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TRANSIENT COMBINED CONDUCTION
AND RADIATION IN AN
ABSORBING NONEMITTING MEDIUM

by

Roger P. Heinisch, Ralph M. Singer,
and Raymond Viskanta

ABSTRACT

This report considers transient heat transfer by
combined conduction and radiation through a plane layer of
an absorbing, but nonscattering and nonemitting, stationary
gray medium. The solution of the resultant linear partial
differential equation is obtained in three ways: (1) an exact
analytical solution in the form of an infinite series, (2) the
method of lines, and (3) a lumped-parameter finite-difference
scheme. These three techniques give essentially the same
numerical results. This comparison establishes confidence
in methods 2 and 3 for possible use in analyzing similar
problems inwhich spectral and/or emission effects are ac-
counted for. The presence of radiation as an added mecha-
nism of energytransfer decreases the length of the transient
period; an increase in optical thickness demonstrates the
diffusion nature of radiation. For short times after the initi-
ation of the transient, the solution presented is valid for the
problem when the medium is a '"cool" gas and the upper
boundary is liquid. In particular, for a fluid such as sodium,
where temperature profiles in film boiling are desired for
short times following vaporization, this analysis can be used
as a first approximation.

I. INTRODUCTION

The purpose of this investigation is to explain the mechanism of
transient radiant-energy transfer in the presence of molecular conduction.
The medium is a plane parallel layer that absorbs but does not emit or
scatter radiation. This assumption can best be justified in the following
manner: If the boundaries (or one boundary at least) are raised suddenly
to a much higher temperature than the medium between them, then, although
the medium will absorb the radiation emitted by the walls, it will not be at
a high enough temperature to emit an appreciable amount of thermal radia-
tion in comparison with the absorbed energy that originally is attributed to



wall emission. A simple, yet effective, method of determining‘the validity
of this approximation is to examine the fourth power of thfe r.atxo of the abso-
lute temperatures of the fluid and the wall. When this ratio is much less
than unity, the assumption is valid.

To a first approximation, the following application of the above model
is proposed: During the initial transient stages of the vaporization of a
layer of sodium, the vapor-liquid interface will probably not move exten-
sively!? and thus is chosen to be stationary. One wall is held at an .ext.remely
high temperature, while the other wall (composed of an opaque liquid) is
either at the saturation temperature or at some superheated temperature,
which will probably be some 40-200°F greater than saturation.’® In general,
the experimental data on the frequency-dependent absorption coefficient, k,,
of sodium vapor indicate that unless the temperature of the vapor is excep-
tionally high (~2500°F ), it will be a very weak emitter. The model proposed
above is primarily applicable when the medium absorbs much more radia-
tion than it emits.

Appendix A contains further discussion on the absorption coefficient
of sodium vapor. The Planck-mean absorption coefficient is presented to-
gether with representative values of the parameter N (which compares the
relative importance of energy transfer by molecular conduction to that by
radiation). The results presented in Appendix A also permit a simultaneous
check on the importance of radiative transfer in sodium vapor and the possi-
bility of an immediate interpretation of the general results obtained here.

The present analysis is an initial attempt at a gross explanation of
the results of Witte?? where an extremely hot tantalum sphere (~3600°F) is
swung on a pendulum through a pool of stationary cool liquid sodium. A first
approximation for a model of the phenomenon would predict film boiling on
the sphere, and if this is correct, then the omission of radiation-energy
transfer could seriously affect any thermal analysis of the problem. In his
basic assumptions, Witte? considers radiative transfer to be negligible.
However, it was finally postulated that forced convection was the mode of
energy transfer in this experiment.

The problem that has not been discussed is the effect of propagation
of a thermal wave, i.e., the velocity at which the temperature is perturbed
in the medium because of the initiation of a transient. For molecular con-
duction, the thermal wave is considered to be propagated via phonon con-
duction in solids and molecular interactions in gases. The phenomenon of
phonon transfer is recognized as an acoustical-energy packet traveling
through the media and thus occurs at the speed of sound in that solid.
Molecular interactions within gases are simultaneousl
at the speed of sound in that gas.
thermal wave will propagate with
transfer mechanism is due to con

y considered to occur
Thus,"no matter what the substance, a
the speed of sound when the energy-
duction alone,



When the primary energy-transfer mechanism is due to radiation
in a gas or transparent solid, the speed of propagation of heat is much
greater than the speed of sound, for a short time after the onset of heating.
Thus, the pressure within the medium is unperturbed, and the energy trans-
fer spreads through a motionless substance as a rapid thermal wave.
Approximate considerations of a spherical thermal wave driven by radia-
tion predict the velocity of propagation to be proportional to T8 Phe
speed of sound in a heated gas is approximately proportional to the square
root of the temperature. Thus, at the onset of heating, with a large tem-
perature difference imposed upon the system, the propagation velocity of
the thermal wave is much greater than the speed of sound. After a thermal
wave passes through a stationary constant-density gas, the pressure in-
creases. In general, for a perfect gas, p~ pT, so that eventually the pres-
sure and temperature profiles approximately coincide. The existence of a
pressure gradient accelerates the gas, but for small times, when the thermal-
wave velocity is much greater than the speed of sound, the motion is imper-
ceptible. At an intermediate time, the thermal wave reaches the second
boundary and slows down because of energy loss. As a result, the velocity
of the thermal wave becomes less than the velocity of sound. Finally, the
processes equalize, and either a steady-state condition is met or the upper
surface accelerates because of the increase in pressure.

