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NOTATION
One-half of channel wall sepa- T
ration o
Gradient of wall temperature in U
x-direction
Dimensionless induced magnetic U
field, B = By/B, o
; S Unm
Applied magnetic field
Magnetic induction vector v
Transformed value of B (Fourier) b
Transformed value of B (Fourier v
and Laplace)
Heat capacity Greek
: : . Letters
Dimensionless internal-energy = i
generation rate, aQ/kA -
Transformed value of F (Fourier)
Transformed value of F (Fourier
and Laplace) il
Gravitational acceleration vector B
Dimensionless pressure-gradient
term, (a%/ua) (- <L - pg) Om
Transformed value of G (Fourier) Gl
Transformed value of G (Fourier
and Laplace)
Dimensionless time derivative of o
wall temperature, (a/xA) (BTw/bt)
v
Transformed value of H (Fourier)
vm
Transformed value of H (Fourier
and Laplace) [
Fourier summation index
Hartmann number, Boa(o/u)? i3
Thermal Prandtl number, v/a 1‘bj(m‘T)
Magnetic Prandtl number, Sub-
y/vm = KoOV scripts
Pressure :
Heat flux .
1
Volumetric Internal-energy
generation rate M
Rayleigh number, gﬁa‘APr/vz MM
Laplace variable R
Time 58
w
x

Temperature
Velocity in x-direction

Dimensionless velocity in x-direc-
tion, U = au/a

Transformed value of U (Fourier)

Transformed value of U (Fourier
and Laplace)

Velocity vector
Linear coordinates

Dimensionless form of y, Y = y/a

Thermal diffusivity
Coefficient of thermal expansion

Function defined in second footnote
on page 12

Dimensionless temperature differ-
ence, 6 = (T - Ty)/aA

Transformed value of 6(Fourier)

Transformed value of 6 (Fourier
and Laplace)

Dynamic viscosity

Magnetic permeability
Kinematic viscosity, p/p
Magnetic diffusivity, (oge)~!
Density

Electrical conductivity
Dimensionless time, T = at/az

Functions defined in Appendix C

Fluid conditions

Initial conditions

Mean value
Mixed-mean value
Reference temperature
Steady-state condition
Wall conditions

Component of vector in x-direction






A STUDY OF UNSTEADY MAGNETOHYDRODYNAMIC FLOW
AND HEAT TRANSFER

by

Ralph M. Singer

ABSTRACT

The unsteady, combined free and forced convective
flow of an electrically conducting fluid through a transverse
magnetic field is analyzed. Allowingthe channel wall temper-
ature to vary linearly with the axial coordinate of the duct
allows a fully-developed flow situation that linearizes the
governing equations and permits an analytical solution. The
unsteadiness may occur because of variations in the axial
pressure gradient, wall temperature, or internal energy
generation rate. The effects of the thermal and magnetic
Prandtl numbers (Pr and Pr ), the Hartmann number (M),
the Rayleigh number (Ra), and internal energy generation
upon the flow and heat transfer is studied. Oscillatory
behavior is observed for large values of Ra and M and for
Pr near unity, and the length of the transient period is found
to depend strongly upon these parameters.

INTRODUCTION

In recent years, considerable interest has developed in magneto-
hydrodynamic channel flow because of its application to energy conversion
schemes, e.g., power generators, electromagnetic pumps, and flow meters.
Although a wealth of information exists on the steady, laminar flow of an
electrically conducting fluid through a channel in the presence of a trans-
verse magnetic field (e.g., References 1, 2, 3, 4), only a few studies are
available that deal with unsteady MHD channel flow. Results of such
studies are of interest in the design of MHD devices because of possible
instabilities or overheating that may occur during start-up or shut-down.

Unsteady MHD flows across flat plates are analyzed in several
papers, but these papers will not be discussed here and attention is re-
stricted to equivalent channel-flow problems. To this author's knowledge,
the earliest work of this kind was presented by Chekmarev(5) who con-
sidered a parallel-plate channel with infinitely thick, electrically conducting
walls, and an initial applied magnetic field. At zero time, a constant pres-
sure gradient is applied and the fluid is set in motion. Unfortunately, no
numerical results were presented.



The case of a parallel-plate channel with walls of infinite electrical
conductivity and a suddenly applied constant magnetic field, coupled with
either a step, step-periodic, or impulsive change in the pressure gradient,
was studied by Yen and Chang 6), Their Bastitswarellimited to only a few
sets of the physical parameters, and therefore the oscillatory approach to
steady-state conditions which can occur, was not observed. This paper was
extended by Tao(7) who indicated the existence of flow oscillations when the
magnetic Prandtl number was near unity. In Tao's brief note, only limited
numerical data were presented, and the effects of the Hartmann and mag-
netic Prandtl numbers were not fully discussed.

This same problem was again solved by Ogawa and Sone(s) by an
alternative mathematical technique, and results were presented only for the
very special case of the viscous and magnetic Reynold's numbers and a pres-
sure number equal to unity.

The transient flow of an electrically conducting fluid in a tube of
arbitrary cross section situated in a magnetic field following a step-change
in the axial pressure gradient was treated by Uflyand(g). The general re-
sults were specialized to the cases of rectangular and circular cross
sections, but no numerical data were presented.

In the aforementioned papers, only isothermal flow was considered.
To the author's knowledge, no results exist for unsteady, convective MHD
channel flow. Several papers do exist, however, that deal with unsteady, con-
vective channel flow in the absence of a mag?leéc%c field. In combined forced
and natural convection, Zeiberg and Mueller found that an oscillatory
approach to steady-state conditions following a step change in the wall
temperature can occur. The amplitude and frequency of these oscillations
(which occur both in the velocity and temperature) increase as the Rayleigh
number increases. The effect of the thermal Prandtl number on the tran-
sient phenomena was also indicated for values of Pr from 0.01 to 100.

