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ANALYTIC SELF-CONSISTENT FIELD WAVE FUNCTIONS
AND COMPUTED PROPERTIES FOR
HOMONUCLEAR DIATOMIC MOLECULES*

by

Arnold C. Wahl**

Argonne National Laboratory, Argonne, Illinois and
Laboratory of Molecular Structure and Spectra,
The University of Chicago, Chicago, Illinois

ABSTRACT

The analytic and computational framework on homo-
nuclear diatomic molecules for Hartree-Fock-Roothaan cal-
culations is presented. Several approaches to calculating
the wave function are sketched, as well as methods of com-
puting molecular properties from the wave function. The
efficient organization of these calculations for existing digital
computers is emphasized. Typical results obtained through
the application of the programs and techniques developedare
presented for the fluorine molecule.

INTRODUCTION

Although many calculations have been performed on diatomic mole-
cules, few have been of sufficient depth and scope to establish the useful-
ness of the mathematical model. This work presents the analytic and
inescapable, computational framework for Hartree-Fock-Roothaan calcu-
lations on diatomic molecules. Once the necessary one- and two-center,
one- and two-electron integrals are available,(l) different types of wave
functions can be constructed for diatomic molecules. Among these types
of calculations are straight LCAO (Linear Combination of Atomic Orbitals),
valence bond, atoms in molecules, limited configuration mixing, and self-
consistent field molecular orbital calculations. The methods discussed in
this paper apply to the calculations of analytic, self-consistent, field-wave
functions for homonuclear diatomic molecules by the Roothaan method.
The analysis for the self-consistent field equations is well documented,

*Based on work performed under the auspices of the U.S.A.E.C., and
by Advanced Research Projects Agency through the U.S. Army Re-
search Office (Durham) under Contract No. DA-11-022-ORD-3119,
and by a grant from the National Science Foundation, NSF GP-28.

**NSF fellowship, 1961-1962.



and the programs available for atoms(2'4) remain virtually inFact when
linked to the calculation of the diatomic matrix and supermatrix elements.
The methods employed to evaluate these elements were presented

recently.(l)

Even with the present, large-memory, high-speed, digital computers,
the calculations presented in this paper would be intractable unless con-
siderable attention was given to possible economies in the analysis and
organization of the matrix and supermatrix computations. What follows
will present such an organization for the calculation of self-consistent,
field-wave functions and properties for homonuclear, diatomic molecules,
and the specific application of these programs to the fluorine molecule.




I. CHOICE OF UNITS, COORDINATE SYSTEMS,
AND ATOMIC BASIS FUNCTIONS

Atomic units will be used through this paper. In this system, the
unit of length is the Bohr (0.52917 A ), the unit of energy the Hartree
(2R, hc = 27.20974 eV), and the unit of charge that of the electron, e~
In these units, the electronic Hamiltonian for a diatomic molecule is

b
~

I
T Z(-ZA#) - Za/ra# - Zb/rbp) + z l/rwj. (
[ HaH
The sums are over the electrons of the molecule. The two centers will
be designated by subscripts a and b, and their mutual separation by R.

The quantities Tay and ry, are the distances from nuclei a and b
respectively. Z_, and Zp are the charges on the two nuclei.

The position of the electrons with reference to the two centers will
be described in terms of the following three 1) coordinate systems:

1. Cartesian coordinate systems, centered on nuclei a and b
and on the midpoint between a and b, respectively. The z, and z}
axes are chosen to lie along the internuclear axis pointing toward one
another.

2. Spherical coordinates, centered on nuclei a and b. The
atomic orbitals are usually defined in terms of these coordinates.

3. Prolate spheroidal coordinates, with foci on nuclei a and b.
These coordinates are defined in terms of the spherical coordinates by

£ =(ra+trp)/Ri m = (ra-rp)/Ri ¢ =¢a = dp. (2)

The normalized complex STO's (Slater Type Orbitals) are used
throughout this paper. The STO's designated by Xapxoc or Xbpkon indicate
the triple n, £, m and are given by

(n, £,m) = LA [(En)] 2 oo~ LTy (0,9), (3)
where the spherical coordinate system is centered on nucleus a or b,
and the Y m(9,¢) are the normalized, complex, spherical harmonics

defined by

Y pm(6,8) = @gmlcos 8)2, (¢),
and

(¢) = (2m)"V2eim®, (4)



and the normalized associated Legendre functions are defined by

R s 2 (lﬂ-m)!]”z
c’gm(cos e) = 2—[/1! [——2 T+m.

X (-sin 6)™ [d o5 9] sl (cos? 6 - l)l, (5)

where -f=m = J.
In Eq. (3), n is taken as being a positive integer and t is completely
flexible.

The normalized, associated Legendre functions are related to the
unnormalized, associated Legendre functions by

20 +1) (4 -m)!]V?
Ppemt) = [EL - @ +m)z] Py m(x)-

The Py (x) functions are defined by
b+
(o pem gbm
le(x) —277!— (l-x) dx2+m (x '1)ﬂ~ (6)

For the calculation of the exchange integrals, we make use of similar
functions defined for 1 = x = o by

A -)ym L+m
Pmix) = iﬂ) (2 - 1)1/2md_z_i-:m (- 1)5. (7)
7

Details of these considerations are presented elsewhere.(1)



II. REVIEW OF GENERAL THEORY

The total N-electron wave function is put forth as an antisymme-
trized product of MSO's (Molecular Spin Orbitals),(z)

o = (N2 it Nl (8)
where [1,2, ... ,N] indicates the operation of "alternation" and
'4[/'% = ¢lil(ic)nlfé’ (9)

where the superscript u stands for the space and spin coordinates of the
uth electron, and the subscripts « and i label the different MSO's and
MO's (Molecular Orbitals), respectively. In the following, the superscript
4 and subscript k are dropped in order to simplify salient features of
the MO (b{}‘(,c) for the homonuclear diatomic molecule. In the expansion
form of the self-consistent field method, the molecular orbital ¢; is ex-
panded in terms of a set of suitable functions called basis functions Xp,

¢ = D XpCip, (10)
P

where the cip are the expansion coefficients which are determined by the
variational procedure. It is convenient to group the basis functions Xp
according tothe symmetry of the molecular orbital

Xp ~ Xpra (11)

so that
Pira = ZXanCiXp’ (12)
P

where A is the symmetry species and a is the subspecies of symmetry A.

The total electronic energy of the system is expressed in terms of
matrices and supermatrices, whose elements are one- and two-electron
integrals over the basis functions ka(x’ and suitably-defined density
matrices built from the coefficients CiXp' & The variational principle
is applied to minimize the energy with respect to the linear parameters
Ciyp- By proper manipulation, the variational equations determining the
coe]faficients CiXp can be written in the form of pseudo-eigenvalue equa-
tions. These equations are customarily solved by the iterative SCF (Self-
consistent Field) procedure. A complete and authoritative discussion of
the SCF equations and process for atoms has been given by Roothaan and
Bagus.(4) The reader is encouraged to refer to this work for details since
the formalism for atoms is virtually the same as that for molecules.



