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by 

Raymond Gold 

ABSTRACT 

An analysis of pile-up distortion for a (pulse) detector 
is formulated by means of probability generating functions. 
Solutions are determined in the form of integral r ep re ­
sentations. Several important special cases , which are of 
interest in experimental applications, a re treated. The rep­
resentations for these special cases have been evaluated, 
and numerical resul ts a re presented in both graphical and 
tabular form. The resul ts of the present method are com­
pared with other es t imates of pile-up distortion. 

I. INTRODUCTION 

The concept of resolving time for a detector is generally understood 
as some measure of the time duration of the detector response to a single 
event. Actually (in the present context), the resolving time can only be 
precisely defined in t e rms of the time interval between two successive 
events. It then may be taken as the shortest interval of time for which the 
second of the two successive events still gives r i se to a detectable response. 
Although this second event may actually be detected, the information con­
tained in this response can be seriously distorted. Thus, if a resolving 
time, T, is prescr ibed, then the detector response will be distorted if two 
or more events occur within the order of the resolving time. These events 
will then be subject to misinterpretat ion. This lat ter effect, commonly 
called pile-up, has long been recognized as a distortion that can lead to 
erroneous experimental resu l t s . 

To emphasize further the intimate relation between resolving time 
and pile-up distortion, one can examine the limit, T -» 0. In the examina­
tion of this limit, one must also require that the response amplitude di­
verge. Otherwise, the response would no longer correspond to a measurable 
result . Consequently, this l imit implies a delta-function representation of 
the t ime-dependent response of the detector. Only in this ideal case can 
pile-up distort ion be nonexistent. On the other hand, for all detection sys­
tems utilized in pract ice , this effect will be present and may, in certain 
instances, be an important source of experimental e r r o r . 



Considerable progress has been made in the ^^P" '" '^"* ' ' J . i^f„^te 
of this problem. Electronic circuits have been developed to discr 
against pile-up events. (1.2) These recent advances have been success , 
and pile-up rejection techniques have come into widespread use. 

The theoretical treatment of this effect has not, however, received 
sufficient attention. Rossi and Staub(5) have considered the (̂ ĵ ' '" '^^^^^^ 
case of a square-pulse response of constant amplitude. Pa a 
a more general case in the pile-up of alpha particles in a fission chamber. 
However, a more general formulation of this problem has not been avail­
able. Such an analysis is considered here. In the process of obtaining 
numerical results for important special cases of the present formulation, 
an alternate description of pile-up distortion has been given by Soucek.( "9; 
For certain special cases, the method described here and that of Soucek 
may complement each other. Soucek obtains a solution in expansion form, 
whereas the present treatment results in an integral representation. 

In terms of these treatments, a more quantitative judgment and com­
parison can be made of the discriminatory ability afforded by different r e ­
jection circuits. In addition, it is important to test the adequacy of the 
elementary case given by Rossi and Staub,(5) since it is customari ly em­
ployed in present pile-up estimates. Of even more significance would be 
the availability of accurate estimates of the contribution that a r i s e s from 
this distortion. In many experiments, there may exist a high background 
of undesirable radiation, which is detected when the detection of relatively 
rare events, or other types of radiation, is actually desired. In such c i r ­
cumstances, reasonably accurate values of the pile-up count rate may be 
required. For many such measurements, a knowledge of pile-up distortion 
would prove helpful in both the preparation and analysis of experiments . 

It will be convenient to introduce accepted experimental terminology 
in discussing this effect. Thus, the time dependence of the detector r e s ­
ponse will be referred to as the pulse shape of the detector. The dis t r ibu­
tion of the maxima in response amplitude (or the distribution of peak values) 
will be called the pulse-height distribution of the detector. 

It is necessary to distinguish between two different types of pulse-
height distributions that will be considered: those that contain pi le-up 
distortion and those that do not. These distributions will be designated as 
actual and id^ pulse-height distributions, respectively. An actual pulse-
height distribution is one that a r i ses from the output of a detector and 
therefore inherently contains pile-up distortion. In contrast , an ideal pulse-
height distribution, which contains no pile-up distortion, is p u r e l ^ ^ c e p -
tual. Ihat IS, an ideal pulse-height distribution cannot occur in pract ice 
it may be regarded as the pulse-height distribution that would a r i se if the 
detector possessed a delta-function pulse shape, or equivalently, as the 
pulse-height distribution that is assumed in the limit of vanishing count 
rate 



In the present t reatment , one regards both actual and ideal pulse-
height distributions as probability distributions. The resul t of pile-up 
distortion is to (so-to-speak) t ransform an ideal probability distribution 
into an actual probability distribution. This transformation is formulated 
in essentially two basic steps. One first determines the probability dis­
tribution of the response amplitude level of the detector. It is appropriate 
to call this resul t the baseline probability distribution. The actual pulse-
height distribution is then determined by a convolution of this baseline 
probability distribution and the ideal pulse-height distribution. 

The general description of obtaining pile-up est imates in this manner 
is given in the next section. The resul ts of this description are then applied 
to several cases of interest . Computer p rograms have been developed to 
evaluate the integral representat ions that a r i se . Numerical resul ts have 
been obtained, and comparisons a re made with the simple Rossi-Staub 
model(5) as well as with the resul ts of Soucek.("^"9) 

II. GENERAL FORMULATION 

A. Determination of the Baseline Probability Distribution 

The f irst basic step lies in the determination of the baseline prob­
ability distribution, B{v). Here B(v)dv represents the probability of finding 
the response amplitude level of the detector between V and V + dv. The 
method of probability generating functions will be employed to determine 
B(v). The theory and proper t ies of probability generating functions have 
been extensively t reated by Feller.(10) Applications of probability gen­
erating functions to physical p rocesses have been explored by F r i s c h . \ l l / 

Let Q(t,y) be the probability generating function that corresponds 
to the baseline probability distribution, B{v). Here, t represents the time 
variable, and y is the dummy variable of the generating function. It can 
be shown that Q(t,y) satisfies the functional equation:(l 1) 

Q(t + dt,y) = Q[t,A(y,t,dt)] • Q(dt,y). (l) 

Equation (l) is based upon the fundamental property of probability generating 
functions. Namely, the probability generating function corresponding to the 
sum of two random independent variables is given by the product of the 
probability generating functions corresponding to each independent random 
variable. 

In Eq. (l), the probability generating function Q(dt,y) is related to 
the probability of the detection of another event in the interval dt. The 
function A(y,t,dt) is also a probability generating function. It corresponds 
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to the change in de tec to r r e s p o n s e dur ing the t i m e i n t e r v a l dt . E m p l o y i n g 
the chain ru le for the p a r t i a l de r iva t ive o A / o t , one can w r i t e 

(2b) 

Here the change in y during the i n t e rva l dt is g iven by 

dy = g(y,t,Ti) dt, i = 1, 2, . . . , n. 

It follows that the function g(y,t,Ti) is r e l a t e d to the pu l s e shape of the 
de tec tor , and the p a r a m e t e r s Tj , 1 = 1 . 2 , . . . , n, e n t e r into the d e s c r i p t i o n 
of this pulse shape. The exact r e l a t i on be tween g(y,t .Ti) and the p u l s e s h a p e 
of the de tec tor , F(t,Ti), will be developed l a t e r . 

If N(t) is the function desc r ib ing the r a t e of de t ec t ion of e v e n t s a s 

a function of t ime, then 

Q(dt,y) = 1 - N(t) dt + yN(t) dt. (3) 

Using Eqs . (2b) and (3) in Eq. ( l ) and re ta in ing f i r s t - o r d e r t e r m s only, one 
finds that Q sa t i s f ies the equation 

^ = g ( y . t , T i ) | ^ + ( y - l ) N ( t ) Q . (4) 

The m o r e gene ra l c a s e , whe re in a noncons tant p u l s e - h e i g h t d i s t r i b u t i o n 
ex i s t s , may be handled by rep lac ing the v a r i a b l e y i n t roduced above , by the 
probabi l i ty genera t ing function co r r e spond ing to the idea l p u l s e - h e i g h t d i s ­
t r ibut ion. Since ideal pu l se -he igh t d i s t r ibu t ions a r e con t inuous , it i s n a t u r a l 
to employ a continuous probabi l i ty genera t ing function. Thus , one would u s e 

X co 

P{v) x^dv, (5) 

where P{v) is the ideal pu l se -he igh t d i s t r ibu t ion . The n o r m a l i z a t i o n of 
P{v) is chosen so that y(x) sa t i s f i es 

y d ) = 1- (6) 

Equation (6) is a boundary condit ion r e q u i r e d of a l l p r o b a b i l i t y g e n e r a t i n g 
functions. In t e r m s of the v a r i a b l e s (x.t), Eq. (4) be 

becomes 

f-=^[yW-'.- j ( l^r|f+Wx)-l]N(t)Q. (7) 
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Instead of treating Eq. (?) directly, it is simpler to deal with Eq. (4). One 
can then use the substitution defined by Eq. (5) in the solutions of Eq. (4). 
This procedure corresponds to the rule for determining compound proba­
bility generating functions.(10,11) 

In most physical applications, the count-rate function N(t) is not 
an explicit function of time, but ra ther a Poisson probability distribution. 
Thus, it is appropriate to replace N(t) by the mean value of this Poisson 
distribution. In addition, for many cases of interest.g(y.t.Ti^) may be as ­
sumed independent of the time t. Such an assumption implies that the change 
of the detector response (or pulse shape) in an interval dt. can depend upon 
dt. but not t. This should be a reasonable approximation for many detection 
systems. 

The above assumptions lead to a considerable simplification, since 
the formulation will then reduce to a time-independent description. Employ­
ing these assumptions, one can write 

N(t) = N, (8a) 

and 

g(y.t.Ti) = g(y,Ti). (8b) 

As a result , Eq. (4) reduces to 

g ( y . T i ) - ^ = ( l - y ) N Q . (9) 

The solution of Eq. (9) is 

Q(y) = Qo exp { N J ^ - ^ ^ doj , (1 Oa) 

where the constant Qg is determined by the usual boundary condition for 
probability generating functions 

Q(l) = 1. (10b) 

The assumption introduced in Eq. (8b), that g is independent of t, 
must depend intimately upon pulse shape. It is not difficult to examine the 
nature of the restr ict ion introduced due to this assumption when A(y,t) is a 
continuous probability generating function. In this event, A(y,t) can be 
written in the form 

A(y,t) = y^*''""^) (11) 

where F(t,Ti) is the function describing the actual pulse shape of the detec­
tor . Hence, one has 



i A F ( t , T ) F . ( t , T ) l o g y , <^^^^ 
St ^ 

SA F(t T) ^ ( t , T) (12b) 

and the re fo re 

ay - ^ • y 

F'(t,T) , (12c) 

Using Eq. (8b) in Eq. (12c) implies 

f"(t,T) _ (13a) 

F(t,T) - f"' 

where |3 is a real constant. Consequently, 

F(t,T) = Fo^Pt, (13b) 
with FQ a real constant of integration. [The trivial solution F(t,T) = 
constant, which also fulfills Eq. (8b), leads to g(y,T) = 0. In this event, 
Eqs. (10a) and (10b) no longer provide an adequate description for the de­
termination of Q(y). However, the physical basis for the difficulty that 
arises with this trivial case is also apparent. Namely, the resulting pulse 
shape, F(t, T) S constant, can not correspond to any physical detection sys ­
tem. It follows, therefore, that this case is of no physical significance.] 
Thus, when A(y,t) is a continuous probability generating function, only for 
F(t, T) of the form given in Eq. (13b) will the time-independent formulation 
determine Q(y). This limitation is not prohibitive, however, since many 
cases of practical importance can still be examined with the framework of 
these assumptions. 

