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FORCE-REFLECTING SERVOMECHANISMS
WITH SIGNAL-TRANSMISSION TIME DELAY

by

William M. Thompson

SUMMARY

The absolute and relative stability of a force-reflecting servomech-
anism with time delay in the signal-transmission channels is investigated
by several methods. One method uses a stability criterion for time-lag
systems due to Pontryagin. This criterion is adapted and extended for use
in this study.

The servomechanism is the type that provides the connecting links
in currently used, electrically connected, master-slave manipulators. The
time delay is due to the time required for signals to traverse the distance
between the master and slave arms, if they are separated by large distances.
Two time delays of approximately 4 and 23 msec are used to illustrate the
Pontryagin method. The latter delay corresponds to a separation distance of
about 4000 miles.

The analog-computer simulation of the system indicated that the
stability is very sensitive to the values of gain in the signal-transmission
channels. Therefore, one objective was tosdetermine the stable regions
in gain-parameter space. Some stability information is developed by using
conventional techniques, such as those of Nyquist, Satche, Bode, and Routh.
However, the desired information cannot be obtained conveniently by any
of these methods because of the number of parameters involved and the
complexity of the system.

The stability information is obtained by using the Pontryagin cri-
terion. This criterion gives the conditions under which exponential poly-
nomials have zeros only in the left half complex plane. The characteristic
equation of this system can be put into the form of an exponential poly-
nomial. The criterion involves investigating the zeros of the real and
imaginary parts of the exponential polynomial evaluated along the imagi-
nary axis. These zeros must be real, simple, and alternating.

A new method of application of the criterion had to be developed.
All earlier applications involved system equations of lower order for
which simple trigonometric relations could be derived. This system is
fourth order, and no such simple relations exist. The method uses the
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. 2 : k
convenience of digital computation and a simple graphical procedure to chec

the zeros. A procedure is also given for easily changing the location olf the
zeros of the real and imaginary parts by adjusting the parameters so that
the limits of stability in gain-parameter space can be found.

The criterion is based on a fundamental theorem of complex variable
theory, Cauchy's principle of the argument, and is explained in those terms.
Adhering to this principle permits the criterion to be extended to give inform-
ation on relative stability. By this means, zeros can be excluded from
certain regions in the left half plane near the imaginary axis.

Examples of the procedures are given, and regions of stability and
realtive stability are determined in gain-parameter space. The results
were verified by analog-computer tests and by direct calculation of the
zeros. A magnetic tape recorder was used to simulate the delay. The
results show that there is some slight improvement in relative stability for
delays up to about 4 msec. For the delay of 23 msec, however, the desired
relative stability cannot be achieved for any reasonable values of gain.

Also discussed is the use of the new procedures to determine effects
of loads on the system and to solve some classical problems of a more
complicated form.
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CHAPTER I
INTRODUCTION

Force-reflecting servomechanisms of the type studied in this report
were developed along with, and for use in, electrically connected master-
slave manipulators. Therefore, this introduction begins with a discussion
of remote-manipulator development and its association with force-reflecting
servomechanisms.

A. Development of Remote Manipulators

The need for remote manipulation has existed for many years in
the nuclear-energy field where work must be carried out on highly radio-
active material. Currently, a similar need is arising in the space and under-
sea programs. As a result of these continuing needs, different kinds of
remotely controlled manipulators have been developed. Each, with various
degrees of efficiency, allows a person to perform manipulations or experi-
ments in a hazardous location while he is in a safe environment separated
from the hazard by shielding or distance.

One kind of manipulator that has been very useful and popular, be-
cause it is easily and naturally controlled, is the master-slave manipulator.
This type manipulator was invented about 20 years ago at Argonne National
Laboratory where there has been a continuous manipulator development
program ever since.’

A master-slave manipulator consists of two mechanical arms con-
nected together either mechanically or elec‘trically. The slave arm can be
located in a remote or hazardous area, where it will follow almost exactly
the motions of the master arm. A human operator controls the motion of
the master arm by moving the control handle with his hand. A master-slave
manipulator must have at least seven motions, that is, seven degrees of
freedom. Three translational motions are necessary to move an object
around in space, three rotational motions to orient it, and one grasping mo-
tion to hold it. If complex manipulations are to be carried out safely and
efficiently, this manipulator must also have the feature of reflecting load
forces back to the operator's hand; otherwise, uncontrolled and excessive
forces could be applied at the slave without the immediate knowledge of the
operator. A mechanically connected master-slave manipulator has this
feature inherently because the two arms are coupled together tightly by
linkages, steel cables, or steel tapes. An electrically connected one, how-
ever, requires a special system to achieve force reflection.

