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by 
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PREFACE 

The intense effort being devoted to high-energy phys­
ics these days has resulted more and more in the emergence 
of two distinct cul tures , experimental ists and theoret icians. 
Experiments at manymegavolts often cost some megabucks 
and sometimes seem to have a few mega-authors on the 
paper. 

These lectures grew out of a visit to the Neutrino 
Group of the High Energy Physics Division of Argonne Na­
tional Laboratory. This visit could possibly be construed 
as our effort to bridge the two-culture gap. As exchange for 
these lectures on theory, I was initiated into the myster ious 
r i tes - lasting many days and nights - that experimental is ts 
prac t ice around the ZGS. 

I am indebted to Professor R. G. Sachs for extending 
the hospitality of the High Energy Physics Division, and to 
Drs . T. B. Novey and D. D. Jovanovic of the Neutrino Group 
for making the visit possible. 





PART ONE 

INSIDE QUANTUM FIELD THEORY 

I. Introduction 

The purpose of these lectures is to provide a review and summary 
of the fundamental ideas of quantum field theory, with a special emphasis 
on selecting those features that are relevant to applications, and merely 
acknowledging the features that are not. We are definitely interested in 
building a minimal set of ideas. 

The first complication of the usual formalism of quantum field 
theory, which can be omitted, is second quantization. Ordinary quantum 
mechanics already provides a rule of associating a wave function to each 
part icle , so we do not actually need an algebra to do it for us. Second 
quantization does give some interesting resul ts , but the point is that it is 
not necessary . Creation and annihilation operators never appear in c ross 
sections, and the original rule of quantum mechanics is sufficient. Quantum 
dynamics is fully contained in the wave equations. 

II. Noninteracting Fields 

F rom classical physics, we know that the momentum-energy re la ­
tion for free par t ic les is 

p ' - m^ = 0. (I) 

The choice of units here is h = c = 1; this makes mass proportional to 
length ' ' . A real met r ic is chosen p^ = ^^-p"" = Po " ^^• The metr ic tensor 
is ('"1-1 ) = g^^ = grtR. While the real metr ic has the complication com­
pared to the complex met r ic of maintaining the covariant-contravariant 
distinction, it has the simplification of introducing no problems with com­
plex conjugation. 

If we use the usual momentum operator correspondence of quantum 

mechanics , p -• i ^̂ — = iSa, then Eq. (l) resul ts in the following wave equa-
«• OXa 

tion for spin zero (Klein-Gordon equation): 

(SHm^)V(x) = 0. (2) 

How does one relate a probability density to this equation? Total probabil­
ity for free par t ic les , must be conserved; i.e., it is constant; in fact, it 
equals 1 with some normalization. Note that (S^ + m^) ^*(x) = 0; thus, 
f*{b^+m^) Ij/ -f(^^ + m^) f* = 0. This is just S'^(^*a^Ti'--i^Sjj_^*) = 0. Then 
the (conserved) probability current is 



j ^ = ar^af-^^ar)- '•^^ 
The factor i is put in to m a k e J^ H e r m i t i a n ; it a l so c o r r e s p o n d s to Pa -* i S a . 

The Di rac equat ion r e s u l t e d f rom a s e a r c h for a wave equa t ion tha t 
was only f i r s t o r d e r in i o a . The a r g u m e n t i s as fo l lows: 

E v e r y p a r t i c l e m u s t sat isfy ( S ' + m^) fM = 0. Then , to find a f i r s t -
o r d e r equation in i d a , we can only have c o m b i n a t i o n s such as (17 d a - m ) 
^(x) = 0, whe re the y"" a r e cons tant ( m a t r i c e s ) , independen t of x. Note that 
only m can o c c u r , not m ^ m ^ e t c . , s ince ( S H m ^ ) f = 0; d^ + m^ can be 
obtained through mul t ip l i ca t ion by (iy^Sp + m ) . We obta in 

-{•/y"-hpd^+m^)f = 0. (4) 

We mus t r e q u i r e yPy'^SfiSa = d^-'dg. to obtain the K l e i n - G o r d o n equa t ion . 
Now SpQa = S a S p is s y m m e t r i c ; t hus , yh"" = ( l / 2 ) ( y P 7 " + 7 * 7 ^ ) + (1/2) 
(-yP-^a..ya^|3)^ con t r ac t ed with SgSa. l e aves only the s y m m e t r i c p a r t ; fu r the r , 
SaS"^ = 'dcL^Rg°-P- T h e r e f o r e , 

P, a , a B ., aB / c \ 
-yf^y + 7 yi^ = 2g '^. \i>) 

Since the 7°^ an t i commute , they cannot be jus t n u m b e r s but m u s t be m a t r i c e s . 
The s m a l l e s t set of four m a t r i c e s that sat isfy the a n t i c o m m u t a t i o n r e l a ­
t ions (5) a r e 4 x 4 ; they c o r r e s p o n d to spin 1/2. Th i s m e a n s ^(x) i s a 
1 x 4 sp inor . The conclus ion is that if the 7 sa t is fy Eq . (5), we have the 
wave equation for spin one-half,^ 

(iy^'aa - m) (̂/(x) = 0. (6) 

The H e r m i t i a n conjugate (complex conjugate , t r a n s p o s e ) s a t i s f i e s 
" i ^ a ^ 7°^ - ^ m = 0. Equat ion (5) is the only r e s t r i c t i o n upon the 7 made 
by quantum dynamics . The re l a t ion be tween 7'^ and 7*'^ can be d e t e r m i n e d 
by convenience We choose y j = y,, and '̂̂  = - 7 ( 7 ! ^ "75)^ Th i s cho ice de ­
t e r m i n e s f =^7o as the adjoint sp inor so that -ibgTpy'^ - ^ m = 0.^ 

lOther combinat ions of the 7 - m a t r i c e s a r e usefu l in fo rmu la t i ng i n t e r ­
ac t ions ; 75 = 7i72737o a n t i c o m m u t e s with the 7 a ; 757a + 7a75 = 0. F o r 
magnet ic m o m e n t s , the a n t i s y m m e t r i c OaR = (7a7l3 -7 /37a) /2 is the ap­
p r o p r i a t e combinat ion . 

In gene ra l^ the only condit ion one would m a k e upon the adjoint sp inor is 
- i 3 a ^ 7 " - ^ m = 0; i . e . , ^ (y . p - m ) = 0, if (7 . p - m) ^ = 0. If we suppose 
* = f^A, then -ibarA A-'y^+A - ^^Am = 0 or A-'7"-^A = y"-. F o r 
7o = 7o, 7i = -7i . i = 1 ,2 , 3, then A = 7,5. Note a lso tha t 7^ = y a 
would yiej^d A = 1. As A = 7„ is conven t iona l , for h i s t o r i c r e a s o n s we 
will use ^ = f y^. 



