Adv¥EI1 OHVAI 0L N¥NL3Y




LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United
States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accu-
racy, )| or ful of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the
use of any information, apparatus, method, or process disclosed in this report.

As used in the above, ‘‘person acting on behalf of the Commission”’ includes any em-
ployee or contractor of the Commission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee of such contractor prepares,
disseminates, or provides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.

Printegl in 4U-SA. Price $2.00. Available from the Clearinghouse for Federal
Scientific and Technical Information, National Bureau of Standards,
U. 8. Department of Commerce, Springfield, Virginia




ANL-6989

Physics

(TID-4500, 38th Ed.)
AEC Research and
Development Report

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60440

INSIDE QUANTUM FIELD THEORY
AND
LECTURES ON NEUTRINO INTERACTIONS

by

Frank Chilton*

Institute of Theoretical Physics, Department of Physics,
Stanford University, Stanford, California

December 1964

*Supported in part by the U. S. Air Force Office of Scientific
Research, under Grant AF-AFOSR-62-452.

Operated by The University of Chicago
under
Contract W-31-109-eng-38
with the
U. S. Atomic Energy Commission






TABLE OF CONTENTS

RRIEE G S S s Sl T8 St o a s R e L R e bR
PART ONE: INSIDE QUANTUM FIELD THEORY
TNt rOGUGEI O i R SN S MR e 0 R S e
TN oninte cacting Hieldss oRina i s i is s s SRR R
I teractingsiiclds i EEatE SENCE SRR e e
IR R e shtori@ aliculatTons s St v SR R Sl A e SR
V. Examples of < ITl > and |<|TI>|2 ..................
PART TWO: LECTURES ON NEUTRINO INTERACTIONS
I. Neutrino Interactions . . . . . « « o« o« o o o v oot et

II. Hyperon Production in an SUj Modelpiin Al S a5 wr it oy

11

15

17

2l

27



2

LIST OF FIGURES

Title

Differential Cross Section as a Function of Lepton Angle. . . . .

Differential Cross Section as a Function of Baryon Angle

Differential Cross Section as a Function of t

Total Cross Section

Page
57
55
53

34



INSIDE QUANTUM FIELD THEORY
AND
LECTURES ON NEUTRINO INTERACTIONS

by

Frank Chilton

PREFACE

The intense effort being devoted tohigh-energy phys-
ics these days has resulted more and more in the emergence
of two distinct cultures, experimentalists and theoreticians.
Experiments at manymegavolts often cost some megabucks
and sometimes seem to have a few mega-authors on the

paper.

These lectures grew out of a visit to the Neutrino
Group of the High Energy Physics Division of Argonne Na-
tional Laboratory. This visit could possibly be construed
as our effort tobridge the two-culture gap. As exchange for
these lectures on theory,l was initiated into the mysterious
rites - lasting many days and nights - that experimentalists
practice around the ZGS.

I am indebted to Professor R. G. Sachs for extending
the hospitality of the High Energy Physics Division, and to
Drs. T. B. Novey and D. D. Jovanovic of the Neutrino Group
for making the visit possible.






PART ONE
INSIDE QUANTUM FIELD THEORY

I. Introduction

The purpose of these lectures is to provide a review and summary
of the fundamental ideas of quantum field theory, with a special emphasis
on selecting those features that are relevant to applications, and merely
acknowledging the features that are not. We are definitely interested in
building a minimal set of ideas.

The first complication of the usual formalism of quantum field
theory, which can be omitted, is second quantization. Ordinary quantum
mechanics already provides a rule of associating a wave function to each
particle, so we do not actually need an algebra to do it for us. Second
quantization does give some interesting results, but the point is that it is
not necessary. Creation and annihilation operators never appear in cross
sections, and the original rule of quantum mechanics is sufficient. Quantum
dynamics is fully contained in the wave equations.

II. Noninteracting Fields

From classical physics, we know that the momentum-energy rela-
tion for free particles is

P~ = D. (1)
The choice of units here is h = ¢ = 1; this makes mass proportional to
length™!. A real metric is chosen p2 = pOLpOL = p’. The metric tensor
is (l'l-l_l) = gaﬁ = gup- While the real metric has the complication com-

pared to the complex metric of maintaining the covariant-contravariant
distinction, it has the simplification of introducing no problems with com-
plex conjugation.

If we use the usual momentum operator correspondence of quantum

mechanics, o e i a—— = ida, then Eq. (1) results in the following wave equa-

o)
00
tion for spin zero (Klein-Gordon equation):

(9%+ m?) ¥(x) = 0. (2)

How does one relate a probability density to this equation? Total probabil-
ity for free particles, must be conserved; i.e., it is constant; in fact, it
equals 1 with some normalization. Note that (9% +m?) ¥*(x) = 0; thus,
P*(3%+ m?) % - ¥(d%+ m?) Y* = 0. This is just % (y* V¥ -¥3q¥*) = 0. Then
the (conserved) probability current is




Ty = iW* ¥ -¥3¥*). (3)
The factor i is put in to make J, Hermitian; it also corresponds to pg ~ ida.

