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THEORETICAL ESTIMATES OF
PILE-UP DISTORTION

by

Raymond Gold

ABSTRACT

Ananalysis of pile-up distortionfor a (pulse) detector
is formulated by means of probability generating functions.
Solutions are determined in the form of integral repre-
sentations. Several important special cases, which are of
interest in experimental applications, are treated. The rep-
resentations for these special cases have been evaluated,
and numerical results are presented in both graphical and
tabular form. The results of the present method are com-
pared with other estimates of pile-up distortion.

I. INTRODUCTION

The concept of resolving time for a detector is generally understood
as some measure of the time duration of the detector response to a single
event. Actually (in the present context), the resolving time can only be
precisely defined in terms of the time interval between two successive
events. It then may be taken as the shortest interval of time for which the
second of the two successive events still gives rise to a detectable response.
Although this second event may actually be detected, the information con-
tained in this response can be seriously distorted. Thus, if a resolving
time, T, is prescribed, then the detector response will be distorted if two
or more events occur within the order of the resolving time. These events
will then be subject to misinterpretation. This latter effect, commonly
called pile-up, has long been recognized as a distortion that can lead to
erroneous experimental results.

To emphasize further the intimate relation between resolving time
and pile-up distortion, one can examine the limit, 7 = 0. In the examina-
tion of this limit, one must also require that the response amplitude di-
verge. Otherwise, the response would no longer correspond to a measurable
result. Consequently, this limit implies a delta-function representation of
the time-dependent response of the detector. Only in this ideal case can
pile-up distortion be nonexistent. On the other hand, for all detection sys-
tems utilized in practice, this effect will be present and may, in certain
instances, be an important source of experimental error.
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against pile-up events.(1,2) These recent advance prreehe
and pile-up rejection techniques have come into widesprea .

The theoretical treatment of this effect ha.s not, h(})]we\’lzl;;::;er;’ed
sufficient attention. Rossi and Staub(5) have cons%dered ;361(%) o eaati
case of a square-pulse response of constant am}?htud?. ?‘ gty
a more general case in the pile-up of alpha particles in a 1sstbon P '
However, a more general formulation of this problem has not ;er? .
able. Such an analysis is considered here. In the process of o ta1n1ng
numerical results for important special cases of the prt?sent formu&auc(n_;:c))
an alternate description of pile-up distortion has been given by Soucek.

i i ibed here and that of Soulek
For certain special cases, the method descri

& i i i ansion form
may complement each other. Soucek obtains a solution in exp 3

whereas the present treatment results in an integral representation.

In terms of these treatments, a more quantitative judgment and com-
parison can be made of the discriminatory ability afforded by different re-
jection circuits. In addition, it is important to test the adequacy of the
elementary case given by Rossi and Staub, 5) since it is customarily em-
ployed in present pile-up estimates. Of even more significance would be
the availability of accurate estimates of the contribution that arises from
this distortion. In many experiments, there may exist a high background
of undesirable radiation, which is detected when the detection of relatively
rare events, or other types of radiation, is actually desired. In such cir-
cumstances, reasonably accurate values of the pile-up count rate may be
required. For many such measurements, a knowledge of pile-up distortion
would prove helpful in both the preparation and analysis of experiments.

It will be convenient to introduce accepted experimental terminology
in discussing this effect. Thus, the time dependence of the detector res-
ponse will be referred to as the pulse shape of the detector. The distribu-
tion of the maxima in response amplitude (or the distribution of peak values)
will be called the pulse-height distribution of the detector.

It is necessary to distinguish between two different types of pulse-
height distributions that will be considered: those that contain pile-up
distortion, and those that do not. These distributions will be designated as
actual and ideal pulse-height distributions, respectively. An actual pulse-
height distribution is one that arises from the output of a detector and
the.refore inherently contains pile-up distortion. In contrast, an ideal pulse-
height distribution, which contains no pile-up distortion, is purely concep-
tual. That is, an ideal pulse-height distribution cannot occur in Practice.
It may be regarded as the pulse-height distribution that would arise if the
detector possessed a delta-function pulse shape, or equivalently, as the
puise-height distribution that is assumed in the limit of vanishing count
rate.



In the present treatment, one regards both actual and ideal pulse-
height distributions as probability distributions. The result of pile-up
distortion is to (so-to-speak) transform an ideal probability distribution
into an actual probability distribution. This transformation is formulated
in essentially two basic steps. One first determines the probability dis-
tribution of the response amplitude level of the detector. It is appropriate
to call this result the baseline probability distribution. The actual pulse-
height distribution is then determined by a convolution of this baseline
probability distribution and the ideal pulse-height distribution.

The general description of obtaining pile-up estimates in this manner
is given in the next section. The results of this description are then applied
to several cases of interest. Computer programs have been developed to
evaluate the integral representations that arise. Numerical results have
been obtained, and comparisons are made with the simple Rossi-Staub
model(5) as well as with the results of Soutek.(7-9)

II. GENERAL FORMULATION

A. Determination of the Baseline Probability Distribution

The first basic step lies in the determination of the baseline prob-
ability distribution, B(v). Here B(v)dv represents the probability of finding
the response amplitude level of the detector between v and v + dv. The
method of probability generating functions will be employed to determine
B(v). The theory and properties of probability generating functions have
been extensively treated by Feller.(10) Applications of probability gen-
erating functions to physical processes have been explored by Frisch.(11)

Let Q(t,y) be the probability generating function that corresponds
to the baseline probability distribution, B(v). Here, t represents the time
variable, and y is the dummy variable of the generating function. It can
be shown that Q(t,y) satisfies the functional equation:(11)

Q(t+dt,y) = Qt,Aly,t,dt)] - Q(dt,y). (1)

Equation (1) is based upon the fundamental property of probability generating
functions. Namely, the probability generating function corresponding to the
sum of two random independent variables is given by the product of the
probability generating functions corresponding to each independent random
variable.

In Eq. (1), the probability generating function Q(dt,y) is related to
the probability of the detection of another event in the interval dt. The
function A(y,t,dt) is also a probability generating function. It corresponds
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to the change in detector response during the time interval dt. Employing
the chain rule for the partial derivative BA/dt, one can write

A oA o 2
%_t.= A B S (2a)

Here the change in y during the interval dt is given by
dy = gly,t,7y)dt, i=1,2,...,n (2b)

It follows that the function g(y,t,T;) is related to the pulse shape of the
detector, and the parameters Tj, i = 1, 2, ..., n, enter into the description
of this pulse shape. The exact relation between g(y,t,Ti) and the pulse shape
of the detector, F(t,Ti), will be developed later.

If N(t) is the function describing the rate of detection of events as
a function of time, then

Q(dt,y) = 1 - N(t) dt + yN(t) dt. (3)

Using Eqgs. (2b) and (3) in Eq. (1) and retaining first-order terms only, one
finds that Q satisfies the equation

a—?— = g(y,t,Ti) g—$+ (y- l) N(t) Q. (4)

The more general case, wherein a nonconstant pulse-height distribution
exists, may be handled by replacing the variable y introduced above, by the
probability generating function corresponding to the ideal pulse-height dis-
tribution. Since ideal pulse-height distributions are continuous, it is natural
to employ a continuous probability generating function. Thus, one would use

y(x) ﬁ P(v) x¥dv, (5)

where P(v) is the ideal pulse-height distribution. The normalization of
P(v) is chosen so that y(x) satisfies

y(1) = 1. 6)

Equation (6) is a boundary condition required of all probability generating
functions. In terms of the variables (x,t), Eq. (4) becomes

99 AR
ot = elybotTi] (F:%) %* fy(x) - 1] N(t) Q. (7)
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Instead of treating Eq. (7) directly, it is simpler to deal with Eq. (4). One
can then use the substitution defined by Eq. (5) in the solutions of Eq. (4).
This procedure corresponds to the rule for determining compound proba-
bility generating functions.(10,11)

In most physical applications, the count-rate function N(t) is not
an explicit function of time, but rather a Poisson probability distribution.
Thus, it is appropriate to replace N(t) by the mean value of this Poisson
distribution. In addition, for many cases of interest,g(y,t,7;) may be as-
sumed independent of the time t. Such an assumption implies that the change
of the detector response (or pulse shape) in an interval dt, can depend upon
dt, but not t. This should be a reasonable approximation for many detection
systems.