To construct the probability, we have ^(i7"'da - m) V' - [-iSa^7 f-
m^V] = 0, which yields Sa(^7°'^) = ^' thus the (conserved) probability cur­
rent for spin 1/2 is 

J^ = ^(x) 7a^(x). (7) 

Usually one is interested in solutions of the wave equations that 
correspond to definite momentum. For the Klein-Gordon equation, the 
plane wave solution is 

y x ) = e-iP"'. (8) 

We can check the normalization of this solution by computing J|^(x), 

J^(x) = 2p^. (9) 

J(j = 2E as the covariant normalization corresponds to 2E par t ic les per 
unit volume, ra ther than the one part icle per unit volume of nonrelativist ic 
quantum mechanics . The spin 1/2 plane wave solutions are 

^p(x) = Upe-ip-x, (10) 

where u is a 1 x 4 spinor satisfying 

( 7 - p - m ) U p = 0. (11) 

To determine the most useful normalization for the u , we again examine 
J„(x) = u 7a^D. * ^ would like to have something like J a ~ 2pa. Note that 
(y -p /m) Up = Up, andUp(7-p/m) = Up. Thus, 

Up(7a7 • P + 7 • P7a) "p _ , "p"p 
^o- = Z^ = ^'^^^^^ 

Thus the appropriate normalization for spinors is 

u u„ = 2m. (12) 
P P 

The wave functions for antiparticles are simply related to those for 
par t i c les . For spin zero , an antimeson would have a wave function e"'"'̂ P ' ^ 
instead of e'^P ' ^. For spin l / 2 , we would use u(-p) e"'"'-? ' ^ instead of 
u(p) e"iP 'X for the antifermion of momentum p. In this case, we would have 
the normalization Ti(-p) u(-p) = -2m.3 

^Our choice of wave functions for antipart icles corresponds , in a second 
quantized formalism, to the fact that a field operator ^(x) is a sum of 
two pa r t s , one of which annihilates par t ic les and the other c rea tes anti­
par t i c les ; ^ then crea tes par t ic les and annihilates ant ipar t ic les . 
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Since we a r e i n t e r e s t e d in i n t e r a c t i n g p a r t i c l e s we need to d i s c u s s 
inhomogeneous equa t ions , that i s , the equa t ions a p p r o p r i a t e when s o u r c e s 
a r e p r e s e n t . The G r e e n ' s function or p r o p a g a t o r or u n i t - p o i n t - s o u r c e so lu­
tion for the Kle in -Gordon equat ion s a t i s f i e s 4 

- ( a ^ + m ^ ) G ( x „ , x ^ ) = 6 ( ^ ) ( x a - x i ) . 

Taking the F o u r i e r t r a n s f o r m s 

O ( x a - x g = / ( - 0 O ( p ) e - P ( ^ - ' ) , 

and 

MU - X ' ) = f - ^ l e - i p ( x - x ' ) 

we have (p^ - m^) G(p) = 1, or 

G ( p ) = p ^ , (13) 

which is the p ropaga to r for spin z e r o . ^ F o r spin 1/2, we have (7 . p - m) 
S(p) = 1, whe re S(p) is a 4 x 4 G r e e n ' s m a t r i x , and 1 is the 4 x 4 . The 
p ropaga to r for spin l / 2 is 

7 . p - m p - m 

4This is t rue because we can t r ans l a t e the or ig in to xj^, G(x, x') 
G ( x - x ' ) . Actually G(x, x') = G(x', x), hence can depend only on the 

magnitude of x^ - xj;̂ . To see th i s , we take -G(x' , x) ——- + m' 
\ o x 

G(x,x') = 6 ( x - x ' ) G(x ' ,x) , and in tegra te twice by p a r t s . Since the 
surface t e r m s at «> vanish due to the boundary conditions on G, we 
ob ta in - f G(x', x) + m^G(x', x)) G(x, x') = 6 (x - x') G(x', x). If we 

\ Sx / 
divide by G(x,x ' ) , the ra t io G(x', X ) / G ( X , x') cont r ibutes to the r igh t -

hand side only for x = x' when it is 1. Thus , -f-;̂ —; + rn' 
\ o x 

G(x',x) = 6 ( x - x ' ) . Hence, G(x,x ' ) = G(x ' ,x ) . This is an example of 
symmetry in G which follows from the self-adjoint p roper ty of d^. 

^It is more conventional to denote the Klein-Gordon G r e e n ' s function as 
A(x - x ') , and for zero m a s s D(x - x ' ) . A p resc r ip t ion is needed for c i r ­
cumventing the poles in (p^ - m^)" ' when the invers ion to configuration 
space is pe r fo rmed . The casua l (or Feynman) p ropaga to r s Dj- , Aj,, 
and Sp resul t from the p r e s c r i p t i o n (p - m + ie) 
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Quite generally, propagators have the form 

spin sum 
p2 - m^ • 

This resu l t s from the fact that the wave functions form a complete set for 
an appropriate subspace of spin space, so the inhomogeneous equation, 

which has a 1 for zero spin, has generally the form (p - m ) G = 2_, '^^' 
spins 

For the Dirac equation, we have the useful by-product from determination 
of the propagator, 

2 

2^ uu = 7 • p + m. (15) 
spin=i 

For antifermions, the spin sum would be 

2 

2 , Uj.(-p) Uj.(-p) = p . 7 - m. 
r = i 

These spin sums correspond to the positive and negative energy 
projection opera tors t imes T3u as follows: 

7 • p + m ,., , , - 7 • p + m , ., , .. , 
-—i (2m) and —L_i: (-2m), respectively. 

2m 2m 
III. Interacting Fields 

The inclusion of interaction in this formalism is most easily done 
by using the Lagrangian. F r o m the equations of motion (2) and (6), the free 
or noninteracting Lagrangian density for spin zero is 

£0 = +^°'f*M bJ'M - mV(x) fM. (16) 

where Y'and f* are regarded as independent in the variation. 

Fo r the Dirac equation, 

£0 = ?(x)(- i7° 'S^+m)V(x), (17) 

and f and f are regarded as independent spinor fields in the var ia t ions . An 
interaction t e r m in the Lagrangian will usually be of the form of some non-
quadratic product (interaction implies that the equations of motion be non­
l inear ; otherwise two solutions could be superimposed) of fields with a 
coupling constant in front, which is a measure of the strength of the in te r ­
act ions. Some examples a re : 
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1 Se l f - i n t e r ac t ion of a n e u t r a l s c a l a r f ield, £ j = g0^(x). 

2 In te rac t ion of an e l e c t r o n with the e l e c t r o m a g n e t i c f ield, £ j = 
e^(x) 7a*(x) A'^(X) . 

This las t c o m e s f rom the p r i n c i p l e of m i n i m a l £ l e c t r o m a g n e t i c 
in t e rac t ion , p ^ - Pa '^^a.' 'h" '^ . ^ ( - i 7 ° ' d a ) f - * ( - i7" 'Sa ) 
f + efy°-fAg^. 

