bj iPT) I dr) T)J (1 -T)2)2' V M ( T ) ) , 

for which it is ver i f ied that 

^M£ J + M + j „ M i , , 
Bj (-PT) = (-) -"Bj ipT). (44) 

Final ly , s e v e r a l p a r t i a l i n t eg ra t ions over the v a r i a b l e s 5 , and ^ j l e ad tc 
the following e x p r e s s i o n : 

^p Xa,r^/3;mv7,n*:6 " i-)'^'^ / . IpXa, r|U/3;mi/7,n/c6' (45) 

where 

J 
IpXa,rM/3;mv7,n«:6 = 4 R - ' [ a x + o ^ ( - ) ^ + M ] [ a ,̂ + a^(- )^ + ^ ] 

r d? 2? M M 
( 5 2 . 1 ) [ ^ M ( ^ j ? i ; pXa , r^ /3 (? ;P ' ' ^ ) ^ i ; m ,.7,n/c 6(^ ••'='•^). 

^£;pXa,rii^(^-P.'^)= Kab T dxP^(x ) (x^ - 1) 2 
M ?• (46) 

Z B n p r ) ^ a „ , x V p x . 

o e t at the Ip Xa.,r^^,mi'7,n/<:6 i n t e g r a l v a n i s h e s i den t i ca l ly u n l e s s 

an':! r and'th'e c' ff" ' ^ " ^ ' ' ^ ^""^ P — ^ ' e r s P and r . ' t h e i nd i ce s n 

t e r m i n e d bv h l'̂  ' " ^ en te r ing into th i s a u x i l i a r y function a r e d e ­
t e r m i n e d by the c h a r g e d i s t r i bu t ion fi^^^ , ^ p t h rough E q s . (42-43) . 

the i n t e g ' r ' a l s T " " ! ^'"'^' ' ' ' ' ' ' ' ' ' " " ^ " " " ^ ' ' ^ ^ ' ' ^ ' ' ' ' ° ^ ^ ^ ^ ^ ^ ^ 6 P X a , r ^ ^ ; m v 7 , n / c 6 . n a m e l y S i m p s o n ' s - r u l e i n t e g r a t i o n s o v e r 

c o L o l ^ ' t " ' ' (7)":" "• ^ '^ '^ - - e r i c a l p r o c e d u r e was used to avoid m a n v 
compi ,ca t ions(7) that a r i s e m the ana ly t i c eva lua t ion of t h e s e i n t e g r a l H v L 
the n u m e r o u s o rb i t a l p r o d u c t s a p p e a r i n g a s i n t e g r a n d s . The S i m p s o n ' s - " l e 
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integration introduces in a natural way the manifold S as the selection of 
points used for the numerical integrations. (See Appendix A.) To organize 
the numerical work in the simplest possible t e rms , it is useful to define 
the weighted exchange function over this manifold S by 

Ql;pXrM(S) = ( - ) " ^ 2 R - i y ^ ) [ ( S ^ - l ) i ^ 7 ^ - " ^ ^ ( S ) ] " 

mx-mn 
X Fi;pXm5;,r^m^(S;P,T) 

Gi;pXr̂ (S) = (-r^ZR-iyWW)[(S'-l)HT^^'^l'{S)]' 

X F^.px 
X+'^p 
pAmx, r^m^ 

(S;P,T) 

(47) 

where W(S) is the necessary weight factor for the Simpson's-rule integra­
tion over the manifold. 

For the exchange contribution to the s u p e r m a t r i x ^ , only the limited 
class of exchange functions, namely Go.pĵ ^qĵ ,̂ will be needed. As was done 
for the coulomb hybrid contribution, we introduce the abbreviated notation 

5£;xpq(^) Sl;pXqx(S)- (48) 

The final working expressions for the exchange integral contribution to the 
supermatr ices in t e rms of scalar products are 

<7 Xpq, /^rs - 2 2 . Gi ;xpq • G£;p-^s: 

'^Xpq.prs = 2 ^ 9£;pXrii • Sl;qXs^.i 
rmx-m^ 1 
[m^-m +ij 

^ ("m^+m^ -j 
[m;^+m^TlJ 

5i;qXsM' 

(49) 

2 ^ 5£;p'>^''P 
-m^+m^ 
Lm;̂ +m -̂

where in the summations over £, the smaller lower limit is used if 
axOui-)"^^^"^^ = 1 ^""^ the larger lower limit if axa^(-)'^'*''^™'^ = -1 
note that the summation over £ proceeds in steps of two. This economy 
resul ts from the inversion symmetry of the distributions, as expressed by 
Eq. (43). 

Also 



VIII. CALCULATION OF THE WAVE FUNCTION 

Fully automatic computer programs were built that incorporated 
the analysis and organization discussed in Sections I-VII of this paper. 
These programs, which computed the H matr ix and the supermat r ices , 
d̂  and C , were linked to a modified version of the atomic SCF progranri 
written at The University of Chicago and Argonne National Laboratory^ ) 
The modifications that had to be made in the atomic SCF program were, 
of course, complete replacement of the atomic integral computation, new 
closed- and open-shell weight factors, and extensive changing of the 
"screening" of input data and printing of results to fit the diatomic mole­
cule. The specifications for the preparation of input and use of the mo­
lecular program(lO) are given in Appendix B. 

Once such a program exists, it can be used in a variety of ways 
ranging from the calculation of crude SCF wave functions(11.1 ) to an 
attempt to reach the molecular Har t ree-Fock function for the ground and 
excited states of diatomic molecules. (1 3-16) An infinite number of crude 
functions may be calculated, depending upon the use for which they are 
desired, and in many cases personal taste. There is within the frame­
work of the analysis, however, only one molecular Har t r ee -Fock function. 
It has been the goal of this work to make it possible to approach very 
closely the molecular Hart ree-Fock function with a truncated expansion. 
This function may be represented by several choices of basis se ts , and 
currently the path to the "final" function depends on computer economics, 
program capacity, intuition, and previous data. A brief discussion of the 
approaches used in this work is therefore in order. 

The gradual improvement of the molecular wave function depends 
upon the judicious addition of basis functions XpXa and the optimization 
of the orbital exponents of the added functions to make them most effec­
tive. This improvement process may be done in many different ways. 
Two methods were employed in this work. 