10

ULE
1II. APPLICATION TO THE HOMONUCLEAR DIATOMIC MOLEC
nter symmetry basis

diatomic molecule, two-ce
For the homonuclear dia et

functions belonging to the rotation-reflection group Dy p are
(13)
XP)\,OL = (l/ﬁ)(Xapm e OXXbpxa)’

where the subscripts a and b refer to the two atoms. For X )\% to hafvle -
proper symmetry, Xzpy, must be the mirror image of Xbpkq. A entrethec e
through a plane midway between atoms a and b and perpendicular to the
internuclear axis. The parameter 0, is determined by the gerade org)im-
gerade symmetry of the basis function X, and is given by 0, = (-) for

+
g symmetry and 0y =(-)™\™ for u symmetry.

For a given symmetry X\, the subspecies o permits two values,

namely, a = +m;, where m; is the value of the projection of orbital
angular momentum on the internuclear axis. Henceforth the notation mj
in lieu of -m; will be used. The introduction of symmetry basis functions

permits considerable computational economies.

The variational principle is applied to minimize the total energy of

the molecule yielding the Roothaan equations determining the linear co-

efficients CV\p. The expression for the total energy of the molecule is

given by(-”r4
2

E = H'Dy + -é-Diro’DT -%DCT)ODO + %. (14)

In the above expression, the elements of the H matrix (which is a
collection of all one-electron integrals between basis functions and is con-
sidered as a supervector) and the @ and @ supermatrices (which are
ordered collections of all two-electron integrals between basis functions)
are only dependent upon the set of basis functions X QL employed. The
total density matrix D and the open-shell density matrix Dg, however,
are constructed from the expansion coefficients CD\P’ which are determined
by the self-consistent field process. 3

The bulk of the diatomic SCF calculation is the evaluation of the
matrix elements H and the supermatrix elements a)\pq,prs and
@xpq,urs: where X\ and . designate the symmetry of the basis functions,
and p, q, r, and s label the functions within a given symmetry. For
the homonuclear diatomic molecule,

1 ol
Fapq = dilfxgm [‘E -2 (fa'”b‘)] XqradV: (15)



1l

})\pq,p.rs = dkd fo Xp)@ r#ﬁ l/rxz

X XqpallXspp (2)dV,dV,, (16)

’C)qu,‘urs o d)\.d E\ff XP)\[X. S/J,‘B(Z)(l/rIZ)

X Xpyp (g (2)aV,aV,, (17)
and
@ = sk
APQ,urs }XPq:urs T 2 "apq.urs’
& Lo
@xpq.urs = *&)pq,urs -5 B X pq,urs: (18)

where d) and d# are the dimensions of the representation A, and the

basis functions are given in terms of atomic functions by Eq. (13). In

Eqgs. (18) the parameter o and p are the vector coupling coefficients appro-
priate to the open-shell structure of the molecule,

Equation (13) indicates that H reduces to a sum of one- and
two-center one-electron integrals, Whlc(}l can be evaluated in a straight-
forward manner. However, the evaluation of the supermatrix elements,
}qu urs and ’()\pq,urs’ presents a formidable computational problem
for any large molecular calculation. One economy that makes these cal-
culations feasible in practice is that no single, two-electron integral is
ever computed as such. Instead, the scalar product of a total symmetrized
charge distribution with a one-center potential yields all coulomb(5,6) and
hxbrid(ib) integrals contributing to a given supermatrix element. Simi-
larly, all exchange 7) contributions are evaluated as the scalar product of
a pair of two-center exchange functions, symmetrized for the homonuclear
diatomic molecule. Another important principle that leads to considerable
economy is to confine all numerical work to a manifold of points charac-
teristic of the molecule being studied and chosen to be physically significant.
Finally, the saving and interlacing of reusable information during a lengthy
calculation leads to a significant extension of computer capacity (particu-
larly during the variation of orbital exponents).
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IV. CALCULATION OF THE MATRIX ELEMENTS

We write down the explicit expressions used for the evaluation of

, for the homonuclear diatomic molecule,

matrix elements, H q and S :
aluate matrix ele-

although the methods employed may be easily used to ev
ments for other operators. The formulas are

= =] * . (19)
Sypq = I ;fxpqumdv'

- =] * -1 -1 dV; 20
g = 9 aZprm(ra t 15 MXgyg (20)
= >y} 2 - 21
e = i ;fxpm A XgyodVs (21)
5 = Tapg ~ 2Uapg (22)

If we now introduce the explicit form of the symmetry basis
function given by Eq. (13) and carry out the summation over o, we obtain

= * )

S\pa f XapraXaradV + 0y f X3praXbargdV (23)
g * el o

Uxpq fXaPXa Ta XagradV + 0y, fXgpxo_ T2 XpqredV

=l 5
i’ GXfX;pxa b XbQXadV it fX;an l‘b‘XaquV; (24)

1 1
Li 1 (et * e *
Ne-~ "3 fxapm A XaqyadV - 2% fxapxa A XpqrgdV- (25)

The one-center integrals occurring in Eqs. (23-25) are easily computed by
using the functions (4

Vi(x) = x-i-}j1 = f dr rie-XT, (26)
0
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The two-center coulomb integral fx;pmrglxaqmdv can be computed by

applying the Laplace expa.nsion(l) talnElt

The remaining two-center integrals are of the type fxé’tpka M XpqydV,

where M is a one-electron operator. They are computed via the auxiliary
functions nge (—,-’p)‘(l,S)

The various one-electron programs were amalgamated into the di-
atomic matrix program in a straightforward manner. Note that all integrals
reduce to analytical expressions. The main programming consideration was
to avoid any redundant computation. In any event, the evaluation of the one-
electron matrix elements constitutes only a small fraction of the total
computation time.



V. REDUCTION OF THE SUPERMATRIX ELEMENTS TO
INTEGRALS OVER CHARGE DISTRIBUTIONS

After the explicit form for X, given by Eq. (13) is introduced
into Eqgs. (16-17), it is clear that the general supermatrix element may be
considered to be the sum of electrostatic interactions of charge distribu-
tions built from products of atomic basis functions. A given charge distri-
bution occurs in many supermatrix elements, and these distributions will
be used to achieve great computational economy in the evaluation of the

supermatrices. The charge distributions that are particularly useful for

the homonuclear molecule are

1

a L
QP)\CL:T/Jﬁ 2 Xap)LaXar,uﬁ’
B N *
Q. rup = FuXapraXbrup + NXbpraXarup- (27)
It is easily established that
= [ aF
ora,rup = () BQ;X'OL,I‘M-ﬁ’ (28)

which holds for charge distributions with the superscript a or ab.
If we recast the expressions for the supermatrices £ and X as

given by Eqgs. (16-17) in terms of the above charge distributions (27), we

obtain

= gc
;)\_pq,‘u,rs qu,prs t £ iqu,prs;

(29)
AAPQrs = X fpq urs % Xpq,urs
where
-
c =l oa
F3pa,purs [me,qm(”l Teip sup @)+ QER L p(2) + azby oup@]
+/ Q2 1 *
[ r“B’SHB( )IQP;\“"U@ e Qgig,@\a(z) * Q;)?a.qxa(z)];
o = d;! a
i~ s e 0+ ) f OO
+ 0y0,0*b a
A% qm,sﬂﬁ(Z)] + [qua,syﬁ(”,%fa.mﬁ (2)
+ (*ab b ;
PRI wh¥ OXOMQ;Xa,rHﬁ(Z)]}' J
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and
oo i l b *xab -
#¥pqurs = 7[00 V) | RF8 o @)]:
(31)
1
x =his ool ab 1 *ab 2 ]
’equ:#rs e 8 [pra,ruﬁ( )'qu,suﬁ( )