Tao(11) considered a similar problem to that in (10), except a cir-
cular tube was used and a different mathematical approach was utilized.
Again, damped oscillations in the velocity were observed at large values of
the Rayleigh number following a change in the axial pressure gradient.

Apparently, the transient, combined forced and natural convective
channel flow of an electrically conducting fluid in a transverse magnetic
field has not been studied. This problem is of interest in the ultimate design
of an MHD power generator because of possible electrical overloading during
the oscillatory transient period in start-up or shut-down.* Also, since in
all such generators, an extremely hot fluid (e.g.,» liquid sodium at 1200°F)
will be used, the problem of heat transfer from the fluid to the channel wallg
would be important.

* Since the power output from an MHD generator is proportional to the square of the mean flow velocity
: : s : . .
velocity oscillations can cause large power oscillations.



In this paper, the unsteady, combined convective flow of an electri-
cally conducting fluid through a vertical, parallel-plate channel in a hori-
zontal magnetic field will be considered. Unsteadiness can be caused by
prescribed variations in the axial pressure gradient and/or the wall
temperature. The flow and heat transfer will be assumed to be fully de-
veloped, and the conditions under which this assumption is valid will be
indicated. This assumption, along with that of perfect electrically con-
ducting walls, leads to a system of linear partial differential equations
which are amenable to Fourier and Laplace transformations.

MATHEMATICAL FORMULATION

The energy and MHD equations (in mks units) for incompressible,
nondissipative, viscous flow are (12)

22 - Ux (UxB) + 1 VB, o
ViV = 0, (2)
p[§'¥+(\_f V)‘_’] = -Vp +uV2V +— (VxB) x B + Pg, (3)
B R
and
ﬂ+Y'VT=aV2T+&, (4)
B Pc

where it has been assumed that no excess charges are present and the dis-
placement current and viscous and ohmic dissipation are negligible. Also,
all physical properties (except the density in the formulation of the buoyancy
term) are assumed to be isotropic and constant.

For nonsteady, fully developed flow and heat transfer, it can be shown
that V = [u(y,t), 0, 0] and B = [Bx(y,t), Bo, 0], (see Reference 6), so that
equations (1) through (4) reduce to (the coordinate system is shown in
Figure 1)

0By du d%B,

at = Bo_a—y+ 'L/m ayz, (5)
i_ oP d%u By oB

B s S Prell-A (T TRl (6)
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RS T (7)
oy Mo Oy
and
2 2
_5T+u§1=aR<af+—a'I;>+__Q, (8)
ot ox ox oy PRER

where the subscript R refers to a reference temperature, and the buoyancy
term in equation (6) came from the assumption

= e - b 9
p = pg [1-B(T-Tp)] (9)
e
dEL GRAVITY )
i~ T . Ty Fig. 1
: L.y Physical Model and Coordinate System
— FLOW
112-4417

The determination of the functional form of the temperature field
that will allow a fully developed unsteady flow in the pressure of a mag-
netic field is shown in Appendix A.

From the arguments in Appendix A, the governing equations for
unsteady, fully developed MHD flow may be written in dimensionless flow
as follows:

3B U Pr \ o°B

—_— = — 4 — (10)
3T oY (Prm> BYZ

1 U _ d°U [ M?Pr\ OB
ﬁ;'a;*(prm)a—y”‘ae*‘}“" e

and

36 0 ’
; =%-U+F(Y.T)—H(-r), (12)
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where Pr is the thermal Prandtl number, Pr__ the magnetic Prandtl number,
M the Hartmann number, Ra the Rayleigh number, G(7) a pressure gradient
term, H(T) a wall temperature gradient term, and F(Y,7) an internal energy
generation index.*

To specify the initial and boundary conditions, the following situation
is analyzed.

Initially, for 7 < 0, some steady distribution of velocity, tempera-
ture, and induced magnetic field exists; i.e.,

U(Y,0) = Uy(Y),

6(Y,0) = 6.(Y), (13)
and

BT )= 1),

and for subsequent time, T > 0, the forced-convection pressure gradient,
wall temperature, and internal energy generation rate vary arbitrarily with
time. With no loss of generality, the boundary conditions are taken as

U(EL 7)) = 0,

BT ) =0, (14)
and

oB(zL,7) _

which requires both channel walls to have equal temperatures at any height
for all time and requires the walls to be perfect electrical conductors
[relative to the fluid; see (4)].

The detailed mathematics involved in the solution of equations (10),
(11), and (12) with conditions (13) and (14) are presented in Appendix B.

*See the Notation for definitions.
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STEP CHANGE IN PRESSURE GRADIENT AND WALL TEMPERATURE

Consider the following situation: Initially there is no flow (zero
pressure gradient) and no heat transfer (the temperatures of the fluid and
the wall are both equal to some constant value, say To). Suddenly, 2 cons.tant
pressure gradient is impressed in the x-direction, the wall temperature 18
increased to some constant (in time) level above the fluid temperature (the
gradient of the wall temperature in the x-direction is also fixed at some
constant level, A, or equivalently, the wall heat flux is fixed at some constant
value, qw), and the fluid starts to generate heat at a uniform rate. From
the definitions of F(Y,T), G(T), and H(7), it is seen that F and G are con-
stant and H is zero for T > 0. Also, Bmj = Umi = @mi = B

Thus, the convolution integrals in the appendices can be explicitly

evaluated, and the following expressions for U(Y,T), 6(Y,T), and B(Y,T) can
be found for the cases of (Pr/Prmy,) = 1 and (Pr/Prm) > 1:*