In most cases of interest, Q(x) will be a continuous probability gen­
erating function. Hence, the solution provided by Eq. (10) will determine 
an integral equation for the baseline probability distribution, B(v). One has 

Q[y(x)] = Q(x) = ,' B(î ) x^dv. (14) 

Equation (14) can often be solved by the method of Four ier t r a n s ­
forms. With the transformation x = e±i? ,Eq. (14) becomes 

Q±(?) = r " B(v)e±i^? dv. (15) 

Thus, the baseline probability distribution is given by 
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B{v) =— / cos {vi) R[Q+(e)] d?. (16a) 
TT 

B{v) = ±- I sin (v?) Im[Q+(?)] d4 (l6b) 
7T 

' 0 

B. Formation of the Actual Pulse-height Distribution 

The second basic step in the determination of D{v), the actual pulse-
height distribution, lies in properly combining the two probability distribu­
tions B("!.') and P{v). To this end, it is convenient to introduce a new variable 
V' for the baseline probability distribution. B(v'). As before. V represents 
the response-ampli tude level of the detector, so that B(V) dV is the prob­
ability of finding the re sponse-amplitude level between v' and v' + dv'. 
Since P{v) is the ideal pulse-height distribution. P{v) dv is the (conceptual) 
probability of a response maximum or peak value between V and V + dv. 
It follows that the actual pulse-height or peak value is given by the sum 
v+ v' . Hence the actual pulse-height distribution is the probability d is t r i ­
bution for the sum of the variables V and V. 

Thus, the actual pulse-height distribution. D(v), can be obtained 
from a convolution of the baseline probability distribution and the ideal 
pulse-height distribution P(v). One can write 

D(v) = I B(v') P ( v - V ) dV. (17) 

Equation (17) is an application of the well-known theorem for forming the 
probability distribution of a sum of two independent variables in t e rms of 
the probability distribution of each of the variables.(12) 

Utilizing Eq. (l6a) in Eq. (17), one has 

/

CO / ^ CO 

/ cos (v'4) R[Q+(|)] P(V- V) d4dV. (18) 

If P(v) is uni t-normalized, as implied in Eqs. (5) and (6), then one can show 
thatD(v) is also unit-normalized. This resul t follows directly from condi­
tion (lOb). Consequently, one may interpret that both the actual and ideal 
pulse-height distributions a re probability distributions. That is , P(v) rep­
resen ts the (conceptual) probability for the occurrence of a maximum or 
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peak value between V and V + dV, whereas D(V) is the actual probability of 
a detector response yielding a maximum or peak value between V and 
v+ dv, when one accounts for pile-up distortion. 

Thus the time-independent formulation leads to a solution that is 
an integral representation of D(v), viz.. Eq. (18). It is therefore clear that 
even in the most idealized cases, the actual pulse-height distribution must 
intimately depend upon both the pulse shape and the ideal pulse-height dis­
tribution. Both of these quantities must be prescr ibed in order to define 
D(v), the actual pulse-height distribution. This conclusion is clearly dem­
onstrated by the special cases that are treated below. 

A comparison of the present formulation with the t reatment of 
Soucek(7-9) is necessary. Soucek determines the cumulants or semi-
invariants of the baseline probabilty distribution, B(v), utilizing an analysis 
originally given by Rice in the description of the Shot effect.(13) The semi-
invariants of the actual pulse-height distribution, D(v), are then found by 
summing the semi-invariants of B(v) and P(v). The actual pulse-height 
distribution D(v) is then expanded in te rms of the first four semi- invar iants 
or (related) moments. Consequently, it is clear that this lat ter method and 
the present formulation employ different approximations. For example, 
while Soucek's treatment yields only an expanded form of the actual pulse-
height distribution, it does not possess the limited applicability with regard 
to pulse shape that has been discussed above for the present method. In 
view of the different approximations introduced, a comparison of the results 
obtained from these two methods is desirable. Such a comparison can be 
found in Cases Ic and Ila below. (See Section III for definitions of the special 
cases that have been treated.) 

Finally, it must be pointed out that the actual pulse-height dis t r ibu­
tion, D(v), can be expressed exactly in the integral representat ion form of 
Eq. (17). Instead of the approximate B(v) obtained above, with the technique 
of probability generating functions, one can utilize the exact integral r e p r e ­
sentation of B(v) that has been given by Rice in the theory of the Shot effect.* 
Moreover, using the latter result for B(v) instead of Eqs. (l6a) and (l6b) 
provides the exact solution without the pulse-shape limitations of the present 
method. 

In terms of more practical considerations, it may not be possible 
to directly use the exact solution in the determination of numerical resu l t s . 
Indeed, the exact integral representation of B(v) is a considerably more 
comp ex Fourier transform that that given in Eqs. (l6a) and (l6b). Conse­
quently, the possibility that the exact solution will assume a t ractable form 
tnat is suitable from a computational Viewpoint is remote. The complexity 
Ol some of the approximate solutions given in the next section, and obtained 
withm the framework of the present treatment, substantiate this contention. 

*The exact form of B(v) is given by Eq. (1.5-4) of Ref. 13. 



15 

III. APPLICATIONS 

In the applications that follow, only one dominant resolving time is 
introduced. Hence for these cases , one has Tj = T, i = 1,2, ..., n. The 
special cases considered below are designated in Table I. Case I and 
Case II denote the two different pulse shapes that have been treated. In 
Case I (the square pulse shape), the time-dependent detector response can 
be written as 

F(t,T) = 1, 

F(t,T) = 0, 

0 < t < T; 

t < 0, t > T. (19) 

In Case II (the exponentially decaying pulse shape), one has 

F(t,T) = e"*A, t > 0; 

F(t,T) = 0, t < 0. (20) 

Table I 

SPECIAL CASE DESIGNATIONS 

Ideal^^^v^ Pulse 
Pulse-height ^^^^^^Shape 
Distribution ^̂ ~̂ _̂̂  

(a) Delta Function 

(b) Exponential 

(c) Gaussian 

I. Square 

la 

lb 

Ic 

II. Exponential 

Ila 

lib 

lie 

For Case I, T mere ly represents the width of the square pulse 
response of the detector . For Case II, T represen ts the relaxation time 
for the decay of the response . In all of these special cases , one finds 
that the pile-up distortion is a function of the product of the average count 
ra te , N, and the resolving t ime, T. Hence, it is convenient to define the 
single pa ramete r 

N T . (21) 

The ideal pulse-height distributions utilized in Cases (a), (b), and 
(c) a re given below in Eqs. (22), (23), and (24), respectively. These d i s ­
tributions are unit-normalized in the interval 0 — V < oo. 



p(v) = 6(v-i) ; 

P (v-v ' ) = e-t^'-v'), v>v'; 

P(v-v ' ) = 0, V' > v ; 

P(0) = 1; 

and 

P(v) = C exp {-(V)'}. A > 0; 

where 

and 

4# A[l + Erf(A-')] '}-'• 

Erf(s) Z 
d o j . 

(22) 

(23a) 

(23b) 

(23c) 

(24a) 

(24b) 

(24c) 

The distributions introduced above have not been chosen arb i t ra r i ly , 
but correspond to cases that often ar ise in practice. For Case (a), the 
delta function in Eq. (22) is the customary Dirac delta function and c o r r e s ­
ponds to an ideal pulse-height distribution with an integrable singularity at 
V = 1. It follows that Case la is just the elementary case first considered 
by Rossi and Staub.(5) Equations (23a), (23b), and (23c) of Case (b) imply 
that we shall treat an exponentially-decreasing pulse-height spectrum. This 
is typical of many background and noise spectra that a r i se in nuclear exper i ­
ments. The condition that A > 0 in Eq. (24a) ensures that the Gaussian 
distribution employed in Case (c) is a representation of an experimental line 
spectrum. The relation between A and the experimental resolution r (the 
relative full width at half maximum) is simply 

1.665 A. (25) 

Case (c) can arise, for example, when one deals with low-intensity lines in 
the presence of a single high-intensity transition. 

The pulse-height scales for these ideal distributions have been 
chosen for computational convenience. Thus, in Case (c), the peak of the 
Gaussian distribution has been taken at v = 1, and m Case (b), the expo­
nential distribution possesses unit mean (i.e., v = 1). Hence, comparisons 
with experimental data will require, in addition to unit a rea normalization, 
the same pulse-height scale that has been chosen above. 
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Each special case is analyzed separately below. 

A. Case la 

For the square pulse shape of Case I, defined in Eq. (19), the 
probability generating function A(y,dt) is d i sc re te . For Case la, the 
probability of a change in the detector response during the interval dt is 
dt/T . Hence, the probability generating function A(y,dt) is given by 

A(y,dt) = y + [ ( l - y ) / T ] • (dt). (26) 

A comparison of Eq. (26) with Eqs. (2a) and (12b) reveals that 

g(y.T) = ( i - y ) / T . (27) 

for Case I. 

Using Eq. (27), the probability generating function determined from 
Eqs. (10a) and (10b) is 

Q(y) = e-o^e^y. (28) 

For this simple case, one finds that the exact integral representat ion of 
Rice( ' can be reduced and, moreover , the resulting expression agrees 
precisely with that obtained in Eq. (28) above. Consequently, the resul ts 
obtained for Case I will be exact. 

The probability generating function y(x) for Case la can be found by 
employing Eq. (22) in Eq. (5). One finds 

y(x) = X. (29) 

Thus, one has 

Q(x) = e-*e°^^ (30) 

as the probability generating function corresponding to the baseline proba­
bility distribution for Case la. 

For this special case , it is apparent that the actual pulse-height 
distribution is d iscre te rather than continuous. One can. therefore, employ 
the formal power - se r i e s expansion that is appropriate for a discrete proba­
bility generating function. With this representat ion 

oo 

Q(x) = e-* V i ^ , (31) 
L ' n . 
n=o 



finds the p robab i l i ty B ^ i s given by 

Bn = e . a a = 0,1,2 

Since the ideal pu l se -he igh t d i s t r i b u t i o n is a 
at V = 1, the ac tual p u l s e - h e i g h t d i s t r i b u t i o n is g iven by 

(32) 

de l t a funct ion wi th a s i n g u l a r i t y 

a ( " - ' ) 
( n - l ) l 

= 1,2, . . . (33) 

(5) in a g r e e m e n t with the r e s u l t s obta ined f rom e l e m e n t a r y a r g u m e n t s . ^ H e r e 
the ac tual pu l se -he igh t d i s t r i bu t i on is a l so d i s c r e t e and a t t a i n s t he v a l u e s 
1 unit, 2 un i t s , . . . , n un i t s , with the p r o b a b i l i t i e s Dp Dj , . . . , Dn. 