B. Force-reflecting Servomechanisms

The connecting links in an electrically connected master-slave ma-
nipulator are force-reflecting servomechanisms.>> These systems simulate
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oth positional correspondence and
Seven complete systems, one
or a manipulator. Force-
lso developed at Argonne
ed to several master-

mechanical connections by providing b
force reflection between input and output.

for each degree of freedom, are required £
reflecting servomechanisms, which were a ;
National Laboratory, have been successfully appli

slave manipulators vt

force-reflecting servomechanisms 1n

A major advantage of using : :
low complete mechanical separation

master-slave manipulators is that theyal
of the master and slave arms, while retaining the natural control features

and much of the "feel" capability of mechanically connected wanipulators,
This advantage was only partially exploited in an applicath!} where the
slave arms were mounted on overhead movable bridges inside a sealed,
shielded enclosure, and direct viewing was possible through shielding win-
dows. Only direct wire connections were used between the arms. The
signal cable lengths were relatively short, less than 100 ft to traverse
take-up pulleys, penetrate shielding, and reach control amplifiers.

C. Signal-transmission Time Delay

Another possible extension of application of force-reflecting servo-
mechanisms is to situations where direct wire connections are either not
possible or not practical. A radio link is likely to be used in applications
where distances are large, but it may also be advantageous for short dis-
tances to eliminate such problems as remote cable handling. The companion
and necessary viewing system may require a radio link for similar reasons.
If radio links are employed in a manipulator, the only limit to the amount of
separation that can be achieved between master and slave is due to the
effects of the signal-transmission time delay, that is, the finite time interval
required for the signal to traverse the distance involved. This time delay
may not be significant for most earth applications of manipulators. It can,
however, become significant in many space applications. For example, the
force-reflecting servomechanism used in the latest manipulator becomes
unstable if the signal delay is only 23 msec. This corresponds to a separa-
tion distance of about 4000 miles.

Signal-transmission time delay may occur from many other causes
besides the transmission time of wireless transmission systems. In any
transmission system, if the number of signal channels is limited, signal
multiplexing may be necessary. This could introduce a significant delay,
especially if the signal must be digitized. Also, if any digital computations
and modification were done with the signal, the computation time would add
to the delay. Of course, if these delays are significant with respect to sys-
tem time constants, the systems involved may have to be considered as
sampled-data systems. In continuous systems, however, other delays can
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also occur, for example, because of the use of hydraulic or pneumatic com-
ponents. Even if short distances are involved, such systems can produce
significant time delays that can accumulate at a rate as high as 1 msec/ft
of connecting line.

D. Objective and Scope

The purpose of this investigation is to study the effects of signal-
transmission time delay on force-reflecting servomechanisms, develop
an analytical method for predicting their stability, and devise means for
compensating for deleterious effects of the delay. The study is concerned
with the type of force-reflecting servomechanism that has been successfully
applied to manipulators. It is a continuous system to which will be added
time delay in the signal-transmission channels. The signal channels will
be assumed to have no effect on the signals except to delay them.

The term "signal-transmission time delay" has been used thus far
in preference to other terms such as transport lag, because the delays
under study occur only in the signal channels, as opposed to a delay in an
output variable. Much of the analytical development, however, can be
applied directly or with slight modification to any system with delay. The
term "time delay" or just the word "delay," when the meaning is clear,
shall be used as a convenient abbreviation of the above expression. The
term "time lag" shall refer to the delay in time of any variable.

E. Previous Research in Related Fields

Systems with time lag have been studied extensively, and several
excellent bibliographies exist. Those by Weiss!! and Choksy'? are com-
prehensive and easily available. Many pertinent references are contained
in the bibliography of a thesis by Pierre.” A recent bibliography appears
in a book by Oguztoreli.'* Choksy!® and Krall'® have written review papers
on stability criteria for time-lag systems.