The methods that will be used to evaluate these supermatrix elements divide
them naturally into two classes. The first class, Eqs. (30), consisting of the
coulomb and hybrid integrals, will be evaluated as scalar products between
two vectors - one having as its components the values of a reduced charge
distribution, the other having as its components the weighted values of the
electrostatic potential arising from a one-center charge distribution. Both
of these vectors occur over a two-dimensional manifold of points used for
numerical integration. The second class, Eqs. (31), consisting of the ex-
change integrals, will also be evaluated as scalar products between two
vectors; however, for this class the components of each vector are the
values of a weighted exchange function over a one-dimensional manifold of
points. This exchange function is obtained through the analysis(l) recently

A A v > v =
presented, organized specifically for distributions of the form Qp)\axr#ﬁ'
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VI. THE COULOMB AND HY BRID INTEGRALS

- s, c
For the evaluation of the supermatrix contributions ;qu, Yo7 arlld
was organized for the computation

i . il

xs$ the analysis given recently
APq,urs’ 3 : _
of lg.ci'gi batches of integrals and for the symmetry D,p- Since the integra

tion over the angle ¢ is done analytically, the functions necessary for the
numerical evaluation of the coulomb and hybrid integrals need to be tabu-
lated only over a two-dimensional manifold of points. The selectic.m of thié
manifold is strongly influenced by the particular two-dimensional integration
scheme used. In principle, this integration can be performed over any two-
dimensional coordinate system; in practice, however, the accuracy and re-
liability obtained depends strongly on the specific choice of the manifold.
After various attempts, it was found that a grid constructed as the direct
product of two gaussian grids over the prolate spheroidal coordinates £ and

7 was the most satisfactory of those grids tried.

Since all numerical work for the evaluation of the coulomb and
hybrid integrals is confined to the chosen manifold, which will be referred
to by P, it is useful to define the reduced atomic basis functions ')‘(_aan(P)

by means of

XapxaP:®) = Xapyo(P)e'*®/a/2m. (32)
From these reduced atomic basis functions, we can build the reduced,
one-center, charge distributions,
1
a S .
pnorup®) = 7 Xapra P)Xaryup(P):
and a reduced, symmetrized, two-center, charge distribution, (33)
ab = /
%0 ruplP) = 9 ¥apra (P XprupP) + 0 Xbpra (P)Xa rup (P)-

At this point it is convenient to limit considerations to the use of a = my
and B = +m,,, and to the oLly combination of the reduced distributions of
Egs. (33)that will appear in the working formulas for the supermatrices
of the homonuclear diatomic molecule. We accordingly define reduced
homonuclear distributions by

1+ — a ab b i
K—zp)\rp.(P) Qp)\m)\,rump(P) + Qp)\mx,rum’u(p) & olougpkmx,r#m’u(P)'

s = nd b - b —
Bo5wu®) = Bpamy e, (P) + BpRmy, uim, (P) *+ 010 @Bym, ,rum, (P)-
(34)

It is easily shown from the properties of the spherical harmonics(1,9) that




L7

e =R (). (35)

The second quantity necessary for evaluating the coulomb and
hybrid integrals as scalar products over the manifold P is the weighted
potential arising from a one-center distribution. These weighted potentials
may be developed from the familiar 1) one-center potentials obtained by
the integration over the coordinates of one electron,

Udaeu@) = [08im rum, (D1 /r)avi; |
(36
Tas zul2) = ngmerm—n“(l)(1/r12)dv1,

where the above integration is performed analytically in a spherical co-
ordinate system centered on nucleus a. The definition of the potential,
Egs. (36),has been limited to center a, since reference to only one center
is necessary for the final evaluation of the integrals due to the D},
symmetry of the distributions, Eqs. (34). The specific reference to
electrons 1 and 2 in Eqgs. (36) is only necessary to define these potentials
formally. Once defined, they may be considered as functions of three
dimensions and the reference to the coordinates of electron 2 dropped.
Since we will need only the dependence of this function over the manifold
P, we define the reduced potentials U_)\r,u(P) by

i _ -i(my3m,)¢
Uhru(P.9) = ~p>\r#(P)e Al (37)
From this reduced potential, we construct the reduced weighted potentials
over the manifold P defined by

ViruP) = W(P)UZ, -, (P), (38)

where W(P) is the weight factor necessary for the numerical integration
over the manifold P. It arises from the gaussian weight factors and the
volume element in the prolate, spherical coordinate system.

For the @ supermatrix, only the limited class of distributions
Qit . and potentials Y;qu are needed. We therefore introduce the

~PAA\
abbreviated notation defined by

L oattl = G (Pl Y, 5g(P) =

+
Ypq Sokdn Vapa Voan(P)-
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The working expressions for the coulomb and hybrid integral contributions
then become

#ypaurs = Yapa " Qrs * Yurs * Qpqi

1 m
c Al £ ¢ S
Axpaurs = 7 Wpur + )7 ¥ipue)  Qiqus 3

Lyt my - . oi®
t5(Vyqus * () ¥iqus) war'J



VII, THE EXCHANGE INTEGRALS

The exchange supermatrix contributions, £ ¥pq yurs and A ¥pqurss
were evaluated by a straightforward application of the methods presented
recently. 1) Again the incorporation of the D}, symmetry of the charge
distributions Qg%\a,r g into the analysis leads to significant computational
economies, Both })\pq,prs and ’Ciqu,urs can be considered as special
cases of the general integral

b
Xp)\oc,r,uﬁ;mv’y,n/cé = [Q;Xa,rpﬁ(l) IQ:r?IB)’Y;nicé(Z)]» (41)

where vV and k indicate symmetry species, and Y and 0 subspecies, It is
computationally convenient to formulate this integral as the scalar product
of two vectors over a one-dimensional manifold of points, where the mani-
fold is defined by the numerical aspects of the exchange integral analysis,
Each of these vectors arises from an exchange function determined by a
charge distribution.

It is easily shown(1,7) that the basis function product Xap )\g)(ﬁr#ﬁ
may be expanded in prolate spheroidal coordinates by

(_)B(_Q_R)f*(g?._ nz)XapXochrp-/B = (-)ﬁKabw(ﬁ,ﬂ)e'Pg‘Tﬁm

M

x [(£2- 1)(n% - DM 00(6). o), (42)

where

and

The normalization factor K}, the parameters p and 7, and the expansion
coefficients apj are determined by the product Xapkaxbr,u—ﬁl Si‘nce the
distribution Q;i}& B is a linear combination of two basis function products
which differ only i)y the inversion of the centers a and b, it may be ex-

panded by

AL
(ARP(E2- PIURE up = (PRabl(E2- D(n®- 112

x Oa(0)0_ #)e™PE x [0 (&,Me” T + opale, -1 (43)

59



The introduction of these expanded distributions into expression (41) is
followed by familiar steps. 1,7 First the Neuman expansion for 1/r;, is
introduced and the trivial integration over the angles ¢; and ¢, performed,
Then, the results of the analytic integrations over 7); and 7), are expressed
in terms of the auxiliary functionsll, V) defined by

1 . 1
B;VM(PT) =fdn nJ(l-nz)ZMa’;"l(n),
=3

for which it is verified that

M4

By p7) = ()

M+j_ME
b +JBJ- (pT). (44)

Finally, several partial integrations over the variables £, and £, lead to
the following expression:

(=]

v/
3 Ao, TuB;mvY,ned - (-)Pre Z Ipxa,rup;mvy,nk s (45)
£=fmin

where

£ =
IpXo,ruBimvy,nk6 = 4R I[UX i 0#(-)£+M][0v+ ch(')hbM]

o d€ M M
e Ean £:p,7),
‘[ (e2- Byt [ lpreru i,

B )
F%pka,ry plé;p,7)= Kabf dXPE/I(X)(xZ— 1)%M ¢ (46)

1

X Z B}wz(pT) Z anjxne‘px,

_j n

L :
Note that the Ip Xa,rpﬁémv')’,n/cé integral vanishes identically unless

0)‘0}1 = 0p0x and o - = 7 -6. The parameters P and T, the indices n
and j, and the coefficients apj entering into this auxiliary function are de-
termined istri i

rmined by the charge distribution nga,r/.zﬁ through Eqs, (42-43).