B . Case lb 

Fo r Case lb, the p robab i l i ty gene ra t i ng function ob ta ined f r o m 
E q s . (5) and (23) i s 

y(x) = ( 1 - l o g x ) - i . 

Using th is r e s u l t in Eq. (28), one finds 

r-,/ \ fa. log ^\ 
Q(x = exp.^,——£—}. 

'^ \l - log x j 

(34) 

(35) 

The probabi l i ty gene ra t ing function given above can be e m p l o y e d in E q . (18), 
toge ther with the ideal d i s t r i bu t i on given in E q s . (23a). (23b), and (23c) . 
Thus , for Case lb, one finds the ac tua l p u l s e - h e i g h t d i s t r i b u t i o n 

D ( v ) = • 

C. Case Ic 

cos (vg) + sin ( v ^ ) - e " ^ 

1*6" - ( T # ) -(T??)-*- "« 

The probab i l i ty gene ra t ing function ob ta ined f r o m E q s . (5) and (24) i s 

y(x) = exp[log X + (A/2)^ (log x)^] • {l + Erf [ A " ' + (A/2) log x]} ^^^^ 

[ l + E r f ( A - ' ) ] 

Substi tut ing th is r e s u l t into Eq. (28), one ob t a in s 
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Q(x} = e-o-exp^ax 
.re[(A/z)logx]^l {l+Erf[A-' + (A/2)logx]}] 
•'• •• [l+Erf(A-')] J 

(38) 

Equations (24) and (38) can be utilized in Eq. (18), together with the trans­
formation X = e"'"-'̂  . Employing analyticity arguments, the actual pulse-
height distribution can be determined. One finds, for [(v- 1)/A] » 1 , 

D(v) = , t ! w.-iM / cos [(v-1) ?] e-
7T[l-FErf(A ' )] j 

(A? A ) ' 

exp ^ae -(A?A)̂  Mi/') z 
cos C + 6 / e'^ 

J a 
e ' sm 

•cosJae-(A?A)' 1 + 6 L 
(A4/2) 

e ' l ' c d? , (39a) 

with 

6 = 2 exp(-A'^) 
./f [l+Erf(A-l)]-

(39b) 

Actually, we shall confine our attention to the domain (0 £ r •£ 0.2), 
which, according to Eq. (25). corresponds to the interval (0 S A £ 0.12). 
For this range, one has 6 « 1 and Erf(A"') = 1. Neglecting all terms 
linear in 6, Eq. (39a) reduces to'* 

D(v) = :^e-a f e-(AC,/2)^ cos [(v-1) ?] exp [ae-(A ^A)^ cos ?J 

Jo 

• cos [ae-(A?/2)^ sin ?J d | . (40) 

For the range of A considered above. Eq. (40) should provide adequate 
approximations of the actual pulse-height distribution for v 2 1-5. 

The integral representation of D(v). at V = 1. assumes a form that 
is also tractable from a computational viewpoint. Namely, one has 

'''Since the domain under consideration includes (experimental) 
resolutions of up to 20%. the subsequent results should apply to 
most detection systems used in spectral determinations. 
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D ( l ) 1± e-(A?A)' e x p ; - (A|A) cos i 
,-(^i/z)\in ?' d?. 

(41) 

This e x p r e s s i o n for D(l) has been included s ince the va lue of D(v) at v = 1 
in Ca X IS of definite ' expe r imen ta l i n t e r e s t . The need for this point wil l 
be d i s c u s s e d m o r e fully in Section V, which c o n t a m s n u m e r i c a l r e s u l t s . 

D. Case Ila 

The exponent ia l ly decaying pu lse shape , defined in Eq . (20), s a t i s f i e s 
the condition given in Eq. (13b). which was d e r i v e d for con t inuous p r o b a b i l i t y 
genera t ing functions. Consequent ly , Eq . (12c) can be appl ied , and for C a s e II, 
on finds 

g(y.Ti) = y log y (42) 

In this event, E q s . (10a) and (10b) yield 

Q(y) - 7 a e x p [ - a E i ( - l o g y)] 

( - l o g y ) " 

where Ej is the s imple exponential i n t e g r a l . 

(43) 

E , (s ) = • dCD, (44a) 

and 

7 = 0.5772157 .. (44b) 

is the E u l e r - M a s c h e r o n i cons tan t . One can d e t e r m i n e the actual p u l s e -
height d i s t r ibu t ion by employing E q s . (22) and (43) in Eq . (18). Using the 
t r ans fo rma t ion x = e"^^. toge ther with the r e s u l t i n g ana ly t i c i t y of the 
in tegrand, one finds 

D(v) ,-ya ; cos [ ( v - 1) g] 

1 ?" 
exp [a Ci(5)] cos [a Si(5)J dg, (45) 

where Si( | ) and Ci(g) a r e the c u s t o m a r y s ine and cos ine i n t e g r a l s . 

Si(s) = sin tu 
dO), (46a) 
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and 

Ci(s) 
i/oo 

dCD . (46b) 

E . C a s e l ib 

H e r e one n e e d only e m p l o y the r e s u l t s of C a s e lb and C a s e I la . It 
fo l lows f r o m E q s . (34) and (43) tha t Q(x) for C a s e l ib i s g iven by 

Q(x) 
_ e ' - y a e x p {-aEi[ log (1 - log x)] } 

[ l o g ( l - l o g x)]a-
(47) 

Equa t ion (18) can a g a i n be e v a l u a t e d by u t i l i z ing E q s . (23a) , (23b), (23c), 
and (47). The r e s u l t for t h i s c a s e i s 

o{v) = i . e -^« cos (vC) + e sin {vi)-e-'^ 

n-e 
exp -aE,(u)+ ae-'^jlog [1 + ( v / u ) ' r ^ ^ + S ( v / u , u 

(u^ + v ^ ) - ^ ^ • cos ae-'^llog [1 +(v/u)2] l i p : . c ( v / u , u ) | + a tan- ' (v /u) d?, (48) 

w h e r e 

u = ^ l o g (1+e ' ) , 

= t an - ' (I), 

(49a) 

(49b) 

v/u. 
v / u , u ) = / s i n (UCD) - | l o g ( l + C D ^ ) + Y : ; : ^ do), (50a) 

r .v/u r I 1 
C ( v / u , u ) = / c o s (ucu) - | l o g ( l + a ) ^ ) + Y ^ f ; ^ J dOD. (50b) 

F . C a s e l ie 

H e r e t he r e s u l t s of C a s e Ic and Ila m a y be e m p l o y e d . Using 
E q s . (37) and (43), one h a s 



Q(x) = 

/ , „ r i + E r f [ a - ' + (A/2 ) log x n \ 
a E , ( - l o g x - [ ( A / Z ) I o g x l ^ - l o g | \,J^/.^; j j 

(51) 

logx-[(A/2 
fltErf[A-U(A/a)logx]1\'^ 

Util izing the t r a n s f o r m a t i o n x = e" ' ^ , with a t r e a t m e n t a n a l o g o u s to tha t 
of Case Ic, including the a p p r o x i m a t i o n s t h e r e i n , one f inds , for 
[ ( V - 1 ) / A ] > > 1, 

D{v) -- |e-^'^ \ e-(^?A)'cos[(v-l)?]|expr-aE,(a)+ae-'^|log[l+(v/u)']^^+S(v/u,u)llj 

•(a^ + v^)-'V^.cos[ae-"|iog[H-(v/u)^]2i2^-C(v/u,u)l + a tan-'(v/u)l &%. (53) 

where 

u = (Ae/2)^ (53a) 

and 

V = e- (53b) 

As in Case Ic, all t e r m s l i n e a r in 6 have been n e g l e c t e d . Within the 
domain we have cons ide red for A, 0 S A < 0.12, Eq . (52) should a l s o 
provide adequate approx ima t ions for v > 1.5. 
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IV. LIMITING CASES 

Limiting forms of the cases treated above are of interest . These 
limiting cases provide necessary conditions that must be satisfied. The 
most significant of these conditions, which a r i se from the physical r e ­
quirements of our description, is given by 

Lim D(v) = P(v). (54) 
a-oQ 

Here the limit a ^ 0 can be implied by N — 0 or T ->• 0. The limit T — 0 has 
already been discussed in Section I. The limit N -* 0, which also implies 
no pile-up distortion, is again a physically-justifiable result . One can verify 
that condition (54) is satisfied by all the solutions presented above. This 
fact can also be established more generally, since one can prove that the 
integral representat ion of D(v). in the form of Eq. (18), directly satisfies 
this limiting condition. 

Another limiting case of interest is that of A-* 0 in Case (c). In 
this event, the ideal pulse-height distribution of Case (c) goes over to a 
delta function and thereby reduces to the ideal pulse-height distribution 
used in Case (a). Consequently, the limit A -» 0 implies that the resul ts of 
Case (c) should reduce to the results-of Case (a). Indeed, one finds that 
Eq. (52) reduces to precise ly Eq. (45) in the limit A-• 0. For the compari­
son of Cases la and Ic, it is more informative to compare the limiting form 
of the probability generating function, Q(x). ra ther than the actual pulse-
height distributions. This choice follows from the different interpretations 
utilized for the two actual pulse-height distributions, one as discrete and 
the other continuous, in these two cases , respectively. Employing A -• 0 in 
Eq. (38) of Case Ic, one finds the probability generating function given in 
Eq. (30) for Case la. Consequently, this limiting condition is also satisfied. 

V. NUMERICAL RESULTS 

To obtain numerjcal resu l t s , it is necessary to evaluate the various 
integral representa t ions given above. Computer p rograms have been de­
veloped that permi t computation of D(v). The general method of evaluation 
utilized can most easily be explained in t e rms of the integral representa­
tion''' 

D(v) f ^ l ( v , a , A , e ) d | + 1 ( 4 ^ ) . (55) 
Jo 

'I'The integral / I(v,a, A, g) dg in Eq. (55) has been evaluated by means 
•Jo 

either the trapezoidal rule or other convenient quadrature formulas. 



where J ( I M ) IS an asymptotic expansion of the integral 

Ia(v,a,A,?) di 

^M 

(56) 

and Ia(v,a,A,g) is the asymptotic form of the integrand l(v,a,A,g). 

The accuracy of this general method of evaluation was determined 
by employing different values of gj^. (All values of gjvl utilized were large 
enough to justify the asymptotic expansions introduced.) The values of 
D(v) obtained in this manner were generally consistent to at least a few 
percent. However, the accuracy available does decrease when D(v) be­
comes very small. Considerable variation exists for the lower bound of 
D(v) corresponding to the above accuracy, for the different special cases 
treated below. As a consequence, the numerical results are res t r ic ted to 
a domain of values of D(v) greater than a lower bound that generally lies 
between 10'^ and 10"^. 

In certain special cases, it is advantageous to tabulate the difference 
between the actual and ideal pulse-height distributions. To this end, it is 
convenient to introduce the difference function 

E(v) = D(v) - P(v). 

The computer calculations obtained for Cases lb, Ila, and Ic are sum­
marized below. 

