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A STUDY OF CONVECTIVE
MAGNETOHYDRODYNAMIC CHANNEL FLOW

by

Ralph M. Singer

I. INTRODUCTION

If a magnetohydrodynamic device (e.g., a MHD power generator,
or an electromagnetic pump) is to be intelligently designed, information
must be available concerning the effects of the interactions of the electro-
magnetic, velocity, and temperature fields. In the past, a great analytical
effort has been extended to understand the velocity and electromagnetic
interactions; however, little has been done with thermal interactions. This
is understandable, since in nonconvective flow (no natural convective forces),
the energy equation is uncoupled from Maxwell's equations and the Navier-
Stokes equations. Thus, the electromagnetic and velocity fields can be de-
termined independently of the temperature field. However, when natural
convective forces are present, the Navier-Stokes equations become coupled
with the energy conservation equation, and simultaneous solution is required.

This report analyzes a class of steady magnetohydrodynamic chan-
nel flow problems when natural, as well as forced, convection is important.
The analyses are restricted to cases of fully-developed laminar flow in
vertical rectangular channels.

II. PREVIOUS WORK

The purpose of this section is not to present a thorough review of
the literature on MHD channel flow, but only to indicate briefly some of
the more important work in this area.

Since the pioneer work of Hartmann(l) in 1937 in developing and
analyzing the electromagnetic pump, many analyses of crossed-field de-
vices have appeared in the literature. Hartmann studied the laminar,
isothermal flow of an electrically-conducting fluid (mercury) between two
infinite, parallel plates with a uniform, imposed magnetic field. The
channel walls were assumed to be perfect nonconductors (zero electrical
conductivity).

This work was extended by Shercliff(2'3) to the case of a finite
channel. Shercliff also determined the asymptotic solutions for large
values of the Hartmann number (BaVo/u) and showed that the velocity



profile degenerates into a core of uniform flow surrounded by boundary ¢
layers on the walls. Shercliff's work on nonconducting channel walls was
then extended to the case of perfectly-conducting channel walls by
Uflyand(4) and finite conducting walls by Chekmarev.(5)

Chang and Lundgren(éj) and Chang and Yen(8) then determined the
effect of finite channel-wall conductivity on isothermal flow in parallel-
plate channels. Yen(9) also solved the uncoupled energy equation for duct
flow with electrically-conducting channel walls.

To the knowledge of the author, the first analysis of natural,
convective, MHD channel flow was made by Smirnov 10) in which a round,
vertical tube with nonconducting walls was considered in an approximate
fashion. A similar, more rigorous analysis for the case of a parallel-
plate channel was presented by Poots,(“) again for nonconducting channel
walls. Poots also studied the case of natural convective flow set up by
Joule heating in a circular tube. Osterle and Young(lz) determined the
role of viscous and Joule dissipation on the free-convection temperature
and velocity profiles in a parallel-plate channel.

Combined natural and forced convective flow in nonconductive
channels with transverse magnetic fields was analyzed by Mori(13) and
Regirer.(14’15) Mori restricted his analysis to a parallel-plate channel,
while Regirer(l5) considered a vertical tube but did not present any
numerical results. Regirer(14) also presented a solution for the parallel-
plate case but again did not calculate any numerical results.

Many analyses have been made of forced convection in channels
with a transverse magnetic field. The parallel-plate channel was analyzed
by Alpher(lé’) (electrically-conducting walls) and Perlmutter and Siegel(”)
(nonconducting walls), and the annular channel by Shohet(18) and Globe.
The case of flow and heat transfer on external surfaces will not be dis-
cussed here.

This review of the literature indicates that no analyses are avail-
able that consider combined convective flow in finite channels with
electrically-conducting walls. This report will present such an analysis.
The previously-published results will be shown to be special cases of this
more general treatment of the problem.

III. ANALYSIS

A. Development of Equations

To describe mathematically the convective flow of an electrically-
conducting fluid through an electromagnetic field, one must employ Maxwell's
(eleCtrOmagnetic) equations, Ohm's law, the modified Navier-Stokes equations,



and the energy conservation equation. Since there are mechanical forces
of electrical origin (electromotive force) and of magnetic origin (magneto-
motive force), and electric effects of mechanical origin (induced emf), as
well as mechanical effects of thermal origin (thermally induced buoyancy),
it is expected that the equations describing convective flow will be coupled.
In other words, simultaneous solution of the descriptive equations will be
necessary.

As has been shown by many authors (e.g., reference 20), the Max-
well field equations may be written as

v = & (1)

VxH = J +%%, (2}

BB =0, (3)
and

V' 'D = P, (4)
where

B = ioH, and D = &E, (5a,b)

and Ohm's law may be written as
J = o(E+VxB). (6)

The subscript zero on [ and € restricts the subsequent analysis to the
exclusion of any ferromagnetic material, so that [, and €, are numerically
equal to their respective values in a vacuum. Also, the electrical con-
ductivity, o, will be assumed to be a scalar (Hall effect neglected).

As shown by Elsasser,(ZI) in all practical forms of magnetohydro-
dynamics, the displacement current (OD/0t) is altogether negligible in
comparison to J (note that under steady conditions, the displacement cur-
rent identically vanishes) and also, purely electrostatic effects (i.e., the
charge density, p.) are negligible. Thus, equations (2) and (4) can be re-
duced to (using 5a, b)

VxB = HoJ, (2a)
and

YR S0 (4a)



The modified Navier-Stokes equations for incompressible flow can
be written as

p{% + (v V)X] = -Vp + puVEY W oy R, '
where
PR =0 -

The term JxB represents the force exerted on the fluid due to the electro-
magnetic interaction with the moving fluid. Also, the energy conservation
equation is

pc<%§+z~w) :kVZT+Q+<D+%(1‘i): (9)

where Q is the internal energy generation, ® represents the viscous energy
dissipation, and the last term is the ohmic heating effect.

The general problem considered in
this report is the convective flow of an
electrically- and thermally-conducting
fluid in a vertical rectangular channel.

A uniform magnetic field will be applied
transverse to the flow (a schematic dia-
gram of the channel and coordinate system

is shown in Figure 1). Only the case of
steady, laminar, fully-developed flow and

bEA bbb hg heat transfer will be considered. This
APPLIED MAGNETIC FIELD implies that all physical quantities (except
possibly pressure and temperature) are
Fig. 1. Cross-sectional independent of x. Also, there can be no

Diagram of Channel net current flow in the x-direction, and
the velocity can have only an x-component.

Based on these assumptions, it can be shown(6) that B, E, and I
must have the forms

E = [BX(Y’Z)J 0: BD]J (10)

I [0, Ey(Y:Z)’ Ez(YJZ)]: (11)
and

I = [0, Iyly.2), 3,(y.2)], (12)

where B, is the constant applied magnetic field strength. Thus, equa-
tions (1) through (6) reduce to



1 9By

Jy = Eg = O(Ey—uBo), (13a,b)
1 an

J5 = -;L—o- -gy— = oE,, (14a,b)

and

OE OE OE OE

iy z _ ¥ _ zZ

et == 0 (15a,b)

and equations (7), (8), and (9) reduce to

-%E+pv(§%+%;%)- pg + JyBo = 0, (16)

- %‘;7 + J,Bg = 0, (17)

- R yyBy = 0, (18)
and

pcug—z = k(%;—f +§;yf+ %f) 10, (19)

where ohmic and viscous dissipation have been neglected in (19).