The numerical scheme presented recently(l) was used to evaluate

the integrals kaa,ruﬁ;mvy,mcé- namely Simpson's-rule integrations over

the variables £ and x,
complications(7)
the numerous or

This numerical procedure was used to avoid many
that arise in the analytic evaluation of these integrals over
bital products appearing as integrands. The Simpson's-rule
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integration introduces in a natural way the manifold S as the selection of
points used for the numerical integrations. (See Appendix A.) To organize
the numerical work in the simplest possible terms, it is useful to define
the weighted exchange function over this manifold S by

Shorra® = T 2RTVWE) [ (52 )T B T (s)]

m) -m
X Fy, p)\mgf r U ) (510

1 -1
2

Gipreul® = ()™ 2z /WG [ )T AP (s)]

% Fm)\+mﬂ -
E;pkmx,r,umﬂ( ik,

7

where W(S) is the necessary weight factor for the Simpson's-rule integra-
tion over the manifold.

For the exchange contribution to the supermatrix £, only the limited
class of exchange functions, namely Gl ipAghs Will be needed. As was done
for the coulomb hybrid contribution, we introduce the abbreviated notation

Gpiapal® = Gfipaqal)- &)

The final working expressions for the exchange integral contribution to the
supermatrices in terms of scalar products are

00
3
X
P S lPs & ZZ Geiapa - Syp;urss
Pq, M =
< +
X
A\pq, urs = Zz Gliprru - gi;q)\sp
P i F (49)
& m)-m 1
[ee]
7 2y Glipirp - Gliqsp
my +m
]
m>\+m#~r1 J
where in the summations over 4, the smaller lower limit i+s used if
m
o) (- JPMIU - ) and the larger lower limit if o3 0u(-)" A K = -1. Also

note that the summation over £ proceeds in steps of two. This economy
results from the inversion symmetry of the distributions, as expressed by

Eq. (43).



22

VIII. CALCULATION OF THE WAVE FUNCTION

uter programs wWere built that incorporated
d in Sections I-VII of this paper.
H matrix and the supermatrices,

Fully automatic comp
the analysis and organization discusse

These programs, which computed the :
@ and @, were linked to a modified version of the atomic SCF program

written at The University of Chicago and Argonne National Laboratory.
The modifications that had to be made in the atomic SCF program were,
of course, complete replacement of the atomic integral computation, new
closed- and open-shell weight factors, and extensive changing of the

of input data and printing of results to fit the diatomic mole-

'screening!
d use of the mo-

cule, The specifications for the preparation of input an
lecular program(lo) are given in Appendix B.

Once such a program exists, it can be used in a variety of ways
ranging from the calculation of crude SCF wave functions(llrlz) to an
attempt to reach the molecular Hartree-Fock function for the ground and
excited states of diatomic molecules.(13- 16) An infinite number of crude
functions may be calculated, depending upon the use for which they are
desired, and in many cases personal taste. There is within the frame-
work of the analysis, however, only one molecular Hartree-Fock function.
It has been the goal of this work to make it possible to approach very
closely the molecular Hartree-Fock function with a truncated expansion,
This function may be represented by several choices of basis sets, and
currently the path to the "final" function depends on computer economics,
program capacity, intuition, and previous data. A brief discussion of the
approaches used in this work is therefore in order.

The gradual improvement of the molecular wave function depends
upon the judicious addition of basis functions Xpra and the optimization
of the orbital exponents of the added functions to make them most effec-
tive. This improvement process may be done in many different ways.
Two methods were employed in this work.

The first method was to start with a minimal basis set, optimize
the basis function exponents in a coupled way (using chemical intuition and
computer experimentation to determine which functions should influence
each other), gradually add new basis functions, and optimize the new ex-
ponents. This process was continued until the total molecular energy
showed little further improvement upon the addition of new functions or
until program capacity was exhausted. The second method was to start
the molecular calculation with a large basis set that was obtained inde-

pendently for the constituent atoms, singly optimize each basis function

exponent, and add functions with higher quantum numbers to each molec-
ular symmetry with optimization of the new exponents. Ideally these
two methods would lead to the same result. However, computer economics
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makes extensive coupled optimization of the molecular basis function ex-
ponents intractable. The exhaustively optimized atomic basis sets(17)
therefore appear to be an energetically better representation of the mo-
lecular wave function after the exponents are singly optimized and functions
with higher £ values are added to each molecular symmetry, These con-
siderations will be elaborated in forthcoming work,(13-16) It is sufficient
to say here that the atomic Hartree-Fock function is a dominant contributor
to the molecular Hartree-Fock function and forms a good starting point

for the further development of the molecular wave function, Currently
attempts are being made to develop some wave function "prescription"
which, by starting with atomic basis sets, will efficiently lead to the
molecular Hartree-Fock function with a minimum of effort.
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IX. CALCULATION OF MOLECULAR PROPERTIES

To evaluate any molecular property characterized by an operator
M that has cylindrical symmetry, the matrix elements defined by

= * 50
Mjpq = fxpmM Xgra 4V (50)

are necessary. The matrix element Mkpq may be conveniently evaluated
as the scalar product of two vectors over the manifold P, For this purpose,
we introduce still another reduced homonuclear distribution, defined by

1
Q qu(P) = QSm,q Xoc(P) 7 "QaRa )\a(p) * Q;b:oXoc,qu(p):
E 2~pAra,q

and the weighted property operator, defined by

M(P) = W(P)M(P), (51)
where M(P) is the value of the property operator over the manifold P and,
as before, W(P) is the weight factor necessary for the numerical integra-
tion over the manifold. We may integrate analytically over the angle ¢.
The general expression for the property matrix elements is then

Mipgq = M+ fixpg- (52)
The molecular property is given as the inner product of the density matrix
with the property matrix (52), where both are considered as supervectors,

by
M = DT - M. (53)

A quantity often of interest, the contribution of a given orbital to this prop-
erty, may be defined in terms of the contribution of the ith orbital to the
density matrix,

M; = D; * M, (54)

Yvhere Di contains only coefficients from orbital i. This numerical scheme
1s conceptually simple, and a large class of properties can be evaluated in
this way, particularly since most differential operators can be expressed
as multiplicative ones,(1) An important feature of this method is its gen-
erality and easy extendability, The basic quantities needed are only the
charge distributions Q)\pq and the weighted property operator M over the
manifold of points P, Properties characterized by operators that have



strong singular behavior at one of the nuclei can be evaluated by this
method if a suitable manifold P is designed; however, better methods
exist for the calculation of this type of operator.