Besides the continuing research and development program on force-
reflecting servomechanisms for manipulators at Argonne National
Laboratory, there have been research programs on these systems else-
where.'”"!® Several of these have been sponsored by Argonne at nearby
universities and have resulted in theses. Three were Ph.D. theses by
Chalmers,'? Weaver,? and Arzbaecher,’' and one, a master's thesis by
Schmidt.?? A brief review of these follows.

Chalmers' thesis applies certain features of electrical network
theory to force-reflecting servomechanisms by using electrical-mechanical
analogies. He shows that under certain conditions a force-reflecting
servomechanism can be represented by a passive, two-port mechanical
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and negative-force feedbac
section devoted to force-reflecting servomechanisms, he shows the pos-

sibilities of improving the sense of feel of such systems by using force
feedback, which effectively reduces the inertia and friction of the system.
He develops stability criteria for such systems based on network-theory
stability concepts. Schmidt?? did some preliminary work on inertia and

friction reduction in single-loop systems.

of positive=-

Remote manipulation with transmission delay was studied exten-
sively by Sheridan and Ferrell.?* % Their research was concerned
mostly with the effects of transmission delay on the ability of the opera-
tor to perform certain manipulative tasks. The manipulator used in their
experiments was a servo-driven master-slave positional system with two
translation motions and one grasping motion. There was no force feed-
back to the operator. There have been some experiments on the above
system with the addition of tactile force feedback in the grasping motion.
The force feedback was achieved by using signals from strain gauges to
drive a motor on the master control. Instabilities occurred under certain
conditions of force-feedback gain when contact was made with fixed loads.

I have observed this kind of instability on systems of this type even with-

out time delay. This is one of the reasons why force-reflecting servo-
machanisms of this type, using force transducers, have not been successfully
applied to manipulators. Arzbaecher (Chapter 4 in Ref. 21) discusses this
type of force-reflecting servomechanism.

27

F. Conventional Analytical Techniques and Their Limitations

: The force-reflecting servomechanism under study in this investiga-
tion is a constant, multivariable, linear system with time lag. Bellman
and Cooke showed that the response of such a system is determined by the
location of the zeros of its characteristic equ.a.tion."’8 It is a fourth-order
system, and the characteristic equation for the system without delay is a
fourth-order polynomial. With delay, the equation includes exponential
functions, which make it transcendental, and, as a result, it has an infinite
number of zeros. As for a system without delay, the system is stable if



no zeros are in the right half complex plane, and relatively unstable, or
lightly damped, if the zeros in the left half plane are much closer to the
imaginary axis than the real axis.

Of the various mathematical tools available for determing the stabil-
ity or relative stability of systems with time lag, none was well suited to
the system under study. Although some preliminary information was
obtained using conventional techniques such as a generalized form of the
Nyquist criterion, the dual-locus Satche diagrams, and Bode plots, these
techniques were not tractable when the variation of more than one parameter
was involved. Also, very little information concerning relative stability
could be obtained by using these methods.

G. Special Stability Problems of Force-reflecting Servomechanisms

The stability and performance of the force-reflecting servomech-
anism under study depend on four parameters that are very susceptible
to variation. These are the relative gains of the four signal-transmission
channels that form the communication link between master and slave.
Four separate channels are required, one each for position and velocity
signals in each direction. Although the position and velocity signals could
be combined for transmission, their gains would be independently adjust-
able, and therefore a separate channel is considered for each.

The effects of variation of the gain parameters were discovered
while investigating the anomalous behavior of a model of the system that
was set up on an analog computer. Without any time delay in the trans-
mission channels, the system was unstable for many settings of the channel
gains, both above and below their nominal values. The instability was
manifested by an exponential, and sometimes oscillatory, growth of the
error between the master and slave positions. When it was determined
that the stability of the system depended on the relative gain settings of the
transmission channels, rather than extraneous factors like computer-
amplifier drift, it was decided to establish the stable regions in gain-
parameter space before proceeding to the systems with time delay.