A. Case lb 

(57) 

and 10 
For this case, D(v) has been determined in the region: V < 10 

Figure 1 displays D(v)(0 s v s 4) for a = 1, 0.5, and 0.1 
in comparison with P(v) = e'^^. Figure 2 presents similar dit a, but in the 

Fig. 1 

Comparison of the Actual Pulse-height 
Distribution D(v) for a = 1, 0.5, and 0.1 
in the Region 0 £ v s 4 with the Ideal 
Pulse-height Distribution P(v) = e"'^ 
(Case lb) 

112-4749 
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Fig. 2 

Comparison of the Actual Pulse-
height Distribution D(v) for 
a = 1, 0.5, O.I, and 0.005 in the 
Region 4 £ v £ 10 with the Ideal 
Pulse-height Distribution 
P(v) = e"'^ (Case lb) 

interval 4 :S v ^ lo. The convergence D(v) -* P(v) for a ^ 0, is evident. To 
emphasize this convergence behavior, the case a = 0.005 has also been 
included in Fig. 2. More extensive resul ts are presented in Table II, where 
the difference function for Case lb, E(v) = D(v) - e~^, is tabulated. 

Table n 

THE DIFFERENCE FUNCTION FOR CASE lb 

Elul . Dlul • e ' " 

^ \ ^ o 

0.1 
0.2 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 

1 

-5.381-11 
-4.54 (-11 
-2.57 I-ll 
-5.89 1-21 
+3.71 1-21 

7.67 (-21 
8.64 (-21 
8.15 (-2) 
7.05 (•21 
5.79 (-21 
4.60 (-21 
3.561-21 
2.70 (-21 
2.04 1-21 
1.50 (-21 
1.10 (-21 
7.96 (-31 
5.74 (-31 
4.11 (-31 
2.93 (-31 
2.08 (-31 
1.47 (-31 

0.5 

-3.28 (-1) 
-2.71 (-11 
-1.40 (-1) 
-1.77 (-21 
3.51 (-21 
5,23 (-21 
5.27 1-21 
4.61 1-21 
3.75 1-21 
2.91 (-21 
2.19 (-21 
1.61 (-21 
1.16 (-21 
8.31 1-31 
5.87 (-31 
4.11 1-31 
2.85 1-31 
1.97 (-31 
1.351-31 
9.23 (-41 
6.28 (-41 
4.25 (-41 

0.1 

-7.76 1-21 
-6.25 (-21 
-2.90 (-21 
2.20 (-41 
1.121-21 
1.37 (-21 
1.26 (-21 
1.03 (-21 
7.87 (-31 
5.80 (-31 
4.15 (-31 
2,91 (-31 
2.01 1-31 
1.37 1-31 
9,25 1-41 
6,19 1-41 
4,121-41 
2,721-41 
1,79 1-41 
1,17 (-41 
7,64 (-51 
4,96 1-51 

0,05 

-3,95 1-21 
-3,16 (-21 
-1.41 1-21 
9.20 1-41 
6,38 (-31 
7.44 (-31 
6.71 1-31 
5,41 (-31 
4.11 1-31 
3,00 (-31 
2.13 (-31 
1,48 1-31 
1,02 (-31 
6,88 1-41 
4,61 (-41 
3,07 1-41 
2,03 1-41 
1,33 1-41 
8,69 1-51 
5.65 1-51 
3,66 1-51 
2,36 1-51 

0,01 

-7,821-31 
-5,99 1-31 
-2,05 1-31 
1,181-31 
2,191-31 
2,22 1-31 
1,891-31 
1.48 (-31 
1.101-31 
7.88 (-41 
5.52 1-41 
3.80 (-41 
2.51 1-41 
1.73 1-41 
1,151-41 
7,59 (-51 
4,98 1-51 
3,24 1-51 
2,10 (-51 
1,36 (-51 
8,78 (-61 
5,62 (-61 

0,005 

-3,76 (-31 
-2,73 1-31 
-5,28 (-41 
1,18 (-31 
1,65 (-31 
1,561-31 
1,28 (-31 
9,86 (-41 
7,22 1-41 
5.13 1-41 
3,58 1-41 
2,45 1-41 
1,66 1-41 
1.111-41 
7.34 (-51 
4.82 (-51 
3.16 1-51 
2.05 (-51 
1.33 (-51 
8.58 (-61 
5.52 (-61 
3.51 (-61 

0,001 

-5,16 1-41 
-1.23 (-41 
6.67 (-41 
1.211-31 
1.21 1-31 
1.02 1-31 
7,96 (-41 
5,87 (-41 
4,20 (-41 
2,95 (-41 
2,02 (-41 
1.37 1-41 
9.20 1-51 
6.10 (-51 
4,01 1-5) 
2,63 (-51 
1,72 1-51 
1,11 (-51 
7,16 (-61 
4.60 (-61 
2.96 1-61 
1.88 (-61 

0,0001 

1,81 (-41 
4,91 (-41 
9,70 1-41 
1.21 1-31 
1,12 1-31 
8,93 1-4) 
6,81 1-4) 
4,98 (-41 
3,53 1-41 
2,45 1-41 
1,68 1-41 
1,131-41 
7,52 (-51 
4,98 1-51 
3,28 1-51 
2,14 1-51 
1,39 1-51 
8,99 (-61 
5,78 1-61 
3.70 (-61 
2.38 1-6) 
1.52 (-6) 

0,00001 

2,71 1-4) 
4,91 1-4) 
9,70 1-4) 
1,21 (-31 
1.09 1-31 
8.80 (-41 
6.73 1-41 
4.88 1-41 
3.47 1-41 
2.40 (-41 
1,63 (-41 
1,11 (-4) 
7,36 (-51 
4,881-5) 
3,20 1-5) 
2,09 (-5) 
1,36 1-5) 
8,79 1-6) 
5,66 1-6) 
3.63 1-6) 
2.32 1-6) 
1.47 (-61 

It is of interest to compare the present resul ts with the simple 
Rossi-Staub formula of Case la. For these two cases , one has identical 
pulse shape but different pulse-height distributions. Figures 3 and 4 
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a = 0,5 .nd 'O'- '""''""'..^'1' ^ . i s c o m p . r i . o n d . m o n . t r . t . . . ha . 
d i a „ by „ . „ , . r d „ . f " X . . n . i . W . ' « I h . W " ! p u l . - h . i B M d i . l r i b u -

t r e m e l y l imi ted domain of val id i ty . 

- ' I ' M I ' E 
>-. -

Fig. 3. Comparison of E{P) for Case lb with 
the Simple Rossi-Staub Formula (R-S) 
for a = 1.0 and 0.05 

112-4764 

Fig. 4. Comparison of E(v) for Case lb with 
the Simple Rossi-Staub Formula (R-S) 
for a = 0.5 and 0.01 

B . C a s e I l a 

T h e i n t e g r a l r e p r e s e n t a t i o n of D(v) w a s e v a l u a t e d f o r C a s e IIa_ i n 

t h e r a n g e 10" 1 f o r v - i n t e r v a l s (v > l ) c o r r e s p o n d i n g t o D(v) > 10 

T h e a c t u a l p r o b a b i l i t y d i s t r i b u t i o n D ( v ) , f o r d i f f e r e n t v a l u e s of a , i s d e p i c t e d 

i n F i g s . 5, 6, a n d 7. T h e c o n v e r g e n c e c r i t e r i o n of E q . ( 5 4 ) i s a g a i n s a t i s f i e d 

b y t h e s e n u m e r i c a l r e s u l t s . 

S o m e i n t e r e s t i n g a d d i t i o n a l f e a t u r e s a r e a l s o r e v e a l e d b y t h e s e 

c u r v e s . D i s c o n t i n u i t i e s a r i s e in t h e d e r i v a t i v e of D(v ) a t i n t e g r a l v a l u e s 

of V. M o r e o v e r , t h e s e d i s c o n t i n u i t i e s b e c o m e s e v e n m o r e p r o n o u n c e d f o r 

d e c r e a s i n g a . N o t e t h a t t h e d e c r e a s e i n D(v ) , f r o m o n e " p l a t e a u " t o t h e 

n e x t ( i . e . , a s V i n c r e a s e s a c r o s s a n i n t e g r a l v a l u e ) , i s g e n e r a l l y of t h e 

o r d e r of Cl. In t h i s m a n n e r , t h e r e s u l t s of t h e p r e s e n t c a s e g i v e q u a l i t a t i v e 
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- a = 0.00001 

I , I I 
2 3 4 5 6 7 

Fig. 5. The Actual Pulse-height Fig. 6. The Actual Pulse-height Fig. 7. The Actual Pulse-height 
Distribution, D(v), for Distribution, D(v), for Distribution, D(v), for 
Case Ila with a = 0.001, Case Ila with a = Case Ila with a = 
0.05, and 1 0.0001, 0.01, and 0.5 0. 00001, 0.005, and 0.1 0 



support to the concept of "n-fold" pile-up. Thus, the behavior displayed 
here should be compared with the simple Rossi-Staub result . Case la, 
Eq. (33), upon which the concept of "n-fold" pile-up is based. 

These similarities are, however, entirely qualitative since a direct 
comparison with Eq. (33) reveals pile-up estimates that can differ by 
orders of magnitude. To emphasize this conclusion, Figs. 8 and 9 com­
pare E(v) for Case Ila with interpolations based on the simple Rossi-Staub 
formula. These comparisons demonstrate that accurate est imates of pile-
up depend crucially upon pulse shape.''' Since detectors usually possess 
an exponential decay type of response, rather than square pulse-shape 
response, the results of Case Ila may provide more accurate pile-up es t i ­
mates for many experiments. 
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Fig. 8. Comparison of E(v) = 
D(v) for Case Ila with 
the Simple Rossi-Staub 
Formula (R-S) for 
a = 1.0 and 0.001 

112-4753 

Fig. 9. Comparison of E(v) = 
D(v) for Case Ila with 
the Simple Rossi-
Staub Formula (R-S) 
for a = 0.5 and 0.005 

T.ble m " " ^̂ '̂ ^̂  = ' ' ^ - ^) ^ - Case Ila, then E(v) = D(v) for v > 1 
Table III summarizes the results obtained for D(v) in Case Ha 

-^The two cases compared here (viz Cases Is pn^ IT \ v, 
Pulse-height distributions but diffe'; in j : ^ ? s h a p e ^ ' ^^^ ' ' ^ " " " ^ 
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^ ^ ^ Q 

1.05 

1.1 

1.2 

1 .3 

1.4 

1.5 

1 .6 

1.7 

1.8 

1.9 

1.95 

2 . 0 

2 . 0 5 

2 . 1 

2 . 2 

2 . 3 

2. l t 

2 . 5 

2 . 6 

2 . 7 

2 . 8 

2 . 9 

2 . 9 5 

3 . 0 

3 .05 

3 . 1 

3-2 

3.3 
3.* 
3.5 
3.6 

3.7 
3.8 

3.9 
It .o 

U . l 

1+.2 

k . 3 

U.ii 

•1.5 
I..6 

lt.7 
i».e 

k . 9 

5.0 
5.5 
6.0 

6.5 
7.0 

7.5 
8.0 

8.5 

1.0 

_ 
5.615 (-1) 

-
5.615 (-1) 

-
5.615 (-1) 

-
5.614 (-1) 

-
5.616 (-1) 

-
-
-

5.084 (-1) 

-
-
-

3.339 (-1) 

-
-

2.315 (-1) 

-
-
. 
-

1.463 (-1) 

-
-
. 