For the evaluation of spectroscopic constants, the computed SCF
potential curve for the molecule must be used. This computed potential
curve has two serious shortcomings. The first is that the molecular
orbital wave function dissociates properly only for a limited class of
systems, For all others, it dissociates into a sum of neutral and ionic
atomic states. Although this error is largest at R = o, it probably also
tends to increase the molecular energy, even at the equilibrium inter-
nuclear distance. Even if the proper dissociation took place, there is the
second error which tends to increase the molecular energy. This is the
increased correlation energy in the molecule. Both of these factors de-
crease the computed dissociation energy, which in this work is defined as

De = Emolecule - 2Eatom, (55)

where Ejtom is the Hartree-Fock atomic energy. Often the sum of these
two errors is sufficient to overshadow completely the comparatively small
binding energy of many diatomic systems. However, the failure of the
molecular wave function to show binding on this basis (55) does not com-
pletely obviate the significance of the SCF potential energy curve. We
may say that

Eexact = EHartree-Fock + AE, (56)

where AE is the correction energy. It is not unreasonable to expect that
over any small range of R, for instance, near the computed potential mini-
mum (Re - AR < R < Re+ AR, where AR ~ 0.25 bohrs), AE is roughly
constant, so that

dEexact dEHartree- Fock (57)
R dR 1

This should allow the equilibrium internuclear distance and the first-order
spectroscopic constants to be predicted fairly well. In this work, a Dun-
ham analysis was used over the region near the equilibrium internuclear
distance, and the first-order spectroscopic constants thus obtained show

fair agreement with experiment.

Total electronic charge densities for the molecule are defined by

2=23 2 2 Dipaipq (58)

AR
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Normally these densities are visualized by being plotted as contour
lines in the x,z plane. These lines are defined by

e B o (59)

where C is the value of the density for which a contour is desired. Although
the total charge density is significant, orbital densities, obtained by including
only the contributions of a given orbital to the density matrix, should be of
even greater interest. These orbital densities should prove useful in study-
ing the visual aspect of molecular and atomic orbital comparisons, concepts
like S-P hybridization, and the difference between bonding and antibonding
orbitals. These contours are currently produced and plotted automatically
by the computer.



X. DETAILS OF THE COMPUTATION

The following general computational considerations made possible
the calculations with existing computing facilities of Section XI,

1. The reliability and accuracy of the methods used to evaluate
the supermatrices depend upon the proper selection of the manifolds P and
S. Thii selec|tion is discussed in Appendix A. The three basic working func-
tions .Y}—))\ru’ Q gkrp.: and Qi;p)\rp depend only upon a single pair of basis
functions. This retains the computational identity of electrons 1 and 2.
Thus, the most arduous part of the supermatrix evaluation (namely the eval-

uation of these three types of functions) need be done for approximately

Z Z Byn, basis function pairs, as opposed to the square of the dependence
A

that would arise if this identity were sacrificed (nx is the number of basis
functions in symmetry A). In addition, the conceptual simplicity of this for-
mulation makes it easily extendable to polyatomic systems. The principal
further developments necessary are the selection of the manifolds, charac-
teristic of the molecule under study, over which numerical work will be
done, and a general reorganization for the multicenter geometry.

2. To avoid extensive redundant computation in the evaluation of
the supermatrices, all vectors Yg)\r,u must be available when a single
vector Q'Ekrp is constructed. The size of existing computer memories
makes this impossible for a moderately large basis set. Therefore the
manifold P was divided into regions determined by values of the prolate
spheroidal coordinate £. The vector tabulations were then made only over
a region in the manifold, and the total supermatrix contribution was eval-
uated as the sum of the regional integrations.

3. The convergence of the coulomb and hybrid integrals as a func-
tion of the number of points in the manifold P was a matter of experimenta-
tion and depended upon the molecule under investigation. It was found that
the ¢ integration should be truncated at € < 50/():. Nt ihwherserc i BiERihie
minimum exponent in the basis set, and that a grid of 20 points on each of
the variables £ and 7) was sufficient for studies of first-row diatomic sys-
tems. For investigations of second-row molecules, however, grids of
36 points were necessary.

The convergence of the exchange integrals as a function of / in the
Neumann expansion is controlled by a+sing1e threshold. When all contri-
butions arising from a given vector GJ7;pAru are below this threshold in
absolute value, the calculation of this vector is terminated. The iteration
on £ is terminated when the contributions for all vectors g%;pkrp lie below
this threshold or when £ = 30. Should the latter occur, a record is made
of the largest last contribution, and the calculations are continued. In

27
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practice, the exchange contributions have converged well before L =30. It
was found that 40 points in the manifold S were sufficient for all exchange
integrals occurring in studies of first- and second-row molecules.

4. Because of the numerical charactelristics of the exchange inte-
gral analysis, the functions P (x), e ¥ and Bj ™(x) had to be scaled.
5. During the variation of orbital exponents, cons1derab1e machine

time may be saved by saving and reusing the vectors Vpxm and GZ pATi
that are not built from a basis function being varied. Therefore the program

was designed to save and reuse those vectors during the variation of

exponents.

6. Because of the large amount of computer time needed for any
sizable molecular computation, a true interrupt procedure and an emer-
gency feature were built into the molecular program. The interrupt pro-
cedure allows the calculations to be interrupted and restarted when
scheduling permits, with virtually no backtracking necessary. The emer-
gency procedure periodically saves sufficient information to restart the
computation. Thus, should some catastrophe occur, calculations may be
continued with the loss of only a small fraction of the computing done be-
fore the disaster.



XI. RESULTS FOR THE FLUORINE MOLECULE

The fluorine molecule was selected as a prototype system for in-
vestigation through the use of the techniques developed in the preceding
sections. The reasons for this choice were several: (1) there is a com-
parative lack of experimental and theoretical information on this system;
(2) if fluorine could be successfully studied with these programs, it should
clear the way for studies of smaller systems and provide a guidepost for
the investigation of larger systems; and (3) the fluorine molecule was es-
timated to be the largest system for which extensive optimization of basis
function exponents would be economically feasible and for which the molec-
ular Hartree-Fock function might be attainable.

Previous calculations of the fluorine molecule consist of SCF cal-
culations by Ra.nsil(“) and Eve(12) yielding total energies of -197.87694
and -197.87017 hartrees, respectively. Eve 12) also performed a limited
configuration-mixing calculation yielding a total energy of -197.95036 har-

trees. The best wave function presented in this work yields an energy of
-198.76825 hartrees.