This instability due to gain variations does not occur in the cur-

rently used systems without delay because they are not arranged for a
long~distance signal transmission. In such cases, a single error-in-
position signal is generated at one end and is instantly transmitted to the
other so that the same signal drives both the master and slave. When
transmission delay is involved, however, there are two position-error
signals, one generated at each end, and they are probably at least slightly
different. A similar situation prevails for the velocity-error signals.
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single error signals could be gener-
i i angement,
ated at one end and transmitted to the other. With this arrang

i he delay: one
one component of the signal at the far end would have twice the Y

i i return as
delay due to its original transmission, and another due_ to 11t050 il =
part of the error signal. Because of the double delay in a P

: i ned.
existed before, investigation of this system was abando

In a system with time delay,

As the effect of variation of gain parameters on the stability of the

i i iffi i 1 i conven-
i being investigated, difficulties in using
system without delay was g e i

i lytical techniques became apparent. :
o : ful in this case, even without

had been employed earlier, they were not use A 4 & 4
the delay, because of the large number of plots required to indicate the

effects of parameter changes. Varying only one parameter at a time allowed
some information to be produced by root-locus plots. The.most usefﬂ ;
technique, however, was employing Routh's critgrion. and it was primarily
by this means that the desired stability regions in parameter space were

determined.

H. Statement of the Specific Problem

After the establishment of the stability regions in transmission-gain
parameter space for force-reflecting servomechanisms without signal delay,
it was appropriate to do the same for systems with delay. In addition, it
was desirable to establish regions where a certain amount of relative
stability exists and also to determine the effects due to the variation of
other parameters. Therefore, the specific problem was to establish a means
of obtaining this information. Of the well-known techniques, some, like the
Routh criterion, could not be applied, and some, like root-locus plots could
be applied only with considerable difficulty. A less well-known stability
criterion, the Pontryagin Stability Criterion, seemed to show some promise,
but it required modification in method of application and extension in scope.
Through this criterion the desired results were obtained.

I. The Pontryagin Stability Criterion

Choksy?? developed a stability criterion for control systems with
time lags. It is based on work by Pontryagin which deals with the problem
of determining if any zeros of exponential polynomials lie in the right half
complex plane. The characteristic equation of the system under study can
be put into the form of an exponential polynomial. Bellman®®? also sum-
marized Pontryagin's results. Choksy gave his statement of the criterion
in his review article.'®

Although the Pontryagin criteriop is basically not limited in applica-
tion to systems of any order, in most published examples it was used only for
systems of second order orless. (For example, see papers by Bhatt and Hsu.3%:33)
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In addition, all examples, including one with a third-order characteristic
eq\:lation,M were such that simple, explicit, analytical relations could be
obtained among the trigonometric quantities involved. The system under
study is fourth order, and no simple relationships could be evolved. There-
fore, it was necessary to develop a new method of application for higher-
order systems and in such a way that the effects of the variations of the
gain parameters could be easily determined. To this end, a graphical tech-
nique with extensive use of digital computation was developed.

As established, the Pontryagin criterion is one for determining
absolute stability. In this report, it is extended to provide information on

relative stability.

J. Other Techniques

Other stability techniques were briefly investigated, but because of
the successful results with the Pontryagin criterion they were not pursued
exhaustively. The methods of Lyapunov have been applied to time-lag sys-
tems, but appear to offer more advantage for nonlinear systems or linear
systems with time-varying parameters.’®> Even for linear constant systems,
however, there is much computational difficulty with systems of first order.?
The Laplace-transform techniques resulting in a transcendental character-
istic equation are considered more productive. (For example, see the re-
mark by Oguztoreli,’* p. 112.) The results from the Pontryagin criterion
give the necessary and sufficient conditions for stability. The results from
Lyapunov methods are likely to be sufficient conditions, which would require
more restrictive parameter settings.

6

»

Yuan-Shun®’ developed a technique for determining if a system with
time lag 1s unconditionally stable, that is, stable for all values of time lag.
He showed that a system is unconditionally stable if it is stable for no lag
and there are no zeros of its characteristic equation along the imaginary
axis. The second condition is transformed into one for finding if there are
any real roots of an algebraic equation. A second-order system, however,
results in a quartic algebraic equation, and the method becomes complicated
Chapter III of this report presents a method for finding similar information
from Bode plots. The requirement for unconditional stability is usually too
severe a restriction to put on a system.