The first method was to start with a minimal basis set, optimize 
the basis function exponents in a coupled way (using chemical intuition and 
computer experimentation to determine which functions should influence 
each other), gradually add new basis functions, and optimize the new ex­
ponents. This process was continued until the total molecular energy 
showed little further improvennent upon the addition of new functions or 
until program capacity was exhausted. The second method was to s tar t 
the molecular calculation with a large basis set that was obtained inde­
pendently for the constituent atoms, singly optimize each basis function 
exponent, and add functions with highei' quantum numbers to each nnolec-
ular symmetry with optimization of the new exponents. Ideally these 
two methods would lead to the same result . However, computer economics 
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makes extensive coupled optimization of the molecular basis function ex­
ponents intractable. The exhaustively optimized atomic basis sets(17) 
therefore appear to be an energetically better representat ion of the mo­
lecular wave function after the exponents a re singly optimized and functions 
with higher £ values a re added to each molecular symmetry. These con­
siderations will be elaborated in forthcoming work. (13-16) It is sufficient 
to say here that the atomic Har t r ee -Fock function is a dominant contributor 
to the molecular Har t r ee -Fock function and forms a good starting point 
for the further development of the molecular wave function. Currently 
attempts a re being made to develop some wave function "prescription" 
which, by starting with atomic basis sets , will efficiently lead to the 
molecular Har t r ee -Fock function with a minimum of effort. 
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IX. CALCULATION O F M O L E C U L A R P R O P E R T I E S 

To eva lua te any m o l e c u l a r p r o p e r t y c h a r a c t e r i z e d by an o p e r a t o r 
M that h a s c y l i n d r i c a l s y m m e t r y , the m a t r i x e l e m e n t s def ined by 

Mx p q 
/ x ; x a M X q X a d V (50) 

a r e n e c e s s a r y . The m a t r i x e l e m e n t M ^ p q m a y be co n v en i en t l y e v a l u a t e d 
as the s c a l a r p roduc t of two v e c t o r s ove r the man i fo ld P . F o r th i s p u r p o s e , 
we in t roduce s t i l l ano the r r e d u c e d h o m o n u c l e a r d i s t r i b u t i o n , def ined by 

2 X p q ( P ) = 2 f x a , q X a ( P ) + 7 S ^ ^ a , q X a ( P ) + S ^ X a , q X a ( P ) . 

and the weighted p r o p e r t y o p e r a t o r , defined by 

M(P) = W(P)M(P), (51) 

w h e r e M(P) is the value of the p r o p e r t y o p e r a t o r o v e r the m a n i f o l d P and, 
as be fo re , W(P) is the weight fac tor n e c e s s a r y for the n u m e r i c a l i n t e g r a ­
t ion over the manifold. We m a y i n t e g r a t e a n a l y t i c a l l y ove r the ang le 0. 
The g e n e r a l e x p r e s s i o n for the p r o p e r t y m a t r i x e l e m e n t s i s then 

Mxpq = M - Qxpq- (52) 

The m o l e c u l a r p r o p e r t y is given as the i n n e r p r o d u c t of the d e n s i t y m a t r i x 
with the p r o p e r t y m a t r i x (52), w h e r e both a r e c o n s i d e r e d a s s u p e r v e c t o r s , 
by 

M = D T ' M. (53) 

A quant i ty often of i n t e r e s t , the c o n t r i b u t i o n of a g iven o r b i t a l to t h i s p r o p ­
e r t y , m a y be defined in t e r m s of the c o n t r i b u t i o n of the i th o r b i t a l to the 
dens i ty m a t r i x . 

Mi = Di • M, (54) 

w h e r e Dj conta ins only coef f ic ien t s f rom o r b i t a l i. T h i s n u m e r i c a l s c h e m e 
is concep tua l ly s i m p l e , and a l a r g e c l a s s of p r o p e r t i e s c a n be e v a l u a t e d in 
th is way, p a r t i c u l a r l y s i n c e m o s t d i f f e r en t i a l o p e r a t o r s c a n be e x p r e s s e d 
a s m u l t i p l i c a t i v e o n e s . ( l ) An i m p o r t a n t f e a t u r e of t h i s m e t h o d is i t s g e n ­
e r a l i t y and e a s y ex tendab i l i ty . The b a s i c q u a n t i t i e s n e e d e d a r e only the 
c h a r g e d i s t r i b u t i o n s G x p q and the w e i g h t e d p r o p e r t y o p e r a t o r M o v e r the 
manifold of po in t s P . P r o p e r t i e s c h a r a c t e r i z e d by o p e r a t o r s tha t h a v e 



strong singular behavior at one of the nuclei can be evaluated by this 
method if a suitable manifold P is designed; however, better methods 
exist for the calculation of this type of operator. 

For the evaluation of spectroscopic constants, the computed SCF 
potential curve for the molecule must be used. This computed potential 
curve has two serious shortcomings. The first is that the molecular 
orbital wave function dissociates properly only for a limited class of 
sys tems. For all o thers , it dissociates into a sum of neutral and ionic 
atomic s tates . Although this e r r o r is la rges t at R =00, it probably also 
tends to increase the molecular energy, even at the equilibrium inter­
nuclear distance. Even if the proper dissociation took place, there is the 
second e r r o r which tends to increase the molecular energy. This is the 
increased corre la t ion energy in the molecule. Both of these factors de­
crease the computed dissociation energy, which in this work is defined as 

l-'e - f^molecule " 2Eatom> (55) 

where Eatoim is the Har t r ee -Fock atomic energy. Often the sum of these 
two e r r o r s is sufficient to overshadow completely the comparatively small 
binding energy of many diatomic systems. However, the failure of the 
molecular wave function to show binding on this basis (55) does not com­
pletely obviate the significance of the SCF potential energy curve. We 
may say that 

Eexact = EHar t ree -Fock + AE, (56) 

where AE is the correct ion energy. It is not unreasonable to expect that 
over any small range of R, for instance, near the computed potential mini­
mum (Re - AR < R < Re+ AR, where AR ~ 0.25 bohrs), AE is roughly 
constant, so that 

d^exact dEHar t ree-Fock 
dR ~ dR 

(57) 

This should allow the equilibrium internuclear distance and the f i r s t -order 
spectroscopic constants to be predicted fairly well. In this work, a Dun­
ham analysis was used over the region near the equilibrium internuclear 
distance, and the f i r s t -o rde r spectroscopic constants thus obtained show 
fair agreement with experiment. 