The above F, function is presented in Table I along with the orbital
energies. Table II presents additional properties computed from this func-
tion. The ionization potential (IP) was evaluated by Koopman's Theorem.
No experimental comparisons are available for the molecular quadrupole
moment (Q), the field gradient at the nucleus (q), or the average molecular
size <ry + rp>av-

Table T

NEAR HARTREE-FOCK WAVE FUNCTION FOR GROUND STATE OF FLUORINE MOLECULE

Internuclear Distance = 2.68 bohrs

Basis Functions (Quantum Numbers, Orbital Exponents)

Molecular
Symmetry g oy Ty g
Species
1S 8.27336 1S 8.28062 2P 1.67164 2P 1.58741
15 13.17191 1S 13.16925 2P 3.20350 2P 3.18020
3S 490649 3S 5.03602 2P 6.11692 2P 6.15863
25 226251 2S 2.23962 3D 2.49433 3D 2.43222
2P 1.84915 2P 1.44746 4F 2.85001 4F 2.56431
2P 3.26935 2P 3.00518
2P 585912 2P 6.35647
3D 244269 3D 3.60759
4F 2.83176  4F 1.52251
Total Energy Potential Energy Kinetic Energy Virial Theorem
-198.76825 -397.35489 +198.58664 -2.0009145
g:;ie;\rlar log 209 30g loy 20, Iy lng
2,',2',';; (hariees) -26.42269 -1.75654 -0.74604 ~26.42204 -1.49499 -0.80523 -0.66290
+0.92243 -0.23113 +0.04801 +0.92318 -0.24801 +0.50684 +0.57948
+0.08175 -0.00452 +0.00260 +0.08074 -0.00368 +0.45168 +0.51156
+0.00560 +0.29092 -0.05578 +0.00618 +0.29569 +0.07153 +0.07716
Vector -0.00037 +0.67105 -0.25752 -0.00098 +0.82366 +0.02122 -0.00102
Components +0.00032 +0.06396 +0.58162 -0.00036 -0.02437 +0.00992 +0.00352
-0.00066 +0.05373 +0.30716 -0.00033 -0.08330
+0.00145 +0.00749 +0.08509 +0.00120 -0.00927
000025 4002017 +0.04571 -0.00043 -0.00633

-0.00000 +0.00931 +0.01416 +0.00005 +0.00264

29
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Table II

COMPUTED PROPERTIES FOR NEAR HARTREE-FOCK
GROUND STATE WAVE FUNCTION* OF FLUORINE MOLECULE

. . z
De {ra + 1p2ay SX22 0

Molecular R E Q q Ip
Property bohrs hartrees 4 e(bohrs)? e/(bohrs)’ eV eV bohra (bohrs)?
Computed 2.68 -198.7683 0 0.659 6.868 18.04 -1.370 3.689 0.7772
Experiment 2.68 -199.670 0 16.3 1.68 & o
Spectroscopic Constants via Dunham Analysis

wglem™) weXelcm™) Be e Re(l"\)
Computed 1257 9.85 1.003 0.0108 1.33
Experiment 919.0 13.6 0.8901 0.0146 1.42

*The basis set was constructed by starting with the nominal atomic set of Bagus
and Gilbert: (1) singly optimizing all zetas, (2) adding 3d functions with single
optimization, (3) adding 4f functions with single optimization.

Table III compares the function (atomic start) obtained by starting
with the atomic Hartree-Fock results with the molecular wave function
which was built up gradually (arduous). The atomic start function is ener-
getically superior and represents far less computation.

Table III

COMPARISON OF ARDUOUSLY * BUILT-UP MOLECULAR BASIS SET WITH SET
OBTAINED STARTING FROM ATOMIC** FUNCTIONS FOR FLUORINE MOLECULE

o
R E Q Ip De <r, + rpday L&
Basis Set bohrs hartrees [ e(bohrs)? hartrees hartrees bobrs (bohrs)?

g Chy Ty Tg
Atomic Start

1s 1s 2p 2p

1ol Taleeapl = 2p!

2s 2s 2p'' 2p''  2.68 -198.7683 0 0.6589 0.66290 -0.048 3.689 0.7772
3s 3s 3d 3d

2p 2p 4f 4f

2p' 2p'
2p'" 2p"
3d 3d
4f 4f

Arduously Built

1s ls 2p 2p 2.68 ~-198.7563 0 0.5753 0.66894 -0.060 3.695 0.7874
1s' Is!' = 2Zp' ..2p’

2s 25 2p' 2p"

28 2s 3d 3d

2p 2p 4f 4f

2p 2p

2p 3d

3d 4f

4f »

*n . §
Arduous" f-efers to starting with a small basis set and gradually adding functions with
7 coupled optimization of zetas at each addition.
* i : :
Staxjtmg point was the "nominal" atomic set: the result of a very careful investigation
of first-row atoms of Bagus and Gilbert. 17)
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Table IV presents a hierarchy of functions ending with the final
function. Note the convergence of the energy as contrasted to the wide
variation of several of the properties when basis set size is increased.

Table TV
SUMMARY OF BASIS SET (EXPANSION) BUILDUP FOR FLUORINE MOLECULE
Basis Set Functions Added

R E Q q Ip <rg + av <Xy
Og Oy i g 0g oy My T  bohrs hartrees  elbohrs)2  el(bohrs)3  hartrees bohrs (bom,z
X el x 1
1s 1s 2p 2p
2 2s 2.68  -197.8865 0.2379 5.349 0.47497 3.618 0.6411
2 2p
a2 x2
1s 1s 2p 2p 25 5 2 2
2 2 '
fis! Bs Y
2p 2p 2.68  -198.7075 0.3474 0.66496 3.694 0.7717
2

Nominal Atom Buildup

Tx7x3x3
1s 1s 2p 2p 3s 33 2 2 *2.68  -198.7364 0.2622 7.107 0.68199 3.704 0.7906
1s' Is' 2p' 2p' 2p 2p **2.68  -198.7418 0.3235 7.042 0.67562 3.699 0.7832
2 2 il Anit 25 25
3s 3
2p 2p
[
3" 2"
8x8x4x4
1s 1s 2p 2p 3d 3d 3 3d
2s 2 2p' 2p'
25! 2" Zpt sl 2.68  -198.7639 0.7843 6.950 0.66402 3.689 0.7817
3s 3s 3d 3d
2p 2p
2
" 2t
3d 3d
9 %9 X5 x5

1s 1s 2p 2p 4f T e
2 2 2p' 2p'
25k~ PR dptt e < Pp!t 2.68  -198.7683 0.6589 6.868 0.66290 3.689 0.7772

2p 2p 4 4f

p
" "
3d 3d
4 o
Experimental Values 2.68 -199.670 o s 0.5990

*Straight nominal atom function (from atomic studies of Bagus and Gilbert).(17)
**Single optimization of all nominal atom zetas.

Figure 1 is a contour diagram of the total electronic charge density
in the x,z plane, where the wave-function normalization is [¢¥*dV = 2mN
(where N is the number of electrons).
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Fig. 1. Total Molecular Charge
Density Contours for
the Fluorine Molecule

The computed dissociation energy (De) is poor (in fact, of the wrong
sign). Evidently the two shortcomings of the molecular wave function dis-
cussed in Section IX (namely, the increased correlation energy in the mole-
cule and the improper description of molecular dissociation) are serious
enough to mask completely the relatively small binding energy for this
molecule. This failure to yield energetic binding, however, should not be
considered a total condemnation of the wave function. The calculated ioni-
zation potential, internuclear distance, and the first-order spectroscopic
constants show fair agreement with experiment. In addition, the binding
energy is a very subtle quantity and the definition of it used in this work is
a particularly hard test of the theory. Less rigorous definitions would
yield almost any binding energy desired.