Eisenberg” presented another technique for determining the absolute
or relative stability of a linear system with time lag. He treated a system
with two free parameters in linear combination; that is, no products of pa-
rameters occur. He transformed the real and imaginary parts of the sys-
tem's characteristic equation into a form containing Chebyshev functions
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: ero, he could
and the parameters. Setting each part of the'equa.tlon e:_];ii tfz:the param-
solve for each parameter, since he had two llﬁéar equarlelative-stability
eters. These equations define either a stability or at e N aed for geatan it
boundary in the parameter plane, depending on the con osed ae b conteadl
the characteristic equation. Chebyshev func?tlons' were u s, evotor K
tional aid. This technique could not be -3PI-’11‘3C‘l directly t; en when only two
study because more than two parameters are involved. i

- linearly. In addition,
i e, they do not occur ;
parameters are considered at a tim . : adial tEren e

ive -stability contour
the method depends on the relative-s y n selntive=ctatiiity

boundaries. Therefore, it would not apply to the mai . e
boundary used here. Also, in this case there 'seems to be no sp .
advantage in transforming to Chebyshev functions when the computations

can be performed easily directly.

K. Contributions of This Report

This report has made the following contributions to the fields of

remote and automatic controls:

| The research on force-reflecting servomechanisms has been

extended to include systems in which there is significant time delay in the

signal channels. The effects of varying certain critical parameters are

determined.

2. A new, graphical technique of application of Pontryagin's
stability criterion for time lag systems has been developed. It uses the
convenience of digital computation and provides the advantages that it can
be applied to systems of any order and that the effects of the variations of

certain parameters can be found easily.

3. The Pontryagin criterion has been extended to provide informa-
tion about the relative stability of time-lag systems.

4. The basis of the proof of the Pontryagin criterion has been ex-
plained in terms more common to control engineers, with the possible
result that a better understanding will promote a greater number of applica-
tions and extensions.

L. Outline of Report

The following is a brief outline of the material in the remaining
chapters of this report.

Chapter II describes the basic force-reflecting servomechanism
under study and develops the basic equations. From these, the normalized
characteristic equation is produced. Chapter III describes the initial
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investigations of the system, by the use of conventional analytical tech-
niques. Here is given the analog computer setup on which the effects of
the variation of gain parameters were noticed. This chapter also gives

the conventional techniques used to provide the stability regions in gain-
parameter space for systems without delay.

Chapter IV begins the discussion of the Pontryagin criterion. The
first part of this chapter describes the criterion and its proof. Then the
new method application is developed and illustrated. Chapter V extends
the criterion to provide information about relative stability by restricting
the regions in the complex plane wherein the zeros of the characteristic
equation can lie. The proper region is developed, and the technique is
illustrated.

Chapter VI contains the analytical results of the stability regions
in gain-parameter space devloped from the Pontryagin criterion. Certain
points are verified by analog-computer experiments. Chapter VII discusses
other applications of the new techniquesto determine load effects and solve
classical problems. Chapter VIII contains the conclusions and possible
areas of extended research.

For those interested only in the new techniques, the material has
been arranged so that they may proceed directly to Chapter IV, where the
discussion of Pontryagin's criterion begins.
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CHAPTER I
DEVELOPMENT OF SYSTEM EQUATIONS

A. System Description

is i igati i force-
The system chosen for study in this investigation is the

shown in
i i ment of elements

i nism with the arrange :
L gy e mechanical assemblies each

i i t
Fig. 1. The system includes two separa : "l
ha\%in a motor, a positional transducer, a velocity transducer, and an ou p‘
L : Each motor is controlled by an ampli-

shaft, connected together with gears. .
fier whose input is a combination of signals from the tr:nsd.ucezl-s_b:‘t:’ein
signal channels with transmission time delay transfer the signals

the two separated parts of the system. Although the.sys.tem is.comPletely
symmetrical as shown and can operate equally well in either dlrectfon, the
left shaft is usually referred to as the input of the system and the right as

the output.
SIGNAL
TRANSMISSION
CHANNELS
5, (1-X)
AMELIEIER A {\ﬁgi (N AMPLIFIER
A G0t-0) o
o sl - TOR =
— moToR N6 (-0 N
(=) V (+)
;TI 39. A kEl Ty i AR 0 2, F2,Tmz L%
>
S =}
= @
g ] 8,1 3
g VELOCITY | |t VELOCITY w
TRANSDUCER TRANSDUCER
posiTion | 6 (1) 6, (1) POSITION ||
TRANSDUCER TRANSDUCER