The above assumptions lead to a considerable simplification, since
the formulation will then reduce to a time-independent description. Employ-
ing these assumptions, one can write

N(t) = N, (8a)
and

gly.t, i) = gly,71). (8b)

As a result, Eq. (4) reduces to

g(y,n)% = (1-y) NQ. (9)

The solution of Eq. (9) is

y
Ay) = Q exp{Nf LI—Zi)da)}, (10a)

glw,7;)

where the constant Q, is determined by the usual boundary condition for
probability generating functions

(1) ="1. (10b)

The assumption introduced in Eq. (8b), that g is independent of t,
must depend intimately upon pulse shape. It isnot difficult to examine the
nature of the restriction introduced due to this assumption when A(y,t) is a
continuous probability generating function. In this event, A(y,t) can be
written in the form

At T,
g (E:7i)

Aly,t) = (11)

where F(t,7j) is the function describing the actual pulse shape of the detec-
tor. Hence, one has
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%%= yF(”) F'(t, 7) log ¥, ke
A _ F(t,n) E®T) (12b)
Sy 7 7

and therefore

gly t, 73) = %(tt’-’—:y)y log y- (12¢c)
Using Eq. (8b) in Eq. (12c) implies
BT B (13a)
15, 77) :
where B is a real constant. Consequently,
F(t,7) = FokPt, (13b)

with Fo a real constant of integration. [The trivial solution F(t,T) =
constant, which also fulfills Eq. (8b), leads to g(y,7) = 0. In this event,
Eqgs. (10a) and (10b) no longer provide an adequate description for the de-
termination of Q(y). However, the physical basis for the difficulty that
arises with this trivial case is also apparent. Namely, the resulting pulse
shape, F(t, 7) = constant, can not correspond to any physical detection sys-
tem. It follows, therefore, that this case is of no physical significance.]
Thus, when A(y,t) is a continuous probability generating function, only for
F(t, T) of the form given in Eq. (13b) will the time-independent formulation
determine Q(y). This limitation is not prohibitive, however, since many
cases of practical importance can still be examined with the framework of
these assumptions.

In most cases of interest, Q(x) will be a continuous probability gen-
erating function. Hence, the solution provided by Eq. (10) will determine
an integral equation for the baseline probability distribution, B(¥). One has

Qy(x)] = Q(x) = jrm B(v) xVdv. (14)
0

Equation (14) can often be solved by the method of Fourier trans-
forms. With the transformation x = e#if, Eq. (14) becomes

Q. (E) = [ BW) etivE gy, (15)
o -

Thus, the baseline probability distribution is given by
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B0) =% [ con (v8) R0 2t (162)
0
or

B = +2 f sin (v8) Im{Q,(8)] at (16b)
0

B. Formation of the Actual Pulse-height Distribution

The second basic step in the determination of D(v), the actual pulse-
height distribution, lies in properly combining the two probability distribu-
tions B(v) and P(v). To this end, it is convenient to introduce a new variable
V' for the baseline probability distribution, B(7'). As before, V' represents
the response-amplitude level of the detector, so that B(¥') dv' is the prob-
ability of finding the response-amplitude level between V' and V' + dv'.
Since P(v) is the ideal pulse-height distribution, P(¥) dv is the (conceptual)
probability of a response maximum or peak value between v and v + dv.

It follows that the actual pulse-height or peak value is given by the sum
v+ v'. Hence the actual pulse-height distribution is the probability distri-
bution for the sum of the variables vV and V'.

Thus, the actual pulse-height distribution, D(¥), can be obtained
from a convolution of the baseline probability distribution and the ideal
pulse-height distribution P(v). One can write

By = f" B(v') P(v- ') dv'. (17)

Equation (17) is an application of the well-known theorem for forming the
probability distribution of a sum of two independent variables in terms of
the probability distribution of each of the variables.(12)

Utilizing Eq. (16a) in Eq. (17), one has

Bz = %f f cos (v'€) R[Q4(€)] P(v- v') d€dv'. (18)
o Jo

If P(v) is unit-normalized, as implied in Eqs. (5) and (6), then one can show
that D(v) is also unit-normalized. This result follows directly from condi-
tion (10b). Consequently, one may interpret that both the actual and ideal
pulse-height distributions are probability distributions. That is, P(v) rep-
resents the (conceptual) probability for the occurrence of a maximum or
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peak value between v and v + dv, whereas D(v) is the actual probability of
a detector response yielding a maximum or peak value between v and
v + dy, when one accounts for pile-up distortion.

Thus, the time-independent formulation leads to a solution that is
an integral representation of D(V), viz., Eq. (18). It is therefore clear that
even in the most idealized cases, the actual pulse-height distribution must
intimately depend upon both the pulse shape and the ideal pulse-height dis-
tribution. Both of these quantities must be prescribed in order to define
D(v), the actual pulse-height distribution. This conclusion is clearly dem-
onstrated by the special cases that are treated below.

A comparison of the present formulation with the treatment of
Soutek(7-9) is necessary. Soutek determines the cumulants or semi-
invariants of the baseline probabilty distribution, B(V), utilizing an analysis
originally given by Rice in the description of the Shot effect.(13) The semi-
invariants of the actual pulse-height distribution, D(v), are then found by
summing the semi-invariants of B(v) and P(¥). The actual pulse-height
distribution D(v) is then expanded in terms of the first four semi-invariants
or (related) moments. Consequently, it is clear that this latter method and
the present formulation employ different approximations. For example,
while Soudek's treatment yields only an expanded form of the actual pulse-
height distribution, it does not possess the limited applicability with regard
to pulse shape that has been discussed above for the present method. In
view of the different approximations introduced, a comparison of the results
obtained from these two methods is desirable. Such a comparison can be

found in Cases Ic and Ila below. (See Section III for definitions of the special
cases that have been treated.)

: Finally, it must be pointed out that the actual pulse-height distribu-
tion, D(v), can be expressed exactly in the integral representation form of
B (T ‘Instead of the approximate B(v) obtained above, with the technique
of pro‘r.;)abllity generating functions, one can utilize the exact integral repre-
IS\Zntatlon of B.(v) that has been given by Rice in the theory of the Shot effect.*

oreover, using the latter result for B(v) instead of Egs. (16a) and (16b)

provides the exact soluti 1 imitati
oy ution without the pulse-shape limitations of the present

i direcItrllytiir:schfgnorf PraCFic@ considerations, it may not be possible
Indeed, the exact int:Z:‘als::;t;::e;nt t?'e dezeg?i)nation G
complex Fourier transform that thail glio\r/lez in 1;'/ e
- e gs. (16a) and (16b). Conse-
?hatnzlsy’s:}ilt;izsfs;:lhty that the exact solution will assume a traczable form
e app;zxez computat19na1 V%ewpoint is remote. The complexity
within the framework ;?aﬂtle solutions given in the next section, and obtained
€ present treatment, substantiate this contention.

*
The exact form of B(v) is given by Eq. (1,5-4) of Ref. 13.
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III. APPLICATIONS

In the applications that follow, only one dominant resolving time is
introduced. Hence for these cases, one has 7{ = 7,i = 1,2, ..., n. The
special cases considered below are designated in Table I. Case I and
Case II denote the two different pulse shapes that have been treated. In
Case I (the square pulse shape), the time-dependent detector response can
be written as

B(mT =1, O = fi =

i) 2 W e (19)
In Case II (the exponentially decaying pulse shape), one has

e = e‘t/T, == (0
F(t,T) = 0, t < 0. (20)

Table I
SPECIAL CASE DESIGNATIONS

Lol . I. Square II. Exponential
Pulse-height Shape
Distribution

(a) Delta Function 1z IIa

(b) Exponential Ib IIb

(c) Gaussian Ic Iic

For Case I, T merely represents the width of the square pulse
response of the detector. For Case II, T represents the relaxation time
for the decay of the response. In all of these special cases, one finds
that the pile-up distortion is a function of the product of the average count
rate, N, and the resolving time, 7. Hence, it is convenient to define the
single parameter :

a = NT. (Zl)
The ideal pulse-height distributions utilized in Cases (a), (b), and

(c) are givenbelow in Egs. (22), (23), and (24), respectively. These dis-
tributions are unit-normalized in the interval 0 = v < .



P(y) = 8(v-1); (22)
Blp-y) = em¥¥),  w> Y (23a)
P(y-v') =0, v' >V (23b)
B(0)S=v1; (23c)
and
P(v) = C exp {- (VA_ l)z}, A >0 1 (24a)
where
c ={—‘/25A[1+Erf(A")]}", L (24b)
and
s
Erf(s) :ﬁ—l e~ qu. J (24c)

The distributions introduced above have not been chosen arbitrarily,
but correspond to cases that often arise in practice. For Case (a), the
delta function in Eq. (22) is the customary Dirac delta function and corres-
ponds to an ideal pulse-height distribution with an integrable singularity at
v = 1. It follows that Case Ia is just the elementary case first considered
by Rossi and Staub.(5) Equations (23a), (23b), and (23c) of Case (b) imply
that we shall treat an exponentially-decreasing pulse-height spectrum. This
is typical of many background and noise spectra that arise in nuclear experi-
ments. The condition that A > 0 in Eq. (24a) ensures that the Gaussian
distribution employed in Case (c) is a representation of an experimental line
spectrum. The relation between A and the experimental resolution r (the
relative full width at half maximum) is simply

re=u]t065 A" (25)

Case (c) can arise, for example, when one deals with low-intensity lines in
the presence of a single high-intensity transition.

The pulse-height scales for these ideal distributions have been
chosen for computational convenience. Thus, in Case (c), the peak of the
Gaussian distribution has been taken at v = 1, and in Case (b), the expo-

nential distribution possesses unit mean (i.e., 7 = 1). Hence, comparisons

with experimental data will require, in addition to unit area normalization,
the same pulse-height scale that has been chosen above.