The Dirac equation resulted from a search for a wave equation that
was only first order in ida., The argument is as follows:

Every particle must satisfy (3%+m? y(x) = 0. Then, to ﬁ(:?d a first-
order equation in ida, we can only have combinations such as (iy 0a-m)
¥(x) = 0, where the v% are constant (matrices), independent of x. Note that
only m can occur, not m?, m?, etc., since (32+m?) ¢ = 0; 0%+ m? can be
obtained through multiplication by (iyﬁaﬁ +m). We obtain

-(vPy23,3, +m?) ¥ = 0. (4)

&
We must require yﬁyaaﬁaa = 0%0q to obtain the Klein-Gordon equation.
Now dg9dq = da BB is symmetric; thus, By = (1/2)@53/1 +7a7'5) + (1/2)
(yBy®-~%P), contracted with Opdq, leaves only the symmetric part; further,
Rl & éaaﬁgaﬁ. Therefore,

Py + Vavﬁ = 2g% (5)

Since the 'yOL anticommute, they cannot be just numbers but must be matrices.
The smallest set of four matrices that satisfy the anticommutation rela-
tions (5) are 4 x 4; they correspond to spin 1/2. This means ¥(x) is a

1 x 4 spinor. The conclusion is that if the ¥ ~satisfy Egq. (5), we have the
wave equation for spin one-half, !

(iv%3, - m) ¥(x) = 0. (6)

+ T’]rne Hermitian conjugate (complex conjugate, transpose) satisfies
-i0g¥ Y*" - ¥'m = 0. Egquation (5) is the only restriction upon the Va made
by quantum dynamics. The relation between Y% and ’yaT can be determined
by convenience. We choose v, = 7V, and ZT = "1(')/5_: -Ys). This choice de-

termines ¥ =9y, as the adjoint spinor so that —iaa?//’ya -¥m = 0.2

lOther combinations of the Y-matrices are useful in formulating inter-

actions; Vs = ¥,V;V3Yo anticommutes with the Yo; VsV¥o + Ya¥s = 0. For
magnetic moments, the antisymmetric OOLB = (VQVB '7[37(1)/2 is the ap-
propriate combination.

2

In ge_nearal_,_ the only coniition one would make upon the adjoint spinor is
—_iaall/“/ -ym = O;ie., Yy -p-m) = 0,if (y-p-m)¥ = 0. If we suppose
T = 1A, then -1, ¥'A A7'9%a — ytam = 0 or A-1y*A = 4% For
Vo= YoV = Wit =1, 2,3 then A= o, Notelalsoithat Yo = Ya
would yield A = 1. As A =

=1 + Yo is conventional, for historic reasons we
will use ¥ = V' Yo.



¥ To construct the probability, we have E(iy“aa -m) Y- ['iaa$7a1//'
myyY] = 0, which yields Oy@y%¥) = 0; thus the (conserved) probability cur-
rent for spin 1/2 is

Ja = J(x) 7a7p(x). (7)

Usually one is interested in solutions of the wave equations that
correspond to definite momentum. For the Klein-Gordon equation, the
plane wave solution is

Yplx) = eTIP X (8)
P
We can check the normalization of this solution by computing Ja(x),
U6 = 2y (9)
Jo = 2E as the covariant normalization corresponds to 2E particles per

unit volume, rather than the one particle per unit volume of nonrelativistic
quantum mechanics. The spin 1/2 plane wave solutions are

Illp(x) = upe'iP'X, (10)

where up is a 1 x 4 spinor satisfying
(y-p-m)uy = 0. (11)

To determine the most useful normalization for the G, we again examine
Jolx) = El'pyau . We would like to have something like J o ~ 2pg. Note that
(V'p/m) i, = u, and GP(V'p/m) = Gp' Thus,

" Ep('Ya:y -p+Y PYa) Upiee 5 Gpup

JOL 3 2m = Clohy

2T

Thus the appropriate normalization for spinors is

Gpup = Zsa, (12))
The wave functions for antiparticles are simply related to those for

particles. For spin zero, an antimeson would have a wave function etip - x

instead of e 1P "X, For spin 1/2, we would use T(-p) eP X instead of

u(p) e"iP* X for the antifermion of momentum p. In this case, we would have

the normalization G(-p) u(-p) = -2m.3

30ur choice of wave functions for antiparticles corresponds, in a second
quantized formalism, to the fact that a field operator Y(x) is a sum of
two parts, one of which annihilates particles and the other creates anti-
particles; {//_then creates particles and annihilates antiparticles.
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re interested in interacting particles we need to discuss
that is, the equations appropriate when sources
function or propagator or unit-point-source solu-

Since we 2
inhomogeneous equations,
are present. The Green's
tion for the Klein-Gordon equation satisfies

_(52+m2) G(Xa’xfx) = 5(4)(xa-x<'x),

Taking the Fourier transforms

< 3 !

and

| S (13)

which is the propagator for spin Zero.5 For spin 1/2, we have ('Y-p- m)
S(p) = 1, where S(p) is a 4 x 4 Green's matrix, and 1 is the 4 x 4. The

propagator for spin l/Z is

_ 1 N pia
_'\/.p_m_pZ_mZ' (14)

S(p)

4This is true because we can translate the origin to xg, G(x, x') =
G(x - x'). Actually G(x,x') = G(x', x), hence can depend only on the
2
magnitude of xy - x{,. To see this, we take -G(x', x) F + m?
X
G(x,x') = 6(x-x') G(x',x), and integrate twice by parts. Since the
surface terms at © vanish due to the boundary conditions on G, we