Combining equations (15b), (13b), and (14b) yields the following equa-
tion showing the interdependence of velocity and induced magnetic field:

o%B oFiEl

Ju
—é;zl+gz—+pooBo—a-z— = 0. (20)

The assumption that the flow and heat transfer are fully developed
required that u = u(y, z); i.e., the velocity is unchanging along the length of
the channel. It can be shown (see Appendix A for details) that as a result
of this assumption, along with the conditions (10), (11), and (12), the pres-
sure gradient in the x-direction, Bp/ax, is required to be constant and the
temperature is required to vary only linearly with x; i.e.,

T(x,y,z) = Ax + T,(y.z). (21)
Note that equation (21) also implies that
T(x,y,z) - Ty (x) = function of y and z only. (22)

Substituting equation (21) into equation (19) yields

11
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pcAu = k<— +

P 62T2>
Ehge- - o 2

Finally, if small density variations are allowed to occur because
of temperature differences, the density in equation (16) can be expressed
as

P = Py - BPG(T - Tyy). (24)

The equations that must now be solved to determine By, u, and
T are (16), (20), and (23), in conjunction with the relations (13a) and (24).
The remaining equations are of secondary importance insofar as they are
not needed in the determination of the magnetic, velocity, and temperature
fields.

For convenience, the pertinent equations can be cast into dimension-
less form by defining the quantities 7, ¢, U, 6, and B (see nomenclature
for definitions). There results

M?Pr\ OB
2 oler 16
VU+Ra8+<Prm)aC 1, (16a)
V6 +F = U, (223)
and
Pr
2 o ij = 20
VB+(Pr)a§—O, (20a)
where

V2 = dn? + /3L?

and Ra, M, Pr, Pr,, F are the Rayleigh, Hartmann, thermal Prandtl,
magnetic Prandtl, and energy generation numbers, respectively.

The necessary boundary conditions on U and 6 are merely
O Uiic (057 Latine = ey AR =D (25a,b)
which state that the temperature of the fluid at the wall equals that of the

wall and there is no fluid slip at the walls. The boundary conditions on B

mus(t be obtained from the electromagnetic conditions at the walls, which
20)
are
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(a) The tangential component of E is continuous (no surface currents).

(b) The tangential and normal components of B are continuous.
From Shercliff(3) and Chang and Lundgren,(é’) it is shown that the proper
boundary conditions for thin walled ducts (h/a << 1) are

OB . B
S +E- = 0 cnheni (26)

where n* is an outward normal and ¢ is defined as
¢ = owh/0a,
where Oy is the electrical conductivity of the wall. Letting ¢, represent

¢ at m = +y, and ¢, represent ¢ at { = +1, condition (26) may be written
as

%-]Zi-q?z-=0, B o = iy (27)
and

oB B _ B

5 %, - 0, atmn = 1V. {25]

The system of partial differential equations (16a), (22a), and (20a)
with the boundary conditions (25a,b), (27), and (28) could not, in general,
be analytically solved. Thus, several special cases will be considered
in the remainder of this report.

B. Parallel-plate Channel

If the aspect ratio of the channel, 7, is allowed to become very
large, the differential system becomes one-dimensional, since all gradients
in the 7m-direction become negligibly small in comparison to those in the
£-direction. Thus, the system reduces to

dau 2 dB
M?*Pr o

o ers s == 29)*
T Raf, + <pr ) a (29)
dzeoo
s o = : 30
T £IT = Wi (30)
a’B Pr

= ( m> Wy _ o e
d¢ 125 d¢

*The subscript © refers to y = .



and

at £ = %1, t——c U, SRR (G2aibe

The special case of ¢, = 0 (nonconducting channel walls) has been
solved by Regirer(l4) and Mori,(13) and the case of Ra = 0 (no natural
convection effects) has been solved by Yen.(9 Also, a similar problem
with M = 0 (no magnetic field present) was solved by Ostrach.(zz) These
solutions are all limiting cases of the one to be presented in this section.

To uncouple the differential system, (29)-(31)equation (31) is inte-
grated once to yield

%+(}€—;)Um = (dd—BCm-)C:_l = %

where k is at present undetermined. Then, this expression for dBoo/dC,
is substituted into equation (29). Finally, combining equations (29) and
(30) results in

d*U,, d?u

2 (o]

o M T + RaU, = RaF. (33)
d d

The boundary conditions on U, to be used are

d®Ug, KM2Pr,,
Uo = gz + 1+~ ) =0 atl = sl (34a,b)

and 6 and B are related to U by the relations

d*u, kM?Pr
- = - M2 —— 35
Rabe az - MU + (1 T (35)
and
120y
B :/< - Prrn Uoo> d¢ + constant. (36)

Since the boundary conditions on 8 have been absorbed into those for U,

0, may be directly obtained from the solution of Uy,. However, the boundary

conditions on B, must still be involved in order to determine « and the
other constant in equation (36).



A study of the indicial equation corresponding to equation (33) re-
veals that the functional form of U(f) depends upon the relative magnitudes
of M* and 4Ra. Thus, the forms of 8 and B also depend upon this
eriterion.

Since the solutions can be obtained by a straightforward, although
tedious technique, only the final solutions will be presented, and they are

shown in Appendix B.

1. Relationship of Pressure Drop to Flow Rate

From the solutions for the dimensionless velocity profile,
U(t), a relationship between the mass average velocity and the
pressure drop can be obtained. The definition of the mass average
velocity is just

T = (fAudA>/([AdA>, A ~ area, (41)

so that utilizing the dimensionless quantities previously defined, there
results
= at
i
__%u__ = By = u(g)de. (42)
S Em
ox &

This relationship yields the dependence of Ge upon the Rayleigh, Hartmann,
Prandtl, magnetic Prandtl, energy generation, and wall conductance
numbers. Using the velocity distributions from Appendix B, the integral

in equation (42) can be evaluated, and the results are listed in Appendix B.

2. Heat Transfer Results

With the type of thermal boundary condition chosen in this
analysis (uniform wall heat flux, or equivalently, linearly-varying wall
temperature), a quantity of practical interest is the heat transfer coefficient
based on the temperature difference between the wall and the "bulk" fluid.
A knowledge of such a coefficient and the channel wall conditions would
make it possible to easily calculate the bulk temperature of the fluid.