Each special case is analyzed separately below.
A. Casela

For the square pulse shape of Case I, defined in Eq. (19), the
probability generating function A(y,dt) is discrete. For Case Ia, the

probability of a change in the detector response during the interval dt is
dt/T. Hence, the probability generating function A(y,dt) is given by

Aly,dt) = y + [(1-y)/7] - (dt). (26)
A comparison of Eq. (26) with Egs. (2a) and (12b) reveals that

gly.7) = (L-y)/T : (27)
for Case I.

Using Eq. (27), the probability generating function determined from
Egs. (10a) and (10b) is

@ (IR e=" e LY (28)
For this simple case, one finds that the exact integral representation of
Ricell3) can be reduced and, moreover, the resulting expression agrees
precisely with that obtained in Eq. (28) above. Consequently, the results

obtained for Case I will be exact.

The probability generating function y(x) for Case Ia can be found by
employing Eq. (22) in Eq. (5). One finds

yi(x=) = x. (29)
Thus, one has
Qx) = e~ %e2x (30)

as the probability generating function corresponding to the baseline proba-
bility distribution for Case Ia.

For this special case, it is apparent that the actual pulse-height
distribution is discrete rather than continuous. One can, therefore, employ
the formal power-series expansion that is appropriate for a discrete proba-
bility generating function. With this representation

Ofx) = e % Z (ax,)n, (1)

17



one finds the probability By is given by

g S SN B (32)
n.

Since the ideal pulse-height distribution is a delta function with a singularity
at ¥ = 1, the actual pulse-height distribution is given by

(n-1)
Dn = Bp.; = e'a'—(c-:l_—l)!—, ne=N 15250 0 (38}

in agreement with the results obtained from elementary arguments.(S) Here
the actual pulse-height distribution is also discrete and attains the values
1 unit, 2 units, ..., n units, with the probabilities Dy, Dz, ..., Dn.

B. Case Ib

For Case Ib, the probability generating function obtained from
Eqgs. (5) and (23) is

y(x) = (1 -log x)-!. (34)

Using this result in Eq. (28), one finds

Q(x) = exp {%—}. (35)

The probability generating function given above can be employed in Eq. (18),
together with the ideal distribution given in Egs. (23a), (23b), and (23c).
Thus, for Case Ib, one finds the actual pulse-height distribution

i b cos (VE€) +sin (vE)-e-V Sl
D(v) ﬂ/; [ 1+ e ] exp(l 5 &Z) : cos( lie“g‘,_)d&. (36)

C. Case Ic

The probability generating function obtained from Egs. (5) and (24) is

y(x) = expllog x +(A/2)? (log x)?] - {l +Erf[A~1+(A/2) log x]}
[1+Erf(Aa-1)]

(37)

Substituting this result into Eq. (28), one obtains



g

W 3} 1ap %) {1+Erf[A'l+(A/Z) logx]}
Qx) = e aexp{ocx [e[(A/)l g ]] [T+ Erf(a )] } (38)

Equations (24) and (38) can be utilized in Eq. (18), together with the trans-
formation x = e, Employing analyticity arguments, the actual pulse-
height distribution can be determined. One finds, for [(v- l)/A] il

R R (N Y
B 7T[1+Erf(A'l)]‘/o‘ [(v-1) €]

A
exp {ae‘(AE_./Z)Z ,:cos £+ éf( 8/ i sin(Z—An-- g) dn:l}
) (at/fe)
- cos {ae'(Aﬁ/z) l:sin €+ (5/ / el cos(-zA—n - g) dn}} d¢ | (39a)

with

2 exp(-A7%)

i J7 L+Ecf8 )]

(39b)

Actually, we shall confine our attention to the domain (0 =r = 0.2),
which, according to Eq. (25), corresponds to the interval (0 = A =0.12).
For this range, one has § << 1 and Erf(A™!) = 1. Neglecting all terms
linear in §, Eq. (39a) reduces to*

B{)F= %e"x /we'(A E/Z)Z cos [(v-1) £] exp [ae'(Ag/Z)z cos E]
0

* cos [ae’(Ag/Z)z sin &] d€. (40)

For the range of A considered above, Eq. (40) should provide adequate
approximations of the actual pulse-height distribution for v =2 LG

The integral representation of D(v), at ¥ = 1, assumes a form that
is also tractable from a computational viewpoint. Namely, one has

*Since the domain under consideration includes (experimental)
resolutions of up to 20%, the subsequent results should apply to
most detection systems used in spectral determinations.
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i) = it e‘(AE/Z)Z exp[ae'(Af_,/z)z cos ﬁ] . cos[or,e'(Ag/z)Z sin €] dk.
o (41)

This expression for D(1) has been included since the value of D(v) at v = 1
in Case Ic is of definite experimental interest. The need for this point will
be discussed more fully in Section V, which contains numerical results.

D. Case lla

The exponentially decaying pulse shape, defined in Eq. (20), satisfies
the condition given in Eq. (13b), which was derived for continuous probability
generating functions. Consequently, Eq. (12¢c) can be applied, and for Case II,
on finds

1
glyy) = - 1222 (42)
In this event, Egs. (10a) and (10b) yield

2 -aE; (-1
Qly) = &~ Yo exp[(illolg( y)gg Y)]' (43)

where E, is the simple exponential integral,

we_w
E, (s) = — dw, (44a)
s

vy = 0.5772157 ... . (44b)

and

is .the Evtller-Mascheroni constant. One can determine the actual pulse-
height dlstrl.butlon by employing Eqgs. (22) and (43) in Eq. (18). Using the
t.:ransformatlon x = e”!5, together with the resulting analyticity of the
integrand, one finds

2r 3 -
D()e= =¥ vaf wex}) [a Ci(€)] cos [a Si(£)] dE, (45)
0

where Si(£) and Ci(£) are the customary sine and cosine integrals,

S % .
Si = sSin W
(S) f _(.l) dw, (463)

0



and

S
Ci(s) =f ﬂ’i—“’—dw. (46b)

E. Case IIb

Here one need only employ the results of Case Ib and Case Ila. It
follows from Eqgs. (34) and (43) that Q(x) for Case IIb is given by

e-Yaexp {-aE;[log(l -log x)] }

s [log (1 - log x)]%

(47)

Equation (18) can again be evaluated by utilizing Egs. (23a), (23b), (23c),
and (47). The result for this case is

D(v) = ?Z e-'YO-f I:cos (VE)+IE+s;: (Vé) = e—l’] exp[— a,Ex(u) et ae'“{log [1 +(v/u)z]'c°2l+s(v/u,u)}}
('
- (ut+v?) a/z - cos [ae'u{.og [1+(v/u)?] 1TV C(v/u,u) }+ o tan'l(v/u):[ d€, (48)
where
= %log (1+€%), (49a)
= tan (o)) (49b)
v/u = 1
S(v/u,u) = f sin (uw)[E log (1 +LL)2)+1 +wz]da), (50a)
0
v/u - 1
C(v/u,u) = f cos (uw) 710g(1 +w?) + T dw. (50b)
0
F. Case Ilc

Here the results of Case Ic and Ila may be employed. Using
Eqs. (37) and (43), one has

21
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+Erf[8-1+(8/2) log XJ}):,

1
e Y exp [‘ a.El(- log x - [(8/2) log xJ* - 108{ T TEH£(8 )

Erf[A-'+(8/2) log x]|\*
(~ log x - [(8/2) log xJ* - log{l L 1[+Erf(A") )

Q(x) =

Utilizing the transformation x = e‘ie. with a treatment analogous to that

of Case Ic, including the approximations therein, one finds, for

[w-1)/a]>> 1,

D(v) = %e-ﬁ!a'[”e'(AE/Z)l cos [(v-1) E] {exp [- aE;(u) + ae-u{log [l +(v/u)z] COZ# +S(v/u.u)}]}

©(ud+vE)” a/z . cos [ae'u{log [1+(v/v)?3] esi;x_v - C(v/u,u)} + a tan'l(v/u)] dE, (52)
where
=N ((NE/Z)2 (53a)
and
TEE (53b)

As in Case Ic, all terms linear in § have been neglected. Within the
domain we have considered for A, 0 <A = 0,12, Eq. (52) should also
provide adequate approximations for v 215,
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IV. LIMITING CASES

Limiting forms of the cases treated above are of interest. These
limiting cases provide necessary conditions that must be satisfied. The
most significant of these conditions, which arise from the physical re-
quirements of our description, is given by

Lim D(v) = P(v). (54)
a—>o0

Here the limit oo > 0 can be implied by N =~ 0 or T = 0. The limit T - 0 has
already been discussed in Section I. The limit N - 0, which also implies

no pile-up distortion, is again a physically-justifiable result. One can verify
that condition (54) is satisfied by all the solutions presented above. This
fact can also be established more generally, since one can prove that the
integral representation of D(v), in the form of Eq. (18), directly satisfies
this limiting condition.