Total electronic charge densit ies for the molecule a re defined by 

" = Z Z Z DXpq^Xpq. (58) 
X p q 
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Normally these densities are visualized by being plotted as contour 
lines in the x,z plane. These lines are defined by 

n(x,z) = C, (59) 

where C is the value of the density for which a contour is desired. Although 
the total charge density is significant, orbital densit ies, obtained by including 
only the contributions of a given orbital to the density matr ix , should be of 
even greater interest. These orbital densities should prove useful in study­
ing the visual aspect of molecular and atomic orbital comparisons, concepts 
like S-P hybridization, and the difference between bonding and antibonding 
orbitals. These contours are currently produced and plotted automatically 
by the computer. 
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X. DETAILS OF THE COMPUTATION 

The following general computational considerations made possible 
the calculations with existing computing facilities of Section XI. 

1. The reliabili ty and accuracy of the methods used to evaluate 
the supermat r ices depend upon the proper selection of the manifolds P and 
S. This selection is discussed in Appendix A. The three basic working func­
tions YpXr|U, 0 pXr^, and Q^;pXr^ depend only upon a single pair of basis 
functions. This re ta ins the computational identity of electrons 1 and 2. 
Thus, the most arduous par t of the supermatr ix evaluation (namely the eval­
uation of these three types of functions) need be done for approximately 

2_, 2 , '̂ X^u basis function pa i r s , as opposed to the square of the dependence 
p X 

that would a r i se if this identity were sacrificed (rb, is the number of basis 
functions in symmetry X). In addition, the conceptual simplicity of this for­
mulation makes it easily extendable to polyatomic systems. The principal 
further developments necessary are the selection of the manifolds, charac­
ter is t ic of the molecule under study, over which numerical work will be 
done, and a general reorganization for the multicenter geometry. 

2. To avoid extensive redundant computation in the evaluation of 
the supermat r i ces , all vectors YpXru must be available when a single 

n'+ ^~^ 
vector sipXr^ is constructed. The size of existing computer memories 
makes this impossible for a moderately large basis set. Therefore the 
manifold P was divided into regions determined by values of the prolate 
spheroidal coordinate 4- The vector tabulations were then made only over 
a region in the manifold, and the total supermatr ix contribution was eval­
uated as the sum of the regional integrations. 

3. The convergence of the coulomb and hybrid integrals as a func­
tion of the number of points in the manifold P was a matter of experimenta­
tion and depended upon the molecule under investigation. It was found that 
the ^ integration should be truncated at ^ < 50/(Cminl^)' where Cj-nin i^ the 
minimum exponent in the basis set, and that a grid of 20 points on each of 
the var iables § and r) was sufficient for studies of f i rs t - row diatomic sys­
tems. For investigations of second-row molecules, however, grids of 
36 points were necessary . 

The convergence of the exchange integrals as a function of £ in the 
Neumann expansion is controlled by a single threshold. When all contr i ­
butions ar is ing from a given vector 52;pXrfi are below this threshold in 
absolute value, the calculation of this vector is terminated. The iteration 
on £ is terminated when the contributions for all vectors Gj.p^rLi H^ below 
this threshold £ r when £ = 30. Should the lat ter occur, a record is made 
of the l a rges t las t contribution, and the calculations are continued. In 
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practice, the exchange contributions have converged well before £ = 30. It 
was found that 40 points in the manifold S were sufficient for all exchange 
integrals occurring in studies of f i rs t- and second-row molecules. 

4. Because of the numerical character is t ics of the exchange inte­
gral analysis, the functions P^M• e"'', and Br™(x) had to be scaled. 

5. During the variation of orbital exponents, considerable machine 
time may be saved by saving and reusing the vectors VpXr̂ u and Qf,pXT^ 
that are not built from a basis function being varied. Therefore the program 
was designed to save and reuse those vectors during the variation of 
exponents. 

6. Because of the large amount of computer time needed for any 
sizable molecular computation, a true interrupt procedure and an e m e r ­
gency feature were built into the molecular program. The interrupt p ro ­
cedure allows the calculations to be interrupted and res ta r ted when 
scheduling permits , with virtually no backtracking necessary . The e m e r ­
gency procedure periodically saves sufficient information to r e s t a r t the 
computation. Thus, should some catastrophe occur, calculations may be 
continued with the loss of only a small fraction of the computing done be­
fore the disaster. 
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XI. RESULTS FOR THE FLUORINE MOLECULE 

The fluorine molecule was selected as a prototype system for in­
vestigation through the use of the techniques developed in the preceding 
sections. The reasons for this choice were several: (l) there is a com­
parative lack of experimental and theoretical information on this system; 
(2) if fluorine could be successfully studied with these programs, it should 
clear the way for studies of smaller systems and provide a guidepost for 
the investigation of larger systems; and (3) the fluorine molecule was e s ­
timated to be the largest system for which extensive optimization of basis 
function exponents would be economically feasible and for which the molec­
ular Har t r ee -Fock function might be attainable. 

Previous calculations of the fluorine molecule consist of SCF cal­
culations by Rans i l ( l l ) and Eve(l2) yielding total energies of -197.87694 
and -197.87017 ha r t r ees , respectively. Eve(12) also performed a limited 
configuration-mixing calculation yielding a total energy of -197.95036 har ­
t r ees . The best wave function presented in this work yields an energy of 
-198.76825 ha r t r ees . 