By definition, the bulk fluid temperature is

e (AquA)/(LudA). (47)

X5
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Introducing the definitions of the dimensionless quantities 6, U, and {
results in

= i
2puc(Tp - Tyw) /
_— D W = Of Chaele. 48

kAC? o (48)

This relationship can be rephrased in terms of the Nusselt
number, defined as

Gy - 22
Nie = {m}, (49)

so that equation (48) may be rewritten as

+1 -1
Nug = (F =€) <% f Uooeoodc> 2 (488‘)
LA

From the expressions for U and 6, it can be seen that Nuy
will be a function of the Rayleigh number, Ra, the Hartmann number, M,
and the heat generation index, F. The integration can be carried out easily,
and the results are shown in Appendix A.

3. Discussion of Results
S T T i j for Parallel-plate
Channel

1

1

The effects of the
Hartmann number, M, and Ray-
leigh number, Ra, on the dimen-
sionless flow rate-pressure
gradient ratio and Nusselt number
are shown in Figures 2 and 3 for
a fixed value of the wall conduc-
tance parameter, ¢, = 0.3, and
no internal energy generation,

1= 0

MEAN FLOW RATE - PRESSURE GRADIENT RATIO (Gm)

Figure 2 shows that an
increase in the Hartmann number
(or equivalently, the magnetic

g . @ eop 80 ool o190 bri e ld¥strength) i dec rease sathek o,
HARTMANN NUMBER (M)

rate at a fixed pressure gradient,

Fig. 2. Effect of the Hartmann and regardless of free convection
Rayleigh Numbers on Ge effects. However, as free convec-
(Parallel-plate Channel) tion increases (Ra increases), the



effect of the Hartmann number on the flow rate decreases. Similarly, as

the Hartmann number increases, the effect of free convection on the flow
rate decreases.

40 T T

| T

35 — —

30 — —
= L
] <
x 25 [— —
w
o
Z -
z 4
z
20 — —
I}
2 = =
E
z

15 ~— —

10 = —

s 1 el 1 i B e | L i 1
2
1 10 10 10s 10‘ 105

RAYLEIGH NUMBER (Ra)

Fig. 3. Effect of the Hartmann and Rayleigh
Numbers on the Nusselt Number
(Parallel-plate Channel)

The Nusselt number is shown in Figure 3 as a function of Ra
and M. It is evident that as the Hartmann number increases, larger and
larger values of the Rayleigh number are required to increase the Nusselt
number over its value at Ra = 0. Thus, the magnetic field seems to sup-
press the free-convection contribution to the heat transfer rate between
the fluid and the channel walls.

This suppressing effect of the magnetic field is more clearly

illustrated in Figure 4. Here, the ratio of the Nusselt number at an arbitrary

value of the Rayleigh number to that at zero Rayleigh number is shown.
When there is no magnetic field (M = 0), a 29% increase in the last transfer
rate is noted when Ra is only one. However, to achieve this increase when
a magnetic field is present, larger and larger values of Ra are necessary
as M is increased. For example, to increase Nug/Nucw (RES =0 to I T2 0s
the following values of Ra are necessary: for M = 5, Ra = 180; for M = 20,
Ra = 1130; and for M = 50, Ra = 4800.

Therefore, if a criterion of a 10% increase in the Nusselt
number is considered to be the point at which free-convection effects must
be considered, a single plot may be obtained that shows the range of values
of M and Ra for which free convection is important. This plot is shown in

17



Figure 5. Inspection of this figure indicates an approximately linear
separation. The equation of the line for values of M = 8 and Ra = 100 is
approximately M = 5 + (Ra/40).

T | f g

- 4

2 =
(3

9 d
2>
z

g, —
8
2

z -

1 |

o 1 {1 K I 1 el I 1 e | 1 ot I 1 Ve |

1 10 10% 10® 10* 10°

RAYLEIGH NUMBER (Ra)

Fig. 4. Nusselt Number Ratio Variation with
the Hartmann and Rayleigh Numbers
(Parallel-plate Channel)
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Fig. 5. Map of the M-Ra Plane Showing Region
of Free-convection Importance
(Parallel-plate Channel)



The effect of the wall conductance parameter, ¢,, upon the flow
rate is shown in Figure 6, where ¢, = 0 corresponds to the case of a
nonelectrically-conducting wall, and ¢, = « corresponds to walls that are
"perfect" electrical conductors.

T L U L ) [ L P T

MEAN FLOW RATE-PRESSURE GRADIENT RATIO (Gm X 102)

[ B [ [ o 3 3l ot ey Sy el
o 20 40 60 80 100 120 140 160 180 200
HARTMANN NUMBER (M)

Fig. 6. Effect of the Wall Conductance Ratio and Hartmann
Number on Ge (Parallel-plate Channel)

It is seen that ¢, most strongly affects the flow rate for small

values of M, and as M increases, the importance of ¢, upon G decreases.

The decrease in the flow rate with an increase in the wall conductance was
explained physically in reference (7) for the case of zero free convection.
That discussion still holds when free convection is important and thus is
not repeated here.

An interesting result was observed when the effect of the wall
conductance upon the Nusselt number was investigated. As ¢, was varied
between zero and infinity for fixed values of M and Ra, the Nusselt number
remained unchanged to four decimal places. This was somewhat sur-
prising due to the important effect of ¢, on the flow rate. However, it
appears that due to the definition of the Nusselt number used in this report,
the combined effect of ¢, on the flow rate and the bulk tempe rature dif-
ference exactly cancelled each other out.

Internal energy generation can also play a significant role,
especially when free convection is po ssible. Figure 7 shows that the flow
rate can be significantly increased as internal energy generation increases.
However, for large values of M, the effect of F/Ge = Q/[Q+(qu/a)] is
minor.
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e e e R ]

0.09 Ra = 100 .
L 4’: = 0.3 |

0.08 — ]

0.07 |— —

MEAN FLOW RATE - PRESSURE GRADIENT RATIO (Gm)

Fig. 7

Effect of Internal Energy Generation
on Gy (Parallel-plate Channel)

The Nusselt number is shown in Figure 8 as a function of M
and F/Ge. Again it is noted that internal energy generation is relatively
unimportant when M is large, but must be considered when M is in the

range of zero to about ten.

14 )

12

Nu

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 8. Effect of Internal Energy Generation on the Nusselt
Number (Parallel-plate Channel)



C. Solution for Small Values of the Magnetic Prandtl Number

An alternative limiting solution of equations (16a), (22a), and (20a)
can be obtained by restricting the analysis to vanishingly small values of
the magnetic Prandtl number, i.e., Pry, << 1. If Pry, approaches zero, a
solution to equation (20a) that satisfies the boundary conditions (27) and
(28) is just B = 0; i.e., the induced magnetic field is negligibly small. Thus,
from equation (14b), E, = 0, so that, from (15a,b), Ey = constant = E,.
Thus, the ponderomotive force, Jx B, may be written as

JIxB = 0Bo(E, - uBy) (54)

and equations (l6a) and (22a) become
V2U* + RaB* - M?*U* = -1 (55)
V20* + F* = U* (56)

where U*, 6%, and F* differ from U, 6, and F by a constant factor, as
shown in the Nomenclature. The boundary conditions on U* and 6* are
identical to those on U and 6; i.e.,

U* = 6% =0 atn = +y and at { = £l (58a,b)

The special case of zero free-convection (Ra = 0) has been
solved by Ryabinin and Khozhainov,(23) and of nonmagnetic flow (M = 0)
by Han. 24) These solutions may be obtained from the more general form
derived in the succeeding paragraphs by substituting the appropriate value
of Ra or M.