Another limiting case of interest is that of A~ 0 in Case (c). In
this event, the ideal pulse-height distribution of Case (c) goes over to a
delta function and thereby reduces to the ideal pulse-height distribution
used in Case (a). Consequently, the limit A -~ 0 implies that the results of
Case (c) should reduce to the results.of Case (a). Indeed, one finds that
Eq. (52) reduces to precisely Eq. (45) in the limit A -~ 0. For the compari-
son of Cases Ia and Ic, it is more informative to compare the limiting form
of the probability generating function, Q(x), rathei than the actual pulse-
height distributions. This choice follows from the different interpretations
utilized for the two actual pulse-height distributions, one as discrete and
the other continuous, in these two cases, respectively. Employing A = 0 in
Eq. (38) of Case Ic, one finds the probability generating function given in
B0 (30) for Case I, Consequently, this limiting condition is also satisfied.

V. NUMERICAL RESULTS

To obtain numerjcal results, it is necessary to evaluate the various
integral representations given above. Computer programs have been de-
veloped that permit computation of D(v). The general method of evaluation
utilized can most easily be explained in terms of the integral representa-
tion*

D(v) = fﬁM (v,a,A,6) dE + J(Epy)s (55)
0

Em
*The integral f I(v,a, A €) d€ in Eq. (55) has been evaluated by means
0

either the trapezoidal rule or other convenient quadrature formulas.
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where J(£pf) is an asymptotic expansion of the integral

l” L (v, B, ) dé (56)

M
and I (v,a,A,£) is the asymptotic form of the integrand I(v,a,4,£).

The accuracy of this general method of evaluation was determined
by employing different values of gM (All values of EM utilized were large
enough to justify the asymptotic expansions introduced.) The values of
D(V) obtained in this manner were generally consistent to at least a few
percent. However, the accuracy available does decrease when D(V) be-
comes very small. Considerable variation exists for the lower bound of
D(v) corresponding to the above accuracy, for the different special cases
treated below. As a consequence, the numerical results are restricted to
a domain of values of D(v) greater than a lower bound that generally lies
between 107 and 1078,

In certain special cases, it is advantageous to tabulate the difference
between the actual and ideal pulse-height distributions. To this end, it is
convenient to introduce the difference function

E(v) = D(v) - P(v). (57}

The computer calculations obtained for Cases Ib, Ila, and Ic are sum-
marized below.

A. Case Ib

_For this case, D(v) has been determined in the repion: 0 <=1
and 10 ® = a = 1. Figure 1 displays D(v)(0 = v = 4) for a = 1, 0.5, and 0.1,
in comparison with P(y) = eV, Figure 2 presents similar data, but in the

10

21 3§ ' £ ' LR ] T

°'9‘ Pw)=e” =
o8 i el e

== a=01
0.7\ L
M i b i
N ] Comparison of the Actual Pulse-height
r \.\ - Distribution D(v) for a = 1, 0.5, and 0.1
/ S —] inthe Region 0 = v = 4 with the Ideal
o3 —| Pulse-height Distribution Bly) = e
el \\.\\\ ] (Case Ib)

B \\;\.\\ . .
o.r_— \\\\;\.\ g
o 1.0 2.0 30 4.0

112-4749
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0.016

Fig. 2
0.012 A
Comparison of the Actual Pulse-

height Distribution D(v) for

a =1, 0.5, 0.1, and 0.005 in the
Region 4 = v =10 with the Ideal
Pulse-height Distribution

P(v) = e ¥ (Case Ib)

o(v)

0.008

0.004

interval 4 =y =10. The convergence D(v) -~ P(v) for a - 0, is evident. To
emphasize this convergence behavior, the case a = 0.005 has also been
included in Fig. 2. More extensive results are presented in Table II, where
the difference function for Case Ib, E(v) = D(v) - e”%, is tabulated.

Table I
THE DIFFERENCE FUNCTION FOR CASE Ib
EW) = D) -e™V

) 5 1 0.5 01 0.05 0.01 0.005 0.001 0.0001 0.00001
0.1 -538(-1) -3.28(-1) -1.76 (-2) =3.951(=2) -1.82(-3) -3.76 (-3) -5.16 (-4) 1.81 (-4) 2.71(-4)
0.2 -4.54 (-1) -271(-1) -6.25(-2) -3.16 (-2 -5.99 (-3) -273(-3) -1.23 (-4) 4.91 (-4) 4.91(-4)
0.5 =2.571(=1) -1.40 (-1) -2.90 (-2) -141 (-2) -2.05 (-3) -5.28 (-4) 6.67 (-4) 9.70 (-4) 9.70 (-4)
1.0 -5.89 (-2) =L1T{=2) 2.20(-4) 9.20 (-4) 118 (-3) 118 (-3) 1.21(-3) 1.21 (-3) 121 (-3)
1, +3.71(-2) 3.51(-2 112 (-2 6.38 (-3) 2.19(-3) 1.65(-3) 1.21(-3) 112 (-3) 1.09 (-3)
20 7.67 (-2) 523(-2 137 (-2 7.44(-3) 2.22 (-3) 1.56 (-3) 1.02 (-3) 8.93(-4) 8.80 (-4)
2.5 8.64 (-2) 5.21 (-2) 1.26 (-2) 6.71 (-3) 1.89 (-3) 1.28 (-3) 7.96 (-4) 6.81 (-4) 6.73 (-4)
3.0 8.15(-2 4.61 (-2) 1.03 (-2 5.41(-3) 1.48 (-3) 9.86 (-4) 5.87 (-4) 4.98 (-4) 4.88(-4)
35 7.05(-2) 3.75(-2) 7.87 (-3) 411 (-3) 110 (-3) 7.22(-4) 4.20 (-4) 3.53 (-4) 3.41 (-4
4.0 5.79 (-2 291(-2) 5.80 (-3) 3.00 (-3) 7.88 (-4) 5.13 (-4) 2.95(-4) 2.45(-4) 2.40 (-4)
4.5 4.60 (-2) 2.19(-2) 4.15(-3) 2.13(-3) 5.52 (-4) 3.58 (-4) 2.02 (-4) 1.68 (-4) 1.63 (-4)
5.0 3.56 (-2 161 (-2) 2.91(-3) 1.48(-3) 3.80 (-4) 245 (-4) 137 (-4) 1.13 (-4) L11(-4)
5.5 2.70 (-2) 116 (-2 2.01(-3) 1.02 (-3) 2.51 (-4) 1.66 (-4) 9.20 (-5) 7.52 (-5) 7.36 (-5)
6.0 2.04 (-2 831(-3) 137 (-3) 6.88 (-4) 173 (-4 111 (-4 6.10 (-5) 4.98 (-5) 4.88 (-5)
6.5 1.50 (-2) 5.87 (-3) 9.25 (-4) 4.61 (-4) 115 (-4) 7.34 (-5) 4.01 (-5 3.28 (-5) 3.20 (-5)
7.0 110 (-2) 4.11(-3) 6.19 (-4) 3.07 (-4) 7.59 (-5) 4.82 (-5 2.63 (-5) 2.14 (-5 2.09(-5)
1.5 7.96 (-3) 2.85(-3) 4.12 (-4) 2.03 (-4) 4.98 (-5 3.16 (-5) 172 (-5 139 (-5 1.36 (-5)
8.0 574 (-3) 1.97 (-3) 2.72 (-4 1.33 (-4) 3.24 (-5) 2.05(-5) 111 (-5 8.99 (-6) 8.79 (-6)
8.5 4.11(-3) 1.35(-3) 179 (-4) 8.69 (-5) 2.10 (-5) 133 (-5 7.16 (-6) 5.78 (-6) 5.66 (-6)
9.0 2.93(-3) 9.23(-4) 117 (-4) 5.65 (-5 136 (-5) 8.58 (-6) 4.60 (-6) 3.70 (-6) 3.63 (-6)
09 2.08 (-3) 6.28 (-4) 7.64 (-5) 3.66 (-5) 8.78 (-6) 5.52 (-6) 2.96 (-6) 2.38 (-6) 2.32 (-6)

10.0 147 (-3 4.25 (-4) 4.96 (-5) 2.36 (-5) 5.62 (-6) 3.51(-6) 1.88 (-6) 1.52 (-6) 1.47 (-6)

It is of interest to compare the present results with the simple
Rossi-Staub formula of Case Ia. For these two cases, one has identical
pulse shape but different pulse-height distributions. Figures 3 and 4
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compare E(v) with interpolations based on E;q. (33) for a = 1;0 anisoegSczzd
o = 0.5 and 0.01, respectively. Pile-up .estlmates.for these two ct psis
differ by many orders of magnitude. This comparison cliemins'txl'; (ehsstribu-
pile-up distortion is extremely sensitive‘to the ideal pulse-heig e
tion. It is apparent that the simple Rossi-Staub model possesses an
tremely limited domain of validity.

0 EX E
s i
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2l [ \ a:=0.0l
= \\ Pl - =
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- \ ]
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L v
112-4754
Fig. 3. Comparison of E(v) for Case Ib with y ] 4
the Simple Rossi-Staub Formula R-§)  ['8- 4. Comparison of E(:) fog (F:ase n]; w;ths
for a = 1.0 and 0.05 the Simple Rossi-Staub Formula (R-S)

for @ = 0.5 and 0.01

B. Case Ila

The integral representation of D(v) was evaluated for Case Ila in
the range 1075=< o =1 for v-intervals (¥ > 1) corresponding to Bl{w): >0 %
The actual probability distribution D(v), for different values of @, is depicted

in Figs. 5, 6, and 7. The convergence criterion of Eq. (54) is again satisfied
by these numerical results.