3
obtain -(F G(x', x) + m®G(x', x)) G(x, x') = 6(x-x') G(x', x). If we
X

divide by G(x, x'), the ratio G(x',x)/G(x, x') contributes to the right-
2

hand side only for x = x' when it is 1. Thus, - ’a——z me
X

G(x',x) = 8(x-x'). Hence, G(x, x') = G(x',x). This is an example of
symmetry in G which follows from the self-adjoint property of OF,

51t is more conventional to denote the Klein-Gordon Green's function as
A(x-x'), and for zero mass D(x-x'). A prescription is needed for cir-
cumventing the poles in (p?- m?)~! when the inversion to configuration
space is performed. The casual (or Feynman) propagators Dp, O,

and Sy result from the prescription (p2 -m?+ie)”t
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Quite generally, propagators have the form

spin sum

T

This results from the fact that the wave functions form a complete set for
an appropriate subspace of spin space, so the inhomogeneous equation,

which has a 1 for zero spin, has generally the form (pz—mz) G = 2 uu.

spins
For the Dirac equation, we have the useful by-product from determination
of the propagator,

2
z €18 S koo an e, (15)
spin=1
For antifermions, the spin sum would be
2
Y ur(-p) Tp(-p) = p - v - m.
r=1

These spin sums correspond to the positive and negative energy
projection operators times Uu as follows:

. - . +
Ap o (2m) and S (-2m), respectively.
2m Zm P

III. Interacting Fields

The inclusion of interaction in this formalism is most easily done
by using the Lagrangian. From the equations of motion (2) and (6), the free
or noninteracting Lagrangian density for spin zero is

Lo = +%P*(x) do¥(x) - m*P*(x) Y(x), (16)
where ¥ and ¥* are regarded as independent in the variation.
For the Dirac equation,
= P(x)(-iv"3, +m) Y(x), (17)

and ¥ and Iiare regarded as independent spinor fields in the variations. An
interaction term in the Lagrangian will usually be of the form of some non-
quadratic product (interaction implies that the equations of motion be non-
linear; otherwise two solutions could be superimposed) of fields with a
coupling constant in front, which is a measure of the strength of the inter-
actions. Some examples are:
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1. Self-interaction of a neutral scalar field, £y = g% (x).

2. Interaction of an electron with the electromagnetic field, £1 =
eP(x) yo V(x) A%(x).
This last comes from the principle of minimal electromagnetic
interaction, py ~ Pg -€Aq; thus, E(-i.yaaa) Y- w(_waaa)
v+ ey YA,

& =
3. The weak interactions of nucleons and leptons, {1 = :/—2 Yllp(x)
Yo 1+ Aiys) ¥n(x) Pplx) Y1 +1ivs) Yo (x).

Our next taskis todevelop rules for constructing the transition matrix
elements or amplitudes. We will consider these amplitudes from several points
of view. First, what would we expectas the basis of nonrelativistic perturba-
tion theory? Recall thatnonrelativistically, cross sections are related by

L2
o= flux]T‘ L

where the density of final states of dp is d3p/(2'n)3 for each particle, with
an overall constraint of energy and momentum conservation. A typical
second-order T resembles

*
_ /Hinn
S L e
= ik

We might expect the generalization of Hni = [ a® x H to be Ir dt % (CRAT

for (E, - E;)7!, this resembles (p?- m?)”!. The resemblance is clearer if
we note

1 1 1 1
T 5 + ;
p’-m? 2E I:E - (P?+m?Y2 E + (P2+m2)1/2]

So we just have a sum of energy denominators because both positive and
negative energies contribute, i.e., particle and antiparticle. As an example,

we would expect the amplitude for, say, electromagnetic electron-electron
scattering to resemble

2 u(ps) VOCU(P1) G(P4) 'YaU(Pz)
(p1 - P3)2

T = (-4mi) e



where the constants (-4mi), which we will add to our rules later, have been

put in for completeness. Note that ga"B/(pl = p3)2 is the photon propagator.
We can draw the following picture of this process (Feynman diagram):

P3 Pa

12 Pz

Each element of the amplitude corresponds to an element of the Feynman
diagram. Each of the external electron lines corresponds to a wave func-
tion u or @. Each internal line corresponds to a propagator or '"energy
denominator," and each vertex to the basic interaction Lagrangian. The
diagrams are arranged in an approximate space-time order. Since these
diagrams have such a one-to-one correspondence to matrix elements, they
are extremely useful as a means of describing particular matrix elements.
For example, a theorist will often say, "I calculated ...."

gl

which corresponds to lowest-order Compton scattering,
L n

or
v

which portrays neutrino interactions.

The convention I use for diagrams is ————— for a Fermion,

for spin zero, ~~~—~~~~~~ for spin one, and a double
—— for most other possibilities.

Suppose for a moment, we discuss the transition amplitude in a
more formal way (for this example, quantum electrodynamics of Fermions).

The equations of motion are

(iy-p-m) ¥(x) = ey - Alx) ¥(x). (18)

%5
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Even though all calculation will be done in momentum space, ilie it
easiest to develop the rules in configuration space since scattering involves
a definite time direction.