Equations (55) and (56) can be solved by means of finite Fourier
transforms (for a thorough treatment of these transforms, the interested
reader is referred to the text by Churchill).(zs) Since this method of solu-
tion is fairly routine and straightforward, only the final results for U*
and 6* will be presented:

16 Amn * | |
U*(n,t) = Py Z — [l o = Bk ] sm|: 7T(CZ+ 1)] sm[ ﬂ(2ny+ y):l,

odd m, n 2+ (mm/v)?

and

R A [1 +——_—RaF ]
% _ 16 (nm)? + (mm/v)2 o l:n-rr £+1 ] . [mﬂm +1}]
6*n.0) = 5 [t + (/7)) ; 2 2y

odd m,n (60)




where

Ra
(om)? + (mm/y)?

Apan = (m)? + (mm/y)? + M2 + (61)

1. Relationship of Pressure Drop to Flow Rate

The following relationship between the pressure drop and the
mass average velocity (or flow rate) can be obtained from the expression
for U*(n,£) in equation (59) and the definition of W from equation (41):

+1 ety
= 1
= G* = — U*(n,¢)dndt. (62)
(‘Bp) pg +YBoE ) 47[1 [y

Performing the integration in (62), using the expression for U*(n,{) from
(59), results in

A
4 *
G* = 6_4 Z M ZRaF - | (63)
odd m,n mn (nﬂ) i (mﬂ/y)
2. Heat Transfer

As in the previous section, the heat transfer results may be
conveniently presented in terms of the temperature difference between the
wall and the "bulk" fluid. A straightforward derivation, utilizing the defini-
tions of U*, 6%, 7, £, and Tgy, results in

Nu* (—F*'G*)(——1 fH fﬂ U*(n,L)6*(n, L) & dc>_l (64)
bias = n, uH 7 s
1+1/v ) \4yG* e

where
Nu* = [(qy " 2a)/k(T,, - Tg)].

Utilizing the expressions for 6*(n,{) and U*(n,{) from equa-
tions (59) and (60), the integral in equation (64) can be evaluated to yield

SEREAN [1 +ﬂ_*_.]
RTCEE WY e () + (/)
NuX(T+1 /) = 4 TR (o) + (/)2 (nmr)2 + (m7/y)?
odd m,n

(65)
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3. Discussion of Results for Rectangular Channels

The velocity and temperature profiles as calculated from
equations (59) and (60) are shown in Figures 9 and 10 respectively. For
ease in presentation, the values were calculated along the channel
diagonal £ = 7m/y. As is to be expected, increasing the Hartmann number
decreases both the local velocity and the difference between the local
fluid temperature and the wall temperature.

7 g T LTS [T S T T T
6~ =
s - =
. L M=0, 4
'S
2
x & =
A
T e 2 1
>
=
= 3 =
>
2 - = —!
1 =)
10
A T (IR () RN (NS W B
0 01 0.2 03 0.4 05 0.6 [ 0.8 0.9 1.0

t=/7

Fig. 9. Velocity Profile Variation with the
Hartmann Number (Small Pry, Case)

-g* (/7.0 x10°

o 0.1 0.2 03 0.4 05 06 0.7 0.8 0.9 1.0
[ 24

Fig. 10. Temperature Profile Variation with the
Hartmann Number (Small Pr , Case)
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The dependence of the
L [ R R I flow rate upon the aspect ratio,
S = v, and the Hartmann number is
shown in Figure 11. To illus-
trate the effects of aspect ratio
on the flow velocity, the graph
is presented in terms of G*/G,
or, equivalently, the ratio of the
mean velocity in a rectangular
channel (aspect ratio = 7) to that
in a parallel-plate channel (as-
pect ratio = ).

For small values of the
Hartmann number, varying the
aspect ratio from infinity
(parallel-plate channel) to one
(square channel) reduces the
mean velocity by about 30%.
However, as the Hartmann
number increases, the effect of

0 10 2 0 40 50 e 70 7y decreases markedly. Fig-
HARTMAMENCMBER M) ure 11 shows further that a

Fig. 11. Effect of the Aspect Ratio and Setiosia et st tlielie g

Hartanni N e oy o that can be used to determine

Rate Ratio (Small Pr,, Case) when a particular réctangular
channel can be considered to be

a parallel-plate channel when
a magnetic field is present. Let the criterion be defined as follows: if the
mean flow velocity in a rectangular channel is 95% of what would be ob-
tained if the two side walls were infinitely separated, with all other con-
ditions unchanged, the rectangular channel can be considered to be a
parallel-plate channel. The results of applying this criterion to Figure 11
are shown in Figure 12.

To use Figure 12, calculate the Hartmann number and the aspect
ratio and locate the point on the figure. If this point is to the right and
above the curve, the relationship of flow rate to pressure gradient can be
calculated using the simplified, one-dimensional flow results. However,
if the point lies below and to the left of the curve, the two-dimensional
flow equation must be used.

For values of M = 38.5, the one-dimensional approximation can
always be used independent of the aspect ratio (for values of Ra < 100 and
no internal energy generation). Liquid metal MHD power generators
normally operate at values of M greater than 100.
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FLOW APPROXIMATION
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MUST USE
TWO - DIMENSIONAL
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Finally, the Nusselt number as a function of the Hartmann
number and aspect ratio is shown in Figure 13. The Nusselt number de-
creases with an increase in the aspect ratio and a decrease in the Hart-
mann number.

Fig. 13

Nu

Effect of the Aspect Ratio and
Hartmann Number on the Nus-
selt Number (Small Pry, Case)

ASPECT RATIO



26

D. Nonconducting Channel Walls

If the electrical conductivity of the channel walls is much less than
that of the fluid (actually, all that is necessary is that ¢ = owh/0a << 1),
the boundary condition (26) can be approximated by B = 0 at the walls.
Thus, the solution to be presented is an exact one for the model of a
channel with walls of zero electrical conductivity.