Some interesting additional features are also revealed by these
curves. Discontinuities arise in the derivative of D(v) at integral values
of v. Moreover, these discontinuities becomes even more pronounced for
decreasing a. Note that the decrease in D(v), from one "plateau" to the
next (i.e., as v increases across an integral value), is generally of the
order of @. In this manner, the results of the present case give qualitative
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support to the concept of "n-fold" pile-up. Thus, the behavior displayed
here should be compared with the simple Rossi-Staub result, Case Ia,
Eq. (33), upon which the concept of "n-fold" pile-up is based.

These similarities are, however, entirely qualitative since a direct
comparison with Eq. (33) reveals pile-up estimates that can differ by
orders of magnitude. To emphasize this conclusion, Figs. 8 and 9 com-
pare E(v) for Case Ila with interpolations based on the simple Rossi-Staub
formula. These comparisons demonstrate that accurate estimates of pile-
up depend crucially upon pulse shape.* Since detectors usually possess
an exponential decay type of response, rather than square pulse-shape
response, the results of Case Ila may provide more accurate pile-up esti-
mates for many experiments.
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Fig. 8. Comparison of E(yp) = et
D(v) for Case Ila with Fig. 9. Comparison of E(v) =
the Simple Rossi-Staub D(v) for Case Ila with
Formula (R-S) for the Simple Rossi-
o = 1.0 and 0.001 Staub Formula (R-S)

for a = 0.5 and 0.005

Since P(v) = 6(v - L) for Case Ila) then E(v) =

‘ = D(v) £
Table III summarizes the results obtained for D(v) in C(as)e ;)Izv o

*The two cases compared here (viz
=

. Cases Ia and i i
pulse-height distributions but differ il

in pulse shape.



Table III

THE DIFFERENCE FUNCTION FOR CASE ITa
E(v) =D(v) (v>1)

v a 1.0 0.50 0.10 0.05 0.01 0.005 0.001 0.0001 0.00001
1.05 - 1.800 (0) | .54k (o) | 8.589 (-1) [ 1.942 (-1) [ 9.847 (-2) | 1.993 (-2) | 1.999 (-3) | 1.999 (-4)
Til 5.615 (-1) | 1.337 (0) | 7.881 (-1) | 4.b48 (-1) | 9.771 (-2) | 4.943 (-2) [ 9.980 (-3) | 9.998 (-k) | 1.000 (-k)
3 - 9.453 (-1) | 14.275 (-1) | 2.302 (-1) | L4.920 (-2) | 2.480 (-2) [ 4.992 (-3) | 4.999 (-k) [ 5.000 (-5)
1.3 5.615 (-1) | 7.728 (-1) | 2.932 (-1) | 1.566 (-1) | 3.293 (-2) | 1.657 (-2) | 3.329 (-3) | 3.333 (-4) | 3.333 (-5)
1.k - 6.684 (-1) | 2.249 (-1) | 1.192 (-1) | 2.477 (-2) [ 1.244 (-2) | 2.499 (-3) | 2.500 (-k) | 2.500 (-5)
1.5 5.615 (-1) | 5.979 (-1) | 1.852 (-1) | 9.640 (-2) | 1.986 (-2) | 9.965 (-3) | 1.999 (-3) | 2.000 (-4) | 2.000 (-5)
1.6 - 5.458 (-1) | 1.563 (-1) | 8.107 (-2) | 1.658 (-2) | 8.312 (-3) | 1.666 (-3) | 1.667 (-b) | 1.667 (-5)
1.7 5.614 (-1) | 5.053 (-1) | 1.368 (-1) | 7.003 (-2) | 1.23 (-2) | 7.13 (-3) | 1.428 (-3) | 1.k29 (-b) | 1.429 (-5)
1.8 - 4.727 (-1) | 1.205 (-1) [ 6.168 (-2) | 1.247 (-2) | 6.243 (-3) | 1.250 (-3) | 1.250 (-k) [ 1.250 (-5)
1.9 5.616 (-1) 4456 (-1) 1.091 (-1) 5.515 (-2) 1.110 (-2) 5.553 (-3) | 1.111 (-3) 1.111 (-b) 1.111 (-5)
1.95 - 4.338 (-1) - 5.238 (-2) | 1.052 (-2) | 5.261 (-3) | 1.052 (-3) | 1.052 (-4) | 1.052 (-5)
2.0 - 4.109 (-1) | 7.124 (-2) | 3.121 (-2) | 5.264 (-3) [ 2.561 (-3) | 5.007 (-b) | L.977 (-5) | L.9u6 (-6)
2.05 - 3.211 (1) | 2.463 (-2) | 6.639 (-3) | 2.795 (-4) | 7.170 (-5) [ 3.007 (-6) | 9.814 (-8) | 9.297(-10)
2.1 5.084 (-1) | 2.776 (-1) | 1.879 (-2) | 4.966 (-3) | 2.070 (-4) | 5.199 (-5) | =2.026 (-6)

gis - 2.186 (-1) | 1.293 (-2) | 3.262 (-3) | 1.334 (-4) [ 3.341 (-5) | 1.329 (-6)

2.3 - 1.767 (-1) | 9.062 (-3) | 2.296 (-3) | 9.252 (-5) | 2.314 (-5) | 9.236 (-7)

2.4 - 1442 (-1) | 6.736 (-3) | 1.653 (-3) | 6.561 (-5) | 1.638 (-5) | 6.1 (~7)

2.5 3.339 (-1) | 1.179 (-1) | k.871(-3) | 1.191(-3) | bk.652 (-5) | 1.159 (-5) [ L.597 (-7)

2.6 - 9.602 (-2) | 3.528 (-3) | 8.439 (-4) | 3.219 (-5) | B.026 (-6) | 3.198 (-7)

2.7 - 7.748 (-2) | 2.476 (-3) | 5.750 (-4) | 2.141 (-5) | 5.295 (-6) | 2.115 (-7)

2.8 2.315 (-1) | 6.153 (-2) | 1.635 (-3) | 3.619 (-4) | 1.282 (-5) | 3.155 (-6) | 1.219 (-7)

2.9 - 4.766 (-2) | 9.704 (=) | 1.902 (-b) | 5.973 (-6) | 1.437 (-6) [ 5.535 (-8)

2.95 - 4137 (-2) | 6.554 (-4) [ 1.166 (-b) | 3.052 (-6) | 7.118 (-7)

3.0 = 3.547 (-2) | 4.063 (-4) [ 6.097 (-5) | 2.561 (-6) =

3.05 - 3.066 (-2) - 3.780 (-5) | 3.093 (=7) | L.7k4 (-8)

3.1 1.463 (-1) | 2.672 (-2) | 2.433 (-4) [ 3.033 (-5) | 2.k06 (-7) | 2.748 (-8)

3.2 - 2.045 (-2) | 1.629 (-4) | 1.986 (-5) | 1.598 (-7) | 1.863 (-8)

3.3 - 1.567 (-2) 1.099 (-4) | 1.308 (-5) | 1.027 (-7) | 1.322 (-8)

3.4 - 1.198 (-2) | 7.318 (-5) | 8.166 (-6) | 6.564 (-8)

3.5 7.311 (-2) | 9.095 (-3) | 4.752 (-5) | 5.315 (-6) | 2.887 (-8)

3.6 - - 2.992 (-5) | 3.171 (-6) | 1.735 (-8)

3.7 - - 1.790 (-5) | 1.740 (-6)

3.8 4.113 (-2) - 1.005 (-5) | 8.708 (-7)

3.9 - - 5.273 (-6) | 3.8077 (-7)

4.0 2.735 (-2) | 2.004 (-3) | 2.913 (-6) | 1.778 (-7)

b - - 1.866 (-6) | 1.232 (-7)

4.2 - - 1.17% (-6) 7.208 (-8)

L3 - - 7.642 (-7) | 5.677 (-8)

bk - - 4.575 (<7) | 3.579 (-8)

k.5 9.163 (-3) | 4.132 (-4) | 2.867 (~7) | 2.554 (-8)

4.6 - - 1.593 (-7)

b7 - - 9.717 (-8)

4.8 - - 4.793 (-8)

4.9 - - 2.393 (-8)

5.0 2.757 (-3) | 7.595 (-5)

5.5 7.690 (-4) | 1.308 (-5)

6.0 1.987 (-4) | 2.040 (-6)

6.5 4.823 (-5) | 3.267 (-7)

7.0 1.096 (-5) | 9.152 (-8)

7.5 2.431 (-6) | 5.788 (-8)

8.0 5.047 (-7)

8.5 6.680 (-8)