Considerable effort has been expended in recent years on the inter-
action of the various modes of heat transfer. Surveys by Cess' and Viskanta®
summarize the research performed on the interaction of radiative transfer
with conduction and convection and list pertinent references.

One of the first investigations of the interaction of conduction and
radiation was considered by Van der Held® in an attempt to account for
errors in thermal-conductivity measurements of fibrous materials. The
solution was based on the diffusion or Rosseland approximation for the
radiative flux. In a later work, Gardon®* applied a finite-difference formu-
lation using the conservation of energy on each "node" to obtain the tem-
perature distribution in hot glass.

Other similar analyses have been made for time-dependent gas-
dynamic problems,® but, in general, molecular conduction is neglected,
while convection is not.

Lick® investigated the problem of simultaneous conduction and radia-
tion for a semi-infinite, gray, nonscattering, stationary medium. He solved
the problem by linearizing the governing time-dependent equations and then
converting the resultant integro-differential equation to a differential equa-
tion by an application of a degenerate-kernel substitution technique.
Nemchinov’ analyzed a similar problem in much the same fashion, but

obtained very limited results.
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Prasad® considered the unsteady radiant heat transfer neglecting
conduction in gray, nonscattering, stationary media between twov parallel
plates. Exact nonlinear integro-differential equations were derived and
simplified for the assumptions made, and various techniques were chosen

to attempt a solution.

Viskanta and Bathla’ also analyzed the unsteady energy transfer in
a plane layer of radiating gas. They used exact radiative-transfer methods
in the formulation and accounted for variable properties. Temperature and
flux distributions were obtained as functions of time for a range of param-
eters and initial conditions of interest.

Cobble!® performed an approximate analysis of combined conduction
and radiation. The absorption was assumed to follow Beer's Law; that is,
it is an exponential decrease with space. This assumption neglects the
angular effect and assumes that the radiation is in parallel beams. With
the above assumptions, an exact solution was possible, and an analysis using
a nongray absorption coefficient was completed using the tabulated values of
the integrals of the Planck function. The exponential decrease of heat flux
is a first approximation that appears to yield good results.

In transparent or semitransparent stationary media at high tem-
peratures, conduction and radiation normally interact and mutually deter-
mine the temperature distribution. Inclusion of the mechanism of energy
transport by radiation can cause order-of-magnitude changes in the heat
flux calculated by assuming only thermal conduction. In an attempt to mea-
sure the thermal conductivity of a gas at high temperature, this phenomenon
could seriously affect the results unless it is accurately accounted for.
Viskanta'! gives a gray, steady-state calculation that exemplifies the above
discussion. Thus we see that the inclusion of the radiative contribution to

the energy transport in some cases is extremely important and must be ac-
curately accounted for.

II. GOVERNING EQUATIONS

Before formulating the basic governing equations, let us examine
the physical model that has been chosen. A rigorous analysis of either
the steady-state or the transient combined conduction and radiation prob-
lem should include the frequency-dependent properties. Another more
basic effect neglected here is the result of re-emission by the medium.

The le.xtter restriction, if taken in the context discussed above, may be omitted
effectively without drastically changing the results.

analysis, by its very nature, would introduce consid
difficulties, but would also give more pﬁysically re
specific medium. A dominant difficulty is basic to
we must resort to the solution of specific problems

The former nongray
erable mathematical
alistic results for any
nongray analysis; that is,
. The purpose of this



report is to obtain gross trends and to provide a physically significant
standard of comparison, together with the development of techniques that
may be used in the obvious nonlinear extensions of this problem. Scatter-
ing is considered to be negligible compared with absorption. This assump-
tion is a good approximation for gases and transparent solids without
particulate suspensions. The walls comprising the boundaries of the slab
are assumed to be diffuse.

Finally, the assumption used in the film-boiling case of a fixed
"liquid wall" in space is especially restrictive for larger values of time.
However, the removal of this assumption introduces nonlinearities which
by themselves are extremely difficult, if not impossible, to handle with
some preset degree of accuracy. We are currently working at removing
some of the aforementioned assumptions.

An exact analytical solution to the governing linear equation is ob-
tained by a superposition technique. The exact results based on the ana-
lytical method are compared with two approximate numerical methods of
solution; these comparisons indicate the accuracy of the techniques for

extended use on combined-modes

N N b problems of the class discussed here.

Figure | is a schematic rep-
s resentation of the geometry and co-
I(s) ordinate system of the present
problem. A plane, parallel, sta-
tionary layer of an absorbing media
is cooled or heated by the imposition,
LI x[€ 9 at either 'or both boundaries, of tem-
N peratures different from the initial
112-9187 temperature of the medium. Energy
transfer by convection is assumed to
be negligible compared to molecular
conduction and radiative transport. Ionization and dissociation are ignored.
The medium is assumed to be in local thermodynamic equilibrium and
capable of absorbing energy. In the formulation of the problem, thermo-
physical and radiative properties are assumed constant and azimuthal sym-
metry is assumed. The radiant energy density for a gas or transparent
solid is much less than the internal energy density,"z even at extremely
high temperatures, and thus is neglected. For the problem under study, in
the absence of heat generation, the conservation of energy equation may be

written as

1-3‘

Fig. 1. Physical Model and Coordinate System

3T _ _9q (1)

v 3 T e

where q, the total heat flux, is defined as

11
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S L L (2)
q = -k o +

Equation 2 stipulates that the total heat flux is the sum of the heat transfer

due to molecular conduction and that attributed to radiative-energy trans-
fer. The radiation flux in the x direction is defined as

F(x,t) = jooo\?’)\(x, £ gk = 2 fom fi [Ly(x, 4, ) dp] dX (3)

and considered positive in the positive x direction. The monochromatic
intensity of radiation, I, is determined by the solution of the equation of
transfer,

A
TR tHETx T - D), i<t

where 4 = cos 3, C is the velocity of light, and Iy,; is the source function.
Even if the intensity varies rapidly with time, the factor I/C in the first
term on the left-hand side of Eq. 4 renders the entire term negligible rela-
tive to the other terms. Thus the radiation field is considered quasi-
stationary, but, since Ip) is a function of temperature, I also depends on
time.