7.JU (-2) 

-
-

4.113 (-2) 

-
2.735 (-2) 

-
. 
-
-

9.163 (-3) 

-
. 
-
-

2.757 (-3) 
7.690 (-4) 

1.987 (-4) 
4.823 (-5) 
1.096 (-5) 

2.431 (-6) 

5.047 (-7) 
6.680 (-6) 

0.50 

1.890 (0) 

1.337 (0) 

9.453 (-1) 
7.718 (-1) 
6.684 (-1) 

5.979 (-1) 
5.456 (-1) 

5.053 (-1) 
4.727 C-1) 
4.456 (-1) 

4.338 (-1) 
4.109 (-1) 

3.211 (-1) 
2.776 (-1) 
2.186 (-1) 

1.767 (-1) 
1.442 (-1) 

1.179 (-1) 
9.602 (-2) 

7.748 (-2) 

6.153 (-2) 
4.766 (-2) 

4.137 (-2) 
3.547 (-2) 
3.066 (-2) 

2.672 C-2) 

2.045 (-2) 

1.567 C-2) 
1.198 <-2) 

9.095 (-3) 

-
-
-
-

2.004 C-3) 

-
-
-
-

4.132 C-4) 

-
-
-
-

7.595 (-5) 
1.308 (-5) 
2.040 (-6) 

3.28; (-7) 

9.152 1-8) 
5.788 C-8) 

THE DlFFi3UncE FUICTION TOR CASE H a 

0.10 

1.544 (0) 

7.881 C-1) 

4.175 C-1) 

2.932 (-1) 
2.249 C-1) 

1.852 C-1) 

1.563 C-1) 
1.368 C-1) 

1.205 C-1) 
1.091 C-1) 

-
7.124 C-2) 
2.463 C-2) 

1.879 C-2) 

1.293 C-2) 
9-062 C-3) 

6.736 (-3) 
4.871 (-3) 

3-528 (-3) 
2.476 (-3) 

1.635 (-3) 
9.704 C-4) 

6.554 C-4) 
4.063 (-4) 

-
2.433 C-4) 
1.629 C-4) 

1.099 C-4) 
7.J18 C-5) 

4.752 C-5) 
2.992 C-5) 
1.790 C-5) 

1.005 C-5) 

5.273 C-6) 
2.913 C-6) 
1.866 C-6) 

1.174 C-6) 

7.642 C-7) 

4.575 (-7) 
2.867 C-7) 

1.593 C-7) 
9.717 C-8) 

4.793 C-B) 
2.393 1-8) 

E(v) - DC 

0.05 

8.589 C-1) 
4.448 C-1) 

2.302 C-1) 
1.566 C-1) 

1.192 C-1) 
9.640 (-2) 

8.107 C-2) 
7.003 C-2) 
6.168 C-2) 

5.515 C-2) 
5.238 C-2) 
3.121 C-2) 

6.639 (-3) 
4.966 C-3) 

3.262 C-3) 
2.296 (-3) 

1.653 C-3) 
1.191 C-3) 
6.439 (-4) 
5.750 C-4) 

3.619 (-4) 
1.902 C-4) 
1.166 C-4) 

6.097 C-5) 
3.780 C-5) 

3.033 C-5) 
1.986 C-5) 
1.306 C-5) 
8.466 C-6) 

5.315 C-6) 
3.171 C-6) 
1.740 C-6) 

8.708 C-7) 

3.807 (-7) 
1.778 (-7) 

1.232 C-7) 
7.208 (-8) 

5.677 C-8) 

3.579 C-6) 
2.554 C-6) 

v) C» > 1 ) 

0.01 

1.942 
9.771 
4.920 

3.293 
2.477 
1.966 
1.658 

1.423 
1.247 
1.110 

1.052 
5.264 

2.795 
2.070 

1.334 
9.252 
6.561 
4.652 

3.219 
2.141 

1.282 

5.973 
3.052 

2.561 

3.093 
2.406 

1.598 
1.02T 

6.564 

2.687 

1.735 

- 1 ) 

- 2 ) 

- 2 ) 

- 2 ) 

- 2 ) 

- 2 ) 

- 2 ) 

- 2 ) 

- 2 ) 

-a) 
-2) 
-3) 
-4) 
-4) 

-4) 
-5) 

-5) 
-5) 
-5) 

-5) 
-5) 
-6) 

-6) 
-6) 
-7) 

-7) 

-7) 
-7) 
-8) 

-8) 
-8) 

0.005 

9.847 

4.943 
2.480 

1.657 
1.244 

9.965 
8.312 

7.13 
6.243 

5.553 
5.261 

2.561 
7.170 

5.199 
3.341 
2.314 
1.638 

1.159 
8.026 

5.295 
3.155 
1.437 
7.118 

-
4.744 

2.748 
1.863 

1.322 

- 2 ) 

- 2 ) 

- 2 ) 

- 2 ) 

- 2 ) 

- 3 ) 

-3) 
-3) 

-3) 
-3) 
-3) 
-3) 
-5) 

-5) 
-5) 
-5) 
-5) 
-5) 
-6) 

-6) 
-6) 
-6) 
-7) 

-8) 

-8) 
-8) 

-6) 

0.001 

1.993 C-2) 
9.980 C-3) 

4.992 C-3) 

3.329 C-3) 
2.499 C-3) 

1.999 (-3) 
1.666 (-3) 

1.428 C-3) 

1.250 C-3) 
l . l l l C-3) 
1.052 (-3) 
5.007 (-4) 

3.007 C-6) 
2.026 (-6) 

1.329 C-6) 
9.236 C-7) 
6.461 C-7) 

4.597 C-7) 
3.198 C-7) 
2.115 C-7) 
1.219 C-7) 

5.535 c-e) 

0.0001 

1.999 c-3) 
9.998 C-4) 

4.999 c-4) 

3.333 C-4) 
2.5CX) C-4) 
2.000 C-4) 

1.667 c-4) 
1.429 (-4) 

1.250 C-4) 
l . u i (-4) 
1.052 (-4) 

4.977 C-5) 
9.814 C-6) 

0.00001 

1.999 C-4) 
1.000 C-4) 

5.000 c-5) 

3.333 c-5) 
a.500 c-5) 
2.000 C-5) 

1.667 C-5) 
1.429 (-5) 
1.250 (-5) 

1.111 C-5) 
1.052 (-5) 
4.946 (-6) 

9.297C-10) 

The resul ts for this case provide a basis for direct comparison with 
the work of Soucek.' '7 To this end, D(v) has been determiined in Case Ila 
for a = 0.2. Figures 10 and 11 compare the resulting D(v) with the d i s t r i ­
bution given by Soucek [viz., Eq. (46) of Ref. 7] for entirely equivalent a s ­
sumptions. Figure 10 is a detailed comparison for small V. The present 
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,1 TI; t^ ^n% lower than Soucek ' s d i s t r i b u t i o n for v <" 1.4. 
; r i r ^ ^ ^ l T l l ^ " r t l e r i s U r o v e d s ince t h e s e two d i s t r i b u t i o n s 
F o r 1.4 - V - 1.0, me g , , „ i „ „ j of v = 1 5 Beyond th i s c r o s s - o v e r 
c r o s s one ano ther ^ ^ ^ ^ ^ ^ ^ f f ^ ^ f ; : ' " / s o ^ h i g h e r ' t h a n the r e s u l t s of 
noint n(vl a t t a ins va lues that a r e rougmy JV/< & 

over point, the d i s a g r e e m e n t b e c o m e s m o r e s igni f icant . 

( .2 — 
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— ', 

_1 ' 
- 1 

- \ 
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-
_ 
-

" l 

1 1 11 1 1 1 

\ ^ S O U C E K 

\ 
\ 
\ 

\ \ 
\ \ \ \ \ \ 

, 1 , 1 , 1 

1 ' 1 ' 1 ' 1 ' . 
a • 0.2 

— 
-
-

-
— 
-

— 
-

I . I . I . 7 7 " 

112-4747 
Fig. 10. Comparison of D^U) for Case Ila 

with the Distribution of Soucek 
[Ref. 7, Eq. (46)] for a. = 0.2 and 
1 i l̂  i 1.9 

Fig. 11. Comparison of D(v) for Case Ila 
with the Distribution of Soucek 
[Ref. 7, Eq. (46)] for a = 0.2 and 
1< 7' < 7 

This g e n e r a l behav io r is not, however , unexpec ted . The e x p a n s i o n 
r e p r e s e n t a t i o n given by Soucek m u s t have a l imi ted domain of va l id i ty 
and, in p a r t i c u l a r , m u s t p o s s e s s d e c r e a s i n g a c c u r a c y a s v i n c r e a s e s . 
F u r t h e r m o r e , Soucek 's solut ion ( co r r e spond ing to C a s e Ila) l a c k s the d e t a i l 
exhibi ted by the in tegra l r e p r e s e n t a t i o n solut ion. F o r e x a m p l e , in the 
neighborhood of in tegra l va lues of v, Soucek ' s d i s t r i b u t i o n p o s s e s s e s a 
continuous de r iva t ive in c o n t r a s t with the d i s con t inu i t i e s in the d e r i v a t i v e 
of D(v). While th is behav io r can be o b s e r v e d in F ig . 11 , it b e c o m e s m o r e 
s t r ik ing for sma l l a. In th is r e g a r d . Fig. 12 p r e s e n t s a c o m p a r i s o n s i m i l a r 
to that of Fig. 11, but for a = 0.001. As a d e c r e a s e s , m a r k e d and m o r e 
s e r i o u s d i f ferences develop be tween t h e s e two c a l c u l a t e d d i s t r i b u t i o n s . 
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C. C a s e Ic 

T h i s c a s e e n t a i l s m o r e e x t e n s i v e 

c o m p u t a t i o n a l e f f o r t d u e t o t h e e x i s t e n c e 

of t h e a d d i t i o n a l p a r a m e t e r A a s w e l l a s 

t h e d e t a i l e d b e h a v i o r of t h e r e s u l t i n g a c t u a l 

p u l s e - h e i g h t d i s t r i b u t i o n s . T h e v a l u e s of 

A t h a t h a v e b e e n u t i l i z e d a r e A = 0 . 1 2 , 

0 . 0 6 , a n d 0 . 0 1 2 , c o r r e s p o n d i n g t o r e s o l u ­

t i o n s of r = 0 . 2 0 , 0 . 1 0 , a n d 0 . 0 2 , r e s p e c ­

t i v e l y . F o r e a c h A - v a l u e , D{v) h a s b e e n 

d e t e r m i n e d i n t h e r a n g e 1 0 " ^ 1 f o r 
a V - i n t e r v a l 

D ( v ) 5 1 0 " ^ . 

(v > 1.5) c o r r e s p o n d i n g t o 

112-4750 

Fig. 12. Comparison of 0(7.̂ ) for Case Ila 
with the Distribution of Soucek 
[Ref. 7. Eq. (46)] for a = 0.001 

and 1 < V < 4 

a b o u t a n i n t e g r a l v a l u e of v. 