Make Eq. (18) into an integral equation,

W) = ol + efd4ysF(x-y> v Aly) Uy). (19)

A solution of the homogeneous equation for Y (x) must be added in
the inversion of a differential into an integral operator. The Green's func-
tion SF(X -y) satisfies (iy- 0 - m) SF(x— )= 5(4>(x -y) and is just the
Fourier transform of S(p). In the limit x, > +®, we have (iy- 0-m) Sgp = 0.
Recalling the relation between Green's function and spin sum, we have

Sp(x-y)—i z wof(x) Izof(y), where wof is a final free Dirac ¥. Thus for
spin
Xy = +o, we have the following form of Eq. (19):

Ye(x) = 9,;(x) - ie D Y, ¢(x) f Aty ¥ fly) v - Aly) #4(y), (20)

spin

where %y is the incident plane wave, and ¥; and A are the exact inci-
dent ¥; (plane wave and scattered wave) and the exact electromagnetic
potential, respectively. Perturbation theory results from an iterative
solution of Eq. (20). The main point is that the second term is the change
in the wave function. Therefore the factor -ie fd“y%f Y - AYi, with exact

states ¥j, is just the transition (T) matrix, and it has the same form as
the Lagrangian.

This Lagrangian corresponds to the following diagram:

e

If we have initially two particles present and if we iterate Egs. (19) and (20)
plus the corresponding equation for the electromagnetic field,

AOL(X) = A(()x(x) + drre f d4YGaB(X‘ y) Jf(g) 'Yﬁwi(‘/), (21)



where th.e Fourier transform of GG,B(X_ y) is Gaﬁ<k) = gocﬁ/kz’ we obtain
the matrix element,

N

-1411er d4yf P (x) Y45 (%) G plx-y) Bely) ¥ 5ily).

This corresponds to the following diagram:

IV. Rules for Calculation

The basic technique of calculation of T matrix elements is reduced
to one of drawing the relevant Feynman diagrams and then using the rules
to associate wave functions, etc., to each part of each diagram. The rules
are listed below (the 47 that enters into the rules for electrodynamic inter-
action comes from GZAOL = 471'JOL).

Propagators
1 Spin zero
p? - m?
L_m_ Spin 1/2
p? - m?
Tl8uv Photon
K2

Electromagnetic Interaction

S s~~~ -in/fAT e(py tp2) (€ Spin zero

- q’ €a

1G]
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P2
VAT ei(p,) € - yu(py)  Spin 1/2
P1
\\
RS ! 2i4m e2 €, - €, The A(x)? interaction
i for spin zero.
//
€,
Weak Interactions of Nucleons
20D, L
G _ . — o y
/7 %p(P2) Yall #A1ys) un(pa) Tp(pr) ¥ (1 +1¥s) up(py)
1,n v

For the electromagnetic amplitudes, the factors of -i47m that we found in
the second-order amplitude have been associated with the various parts
in ways that are especially convenient for calculation, i.e., rationalized

5
units. The factor 2 in \\j(.:results from the two ways in which
///

the photon wave functions can be assigned.

The particular factors of i and \/E in these rules are choices that
are especially convenient and were first worked out this way by Feynman,
They are given in his lectures, Theory of Fundamental Processes. These
rules actually give i < ’T|> as the matrix element.

In a cross section, there are two factors in addition to |<'Tif|>|2'
First there is the flux factor. Recall that we have a normalization of
2E per unit volume; thus the flux of incoming particles is given by

£ = 2F2E Ly, (22)
where v, is the relative velocity.

Phase space is the last ingredient. The nonrelativistic density of
states would be d’p/(27)? for each particle. However, we must divide out
our relativistic normalization; hence for each particle we have d3p/
[2E(2m)%]. If we note that JAE 6(E*-p?-m?) = (2E)"! [ dE Bl \/pz+m2),
then we have the manifestly covariant form 27 é(p2 - mz) d4p/(27T)4 for the

density of states of each particle. The overall density of states includes a
6 function for momentum and energy conservation.
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For the cross section for a two-body process,

P3 o

P P2

we then summarize the rules
1
do = 7 |<pspelTlpip>[2dpss £ = 2E2Epvyy

d*p;d*ps

dp, = (2m* 6(#)(p,+p; - ps - ps) 276(p% - m3) 2m5(p§ - mf) e

(23)

If constraints are counted then for p, there are eight variables and
six constraints. One of the two remaining variables of integration is an
azimuthal angle, and usually one is dealing with a situation of azimuthal
symmetry. This means that there is ordinarily only one variable in a two-
body process. This may be taken as an angle, or as an energy, as is ap-
propriate. For p; there are five variables remaining after satisfaction of
the constraints. Four remain after elimination of the azimuthal angle.

The flux and phase space appropriate for neutrino interactions is covered
in Section I of Part Two.

V. Examples of <|T|> and |[<|T|>|?

A. Bosons

1. Lowest-order Scattering in ¢3 Theory
\\ / \ / \ 7
P3 "\ / Pa P\ /P4 Pa\ / P3
N \ 4 \ /
i > A \ /
U ! + - ———< % M-
| / \ / \
~N ; / \
o PP N - P/ bar e \ P2
/ \\ / N Z \

Note that both of the last pair must be present because of Bose-Einstein
statistics.

1 1 1
<psps| T|p1p2> = + + :
(p1+P2)° - aa (= ps)° - m?  (p;-Pa)® - m?
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Using p; + P2 = P3 t Ps the various combinations can be changed somewhat.®
1

2. Electromagnetic Meson * Meson Scattering
VA ~ P
U iy Ps "~ i~ P4
S 7
RN 7
SEN= \/\/\/\}\I\N\/\/\/\ 5e
RS
7
N
7 d N = ~ & oy \\
N
7 P1 P2 P Bs

iamez[(P1P3) - (P2t pa)  (P1-P2) - (Ps- p4)].
(p1 - P3)° (p; + ps)?