The results for this case provide a basis for direct comparison with
the work of Soui':ek.(—’) To this end, D(¥) has been determined in Case Ila
for a = 0.2. Figures 10 and 11 compare the resulting D(v) with the distri-
bution given by Soulek [viz., Eq. (46) of Ref. 7] for entirely equivalent as-
sumptions. Figure 10 is a detailed comparison for small v. The present
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results are roughly 25 to 50% lower than Souéek.'s distribution f9r 'u.b< 14
For 1.4 = vy =1.6, the agreement is improved since these tw? distributions
cross one another in the neighborhood of v = 15 Beyond this cross-ox;er
point, D(v) attains values that are roughly 507 h'1gher than thfe results o
Soudek. In the region of larger v, depicted in Fig. 11, there' is another -
cross-over point in the neighborhood of v = 2..2. .]‘3eyond this second cross
over point, the disagreement becomes more significant.
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Fig. 10. Comparison of D(¥) for Case Ila Fig. 11. Comparison of D(¥) for Case Ila
with the Distribution of Soutek with the Distribution of Soulek
[Ref. 7, Eq. (46)] for @ = 0.2 and [Ref. 17, Eq. (46)] for @ = 0.2 and
15 =19 1S e

This general behavior is not, however, unexpected. The expansion
representation given by Soudek must have a limited domain of validity
and, in particular, must possess decreasing accuracy as v increases.
Furthermore, Soulek's solution (corresponding to Case Ila) lacks the detail
exhibited by the integral representation solution. For example, in the
neighborhood of integral values of v, Soucek's distribution possesses a
continuous derivative in contrast with the discontinuities in the derivative
of D(v). While this behavior can be observed in Fig. 11, it becomes more
striking for small a. In this regard, Fig. 12 presents a comparison similar
to that of Fig. 11, but for & = 0.001. As @ decreases, marked and more
serious differences develop between these two calculated distributions.
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C. Case Ic

This case entails more extensive
computational effort due to the existence
of the additional parameter A as well as
the detailed behavior of the resulting actual
pulse-height distributions. The values of
A that have been utilized are A = 0.12,
0.06, and 0.012, corresponding to resolu-
tions of r = 0.20, 0.10, and 0.02, respec-
tively. For each A-value, D(V) has been
determined in the range 107> = a =1 for
a v-interval (v > 1.5) corresponding to
(T SR

The general behavior of the actual
pulse-height distribution, D(v), is depicted
in Figs. 13 and 14. These figures, which
both correspond to @ = 1 and A = 0.12,
differ only in that Fig. 13 is a semiloga-
rithmic display, whereas Fig. 14 presents
Fig. 12. Comparison of D(7) for Case Ila the same data in a linear fashion. The

with the Distribution of Soucek "multiple Gaussians" or peaks that arise

[Ref. 7, Eq. (46)] for a =0.001 in D(v) are striking. Each of these "mul-

SO S Tt tiple Gaussians" is symmetrically centered
about an integral value of v. It is convenient to refer to these "multiple
Gaussians" as n-fold sum peaks. Thus the ideal pulse-height distribution
(i.e., the original Gaussian) is centered at ¥ = 1, the second sum peak at
v = 2, the third sum peak at v = 3, and so on.
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Fig:14
L) The Actual Pulse-height Distribution,
D(v), for Case Ic with a = 1.0 and

A =0.12, Presented in Linear Fashion

The behavior of the sum peaks for @ = 1 and A = 0.06, and for
@ = 1and A = 0.012 is displayed in Figs. 15 and 16, respectively. Compari-
son of Figs. 13, 15, and 16 reveals that the sum peaks become very narrow
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bution, D(v), for Case Ic with
a=1and A =0.08

Fig. 16. The Actual Pulse -height Distri-
bution, D(v), for Case Ic with
a=1and A =0.012
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with decreasing A, and this behavior confirms the convergence of Case Ic

to the simple Rossi-Staub model for A - 0. Hence, for small A, it is ap-
parent that the sum-peak contributions are the only appreciable form of
pile-up distortion. Consequently, the computations performed for A = 0.012
have been limited to defining the sum peaks in the neighborhood of integral
values of y. Tables IV, V, and VI contain a summary of the computational
results for D(v) in Case Ic. In view of earlier approximations, the range

of accurate numerical results has been limited to v > 1.5. Here E(v) =
D(v), since one has P(v) £ 0 in this region.

Although the present treatment cannot define D(v) in the neighbor-
hood of ¥ = 1, the formulation of Soulek is applicable in this region. 9)
Hence, for this special case, the two methods complement each other, and
the present data can be extended to include the neighborhood of v = 1 by
employing Soulek's treatment.

An indirect measure of the distortion in the neighborhood of v = 1
is available from the expression for D(1) in Eq. (41). The difference between
the actual and ideal pulse-height distributions can therefore be determined
at v = 1. Such a comparison is displayed in Fig. 17, where [A - D(1)] is
plotted as a function of o for A = 0.12, 0.06, and 0.012. Not only do these
three curves coincide, but note the convergence [A - D(1)] = [A - P(1)] =
(m)"Y2, for @ = 0. Since this result implies [A - D(1)] is independent of
A (at least for A = 0.12), Fig. 17 can be used to estimate D(1) for all
A = 0.12. The value of D(1) has been evaluated for every distribution com-
puted in Case Ic. It can be obtained from the tabulated values of E(1) given
in Tables IV, V, and VI. The importance of this point is that the value of
D(1) can serve as a convenient normalization value for experimental data
[provided the pulse-height scale conforms with that chosen in Eq. (242)].

Analysis of the data in Tables IV, V, and VI establishes three gen-
eral rules for sum-peak behavior in Case Ic. The data obtained for D(v)
demonstrate that in the region of experimental interest (@ =1 and A =0.12),
each sum peak can be approximated by a Gaussian distribution. Conse-
quently, in the neighborhood of integral values of v, D(v) can be written in
the form

Dnh(v) = pp exp{- (VA-n)Z} R e Al o (58a)

n

Here pp is the peak height of the nth sum peak atv = n, and
v, = LEDEIEE N = 2, 3, ..., (58b)

is the resolution associated with the nth sum peak. Under these assump-
tions, one obtains the following rules:

(1) The resolution of a given sum peak, rp, is independent of a.
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Table IV

THE DIFFERENCE FUNCTION FOR CASE Ic

E(v) % D(v) (6 S
4 = 0.12 (r = 0.20)
a ) 0.50 0.10 0.05 0.01 0.005 0.001
v
250 -2,972 -1.850 -0.448 -0.229 -0.047 -0.024 -0.005
1.6 4,792 (-3) 3.898 (-3) 1.289 (-3) 6.113 (-4) 2.640 (-4) 6.398 (-5) 1.286 (-5)
1.7 5.380 (-2) 4.430 (-2) 1.350 (-2) 6.947 (-3) 1.620 (-3) 7.268 (-4) 1.460 (-4)
1.8 3.048 (-1) 2.514 (-1) 7.512 (-2) 3.943 (-2) 8.172 (-3) 4.124 (-3) 8.282 (-4)
1.9 8.643 (-1) 7.125 (-1) 2.131 (-1) 1.117 (-1) 2.354 (-2) 1.169 (-2) 2.347 (-3)
2.0 1.223 1.008 3.009 (-1) 1.581 (-1) 3.292 (-2) 1.654 (-2) 3.322 (-3)
2.1 8.645 (-1) 7.125 (-1) 2.127 (-1) 1,117 (-1) 2.326 (-2) 1.169 (-2) 2.3u7 (-3)
2.2 3.050 (-1) 2.514 (-1) 7.501 (-2) 3.943 (-2) 8.207 (-3) 4.125 (-3) 8.283 (-4)
2.3 5.404 (-2) 4.430 (-2) 1.321 (-2) 6.948 (-3) 1.447 (-3) 7.270 (-4) 1.472 (-4)
2.4 4.658 (-3) 3.9u8 (-3) 1.129 (-3) 5.608 (-4) 1.273 (-4) 6.447 (-5) 1.287 (-5)
9.5 1.927 (-3) 8.016 (-4) 9.508 (-5) 3.682 (-5) 6.484 (-6) 2.975 (-6) 1.052 (-6)
2.6 1.230 (-2) 5.073 (-3) 3.100 (-4) 7.996 (-5) 3.098 (-6) 7.584 (-7) 6.914 (-8)
2.7 6.188 (-2) 2.563 (-2) 1.574 (-3) 4.017 (-4) 1.708 (-5) 3.953 (-6) 1.890 (-7)
2.8 1.976 (-1) 8.153 (-2) 4.846 (-3) 1.279 (-3) 5.274 (-5) 1.340 (-5) 7.334 (-7)
2.9 3.959 (-1) 1.633 (-1) 9.784 (-3) 2.562 (-3) 1.074 (-4) 2.681 (-5) 1.193 (-6)
3.0 4.995 (-1) 2.058 (-1) 1.232 (-2) 3.227 (-3) 1.349 (-4) 3.378 (-5) 1.369 (-6)
g 3.964 (-1) 1.633 (-1) 9.805 (-3) 2.561 (-3) 1.072 (-4) 2.680 (-5) 1.088 (-6)
az2 1.980 (-1) 8.153 (-2) 4.905 (-3) 1.279 (-3) 5.279 (-5) 1.339 (-5) 5.695 (-7)
9.8 6.229 (-2) 2.563 (-2) 1.500 (-3) 4.023 (-4) 1.712 (-5) 4.515 (-6) 1.787 (-7)
3.4 1.279 (-2) 5.127 (-3) 3.054 (-4) 7.980 (-5) 3.685 (-6) 1.038 (-6)
3.5 3.355 (-3) 1.019 (-3) 5.635 (-5) 1.146 (-5) 2.549 (-7)
3.6 9.272 (-3) 1.896 (-3) 3.254 (-5) 3.829 (-6) 7.177 (-8)
3.7 3.056 (-2) 6.230 (-3) 6.606 (-5) 9.701 (-6) 9.721 (-8)
3.8 7.174 (-2) 1.483 (-2) 1.615 (-4) 2.321 (-5) 2.068 (-7)
3.9 1.210 (-1) 2.497 (-2) 2.672 (-4) 3.923 (-5) 3.383 (-7)
4.0 1.442 (-1) 2.970 (-2) 3.561 (-4) 4.665 (-5) 3.993 (-7)
4.1 1.211 (-1) 2.497 (-2) 2.670 (-4) 3.943 (-5) 3.368 (-7)
4.2 7.200 (-2) 1.483 (-2) 1.540 (-4) 2.334 (-5) 2.037 (-7)
4.8 3.027 (-2) 6.232 (-3) 7.906 (-5) 1.083 (-5) 9.089 (-8)
4.4 9.179 (-3) 1.870 (-3) 1.762 (-5) 3.732 (-6)
5 2.898 (-3) 4.900 (-4) 4.469 (-6) 6.528 (-7)
4.6 3.826 (-3) 4.181 (-4) 2.381 (-6) 1.744 (=7)
4.7 9.322 (-3) 9.576 (-4) 2.536 (-6) 1.856 (-7)
4.8 1.851 (-2) 1.906 (-3) 4.535 (-6) 3.253 (-7)
4.9 2.805 (-2) 2.890 (-3) 6.919 (-6) 4.783 (-7)
5.0 3.219 (-2) 3.321 (-3) 7.945 (-6) 5.447 (=7)
5.1 2.805 (-2) 2.890 (-3) 7.063 (-6) 4.766 (-7)
5.2 1.850 (-2) 1.905 (-3) 4.056 (-6) 3.214 (=7)
5.3 9.446 (-3) 9.533 (-4) 2.445 (-6) 1.714 (-7)
5.4 3.606 (-3) 3.643 (-4) 5.870 (-7)
5.5 1.343 (-3) 1.199 (-4) 1.463 (-7)