The above F^ function is presented in Table I along with the orbital 
energies. Table II presents additional properties computed from this func­
tion. The ionization potential (iP) was evaluated by Koopman's Theorem. 
No experinnental comparisons are available for the molecular quadrupole 
moment (O), the field gradient at the nucleus (q), or the average molecular 
size <r^ + rb>av 

Table I 

NEAR HARTREE-FOCK WAVE FUNCTION FOR GROUND STATE OF FLUORINE MOl fCUtE 

Molecular 

Symmetry 

Species 

Molecular 

Orbital 

Orbital 

Energy Ihartrees) 

Vector 

Components 

In te rnuc lear Distance = 2.68 bohrs 

Basis Funct ions (Quantum Numbers, Orbital Exponents) 

Og 

I S 8.27336 

IS 13.1719] 

3S 4.90649 

2S 2.26251 

2P 1.84915 

2P 3.26935 

2P 5.85912 

3D 2.44269 

4F 2.83176 

Total Energy 

-198.76825 

lOg 

-26.42269 

+0.92243 

+0.08175 

+0.00560 

-0.00037 

+0.00032 

-0.00066 

+0.00145 

-0.00025 

-0.00000 

"u 

IS 8.28062 

IS 13.16925 

3S 5.03602 

2S 2.23962 

2P 1.44746 

2P 3.00518 

2P 6.35647 

3D 3.60759 

4F 1.52251 

Potent la 

"u 

2P 1.67164 

2P 3.20350 

2P 6.11692 

3D 2.49433 

4F 2.85001 

1 Energy 

-397.35489 

20g 

-1.75654 

-0.23113 

-0.00452 

+0.29092 

+0.67105 

+0.06396 

+0.05373 

+0.00749 

+0.02017 

+0.0O931 

30g 

-0.74604 

+0.04801 

+0.00260 

-0.05578 

-0.25752 

+0.58162 

+0.30716 

+0.08509 

+0.04571 

+0.01416 

"9 

2P 1.58741 

2P 3.18020 

2P 6.15863 

3D 2.43222 

4F 2.56431 

Kinet ic Energy 

+198.58664 

lou 

-26.42244 

+0.92318 

+008074 

+000618 

-0.00098 

-0.00036 

-0.00033 

+0.00120 

-0.00043 

+0.00005 

Vi r ia l Theorem 

-2.0009145 

20 u 

-1.49499 

-0.24801 

-0.00368 

+0.29569 

+0.82366 

-0.02437 

-0.08330 

-0.00927 

-0.00633 

+0.00264 

I tu 

-0.80523 

+0.50684 

+0.45168 

+0.07153 

+0.02122 

+0.00992 

tag 

-0.66290 

+0.57948 

•0.51156 

+0.07716 

-0.00102 

+0.00352 



30 

COMPUTED PROPERTIES FOR NEAR HAR T REE-FO CK 
GROUND STATE WAVE FUNCTION* OF FLUORINE MOLECULE 

Molecular R E Q q Ip De ' ' a + "h''aw ^ ^ ^ ' ' a 
P r o p e r t y bohrs h a r t r e e s (J e (boh r s ) ' ^/Cbohrs)-" '=^ ° ^ boh r s (bohrs 

C o m p u t e d 2.68 - 1 9 8 . 7 6 8 3 0 0.659 6.868 18.04 - 1 . 3 7 0 3.689 0.7772 

E x p e r i m e n t 2,68 - 1 9 9 . 6 7 0 0 . •• 16.3 1,68 

Spectroscopic Constants via Dunham Ana lys i s 

Computed 

Exper iment 

tDe(cm"M 

1257 

919,0 

a)gXg(cm~ ) 

9.85 

13.6 

Be 

1.003 

0.8901 

" e 

0.0108 

0.0146 

Re (A) 

1.33 

1.42 

*The bas i s set was const ructed by s tar t ing with the nomina l a tomic set of Bagus 
and Gilbert: ( l ) singly optimizing al l z e t a s . (2) adding 3d functions with s ingle 
optimization, (3) adding 4f functions with single opt imizat ion. 

Table III compares the function (atomic start) obtained by starting 
with the atomic Hartree-Fock results with the molecular wave function 
which was built up gradually (arduous). The atomic start function is ener­
getically superior and represents far less computation. 

COMPARISON OF ARDUOUSLY* BUILT-UP MOLECULAR BASIS SET WITH SET 
OBTAINED STARTING FROM ATOMIC** FUNCTIONS FOR FLUORINE MOLECULE 

^ ^ Q Ip De <r + rK>,.. -'̂  
bohrs hartrees M e(bohrs)^ hartrees hartrees \ v {bohrs 

Atomic Start 

Is Is 2p 2p 
I s ' I s ' 2p' 2p' 

2s 2s 2 p " 2 p " 2.68 - 1 9 8 . 7 6 8 3 0 0 .6589 0 .66290 
3s 3s 3d 3d 
2p 2p 4f 4f 
2p' 2p' 
2 p " 2 p " 
3d 3d 
4f 4f 

Arduously Built 

0.7772 

Is 
I s ' 
2s 
2s 
2P 
2p 
Zp 
3d 
4f 

Is 
I s ' 
2s 
2s 
2p 
2p 
3d 
4f 

2P 
<;p' 
2 p " 
3d 
4f 

2p 
2p' 
2 p " 
3d 
4f 

- 1 9 8 . 7 5 6 3 0 0 .5753 0 .66894 - 0 . 0 6 0 3,695 0 ,7874 

•••Arduous" r e f e r s to s ta r t ing with a s m a l l b a s i s set and gradually adding functions with 
^^coupled opt imizat ion of ze t a s at each addit ion. 

Start ing point was the • 'nominal" a tomic set: the r e su l t of a ve ry care fu l inves t iga t ion 
of f i r s t - row a toms of Bagus and G i l b e r t , ' l^" 
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Table IV presents a hierarchy of functions ending with the final 
function. Note the convergence of the energy as contrasted to the wide 
variation of severa l of the properties when basis set size is increased. 

Table W 

SUMMARY OF BASIS SET (EXPANSIONI BUItDUP FOR FLUORINE MOLECULE 

Basis 

Og "u 

3 x 3 x 1 x 1 

Is is 
2s 2s 
2p 2p 

5 x 5 x 2 x 2 

Is is 
2s 2s 
2s' 2s' 
2p 2p 
2p' 2p' 

Set 

"u 

2P 

2p 
2p' 

"9 

2p 

2p 
2p' 

Nominal Atom Buildup 

7 x 7 x 3 x 3 

is Is 
Is^ Is^ 
2s 2s 
3s 3s 
2p 2p 
2p̂  2p' 
2p" 2p" 

8 x 8 x 4 x 4 

Is Is 
2s 2s 
2s' 2s' 
3s 3s 
2p 2p 
2p' 2p' 
2p" 2p" 
in 3d 

9 x 9 x 5 x 5 

Is Is 
2s 2s 
2s' 2s' 
3s 3s 
2p 2p 
2p' 2p' 
2p" 2p" 
3d 3d 
4( 4f 

2p 
2p' 
2p" 