The differential system describing this situation consists of equa-
tions (16a), (22a), and (20a), and the boundary conditions on U, 6, and B
are

U =6 =B =0 atn - +y and £ =iy (66)

To reduce this system to ordinary differential equations, U, 6, B,
F, and 1 will be expressed in terms of their Fourier sine series and
substituted into the governing relations (effectively the same as using
finite Fourier sine transforms).(26) Thus, let

50.0) = 2 Bm() sin[ L n+7)], (67)
900) = 3 Ul sin[ B2 (n+7)]. (68)
90) = L 6unlt) sin| 220+ (69)
F=F Z ap, sin [r;—;r(nw)], (70)
1 = z am sin[%ﬁ(n +y)], (71)

and

(71a)

a =
m T

2 (1 ~cos mﬂ)

m

Note that the boundary conditions at 7) = +y are identically satisfied by
equations (67), (68), and (69). Substituting these series forms into equa-
tions (l6a), (22a), and (20a) results in

dZBrn : (m”n)z dUs
2y

ar Bm + Rm —g7 = 0, (72)



e \2y, T e e e
and
2
el B~ ze :
dZZ - W Tl amF = Um' (74)
Substituting equation (74) into equations (72) and (73) results in
dZ mTT 2 dem
[d_gz- - (—27) Bm+R’m TC— = 0, (72a)
and

d? m7T)Z z M? 4By mm)?
[dcz -(—2‘7 em ar Ry 7 -R__dﬁ— = =zl = (W) F (73a)

m

Equation (72a) implies that

do
Bm * Rm dg‘n = ¢m(L), 7]
where
d’prm mr\?
S~ (35) om = 0 e

Thus, ¢y (£) is just

. (8) = pe(i;g)c + qe-(-rznTﬂ)C, (75b)

where p and q must be determined from the boundary conditions on Bm
and 6,, applied to equation (74). Substituting (74) into (7 3a) finally results
in the following equation for &m:

de 2] d% 4 2 do
m |2 m) m (r_n_ﬂ) . oM Pm (r_nl)z
e [M +2(2’Y ] acz 3 [Ra+ 2y ch R dC am|! >y F

(76)

From equations (66), (68), (69), and (74), the boundary conditions on 8,(£)
can be shown to be

21
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a®_
— > Tan B = O =Nt (77a,b)

ag

An examination of indicial equation corresponding to equation (75)
shows that the functional form of 6,,({) depends upon the relative magni-
tudes of the terms (mm/2y)?* and (M?/4)(4Ra/M*-1). Thus, solutions of
equation (76) can be obtained and are presented in Appendix C.

When the expressions for 6m({) from Appendix C are used, the
dimensionless velocity function, Um(C), and the dimensionless magnetic
field function, By, (£), can be directly calculated from equations (74) and
(75), respectively. These results are also shown in Appendix C.

When the expressions for 6,4;, Upi» and Byi, i =1, 3, from
Appendix C are used, the actual temperature, velocity, and magnetic field
functions can be constructed from equations (67), (68), and (69). Thus,

m<{mg 1/2
BM.L) = > By,(t) sin[n;—;T tn +v)} + B(C) sin [%(45; - > (77+v)]
m=1
3 m;mo B_,() sin[LnZ,-;T (n +y)], (88)
mmg 7
um.t) = mi 53,15 sin{%(nw)] + Uy(L) sin [%(% : 1)1 Z(nw)]
+ m>z U, (6) sin l:_r;_;r(n +y):|, (89)
o
and
mgmg 7
6(n.t) = i €, (€) sin [—rl‘z-yl(n +y)] +8,(C) sin [%G\_/% 1)1 Z(nw)]
m=1 -
+ >/: Qms(c) sin [r;—(ﬂ +'Y)}: (90)
m>m,
where

my = (M/m)[(4Ra/M?) - 1]V2. (90a)



1. Pressure Drop Parameter

From the definition of U, it may be shown that

+1 +y
i S Un,t) dndt. (91)
4“v(1+1/v)[l [v

2. Heat Transfer Results

Defining a Nusselt number as in the previous sections, i.e.,

qw - 2a
Nu = |—m——— |, 3
l:k(Tw - TB):I e
one obtains the relation
1ty =t
B 4VG(G F)
Nu = 75 TR / / Uedndt| . (94)

Utilizing the solutions obtained for U and 6 in equations (89)
and (90), and carrying out the indicated operations, one obtains

m<mg +1 +1
ljf—(‘fﬁ—% mi f uml(mem,(c)dc-f U(£)e,(t)ar

=) 1
i
e f U (£)8,p, ()L (95)
m>mg Y -1
Using the expressions for U,; and 6., from equations (78)
through (86), the integrations can be carried out, and the results are

shown in Appendix C.

3. Results and Discussion

Due to the extreme complexity of the results pre sented in this
section and their limited application, no numerical results are presented.

IV. CONCLUSIONS

In this report, the steady, combined, free and forced convective flow
of an electrically-conducting fluid through a vertical channel in the presence
of a horizontal magnetic field has been studied. Three distinct physical
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situations have been investigated: (a) parallel-plate channel with walls of
arbitrary electrical conductivity, (b) rectangular channel containing a fluid
with a very small magnetic Prandtl number, and (c) rectangular channel with
nonconducting walls. Numerical results were presented for only the first
two cases.

In addition to obtaining some basic information on the interaction of
mechanical, thermal, and electromagnetic forces, several practical results
were noted. It was found that a magnetic field strongly inhibits free con-
vection, and a criterion was established that indicates when free convection
may or may not be neglected, based on the relative values of the Rayleigh
and Hartmann numbers. This criterion may be stated as follows. If
N> 5 + (Ra/40), the contribution of free convection to the total heat transfer
rate between the fluid and the wall is less than 10% and can be neglected.

If M < 5+ (Ra/40), the contribution is greater than 10% and should be
considered.

It was also noted that a magnetic field sufficiently flattens the
velocity profile in a channel so that the flow can be considered one-
dimensional in many cases. A relationship between the Hartmann number,
M, and the aspect ratio, y, presented in Figure 12, shows when the one-
dimensional approximation can be made allowing a 5% error in calculating
the ratio of the flow rate to the pressure gradient. It was shown that when
free convection effects are not important and M = 38.5, all rectangular
channels may be considered to be parallel-plate channels for the purpose
of computing the ratio of the flow rate to the pressure gradient.

The work presented in this report is a continuation of that presented
in ANL-6937, which considered the unsteady, convective, magnetohydro-
dynamic flow in a parallel-plate channel.



APPENDIX A

Fully-developed Assumption

The restrictions that are placed upon the pressure and temperature

because of the fully-developed flow and heat transfer assumption are de-
rived in this Appendix,

From equations (17) and (14a), it is deduced that

op 1 o
-g-mg( )= (A1)
so that
p(x,y,2) = pilx,2) -Z—;B;(y,z), (a2)
and
2 ooy, 2)] = <= [pix2)) (aza)

But from equations (18) and (13a),

op IR
-a—z-mgz‘( %) =0, (A3)
so that
P
Bxgz =2 i

Therefore, since p(x,y,z) is continuous and all of its partial derivatives
exist, the order of differentiation is immaterial, and a comparison of
(A2a) and (A4) shows that

ga;[p(x,y,z)] = function of x only. (Ada)

Combining equations (16), (13a), and (24) results in

d*u o*u By éBX S
V(-a? +é;?>‘pwg+#—o -a—z'*‘ B B (R =l ) = (A5)

Differentiating both sides of this equation with respect to x gives
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2
Pl 3 (T-Tw) = 22, (86)
X

™~

But, azp/éxz can be only a function of x, so this implies that
W = Gb = (e o 6T (A7)

Substituting this result into equation (19) with rearrangement shows
that

4T Ao 2T 2T S, i
Pl BN iy = k + + Q. (A8)
dx dx dx? dx? ayz dz?