Table IV (Contd.)

THE DIFFERENCE FUNCTION FOR CASE Ic

E(v) & D(v) (v > 1.5)
A= 0.12 (r = 0.20)
110 0.50 0.10 0.05 0.01 0.005 0.001
.6 1.211 (-3) 6.978 (-5)
a7 2.171 (-3) 1.108 (-4)
.8 3.736 (-3) 1.908 (-4)
5.9 5.242 (-3) 2.706 (-4)
6.0 5.913 (-3) 3.033 (-4)
61 5.242 (-3) 2.702 (-4)
B2 3.760 (-3) 1.910 (-4)
2.380 (-3) 1.072 (-4)
1.011 (-3) 4.867 (-5)
4.641 (-4) 1.885 (-5)
2.800 (-4) 9.142 (-6)
3.922 (-4) 1.162 (-5)
6.133 (-4) 1.615 (-5)
8.237 (-4) 2.145 (-5)
9.138 (-4) 2.364 (-5)
8.222 (-u) 2.144 (-5)
6.250 (-4) 1.599 (-5)
3.743 (-4) 1.070 (-5)
1.920 (-4)
9.083 (-5)
5.638 (-5)
6.168 (-5)
8.620 (-5)
1.127 (-4)
1.218 (-4)
1.115 (-4)
8.454 (-5)
5.643 (-5)
3.2u4 (-5)
2.063 (-5)
1.107 (-5)
9.683 (-6)
1.190 (-5)
1.441 (-5)
1.556 (-5)
1.473 (-5)
qREss (=5)
9.513 (-6)
5.085 (-6)
2.740 (-6)
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Table V

THE DIFFERENCE FUNCTION FOR CASE IC

E(v) & D(v) (v > 1.5)
A = 0.06 (r = 0.10)
v 1.0 0.50 0.10 0.05 0.01 0.005 0.001
1.0 -5.9u4 -3.700 -0.895 -0.458 -0.093 -0.047 -0.009
1.6 3.705 (-6) | 3.408 (-6) | 1.450 (-6) | 6.254 (-7) | 1.683 (-7) | 1.070 (-7)| 5.838 (-8)
1% 8.875 (-6) 7.093 (-5) 2.133 (-5) 1.146 (-5) 2.933 (-6) 1.813 (-6) 9.094 (-7)
1.8 8.592 (-3) 7.049 (-3) 2.326 (-3) 1.230 (-3) 2.564 (-4) 1.290 (-4) 2.621 (-5)
1.9 6.119 (-1) | 5.028 (-1) | 1.500 (-1) [ 7.884 (-2) | 1.641 (-2) [ 8.247 (-3)| 1.656 (-3)
2.0 2.445 2.016 6.015 (-1) 3.162 (-1) 6.581 (-2) 3.307 (-2) 6.641 (-3)
2.1 6.121 (-1) 5.028 (-1) 1.500 (-1) 7.884 (-2) 1.641 (-2) 8.247 (-3) 1.656 (-3)
2.2 8.898 (-3) 6.836 (-3) 2.326 (-3) 1.226 (-3) 2.552 (-4) 1.283 (-4) 2.586 (-5)
2:8 9.242 (-6) 3.555 (-5) 7.840 (-6) 4.019 (-8) 8.951 (-7) 5.034 (-7) 3.478 (-8)
2.4 2.273 (-6) 1.196 (-6) 2.903 (-7) 1357 (=7) 2.647 (-8) 1.515 (-8) 8.290 (-9)
2.5 2.068 (-6) 1.049 (-6) 2.479 (-7) 9.853 (-8) 2.249 (-8) 1.307 (-8) 6.986 (-9)
2.6 3.482 (-6) | 1.082 (-6) | 2.224 (-7) | 8.724 (-8) | 1.937 (-8) | 1.079 (-8) 5.940 (-9)
247 2.397 (-4) 1.159 (-4) 6.091 (-6) 3.073 (-6) 4.059 (-7) 2.142 (-7) 2.151 (-8)
2.8 2.460 (-2) 1.011 (-2) 6.075 (-4) 1.603 (-4) 6.908 (-6) 1.828 (-6) 1.397 (-7)
2.9 3.959 (-1) 1.584 (-1) 9.729 (-3) 2.558 (-3) 1.067 (-4) 2.690 (-5) 1.147 (-6)
3.0 9.979 (-1) 4.092 (-1) 2.456 (-2) 6.454 (-3) 2.689 (-4) 6.763 (-5) 2.760 (-6)
3.1 3.973 (-1) 1.639 (-1) 9.729 (-3) 2.557 (-3) 1.066 (-4) 2.687 (-5) 1.131 (-6)
3.2 2.461 (-2) 9.697 (-3) 6.065 (-4) 1.598 (-4) 6.798 (-6) 1.765 (-6) 1.118 (-7)
3.3 2.404 (-4) 1.083 (-4) 5.979 (-6) 2.319 (-6) 2.343 (-7) 1.142 (-7) 3.136 (-9)
3.4 1.339 (-6) 5.699 (-7) 7.762 (-8) 3.601 (-8) 7.582 (-9)
3.5 9.171 (-7) 3.868 (-7) 7.906 (-8) 3.074 (-8) 6.559 (-9)
3.6 3.802 (-6) 1.246 (-6) 8.402 (-8) 2.993 (-8) 6.165 (-9)
3.7 5.563 (-4) 1.215 (-4) 2.473 (-6) 7.220 (-7) 7.517 (-9)
3.8 1.796 (-2) 3.699 (-3) 4.509 (-5) 6.289 (-6) 5.518 (-8)
3.9 1.446 (-1) 2.969 (-2) 3.549 (-4) 4.699 (-5) 3.936 (-7)
4.0 2.882 (-1) 5.939 (-2) 7.092 (-4) 9.356 (-5) 7.818 (-7)
4.1 1.455 (-1) 2.966 (-2) 3.547 (-3) 4.692 (-5) 3.926 (-7)
4.2 1.652 (-2) 3.697 (-3) 4.486 (-5) 6.176 (-6) 5.335 (-7)
4.3 5.570 (-4) 1.194 (-4) 1.405 (-6) 5.489 (-7) 6.459 (-9)
4.y 5.873 (-6) 1.110 (-6) 4.539 (-8) 1.821 (-8)
4.5 9.426 (-7) 2.189 (-7) 3.297 (-8) 1.597 (-8)
4.6 8.475 (-6) | 1.119 (-6) | 3.379 (-8) | 1.555 (-8)
4.7 4.330 (-4) 4.876 (-5) 1.448 (-7) 2.157 (-8)
4.8 5.680 (-3) 7.232 (-4) 2.314 (-6) 1.306 (-7)
4.9 3.697 (-2) 3.812 (-3) 9.697 (-6) 6.149 (-7)
5.0 6.445 (-2) | 6.641 (-3) | 1,591 (-5) | 1.058 (-6)
Ll 3.778 (-2) 3.812 (-3) 9.635 (-6) 6.137 (-7)
5.2 5.539 (-3) 7.227 (-4) 2.239 (-6) 1.284 (-7)
5.3 4.348 (-4) 4.806 (-5) 6.226 (-7) 1.896 (-8)
5.4 B.454 (-6) 1.073 (-6)
5.5 8.219 (-7)
.