3. The weak i n t e r a c t i o n s of nuc l eons and l e p t o n s , £ i = "yr ^ (x) 

y„ ( l + Xi75) ^n(x) ^^(x) 7°'(l +i75) fvM-

Our next t ask is to develop r u l e s for c o n s t r u c t i n g the t r a n s i t i o n m a t r i x 
e lements or ampl i tudes . We wil l c o n s i d e r t h e s e a m p l i t u d e s f r o m s e v e r a l points 
of view. F i r s t , what would we e x p e c t a s the b a s i s of n o n r e l a t i v i s t i c p e r t u r b a ­
tion theory? Recal l that n o n r e l a t i v i s t i c a l l y , c r o s s s e c t i o n s a r e r e l a t e d by 

1 
flux 

i T J ^ d p , 

where the density of final s t a t e s of dp is d^p/(27r)^ for each p a r t i c l e , wi th 
an overal l cons t ra in t of ene rgy and m o m e n t u m c o n s e r v a t i o n . A typ ica l 
second-order T r e s e m b l e s 

f̂i = I 
H* H . fn ni 

We might expect the g e n e r a l i z a t i o n of Hni = / d' x H to be / d'' x £ . As 
for ( E j j - E j ) " ' , this r e s e m b l e s ( p ^ - m ^ ) ~ ' . The r e s e m b l a n c e is c l e a r e r if 
we note 

1 1 
2E 

1 

E - ( P H m 2 \ l / 2 E + ( P ^ m ^ ) 2U/2 

So we just have a sum of ene rgy d e n o m i n a t o r s b e c a u s e both pos i t i ve and 
negative energ ies con t r ibu te , i . e . , p a r t i c l e and a n t i p a r t i c l e . As an e x a m p l e , 
we would expect the ampl i tude for , say , e l e c t r o m a g n e t i c e l e c t r o n - e l e c t r o n 
scat ter ing to r e s e m b l e 

(-47Ti) 
u(p3)7*u(pi) u(p4) 7au(p2) 

(P 1 - P3) 



where the constants (-47:1), which we will add to our rules la ter , have been 
put in for completeness. Note that g"'P/(pi - Ps)^ is the photon propagator. 
We can draw the following picture of this process (Feynman diagram): 

13 

P3 

Pi 

Each element of the amplitude corresponds to an element of the Feynman 
diagram. Each of the external electron lines corresponds to a wave func­
tion u or u. Each internal line corresponds to a propagator or "energy 
denominator," and each vertex to the basic interaction Lagrangian. The 
diagrams are arranged in an approximate space-time order . Since these 
diagrams have such a one-to-one correspondence to matr ix elements, they 
are extremely useful as a means of describing particular matr ix elements. 
For example, a theorist will often say, "I calculated — " 

+ 

which corresponds to lowest-order Compton scattering. 

which port rays neutrino interactions. 

for a Fermion, The convention I use for diagrams is 
for spin zero, .̂̂ .̂ .̂ŝ --̂ ^̂ -../.̂ ^̂ ^ for spin one, and a double 

line f-r most other possibil i t ies. 

Suppose for a moment, we discuss the transition amplitude in a 
more formal way (for this example, quantum electrodynamics of Fermions). 

The equations of motion are 

( i 7 -p -m)V(x) = e7 • A(x) ^(x). (18) 
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Even though all ca lcu la t ion wi l l be done in m o m e n t u m s p a c e , it is 
e a s i e s t to develop the r u l e s in conf igura t ion s p a c e s ince s c a t t e r i n g invo lves 
a definite t ime d i r ec t ion . 

Make Eq. (18) into an i n t e g r a l equat ion , 

^(x) = ^o(x) + e j d \ S p ( x - y ) 7 ' A(y) ^(y) . (19) 

A solution of the homogeneous equat ion for ^o(x) m u s t be added in 
the inve r s ion of a d i f ferent ia l into an i n t e g r a l o p e r a t o r . The G r e e n ' s func­
tion Sp(x - y) sa t i s f i es (iy • d - m) Sp(x - y) = 6(4)(x - y) and is j u s t the 
F o u r i e r t r a n s f o r m of S(p). In the l imi t x,, — +c°, we have (iy • S - m) S p = 0. 
Reca l l ing the r e l a t ion between G r e e n ' s function and spin s u m , we have 

S p ( x - y ) - » i V f Ax) f Ay), w h e r e ^ , is a final f ree D i r a c f. Thus for 
spin 

XQ -* +CO, we have the following form of Eq. (19): 

*f(x) = *„i(x) - ie X ^of^'^) / ' iV?„f(y) 7 • A(y) ^ . (y ) , (20) 
spin 

where f^^ is the incident plane wave, and f^ and A a r e the exac t i n c i ­
dent fl (plane wave and s c a t t e r e d wave) and the exac t e l e c t r o m a g n e t i c 
potent ial , r e spec t ive ly . P e r t u r b a t i o n theo ry r e s u l t s f r o m an i t e r a t i v e 
solution of Eq. (20). The m a i n point is tha t the second t e r m is the change 
in the wave function. The re fo r e the factor - ie / d'̂ y /̂'of y - A ^ i , with exac t 
s ta tes fl, is jus t the t r a n s i t i o n (T) m a t r i x , and it h a s the s a m e f o r m as 
the Lagrangian. 

This Lagrang ian c o r r e s p o n d s to the following d i a g r a m : 

If we have ini t ial ly two p a r t i c l e s p r e s e n t and if we i t e r a t e E q s . (19) and (20) 
plus the cor responding equat ion for the e l e c t r o m a g n e t i c field, 

A^(x) = A°Jx) + 47Te I d V G ^ p ( x - y ) ^j(g) 7'^^i(y), (21) 
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where the Four ier t ransform of G^a{jc- y) is Gj^a(k) = gas/'^^' ^ ^ obtain 
the mat r ix element, 

-i47re^ r dV r d^xti£(x) 7Vii(x) G„p(x-y) Tt'̂ f(y)7( L ( y ) . 

This corresponds to the following diagram: 

IV. Rules for Calculation 

The basic technique of calculation of T imatrix elements is reduced 
to one of drawing the relevant Feynman diagrams and then using the rules 
to associate wave functions, etc., to each part of each diagram. The rules 
are listed below (the 4?: that enters into the rules for electrodynamic inter­
action comes from 9 Â ^ = 47rJ(-̂ ). 

Propagators 

p^ - m^ 
Spin zero 

7 • p + m Spin 1/2 

-ig/Ltv Photon 

Electromagnetic Interaction 

^ P2 

q - ^ o 
- i ^ / ^ e(pi+ P2) € Spin zero 

' Pi 
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V?7T eu(p2)£ • 7i.i(Pi) Spin 1/2 

21471 e ^ £ i • € 2 The A(x)^ i n t e r a c t i o n 
for spin z e r o . 