2P 
2p' 
2p" 
3d 

2p 

2p" 
3d 
4f 

Experimental Val 

2p 
2p' 
2p" 

2p 
2p' 
2p" 
3d 

2p 
2p' 
2p" 
3d 
4f 

ues 

Functions Added 

"9 

2s 
2p 

3s 
2p 

-2s 

3d 

4( 

"u "u 

2s 2p 
2p 

3s 2p 
2P 

-2s 

3d 3d 

4f 4f 

tg 

2P 

2P 

3d 

4f 

R 
bohrs 

2.68 

2,68 

•2,68 
••2,68 

2.68 

2,68 

2,68 

E 
hartrees 

-197.8865 

-198,7075 

-198,7364 
-198.7418 

-198.7639 

-198.7683 

-199.670 

Q 
e(bohrs|2 

0.2379 

0.3474 

0.2622 
0.3235 

0,7843 

0,6589 

e;(bohrs|3 

5,349 

7.107 
7.042 

6.950 

6.868 

Ip 
hartrees 

0.47497 

0.66496 

0.68199 
0.67562 

0.66402 

0.66290 

0.5990 

<ra + rb>a» 
bohrs 

3.618 

3.694 

3.704 
3.699 

3.689 

3.689 

<x2>av 

(bohrsl^ 

0.6411 

0.7717 

0.7906 
0.7832 

0.7817 

0.7772 

•Straight nominal atom lunction (from atomic studies of Bagus and Gi lbert) ."" 
'•Single optimization of all nominal atom zetas. 

Figure 1 is a contour diagram of the total electronic charge density 
in the x,z plane, where the wave-function normalization is jij/f^dV = 27TN 
(where N is the number of electrons) . 
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120-8254 
Fig. 1. Total Molecular Charge 

Density Contours for 
the Fluorine Molecule 

The computed dissociation energy (Dg) is poor (in fact, of the wrong 
sign). Evidently the two shortcomings of the molecular wave function dis­
cussed in Section IX (namely, the increased correlation energy in the mole­
cule and the improper description of molecular dissociation) are serious 
enough to mask completely the relatively small binding energy for this 
molecule. This failure to yield energetic binding, however, should not be 
considered a total condemnation of the wave function. The calculated ioni­
zation potential, internuclear distance, and the f i rs t -order spectroscopic 
constants show fair agreement with experiment. In addition, the binding 
energy is a very subtle quantity and the definition of it used in this work is 
a particularly hard test of the theory. Less rigorous definitions would 
yield almost any binding energy desired. 

In conclusion, the results obtained for the fluorine molecule are en­
couraging, but only through a consistent study of the Hartree-Fock-Roothaan 
wave function for a large series of molecules will the ultimate usefulness 
of this function become established. Such a study is now possible with ex­
isting "computing machinery" and is, in fact, under way. The molecular 
Hartree-Fock function is lower in energy than any limited configuration-
mixing wave function currently available. This suggests that a next logical 
step is to add the one additional configuration that would lead to the proper 
description of the dissociation of the molecule. Significant innprovement of 
the potential curve would then be expected, resulting in the more reliable 
computation of the spectroscopic constants. Hopefully studies of this sort 
for a series of molecules will aid in developing a set of consistent rules 
which will allow us to use the Hart ree-Fock function more effectively with­
out enormous computational effort. The atomic Har t ree-Fock functions a re 
necessary to evaluate efficiently the molecular Har t ree-Fock function, as 
diatomic Hartree-Fock functions may prove to be the dominant contributors 
to polyatomic and ultimately solid-wave functions. 
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APPENDIX A 

THE MANIFOLDS P AND S 

The existence of a se r ies of manifolds P , which will yield inc reas ­
ingly accurate resul t s by numerical integration, is basic to the very defi­
nition of the Riemann integral . In pract ice , the problem is to find an 
optimal, small set of points that will yield resul ts of a desired accuracy. 
The development of this set is a mat ter of experimentation guided by a 
knowledge of the spatial behavior of the charge distributions which appear 
as integrands. These distributions show their steepest variation in the 
region near the nuclei, thus requiring a manifold that concentrates points 
about the two nuclei and distr ibutes points more diffusely as the distance 
in every direction from the internuclear axis increases . After experi­
mentation with several coordinate sys tems, it was found that the manifold 
P obtained by a c rossed-gauss ian numerical integration over the prolate 
spheroidal coordinates | and T) yielded the most satisfactory results 
where the inverse transformation | = (1 + P)/( l - (3t) was employed. The 
paramete r j3 was chosen to confine the manifold P inside an ellipsoid 
of revolution outside of which the wave function of the molecule under 
study is no longer computationally significant. 

The manifold S, used for the numerical integration necessary for 
the evaluation of the exchange integrals , must concentrate points near the 
internuclear axis (̂  = 1). The inverse transformation, | = 1 / T , where a 
Simpson-rule integration is performed over the variable T, was satisfactory 
An equal- interval numerical integration procedure must be used so that 
the inner integrations over the variables x may be performed efficiently.! ) 
If the selection of the manifold S does not extend to infinity, a correction 
t e rm is added to the formula, Eqs. (46), given for the lpxa,Tp^;mVy,nK& 
integral . This truncation correct ion t e r m is defined by 

T̂  , , = 4R-'k.a,(-)^+fa,.a,(-)^^^'] 

,, U - M)! , ,M 

X [af ( l , „ a x ) / P f (?max)] F^p;,.^,r,.6 (^^max^^'P) 

^ F ^ ^ ^ , n ^ 5 ( l m a x ' - ' P ) ' (60) 

where ^ ^ a x i^ the finite upper limit of the i integration, and Q^ (x) is 
the associa ted Legendre function of the second kind.il) xhe analysis m 
Section VH was presented for the infinite upper limit of the 4 integration 
since the above correct ion complicates formulas unnecessar i ly while rep­
resenting no real computational difficulty. 

http://kind.il
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A P P E N D I X B 

THE C O M P U T E R PROGRAM 

1. G e n e r a l Cons ide r a t i ons 

A fully au toma t i c p r o g r a m that c o m p u t e s the SCF wave function for 
homonuc l ea r d ia tomic m o l e c u l e s w a s c o n s t r u c t e d for the IBM 7094 c o m p u ­
t e r It i n c o r p o r a t e s the f e a t u r e s d i s c u s s e d p r e v i o u s l y m th i s p a p e r . An 
S C F run using the f i r s t b a s i s set p r e s e n t e d in Tab le IV r e q u i r e s about 
40 s e c ; the "final" ba s i s set r e q u i r e s about 45 m i n u t e s . 