Gt (m,T) + RaF,¥,(m,T) o . [T
Ste.x) = z 1 a 2 sin[—ﬂ(Y F 1)] £ ~¢/3(m°,‘r)sm[—2£‘(Y + 1)]

m\* m\? 2
s v (B7) +M(FE) +ra
G ,T) + RaF .
+z it Ao, i sin[mT"(Y+ 1)], (15)**

m\* m\?
LN et
¥>o e M) + Ra

o =, [ e ] i
v¥<o =0 R =

Gm’l’.‘:(mv'r) o3 Rames(m,T)

sin[mTﬂ(Y ~ 1)]

+E0 ("%ﬂ)‘1 + Mz(an)z + Ra
© mmy?
S @) |- ) ] 09

*Since the solutions for the two cases are similar, an abbreviated no-
tation will be used wherein the functions ¥j(m,7) will be tabulated
according to the value of Pr/Prm.

**For Pr/Prpy = 1, y% = (mm 2 (1-Pr)? - 4Mz(m7f/2)z Pr - 4RaPr;
while for (Pr/Prp) > 1,y = (mm/2)* (1-Pr)* - 2M*(mm/2)*Pr(1 - Pr)

+ M*Pr? - 4RaPr. Also, the symbol is meant to represent a sum-

v2<o
mation over all values of m such that 'yz <o. A similar meaning is

imposed on g: The term mg is the value of m such that e = 0.
20



and

Gp¥s(m, ) + RaF _910(m,T) .
g 77‘2@ (mT;)4 + MZ(%T)Z +10Ra ( el J

i (mTOTr)V/n(mo:T)COS[mTOW(Y ar 1)]

DX R
¥ 2 5

where the functions ¥j(m,T) are defined in Appendix C.

From equations (15) and (16), average values of the velocity and
temperature difference functions can be calculated, using the definitions

1 .
=E-/‘ YT (18)
f o(y,7)d (19)

NI»—‘

and

+1
Oprm(T) = w—;d—mf U(Y,7)6(Y,7)ay, (20)
-1

where QMM(T) is the mixed-mean temperature difference function. The re-
sults of carrying out the integrations indicated in equations (18), (19), and
(20) are shown in Appendix D.

Finally, Nusselt numbers can be defined based on either the mean
temperature difference or the mixed-mean temperature difference. The
standard definition for Nu is

2a
b2 Aw -
a W (21)

e T 1o

where the subscript W refers to the wall and f to the fluid. The wall heat
flux, qy. can be related to the axial temperature gradient, A, and the heat
generation rate by a simple overall energy balance,

13



Qy = a(pcuMA-Q), (22)

where u,, is the mean velocity. Substitution of (22) into (21), and using the
definitions of the dimensionless quantities, results in

2(F - Uypy)

Nu = T 6; = (Tg- Ty)/aA. (23)

Thus, the quantities Nuy, and NuMM can be defined as
Nup, = 2(F-Up,)/6yp (23a)
and

Nupym = 2(F - Upg)/ Oppre (23b)

RESULTS AND DISCUSSION

Effects of the Hartmann Number

The effects of the Hartmann number (essentially a measure of the
magnetic body force relative to the viscous force) upon the dimensionless
mean velocity and temperature functions and the Nusselt number are
shown in Figures 2, 4, and 5, respectively. The velocity shown in these

2 -5e)

figures is UM/G, or in terms of physical quantities, (puM/az)/ (—& -pg).

In Figure 2, the curve labeled M = 0 represents the following
situation: Initially the fluid is motionless and at a uniform temperature;

24

T . | T
=i e [l 5
22— —
Pr/Pr, | T = =
20 }— /Plm *
RO = 100
" Pr = 0003 M= 0
St /6= 0 =
=
L s
e
oLy = 2 T—®
Fig. 2
£ Iz £
8 ol =1 EffcctA of Hartmann Number on
o Transient Mean Velocity
>
z 8 [— =
2 10
= 6 |— -l
.
4| —
2 20
50
0 —
| | | | | | | | |
o 2 a 6 8 10 12 14 6 18 20

DIMENSIONLESS TIME (T)



at zero time, the pressure gradient is suddenly increased to some constant
level, and the wall temperature is changed a negligible amount. The fluid
is then set into motion, and the velocity asymptotically approaches a steady
value at some time 7 > 20. The curves labeled M = 2, 5, 10, 20, and 50
represent situations in which an external magnetic field is instantaneously
turned on, along with the pressure gradient change. Since Pr/Prm = 1lin
this figure (relatively small value of the magnetic diffusivity), the magnetic
field is delayed in its penetration of the fluid, and as a result, and over-
shoot and oscillation is observed for M greater than about 20.

£ T [Ty Teei] This oscillation can be

M =20 eliminated entirely if Pr/Prm 2l

(very large magnetic diffusivity)

Pi/Prn=1  Ra=100 as shown in Figure 3. The solid

...... Pr/Pro>>1 F/”é:g~°°3 lines indicate the situations in
which the magnetic field and pres-

sure gradient are simultaneously

~
Fe)
T

@
T

o

MEAN VELOCITY EUM/G) X |0i\

0.5 M = 50 =
oo changed and the fluid has a small
o =l magnetic diffusivity; the dashed
> 1 ! 1 1 ik lines are for a fluid with an ex-
o e tremely large magnetic diffusivity.
DIMENSIONLESS TIME (T) The dashed lines equivalently rep-
112-4416 resent the cases in which the mag-
netic field is allowed to become
Fig. 3 well-established before any changes

in the pressure gradient. Thus, it
appears that if a large magnetic
field experiences a delay in pene-
trating the fluid during the tran-
sient, damped flow oscillations will occur. If these oscillations are to be
avoided, it is only necessary to establish the magnetic field before changing

Effect of Magnetic Prandtl Number
on Transient Mean Velocity

the pressure gradient.