Weak In te rac t ions of Nuc leons 

C (X 
y f Up(p2) 7a( 1+^^75) lin(Pi) • ^ L ( P L ) 7 (1 + 175) ^viPv) 

l , n 

For the e l ec t romagne t i c a m p l i t u d e s , the f a c t o r s of -i4Tr that we found in 
the s econd-o rde r ampl i tude have been a s s o c i a t e d wi th the v a r i o u s p a r t s 
in ways that a r e espec ia l ly convenient for c a l c u l a t i o n , i . e . , r a t i o n a l i z e d 

units . The factor 2 in r e s u l t s f r o m the two w ay s in which 

the photon wave functions can be a s s i g n e d . 

The p a r t i c u l a r f a c t o r s of i and v47r in t h e s e r u l e s a r e c h o i c e s that 
a r e especial ly convenient and w e r e f i r s t w o r k e d out th i s way by F e y n m a n . 
They a re given in his l e c t u r e s , Theo ry of F u n d a m e n t a l P r o c e s s e s . T h e s e 
ru les actually give i < [ T | > as the m a t r i x e l e m e n t . 

In a c r o s s sect ion, t h e r e a r e two f a c t o r s in addi t ion to | < | T J £ | > | ^ . 
F i r s t there is the flux fac tor . Reca l l tha t we have a n o r m a l i z a t i o n of 
2E per unit volume; thus the flux of incoming p a r t i c l e s i s g iven by 

f = 2Eii2Ei2Vi2, 

where Vjj is the re la t ive ve loc i ty . 

(22) 

Phase space is the l a s t i ng red ien t . The n o n r e l a t i v i s t i c dens i t y of 
s ta tes would be d^p/(2TT)^ for each p a r t i c l e . Howeve r , we m u s t d iv ide out 
our re la t iv i s t ic no rma l i za t ion ; hence for each p a r t i c l e we have d^p / 
[2E(27l)^]. If we note that / dE 6 (E^ - p^ - m^) = ( 2 E ) - ' / dE 6 ( E - V p ^ T ^ ) , 
then we have the mani fes t ly c o v a r i a n t f o r m ZTT 6(p^ - m^) d'*p/(27T)^ for the 
densi ty of s ta tes of each p a r t i c l e . The o v e r a l l d e n s i t y of s t a t e s i nc ludes a 
6 function for momen tum and ene rgy c o n s e r v a t i o n . 
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F o r t h e c r o s s s e c t i o n f o r a t w o - b o d y p r o c e s s . 

P3 

P i 

w e t h e n s u m m a r i z e t h e r u l e s 

1 , , , , . , . 1 2 . 

P4 

P2 

d o = j l < P 3 P 4 | T | p i P 2 > r d p 2 ; f = 2E12E2V12; 

d'*P3d'*p4 
dp2 = (27 r )*6(* ) (P i + P 2 - P 3 - P 4 ) 2 7 r 6 ( p ^ - m i ) 2 T : 6 ( p | - m | ) ^ ^ ^ j ^ ; ^ ^ . (23) 

If c o n s t r a i n t s a r e c o u n t e d t h e n f o r p j t h e r e a r e e i g h t v a r i a b l e s a n d 

s i x c o n s t r a i n t s . O n e of t h e t w o r e m a i n i n g v a r i a b l e s of i n t e g r a t i o n i s a n 

a z i m u t h a l a n g l e , a n d u s u a l l y o n e i s d e a l i n g w i t h a s i t u a t i o n of a z i m u t h a l 

s y m m e t r y . T h i s m e a n s t h a t t h e r e i s o r d i n a r i l y o n l y o n e v a r i a b l e i n a t w o -

b o d y p r o c e s s . T h i s m a y b e t a k e n a s a n a n g l e , o r a s a n e n e r g y , a s i s a p ­

p r o p r i a t e . F o r P3 t h e r e a r e f i v e v a r i a b l e s r e m a i n i n g a f t e r s a t i s f a c t i o n of 

t h e c o n s t r a i n t s . F o u r r e m a i n a f t e r e l i m i n a t i o n of t h e a z i m u t h a l a n g l e . 

T h e f l u x a n d p h a s e s p a c e a p p r o p r i a t e f o r n e u t r i n o i n t e r a c t i o n s i s c o v e r e d 

i n S e c t i o n I of P a r t T w o . 

V. E x a m p l e s of < | T | > a n d | < | T | > | ' 

A . B o s o n s 

1. L o w e s t - o r d e r S c a t t e r i n g i n 0 ^ T h e o r y 

P3 \ / P4 P 3 \ 

^ / ^ 
T = j + ^ — 

Pl / ^ s . P2 P i / 

N o t e t h a t b o t h of t h e l a s t p a i r m u s t b e p r e s e n t b e c a u s e of B o s e - E i n s t e i n 

s t a t i s t i c s . 

I - 1 , 1 I 1 
< P 3 P 4 | T | P i P z > = ^ ^ ^ ^ ^ ^ j , _ ^ 3 ( p , - p 3 ) ^ - m ^ ( p , - p , ) ^ - m ^ -

/ 
/ P 4 

/ 
/ 

\ 
\ P 2 

+ 

\ 
P 4 \ 

\ 
\ 

>--
/ 

/ 
P l / 

/ 
/ P3 

/ 
/ 

- -< 
\ 

\ P ^ 



Using p + P2 = P3 + P4' * ^ v a r i o u s c o m b i n a t i o n s can be changed s o m e w h a t . 

2. E l e c t r o m a g n e t i c Meson ± M e s o n S c a t t e r i n g 

/ 

T = 

T = -i4Tre' 
'(Pi + Ps) • (P2 + P4) ^ (Pi - P2) - (P3 - P4) 

(P1-P3) ' (P1 + P2)' 

B. F e r m i o n s 

F i r s t let us t r e a t a s i m p l e e x a m p l e , p r o t o n - n e u t r o n s c a t t e r i n g 
through a sca l a r field. The v e r t e x is g u u . Thus , 

T = 

M , , p 

Mi ,p 

P4. M2 

P2. M2 

'^p(P3) li(Pl) U(P4) u(p2)^ 

(Pl -P3)^ - m^ 

[(P1-P3) ' - m ^ f 
|u(p3) u(pi)P|u(p4) u(p2)h. 

-"The analytic s t r u c t u r e of a m p l i t u d e s is m o s t s i m p l y e x p r e s s e d in 
t e r m s of the v a r i a b l e s s = (Pi + P2)^ = (P3 + P4)^. * = (pi - P3)^ = (P2 " P4)^ 
and u = (pi - P4) = (P2 - P3)^; only two of t h e m a r e independen t s ince 
s + t + u = M 5 + M 2 + M 3 + M4. F o r the e x a m p l e i m m e d i a t e l y above, 
all the M- a r e equal and 

<P3P4|T|piP2> 
m u - m 

the ampli tude has po les in s, t, and u. The p h y s i c a l s ign i f i cance of 
these va r i ab le s i s : they equal ( total e n e r g y in c e n t e r of m a s s ) ^ for 
some p a r t i c u l a r p r o c e s s . 
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S ince p o l a r i z a t i o n s do not i n t e r e s t u s , we want to a v e r a g e o v e r the in i t i a l 
s p i n s and s u m o v e r the f inal s p i n s . 