For a step change in wall temperature, the boundary and initial
conditions for Eq. 1 are written as

£ =0 0 =x =1, T‘Ti;
x =0, t >0, =D (5)
x = L, t >0, T=Tb.

Once boundary conditions are specified for Eq. 4, a solution may
then be obtained at least formally if not specifically. Considering the wall
properties to be a function of [, we obtain for the boundary conditions for
the intensity after integration over all frequencies

1
(0, p) = 2r, [o I7(0, - ') yalp, p') w' dp' + ea(p) Ipa, (6)

and

ol e eay fol (7o, +10') Yol 1') ' dp' + €(p) Tp, (7)

where €, the emissivity,

is generally a function of K, and r is the wall
reflectivity.
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Iy = f)  Ipy 9%

is the total black-body emissive power, and y(u, u') is the surface reflec-
tion function characterizing the angular distribution of radiant energy.
Physically we can interpret Eqs. 6 and 7 as follows: The intensity leaving

a wall equals the reflected portion of the incident intensity integrated over

all angles, plus that emitted by the wall. The real problem is to obtain an
accurate representation of the surface-reflection function since it is a
function of many parameters, such as material, surface finish, and roughness.

With the assumption of diffuse walls, we obtain
Ja
0, u) = =, p=0, (8)
and
Ip
Flrou) = ' p=0 (9)

where J is the radiosity and is defined as the sum of the emitted and re-
flected energy.

Formally, we can obtain the solution of Eq. 4 that results in the
following expressions for the intensity for the gray case in the + and -
directions:

»

1+(0, w) exp(-—:i-)+/°-r %2 exp(— T-t)dt, (10)

47, p) o

and

In (7 1)

&

L Th =T ® Ip(t) t-T

I"(To, p) exp —— - exp(- —)dt. (11)
k m

The optical thickness is defined as

'r=/oxlcdx, (12)

To = ]oL crdx, (13)
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The local radiant flux in the medium for the gray approximation is given by

l I (L) T =t
F =2 /[Ja exp(- %)Jr/o ,u. exp(- 5 )dt]#d;l

0

; To-ty [ Ib(t) ity
_/ ,:Jb exp(- m )-/ e exp(- i )p d,u:, 3 (14)
0

T

Before performing the indicated integrations in Eq. 14, let us look
at the physical interpretation of the terms involved. The first and third
terms on the right-hand side of Eq. 14 represent the contributions to the
flux by the energy emitted by the wall at x = 0 and x = L, respectively.
The second and fourth terms arise from the energy emitted within the
medium. If the medium is at a much lower temperature than the walls, then
the energy emitted by the medium is much less than the energy emitted by
the walls and may be neglected. With this approximation, the second and
fourth terms in Eq. 14 may be neglected in comparison with the first and
third terms. Finally, differentiating the radiative flux with respect to the
optical thickness, and carrying out the integrations, we obtain

- SZ = 2d{TaEal1) + TpEelro- 7)), (15)

where Ep(t) are the exponential integral functions defined as

Ealt) = [’ un-2et/i gy (16)

These functions are tabulated by Kourganoff.15 Series expansions for the
general and limiting cases are presented by Gradshteyn and Ryzhyk.”’

Thus, the conservation-of-energy Eq. 1, can now be expressed as

ar _ » [ aT
Py 3 = k a_x} + 26{TaE,(T) + TpE,(T, - T)}, (17)

by use of'Eqs. 2 e?nd 15. In Eq. 17, the radiation appears as a heat-source
term, w.hlch physically is exactly how it interacts? with the media due to
absorption. By introduction of the dimensionless variables

C=K.'tht, 9:&, g:i 8
Tp- Ta " (18)

the energy equation

» in dimensionless form, f
» for the constant-proper se
becomes BEDRerty of
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06 1 % 2
& _ ‘rg gl kkT;

{T2E(T) + JpE,(To - T)}. (19)

The net radiant-heat flux can be obtained by specializing Eq. 14 at the sur-
face 7 = £ = 0, giving

F = Ja - 2JpE;s(To) (20)
with E;(0) = 1/2.

The first term in Eq. 17 represents radiant energy leaving surface a,
and the second term is that radiant energy incident from surface b. Now,

Ja = €3Epa * (1 -€a) Gj, (21)

where G, = irradiation at a. But from Eq. 17 and the discussion thereafter,

Ga = 2Jb(7o) Es(To). (22)
Thus,
i €aEba + 2(1 - €3) €bE;(To) Ebb (23)
1 - 4(1 - €a)(1 - eb) E3(70)
and

€pEpb + 2(1 - €b) €aE;(To) Eba
Jp = 2 ’ » (24)
1 - 4(1 - €3)(1 - €b) E5(Ty)

where Epp is the black-body intensity from surface b, and Epa is the
black-body intensity from surface a.