Similar, but less pronounced, oscillations occur in the temperature-
difference function as shown in Figure 4. Increasing the Hartmann number
is also observed to decrease the temperature difference between the fluid
and the wall.

Finally, the transient Nusselt number is shown in Figure bR
decrease in the Nusselt number is noted as the Hartmann number increases,
an undershoot occurring at M = 20, and oscillations at M = 50. In fact,
the Nusselt number drops to about 65% of the steady value at M = 50.

These oscillations do not occur if Pr/Prm >> 1 or if the magnetic field is

established before the pressure gradient is changed.

15
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Effect of Hartmann Number on

Transient Nusselt Number



Effect of the Rayleigh Number

Figures 6, 7, and 8 show the effect of the Rayleigh number (a mea-
sure of free convection) upon the mean velocity, temperature, and Nusselt
number, respectively. The curve labeled Ra = 0 in Figure 6 represents
the following situation: The fluid is initially at rest and a very small mag-
netic field is established; at zero time, the pressure gradient is suddenly
increased and the fluid is put into motion, and the steady-state velocity is
approached asymptotically. The curves labeled Ra = 10, 102, 10°, and 10*
represent the same situation except that the wall temperature (or wall
heat flux) is also suddenly increased at zero time. Increased free-
convection effects (larger Ra) decrease the mean velocity, and at sufficiently
large values of Ra, some oscillation occurs.

= [ iaee ] S S
32 |— T —®(Ra = 0)
T Pr/Prm >> |
S e8| M:=5 T —® (Ra = 10)
i Pr = 0.003
L 28— F/G: 0 —
:!
SIS RO =0 i
>
§ = 108 7w
-l —
w B 100
S =
= 4t 10 =
10"
- [Resiii ek %] s || e T e
o 2 4 6 8 10 12 14 16 18 20

DIMENSIONLESS TIME (T)

Fig. 6. Effect of Rayleigh Number on
Transient Mean Velocity

I | I I I | I I I
12— T —®(Ra:0)
o '

=} Br/Bre a8l

x M:=5 T — 0 (Ra =10)

3 el = Pr = 0.003

F/G=0

3 /

J gl =

w

5 RO =0

o S s

o 10

& T -

=

o &= e |

z

<

w

= = -
10

| | | | | | | | |
o 2 4 6 8 10 12 14 16 18 20

DIMENSIONLESS TIME (T)

Fig. 7. Effect of Rayleigh Number on Transient
Mean Temperature Difference
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w 16~ —
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Z 2 0 e

0
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Fig. 8. Effect of Rayleigh Number on
Transient Nusselt Number

The following physical explanation can be proposed for this oscil-
lation: For times slightly greater than zero, the motion of the fluid is
primarily controlled by the applied pressure gradient, and the fluid starts
to accelerate. However, since the walls are uniformly heated, the temper-
ature of the fluid increases and, because of buoyancy effects, the fluid ac-
celerates faster. But, as the fluid moves faster, a smaller amount of heat
per unit mass of fluid is absorbed by the fluid, and its temperature drops,
decreasing the buoyancy effects, and slowing down the fluid. Now, as the
fluid moves more slowly, a larger amount of heat per unit mass of fluid is
absorbed by the fluid, increasing buoyancy effects, and thus increasing the
velocity. This cycle is repeated over and over, finally damped by the
thermal diffusivity of the fluid, and a steady-state condition is attained.
The aforementioned oscillations in the temperature difference are not
shown in Figure 7 since the scale does not permit the Ra = 10* curve to fit.

The oscillations in the Nusselt number caused by flow and temper-
ature oscillations are shown in Figure 8. Note that the Rayleigh number
does not significantly affect the transient Nusselt number for values of
Ra<10% For Ra = 10% there is an undershoot of the steady value of Nup,
by 23%,andat Ra ="10% oscillation occurs with an undershoot of 52%,
Although it is not indicated on these curves, these oscillations could be
eliminated if a sufficiently large magnetic field is established before the
pressure gradient and wall temperature (or heat flux) are changed.

Effect of the Thermal Prandtl Number

The effects of the thermal Prandtl number upon the mean velocity,
temperature difference, and Nusselt number are shown in Figures 9, 10;
and 11, respectively. The curves represent the following case: Initially
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there is no flow, and a small magnetic field (M = 5) is established. At z€ro
time, the pressure gradient is suddenly raised to some constant value and

a small change in wall temperature is allowed (Ra = 100). The family of
curves represent the transient response of fluid with various thermal
Prandtl numbers.

For small values of Pr ( <0.008), the flow rate increases monotoni-
cally to its steady-state value (see Figure 9). However, for Pr greater than
about 0.030, the velocity overshoots the steady-state value, and some oscil-
lation occurs. For Pr = 0.7, a very large overshoot occurs, but steady
flow is reached quickly. This effect of Pr can be explained by the equations
for UM; in the case of no internal heat generation, Uy, depends primarily
on terms like

oo S 022 o) s e - Y 1420 con (347,

Thus, since for most cases Y2 > 0, only the term with the hyperbolic cosine
is discussed. For small positive values of 7, the cosh dominates the value
of the term, and as T increases, the value of the term is damped by the
negative exponential. Thus, since Y depends upon Pr in an approximately
linear fashion, it can be seen that as Pr increases, the initial rise of this
term increases, but it is damped more quickly. Thus, for sufficiently
large values of Pr, little or no oscillation will occur. At infinite time, the
effect of Pr vanishes, as inspection of the governing equations (14), (15),
and (16) can determine (as long as Pr_ is some prescribed multiple of Pr).