Thus, 

\ X R P 3 ) u ( p i ) | ^ i X l^(P4) U(P2)I^ 
[ ( P 1 - P 3 ) ' - rn^Y ^ s p m s sp ins 

A ["^(Ps) u(pi) |^ = Y ^(Pl) u(Pi) u(pi) u(p3) 

s p i n s sp in s 

= Z ii(P3)(7 •P i+ Ml) u(p3) 
sp in s 

= Z Z ^ i ( P 3 ) ( 7 ' P l + M i ) i j Uj(p3) 
sp in ij 

= Z Z ( 7 - P l + M i ) i j Uj(p3) Ui(p3 
sp in ij 

= Z ( 7 - P i + Mi)ij ( 7 - P 3 + M i ) j i 

ij 

= T r a c e [ ( 7 - p i + M i ) ( 7 - P 3 + M i ) ] . 

S ince -we a r e d e a l i n g wi th 4 x 4 m a t r i c e s , 

T r a c e 1 = 4. 

Def ine 

7 . A = A. 

T r a c e [A, . . .A2n+i] = 0, 

i . e . , the t r a c e of an odd n u m b e r of 7 m a t r i c e s v a n i s h e s . To show t h i s . 

T r a c e [Ai . . .A2n+i] = T r a c e [Aj . . .A2n+1175175]. s i n c e (175)^ = 1 

= (-1)2^+1 T r a c e [ iy jA] . . . A2n+ii75] 

= (-1)^"+' T r a c e [A, . . .A2n+1175175]. 
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s ince m a t r i c e s can be cyc l i ca l ly p e r m u t e d wi th in a t r a c e . The f a c t o r 
( . j j2n+i _ . J . hence , the t r a c e m u s t be z e r o . 

T r a c e [ A B ] = 2 A • B T r a c e 1 - T r a c e [BA], us ing the c o m m u t a ­

tion r e l a t i o n s . But T r a c e [BA] = T r a c e [ A B ] . H e n c e , 

T r a c e AB = 4A • B. 

F r o m now on let us d rop the w o r d t r a c e , and let the s q u a r e b r a c k e t i nd i ca t e 

when a t r a c e is to be taken. 

[ABCD] = 2A • B [CD] - [ B A C D ] 

[BACD] = 2A • C [ B D ] - [ B C A D ] 

[ B C A D ] = 2 A • D [ B C ] - [BCDA] 

[ B C D A ] = [ABCD] 

If we add these up and use [ A B ] = 4A • B, 

[ABCD] = 4(A . BC . D - A . CB . D + A . DB . C) 

Since 75 = 7i72737o. i ts t r a c e wi l l v a n i s h wi th any n u m b e r of 7 m a t r i c e s l e s s 
than four: 

[iysABCD] = -4 ie „ . A ' ^ B ' ^ C ' ^ D ' ^ , 

where e ^ Q s is the f o u r - d i m e n s i o n a l a l t e r n a t i n g s y m b o l . 

In a s i m i l a r fashion, if the c o m m u t a t i o n r e l a t i o n s a r e u s e d , 
h igher t r a c e s can be eva lua ted . Back to our e x a m p l e , 

T r a c e [ ( P , + M i ) ( P 3 + M l ) ] = 4 ( M 5 + P I - P 3 ) , 

and 

< T > 
g ^ M J + P i - P 3 ) ( M i + P 2 - P 4 

[ (P1-P3) ' - rn^f 
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PART TWO 

LECTURES ON NEUTRINO INTERACTIONS 

I. Neutrino Interact ions* 

The weak interaction amplitude has the form 

< |T | > = -2:J+J '^ . 
V 2 

The Feynman diagram is 

P L ' ^ ^ L \ ^ P 2 . M 2 

In momentum space, we know the Lepton current is 

J ^ = U(-PT^) 7^(1+175) U ( - P L ) . 

For the baryon current , consider the most general possibility, 

UlP2, 7 , (Gv + GAi75) + 'x^'-
S/_FV_ 
\Mi + I 

F A 

M2 M l - M2 175 

-Hv H A 
"*" 'J>>.\Mi + M2 '̂  Ml - M2^"*'V. 

u(pi ) . 

(24) 

(25) 

(26) 

Why a re there six form factors? There a re two momenta pi and p2, and also 
a spin, say, 7„; the current is a four-vector, and only three independent 
four-vectors can be made from pj, p2, andya- These, plus three more for 
axial vector, make six. The combinations jf^ = (pi+P2)a. l a ~ (Pi " P2'a' ^""^ 
7a a re especial ly convenient. Using the Dirac equation, we can reduce. 
u(p2) a„gqPu(pi) (and any other combinations) to these: 

ii(P2) aajSq^ii(Pi) = u(P2)[-
7aPi - Pi7a " 7aP2 + P27al . 

J u(Pi 

= u(p2)r-(pia + P2a) + (7aPi+P27a)] "(Pi) 

= i i (p2)[ -J i + (Mi+M2)7a] li(Pi)-

This reduction of 0^3 is useful in performing t r a ce s . 

(27) 

*Much of this section is based on a paper of mine: Nuovo Cimento 31, 
447 (1964). 
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The form fac to r s , G, F , and H a r e g e n e r a l l y funct ions , not c o n s t a n t s . 
T i m e - r e v e r s a l i nva r i ance imp l i e s that they a r e r e a l . One of the b a s i c a s ­
sumpt ions of weak i n t e r a c t i o n s is that of l o c a l c u r r e n t s ; t h e s e a r e of the 
form ^(x) 0^(x) . Fo r p l ane -wave s t a t e s , the x d e p e n d e n c e is e-^Pl - Pz) • ^ -
e - i q - ^. If t h e r e i s addi t ional s t r u c t u r e due to s t r o n g i n t e r a c t i o n s , it s m e a r s 
out; i .e . , it i n t eg ra t e s over x, r e s u l t i n g in funct ions of q^ only. Thus the 
form fac tors a r e functions of q^, in g e n e r a l . 

The t r a n s i t i o n ampl i tude for neu t r i no i n t e r a c t i o n s is 

1 
< P 2 P L I T | PiPv > = -Tz'^iPz) 7^(Gv+ 0^175) + '^X^^^[JX:TTI, + W^.'^'J 

H-V 

"*" " ^ ^ I M I + M2 "'' Ml - M2^~''̂  
u(pi) u (p , ) 7^(1 + 175) u(p^) V'-

28) 

The H t e r m s can be ignored s ince q̂ ^ u(pj^) 7'^( 1 + 175) u(p.j^) = U ( P - ] ^ ) ( P L - Pj^ ) 
(1+175) u(p^) = mLu(pj_^)(l+iy5) u(pj_,). 