The orb i ta l exponents a r e v a r i e d a u t o m a t i c a l l y by an e s s e n t i a l l y 
b r u t e - f o r c e t echn ique , which is the s a m e a s tha t p r e s e n t e d for a t o m s . ( I 
The p r o g r a m hand les a l im i t ed n u m b e r of open she l l c a s e s , a m o n g wh ich 

a r e Og u, TTg u, 6, •"g.u' "g ,u ' 6i The n e c e s s a r y a and 
coeff ic ients°are p°resented in 'Table^V. The h o m o n u c l e a r d i a t o m i c SCF 
p r o g r a m is des igned to include c e r t a i n o p e n - s h e l l conf igura t ion c a s e s . 
Table V l i s t s the vec to r coupling coeff ic ients for the o p e n - s h e l l c o n f i g u r a ­
tion c a s e s now accep tab le by the p r o g r a m . The n u m b e r of b a s i s funct ions 
p e r m i s s i b l e i s d e t e r m i n e d by 

X 

+ 1 ) : 144, 

w h e r e N^ is the total n u m b e r of s y m m e t r y b a s i s func t ions , Eq . (13), of 
s y m m e t r y X. The r e s t r i c t i o n s on b a s i s function q u a n t u m n u m b e r s a r e 
l £ N s 6 , 0 £ i £ 3 , and - i £ m £ i . E x p e r i e n c e h a s shown tha t th i s 
p r o g r a m is useful for obtaining n e a r H a r t r e e - F o c h wave funct ions for 
mo lecu l a r s y s t e m s ranging in s ize f r o m H^ th rough CI2. 

Table V 

VECTOR COUPLING COEFFICIENTS FOR 
HOMONUCLEAR OPEN-SHELL CONFIGURATIONS 

Open-shell Case(s) 

°g.u 

^ g , u ' 6 g , u 

''g.u. ^U 

7T3 , 6^ g ,u ' g,u 

S t a t e ( s ) 

Zy-I-
-^g.u 

^ " g . u . ^ ^ . u 

S g , 2 g 

r ig .u ' Ag,u 

I 

1 

0 

1/2 

1 

1/9 

- 1 / 2 

- 1 / 2 

1/2 

- 1 / 2 

- 3 / 2 

- I / I 8 
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2. L o a d i n g C o n v e n t i o n s 

The input t o the p r o g r a m i s spec i f i ed a s fol lows on F A P ( F o r t r a n 
A s s e m b l y P r o g r a m ) c a r d s : 

L o c a t i o n O p e r a t i o n Con ten t s 

10 BCD Head ing s e n t e n c e . I n s e r t e d in f i r s t l ine of input and 
f inal output p a g e . A l s o i n s e r t e d in head ing of e a c h 
i n t e r r u p t p a g e . 

20 D E C N u c l e a r c h a r g e . F l o a t i n g or f ixed point n u m b e r . 

21 D E C I n t e r n u c l e a r s e p a r a t i o n , R. F l o a t i n g poin t n u m b e r . 
Up to n ine R v a l u e s p e r m i t t e d to be run c o n s e c u t i v e l y . 

30 D E C N u m b e r of s y m m e t r y - o r b i t a l s b a s i s func t ions , a c ­
c o r d i n g to s y m m e t r y . O r d e r i s ttOg. #0^ , #n^, # TTg, 
#6g , #6u, ihu' #"^2- The to t a l n u m b e r of s y m m e t r y -
o r b i t a l s b a s i s funct ions i s l i m i t e d by 

40 

Z( iK(N, + 1)^144, 
X 

w h e r e Npĵ  i s the t o t a l n u m b e r of s y m m e t r y - o r b i t a l 
b a s i s func t ions of X s y m m e t r y . 

D E C N u m b e r of c l o s e d - s h e l l m o l e c u l a r o r b i t a l s , a c c o r d ­

ing to s y m m e t r y . O r d e r i s #0g, #0^ , #^n•^^, #TTg, #6g, 

#6u, #7u. a n d #7g c l o s e d s h e l l s . 

50 D E C N u m b e r of o p e n - s h e l l e l e c t r o n s , a c c o r d i n g to 
s y m m e t r y . O r d e r i s #ag , #0^ , #TTU, #7Tg. #6g. # ^ i . 
#7 , a n d #7g o p e n - s h e l l e l e c t r o n s . No m o r e than 
one open s h e l l p e r s y m m e t r y i s p e r m i t t e d . 

60 D E C O p e n - s h e l l a l p h a c o e f f i c i e n t s . L i s t e d in Tab le V. 

80 D E C O p e n - s h e l l b e t a c o e f f i c i e n t s . L i s t e d in Tab le V. 

100 D E C Q u a n t u m n u m b e r N for s y m m e t r y - o r b i t a l s b a s i s 

func t ions g i v e n a b o v e . O r d e r i s Og, o' , . . • , 
Ou. °{i ^ u . TTJi , . . - . TTg,^^, . . . , 5g, 6^ 
6^, e-,, . . . , 7 u . 7 : i 7 g , 7 ^ , . . . L i m i t IS 
N < 6. 

133 DEC Q u a n t u m n u m b e r L for s y m m e t r y - o r b i t a l s b a s i s 
funct ions g iven a b o v e . O r d e r i s s a m e a s for 
q u a n t u m n u m b e r s N o r d e r . L — 3. 
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Loca t ion Ope ra t i on Con ten t s 

166 DEC Orb i t a l exponen t s for the s y m m e t r y - o r b i t a l s b a s i s 
functions given above . The o r d e r c o i n c i d e s wi th that 
of N and L j u s t p r e c e d i n g All o r b i t a l e x p o n e n t s 
m u s t e x c e e d the input t h r e s h o l d ( n o r m a l l y 0 .100) . 
In addi t ion , the d i f f e rence b e t w e e n o r b i t a l e x p o n e n t s 
for s y m m e t r y - o r b i t a l s b a s i s funct ions wi th the s a m e 
N and L va lue m u s t be g r e a t e r in a b s o l u t e m a g n i t u d e 
than a g iven t h r e s h o l d (a l so n o r m a l l y 0 .100) . 