The only significant effect of the thermal Prandtl number upon the
temperature difference and Nusselt number, as shown in Figures 10 and 11,
is that the time required to reach steady state is increased as Pr is de-
creased. Only a slight oscillation is noted at Pr = 0.08.

Effect of Internal Energy Generation

Since a current will flow through the fluid due to the motion of the
electrically conducting fluid through the magnetic field, internal electrical
heating will occur. However, this is a nonlinear effect, and for simplicity
as well as to generally determine the effect of this heating, a uniform in-
ternal heat generation has been included in the analysis. Figures 12 and 13
show the effects of internal energy generation (F/G) upon the mean velocity
and temperature difference, respectively. Both figures represent the fol-
lowing case: The fluid is initially motionless, and a small magnetic field
(M = 5) is established. At zero time, the pressure gradient is suddenly
increased, and the fluid starts to generate heat at a constant rate of F/G,
(The wall temperature is also changed slightly.)
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Figure 12 shows that internal energy generation will tend to increase
the flow rate throughout the transient period, as well as at steady state.
This effect is, of course, due to the buoyancy effects (free convection) that
couple the momentum and energy equations.

The effect of internal energy generation upon the temperature dif-
ference can become important, particularly early in the transient period.
Figure 13 shows that the function (-GM/G) becomes negative (the mean
fluid temperature becomes greater than the wall temperature) for 7 2> 0,
although at steady state, it can be positive. Thus, the direction of heat
flow can change during the transient, and the maximum unsteady tempera-
tures attained can be quite different from the steady-state values.

For values of the parameter F/G greater than about 0.036%, it is
observed that the mean fluid temperature is always greater than that of

the channel wall, so that heat always flows from the fluid to the wall.

The steady-state mean velocity and temperature difference functions
are shown in Table I for M = 5, Ra = 100, and Pr = 0.003.

Table I

STEADY-STATE VELOCITY AND
TEMPERATURE FUNCTIONS

(-6p/G) x 10° (Up/G) x 10° /G
4.916978 14.21840 0
4.231264 16.67689 0.005
3.545549 19.13538 0.010
2.174325 24.04146 0.020

-0.5683022 33.87536 0.040
-3.310929 43.70927 0.060

Effect of the Magnetic Prandtl Number

As indicated in Figure 3 and discussed previously, flow oscillations
can occur when the magnetic diffusivity is small. This section will inves-
tigate the overall effect of the magnetic diffusivity (as measured by Pr/Prm)
upon the flow and heat transfer and determine how large Pr/Prm must be
for the solutions obtained for Pr/Prpy, >> 1 to be valid.

Equations (10), (11), and (12),were solved using the analysis de-
scribed in Appendix B for arbitrary values of Pr/Prm, and using step-
changes in the pressure gradient and wall temperature. The results are

*By interpolation of the data in Table I.



shown in Figure 14. For convenience in the interpretation of the results,
the ratio of the mean velocity at an arbitrary value of Pr/Pr to that at
Pr/Prm = 1 is presented as a function of Pr/Prm with the Hartmann
number as a parameter.
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For large values of M (liquid-metal MHD generators normally
operate at values of M near 100 to 500), the effect of Pr/Prm is limited
to values of Pr/Prm less than approximately 10. However, the total effect
of Pr/Prm upon the velocity is greatest for the largest values of M. The
values of Pr/Pry, for most liquid metals are greater than 1000 (Table Bl),
so that the results presented for Pr/Prm >> 1 can be used with confidence
for liquid-metal MHD generators.

Steady-state Values of the Nusselt Number

Several values of the steady-state Nusselt numbers for various

values of the Hartmann and Rayleigh numbers are shown in Tables II and III.

Table II

STEADY-STATE VALUES OF
THE NUSSELT NUMBER FOR
Ra = 100, Pr = 0.003, ANDF = 0

NUM,SS M NuM,ss M
PE76325 0 11.60041 20
11.70922 2 11.74976 50
11.56678 5 11.80548 100
12651179 10
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Table 111

STEADY-STATE VALUES OF THE
NUSSELT NUMBER FOR
M = 5 Pr = 0.003, ANDF = 0

N“M.ss Ra NuM,ss Ra
10.60981 0 16.60019 | 103
10.51462 | 10 28.98351 | 10%
11.56678 | 10?2

It is somewhat surprising that the steady-state values of the Nusselt
number do not depend strongly upon the Hartmann number. This is due to
the decrease of the temperature differences as well as the flow rate with
increases in M.

SUMMARY AND CONCLUSIONS

The effects of combined forced and free convection, a transverse
magnetic field, internal energy generation, and fluid diffusive properties
upon the unsteady, fully-developed, laminar flow of an electrically conduct-
ing fluid through a vertical parallel-plate channel has been analytically
studied. An oscillatory approach to steady state occurs whenever the
Hartmann or Rayleigh numbers are large, or the thermal Prandtl number
is near unity. Conversely, the oscillations are largely damped by the dif-
fusive character of the fluid, i.e., for very small or very large thermal or
magnetic Prandtl numbers. Also, if a sufficiently large magnetic field is
allowed to become established before the fluid is put in motion, little, if
any, oscillation is observed.

Unsteady fluid temperatures were found to be significantly different
from the steady-state values for some ranges of the parameters, so that
any design of an MHD device must take cognizance of the start-up phenom-
ena to prevent any untoward occurrence, e.g., overheating of channel walls
or boiling of the liquid. Also, it is conceivable that electrical overloading
could occur due to large-scale flow oscillations in certain cases.