Defining
Ja
iR (25)
Xa oT}
and
Ip
= —, (26)
Xb oTj
we obtain

€abh + 2ep(1 - €,) Esfro) 6%
e = i} (27)
1 - 4(1 -€a)(l - ep) E3(7o)




and

h ebe*:, + 2€a(1 - €p) E3(To) 6% (28)
I T e e

With the above nondimensionalization, Eq. 19 can be expressed as

88 - L 20 L (Ealred) + xpEalTeld - ) (29)
0
where
N = k’(4. (30)
40T;

The parameter N determines the relative role of energy transport by con-
duction to that of radiation. In the limit, as N approaches infinity, conduc-
tion is the dominant mechanism; as N approaches zero, radiation is the
predominant mode of heat transfer. In numerical computations for the
steady-state case, Viskanta!’ formulated the absorbing problem exactly and
has determined a "large" N to be 10 and a "small" N to be 0.01. The par-
tial differential equation (Eq. 29) is seen to be linear. The boundary condi-
tions and initial temperature distribution, specified as 6, are

t=0 0=t=1, 6-=6; (31)
£ =0 £ >0, gr—to; (32)
E Rl T ) 6 = 1. (33)

Thus the problem is mathematically well posed. The linear para-
bolic partial differential equation is second order in space and first order
in time. Conditions given by Eqs. 31-33 are sufficient to solve the problem
as conceived. Because of the linearity of the governing equation and the
boundary condition, the principle of superposition is an obvious technique
that is applicable for obtaining an exact analytical solution. This solution
is presented in Section III, together with two approximate numerical

schemes which are used to obtain solutions for a measure of their utility
in the solution of problems of this nature.
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III. METHODS OF SOLUTION

This section describes the following three methods for solving the
linear partial differential equations for transient heat transfer:

1. Superposition Method.
2. Method of Lines.
3. Lumped-parameter Finite-difference Method.

A. Superposition Method

An exact analytical solution can be obtained by use of a superposition
technique for the solution of Eq. 29 with the initial and nonhomogeneous
boundary conditions given by Eqs. 31-33. Thus, assuming that € can be
written as

6(€, £) = U(E, L) + V(E), (34)

the following systems of equations result and can be independently solved.
These systems are an initial condition problem; i.e.,

U _ 1 U

3t T T o Gt
U(g,0) = 1 - V(E), (36)
u(o,¢) = 0, . (37)
u(1,¢) = o0, (38)

and an ordinary differential equation that accounts for the inhomogeneous
boundary conditions,

a“%’ + %1% {XaE2(To€) + XbE2[To(1 - )]} = O, (39)

V(o) = 62 = O, (40)
and

Vi) = &p = L. (41)

The solution to the ordinary linear differential equation (Eq. 39) with
the boundary conditions given by Egs. 40 and 41 is
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V(D) = & - g {XaBu(ret) + XpEALT(1 - ©)]

1 Xs ]
= (Xa'xb)[E4(To)- T € - + T XbE4(To)| (- (42)
J

In general, in the solution of linear parabolic partial differential
equations, two separate series can be obtained, one a series of trigonometric
functions (for slab geometry), the other a series of error functions. The
trigonometric series is rapidly convergent for long times, whereas the
error-function series is rapidly convergent for short times. Thus, in the
solution of Eq. 35, we will obtain a long-time solution analytically, and
when numerically evaluating the resultant series solution, we will compute
solutions for as small times as are numerically practical.

What remains then, is to obtain a solution to Eq. 35 with the condi-
tions of Eqs. 36-38. By separation of variables, the formal solution can be
directly obtained and may be written as

U(E, L) = Z Ake-(kﬂ/To)ZC sin (k 7€), (43)
=1

where

1 X 2
Ay = %/{[1 - 6_§ - HEI’ E:,(To)jl sin (k7€)
0

- 55 (Xa- xg[m(ro) - %]e sin (k7€)
+ X2 £ (re) a Xb ~
>N E4(Tof) sin (kmé) + N Ey[To(1 - €)] sin (k7g) »de

1
+ —;/ € sin (kmé) dé. (44)
0

The last two terms on the right-hand side of E

: . 44 are int t i
Appendix B. The results are i s S
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kr 3 "Win/ e 7 72) T

£
z = TS L
+<To) [Ez(To)(-l)k - 1] g s ' 7o {(-1 G )[_ﬂ(-n"‘ £ o gy

Kt k7 e W nl L -2m- 1)!
-1 =
1'(£-1)/ ZI( 2 ) 4 Xa -0 Xy (£3)
+(-1) T = — |,
W 2N 2N
The general solution is then
1
8(E. L) = € - spiXaEa(Tob) + XpEdlro(1 - €)]

- (Xa- Xb)[E4(To) = %]i = ['X; i XbEA(To)]}
+ Z .:s‘ke'(k"/To)Z £ sin (k7E), (46)
k=1

where A) is given by Eq. 45. Equation 46 was evaluated on an IBM, 360-50
machine in double-precision arithmetic using asgonvergence criterion for
the above series of <10~7. Because of the restrictive convergence used,
run times were fairly lengthy (215 min), but the accuracy is assumed to be
good.

This method used for the solution of the proposed problem is con-
sidered to be exact. In Sections B and C below, two finite-difference
methods are used to solve the same problem. The purpose of the approxi-
mate solutions is to check the usefulness of these methods to determine
whether they would be useful when the solution could not be determined in
an exact fashion. One difficulty stands out when attempting to apply these
approximate techniques to a more exact model. This is the fact that a
more exact model would probably contain highly nonlinear terms for which
the convergence criterion herein obtained would no longer be useful. The
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handling of nonlinear terms in any finite-difference scheme becomes an
art unto the problem at hand, rather than a science, but we propose that
in the absence of other information, the values obtained here could be
used as a starting point.