200 DEC SCF input v e c t o r s No m o r e than 200 to ta l v e c t o r 
c o m p o n e n t s a r e p e r m i t t e d . 

400 DEC Ind ices of s y m m e t r y - o r b i t a l s b a s i s funct ions w h o s e 
o rb i t a l exponen t s a r e t o be v a r i e d and m u t u a l l y o p ­
t i m i z e d One, two, or t h r e e o r b i t a l e x p o n e n t s m a y be 
s i m u l t a n e o u s l y o p t i m i z e d . E a c h s e t of i n d i c e s m u s t 
be s e p a r a t e d by a z e r o . The b a s i s funct ions a r e 
n u m b e r e d in the o r d e r g iven above w h e r e the N, L, 
and o r b i t a l exponen t v a l u e s a r e l i s t e d . A t y p i c a l 
v a r i a t i o n a l chain m i g h t be 1, 2, 0, 3. T h i s wou ld 
specify tha* the o r b i t a l e x p o n e n t s of s y m m e t r y -
o rb i t a l funct ions 1 and 2 a r e s i m u l t a n e o u s l y o p t i m i z e d , 
and then the o r b i t a l exponen t s of s y m m e t r y - o r b i t a l 
function 3 is s ing ly o p t i m i z e d . In p r e p a r i n g the 
coupling c h a i n s , a lways put the m o s t e n e r g y -
sens i t i ve o rb i t a l exponent f i r s t in the i n d i c e s . 

420 DEC I n c r e m e n t for the v a r i a t i o n of the s y m m e t r y - o r b i t a l s 
b a s i s funct ions o r b i t a l e x p o n e n t s . L o a d e d in the s a m e 
m a n n e r and s e q u e n c e a s the i n d i c e s i m m e d i a t e l y 
p r e c e d i n g , excep t tha t the i n c r e m e n t s r e p l a c e the 
i n d i c e s . If any p a r t i c u l a r i n c r e m e n t or a l l the i n ­
c r e m e n t s a r e not exp l i c i t l y g iven , o r if any a r e l e s s 
than 0 001 , 10% of the o r b i t a l exponen t i nvo lved is 
employed m the v a r i a t i o n . The s e t of i n c r e m e n t s 
IS ca l l ed the m e s h of the v a r i a t i o n . 

SCF C o n v e r g e n c e C o n t r o l 

440 DEC N D i a g o n a h z a t i o n SCF T h r e s h o l d B i a s . 1 s N s 6, 
and n o r m a l l y p r o g r a m is se t to N = 1. 

441 DEC N N u m b e r of SCF E x t r a p o l a t i o n s . 5 s N =£ 2 5, and 
n o r m a l l y p rogra-m i s s e t to N = 5. 

442 DEC N N u m b e r of P r i o r S C F E x t r a p o l a t i o n s , 0 s N S 25 , 
and n o r m a l l y p r o g r a m is se t to N = 0, 
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Location Operation Contents 

443 DEC N Number of Diagonalization Iterations. 5 £ N £ 25, 
and normally program is set to N = 5. 

444 DEC Number of Locked Passes Pr ior to SCF. 0 < N < 9, 
and normally program is set to N = 0. 

445 DEC N Maximum Number of Extrapolations. 5 £ N s 100, 
and normally program is set to N = 50. 

446 DEC N Extrapolation Method N = 1 for Hartree-Roothaan 
Method, N = 2 for Sack Method. Normally program 
is set to N = 1. 

447 DEC N Diagonalization Method. N = 1 for SVDG (Single 
Vector Diagonalization), and N = 2 for Jacobi. Nor­
mally program is set to N = 1. 

448 DEC 25 Computes expectation values of 1, (sin^9a^)/ra^ 
(cos2e^)/ra, 3z^ - r i , l / r^ , i, r | , z | , and x | -1 y^. 

449 DEC Quadratic one-dimensional exponent variation 

enaployed. 

Intermediate Output Requests 

460 DEC *Intermediate matr ices printout. S, U, T, , and 
mat r ices are printed in format*. 

461 DEC *S-Matrix, its eigenvalues, and vectors are printed 
in format*. 

462 DEC *Final mat r ices S,H,P,Q, D-Open, D-Total, F-Open, 
F-Closed, R-Open, and R-Closed are printed in 
format*. 

463 DEC *Integrals between final orbitals , H-integrals , P -
in tegra ls . Q-integrals , and La Grangian multipliers 
a re printed in format*. 

464 DEC *F Matrix, its eigenvalues, and vectors are printed 

in format*. 

465 DEC 1 SCF i terat ions are printed. 

*Gives the printout format (always off line): 
If * equals 1, the output will be eight-column 
floating point decimal. 
If * equals 2, the output will be eight-column 
fixed point decimal. 

466 DEC Pr in t final vectors of intermediate resul ts during 
variation run. 
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Locat ion Ope ra t i on Con ten t s 

470 DEC I n t e g r a t i o n t r u n c a t i o n cutoff va lue in f loat ing d e c i m a l . 
If omi t t ed , a s t a n d a r d value is u s e d : RTRUN = 60. 
Th i s a s s u m e s no S T O ' s a r e m o r e diffuse than a h y d r o ­
gen IS function. 

476 DEC Only used in v a r i a t i o n r u n s . N u m b e r of N e u m a n n ex -
pans ion t e r m s to be inc luded in exchange i n t e g r a l c a l ­
cu l a t ions . The m a x i m u m n u m b e r of t e r m s p e r m i t t e d 
is (30 - Mjnax), a f ter which r e c o r d is kept of any ex ­
change i n t e g r a l that does not m e e t the t h r e s h o l d of 
10" ' , and compu ta t ions a r e con t inued . 

477 DEC 1 Save c u r r e n t input flag. C u r r e n t input wi l l be r e ­
u s e d wi th any modi f i ca t ions a s r e a d in for the nex t 
c a s e ; it does not save i tself . 

480 OCT NSIMPOOOOOl. N u m b e r of S i m p s o n ' s - r u l e po in t s in 
oc ta l . The m a x i m u m n u m b e r of po in t s i s 70. 