B. Fermions

First let us treat a simple example, proton-neutron scattering
through a scalar field. The vertex is g wu. Thus,

M, p3 Py Mz
T = -
M, py P2, M,
_ 2 Gp(ps) ulpy) l(py) ulpa).
. (p: - P3)2 - m? '
4
T8 = o e e wel (e wieal®

6 The analytic structure of amplitudes is most simply expressed in
terms of the variables s = (p;+p;)* = (p3+p4)2, =D} -p3)2 =) (Pz'P4)2y
and u = (p;-py)? = (p2 - P3)% only two of them are independent since
s+tt+u= M+ M+ M+ M; For the example immediately above,
all the M; are equal and

Il I il
<psp4|T|pip2> = + +
S5 = t=tm u - m

the amplitude has poles in s, t, and u. The physical significance of
these variables is: they equal (total energy in center of mass)? for
some particular process.



Since polarizations do not interest us, we want to average over the initial
spins and sum over the final spins.

Thus,

Nl»—a

Z Dup)Ps Y lues) ulp)l

spins

2 B leglP = D Gl e B ules)

spins spins

= Y sy pi+ My ulps)

spins

= 2 ) Tiles)(V pi+ M,)ij uj(ps)

spin ij

= 2 2 (¥ put My ui(ps) ilps)

spin ij
z (v-p1t Ml)ij (v - ps+ My)ji
ij

= Trace [(V-p;+ M)(Y:ps+ M)l

Since we are dealing with 4 x 4 matrices,

Define

'y'AEK.

Trace [A’---;‘znﬂ] = (0

i.e., the trace of an odd number of y matrices vanishes. To show this,
Trace [Kl---gzrﬁl] = Trace [A,...A,n1,iVsiVs], since (iVs)? = 1
= (12 mrace [ivsil...iznﬂws]

= (1) Mipree [Kl.,.AZHﬂi”y_r,iVs],

19



since matrices can be cyclically permuted within a trace. The factor

('1)2n+1 = -1; hence, the trace must be zero.

Trace [AB] = 2A - B Trace 1 - Trace [BA], using the commuta-

tion relations. But Trace [BA] = Trace [AB]. Hence,

| Trace AB = 4A - B;I

From now on let us drop the word trace, and let the square bracket indicate

when a trace is to be taken.

If we add these up and use [AB] = 4A - B,

[ABCD] = 4(A-BC-D-A-CB-D+A-DB.C).

Since Vs = V1V2VsYo, its trace will vanish with any number of ¥ matrices less
than four:

A“BPCYDY,

[iysABCD] = -41€OLL376

where € 5 is the four-dimensional alternating symbol.

apy

In a similar fashion, if the commutation relations are used,
higher traces can be evaluated. Back to our example,

Trace [(Py+ M;)(Bs+ M))] = 4(M2+ P, - P,),

and

TIToF - £+ Py Py)(M+ Py - Py)
[(Pl o p3)Z = rr]2]2 -
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PART TWO
LECTURES ON NEUTRINO INTERACTIONS

I. Neutrino Interactions*

The weak interaction amplitude has the form

<Itl>= St (24)

V2

The Feynman diagram is

Pr,my, P2: M,

Py P1,M;
In momentum space, we know the Lepton current is

JI{ = T(-py) vy (1 +1ys) ul-pg,)- (25)

For the baryon current, consider the most general possibility,

t F =
Bl : B Vi R A 5
5 u(pz)[vk(Gv’fGAl“/s) *o5p <M1 +M, M - Mzws)

-Hy Hp )
i : 6
& qK(M, TR T A {zb)

Why are there six form factors? There are two momenta p; and p;, and also
a spin, say, y,; the current is a four-vector, and only three independent
four-vectors can be made from p;, p, and Vg- These, plus three more for
axial vector, make six. The combinations jj = (p; +p2)0 9o, = (P1 - P2)ys and
Yo, are especially convenient. Using the Dirac equation, we can reduce.
u(p,) OOL‘BqB u(p;) (and any other combinations) to these:

S s s s
ol = ﬁ(pz)[mpl PIYaL _ YaPz * P2 oc] aloy)

= 5p2) [ - (baq * p2a) + (v +Bava)] ()
= G(pz) [ iy + (Mp +M,) Va] u(py)- (27)

This reduction of OB is useful in performing traces.

*Much of this section is based on a paper of mine: Nuovo Cimento 31,
447 (1964).
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The form factors, G, F, and H are generally functions, not constants.
Time-reversal invariance implies that they are real. One of the basic as-
sumptions of weak interactions is that of local currents; the.se are of tkse. b
form 7(x) Oy(x). For plane-wave states, the x dependence is fe' P1 ' P2/ X =
e-19- X, If there is additional structure due to stréng interactions, it smears
out; i.e., it integrates over x, resulting in functions of q"‘ only. Thus the
form factors are functions of g% in general.

The transition amplitude for neutrino interactions is

1 ) gl Ty EAES
<pepL [Tl pipy > = 7 Tlp2) YAlGy +Galvs) + Hpa\ g TR T e

H H
* q>\<M1 ':,Mz * M1 :AMZ iys):l u(pl) 1-J'(pL) Vx(1+i’y5) u(pv).
(28)

The H terms can be ignored since gy ﬁ(pL)W/K(l +iys) ulpy) = ﬁ(PL)(PL- 1;1,)
(1+ivs) ulp,) = mpulpy )(1+ivs) ulp,).