Now, it is apparent that the right side of equation (A8) is a function of y
and z only, while the left side is a function of y, z, and x. The only
x-dependence arises from the terms involving Ty and T,, and the previous
statement can be self-consistent only when

dT iy 1

= + = constant. ( 9)
Thus,

Tw(x) + T,(x) = Ax, (A10)

This results in

T(x,y,z) = Ax + T,(y,z). (A11)

Tw(x) = T(,yw,2zw),
where yy and zy are the values of y and z at the wall. Thus,

Tw(x) = Ax + To(yw,2zw),
and

T(x,y,2) - Tw(x) = Tu(y,z) - Telyw,zw) (A12)
It is now seen that'T - Ty is independent of x. By inspection of equa-

tions (A12) and (A6), it is apparent that azp/axz = 0, and remembering the
result in equation (A4a),



%= constant,

p(x,y,2) = paly,z) + k'x,

where k' is a constant.

(A13)

(A14)
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APPENDIX B

Parallel-plate Case Results

1. Detailed Solutions

a. M*> 4Ra>O0:

U = F - A, cosh ,,& + A; cosh A, ¢ (B1)

o
-Raf = [1 + (i, M?*Prp, /Pr) - MZF] - Aj(A% - M?) cosh ¢
+ A,(0% - M?) cosh A8 (B2)
Bo = k1(& +1+ ;) - (Pr/Prm) [F(tj +1) - (A;/A)) (sinh M€ +sinh Ay)
+ (Az/x;) (sinh A,C + sinh X,) (B3)
b. M* = 4Ra > 0:
Uw = F + A3l sinh A + A4 cosh AE (B4)
SR [ 1+ (k;M*Proy/Pr) - MZF] + {A4(X2 - M?) +2>\A3:l cosh A€
+ A3( A% - M?)t sinh AC (B5)
B = k2(f +1+ ¢;) - (Prpy/Pr) [F(c +1)+(Ay/N) (sinh AL +sinh ))
+ (A3/A%) (AL cosh X - sinh Af + X cosh A - sinh )»)] (B6)
c. M*< 4Ra:
Uy = F+ Ag cos 238 cosh A€ + Ay sin A€ sinh 2,0 (B7)
-Rab, = l+ (ksM?Pry,/Pr) - M°F + [As(xj-xg- M?) +2>\3>\4A6] cos A3€ cosh A8
+ [Aé(xi- A - M?) - zx3x4A5] e (B8)

Bo = k3(L +1+ ¢;) - (Prp/Pr) [F(C +1)

A3 As +MA
<3_>\,Zj+—>\;z_é> (sin X3¢ cosh M€ +sin A3 cosh )Ay)
4

(2 250) (cos 0t sinh Aot +cos s sinh xo} (89)
A3+ Ay



AR A< 0l (forall M):

Uy, = F - A; cosh NE + Ag cos Asl (B10)
-RaB, = 1+ (k4M*Pry,/Pr) - M?F + A.(M?-22%) cosh A4L
- Ag(M?+2A2) cos st (B11)
Bw = k4l +1+ ¢;) - (Pry/Pr) [F(C +1) - (A7/X) (sinh g +sinh Ag)
F[Ag/Ng) (min Mgl +oin xs)] (B12)

2. Relationship of Pressure Gradient to Flow Rate

a. M?*> 4Ra > 0:

Go = F - (Ay/\) sinh A; + (Az/X3) sinh X, (B13)
b. M?* = 4Ra >0
G, =F +[(A3+A4)/x] sinh A - (A;/A%) cosh ) (B14)

c. M*< 4Ra:

A3As+ MAg) A4As - A3Aq )
Gz B+ W sin A3 cosh A4 + —W— cos A3 sinh )4 (B15)
d. Ra < 0 (for all M):
Gy = F - (A7/ne) sinh ¢ + (Ag/A5) sin As (B16)

3. Nusselt Numbers

a. M*>4Ra > 0:

A, sinh )\,

e TN = 211::{ [1 + (kyM?/Rm) - MZF] _ <—Z)\,R_a_> [1 + (k,M2/Rm) + F()} - ZMZ)]

a
A, sinh X\,
R e e

= ) [1 + (k;M?/Rm) + F(A] - ZMZ)]
2

+
4Ra 2\ 4Ra 2,

Af(AM - M) < sinh 2>\1> AZ(A3- M?) < sinh ZXz)

1+
AA (M3 -2MP) ) ; (B17)
—‘;TM_—X%—)— (X, sinh X cosh X, - Az sinh A, cosh X)
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C.

d:

Mt = 4Ra > 0:

2G,(Go-F)  F 2 2 = 2 2
T = 5Rg |1t (eeM /Rm) - M?F | + = 1+ (c,M2/Rm)+ F(A2 - 2M?) | (A cosh X - sinh ))
L M02-M) [ 1) sinh2x 1 cosh 2
4Ra o 2\ 3 22
3 ,
e [XA3+A4()\Z- MZ)] (21 cosh 2) - sinh 2))
+(M> A, (1+(»< MZ/Rm)) +FAL A% -2M?) + 20 AF
Z)\Ra 2 2 ¢ }
Ay sinh 2\ 5 5
+4Ra(l+——2x [ZXA3+A4(X .M)] (B18)
M? < 4Ra:

17 2 2 1 2
- = - Al "
2Go(Goo- F)/Nucw = [1 +(k3M2/Rm) - M F] [ZRMX% Xﬁ):l {[l ( sM?/Rm)
HROEEOGE ZMZ)} [(x,Af, +X4A¢) sin L3 cosh Ay
+ (A 4As - A3A4) cos A3 sinh )\4] +2F A3\ l:(k;A(, - A4As) sin A3 cosh A4

AZ+A
+ (X 4Ag + X3A5) cos A3 sinh >\.4}}+ (’;Tai) (A3 - AZ- M?)