481 OCT NPETAOOOONPXl. N u m b e r of G a u s s i a n po in t s in 
octal u s e d in the double G a u s s i a n n u m e r i c a l i n t e ­
g r a t i o n s . N P E T A and NPXI m a y t ake any of the 
va lue s 12, 16, 20, 24, 30, or 36 po in t s (in d e c i m a l ) . 
If no g r i d is speci f ied , a 30 x 30 g r i d is e m p l o y e d . 

482 DEC 1 Output flag to ca l l for e i g h t - c o l u m n floating point 
dec ima l p r i n t - o u t (off l ine) to addends to J and K 
s u p e r m a t r i x e l e m e n t s for exchange and c o u l o m b 
p a s s e s . 

500 BCD S y m m e t r y symbol l i s t , only if o r d e r of m o l e c u l a r 
o rb i t a l s d e p a r t s f r o m the o r d e r 1 OQ, 2 a„, . . . , 
1 O u . 2 Ou 1 TT^, 27Tu, . . . , 1 n g , 2 TTg 

1 6g, 2 6g, . . . , l 6 u , 26u , . . . , H u , 2 7u 1 7g, 
2 7„, . . . 

3. Operat ing Ins t ruc t ions 

a. To S ta r t Any Run 

1. Mount LMSS-AA-SCF No, 1 tape on B7, 
2. Mount b lanks on B3, B4, B5, A5 , A6, and A7. 
3. Mount output tape on A3 , 
4. P l ace deck in c a r d r e a d e r headed by m o l e c u l e c a r d . 
5. C l ea r , put SSW 1, 4, and 5 down. 
6. Load c a r d s . 
P r o g r a m will load c a r d s and p r o c e e d with compu ta t ion . 
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b . To I n t e r r u p t 

1. P l a c e SSW 3 down. 

2. With in 1-60 m i n u t e s , run wi l l s top and p r i n t out on - l ine i n t e r r u p t 
s e n t e n c e . 

3. Unload t a p e s B7 and B5 , and save t h e s e t a p e s for s u b s e q u e n t co n t i n u a ­
t ion of c o m p u t a t i o n . 

c. To R e s t a r t I n t e r r u p t e d Run 

1. Mount t a p e s B7 , and B5 saved in i n t e r r u p t p r o c e d u r e . 
2. P l a c e b l a n k s on B 3 , B4, and A 3 , A 5 , A6 , and A7 . 
3. P l a c e I N T E R R U P T - R E S T A R T c a r d in c a r d rcp^Acr 
4. C l e a r , put SSW 1, 4, and 5 down. 
5. Load I N T E R R U P T - R E S T A R T c a r d . 
6. C o m p u t a t i o n s w i l l be con t inued f r o m i n t e r r u p t e d poin t . 

d. A l s o Note 

1. D e s c r i p t i o n of e m e r g e n c y p r o c e d u r e on page 40. 
2. D e t a i l s of i n t e r r u p t output option on p a g e s 39 and 40. 
3. Channe l a t ape opt ion on page 40. 
4. P r o g r a m S T O P wi th END in IR 4, 5, 6, 7 l igh t s i s n o r m a l conc lus ion . 

e. Sense Switch C o n t r o l s 

SSW F u n c t i o n 

1. If down, p r o g r a m c o n s i d e r s c u r r e n t input to be l a s t c a s e . 
2. If down, exponen t v a r i a t i o n wi l l be t e r m i n a t e d a t c u r r e n t i t e r a t i o n , 

and final output page p r i n t e d . 
3. If down, c o m p u t a t i o n wi l l be i n t e r r u p t e d and t a p e s w r i t t e n for s u b s e ­

quent c o n t i n u e n c e of c o m p u t a t i o n a t po in t of i n t e r r u p t i o n . See following 
p a r a g r a p h s for output opt ion a t t h i s po in t . 

4. If down, input i s c a l l e d f r o m c a r d s . If up , input i s c a l l e d f r o m tape A2 . 
5. If down, t a p e s A5 and A6 a r e u s e d for sav ing and edi t ing of two e l e c t r o n 

p o t e n t i a l s du r ing exponen t v a r i a t i o n . If up , t a p e s A5 and A6 a r e not 
u s e d a t the e x p e n s e of c o m p u t e r t i m e . 

6. If down, c u r r e n t i n t e r n u c l e a r d i s t a n c e in a s e r i e s of v a l u e s is c o n ­
s i d e r e d a s l a s t one . 

f. I n t e r r u p t 

The d e p r e s s i o n of SSW 3 i n t e r r u p t s the c u r r e n t m o l e c u l a r c o m p u t a ­
t ion . The c o m p u t e r wi l l c o m e to a p r o g r a m s top a f t e r p r i n t i n g an i n t e r r u p t 
m e s s a g e on the o n e - l i n e p r i n t e r . * The s top wi l l o c c u r wi th in 1-60 m i n u t e s 
of the t i m e SSW 3 i s p r e s s e d . Tape B5 m u s t be s a v e d for r e s t a r t i n g of 
c o m p u t a t i o n s . 

*If a full requested output at the time of interrupuon is desired, push SSW 3 up after the stop has 
occurred, and press the START button. The output will be written on tape A3, and the computer will 
come to a second program stop. 



For restarting of interrupted computation, tape B5 ^^ould be r e ­
mounted with program tape on B7. Blanks on B3, B4, A5, ^ 6 , and A 7 ^ 
Machine is cleared and interrupt res ta r t card loaded. Computations will 
res tar t at point of interruption.* 

g. Emergency Procedure 

Should computations stop at an unexpected point, or should the 
tapes give trouble, provide new tapes as follows:** 

1. Ready EMERGENCY RESTART AND RECOVERY card in 

reader . 

2. Clear machine; load cards . 

USE OF EMERGENCY PROCEDURE WILL LEAD TO A LOSS OF NO MORE 
THAN 60 MINUTES OF COMPUTATION. 

h. Channel A Tape Option 

If the heavy use of tapes A5 and A6 leads to continued difficulty 
after new tapes have been provided, computations may be continued less 
efficiently without the use of these tapes as follows: 

1. Clear machine at any time other than when tape B3 is being 
ref erenced-

2. Put SSW 5 up. 

3. Load EMERGENCY RESTART AND RECOVERY CARD. 
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