G a u s s i a n s " a s n - f o l d s u m p e a k s 

( i . e . , t h e o r i g i n a l G a u s s i a n ) i s c e n t e r e d a t 

V 

T h e g e n e r a l b e h a v i o r of t h e a c t u a l 

p u l s e - h e i g h t d i s t r i b u t i o n , D ( v ) , i s d e p i c t e d 

i n F i g s . 13 a n d 1 4 . T h e s e f i g u r e s , w h i c h 

b o t h c o r r e s p o n d t o Oi = 1 a n d A = 0 . 1 2 , 

d i f f e r o n l y i n t h a t F i g . 13 i s a s e m i l o g a ­

r i t h m i c d i s p l a y , w h e r e a s F i g . 14 p r e s e n t s 

t h e s a m e d a t a i n a l i n e a r f a s h i o n . T h e 

" m u l t i p l e G a u s s i a n s " o r p e a k s t h a t a r i s e 

i n D ( V ) a r e s t r i k i n g . E a c h of t h e s e " m u l ­

t i p l e G a u s s i a n s " i s s y m m e t r i c a l l y c e n t e r e d 

I t i s c o n v e n i e n t t o r e f e r t o t h e s e " m u l t i p l e 

T h u s t h e i d e a l p u l s e - h e i g h t d i s t r i b u t i o n 

V = 1, t h e s e c o n d s u m p e a k a t 

2 , t h e t h i r d s u m p e a k a t V = 3 , a n d s o o n . 

Fig- 13 
The Actual Pulse-height Distribution, D(i/), for 
Case Ic with a. = 1.0 and A = 0.12, Presented 
in Semilogarithmic Fashion 

o(v) 



\.z 

1.0 

o.e 

0(1/) 0.6 

0 . 4 

0 . 2 

0 

-
-
-
-
-
-
-

i 

\ 
a • 1.0 

A • 0.12 
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Fig. 14 
The Actual Pulse-height Distribution, 
D(i.'). for Case Ic with a = 1.0 and 
A = 0.12, Presented in Linear Fashion 

The behav io r of the s u m peaks for a = 1 and A = 0.06, and for 
a = 1 and A = 0.012 is d i sp layed in F i g s . 15 and 16, r e s p e c t i v e l y . C o m p a r i ­
son of F i g s . 13, 15, and 16 r e v e a l s that the s u m p e a k s b e c o m e v e r y n a r r o w 

1 pTT] flTTl fTTTl fTTT| fTTT] fTTT] (TTry-l 

A • 0.012 -= 

A 

A 
A-

o o o o o o o o 

JiuJUJlmJliiiJUJLMjliiiJ 
* - -

Fig. 15. The Actual Pulse-height Distri­
bution, D(i'), for Case Ic with 
a = 1 and A = 0.06 

Fig. 16. The Actual Pulse-height Distri­
bution, D(i/), for Case Ic with 
a = 1 and A = 0.012 
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with decreasing A, and this behavior confirms the convergence of Case Ic 
to the simple Rossi-Staub model for A -• 0. Hence, for small A, it is ap­
parent that the sum-peak contributions are the only appreciable form of 
pi le-up distortion. Consequently, the computations performed for A = 0.012 
have been limited to defining the sum peaks in the neighborhood of integral 
values of v. Tables TV, V, and VI contain a summary of the computational 
resul ts for D(v) in Case Ic. In view of ear l ie r approximations, the range 
of accurate numerical resul ts has been limited to V > 1.5. Here E(v) = 
D(V), since one has P(v) = 0 in this region. 

Although the present t reatment cannot define D(v) in the neighbor­
hood of V = 1, the formulation of Soucek is applicable in this region. (9) 
Hence, for this special case, the two methods complement each other, and 
the present data can be extended to include the neighborhood of V = 1 by 
employing Soucek's t reatment . 

An indirect measure of the distortion in the neighborhood of V = 1 
is available from the expression for D(l) in Eq. (41). The difference between 
the actual and ideal pulse-height distributions can therefore be determined 
at V = 1. Such a comparison is displayed in Fig. 17, where [A • D(l)] is 
plotted as a function of a for A = 0.12, 0.06, and 0.012. Not only do these 
three curves coincide, but note the convergence [A • D(l)] -• [A • P(l)] = 
(TT)"'^^, for a -» 0. Since this resul t implies [A • D(l)] is independent of 
A (at leas t for A £ 0.12), Fig. 17 can be used to estimate D(l) for all 
A S 0.12. The value of D(l) has been evaluated for every distribution com­
puted in Case Ic. It can be obtained from the tabulated values of E(l) given 
in Tables IV, V, and VI. The importance of this point is that the value of 
D(l) can serve as a convenient normalization value for experimental data 
[provided the pulse-height scale conforms with that chosen in Eq. (24a)]. 

Analysis of the data in Tables IV, V, and VI establishes three gen­
era l rules for sum-peak behavior in Case Ic. The data obtained for D(v) 
demonstrate that in the region of experimental interest (a £ 1 and A £ 0.12), 
each sum peak can be approximated by a Gaussian distribution. Conse­
quently, in the neighborhood of integral values of V, D(v) can be written in 
the form 

D,(V) = p ^ e x p | - ( ^ ) ' | n = 2 , 3 (58a) 

Here p^ is the peak height of the n'^ sum peak at V = n, and 

r^ = 1.665 ( A ^ n ) , n = 2, 3, ... , (58b) 

is the resolution associated with the n'̂ ^ sum peak. Under these assump­
tions, one obtains the following ru les : 

(1) The resolution of a given sum peak, r^, is independent of a. 
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Table IV 

THE DirFERENCE FUNCTION FOR CASE I c 

E(v) 1 DCv) Cu > 1.5) 

S = 0.12 Cr = 0 .20) 

^ \ ^ a 

1.0 

1.6 

1.7 

I . e 

1.9 

2 . 0 

2 . 1 

2 . 2 

2 . 3 

2 .U 

2 . 5 

2 . 6 

2 . 7 

2 . 6 

2 . 9 

3 . 0 

3 . 1 

3 . 2 

3 . 3 

3.1* 

3 . 5 

3 . 6 

3 . 7 

3 . 8 

3 . 9 

n.o 
4 . 1 

4 . 2 

14.3 

4 . 4 

4 . 5 

4 . 6 

4 . 7 

4 . 6 

4 . 9 

5 . 0 

5 . 1 

5 . 2 

5 . 3 

5 . 4 

5 . 5 

1 . 0 

-2 .972 

4.792 ( -3 ) 

5.390 (-21 

3.048 ( -1 ) 

8.643 ( -1 ) 

1.223 

8.645 ( -1 ) 

3,050 ( -1 ) 

5.404 ( -2 ) 

4.658 ( -3 ) 

1.92? ( -3 ) 

1.230 ( -2 ) 

6.186 ( -2 ) 

1.976 C-11 

3.959 (-11 

4.995 ( -1 ) 

3.964 (-11 

1.980 ( -1 ) 

6.229 ( -2 ) 

1.279 ( -2 ) 

3.355 (-31 

9.272 ( -3) 

3.056 (-21 

7.174 (-21 

1.210 ( -1 ) 

1.442 ( -1 ) 

1.211 (-11 

7.200 ( -2 ) 

3.027 (-21 

9.179 ( -3 ) 

2.898 (-31 

3.626 ( -3 ) 

9.322 (-31 

1.651 ( -2 ) 

2.805 (-21 

3.219 ( -2 ) 

2.805 ( -2 ) 

1.650 ( -2 ) 

9.446 (-31 

3.606 ( -3 ) 

1.343 (-3} 

0.50 

1.650 

3.896 (-31 

4.430 (-21 

2.514 ( -1 ) 

7.125 (-11 

1.008 

7.125 ( -1 ) 

2.514 (-11 

4.430 ( -2 ) 

3.948 (-31 

8.016 (-41 

5.073 ( -3 ) 

2.563 ( -2 ) 

8.153 (-21 

1.633 ( -1 ) 

2.058 (-11 

1.633 (-11 

6.153 ( -2) 

2.563 (-21 

5.127 ( -3 ) 

1.019 (-31 

1.B96 ( -3 ) 

6.230 (-31 

1.483 ( -2 ) 

2.497 (-21 

2.970 (-21 

2.497 ( -2 ) 

1.4B3 ( -2) 

6.232 ( -3 ) 

1.870 (-31 

4.900 (-41 

4 .181 ( -4 ) 

9.575 (-41 

1.906 ( -3 ) 

2.690 (-31 

3.321 ( -3 ) 

2.890 (-31 

1.905 (-31 

9.533 (-41 

3.643 ( -4 ) 

1.199 (-41 

0.10 

0.448 

1.269 ( -3 ) 

1.350 (-21 

7.512 (-21 

2.131 ( -1 ) 

3.009 (-11 

2.127 ( -1 ) 

7 .501 ( -2) 

1.321 (-21 

1.129 ( -3 ) 

9.508 (-51 

3.100 (-4 1 

1.574 ( -3 ) 

4.646 ( -3 ) 

9.784 (-31 

1.232 ( -2 ) 

9.605 (-31 

4.905 ( -3 ) 

1.500 ( -3 ) 

3.054 ( -4 ) 

5.635 (-51 

3.254 (-51 

6.606 (-51 

1.615 (-41 

2.672 ( -4 ) 

3 .561 (-41 

2.670 ( -4 ) 

1.540 (-41 

7.906 (-51 

1.762 ( -5 ) 

4.459 (-61 

2.361 ( -6 ) 

2.535 (-61 

4.535 ( -6 ) 

5.919 (-61 

7.945 ( -6 ) 

7.053 ( -6 ) 

4.055 ( -6 ) 

2.445 (-61 

5.870 ( -7 ) 

1.453 (-71 

0.05 

0.229 

6.113 ( 

6.947 ( 

3.943 ( 

1.117 ( 

1.581 ( 

1.117 ( 

3.943 ( 

6.946 ( 

5.608 ( 

3.682 ( 

7.996 ( 

4.017 

1.279 

2.562 

3.227 

2.561 

1.279 

4.023 

7.980 

1.146 

3.629 

9.701 

2 .321 

3.923 

4.665 

3.943 

2.334 

1.063 

3.732 

6.528 

1.744 

1.856 

3.253 

4.783 

5.447 

4.766 

3.214 

1.714 

-4} 

-3 ) 

-21 

-1 ) 

- 1 ) 

- 1 1 

- 2 ) 

- 3 ) 

- 4 1 

- 5 ) 

- 5 1 

- 4 ) 

- 3 ) 

- 3 1 

- 3 ) 

- 3 1 

- 3 ) 

-4 1 

- 5 ) 

- 5 1 

- 6 ) 

- 6 1 

( -5 ) 

( -51 

(-51 

(-51 

( -5 ) 

( -51 

( - 6 ) 

( -71 

( -7 ) 

( -71 

( -7 ) 

( -71 

( - 7 ) 