When the amplitude is squared and summed over spins, all terms
involving H have factors of m? in them. Even for muons, my is so small
compared to the other masses present that these H terms contribute at
most a few percent to the cross section.

The axial magnetism term, Fonﬁqﬁivg,, can presumably be ignored
also, but for a different reason. If ﬁUxﬁQBWSU is examined under G parity
or under charge conjugation, it transforms with an opposite sign from g iys.
This means that y,iys and gy Bqﬁiys belong to different currents, for example,
different isospin currents. If it is assumed that the weak interaction must
belong to a definite current under G or C or CP, then the Fp terms are
excluded. There is no direct experimental evidence to illuminate this point.

The amplitude is now reduced to

LR ¥ 2
ﬁu(Pz)I:'\/X(GV +Gaiys) + o\ B RM—VMZ] u(py) u(pL) 'y>‘(1 +1iys) u(pv),

<ppy Tl prpy > =

1 _ ) (p1+p2) a .
= zu(Pz)[’XQGV +Fy) + GAWs) - Fy M1+—pli{?:| u(p,) u(pL) \/>‘(l +1Ys) u(py, )
(29)

using the reduction trick for Okﬁqﬁ'



Next we evaluate | < |T| > |2 It is convenient to do this by computing
first the lepton and baryon parts separately,

T
35 Tp = [1-iys) vy By -mp) v (1 +i%) B,) (30)

remembering that trace is implied.
Let us ignore my . Even for muons, this results in an error of a few

percent in cross sections. Let us also use M; = M, = M. The nucleon mass
difference is so small, this introduces negligible error. Then,

[(1~ iVs)vaELvﬁ?)V] = 4(pmpv5 + PPy g~ 8ugPL Pyt ieagﬁnp%pﬂ)-

For the baryon traces, we have the following independent terms:

[VOC(IN’”M)VB(SﬁM)] = (p?p@ +odef - P on pe- M)

4
4
kel i, . B
AA: Z[Val'Ys(Px +M)7ﬁ175(Pz+M)] = (P?pz 3 pgtpf3 - gOL'B(p1 : p2+MZ));

1 ~ e .
val Zv“(pﬁM)vBWs(pz‘rM)] = +1€o¢€ﬁ7—)P%Pp?
St L O P =
Jodp Z[(Pl"'M)(Pz"'M)] = (py * P2+ M?);
gt = ~ a
Vaip Zba(p1+M)(pz+M)] = M(p; +p2)"s
o 0T = _
AOLJ,‘B : Z[YOL175(P1+M)(PZ+M)] = (U,
Simplification results from introducing
Iy~ Pra t By
S = Bl B Py
3 = Pax TP
and

n
Il

t = (p1-p)® = (py,-p )%



24

t-a)* (G +q)P) =

1 (j.aj.ﬁ ¥ qocqﬁ).

[\ ]

Then,
i1
P = E(J"fq)v
1
pz = 3 0i'-ak
1,
pp, = 3 (*a)
and
1
p, = 50-a)
Note that
q-j=p] -p, =m0
q-j' =pi-p;=0;
1
wiob +piel = (6% (- a)f + G
Also,
PP = MP-t/2,
and
B, By =i t/Z.
Thus,
LJr L
JOL Jﬁ = 2(.]@35 - qan i gaﬁt 4 1€aﬁﬁﬂ3€qn)’
and
VVT l -vOC'lB (04 ‘B OLB
gl R
1/ q.
AAl: 3(3'“1"8 - q*qP 'gaﬁ(‘iMZ—t));
T ,
VA S epeni'taM;

[T

(aM2 - t);



1,
Vaj'B : Mj'a;

t
Aaj’B: 0.

Finally, we construct [ |T| > |Z by summing the results from the
table of VV, etc., and simplifying the expressions,

B o [ e
<T> —Z GV.FGA—ZIT/[—Z. (JJ') +t(4M-t)

+ (Gy +Fy)? 2t% - G4 2t(4M?-t) + (Gy +Fy) Gatj - i'f

(31)
where t = g? is one of the invariant variables, and Gy, Gp, and Fy are all
functions of t. We can work out the values of j - j' in terms of the invariant
variables t and s = (p,+p;)? = (p2+pL)2.
in the limit, m| = 0. Thent = (p,-py)?* = - 2EyEy (1-cos 7)) = (p1-p2)
= 2M(M - E,), and s = M? + 2ME;,.

In terms of laboratory variables,
2

To evaluate j - j' = (py,+py) * (p1+Pp2), we use the following relations:

Py, t Py = a1t 2pys

pprt P2 = 2p1 - G
2/2;

(s - MZ).

GL= By = =Gl
21
12y
The result is j - j' = 2(s- M?) + t.
For neutrino experiments, the flux factor for the laboratory frame is
= E PN, (32)
Since the relative velocity is ¢ = 1, M; is the mass of the target nucleon.

The phase space appropriate for neutrino experiments is a laboratory
two-body phase space,

d4 d4
fdpz =fé(4><pi-pL-pz>a<p1—m2L>a<p§-Ms>—5’L—3, (33)
(2m)?

25
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where p; is the total momentum of the incoming system. We can eliminate
1 . .
the constraints due to the & functions one at a time.