I+E}M+M+ -1—(X3 sin 2X; cosh 2M4 - A4 cos 2X; sinh 2Xy)
2)y 2\ 2

ArsAshe [ A sin 22 cosh 2X 4- A3 cos 23 sinh zxﬂ
ZRa 8Ra(A§+ 1))

[ Mra( A2 - AZ) + AgA (-2 - Mz):|
(B19)

Ra < 0 (for all M):

A, sinh )\
2Gy(G - F)/Nu, = % [1 + (k4M?/Rm) - MZFj| = (inzxe—é) [1 + (kM /Rm) + F(A - ZMZ)]

Ag sin As AZ(E - M?) sinh 2\g
S, 2 _FO2 2
+( ona ) 1+ (kgM?/Rm) - FA +2M) | + —=— ( Fg )

(As sin A5 cosh Ag +\g cos A5 sinh Ag)

AL(NE+MP) | sin X5\ ArAg(AZ- A+ 2M?)
4Ra 2% 2Ra(M + A2)

(B20)
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Integration Constants

1 1+ (k,M?/Rm) - \5F
Ay = 2 2
cosh N = e
% 1 [1 + (k,M?/Rm) - xiF]
2 =
cosh A, e = 0
" FAZ-1 - (k,M?/Rm)
27 2\ cosh A
[l +(K2M2/Rm):| sin h) - AF(X sin hA+2 cosh })
s =

2\ cosh® A

[1 + (K3MZ/Rm)] sin A3 sinh A4 - F[()\i -2%) sin A; sinh A4+ 2X3\4 cos A3 cosh )\4]

2X3halcos® A3 cosh? Ay+sin® Aj sinh® A4

[- 1- (K;MZ/Rm)] cos A3 cosh X4+F[()\i -13) cos A3 cosh Ag-2X3)ysin);sinh M]

2X3hs(cos? A3 cosh? A4 +sin® A3 sinh® Ay

P 1 1 + (£ 4M?/Rm) + AEF
NGO RET A%+ A%

S 1 + (k4M?/Rm) - AGF
8 ~ cos Ag )\§+)\2

1/2
xl} ) (Mzi '\/M4—4Ra>'/

e 2

A = Ral/*
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xs} ) (‘\/M4-4Rat M2>”2

2

Pro [F(XZ AZ)+(FAZ-1) tanh A, C(FAZ-1) tanh XZ]
Pr M Az

(Z-23) (1+6,) + MZ(—“‘“;‘ o X1)
1

Prp [F (3 _3tamhr o, )\> i _1( _tanh} . )\)]

Pr A
M2 tanh
2(¢z+1)+7< tanh A

Prm

K
¢ I

[ZX3X4F(X§+>\4Z) (cos? A3 cosh? Ay +sin® A3 sinh?® A y)

A3 sinh 2A4 - X4 sin 2A
y 2= MR 'ZEO\AZ;‘X%) (A3 sinh 2h4 - A4 sin 2X3)

2

2
- FAshy(As sin 2L 3+A, sinh 2X4)] [ MT(X4 sin 2X3 - A3 sinh 2\ )

+ 200(1 + ¢3) (A3 +23) (cos® A3 cosh® 14 sin® A5 sinh? >»4)]

Bron 1 2., tanh g 2. tan Xs]
T{F'<—x§-x%) [(1+X5F) — +(1 +2gF) N

5
M? tanh Ay tan Ay
(“%)*(xgmi)( o




APPENDIX C

Nonconducting Wall Case Results

1. Detailed Solutions

a. (mm/2y)? > %Z [(4Ra/M?) - 1]:

Oma () = 9&;11)(@) + a, cosh w€ + a, cosh w,(

b. (mm/2y)? :%i [(4Ra/M?) - 1](defines M):

6,(t) = 9(2)(C) + a3t sinh ws;€ + a4y cosh wsf

© (m’n’/Z'y)z < %—[(4Ra/M4) =i 1

Oms(t) = 953})(1’;) + as sin w4l sinh wsf + ag cos w4l cosh wsl

where

a1 (m7r/?.y)2 F] 2mpi;TM?/yRm
Ra + (m7T/2’y)4 M"'(mﬂ/Z\/)2 < IRl

s = -

d (mmf2y? >3 [(Ra/MY) - 1]

(mam/2y (1 - (mm/2y)? F]}

Ut} = am{F ’ gz (mTT/Zy)4
+ [w? - (mm/2y)?] (o, cosh w;&)
+ [w} - (mﬂ/Zv)Z] (o, cosh w,t)

-2p,Ra sinh (m’n’(:/z'}')] - w,a;Rm sinh w, ¢
(Mmm/2y)* - Ra

Bmi() = l:

- w,a,Rm sinh @,C

(c1)

(c3)

sinh [(mTr/Zy) el

(C4)

(C6)
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(mm/2vy)? = M.4_Z[(4Ra/M‘) - 1] (defines my):

(oam/2y (1 - (mm/2y)? F) }

UZ(O : am{F * Ra + (m‘fT/Z'y)4

it (a;[m§ - (mz‘ﬂ'z/‘?\/z)] ¢} sinh w3t

+ {aslw} - (m2n2/4v?)] + 2wyx3} cosh wsg

-2p,Ra sinh(mmnt/2y)

= ]— Rm(w;a;3t) cosh wsl
(Mm7/2v)* - Ra

B,(£) = {

“Rm(w;ay+ag) sinh ;¢

2
f. (mm/2y) < MT [(4Ra/M*) - 1]):

p (mm/2v)%[1 - (mm/2y)* F]
Ra + (mﬂ/Zy)"’

Ums(6) = 3m{F
+ fas[w? - w3 - (m?12/4y?)] - 2aw,ws) sin w4l sinh wsC
+ {oglw? - @? - (m?m?/47?)] + 2a5w,ws) cos Wyl cosh wsl

-2p;Ra sinh(mm/2vy)

- Rm[(asw, + agws) cos wsl sinh wsl
(Mmﬂ/Z‘y)2~Ra ] e o2 = °

Bms(g) = [

+ (asws - apwy) sin wylcosh wgl ]

2. Pressure-drop Parameter

G m=1 e Ra + (mﬂ’/Z’y)4

/
+ (apw;) [w} - (m?n?/4y%)] sinh mz}+{l - cos My[(4Ra/M") - i
My(4Ra/M* - 1)2

(Cs)

(c1o0)

m< my
M = z (M){am[F " (mw/ZV)Z[l - (m*n%F 472)]:|+ (al/wl) GE = (mzﬂz/‘wz)] iR

{am[F i (mﬂ/ZW)Z[l = (mzﬂlF/4’yZ)]:|+ (@swd) [w? - (szrz/4,YZ)] (w; cosh s - sinh ;)

Ra + (m'rr/Z'y)Z

m?27?) -cos m
+ [(sinh w;)/w,) [a4<w§ = (4;; )> a sza,]} + mi <1m__"">

>mg

2
{am[}? o (mm/2y)*[1 - (m*m*F 4y2)]]+<ﬂw_5> [(sws - agws) sin w, cosh ws

Ra + (m7T/2’y)4 wi+w§

2 2 2 2
Wz - w? - (m?r /i]! .
+ (asws + aqw,) cos w, sinh ws] +|: 2 2 ) [asws + agwy) sin w4 cosh ws

wf + wf

+ (aews - aswy) cos wy sinh ms]}

(c11)



3. Nusselt Number

G(G-F)

2Nu(1+1/y) ~

m=1
l - (m /4‘\/
4[(mm/2v)* + Ra]

A aya[wi + w} - (mPnr?/2y?))