B. Method of Lines

The second technique used for the solution of the problem is the
method of lines!® (often referred to in the English literature as the
differential-difference method). Tien'? uses essentially this method in
the solution of steady-state conduction problems and calls it the strip
method. Perhaps one of the first to use it in the English literature is
Eyres et a_l.zo for the reduction of partial differential equations to sets
of ordinary differential equations. The Russian literature often refers
to this method in connection with Dorodnitsyn,? who was apparently the
first to use this scheme. The advantage of this approach for linear prob-
lems is that analytical solutions to the resulting ordinary differential equa-
tions may be possible. In addition, it is often possible to estimate the error
introduced by the approximation and, if necessary, apply an approximate
correction for it.

For the one-dimensional transient-heat conduction equation, there
are two alternative methods of applying this technique. The first method
is to replace the time derivative by the temperature change during a finite
time interval. Such an approximation has been examined for accuracy?'®
and has been applied successfully to an internal-heat-generation problem.!?
However, whether the equation is linear or not, the problem in the space

dimension will be a two-point boundary-value problem, which will be more
difficult to solve numerically.

] A simpler and more practical treatment is to replace the spatial
derivative by a corresponding finite difference.?® This method will be pre-

sented here for the problem given by Eq. 27 and the boundary conditions
given by Eq. 29.

We will replace the spatial derivative by difference equations de-

rivable from Taylor series in the following manner: Let Qg(C) be the value
of 6 at £ = nA¢ for all time £, and

e 1

=S (47)
where H is the number of intervals into which 0 = £ < 1 is divided. The
Taylor-series expansions for On+1 and 6n_, to order (AE)? are
aQn (Ag)z azen

- A€
On+1 = 9n+1—! —g€+T BEZ ey
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and

" AE %n  (AE)* %6
en-l ”en'—l!——ye'if—-z—!—a—ii-...A

Subtracting and solving for d6y,/0¢, we obtain

®n  Bn41 - Bnoy
P = zaE l=n=H-1. (48)

Adding and solving for 3?6/0¢?, we obtain

aieil g On4y - 26, + 6y, (49)
ot (ag)* '

From the Taylor-series expansion we see that this is equivalent to
replacing the temperature distribution by a cubic between £, and £€,4,. The
errors introduced by this approximation can be decreased by decreasing A¢,
that is, by increasing the number of intervals into which the thickness of the
slab is divided. One of the primary reasons for this work is to determine
for this problem the smallest value of H required to give adequate accuracy
so that the method may be used to solve more complex nonlinear problems
with some confidence.

Using the above approximation in the partial differential equation,
we obtain H + 1 ordinary differential equations for 6,(£), n =0, 1, ..., H in
one independent variable (:

L

a6 3%6n
o Tié{a—gz} ¢ ZiN{x;E.(ne) + XbEblTo1 -5)]}. (50)

In the above formulation, 65 and 6} are the surface temperatures
determined as boundary conditions given by Eqs. 32 and 33. Thus

de,
e 0. (51)
With the above we determine that the problem is well posed in a
mathematical sense. What remains is to solve the remaining H + 1 coupled
ordinary differential equations for the initial conditions given by Eq. 31.
This was done by use of a fifth-order Runge-Kutta forward-integration
scheme on an IBM 360-50 computer. The time-step sizes used were 1073
and 10™% a comparison of the two solutions for H = 30 showed them to be
identical out to the seventh significant figure. For this reason the inte-
gration was assumed correct to the order of the scheme.
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Sarmin and Chudov®” investigated the stability of the computation of
the system of ordinary differential equations obtained from the method of
lines. One of the problems under investigation is the diffusion equation
without a heat-source term. Addition of the apparent heat-source term
does not alter the analysis appreciably. Fortunately the analysis is given
for a fourth-order Runge-Kutta forward-integration scheme. An analysis
similar to Sarmin and Chudov's demonstrated that for the discretization
parameters chosen the necessary and sufficient conditions for stability
were satisfied in the computations performed.

Kostynkovich?® has done some work on the convergence of this
method. His analysis shows that for problems such as the ones posed
here, we find convergence to the exact solution for "large" H (in present
terminology). In actual runs, convergence to the analytical solution was
obtained for large times by dividing the £ interval into seven equal in-
crements. For "small" time, the closer we attempt to get to a step func-
tion in temperature, the more difficult the solution is to obtain. Forty
increments were used with good accuracy (4%, based on the exact solution)
throughout the interval.

C. Lumped-parameter Finite-difference Method

A third method?® used for the solution of the problem is to obtain
confidence in the techniques that hopefully can be extrapolated to the non-
linear cases, which are obvious extensions of the current problem. This
solution is a lumped-parameter finite-difference technique, assembling a
heat balance in implicit form for each node, and applying the Gauss-Seidel?®
method to the resultant system of n algebraic equations relating the n un-
known node temperatures. An iteration scheme is used for each specified
time step during the transient until temperatures at node centers have been
computed for all the time steps with some preselected error limit.

Because the method chosen is based upon an implicit finite-difference
scheme, the solution is unconditionally stable.?” In fact, the steady-state
solution may be easily obtained by setting the time increment to an exces-
sively large value. However, this requires a large number of iterations
for convergence. On the other hand, with the extreme speed of the machine
used (CDC-3600) and the ability of the program to rapidly solve the system
of algebraic equations that result for a single time step, it is feasible to
take sufficiently small time steps to reduce truncation errors inherently
present in finite-difference schemes to well below 2%.