APPENDIX A

Specialized Temperature Field

For an unsteady, fully developed flow to exist, restrictions must
be placed on the temperature field. These restrictions will be determined
in this appendix.

Differentiating equation (6), first with respect to x and then y, re-
sults in

3% o%T - TR)

= —_— S S = 1
0 Jdyox? * Pref dydx e

and differentiation of equation (7) twice with respect to x yields

Op  _
ox2dy

The condition on (T - TR) for a fully developed unsteady flow is then

0%T - TR)
S A3

Syox & (A3)
or, if TR is taken as the wall temperature, TR = Tw(x,t), the criterion
(A3) becomes

DR "
dyox 8- (sl

so that T(x,y,t) = f;(x,t) + f,(y,t). If the reasoning as used in Reference 12
is followed, it is easily shown that f,(x,t) = Ax + f5(t), so that

T(x,y,t) = Ax + £5(t) + £,(y,t). (A4)

Now, since T - TR = T - Tw = f,(y,t) - f5(a,t) is a function of y and t only,
T - Ty can be substituted into equation (6), resulting in

du 3% _Bo 3Bx Rl A5
B s Y Ew Y b

The left-hand side of equation (A5) is a function of y and t only; thus, the
right-hand side can at most be a function of y and t also. Hence, let

L op.
PR Ox

g = f4y,t). (A6)
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But, if equation (A6) is differentiated with respect to y, and it is noted
that 020/Jydx = 0 [from equation (7)], then, df,/dy = 0, so that fy(y,t) = S(t),
where S(t) is a prescribed function.

Finally, the momentum and energy equations can be written as
follows, noting the preceding arguments:

2 B
—g;‘ = 1R ——Sy‘; + pRLo aa]i,x + gB(T - Tw) + S(t); (6a)
oT £ SR Q
gt' + Au = qR —ayz + PRER (8a)

The above two equations, in conjunction with equation (5), constitute a
description of unsteady, fully developed, convective, magnetohydrodynamic

flow.



APPENDIX B
Solutions of Equations (10), (11), and (12)

The system of equations (10), (11), and (12), with the conditions
(13) and (14), can be reduced to an ordinary differential system by
expanding the dependent variables in Fourier series.

u(y,7) = Z Um(T) sin mTﬂ(Y+1),
m=0
8(Y,7) = ) Om(7) sin BT (v+1), (B1)
m=0
and
B(Y,7) = z B (T) cos mTﬂ (Y +1).
m=0

dBm m\? mT

TR +(—2 )(Pr/Prm)Bm o (_Z—)Um' (B2)

1 dUm m7r)Z (mﬂ)(MZPr)

=t el S = - |— + g B3

Pr dt T ( > Um Rabm 2 Prog Bm + Gm(7) (B3)
and

d6 2

d7r’n +(£ZT£) fm = -Um + Fm(T) - Hy(7), (B4)

with the initial conditions
U () = Umi»

Bm(0) = Bmi, (B5)

and

where
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for ¢ = Uj, By, 0, and F, and where

Gm(T) & Hm(T) - —-Z—(l B2 m’lT). (Béa)
G(T) H(T) LR

The set of equations (B2), (B3), and (B4) can now be operated on with
the Laplace transform, resulting in

EB. .~ Bini + (%E)Z(Pr/Prm)E = (M)ﬁm, (B2a)

o 2. S M2Pr\ — e
5 U R Umi + (izﬂ‘) Um = Rabm - (m_z_ﬂ)(—_l:) Bm + Gm»
r

Pr Prm
(B3a)
and
2

— i - - A

SOm - Omi t (—“; ) fm = -Um + Fryy - Hm, (B4a)
where

% - fme‘St(b(T)dT. (B7)

0

This linear, algebraic set of equations can be solved for Em, ﬁm,
and 6, to yield

B = [ ()] [o+ (55 /7] =

en = (6omi - Tn + Fo - Fim) [ +H(BT)]. (B9)

and

T ={(Em ) o (][ (22)" (Z22)] # maorms o+ Fom - T [+ (57) (25, )]
[ -y &)
=2 ) () [ ()} (510)

The general inverse transfofmation of equation (B10) is relatively
straightforward. However, it presents a difficult computational problem
due to the complexity of the denominator and its roots. Thus, to substan-
tially reduce the numerical work, the inverse transform will be accom-
plished only for two values of the ratio Pr/Prm, which may be rewritten
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as 'Um/a Using these two expressions, the effects of all other parameters
will be investigated. Then, fixing all of the parameters except M and Pr/
Pr,, equation (B10) will be directly transformed, and the effect of Pr/Prm
will be studied.

Case of Pr = "Pr

If the thermal and magnetic diffusivities of the fluid are equal,
equation (B10) can be considerably simplified due to the equality of Pr and
Bryon Lhus,

4l (Umi +PrGy,) [ (mT) ] + RaPr(Omj + Fm - Hm) - (Elzj-)MzPerl
" g - mT m T
[s =+ (—) Pr] [s +( ﬂ+ RaPr +( ) M?Pr
2 2 2
(B10a)
The inverse transform of equation (B10a) can now be easily obtained
as
Umi mTyV| s1T mmy| S2T
B ()= e sz{[sl+( 5 ) e - sz+(——2 ) e
m7T
[RaPerl : )MZPeri]( i SzT)
e -e
S;-5S,
PrGm(T mm\| s1T m7myY | s2T
[ sz :| {[s,+(——2 ) e = sz+(—2 ) e
ST S, T
(RaPr)[ m(7T) - Hm("r)] * (e EToRc ) (B11)
S
where
s m?? 1{mmy* N s
L = -Pr)° - 4(—) M?*Pr - 4RaPr| |,
sz}‘ 8 (”Pr)iz[(z)“ 0)* - 4(FF) M
(B12)
and

B1(T) * (T f (T - t)y(t)dt (B13)



30

From equations (B8) and (B9), the following expressions for Bm(T) and
Om(T) can directly be obtained in terms of Um(7):

2 mT 2
g )T + (m_;T)Um('r) * e—(-z") T, (B14)

(B

Bm(T) = Bmi ©

and

=S
Bpn(T) = 6 -

mil

i e-(gzz) s [Um(T) - Fm(T) + Hm(T)]* e—(
(B15)

The functions U(Y,T7), B(Y,T), and 6(Y,T) can now be determined by
using equations (B1).