( -71 

(-71 

( -71 

0 .01 

0.047 

2.640 ( 

1.620 ( 

8.172 ( 

2.354 ( 

3.292 ( 

2.326 ( 

6.207 

1.447 

1.273 

6.484 

3.098 

1.708 

5.274 

1.074 

1.349 

1.072 

5.279 

1.712 

3.685 

2.549 

7.177 

9.721 

2.058 

3.363 

3.993 

3.366 

2.037 

9.069 

-4 1 

-3 ) 

-31 

-2 ) 

- 2 } 

- 2 ) 

- 3 ) 

- 3 1 

- 4 ) 

- 6 1 

- 6 ) 

- 5 ) 

- 5 ) 

- 4 ) 

- 4 1 

- 4 ) 

( -51 

( - 5 ) 

( -61 

( - 7 ) 

( -61 

( - 8 ) 

( -71 

( - 7 ) 

( -71 

( - 7 ) 

( -71 

( - 8 ) 

0.005 

0.024 

6 .398 ( - 5 ) 

7.268 ( -41 

4 .124 ( -31 

1.169 ( - 2 ) 

1.654 ( -21 

1.169 ( - 2 ) 

4 .125 ( - 3 ) 

7.270 ( -4 1 

6.447 ( - 5 ) 

2.975 ( -61 

7.584 ( - 7 ) 

3.953 ( -61 

1.340 ( - 5 ) 

2 .681 ( -51 

3.378 ( - 5 ) 

2.6B0 (-51 

1.339 ( -51 

4 .515 (-61 

1.038 ( - 6 ) 

0 .001 

-0 .005 

1.286 

1.460 

8.282 

2.347 

3 .322 

2.347 

8.283 

1.472 

1.287 

1.052 

6.914 

1.890 

7.334 

1.193 

1.369 

1.088 

5.695 

1.767 

-5 ) 

- 4 ) 

- 4 ) 

-31 

- 3 ) 

- 3 ) 

- 4 ) 

( - 4 ) 

( -51 

( - 5 ) 

( - 6 ) 

( - 7 ) 

( -71 

( - 6 ) 

( - 6 ) 

( - 6 ) 

( -71 

( - 7 ) 
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Table IV CContd.) 

THE DIFFERENCE FUNCTION FOR CASE I c 

ECv) i DC«) Cv > 1 .5) 

i = 0.12 ( r = 0 .20) 

V<^ 
5.6 

5.7 

5.8 

5.9 

5 .0 

6 . 1 

6 .2 

6 .3 

6.4 

6 .5 

6 .6 

5.7 

6 .6 

6 .9 

7 .0 

7 , 1 

7 .2 

7 .3 

7 .4 

7 .5 

7 .6 

7 .7 

7 .6 

7 .9 

8 .0 

8 .1 

S.2 

8 .3 

8.4 

8.5 

8.6 

8.7 

B.e 

6.9 

9 .0 

9 . 1 

9 .2 

9 .3 

9 .4 

9 .5 

1.0 

1.211 ( -31 

2 .171 ( -31 

3 .736 ( -31 

5.242 ( - 3 ) 

5 .913 ( - 3 ) 

5 .242 ( - 3 ) 

3.760 ( - 3 ) 

2.380 ( - 3 ) 

1.011 ( - 3 ) 

4 . 6 4 1 ( - 4 ) 

2 .800 ( - 4 ) 

3.922 ( - 4 ) 

6 .133 (-41 

8.237 ( - 4 ) 

9.138 ( - 4 ) 

8 .222 ( - 4 ) 

6 .250 ( -41 

3 .743 ( -41 

1.920 ( -41 

9 .083 ( -51 

5.638 ( - 5 ) 

6 .168 ( - 5 ) 

8.620 ( - 5 ) 

1.127 ( - 4 ) 

1.218 ( - 4 ) 

1.115 ( - 4 ) 

8.454 ( - 5 ) 

5.643 ( -51 

3 .244 ( -51 

2 .053 ( -51 

1.107 ( -51 

9 .683 ( - 6 ) 

1.190 ( - 5 ) 

1.441 ( - 5 ) 

1.556 ( -51 

1.473 ( -51 

1.235 ( -51 

9 .513 ( -61 

5.085 ( - 6 ) 

2 .740 ( -61 

0.50 

6.978 ( -51 

1.108 ( - 4 ) 

1.906 ( - 4 ) 

2 .706 ( - 4 ) 

3 .033 ( - 4 ) 

2 .702 (~4) 

1.910 ( - 4 ) 

1.072 (-41 

4 .867 ( -51 

1.885 ( -51 

9.142 ( -61 

1.162 ( -51 

1.615 ( - 5 ) 

2 .145 ( - 5 ) 

2.364 ( - 5 ) 

2.144 ( - 5 ) 

1.599 (-51 

1.070 ( - 5 ) 

0.10 0.05 0 .01 0.005 0.001 



Table V 

THE DIFFERENCE FUNCTION FOR CASE IC 

E(») 1 DC») Cu 

0.06 (r 

1.5) 

0.10) 

^ > ^ 

1 . 0 

1 . 5 

1 . 7 

1 . 6 

1 . 9 

2 . 0 

2 . 1 

2 . 2 

2 . 3 

2 . 4 

2 . 5 

2 . 5 

2 . 7 

2 . 8 

2 . 9 

3 . 0 

3 . 1 

3 . 2 

3 . 3 

3 . 4 

3 . 5 

3 . 6 

3 . 7 

3 . 8 

3 . 9 

4 . 0 

4 . 1 

4 . 2 

4 . 3 

4 . 4 

4 . 5 

4 . 6 

4 . 7 

4 . 8 

4 . 9 

5 . 0 

5 . 1 

5 . 2 

5 . 3 

5 . 4 

5 . 5 

1 . 0 

-5 .944 

3.705 (-51 

8.675 ( -5) 

8.592 ( -3 ) 

5.119 (-11 

2.445 

5.121 ( -1 ) 

6.898 (-31 

9.242 ( -6 ) 

2.273 ( -6 ) 

2.068 (-51 

3.482 ( -6 ) 

2.397 ( -4 ) 

2.460 (-21 

3.959 ( -1 ) 

9.979 (-11 

3.973 (-11 

2.451 ( -2 ) 

2.404 (-41 

1.339 ( -5 ) 

9.171 (-71 

3.802 (-61 

5.563 (-41 

1.796 ( -2 ) 

1.446 (-11 

2.862 (-11 

1.455 (-11 

1.652 (-21 

5.570 (-41 

5.873 ( -5 ) 

9.426 (-71 

6.475 (-61 

4.330 (-41 

5.680 (-31 

3.597 ( -2 ) 

6.445 ( -2) 

3.776 (-21 

5.539 (-31 

4.348 (-41 

6.454 ( -6) 

6.219 (-71 

0.50 

-3 .700 

3.406 ( -6 ) 

7.093 (-51 

7.049 ( -3) 

5.026 ( -1 ) 

2.016 

5.028 (-11 

6.836 ( -3) 

3.555 (-51 

1.195 (-61 

1.049 ( -5 ) 

1.062 (-61 

1.159 ( -4 ) 

1.011 ( -2 ) 

1.584 (-11 

4.092 (-11 

1.539 (-11 

9.697 (-31 

1.083 ( -4 ) 

5.599 (-71 

3.866 (-71 

1.245 ( -6 ) 

1.215 (-41 

3.699 (-31 

2.969 (-21 

5.939 ( -2 ) 

2.965 (-21 

3.697 ( -3 ) 

1.194 ( -4 ) 

1.110 (-61 

2.189 ( -7 ) 

1.119 ( -6 ) 

4.676 (-51 

7.232 ( -4 ) 

3.812 ( -3 ) 

6.641 (-31 

3.812 (-31 

7.227 ( -4 ) 

4.806 ( -5 ) 

1.073 (-61 

0.10 

-O.B95 

1.450 (-51 

2.133 (-51 

2.326 ( -3 ) 

1.500 ( - 1 ) 

6.015 (-11 

1.500 ( -1 ) 

2.326 (-31 

7.640 (-61 

2.903 ( -7 ) 

2.479 (-71 

2.224 ( -7 ) 

5.091 ( -5 ) 

5.075 (-41 

9.729 ( -3 ) 

2.455 (-21 

9.729 (-31 

6.065 ( -4 ) 

5.979 ( -6 ) 

7.762 (-81 

7.905 ( -6 ) 

8.402 (-81 

2.473 (-61 

4.509 ( -5 ) 

3.549 (-41 

7.092 ( -4 ) 

3.547 ( -3 ) 

4.485 (-51 

1.405 ( -6 ) 

4.539 (-81 

3.297 ( -8 ) 

3.379 ( -8 ) 

1.448 ( - 7 ) 

2.314 ( -6 ) 

9.597 (-51 

1.591 (-51 

9.535 (-61 

2.239 (-61 

6.226 (-71 

0.05 

-0 .456 

6.254 ( -7 ) 

1.145 ( - 5 ) 

1.230 (-31 

7.884 ( -2 ) 

3.152 ( - 1 ) 

7.884 ( -2 ) 

1.226 ( -3 ) 

4.019 ( -51 

1.157 (-71 

9.853 (-81 

8.724 (-81 

3.073 ( -6 ) 

1.603 ( - 4 ) 

2.558 (-31 

6.454 ( -3 ) 

2.557 (-31 

1.596 (-41 

2.319 (-61 

3.601 ( -8 ) 

3.074 ( -8 ) 

2.993 ( -8 ) 

7.220 (-71 

6.269 ( -6 ) 

4.599 ( -51 

9.355 (-51 

4.692 ( -51 

5.176 ( - 6 ) 

5.489 (-71 

1.821 ( -8 ) 

1.597 (-01 

1.555 ( -8 ) 

2.157 (-81 

1.306 (-71 

5.149 (-71 

1.058 (-61 

6.137 (-71 

1.284 ( - 7 ) 

1.896 ( - 8 ) 

0 .01 

-0 .093 

1.683 

2.933 

2.564 

1.641 

6.581 

1.641 

2.S52 

6.951 

2.647 

2.249 

1.937 

4.059 

6.908 

1.067 

2.669 

1.066 

6.79B 

2.343 

7.582 

5.559 

6.165 

7.517 

5.518 

3.935 

7.816 

3.926 

5.335 

6.459 

( - 7 ) 

( -61 

( -41 

( -21 

(-21 

( - 2 ) 

( - 4 ) 

( -71 

( - 8 ) 

( -81 

(-81 

( -71 

(-61 

( - 4 ) 

( -41 

( - 4 ) 

( -61 

- 7 ) 

- 9 1 

- 9 1 

- 9 1 

- 9 ) 

- 6 1 

- 7 1 

- 7 1 

- 7 1 

- 7 1 

- 9 1 

0.005 

-0 .047 

1.070 

1.813 

1.290 

6.247 

3.307 

6.247 

1.283 

5.034 

1.515 

1.307 

1.079 

2.142 

1.828 

2.690 

5.763 

2.567 

1.765 

1.142 

( - 7 ) 

( - 6 ) 

( -41 

( - 3 ) 

( -21 

( - 3 ) 

( -41 

( - 7 ) 

( -81 

( - 6 ) 

( - 8 ) 

( -71 

( - 6 ) 

- 5 ) 

- 5 1 

- 5 ) 

- 5 ) 

- 7 ) 