' . A maximum of 60 iterations was used as an upper limit. This limit,
;f attained, would cause a statement to be printed notifying the user of this
act and then to permit the machine to proceed to the next time step. To

attain stea.dy.-state conditions, a different iteration limit must be used
after the limit specified for the last time step.
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One important result of the computations is that during periods of
rapid temperature change, small time steps must be used or truncation
errors will be excessive. After the period of rapid change is over, the
time steps should be increased in a geometric progression.

The analysis used was of the standard form given in the literature
on finite differences. ?% %7

The first law requires that

Qabsorbed = Qin - Qout» (52)

where the last two terms contain the conduction portion of the energy equa-
tion Eq. 29. We can represent Eq. 52 by

: = Byt 65 95+0]
D;(6; - 6;) = Zl [Dij( Jz 2 - 5 )] +Q, (53)
J:

i#

where Q; is the internal-heat-generation rate, which may in general be a
function of space and/or time,

3600
9 = b F T
and
»
Dij = Area of face of node ij.

Expanding and collecting terms in the unknown temperature on the left, we
obtain

n

Dj,16) + Dj 265 + ... - [Z Djj + ZDi:l 8}
J=1
iA

n n
+ ... - Di,ne;, = Gi[ Dij - ZDi] - Z Dije' - ZQi. (54)
3= j:l

i# i#

If the coefficient of the term in 6; is defined as Djj, where
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o [f o)
it

and & represents the right-hand side of Eq. 54, then fori =1, 2, ..., n, the
first law stated for n segments results in a set of simultaneous equations
in n unknowns, é;, expressed as

Do - 3, (55)

where 6' is the solution vector of temperatures, @ is the vector of con-
stants, and D is the coefficient matrix.

The diagonal of D, Djj, is strong, in particular when the term D;j is
large (which is true when the time interval is small) and D has many loca-
tions with small or zero values. For any i, a maximum of seven Dij terms
are nonzero and a minimum of one Djj term is nonzero.

For the solution of the simultaneous equations, the coefficient matrix
is first stored in n x 7 core locations. In this scheme, the iterates to the

solution vector 8j are arrived at by transforming Eq. 55 to the form

6' = Bg' +F. (56)
To do this, place all the terms, except those on the diagonal, on the right

side, and then divide them by the diagonal coefficient. Thus the elements
of the matrix B become

bj; = 0, = i
The elements of F are defined by
Si

11

At this point, we use the formula

-1
gl (k1) _ Z k+1) & z le (k) , £, (58)

j=i+1



where the superscript k denotes the order of the iteration. With the above

procedure, we can specify any convergence criterion for a particular time
step.

IV. RESULTS AND DISCUSSION

The results obtained by the three methods used are given in Figs. 2-
15. Boundary conditions imposed and parameters chosen as being represen-
tative are noted on several figures. In general, the parameter N, which
represents the ratio of the relative importance of heat transfer by conduc-
tion to that by radiation, is chosen to be 10, 1.0, 0.1, and 0.01, while the
optical thicknesses considered are 0.1, 0.5, 1.0, and 10. The dimensionless
temperature, 6(£, £), has the initial condition 0.111 and the boundary condi-
tions 0 and 1.0.
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Fig. 2. Solutions of Eq. 29 for
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Fig. 5. Solutions for Eq. 29 for
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Figures 3 and 4 illustrate the effect of the absorption of radiant
energy for an optical thickness of 0.1. In general, for arbitrary optical
thickness the effect of absorption is to increase the local enthalpy level
within the medium. The pure-conduction solutions, that is, with no ab-
sorption, for the same boundary and initial conditions agree to within
six decimals with the solutions obtained for N = 10 for all values of the
optical thickness.

In all cases, changing the value of N from ten to one had but a small
effect on the solutions. Correspondingly, changing N from one to one-tenth
had a more appreciable effect on the results for a given optical thickness.
Results for N = 0.01 when 7, = 0.1 and 0.5 are not presented for all cases
because of the excessively large temperatures attained near the "hot"

(6 = 5.0) wall. This is due to the intense absorption of the radiation, with
conduction being the only mechanism
available for dissipation of the energy.
Although the radiant energy emitted by
the medium is neglected, an energy
balance is still maintained; enthalpy
and other recognized forms of energy
are undiminished by the emission of
radiation. The model does not permit
the medium to emit radiation, but in
practice radiation would actually be
emitted. Particular note of this fact
can be made by referring to Figs. 4
and 11 where the steady-state profile
is definitely unbalanced because the

- -1 radiation acts as a heat source. This
situation is not compatible with the
physical model under consideration.
The emission that is neglected would
tend to decrease the temperature below
that of the wall. On the other hand, for
a large value of optical thickness, as
demonstrated by Fig. 15, we see that
for N = 0.01 the heat-source effect is
much smaller.
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(i..e., € =1.0) and space (i.e., £ = 0.5) when the total optical thickness is
unity. The effect of decreasing N is to increase the rate of heat transfer,
as would be expected with an increase in the importance of radiation.

The results presented are affected by the assumptions made regard-
ing the mechanisms involved; however, the solution to the problem as posed
is exact in an analytical sense. A comparison of the two numerical methods
used in the solution of the governing equations with the exact analytical so-
lution results in no greater than 0.05% error, except during the initial
(t — 10'5) stages of the transient, where it is extremely difficult to accu-
rately approximate the step function that is a result of the suddenly changed
boundary conditions. The results as given were extremely encouraging with
regard to the use of these numerical methods for the extension of this prob-
lem to the nonlinear absorbing and emitting case and even to the more real-
istic nongray situation.