In conclusion, the results obtained for the fluorine molecule are en-
couraging, but only through a consistent study of the Hartree-Fock-Roothaan
wave function for a large series of molecules will the ultimate usefulness
of this function become established. Such a study is now possible with ex-
isting "computing machinery" and is, in fact, under way. The molecular
Hartree-Fock function is lower in energy than any limited configuration-
mixing wave function currently available. This suggests that a next logical
step is to add the one additional configuration that would lead to the proper
description of the dissociation of the molecule. Significant improvement of
the potential curve would then be expected, resulting in the more reliable
computation of the spectroscopic constants. Hopefully studies of this sort
for a series of molecules will aid in developing a set of consistent rules
which will allow us to use the Hartree-Fock function more effectively with-
out enormous computational effort. The atomic Hartree-Fock functions are
necessary to evaluate efficiently the molecular Hartree-Fock function, as
diatomic Hartree-Fock functions may prove to be the dominant contributors
to polyatomic and ultimately solid-wave functions.
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APPENDIX A
THE MANIFOLDS P AND S

The existence of a series of manifolds P, which will yield increas-
ingly accurate results by numerical integration, is basic to the very defi-
nition of the Riemann integral. In practice, the problem is to find an
optimal, small set of points that will yield results of a desired accuracy.
The development of this set is a matter of experimentation guided by a
knowledge of the spatial behavior of the charge distributions which appear
as integrands. These distributions show their steepest variation in the
region near the nuclei, thus requiring a manifold that concentrates points
about the two nuclei and distributes points more diffusely as the distance
in every direction from the internuclear axis increases. After experi-
mentation with several coordinate systems, it was found that the manifold
P obtained by a crossed-gaussian numerical integration over the prolate
spheroidal coordinates £ and 7) yielded the most satisfactory results
where the inverse transformation & = (1 +B)/(1 - pt) was employed. The
parameter B was chosen to confine the manifold P inside an ellipsoid
of revolution outside of which the wave function of the molecule under
study is no longer computationally significant.

The manifold S, used for the numerical integration necessary for
the evaluation of the exchange integrals, must concentrate points near the
internuclear axis (¢ = 1). The inverse transformation, £ = 1/T, where a
Simpson-rule integration is performed over the variable T, was satisfactory.
An equal-interval numerical integration procedure must be used so that
the inner integrations over the variables x may be performed efficiently.(1
If the selection of the manifold S does not extend to infinity, a correction
term is added to the formula, Egs. (46), given for the I}l;xa,ruﬁlm'W'sn’c\%
integral. This truncation correction term is defined by

Tt = 4R! [ox + 0y (—)M%][Ou + 0 (-)

M+1’.]
PAoL,TUP ;myy,nkd

(6 - M)! M
x g <)

X [Q},’VI (gmax)/ﬁy(gmax)] F%pxa,ruﬁ (gmax"T'p)

% F%mw,n&é(gmax;T’p)’ (60)

where £,y is the finite upper limit of the £ integration, and Q%/I(x) ‘is
the associated Legendre function of the second kind.(1) The analysis in
Section VII was presented for the infinite upper limit of the £ integration
since the above correction complicates formulas unnecessarily while rep-
resenting no real computational difficulty.
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APPENDIX B
THE COMPUTER PROGRAM

1. General Considerations

A fully automatic program that computes the SCF wave function for
homonuclear diatomic molecules was constructed for the IBM 7094 compu-
ter. It incorporates the features discussed previously in this paper. An
SCF run using the first basis set presented in Table IV requires about
40 sec; the "final" basis set requires about 45 minutes.

The orbital exponents are varied automatically by an essentially
brute-force technique, which is the same as that presented for atoms.
The program handles a limited number of open shell cases, among which
are Og y» Tg,u ég,u' ﬂzg’u, ézg,u, ﬂ:é’u, é%,u. The necessary o and B
coefficients are presented in Table V. The homonuclear diatomic SCF
program is designed to include certain open-shell configuration cases.
Table V lists the vector coupling coefficients for the open-shell configura-
tion cases now acceptable by the program. The number of basis functions
permissible is determined by

Z(%)(NK)(NX +1)= 144,
x

where N, is the total number of symmetry basis functions, Eq. (13), of
symmetry \. The restrictions on basis function quantum numbers are
1=N=6,0=/f =3,and -4 =m = /. Experience has shown that this
program is useful for obtaining near Hartree-Foch wave functions for
molecular systems ranging in size from H, through ClI,.

Table V

VECTOR COUPLING COEFFICIENTS FOR
HOMONUCLEAR OPEN-SHELL CONFIGURATIONS

Open-shell Case(s) State(s)
Og,u Zzg'u 1 -1/2
ﬂg,u, ég’u an,u' ZAg,u il _1/2
"Ing’u, ézg’u ) 0 1/2
'Ag, l.rg 1/2 -1/2
‘=3, 12 1 -3/2
g %z g *Agoa 1/9 -1/18
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2. Loading Conventions

Location Operation

The input to the program is specified as follows on FAP (Fortran
Assembly Program) cards:

10

20
21

30

40

50

60
80
100

1S3

BCD

DEC
DEC

DEC

DEC

DEC

DEC
DEC
DEC

DEC

Contents

Heading sentence. Inserted in first line of input and

final output page. Also inserted in heading of each
interrupt page.

Nuclear charge. Floating or fixed point number.

Internuclear separation, R. Floating point number.
Up to nine R values permitted to be run consecutively.

Number of symmetry-orbitals basis functions, ac-
cording to symmetry. Order is #og, oy, #my, # Mg
#6g, Silorsi il #vg. The total number of symmetry-
orbitals basis functions is limited by

2(—;->N>\(N>\ +1) <144,
%

where N is the total number of symmetry-orbital
basis functions of A symmetry.

Number of closed-shell molecular orbitals, accord-
ing to symmetry. Order is #0g, #0y, #1r, #Trg, #0g,
#6u, #Vy, and #’Yg closed shells.

Number of open-shell electrons, according to
symmetry. Order is #og, #oy, #my, #7g, #5g, #8y,
1Yy, and #’yg open-shell electrons. No more than
one open shell per symmetry is permitted.

Open-shell alpha coefficients. Listed in Table V.
Open-shell beta coefficients. Listed in Table V.

Quantum number N for symmetry-orbitals basis
functions given above. Order is Og, Og

Ou,o{l,...,'rru,"rr{l,...,Wg,ﬂ‘g,...,gg,é,'_..,,
Sl 5{1:-»-»7u:7h'---:Vg:V'g:--- Limit is
N = 6.

Quantum number L for symmetry-orbitals basis
functions given above. Order is same as for
quantum numbers N order. L = 3.
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Location Operation

166

200

400

420

440

441

442

DEC

DEC

DEC

DEC

DEC

DEC

DEC

Contents

Orbital exponents for the symmetry-orbitals basis
functions given above. The order coincides with that
of N and L just preceding. All orbital exponents
must exceed the input threshold (normally 0.100).

In addition, the difference between orbital exponents
for symmetry-orbitals basis functions with the same
N and L value must be greater in absolute magnitude
than a given threshold (also normally 0. 100).

SCF input vectors. No more than 200 total vector
components are permitted.

Indices of symmetry-orbitals basis functions whose
orbital exponents are to be varied and mutually op-
timized. One, two, or three orbital exponents may be
simultaneously optimized. Each set of indices must
be separated by a zero. The basis functions are
numbered in the order given above where the N, L,
and orbital exponent values are listed. A typical
variational chain might be 1, 2, 0, 3. This would
specify that the orbital exponents of symmetry-
orbital functions 1 and 2 are simultaneously optimized,
and then the orbital exponents of symmetry-orbital
function 3 is singly optimized. In preparing the
coupling chains, always put the most energy-
sensitive orbital exponent first in the indices.