A=SIGNAL TRANSMISSION
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Fig. 1. Arrangement of Elements of Force-reflecting Servomechanism

In the absence of time delay in the signal channels, this system is
very effective as a force-reflecting servomechanism. It is essentially a
combination of two positional servomechanisms, both operating to bring the
input and output shafts into positional correspondence. If there is a posi-
tional difference, the same positional error signal appears at the input of
each amplifier, and the motors tend to run in opposite directions with equal
torques to correct this error. If this action is prevented by the externally
applied torques, T, and T,, they must also be equal and opposite to balance



the motor torques, thus giving torque reflection (force reflection in a linear-
motion system), Effectively, the input and output shafts appear to be coupled
together by a torsional spring. In addition, the system also tends to produce
velocity correspondence between the two shafts by using the velocity error
signal. Accurate torque reflection and position or velocity correspondence
are achieved only under steady-state conditions of zero or constant velocity
because of the time and the torque necessary to accelerate the inertia of the
system, The situation is somewhat similar in the system with time delay,
except that more time will lapse before steady-state conditions are achieved.

Although a force-reflecting servomechanism can be made up of other
arrangements of elements® or have more elements such as force or torque
transducers,?! the system selected is the simplest type. Except for the time
delay, it is the type that has been successfully applied in master-slave
manipulators.*7:%1% In future applications where the separation between
the master and slave arms would result in significant transmission time
delay for the signals, there would be a strong tendency to retain the same
system. During this study, no reason developed to change the basic arrange-
ment for the time delays considered. Furthermore, this system has the
advantage of discouraging fast input motions that cannot be followed because
of signal delay. Working at the input is like working into the output of a
positional servomechanism until some signal returns from the far end;
therefore the operator must exert considerable effort to produce fast motion.

B. System Equations

In most applications, the units on the gearbox shown in Fig. 1 would
rotate at different speeds. In the equations below, however, all quantities
are referred to the output shaft, and the gear ratios are included in the gain
constants. Therefore, in the equations it appears that each unit rotates at
the same speed. Also, the subscripts 1 and 2 refer to the input (left side)
and output (right side) of the system, respectively, as shown in Fig. 1.

The basic torque equations, one for each side of the system, are

d?e;(t) +F de,(t)

Ty(t) + Tra(t) oz - (1)

1

dt?
and
a%8,(t) ds;(t)
et + Tealt) = 3 - HEy =i (2)
where

T is an externally applied torque, ft-1b;

Ty isthe torque developed by the motor, ft-1b;

21
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rtia of the motor and its gearing,

J is the total rotary moment of ine
slug-ft? (ft-lb/rad/secz);

F is the coefficient of visc
ft-lb/rad/sec;

ous friction of the motor and gearing,

and
@ is the position of the output shaft of the gearbox, radians.

The torques developed by the motors depend on the positions and

velocity signals as follows:

de, (t) e de,(t-A) (3)
Trma(t) = -Knbi(t) + Kz02(t-2) - Pu —gg i dt J
and
de,(t-2) da,(t) (4
Tme(t) = Kabi(t-2) - K;26,(t) + D21 at - D2z —3¢ ¢ )
where
A is the time delay of the signal transmission channel, seconds;
K.. is the overall torque per unit of positional displacement constant
Y {hat includes the transducer constant, amplifier gain, gearing
ratio, and motor torque constant, ft-1b/rad;
and

i is the overall torque per unit of velocity constant, similar
to K, ft-lb/rad/sec.

The first subscript indicates the destination, and the second, the source of

a signal.

The above equations represent a mathematical model of a force-
reflecting servomechanism. The assumptions made in writing these equa-
tions are that the system is linear, the elements can be characterized by
lumped constants, and the transmission channels have no other effects
except that of pure delay. The motor (not necessarily an electric motor) is
considered as a torque generator with linear speed-torque characteristics
and with no time constant associated with torque buildup. These have proved
to be reasonably good assumptions and approximations for previous studies
of systems without signal delay and have resulted in good predictions of the
behavior of actual systems in their normal working frequency range.
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C. The Transformed Equations

The system equations are a set of linear differential-difference
equations with constant coefficients. These equations can be solved by using
the Laplace transformation.?® The transforms of the functions with the
delayed argument, t - A, can be determined in the usual manner by multi-
plying by e~ St and integrating from zero to infinity. The requirements for
initial conditions, however, are different. The functions must be specified
for the initial period -A =t = 0.