Results obtained for different boundary conditions and initial condi-
tions showed the same trends as those already discussed. Decreasing the
wall emissivities to 0.1, 0.1; 0.1, 0.7; and 0.5, 0.9 decreased the heat-source
effect to a degree related to the value of the emissivity of the wall with the
highest temperature. No other obvious effects were noted, which is expected
due to the linearity of the governing equation, boundary conditions, and initial
condition.

Thus we see that the absorption by a relatively low-temperature
medium does affect the time response and temperature distribution. It is
expected that the results of the approximate analysis will retain the signifi-
cant qualitative aspects of the actual physical bghavior. The solution of
combined radiation and conduction problems may be obtained with good ac-
curacy using either the method of lines or the implicit finite-difference
approach. Hopefully the nonlinearities introduced by a rigorous treatment
of the problem will not affect the stability or convergence of the schemes
proposed.

V. CONCLUSIONS AND RECOMMENDATIONS

Transient heat transfer by combined conduction and radiation in a
nonscattering, nonemitting, absorbing, gray medium confined between two
infinite parallel plates has been studied. The governing linear partial dif-
ferential equation is developed from first principles. Solutions are obtained
by an exact analytical method and compared with the method of lines and an
implicit finite-difference technique to obtain confidence in numerical methods
that obviously are necessary for the solution of a rigorously formulated
problem.
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The solutions are presented for values of the parameter N of 10,
1.0, 0.1, and 0.01 with values of optical thickness of 10, 1.0, 0.5, and 0.1.
The results are characterized in terms of dimensionless time, dimension-
less temperature, and the above two parameters. Temperature distributions
at steady state for N = 10 are linear for some cases, as is characteristic
of pure conduction without heat sources present., For N = 10, 1.0, 0.1,
and 0.01, and T, = 10, the evidence of radiation as a diffusion phenomenon
is readily apparent. For appreciable energy transfer by radiation in com-
parison with conduction (N = 0.01), the model is invalid for small or inter-
mediate values of optical thickness as the steady state is approached.

Because of the linear nature of the problem, convergence, stability,
and uniqueness present no obstacle in obtaining a solution. The two numer-
ical techniques used appear to be acceptable for use in more sophisticated
approaches to the problem. In practice, the method of lines is easier than
the implicit finite-difference formulation. Once the basic program has been
written, however, the two methods may be compared from a stability stand-
point. The finite-difference formulation is implicit in form and thus is
inherently stable for linear problems and normally stable for nonlinear
problems. On the other hand, the method of lines is usually termed an
explicit method, which is often found to be unstable. Thus the method of
lines requires some discretion on the part of the user with regard to
stability.

In the problem solved here, there is no indication regarding a like
problem existing on the convergence of the method.

A simple model has been developed for combined conduction and
radiative transfer between two parallel plates. The two parameters in the
model can be evaluated given experimental and/or analytical information
regarding the media. The effect of radiation absorption as a heat source
is noted, and information on its importance as a contributing mechanism
is obtained. Results obtained by numerical means compares very well with
the exact analytical solution. Tables I and II compare the results based
on the exact method, the method of lines, and the lumped-parameter ap-

proach. These representative results demonstrate the agreement of the
three methods.



TABLE I, Corr'xparison of Numerical Values Obtained by the Three
Methods at Discrete Values of the Space Variable for £ = 0.004
and for Values of the Parameters N = 0.1 and T, = 0.1

Space Temperature, 8
Variable, Exact Method of Lumped-parameter

£ Method Lines Method
0.00 0.0000 0.0000 0.0000
0.05 0.3932 0.3931 0.3932
0.15 0.2398 0.2397 0.2398
0.25 0.1588 0.1587 0.1588
0.35 0.1235 0.1234 0.1234
0.45 0.1121 0.1120 0.1120
0755 0.1170 0.1169 0.1169
0.65 0.1466 0.1465 0.1465
0,75 0.2289 0.2288 0.2289
0.85 0.4134 0.4132 0.4133
0.95 0.7598 0.7596 0.7597
1.00 1.0000 1.0000 1.0000

TABLE II. Comparison of Numerical Values Obtained by the Three
Methods at Discrete Values of the Space Variable for { = 0.04 and
for Values of the Parameters N = 0.1 and 75 = 0.1

Temperature, 8

Space
Variable, Exact Method of Lumped-parameter
£ Method Lines Method
0.00 0.00000 0.00000 0.00000
0.05 0.48453 0.48451 0.48452
0515 0.45959 0.45956 0.45957
0.25 0.44693 0.44690 0.44690
0.35 0.45219 0.45215 0.45214
0.45 0.47937 0.47938 0.47934
0.55 0.53072 0.53075 0.53071
0.65 0.60591 0.60594 0.60591
0.75 0.70235 0.70236 0.70234
0.85 0.81494 0.81498 0.81496
0.95 0.93737 0.93734 0.93735
1.00 1.00000 1.00000 1.00000
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APPENDIX A

Absorption Analysis

To analyze the importance of radiative energy transfer as a con-
tributing mechanism to total energy transfer, we must reduce the available
experimental information on the absorption cross section for sodium vapor
to the Planck-mean absorption coefficient. At present the Planck-mean
absorption coefficient appears to be the most meaningful average to use
for the mean extinction coefficient.’® Knowing the Planck-mean absorption
coefficient, we present calculations for the parameter N as a numerical
measure of the relative importance of radiative transport to that of molec-
ular conduction.