_ mi“"{a_m[F /2901 - (nin?/ay) Fﬂ[am“ - (m'r/47’) ¥]
4

(mm/2v)* + Ra ]

(m’rT/Z‘,)‘i + Ra

End
[(a/wﬂ(mi -%) sinh w, + (a.z/wz)<L§ E

4(w? - w?)

2
-2 (wd - (mint/ay)) <1

(w; sinh w, cosh w; - w; sinh w, cosh

sinh
+— (w3 - mz-n'z/lh/z) (1 s

8

sinh 2w,\ o}
et
2w,

a,; sinh w, @, sinh u)z]

wy @2

2.2
m-m

5| sinh u)z:|
4y

w,)

)

amo[l - (méﬂ2/4.yZ) F] s 2.0
e I T T sinh w; | (w3 - 7
3

i
-%—) + 2w,a3 sinh w,}
2

4w;[(mom/2y)* + Ra]

m°[p , mon/2yP[1 - (mbr®/s7?) ]} {Zamo[l - (mim/4y?) F]

mon/z-y ) + Ra

mon/2y)* + Ra

+ (a3/32w3) (2w; cosh 2w; - sinh 2w;) {[03 - (min?/4y?] (a; - 2a,4)

sinh 2w 05 N
0 + 2oy 1+ ZE2) 5 g - /720 (/3 -

2w3

a3 cosh w; sinh W,
+ (@ -ag) ——
™ J/J 4 w,

- 2wyas}

sinh ..w,)

2y P(1 - (mPn?/4y2) Filfaml} - (m?r/av?) F)

a
- —g% (‘%[wg = 7T2/47
o
a.
C sl
m> mg

+(——2
Wi + wf

aml[l - (m?n?/4+%)

(mm/2y)* + Ra JL (mm/2v)* + Ra

4(w} + w?) [(mm/2y)

sin w4 cosh ws + [(aﬁws - asws) <w§ < g -

il 5 5 2\ [Sin 2wy sinh 2
+ 2050w + 3 [w2 - @ - (mPm?/4v?)] | (@ + af) 2w, Zo;

1
i (—2—‘2> [w - @f - (m*r
wy t ws,

2 mlﬂz) - w:‘,(aé - ai):| ws cos 2w, sinh Zw5} (C IZ)

+ [(1/4) (af +ad) (ws -

F m?n?
] (@sws + agws) (*‘é - wf - z ) =
4+ Ra) &

2.2
L) > + Za5w4w5(w4 +
472

/4] lasoews + (ws/4) (@% + af)] sin

w2 -
4 4y 2

>[(a5w5 + agwy) sin w, cosh ws + (Agws - asw,) cos Wy sinh *5]}

205weWs(ws - w,,):|

Ws)} cos Wy sinh '1.5}
w
5> s aé)]

2wy cosh 2ws
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4. Integration Constants

@l . L [ e 2 2 et
}_ ﬁ{M + 2(mm/2y)? £ [M* + 4M?(m7/2v)? - 4Ra] }

w4}= %{Z[Ra + (m7T/Z'y)4]1/Z + M?% + Z(mﬂ/Zy)Z}l/Z

" I {-Zpl[w§ } (mﬂ/Zv)z] [(M—ZWT&E_{P_)a:'coshC;_;T)

(Mm7/2v)* - R

+ F + amt @
2m¥ t " [1 - F(mn/2vy)?]

I | (M?m/2yRm) (mﬂ)
o 2 _ (my 2 coshili=te
: (w2 - w?) cosh w, {zpl[wl : W/Z'Y) ] [(me/zw)z = Ra:| o= 2y

= (pamr/27)* = enzy/ 20) ]}
=L 2 21| MPmm/2yRm)
e %{zpz[ws (snim/2) ][(Mmﬂ/zy)z _ RJcosh (s /29)
- apne ;
m Ra + (rrm/zy)fx [1 - F(mﬂ/zw ]}

N

1 m e
Oy = — 2 2 _
200; =oah (1)3{ 2p; [<w3 a7 tanh ws + 2w3;

l: (M2mmr 2yRm)

(M2 e :|Cosh (mﬂ/Zy) + amF tanh w;
mmn/2v)* - Ra

am (w3 tanh w3+ 2w;)

Ra + (mm/2v)* [1- F(mﬂ/zﬁ’)z]}




Qg =

a

£l

B2

P3

- (Mzm‘lT/ZyRm)
2w, ws(cos? w, cosh? ws + sin® w, sinh? ws ¢ (Mmﬂ/Z—y)Z Too

(DZ x U)Z mZ‘ITZ . 5
5 4 4v? cos W, cosh Wy - 2w,Ws sin w, sinh ws | cosh (mTT/Z’y)
2
ap[l - F(mﬂ/Zy) ]

[2wsws sin w, sinh ws - (wZ - w]) cos wy cosh w
Ra + (m7r/2.'y)4 s g i . 3

if = (Mm7/2yRm)
2w,ws(cos?® w, cosh? ws + sin® w, sinh? w; ’ (MmTr/Zy)2 - Ra

472
ap[l - F(mm/2v)?]
Ra + (m’IT/Z’\/)‘1k

2 ,  min?
wZ - wg - sin w, sinh wg + 2w,4Wws cos w4 cosh ws] cosh (mm/27)

[2w,w5 cos Wy cosh ws + (wf - wF) sin w4 sinh ws]

a, Rm[(Mmm/27)* - Ra]
= it / (w, tanh W, - w, tanh w;) F
2(w? - )

+ wywp[l - F(mﬂ/z'\/)zl[wz ta;: fl(r;:}lzi;?h wz}}/{-l’\a sinh (m71/27)

[w2 - (m?n? 4+%)] tanh w,-w [w} - (mz'nz/‘l')z)] tanh w
+ [(Mmﬂ/z-\/)l cosh (mﬂ/Zy)] l:wl Gzl / i : :z : :
z = QO

tanh W3 1 - F(mu/2y)* 2
-qp = Rm/4)[(Mm7/2y)? - Ra]{1 - tanh® w; + +[ [w3 + w3
= (am m/ )[( 2 / ) ]{ - w3 Ra + (m'y'T/Z‘Y).;

- (w2 tanh w; + 2w;) tanh w;]}/{Ra sinh (mm/27)

tanh W;
+ (Mmm/2y)? —;-cosh (m‘IT/Z'y)[((DZ;-mZ‘ITZ/ll‘yZ) (l + tanh® w; - " >+ 2w; tanh w,]}

amBRmll - F(m?r/4y?)] (M?m?n?/4¥* - Ra)ll . . sinh 2ws sin 2w,
=43 = 1 (ws - w3) —2—— i ——_Zw
Ra + (mﬂ/Zy) Ws 4

- (ws sinh 2ws - W4 sin 2(1)4)] {4Ra(cosz w4 cosh? ws + sin® w, sinh? ws) sinh (mm/2y)

+ 2M?(mm/2y) sinh (mﬂ/Zy)[— (ws sinh 2ws - Wy sin 2w,)

=1
sinh 2ws sin 2wy
+lod - ot - e/ (0 Tﬂ}
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