When the ampl i tude is s q u a r e d and s u m m e d over sp in s , a l l t e r m s 
involving H have fac tors of m in t hem. Even for m u o n s , my is so s m a l l 
compared to the other m a s s e s p r e s e n t that t h e s e H t e r m s c o n t r i b u t e at 
most a few pe rcen t to the c r o s s sec t ion . 

The axial m a g n e t i s m t e r m , ^A'^XH'-i'^^' '-^^ p r e s u m a b l y be ignored 
also, but for a different r e a s o n . If i3a)^QqPi75U is e x a m i n e d u n d e r G p a r i t y 
or under charge conjugation, it t r a n s f o r m s with an oppos i t e s ign f rom 7a 175. 
This means that 71-̂ 175 and Oa AqPi75 belong to d i f ferent c u r r e n t s , for example , 
different i sospin c u r r e n t s . If it is a s s u m e d that the weak i n t e r a c t i o n m u s t 
belong to a definite c u r r e n t under G or C or CP , then the F ^ t e r m s a r e 
excluded. There is no d i r e c t e x p e r i m e n t a l ev idence to i l l u m i n a t e th i s point. 

The ampli tude is now reduced tc 

<P2PL IT| PIPV> = —^u(Pa)p;^(Gv+GAi75) + °x u(pi) u(pj^) 7 ^ 1 + 175) u(pj,), 

- - ^ S ( p 2 ) | 7 x ( ( G v + F v ) + GAiysj " F y ^ ' ^ /^^M u(p,) u(pj^) 7^(1 + 175) u{p„). 

(29) 

using the reduct ion t r i c k for a, q'^. 
A,/3 
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Next we evaluate | < | T | > p. It is convenient to do this by computing 
f irst the lepton and baryon par ts separately, 

J a ^ J p = [ ( l - i 7 5 ) 7 a ( P L - " ^ L ) ^ p ( l + i^5)?^]. (30) 

remember ing that t race is implied. 

Let us ignore m , . Even for muons, this resul ts in an e r ro r of a few 
percent in c ross sections. Let us also use Mj = M2 = M. The nucleon mass 
difference is so small, this introduces negligible e r r o r . Then, 

[ ( l - i75)7aPL7pPv] = 4(pLaPv/3 + PvaPL/3 " ^a^PL ' P,. + ^^aifH^'Phv)-

For the baryon t r aces , we have the following independent t e rms : 

j B J ^ 
• ' a •' ^ 

VV^: | [7*(P1 + M)7'^(P2 + M)] = (p?pf + p?pP - g'^''(pi ' P2-M^)); 

AA^ |[7*i75(Pi+M)7^i75(P2 + M)] = (p?pf + p?pf - g"^(Pi • P2 + M^)) ; 

VA^: ^[7*(pi+M)7'^i75(p2 + M)] = + ! £ „ ? jSr̂ Pi P?'' 

JiJp^- i-[(Pi + M)(p2 + M)] = (P i -P2 + M^); 

Vaj^^: j[7°'(pi + M)(p2 + M)] = M(pi + P2)°'; 

V p ^ - i[7'^i75(Pi+M)(p2 + M)] = 0. 

Simplification resu l t s from introducing 

ix = P L X + PyX' 

i x = P i x " P2X = P L X " PVX-

and 

q- = t = ^Pi - P2y - VPL - Py ^ ^ t = (P1-P2)' = (PT - P J ' -
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Then, 

Pl = j ( j ' + q ) . 

P2 = 7 ( J ' - q ) 

p , = ^ J + q ) . 

and 

"L 2 

P^ = 2 (j - q). 

Note that 

q • J = P L - p t = " ^ L " °-

q • j ' = Pl - P2 = 0; 

P?P2̂  + P?pf = iiiy^^i)^ (j' -q)^ + (j' -q )" (j- + q)^) = i(j '^ ' i ' ' ' -q^^^ 

Also, 

and 

Thus, 

and 

Pl • P2 = M^ - t / 2 . 

PL • Pv == - t / 2 -

•^a J p = 2( jaJp - ^cflfi + ga/3t + '"^a^?,rii^"i^)• 

Vyt: ^ ( j ' ^ j ' P - q » q / 3 + g » P t ) ; 

H f : i(j' '-j 'P.qaq/3.gaP(4M2.^)J. 

V^̂ ^ i%|3|r)J'?q^; 

j ' j ' ^ j(4M^-t); 
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V ' ^ j ' ^ : Mj ' '*; 

A ^ j 
a. ,p ' . 

F i n a l l y , we c o n s t r u c t | < | T | > p by s u m m i n g the r e s u l t s f r o m the 
t a b l e of VV S e t c . , and s imp l i fy ing the e x p r e s s i o n s , 

< |T| > G^ + GX It 
4M^ 

[(j • j ' ) ^ + t ( 4 M ^ - t ) ] 

+ ( G a + F y ) ^ 2t^ - G X 2 t ( 4 M 2 - t ) ± (Gy + F y ) GAtj • j 

(31) 

w h e r e t = q^ i s one of the i n v a r i a n t v a r i a b l e s , and G y , G^ , and F y a r e a l l 
func t ions of t. We c a n w o r k out t he v a l u e s of j • j ' in t e r m s of the i n v a r i a n t 
v a r i a b l e s t and s = (p.î  + Pi)^ = (PZ + P T ) ^ - In t e r m s of l a b o r a t o r y v a r i a b l e s , 
in t he l i m i t , m j ^ = 0. T h e n t = (p^ - Pj^)^ = - 2 E y E L (l - c o s Sj^) = (pi - Pz)^ 
= 2 M ( M - E j ) , and s = M^ + 2ME,, . 

T o e v a l u a t e j • j ' = (p-^ + p,^) • (P1 + P2). we u s e the fol lowing r e l a t i o n s : 

P L ••" Pi^ = q + ^Pv-

q • j ' = 0; 

Pl + P2 = 2pi - q; 

PTI = - q y2; 

Pl = 4 ( s - M ^ ) . 

The r e s u l t i s j • j ' = 2(s - M^) + t. 

F o r n e u t r i n o e x p e r i m e n t s , the flux f ac to r for t he l a b o r a t o r y f r a m e i s 

f = 2 E y 2 M i . (32) 

S ince t h e r e l a t i v e v e l o c i t y i s c = I, Mi is the m a s s of the t a r g e t n u c l e o n . 