0.001 

- 0 . 0 0 9 

5.638 

9.094 

2 .621 

1.656 

6 .541 

1.656 

2.586 

3.478 

8.290 

5.986 

5.940 

2 .151 

1.397 

1.147 

2.760 

1.131 

1.118 

3.136 

( -81 

( - 7 ) 

C-5) 

( - 3 ) 

( - 3 ) 

( - 3 ) 

( - 5 ) 

( - 8 ) 

( - 9 ) 

( - 9 ) 

( - 9 ) 

( - 8 ) 

( - 7 ) 

- 6 ) 

- 6 ) 

- 6 ) 

- 7 ) 

- 9 ) 
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Table V (Con td . ) 

THE DIFFERENCE FUNCTION FOR CASE I c 

E(v) ^ D C v ) (v > 1.5) 

i = 0.06 (r - 0 .10) 

^ \ ^ a 

5.6 

5.7 

5.8 

5.9 

6.0 

6 . 1 

5.2 

6 .3 

5.4 

6 .5 

6 .6 

6.7 

6.8 

6.9 

7 .0 

7 . 1 

7 .2 

7 .3 

7 .4 

7 .5 

7 .6 

7 .7 

7 .8 

7 .9 

8.0 

8 .1 

8.2 

6.3 

8.4 

8 .5 

8.6 

6.7 

8.8 

8.9 

9 .0 

9 . 1 

9.2 

9 .3 

1.0 

8 .471 ( - 6 ) 

1.818 ( - 4 ) 

1.847 (-31 

7.407 ( -31 

1.177 ( - 2 ) 

7.407 ( - 3 ) 

1.848 ( - 3 ) 

1.823 ( - 4 ) 

1.146 (-51 

6.099 ( -71 

3.547 ( -6 ) 

5.203 ( - 5 ) 

3 .731 ( - 4 ) 

1.228 ( - 3 ) 

1.821 ( -3 ) 

1.227 ( - 3 ) 

3.732 ( -4 ) 

5.205 ( - 5 ) 

2.856 ( - 6 ) 

8.739 ( - 7 ) 

1.407 ( - 6 ) 

1.020 ( -5 ) 

5.306 ( - 5 ) 

1.742 ( - 4 ) 

2.453 (-41 

1.745 (-41 

5.375 ( - 5 ) 

9.729 ( - 6 ) 

1.574 ( -5 ) 

8.838 ( -7 ) 

1.111 ( -5 ) 

2.807 ( -6 ) 

9.453 ( - 5 ) 

2.234 ( - 5 ) 

3.012 ( - 5 ) 

2.288 (-51 

1.058 (-51 

4 .755 ( -5 ) 

0.50 

5.190 ( - 7 ) 

1.249 ( - 5 ) 

9.812 ( - 5 ) 

3.844 (-41 

6.087 ( - 4 ) 

3 .843 ( -4 ) 

9 .801 ( -51 

1.235 ( - 5 ) 

5.099 ( - 7 ) 

1.495 (-71 

2.250 (-71 

1.495 ( - 6 ) 

9.747 ( -6 ) 

3.154 C-51 

4.596 (-51 

3.165 (-51 

9.761 ( -6 ) 

1.517 ( -6 ) 

0.10 0.05 0 .01 0.005 0.001 
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Table VI 

THE DIFFERENCE FUNCTION FOR CASE Ic 

E{vl lD(v>) (̂ ^ > 1-5) 

i = 0.012 ( r = 0.02) 

1.97 

1.96 

1.99 

2.0 

2.01 

2.02 

2.03 

2.97 

2.98 

2.99 

3.00 

3.01 

3.02 

3.03 

3.97 

3.98 

3.99 

4.00 

4 .01 

4.02 

4.96 

4.99 

5.00 

S.Ol 

5.02 

5.03 

5.94 

5.95 

5.96 

6.00 

6.02 

6.04 

6.06 

6.94 

6.96 

-29.720 

5.373 (-11 

3.049 

8.540 

12.227 

8.540 

3.049 

5.373 (-11 

6.215 (-11 

1.977 

3.960 

4.991 

3.960 

1.977 

5.215 ( -1) 

3.020 (-11 

7.194 ( -1) 

1.211 

1.441 

1.211 

7.194 (-11 

3.020 (-11 

9.229 ( -2) 

1.B48 ( -1) 

2.603 ( -1 ) 

3.221 ( -1) 

2.603 ( -1) 

1.646 (-11 

9.228 ( -2 ) 

9.140 ( -4) 

9.235 (-31 

3.703 ( -2) 

5.883 ( -2) 

3.703 ( -2) 

9.235 (-31 

9.140 ( -4) 

2.571 ( -4) 

1.658 ( -3) 

6.105 ( -3) 

-18.499 

4.429 (-1) 

2.513 

7.123 

10.060 

7.123 

2.513 

4.429 ( -1) 

2.552 (-11 

6.150 (-11 

1.632 

2.057 

1.632 

6.150 (-11 

2.562 ( -1) 

6.224 ( -2) 

1.463 ( -1) 

2.495 (-1) 

2.970 (-11 

2.496 (-11 

1.483 ( -1) 

6.224 (-21 

9.512 (-31 

1.905 ( -2) 

2.884 ( -2) 

3.331 (-21 

2.8B9 (-21 

1.905 (-21 

9.512 ( -3) 

4.773 (-5) 

4.754 (-41 

1.908 ( -3) 

3.032 ( -3) 

1.908 ( -3) 

4.754 (-41 

4.773 (-51 

7.334 (-61 

4.858 (-51 

1.580 (-41 

-4.474 

1.321 ( -1) 

7.499 (-11 

2.125 

3.007 

2.125 

7.499 (-11 

1.321 ( -1) 

1.529 ( -2) 

4.864 ( -2 ) 

9.740 (-21 

1.226 ( -1) 

9.740 ( -2) 

4.864 ( -2 ) 

1.529 (-21 

7.437 ( -4) 

1.770 ( -3) 

2.960 (-31 

3.544 (-31 

2.960 (-31 

1.770 (-31 

7.436 ( -4) 

2.326 ( -5) 

4.601 (-51 

6.950 ( -5 ) 

7.977 ( -5) 

6.951 ( -5) 

4.601 (-51 

2.325 (-51 

-2 .291 

6.946 (-21 

3.942 ( -1) 

1.117 

1.561 

1.117 

3.942 ( -1 ) 

6.946 (-21 

4.018 ( -3 ) 

1.278 ( -2) 

2.550 (-21 

3.227 (-21 

2.550 ( -2 ) 

1.276 ( -2) 

4.01B ( -3) 

9.804 ( -5) 

2.330 (-41 

3.919 (-41 

4.561 ( -4 ) 

3.919 (-41 

2.329 ( -4 ) 

9.603 ( -5) 

1.761 ( -6) 

3.254 ( -6 ) 

4.796 ( -6 ) 

5.469 ( -6) 

4.802 ( -6) 

3.257 ( -6) 

1.760 (-61 

-0 .465 

1.446 ( -2) 

8.205 ( -2 ) 

2.325 ( -1) 

3.291 (-11 

2.325 (-11 

8.205 (-21 

1.445 ( -2 ) 

1.675 (-41 

5.324 ( -4 ) 

1.066 ( -3 ) 

1.343 (-31 

1.055 (-31 

5.323 ( -4 ) 

1.574 ( -4 ) 

6.978 ( -7 ) 

2.020 ( -6 ) 

3.343 (-61 

3.950 ( -5) 

3.344 (-51 

2.020 ( -5 ) 

B.958 ( -7 ) 

- 0 . 2 3 3 

7.266 ( -3 ) 

4 .123 ( -2 ) 

1.166 ( - 1 ) 

1.554 ( -1 ) 

1.158 ( -1 ) 

4 .123 ( -2 ) 

7.256 (-31 

4.213 ( - 5 ) 

1.338 ( -4 ) 

2.679 ( -4 ) 

3.375 ( -4 ) 

2.679 (-41 

1.338 ( -4 ) 

4.212 ( -5 ) 

-0 .04 9 

1.459 ( -3 ) 

8.279 ( - 3 ) 

2.346 (-21 

3.320 ( -21 

2.340 ( - 2 ) 

8.279 ( - 3 ) 

1.459 (-31 

1.710 (-61 

5.391 ( - 6 ) 

1.077 ( -5 ) 

1.357 (-51 

1.077 ( -5 ) 

5.391 ( - 5 ) 

1.708 ( - 5 ) 
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Table VI (Con td . ) 

THE DIFFERENCE FUNCTION FOR CASE IC 

E{v) i D(v) 

a = 0.012 

1.5) 

0 .02) 

7.00 

7.02 

7.04 

7.06 

7.94 

7.95 

7.98 

• 8 . 0 0 

9.00 

9.02 

9.04 

9.05 

9.077 (-31 

5.105 ( - 3 ) 

1.858 ( -3 ) 

2.572 ( - 4 ) 

5.609 ( - 5 ) 

3.052 ( -4 ) 

8.594 (-41 

1.215 ( - 3 ) 

8.594 ( - 4 ) 

3.052 (-41 

5.639 (-51 

1.648 ( -5 ) 

4 .980 (-51 

1.129 ( - 4 ) 

1.506 ( -4 ) 

1.136 ( - 4 ) 

5.045 (-51 

1.893 ( - 5 ) 

2.346 ( - " ) 

1.580 (-41 

4.858 (-51 

7.367 ( - 6 ) 
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T 1—I I 11 I 

[ A • pciT] 

[ A . D I I T ] FOR A . 0 . 1 2 , 0.06, AND 0.012 

112-4746 
Fig. 17. Comparison of [A 

Limiting Value [A 
0.06, and 0.012 

D(1) ] as a Function of a with the 
P(l)] for A = 0.12, 

(2) The resolution of a given sum peak, r„, is a linear function of 
r or A. 

(3) For a given value of a, the peak height of a given sum peak, 
Pj ,̂ is a linear function of r or A" . 

Application of these rules will facilitate interpolation of the present 
data. For example. Fig. 18 displays rj^, the resolution of the n ' " sum peak, 
as a function of r, for n = 2, 3, 4, 5, 6, and 7. In view of rule (l), these 
curves permit an estimate of the resolution for sum peaks up to n = 7, for 
all r £ 0.20. In addition, employing rule (3), together with the tabulated 

Fig. 18 

Sum Peak Resolution r^ 
as a Function of r, the 
Resolution of the Ideal 
Pulse-height Distribu­
tion, for the Sum Peaks 
n = 2, 3, 4, 5, 6, and 7 
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data, permi ts interpolation of the peak height of a sum peak, p^, for any 
a £ 1. Hence, determination of the two pa ramete r s r̂ ^ and Pj^, in this man­
ner, will completely define the sum peak of interest . 

VI. CONCLUSION 

The tabulations presented in this repor t can be used to obtain pile-
up es t imates over the entire range of V and (X considered for each c o r r e s ­
ponding special case. In regions where D(v) is not rapidly varying, 
graphical interpolation can be used to determine D(v) to within a few percent . 
For rapidly varying D(v), as at integral values of V in Case Ila, or in the 
neighborhood of sum peaks in Case Ic, graphical interpolations of roughly 
5-10% accuracy should still be possible. 
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