Case of Pr >> Prm

If the thermal and magnetic diffusivities of conducting liquids are
examined, it is found that Vi, is usually much larger than a. For sodium
at 1300°F, vm/a = Pr/Prm ~ 930, while other liquids have even larger
values. Table Bl indicates the value of the ratio Pr/Prm for several of
the more common liquid metals and other liquids.

Table Bl

VALUES OF THE RATIO Pr/Prm

Liquid Temperature (°F) Pr/Prm
Mercury 700 9.8 x 10*
Cesium 100 5.2 x:l=
Potassium 800 1.3 <107
Rubidium 800 3.1 %.10°
NaK (78%K) 600 8.4 x 103
Lithium 400 1.0 x 10%
H,SO, (concentrated solution) 68 ~10M
NaCl (37% solution) 68 ~3 x 101!

Table Bl indicates that the assumption of Pr 3> Pry, should be valid
for many liquids that are of interest in magnetohydrodynamic devices.
Thus, if Pr/Prm is formally allowed to approach infinity in equations (B8)
through (B10), an approximate expression for the velocity, temperature,
and magnetic fields can be obtained.

From equation (B10), it can be shown that as (Pr/Prm) approaches
infinity,
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— Umi)[ mT 2] = - 2
Gm + =—)|s +(—~) |+ Ra(fmi+Fm - Hm) - (2M2B; 7’[ - }
ey [—J-m . ( m* pE ( 2 ) mi m m) - ( ml/m ] S'f-(——Z )

(SR [ (B T+ T+ s+ () ]+ ra

(B10b)

The inverse Laplace transform of this expression can now be directly ob-
tained, resulting in

mT\? 2M?PrBmj
o Tt [S4+(7)](Umi' 1
Um(T) = e 41

S4 - S5

S4 - Ss

+{Per(T)[s4 +(mT7T)Z] + RaPr[Fm(T) - Hm(’l’)]}* s

2M2PrB, i

R ErEE +[ +(-mT7T)2](Umi = T)} ssT
e

S4 - Sg

{Per +(mT7T)Z] it RaPr[Fm(T) - Hm(T)]} N

SabenSs
(B16)
where
2 2 4

=0 m*“ _ B O e 3 N 2/mT _

55}“ - . )(1+Pr) & 2[(—)(1 Pr)’ - 2PrM(5L )(1 Pr)
4p.2 1/2
+ M*Pr“ - 4PrRa iy (B17)

and the convolution integral is defined in equation (B13).

Letting (Pr/Pry,) approach infinity in equations (B8) and (B9) shows
= — ) — = T\
that By, approaches zero, and 6m = (8mi-Um + Fm - Hm)/ [s +(mT) ] is un-

changed. Thus, Om(T) can be determined by using the relation (B15) and the
result for Um(T) in (B16). Finally, the functions U(Y,T), 6(Y,T) can be ob-
tained by using equations (B1).

The assumption that the magnetic diffusivity is much larger than the
thermal diffusivity is tantamount to neglecting the induced magnetic field in
equations (5) through (8). Thus,the applied magnetic field passes through
the fluid with only a negligible distortion.



<

Case of Arbitrary Pr/Prm

To solve equations (B8) through (B10) for arbitrary values of
Pr/Prm, the only problem is the inverse transformation of equation (B10).
The first step is the calculation of the zeros of the denominator of
equation (B10); let these three zeros be called s,, s,, and s; (these numbers,
in general, will be complex). Then, the expression for Uhss may be re-
written as

Ais) |, Axs) | Ags) (B18)

Um =
EIEFET WAR ~ B5 0 B e Bt

where

84A,(s) mT\? Pr \ (= ,Umi = = m7
s: = T 51[(—') (l i T_m) (Gm + ?) + Ra(emi +Fm - Hm) o ('—Z-) M?PrBmi/Prm

Gm+ ) + (50 () (5 (Gm + 522) Fon - )| - (2) Mt
N A i —_— D —
% s,(Gm+ =) +|5 >) (Gm + 5o + Ra(6mi + Fm - Hm) -( 5 ) o

TR
(B19)

s4A,(s) mr\2 Pr \(=  Umi = = mm
e (—) (1 +m)<cm+—ﬁ) + Ra(Brmi + Frn - Hm) -(T)MzPeri/Prm]

—= Umi) mm\( Pr mr\* (= Umi 3 M2 -
+ sz(G +==)+ (—)( ) (—) ( —m') EF a T m7 Y’ M"PrBmi
Z\Um * B 2 7-) (Gm+57) + Ra(Omi + Fn - im) | - 2 | P

(B20)

S4A4(s) mm? Pr - Umi = = m
= Sl : s
TR 83 ( 2 ) (l +Prm)(c'm+ Pr ) i Ra(eml"l:m-Hm) = (-Z—)MZPeri/Prm]

Vi 2
o = mi mT Pr m\? Umi . N 3 M2PrB,.;
+ SJ(Gm“_pr ) +(—Z ) (Pr )[(—2 ) (Gmi + ——Pr') + Ra(6mi + Fn - Hm)] - (_”Z‘") sl 1%