T h e p h a s e s p a c e a p p r o p r i a t e for n e u t r i n o e x p e r i m e n t s i s a l a b o r a t o r y 

t w o - b o d y p h a s e s p a c e . 

r d p 2 =j 6 ( ^ ) ( p . - p L - p 2 ) 6 ( p ^ L - mi ) 5{pl-Ml) 
^L 

d"pLd^P2 
(33) 
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where p. is the to ta l m o m e n t u m of the i n c o m i n g s y s t e m . We c a n e l i m i n a t e 
the c o n s t r a i n t s due to the 6 funct ions one at a t i m e . 

In t eg ra t e over d p2 

rdp2 = f^pl-rr^V 
/ \ ^^PL 

'((Pi-pJ^-^UTi^-

w r i t e P L = ( E L ' S L ) ' Pi = ^^i'^0' ^ "^ < ^ ' P L = '^^l.'^i'^^l^'^^T.' I n t e g r a t i o n 

over d E L gives ( 2 E L ) " ' along with E L 
6(E^, PL This l e aves 

PT + mr ' ^^^ '̂ °°'- f^°"^ 

(EI - y P l + " L ) ' M 
P L d P L d ^ L 

(2TT)̂  2yP |^ + m 

Next, do we want a c r o s s - s e c t i o n d i f f e ren t i a l with r e s p e c t to d P j ^ or dH-L' 
F i r s t let us choose dfi^; th i s m e a n s e l im ina t i ng P ^ . C a l l P^ • P L = 
P i P r cos 9 L - * ^ wr i t e the above a r g u m e n t of the 6 funct ion in a m i x e d 

t h r e e - and f o u r - d i m e n s i o n a l fo rm 6 ( pj + m ^ - 2 ( E j . y P L + "^L " 
F f P L "^os S L ) " 1^2). a-nd t ake the d e r i v a t i v e to ob ta in 

dp2 = 
P'^dfiL 

(47 r )2 (E iPL-P iEL cos 
(34) 

'hi 

w h e r e E L = - \ / P L •*" "^L ' ^""^ ^ L is the f a i r ly c o m p l i c a t e d funct ion of ang le 
obtained by solving for P L in the above c o n s t r a i n t ; i . e . , it i s d e t e r m i n e d by 
the k i n e m a t i c s , once the angle is given. 

If we w e r e i n t e r e s t e d in d a / d P L in s t ead , then the i n t e g r a t i o n would 
have been over d cos 9j_^. A subsequen t i n t e g r a t i o n o v e r d 0 L t h e n g i v e s 27r. 
P e r f o r m i n g the 0 i n t eg ra t i on is only p o s s i b l e if it i s known t h a t the t r a n s i ­
t ion p robab i l i ty is independent of 0 L . The r e s u l t i s 

dp2 = 
8 7 T P : E T • 

(35) 

We have used the following f o r m u l a h e r e : 

^W'̂ '] = r ^ * ( ' ^ - - o ' 

w h e r e XQ is a z e r o of f(x), f(xo) = 

6 function 6(fTi5a^ + f ' (xo)(x-xo) + . . . ) , and now u 

which c o m e s f rom | 6 ( a x ) d x = ! 6 (ax) fd (ax) l / 

To see t h i s , expand f(x) i n s i d e the 

se r u l e 6 (ax) = 1—|6(x) 



Again, E L = -vVPL "*" "^L' ^^^ ^°^ 9 is a function of P L given by the 
kinematical constraint . 

If we are interested in the baryon angle or momentum, we need only 
interchange P L and Pj in the phase space formulas. 

We now have all the ingredients to obtain the differential c ross 
section, 

da = | | < | T | > pdp2, (36) 

where f, dp2, and | < | T | > |̂  are given by Eqs. (32), (34) and (35), and (3l), 
respect ively. 

II. Hyperon Production in an SU3 Model* 

This work was a collaboration with N. Cabbibo, and is somewhat 
based on an ea r l i e r letter by Cabbibo in Physical Review Let ters on an 
SU3 model of weak interact ions, and a paper by myself in "Nuovo Cimento" 
discussing hyperon production by neutr inos. 

Our principle motivation was to t ry to construct a definite test of 
the Cabibbo model in neutrino interact ions. Such a test would depend on the 
quantitative detai ls . Some numer ica l resu l t s are shown at the end. 

The AS = AQ rule permi ts only three hyperon interactions: 

~ + p — A + lU"*", 

V + n ^ 2" + M"*". 

and 

17+ p ^ 2 ° + ^ + . (37) 

The third react ion is re la ted to the second by the AI = 1/2 rule, 

da(2°) = y d a ( S - ) . 

P L - ' ^ L \ / ' P 2 . M 2 

Pi .Mi 

*This lecture was given at a Theoret ical Seminar. 
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The general amplitude for V + N -> B + L has a cu r ren t - cu r ren t 
form. The lepton current is 

J ^ = viVji) 7^(1+175) v(/i ). 

while the most general baryon current is 

<B2 | j n Bi> = |S(p2)-J7-,(Gv+GAi75) + ^^^^[jI^TTX, ' i ^^T^ i ' ^V 

+ q. 
Hy H A 

+ . XV Ml + M2 M2 - Ml 
175 N(Pi)- (38) 

The form factors are functions of the invariant momentum transfer, 
q^ and are all real as a consequence of T or CP invariance. 

The basic idea of the SU3 model of Cabibbo is to divide the baryon 
current in AS = 0 and AS = 1 parts , 

J = cos ej*") + sin e j W . (39) 
X X X 

That they should not have equal constants is already forced upon you by the 
experimental difference between the AS = 0 and AS = 1 r a t e s . SU3 enters 
through the assumption that the current t ransforms like an octet of SU3. 
The angle 9 can be determined from experiment. It is especially interesting 
that 9 ~ 0.26 follows from both Kgs to 7Tg3 and the K^2 to 71̂ 2 decay-rate 
ratios. This is a nontrivial result since Clebsch-Gordan coefficients of 
SU3 have been used. Since the strong interactions are different for all these 
decays, it suggests universality to some degree. 

The most general expression for the baryon current can be simpli­
fied considerably. While H^ can possibly be related to G^ through the 
notion of an almost conserved current, on practical grounds this would be 
irrelevant since the H terms correspond to q.. The derivative q acting 
on the lepton current gives nriL, and one can easily show that all t e rms in 
H or H in the cross section have a factor mA in front of them. They are 
also typically about 1% in their contribution to the c ross section and can be 
ignored. 