The initial conditions chosen in this case are

6,(t) = A

82(t) dat  dt

These are the initial conditions used in the analog-computer simulation
tests. A magnetic tape recorder with separate record and playback heads
was used to provide the time delay. With the tape recorder operating, the
6,(t) variable was given a constant displacement at least one delay period
before starting the problem.

Taking the Laplace transform of Eqs. 1-4 and using the above initial
values gives

Ty(s) + Tra(s) = J,826,(s) - J,As + Fs6,(s) - FyA, (6)
-

Ty(s) + Tma(s) = J28%0,(s) + F,s8,(s), (7
0

Tru(s) = -Ky6i(s) + K,zf B,(t-1) e~St dt - D;;56,(s)
0

+ DA + D,zf %‘t')‘)e'st at, (8)
0

and

= -st
Trna(s) = Kz,/ By(t-2) e”St dt - Ky8,(s)
0

o0
+ Du/ 93%1‘2 e-St d¢ - D,,80,(s), (9)
0

where s is the Laplace transform variable.
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ansformed by letting
The functions with the delayed argument are tr g

t
¥ =t -\ and using the initial values. Thus, the first functi

f By(3)e™® (g+2) ay

]

f“ez(t- x) e~St at
0
= e-sxf_: 62(y)e”5¥ dy

_ e-sklwez(w)e—sw dy

= e SAg,(s). (10)

With the above result, the transform of the next function becomes

fom ey(t-2) e 5t at = e'sk[j:‘; 6y(y)e ¥ dy +91(5)]

e'sx[fo Ae~SY¥ dy + 91(5)]
A

= etsA
sk[_?+ s S\ 4+ gy(s )}

e's>\.el(s) ¥ % &4 %e-s)._ (ll)

The transform of the next function is found by using integration by parts as

follows:

 doy(t- . o
_/ _qu-_) e ftdt = gy(t-2) e75t | + sf 82(t-2) e"5t dt
0 o 0
= 0- 0+ e %Aspy(s), (12)

and, finally, the transform of the last function becomes

o) =
dg,(t - f
f HE=2) ont gy Bi(t-2) e"3t | +s | 6,(t-2) e”Stat

dt
0 0

0

»

A A 7.
O-A+ s[e'S)‘Ql(s) e e i 5)‘]

se SAQ(s) = Ae~SA,
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Using the above transforms in Eqs. 8 and 9 yields the following
motor torque equations:
Tr(s) = -K6:(s) + Kize 28,(s) - Dy;s6,(s)
-8\
+ Djze ""s6y(s) + DA, (14)
and
Tma(s) = Kze 526,(s) - Ky0,(s) + Dyye”52s6,(s)
- Dy,;56,(s) + KyA(l - e"5X)/s - D, Ae™SA, (15)
If the system has no displacement during the initial period, that is,

A =0 for -A =t =0, Egs. 6, 7, 14, and 15 can be used to produce the block
diagram of the system shown in Fig. 2.

T,(5) To(s)
6,(s) | + - | 8,(s)
5(sd+F)) i3 + Sl tirg)
Tml(s) Tmz(s)
+ +
+ B
0y ™= Fi EhA 0,
F—e= s s |l
Dz e-®A < frae dan (B
Kin —‘_497 e K2
Kz &3 —:®f— K22

Fig. 2. Block Diagram of Force-reflecting Servomechanism

Figure 2 shows the signals that are combined to produce the motor
torques. If there were no signal transmission delay and each of the K's and
D's were equal to single constants, K and D, respectively, the motor torques
would depend on the difference in position and the difference in velocity
between the input and output shafts. These differences are the positional and
velocity errors of the system. The motors are connected so that they tend to
drive each side of the system in the direction to reduce these errors to zero.
When there is signal-transmission delay, correct error signals generally are
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In addition, since the gain of

not available instantaneously at either end. : e
each transmission channel cannot be set exactly or will .not rerr:a;g e
same indefinitely, correct error signals may not be avaxl.able a y : f.
The different K's and D's have been included in the equations to accqun o
a major considera-

these unequal gains. As mentioned in the introduction, - e ihe st
tion of this report is determining the effects on the stability of the 8y

due to using error signals that are modified by both the time delay and the

unequal gains of the transmission channels.