Prm
(B21)
and
sy = sf(s,-8,) + 85(s5-8,) + s5(s; - 85). (B22)
Now,

Um(T) = A7) % e®'T 4 Ay(7) x 52T 4 A (1) % 537, (B23)



Similarly
) (=
Gl = & 2 ) e( 2 ) [emi-Um+Fm-Hm]dt, (B24)
0
and
mTy\? T 'm7
B i e_(_:I) (Pr/prm)Tf e(-_zj)z(Pr/Prm)t[Bmi+(r—nz—”)Um:| at.
5 (B25)
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APPENDIX C

Definitions of the Functions ¥,(m,T)

Pr/Prm =1
, r_n_'/.'r‘(_r)_ ermz‘nz =
bt = (2] =“ﬁ¥>mvvvwﬁ b bl ey

Yo(m,T) = 1 - e-AlT[COS(%N) +(m7ﬂ)2<15%)sin (g-ﬁ)] (c2)

16PrGm 2.2 2
Valmo, ) = m{l-[“mil (1-pet)| exp [ - Z(27) “”"’]}
64RaPrF, [ BTy ] [ s ]
ostmRanll L i 0 . (o .
m;n‘(upr)z{l 1+ == (1+Pr)fexp |- 3(TF7) (1+Pr)

b () - A con(117) A 0 -2 (MY (2]

(c3)

(c4)
-AT 1 m 72 r
e, 7)) =1 - e [cosh (E‘YT) + (Tﬁ) (l ;P ) sinh (%'y‘r)] (Cs)
o(m, ) = rj
[ ey v =y (=)
Ye(m, T) = (#) - ZZ‘ZZ\ e £ el || SR I cos :\/—_z
&%w@wq pgﬂJ Lkl
(=)' -0
sin (3 v27)\. Cé
[‘\/_‘y_z (Mszﬂz . Ra)} (2 4 ) ( )

. 256RaPrF, (1 +Pr\2 m, 7 \?
T e e (e o
m§mé(1 + Pr)? 1 -Pr) e"p[ ( 2 ) T]

+(1 _Zprz)[zpr - g(mgﬂ)z(.l = Prz)] exp [-‘E('m%")z(l "“Pr)]}- (c7)




(C8)
Yo(m,T) = 9p(m,7), ¥10(m,T) = Y¢(m,7), Y11(my,T) = Yy(m,,T),
_ . 1/mm)\?
Valm, ) = YalmT), Yaslm,m) = Yymr), Ay = 3(ZT) (1+P). (c9)

Pr/Prp, >> 1

Yp(m,T) = 1 - e—AZTlE:os (%«/—7")+ <2AZ > sin (Iﬁ)j' (Cl1)

-2 -
Mo\
> ) PrGm ol mZ mPr
Ys(my, T) = 1-11+ - - 2M?Pr?
mgm? M?Pr|? 4 4
3 (1+Pr) + 5
4p..2 £ RaPrF =
- 2@ AZT} e R T
mg T 2
VYg(m,T) = (mTﬂ)Z - e-AZT{(-mT")Z cosh (%’YT) + V_‘|:(Tzlr>‘(1 -Pr) - Pr(MZTzﬂz i ZRa):l sinh (%VT)}-

(C13)

Ys(m,T) = 1 - e—AZTKZ_'Ayi) sinh (—%VT) + cosh (-;—VT)] (Cc14)
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Q
B
g
H
=

AT 2N
1 - (1+A,Te > ]+ (Azmoﬂ) RaPrFm

2

AS
mg T2

2
(Z) 1+Pr) + M°Pr Mo \?
exp -( )T

mgT\ 2
( z) 1-Pr) - M*Pr

(Cc17)

Yo(m,T) = Y1o(m,7) = ¥,(my,T) = ¥y,(m,7) = Y3(m,T) = 0;

¥ (mZﬂ-Z

L
3 )(1+Pr)+2MPr. (C18)



APPENDIX D

Mean Velocity and Temperature Difference Functions

The mean velocity and temperature difference functions as calcu-
lated from equations (26), (27), and (28) are

s % = z 2\ [ Gm¥a(m.7) + RaF, ¥y(m,7)
Upm(7) = zf M (mﬂ) (’l;’)‘ + MZ('—"Z—")Z + Ra

Gm ¥(m,T) + RaFp, ¥(m,T)

(’“T")' ; MZ("‘T")Z i (D1)

1 - cos m,m 2
+( o™ )w’(m"’ﬂ ! z (ﬁ)

V>0
odd m

il Gy ¥2(m,7) + RaF, Yg(m,T)

1 2
o) = -= [ e(v.may = E (=)
M 2 mTT, 4 2
f_ : (=)' s (2 + me
! ) 2
odd m

Gm¥s(m,T) + RaF, Y(m,T)

<l - cos mo’n)w ( ) 2
T S ()
I T 4 2
o o (m—ﬂ) + MZ(——""") + Ra
2 2 2
Y20
odd m

(D2)

I B +1 DO s z G st R E
“om(™) = 2Up(7) ' g (m’”’)‘i i Mz(m_ﬂ)z + Ra
2

i Yz<o
{ G, ¥z + RaF_ ¥ 4F [1 : e_(mﬂ/z)zT]}
4 2 T2
mT 2 MT m°T
(—2—) + M ( > ) + Ra

4F (e
+ Ys(mo,T) {w,(mo,-r) _[ 27‘20 i et om/2) T]}
mg

[ GmV¥s + RaF Vs GmV¥s + RaFm¥s  4Fm [1 % E_(mﬂ/z)z_r] . (D3)
(e

o0

| ey | ) e T
Y >0

2
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