Table V (Contd.)

THE DIFFERENCE FUNCTION FOR CASE Ic

E(v) 2 D(v) (v > 1.5)
A = 0.06 (r = 0.10)

S 1.0 0.50 0.10 0.05 0.01 0.005 0.001
5.6 8.471 (-6) 5.190 (-7)

A7 1.818 (-4) 1.249 (-5)
5.8 1.847 (-3) 9.812 (-5)
5.9 7.407 (-3) 3.844 (-4)

1.177 (-2) 6.087 (-4)

6.1 7.407 (-3) 3.8u43 (-4)
6.2 1.848 (-3) 9.801 (-5)
6.3 1.823 (-4) 1.235 (-5)
6.4 1.146 (-5) 5.099 (-7)
6.5 8.099 (-7) 1.496 (-7)
6.6 3.547 (-6) 2.250 (-7)
6.7 5,208 (-5) 1.496 (-6)
6.8 3.731 (-4) 9.747 (-6)
6.9 1.228 (-3) 3.164 (-5)
540) 1.821 (-3) 4.696 (-5)
7. 1.227 (-3) 3.165 (-5)
7.2 3.732 (-4) 9.761 (-6)
7.8 5.206 (-5) 1.517 (-6)
7.4 2.856 (-6)
ars 8.739 (-7)
7.6 1.407 (-6)
77, 1.020 (-5)
7.8 6.306 (-5)

.9 1.742 (-4)
8.0 2.453 (-4)
8.1 1,745 (-4)
8. 6.375 (-5)
8.3 9.729 (-6)
8.4 1.674 (-6)
8. 8.838 (-7)

.6 1.111 (-6)
8. 2.807 (-6)
8.8 9.463 (-6)
8.9 2.234 (-5)

3.012 (-5)

9. 2.288 (-5)
9. 1.058 (-5)

43 4,755 (-6)
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Table VI

THE DIFFERENCE FUNCTION FOR CASE Ic

E(v) & D(v) (v > 1.5)
= 0.012 (r = 0.02)

N 1.0 0.5 0.1 0.05 0.01 0.005 0.001
1.0 -29.720 -18.499 -4.474 -2,291 -0.466 -0.233 -0.049
1.97 5.373 (-1) 4,429 (-1) 1.321 (-1) 6.946 (-2) 1.446 (-2) 7.266 (-3) 1.459 (-3)
1.98 3.049 2.513 7.499 (-1) 3.942 (-1) 8.205 (-2) 4.123 (-2) 8.279 (-3)
1.99 8.640 7.128 2.125 13117 2.325 (-1) 1.168 (-1) 2.346 (-2)
2.0 12.227 10.080 3.007 1.581 3.291 (-1) 1.654 (-1) 3.320 (-2)
2.01 8.640 7.123 2,225 g i) 2.325 (-1) 1.168 (-1) 2.340 (-2)
2.02 3.049 2.518 7.499 (-1) 3.942 (-1) 8.205 (-2) 4.123 (-2) 8.279 (-3)
2.03 5.373 (-1) 4.429 (-1) 1.321 (-1) 6.946 (-2) 1.446 (-2) 7.266 (-3) 1.459 (-3)
2.97 6.215 (-1) 2.562 (-1) 1.529 (-2) | u.018 (-3) 1.675 (-4) 4.213 (-5) 1.710 (-6)
2.98 1.977 8.150 (-1) 4.864 (-2) 1.278 (-2) 5.324 (-4) 1.338 (-4) 5.391 (-6)
2.99 3.960 1.632 9.740 (-2) 2.560 (-2) 1.066 (-3) 2.679 (-4) 1.077 (-5)
3.00 4.991 2.057 1.228 (-1) 3.227 (-2) 1.343 (-3) 3.376 (-4) 1.357 (-5)
3.01 3.960 1.632 9.740 (-2) 2.560 (-2) 1.066 (-3) 2.679 (-4) 1.077 (-5)
3.02 1.977 8.150 (-1) | u.s6u (-2) | 1.278 (-2) 5.323 (-4) 1.338 (-4) 5.391 (-6)
3.03 6.215 (-1) 2.562 (-1) | 1.529 (-2) | 4.018 (-3) 1.674 (-4) 4.212 (-5) 1.708 (-6)
3.97 3.020 (-1) 6.224 (-2) | 7.437 (-4) 9.804 (-5) 8.978 (-7)
3.98 7.19% (-1) 1.483 (-1) 1.770 (-3) 2.330 (-4) 2.020 (-6)
3.99 1.211 2.496 (-1) 2.980 (-3) 3.919 (-4) 3.343 (-6)
4.00 1.441 2.970 (-1) 3.544 (-3) 4.661 (-4) 3.960 (-6)
4.01 1.211 2.496 (-1) 2.980 (-3) 3.919 (-4) 3.3u4 (-6)
4.02 7.194 (-1) 1.483 (-1) | 1.770 (-3) 2.329 (-4) 2.020 (-6)
4.03 3.020 (-1) 6.224 (-2) 7.436 (-4) 9.803 (-5) 8.958 (-7)
4.97 9.229 (-2) 9.512 (-3) 2.326 (-5) 1.761 (-6)
4.98 1.848 (-1) 1.905 (-2) | 4.601 (-5) 3.254 (-6)
4.99 2.803 (-1) 2.884 (-2) 6.950 (-5) | 4.796 (-6)
5.00 3.221 (-1) 3.331 (-2) 7.977 (-5) 5.469 (-6)
5.01 2.803 (-1) 2.889 (-2) | 6.951 (-5) | 4.802 (-6)
5.02 1.848 (-1) 1.905 (-2) | 4.601 (-5) 3.257 (-6)
5.03 9.228 (-2) 9.512 (-3) 2.326 (-5) 1.760 (-6)
5.94 9.140 (-4) 4.773 (-5)
5.96 9.235 (-3) 4.764 (-4)
5.98 3.703 (-2) 1.908 (-3)
6.00 5.883 (-2) 3.032 (-3)
6.02 3.703 (-2) 1.908 (-3)
6.04 9.235 (-3) 4.764 (-4)
6.06 9.140 (-4) 4.773 (-5)
6.94 2.571 (-4) 7.334 (-6)
6.96 1.858 (-3) 4.858 (-5)
6.98 6.105 (-3) 1.580 (-4)




Table VI (Contd.)

THE DIFFERENCE FUNCTION FOR CASE IC

E(v) » D(v) (vi> 1.5)
4 = 0.012 (r = 0.02)
2 1.0 0.5 0.1 0.05 0.01 0.005 0.001
7.00 9.077 (-3) 2.346 (-u)
7.02 6.105 (-3) 1.580 (-4)
7.04 1.858 (-3) 4.858 (-5)
7.06 2.572 (-4) 7.367 (-6)
7.94 5.609 (-5)
7.96 3.052 (-4)
7.98 8.594 (-4)
* 8.00 1.215 (-3)
8.02 8.594 (-4)
8.0u 3.052 (-4)
8.06 5.639 (-5)
8.94 1.648 (-5)
8.96 4.980 (-5)
8.98 1.129 (-4)
9.00 1.506 (-4)
9.02 1.136 (-4)
9.04 5.046 (-5)
9.06 1.893 (-5)
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Fig. 17. Comparison of [A - D(1)] as a Function of a with the
Limiting Value [A - P(1)] = (m)"Y2 for A = 0.12,
0.06, and 0.012

(2) The resolution of a given sum peak, ry, is a linear function of
oo JAYS

(3) For a given value of @, the peak height of a given sum peak,
P, is a linear function of r™! or 471

Application of these rules will facilitate interpolation of the present
data. For example, Fig. 18 displays r,,, the resolution of the nth sum peak,
as a function of r, for n = 2, 3, 4, 5, 6, and 7. In view of rule (1), these
curves permit an estimate of the resolution for sum peaks up ton = 7, for
all r = 0.20. In addition, employing rule (3), together with the tabulated
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data, permits interpolation of the peak height of a sum peak, pp, for any
@ =1. Hence, determination of the two parameters r, and py, in this man-
ner, will completely define the sum peak of interest.

VI. CONCLUSION

The tabulations presented in this report can be used to obtain pile-
up estimates over the entire range of ¥ and @ considered for each corres-
ponding special case. In regions where D(v) is not rapidly varying,
graphical interpolation can be used to determine D(V) to within a few percent.
For rapidly varying D('U), as at integral values of ¥ in Case IIa, or in the
neighborhood of sum peaks in Case Ic, graphical interpolations of roughly
5-10% accuracy should still be possible.
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