Figure 13 of Ref. 32 is reproduced here with the author's per-
mission as Fig. 17. In general, the absorption cross section varies ex-
tremely rapidly with frequency. Knowing the atomic structure of sodium,
we see that the cross section above 1 [ (the upper limit of experimental
data) is effectively zero because of the lack of free-free, bound-free, or
bound-bound transitions. For this reason, we agree with Wechsler?® that
above 1 i the radiant energy absorbed by sodium vapor is negligible.
Below 0.2 u, the thermal radiant energy absorbed is also negligible. This
leaves the band between 0.2 and 1 [, which is accounted for in the experi-
mental work of Wechsler.*
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The Planck-mean absorption coefficient is defined as!’?

o0 (o)
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where

I oT*
/ Ipdv = = (A.2)
0

Before the integrations involved in Eq. A.l can be accomplished,
data on the temperature dependence of sodium vapor must be available so
that the absorption coefficient may be calculated from the absorption cross
section. Values of the density as a function of temperature, as well as the
vapor thermal conductivity, are taken from Ref. 34. The density varies by
four orders of magnitude for a temperature change of approximately a
factor of two. This wide variation of density with temperature appears to
be a dominant factor in the analysis of the problem posed here.

Using the Romberg quadrature scheme,* ¢ we integrate the numer-
ator of Eq. A.l. The Romberg algorithm is essentially a trapezoidal in-
tegration of the function with a specified equal number of subintervals.
From the first approximation, better approximations are calculated recur-
sively. The ith iteration comprises the following: The ith value is calcu-
lated by summing the values over the mesh points of the (i- 1)st iteration
and additional points obtained by halving the previous mesh size. This sum
is multiplied by the new mesh size. The (i+ 1)st iteration is found by ex-
trapolation from the ith and the previously calculated values. Finally, the
(i+1)st value is compared with the ith value and the process is terminated
if the absolute deviation is less than a preselected small value.

All computations are performed in double-precision arithmetic, and
with the convergence criterion specified the integrals are at least as
accurate as the data used, which are assumed valid to the second decimal
place.

Representative values of the above computations are, for the boiling
point of sodium at atmospheric pressure,

T = 1619°F, «, = 6.4/cm,
while at a higher temperature at atmospheric pressure,

T = 2000°F, K, = 401/em.

The mean absorption coefficient is an extremely nonlinear function
of temperature. Thus, during transient boiling of a blanket of sodium, the
medium may be optically thin initially because of the relatively "cool"
temperature of the sodium and may become optically thick with time as the
sodium absorbs energy and increases in temperature. The present analysis
is primarily applicable for small time, however, and thus the approximations
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used here are valid in the sense that an optically thin medium would atten-

uate less radiant energy than an optically thick one and thus remain "cooler"

relative to the walls, that is, emit a relatively smaller amount of radiant
energy.

Using the above values of the Planck-mean absorption coefficient,
computations for the parameter N are performed using the definition

kk
= 2 »
40T}
where the reference temperature T; is taken to be the evaluation tem-

perature of the absorption coefficient. Thus at

T

1619°F, N = 0.053;
and at

i 2000°F, N = 3.0.

1

Again, because of the strong temperature dependence of the Planck-mean
absorption coefficient, Kp» the parameter N is strongly dependent on tem-
perature. A more important conclusion, however, is the values of N indi-
cate that radiation through sodium vapor is an important contributing
mechanism to the total energy transport and should be accounted for.



35

APPENDIX B

Evaluation of Integrals

As was noted by Prasad,? integrals of the form

Ty
f En(7) sin 2 ar
0

(B.1)
0

are inconvenient to evaluate explicitly; therefore he chose to use a dif-
ferent approximating function to solve the problem. The procedures for

evaluating such integrals are outlined below.
obtain

Integrating by parts, we

1 ~E4(To)(- 1)K + E,(0)
/E.(TOC) sin (knQ) ag = — O T B
0

3 1k 2
()[R em0] (o [ 200 con teng «]

0

(B.2)
Now,

% y (Tor)d
Ey(rot) = -T - In (1a0) +j§ (-1)i! J("f) (B.3)

where I' = 0.577215 (Euler's constant). Thus

/l E)(Tol) cos (k7€) dt =
0

00

-1"‘/l cos (kmf) dt - /lln (ToL) cos (kml) dC
0 0
Z (-1)i-17,)

+ J.(J—,)/l td cos (kmt) 4. (B.4)
J=1 i 0

The integrals in Eq. B.4, as given by Gradshteyn and Ryzhik,'® are
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1
/ E(To€) cos kmé dE = %[Si(-k;:—r)+g]
0

& G0 [ g2 G-2z-1)
()
e 2 =
e ot J-]- (B.5)

where the sine integral function has the series expansion

o s 1)k+1xzk-x

) L (
Sife) = -5+ Lo (&= D(2k- 1!

(B.6)

™S

il

and I'[(j - 1)/2]
evaluation of

the integral part of the real number x. Finally, for the

1
/ Ey[7o(1- £)] sin (k7€) dE , (el
0

let

Zi=k-¢ (B.8)

and obtain
0
/ Ey(To€) sin [k7(1 - 2)] dZ, (B.9)
1
which, after some trigonometric reduction, becomes

k-1 ! ;
= (-1) / E4(70Z) sin (kmz) dz, (B.10)
0

which is tabulated as Eqs. B.2 and B.5.
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