Integrate over d*p,

d4pL
2 2 2
fdpz :fé(pi—mL) 5((pi'PL) - Mz) (ZW)Z.
Write p;, = (E,Pp), p; = (E;B;), and d*py = dELPidPLdQL. Integration

over dET, gives (2E1)”! along with Ep, = N /pi i mi the root from
8(E}, - P - mZL)7 This leaves

2
P} dP{dQp

2
) I:(El - /Pyt mi) - (By-BL)f - Mg] :
(2w ? 2B

Next, do we want a cross-section differential with respect to dPp, or dfip ?

First let us choose dQp; this means eliminating Py,. Call Pj - Pp, =
PjPy, cos 67. We write the above argument of the 6 function in a mixed

three- and four-dimensional form é(Pi i mZL = Z(Ei /P}L + mi =
P;P1, cos 6r) - M%\}, and take the derivative to obtain

2
PLdQL ’
(4m)2(E;P1, - PiET, cos 61))

deo = (34)

where Ep, =, /P} +m}, and Py is the fairly complicated function of angle
obtained by solving for P in the above constraint; i.e., it is determined by
the kinematics, once the angle is given.

If we were interested in dO/dPL instead, then the integration would
have been over d cos 01,. A subsequent integration over d¢p, then gives 2.
Performing the ¢ integration is only possible if it is known that the transi-
tion probability is independent of ¢1,. The result is

dp, = ;LP—E. (35)
"We have used the following formula here:
Ble(l]l = = 8- %0
| £ (o) | =
where xg is a zero of f(x), f(xg) = 0. To see this, expand f(x) inside the
6 function é(f\(‘x&z + £'(x0)(x - %¢) + ), and now use rule |&6(ax) = I_:L—Ié(X)

which comes from (é(ax)dx = ,ré(ax)[d(axﬂ/a.
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Again, Eq, =,/ Pi A mi, and cos 0 is a function of P given by the
kinematical constraint.

If we are interested in the baryon angle or momentum, we need only
interchange P; and P, in the phase space formulas.

We now have all the ingredients to obtain the differential cross
section,

1
do = f—|< ]| > P clse (36)

where f, dp,, and |< |T| > |? are given by Eqs. (32), (34) and (35), and (31),
respectively.

II. Hyperon Production in an SU; Model*

This work was a collaboration with N. Cabbibo, and is somewhat
based on an earlier letter by Cabbibo in Physical Review Letters on an
SU; model of weak interactions, and a paper by myself in "Nuovo Cimento"
discussing hyperon production by neutrinos.

Our principle motivation was to try to construct a definite test of
the Cabibbo model in neutrino interactions. Such a test would depend on the
quantitative details. Some numerical results are shown at the end.

The AS = AQ rule permits only three hyperon interactions:

7+ P A ar ,U.+,

T+n-> 37+,
and

7+p—->20+p+. (37)

The third reaction is related to the second by the AI = 1/2 rule,
i

do(2°) = 5 do(=7).
Pr,mMmy, P2, M,
Py P1-M;

*This lecture was given at a Theoretical Seminar.
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The general amplitude for 7+ N-> B+ L has a current-current

form. The lepton current is

J]; = T(vy) vy (1 +ivs) e

while the most general baryon current is

1 By> = 2a(p Ny, Gy +Galys) + 0, gaP v
<B, 13} | B> = 5(pel{y, (Gy +Galvs) + 0y pa"\ {51, " M, - 0, V°

o

H H

v A

B ; . 38
* qx( TS T M1W5>}u(pl) =

The form factors are functions of the invariant momentum transfer,
g% and are all real as a consequence of T or CP invariance.

The basic idea of the SU; model of Cabibbo is to divide the baryon
current in AS = 0 and AS = 1 parts,

J, = cos 6 Jgi)) + sin 6 J;l), (39)
That they should not have equal constants is already forced upon you by the
experimental difference between the AS = 0 and AS = 1 rates. SUj enters
through the assumption that the current transforms like an octet of SUj.

The angle 6 can be determined from experiment. It is especially interesting
that & = 0.26 follows from both Kejz to Te3 and the K, to 7, decay-rate
ratios. This is a nontrivial result since Clebsch-Gordan coefficients of

SU; have been used. Since the strong interactions are different for all these
decays, it suggests universality to some degree.

The most general expression for the baryon current can be simpli-
fied considerably. While H, can possibly be related to Gp through the
notion of an almost conserved current, on practical grounds this would be
irrelevant since the H terms correspond to qy The derivative g, acting
or; the lepton current gives my, and one can easily show that all terms in
H® or H in the cross section have a factor mi in front of them. They are

_also typically about 1% in their contribution to the cross section and can be
ignored.

For beta decay, Weinberg has shown that the Fp term has opposite
character under the G transformation than Ga- He calls Fp a "second-
class" current. This means that if the primitive Lagrangian had only Ga
Present, then F 5 could not be induced by strong interactions. Also, if Ga
?s a n.1ember of an isospin current, then F A could not belong to the same
1sospin current; it would have to belong to some other isospin current.
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This kind of argument can be generalized to arbitrary multiplets,
in our case octets. We look at an octet of currents -
(o] o
o @ o

(o] (o]

AS

"
—

AS

1
(=)

Because the currents of interest to us are members of a multiplet, we can
look at the transformation properties of other members of the multiplet
under some transformation, say, charge conjugation. The neutral members
for Oaﬁqﬁiys transform with the opposite sign from 7yyiys. Therefore, they
cannot be members of the same multiplet, and F 5 could not be induced by
SU; invariant strong interactions from Ga.