For beta decay, Weinberg has shown that the F ^ t e rm has opposite 
character under the G transformation than G^. He calls F ^ a "second-
class" current. This means that if the primitive Lagrangian had only G^ 
present, then F ^ could not be induced by strong interact ions. Also, if G^ 
is a member of an isospin current, then F ^ could not belong to the same 
isospin current; it would have to belong to some other isospin current . 
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This kind of argument can be generalized to a rb i t ra ry multiplets, 
in our case octets. We look at an octet of currents -

AS = 1 
0 ( 0 ) 0 

AS = 0 
o o 

Because the cur rents of interest to us are members of a multiplet, we can 
look at the transformation propert ies of other members of the multiplet 
under some transformation, say, charge conjugation. The neutral members 
for Oj^nqPiys t ransform with the opposite sign from 7ai75. Therefore, they 
cannot be members of the same multiplet, and FA could not be induced by 
SU3 invariant strong interactions from G^-

We call a„ oqPiys a "second-class" current, and set F ^ to zero in 
what follows. Note that q-> is second class also, and Hy would have been 
set to zero if its contribution were not already ignorable on practical 
grounds. I see no reason why a nonzero F ^ could not ar ise from symmetry-
breaking interactions. Presumably, it would make a smaller contribution 
than the G^ te rm. There is no experimental evidence, either for or against 
these axial magnetism F ^ t e rms . 

The baryons belong to the 8 representation of SU3. There are two 
8's in 8 ® 8; they are usually classified as odd and even under R, which is 
reflection through the origin in the weight diagram. In t e rms of two reduced 
matr ix elements, using Clebsch-Gordan coefficients of SU3, 

<n |J;^| 2 -> = sin 9 [O ^-S ^); 

< p | J x | A > = - s i n 9 y f ( c J ^ + i ^ J . (40) 

For the vector parts , the conserved vector current hypothesis would 
have jV belonging to the same octet as the electromagnetic j-^ current, so 
we determine 0 ^ and £-f^ from the electromagnetic current, 

< p b J P> = <? r + ^<?^ 
1 

<n IJ x l ' ^ > = - | ^ x -
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T h e n 

a n d 

F P ( t ) + i F ' ^ ( t ) "*'X "*" 2M]xi 
F P ( t ) + | F ? ( t ) ''xpi' 

^ ^ - | F ? ( t ) 7 , - 4 j ^ F ? ( t ) a _ q ^ 
' ^ H ' 

(41) 

w h e r e 

F F ( 0 ) = 1, FI ' (O) = 0, F F ( 0 ) = ^p, and F^(0) = /i^' 

T o d e t e r m i n e t h e a x i a l v e c t o r p a r t s , w e u s e 

< p | j ; , | n > = c o s e{0^+£^). 

N o w , 

G A l n - . p = c o s 9 ( G A ( t ) + c f ( t ) ) = c o s 9 G A ( t ) , 

G A ( 0 ) = 1.25, 

a n d a p a r a m e t r i z a t i o n , 

G A ( t ) = GA( t ) X (t) . 

(42) 

G i ( t ) = G A { t ) ( l - x ( t ) ) . (43) 

F r o m t h e d e c a y of 2 , x = 0 . 2 5 . It i s v e r y i n t e r e s t i n g t h a t t h i s 
3 - t o - l , d - t o - f r a t i o i s t h e s a m e a s f o u n d i n s t u d i e s of s t r o n g i n t e r a c t i o n s . 

F i n a l l y , 

< p | j x l A > = - - T j s i n " ^ P ( t ) 7 , + F P ( t ) ^ 
2 M N 

1 + 2 X (t) „ , . . 
+ ^ G A ( t ) 7 ^ i 7 5 

and 

< n IJ;:^! 2 > = 
72 F P ( t ) + 2F'i^(t: 

'^X ^ 2MI..J 
F r t + 2 F ?(t)l 

• ^X/jq*^ - ( l - 2 x ( t ) ) G A ( t ) 7 ^ 1 7 5 ! . (44) 



These express ions for the weak cur ren ts apply in the exact symmetry unit. 
How can symmetry breaking be included in the amplitude? Certain obvious 
correc t ions can be made although not ent irely without ambiguity. We can 
replace 2Mj^ by Mi + M2. The isovector form factor is dominated by the 
p meson. Thus it seems reasonable to expect the K* to dominate the 
s t rangeness changing form factors . This is consistent with present data on 
Ke3 decay. Thus we have used 

f(t) = 2 (45) 
Mj^* - t 

as the functional dependence of the form factors in our numerical examples. 

Any possible dependence of x(t) on t is too fine a detail to be experi ­
mentally evident for some time to come. We t rea t it as a constant. Vir­
tually nothing is known about the functional dependence of GA(t), nor are any 
axial vector resonances known. Presumably it falls off also. For the pur­
poses of numerica l examples, we choose f(t) for G A also. 

Let us summarize our r e su l t s . 

For <p |J.^| A>, 

Gy = -G sin e-W 2 f(t)'. 

/s" 1 + 2x w > 
G A = -1.25 G sin 9 - J - - ^ f(t); 

F y = -G s i n 9 ^ M p f ( t ) . (46) 

For <n | j ^ | 2">, 

Gy = G sin 9 f(t); 

G A = 1-25 G sin 9(l - 2x) f(t); 

F y = G sin 9(/ip + 2^n) f(t)- ^^''' 

In each case , 

F A = 0, HTT - 0, and H A is ignored. 

The formula for the differential c ross section is 
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dt 32TTkBiS 

F ^ r t 

^ ^ (M1 + M2). 

x((j • y)' - (Mi-Mi)^ - {m\^-t){M, + U,)' + (M2-Mi)^ - t) 

+ 2 (Gy + Fy)'((M2-Mi)^ - t) + GX( (MI + M2)^ - t) 

- 4(Gy+Fy) GA[J • j ' t + m^L(M2-^i)]p 

m|^-t) 

where 

a n d 

k B i 
Ml 

2 7s 

j • j ' = (P1 + P2) (kx,+ PL) = 2s - MJ - M2 m'L + t. 

Expressions for the various laboratory da/dfi or da/dE are directly obtain­

able from da/dt; in fact, da/dE^ = 2Mida/dt. 

I would like to show some graphs of the results. I have a 7090 com­

puter program that evaluates and plots the differential and total cross sec­

tions. Figures 1 and 2 are do/d cos 9 in both the lepton and baryon angles 

for A and Z, and Ey = Z BeV. The baryon cross section is plotted in a 

double-valued fashion. This corresponds to the baryon being forward in the 

laboratory for both the forward and backward leptons in the center of mass. 

Fig. 1 

Differential Cross Section as 

a Function of Lepton Angle 



33 

s 
b 

Fig. 2 

Differential Cross Section as 
a Function of Baryon Angle 

Notice the accummulation at the maximum angle. Figure 3 shows da/dt for 
A and 2 and Ey = 2 BeV, and Figure 4 shows the total c ross sections. In 
each case, there are significant quantitative differences between the cross 
sections which could test the relative features of the model. We also p re ­
dict the absolute magnitudes. It is also of interest to compare magnitudes 
of the total c ross section with the nucleon cross sections; at 1 BeV, the 
ratio of v"-* A to i7-* n is about l / l 5 , while at 3 BeV the ratio is about l / lO. 

Fig. 3. Differential Cross Section 
as a Function of t 
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Fig . 4. Tota l C r o s s Sec t ion 
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