Increment for the variation of the symmetry-orbitals
basis functions orbital exponents. Loaded in the same
manner and sequence as the indices immediately
preceding, except that the increments replace the
indices. If any particular increment or all the in-
crements are not explicitly given, or if any are less
than 0.001, 10% of the orbital exponent involved is
employed in the variation. The set of increments

1s called the mesh of the variation.

SCF Convergence Control

N Diagonalization SCF Threshold Bias. l1=N = 5,
and normally program is set to N = 1.

N Number of SCF Extrapolations. 5 = N = 25, and
normally program is set to N = 5.

N Number of Prior SCF Extrapolations. 0 = N = 25,
and normally program is set to N = 0.
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DEC

DEC

DEC

DEC

DEC

DEC

DEC

DEC

DEC

DEC

DEC

DEC

DEC

*Gives

DEC

BiT

Contents

N Number of Diagonalization Iterations. 5 = N = 25,
and normally program is set to N = 5.

Number of Locked Passes Prior to SCF. 0 = N = 9,
and normally program is set to N = 0.

N Maximum Number of Extrapolations. 5 = N = 100,
and normally program is set to N = 50.

N Extrapolation Method. N = 1 for Hartree-Roothaan
Method, N = 2 for Sack Method. Normally program
is set to N = 1.

N Diagonalization Method. N = 1 for SVDG (Single
Vector Diagonalization), and N = 2 for Jacobi. Nor-
mally program is set to N = 1.

25 Computes expectation values of 1, (sinzea)/ra
(cos?8,)/r,, 322 —rAr L/ e R s ande e

Quadratic one-dimensional exponent variation
employed.

Intermediate Output Requests

*Intermediate matrices printout. S, U, T, , and
matrices are printed in format*.

*S-Matrix, its eigenvalues, and vectors are printed
in formats:

*Final matrices S,H,P,Q, D-Open, D-Total, F-Open,
F-Closed, R-Open, and R-Closed are printed in
format*.

*Integrals between final orbitals, H-integrals, P-
integrals. Q-integrals, and La Grangian multipliers
are printed in format*.

*F Matrix, its eigenvalues, and vectors are printed

in format*.
1 SCF iterations are printed.

the printout format (always off line):
If * equals 1, the output will be eight-column
floating point decimal.

If * equals 2, the output will be eight-column
fixed point decimal.

Print final vectors of intermediate results during
variation run.
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470 DEC Integration truncation cutoff value in floating decimal.
If omitted, a standard value is used: RTRUN = 60.
This assumes no STO's are more diffuse than a hydro-
gen IS function.

476 DEC Only used in variation runs. Number of Neumann ex-
pansion terms to be included in exchange integral cal-
culations. The maximum number of terms permitted
is (30 - Mmax), after which record is kept of any ex-
change integral that does not meet the threshold of
107%, and computations are continued.

4717 DEC 1 Save current input flag. Current input will be re-
used with any modifications as read in for the next
case; it does not save itself.

480 OCT NSIMP000001. Number of Simpson's-rule points in
octal. The maximum number of points is 70.
481 OCT NPETAO0000NPXI. Number of Gaussian points in

octal used in the double Gaussian numerical inte-
grations. NPETA and NPXI may take any of the
values 12, 16, 20, 24, 30, or 36 points (in decimal).
If no grid is specified, a 30 x 30 grid is employed.

482 DEC 1 Output flag to call for eight-column floating point
decimal print-out (off line) to addends to J and K
supermatrix elements for exchange and coulomb

passes.

500 BCD Symmetry symbol list, only if order of molecular
orbitals departs from the order 1 Ug, 2 og, Sy -
1o o S S Pl B SO T S ifg, Zﬂg, S
lég,Zég, Gty Lion, BiOn, et Lot lVg,
2 g, -

3. Operating Instructions

a. To Start Any Run

Mount LMSS-AA-SCF No. 1 tape on B7.

Mount blanks on B3, B4, B5, A5, A6, and AT.

Mount output tape on A3.

Place deck in card reader headed by molecule card.
Clear, put SSW 1, 4, and 5 down.

. Load cards. g

O W N =

Program will load cards and proceed with computation.
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b ilo Interrupt

1. Place SSW 3 down.

2. Within 1-60 minutes, run will stop and print out on-line interrupt

sentence.

5 inoad tapes B7 and B5, and save these tapes for subsequent continua-

tion of computation.
c. To Restart Interrupted Run

1. Mount tapes B7, and B5 saved in interrupt procedure.

2. Place blanks on B3, B4, and A3, A5, A6, and A7.

3. Place INTERRUPT-RESTART card in card reader.

4. Clear, put SSW 1, 4, and 5 down.

5. Load INTERRUPT-RESTART card.

6. Computations will be continued from interrupted point.

d. Also Note

1. Description of emergency procedure on page 40.

2. Details of interrupt output option on pages 39 and 40.

3. Channel a tape option on page 40.

4. Program STOP with END in IR 4, 5, 6, 7 lights is normal conclusion.

e. Sense Switch Controls
SSW Function

117 If down, program considers current input to be last case.

2 If down, exponent variation will be terminated at current iteration,
and final output page printed.

5 If down, computation will be interrupted and tapes written for subse-
quent continuence of computation at point of interruption. See following
paragraphs for output option at this point.

i If down, input is called from cards. If up, input is called fromtape A2.

i If down, tapes A5and Abare used for saving and editing of two electron
potentials during exponent variation. If up, tapes A5 and A6 are not
used at the expense of computer time.

e If down, current internuclear distance in a series of values is con-

sidered as last one.

f. Interrupt

The depression of SSW 3 interrupts the current molecular computa-

tion. The computer will come to a program stop after printing an interrupt
message on the one-line printer.* The stop will occur within 1-60 minutes

of
co

the time SSW 3 is pressed. Tape B5 must be saved for restarting of
mputations.

*1f a full requested output at the time of interruption is desired, push SSW 3 up after the stop has
occurred, and press the START button. The output will be written on tape A3, and the computer will
come to a second program stop.
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For restarting of interrupted computation, tape B5 should be re-
mounted with program tape on B7. Blanks on B3, B4, A5, A6, and AT.
Machine is cleared and interrupt restart card loaded. Computations will
restart at point of interruption.*

g. Emergency Procedure

Should computations stop at an unexpected point, or should the
tapes give trouble, provide new tapes as follows: **

1. Ready EMERGENCY RESTART AND RECOVERY card in
reader.

2. Clear machine; load cards.

USE OF EMERGENCY PROCEDURE WILL LEAD TO A LOSS OF NO MORE
THAN 60 MINUTES OF COMPUTATION.

h. Channel A Tape Option

If the heavy use of tapes A5 and A6 leads to continued difficulty
after new tapes have been provided, computations may be continued less
efficiently without the use of these tapes as follows:

1. Clear machine at any time other than when tape B3 is being
referenced.

2o PutiSSW. hip:
3. Load EMERGENCY RESTART AND RECOVERY CARD.
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*If the restart fails (very unlikely), use the emergency procedure.

PR, - : .
Directions will appear on on-line printer.
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