We call Gaﬁqlgiys a "second-class" current, and set Fa to zero in
what follows. Note that q, is second class also, and Hy would have been
set to zero if its contribution were not already ignorable on practical
grounds. I see no reason why a nonzero Fa could not arise from symmetry-
breaking interactions. Presumably, it would make a smaller contribution
than the Gp term. There is no experimental evidence, either for or against
these axial magnetism Fp terms.

The baryons belong to the 8 representation of SU;. There are two
8's in 8 ®) 8; they are usually classified as odd and even under R, which is
reflection through the origin in the weight diagram. In terms of two reduced
matrix elements, using Clebsch-Gordan coefficients of SUs,

<n |Ty| =-> = sin 6 (0 -& )

N B8 1
<p |J)L|A>= —Nsin 9'\/;<@>x+§€>\>. (40)

For the vector parts, the conserved vector current hypothesis would
have JV belonging to the same octet as the electromagnetic j, current, so
we detérmine @  and €, from the electromagnetic current,

1
‘ S U B
<p liy] > =02 +3€%

¢n |5, [n=sa gl
A SENEN
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Then

g7 - [F?(t) + %Frf(t)} ¥ 7 ﬁ[}"?(t) * %F?(t)] o paf
and

£V = - 3FN) v, - e FR) 0 527 (41)
where

FP(0) = 1, FY(0) = 0, FY(0) = Hp» and W) = e
To determine the axial vector parts, we use

<p |Ty|n> = cos (@, + 5}\)4
Now,

GA ln—»p = cos S(Gg (t) + Gg(t)) = cos B aA(t),
Gal0) = 1.25, (42)

and a parametrization,

cd(t) = Galt) x ),

G = Gl (= (43)

From the decay of 7, x = 0.25. It is very interesting that this
3-to-1, d-to-f ratio is the same as found in studies of strong interactions.

Finally,

G 3 o paP
<p |m fA>= - 5 sin @ ?{FF(t)"yx-F PR () 22

1+2x(t) .
1 ST GA(t)V)GVf}"

and
< lnl 27> = Zssin e{[ﬂ’m + zF?m] J ﬁ[ﬁm + ZF%)]

2 O)\‘Bqﬁ - (l -2 3 (t)) aA(t) yxiys}. (44)



These expressions for the weak currents apply in the exact symmetry unit.
How can symmetry breaking be included in the amplitude? Certain obvious
corrections can be made although not entirely without ambiguity. We can
replace 2My by M; + M,. The isovector form factor is dominated by the
p meson. Thus it seems reasonable to expect the K* to dominate the
strangeness changing form factors. This is consistent with present data on
Kej decay. Thus we have used
M2
=== (45)
Mg* - t

as the functional dependence of the form factors in our numerical examples.
Any possible dependence of x(t) on t is too fine a detail to be experi-

mentally evident for some time to come. We treat it as a constant. Vir-

tually nothing is known about the functional dependence of Ga(t), nor are any

axial vector resonances known. Presumably it falls off also. For the pur-
poses of numerical examples, we choose £(t) for Gp also.

Let us summarize our results.

For <p IJXI S

3
-G sin 9\/; £(t);

GV =
% SR 2 K
Gp = -1.25G sin 9\/: - f(t);
Fyv = -G sin 9\/§ v £(t). (46)
v PEED

Ear <n |1, | 27>,
GV = G sin 6 £f(t);

1.25 G sin 6(1 - 2x) £(t);

Ga
Fy = G sin 8(up*2uy) £(t). (47)
In each case,

EVAR =R ER A 0, and Hp is ignored.

The formula for the differential cross section is

Sl



Bt
do 1 Z 2 iV
49(,4) = —— [G +Gh - }
dt sl | (M, +M,)

w302 - (ME-MER - (m- )My + M) + (Mg - My - t)

+ 2[(GV+FV)2((MZ—M1)Z = t) + Gh ((M1+M2)Z = t)] (m}, -t)

- 4(Gy +Fy) GA[j - j't +m? (M- Mi)] ; (48)
where
s M%
kp; = WA
and

ioi = (pitpa) - (kytpp) = 25 - MP- M3 -mf +t.

Expressions for the various laboratory do/dQ or do/dE are directly obtain-
able from do/dt; in fact, do/dE, = 2M,do/dt.

I would like to show some graphs of the results. I have a 7090 com-
puter program that evaluates and plots the differential and total cross sec-
tions. Figures 1 and 2 are dc/d cos 6 in both the lepton and baryon angles
for A and 2, and E;, = 2 BeV. The baryon cross section is plotted in a
double-valued fashion. This corresponds to the baryon being forward in the
laboratory for both the forward and backward leptons in the center of mass.

T T T T T T T
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Fig. 1
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Notice the accummulation at the maximum angle. Figure 3 shows dO/dt for
A and 2 and E;, = 2 BeV, and Figure 4 shows the total cross sections. In
each case, there are significant quantitative differences between the cross

sections which could test the relative features of the model. We also pre-

dict the absolute magnitudes. It is also of interest to compare magnitudes

of the total cross section with the nucleon cross sections; at 1 BeV, the

ratio of 7 — A to ¥ - n is about 1/15, while at 3 BeV the ratio is about 1/10.

7

» o

w

do/dt (10 *°cm¥Bev?)

t(Bev?)

Fig. 3. Differential Cross Section
as a Function of t
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o (107*%cm?)

5-

2 3 4 5 6 i
E,(Bev)

Fig. 4. Total Cross Section
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