r Trmy and Tm from

After the substitution of the expressions fo
nt of terms, the system

Eqgs. 14 and 15 into Eqs. 6 and 7 and the rearrangeme

equations become

Ty(e) = [Fis® + (Fy# D) s + Ku 61(5) - (Duze # Ki) &7%205(6)
- J,As - (F,+ D) A (16)
and
To(s) = [stz + (Fz+Dgz) s + Kzz] B2(s) - (D215 + Kz1) e—s>‘91(8)
- a-SA
- KA L-e + Dy Ae”Sh, (17)

Since each F-term, which is the viscous friction constant of its motor, is
usually very small and always occurs in combination with a D-term, its
effect can be included in the D-term. Therefore, dropping the F's gives

Ty(s) = (J;s%+Dys+Kyy) 61(s) - (Drzs + Kpp) e-skez(s)

- J;As - DjA, (18)
and
Ty(s) = -(Dzys+Ky) e-s)\el(s) + (7287 + Dyps + Kypp) 6;(s)
1 e-S>\. - X
- KnA ————+ DyAe™®, (19)

jI‘hese equations represent the system shown in Figs. 1 and 2 in terms of
Lf'lput and output variables. To the extent that the previously made assump-
tions are valid, they can be used to determine the Laplace transform of the
response of the system with or without external stimulation.

D. Form of Solutions of the System Equations

. If the external torques T,(t) and T,(t) are considered as arbitrary
forcing functions, Eqs. 18 and 19 can be solved for the transforms of the



angular positions of the shafts by using Cramer's rule. The results are

J,8% + D8 + Ky,

= T +J,As + DA
8,(s) H(s) [Ty(s) + J,As + D, A]
Dy;s + -sh 1 - e 8A
+ i% [Tz(s) & Ky + - D,jAe~SA (20)
and
-SA
gy(s) = st Ka) e p ) | 51 + DA
H(s)
J;8% + Dy;s + Kpy 1- e85t )
e e Ty(s) + KA ———— - DuyAe M|, (21)
where
H(s) = J,J;8* + (J;Dz2+J,Dy,) s*
+ (51Kz + J;Ky; + Dy D) 82
+ (K1 Dap + Kg;Dyy) s + Ky Ko,
= [DIZDZIBZ + (Kj2Dz1 + Ky Dyp) s + KIZKZI] e 28\, (22)

The inverse transforms of 6,(s) and 8;,(s) give the complete time
response of the system. If there is no delay) that is, A = 0, these are
rational, algebraic expressions, and taking the inverse transform is no
problem. The nature of the time response depends on the poles of the ex-
pressions for 6. In this case, the poles can come from two sources. They
are the poles of T)(s) and T,(s), if there are any, and the zeros of H(s), the
characteristic equation. In systems with delay, where the characteristic
equation is transcendental, Bellman and Cooke have shown that the nature
of the time response is likewise determined by the zeros of the character-
istic equation,?®

Just as for systems without delay, the time-domain solutions of the
system equations consist of two parts. One is the complementary function
or transient solution that depends on the initial values. The other is the
particular or steady-state solution that depends only on the forcing functions
T, and T,. The transient solution indicates the stability or relative stability
of the system. Therefore, attention can be limited to T; = T, = 0. In that
case, Eq. 20 becomes

91(5) = P;Il((:)) ? (23)
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where
Py(s) = (J;5%+ Dyps + Kpp)(J)As + D1y A)

s el DZlAe'SX). (24)
]

+ (Dyzs + Kyz) e™5A (szA

The time-domain solution is the inverse Laplace transform of

Eq. 23. Thisi is

ctjw 5
ot Py(s)

6y(t) = (]bl_ﬂoz_m i " H(s)

ds, (25)

where the contour line of integration is to the right of all the singularities
of the integrand. This integral can be evaluated by using the residue
theorem. It is equivalent to an integral around a contour that encloses much
Therefore, many of the poles of the integrand, which

of the left half plane.
Since there are an

are the zeros of H(s), are enclosed by that contour.
infinite number of zeros of H(s), no finite contour can enclose all of them.

In this case, however, as shown later, the infinite chains of zeros of H(s)
are in the left half plane. Therefore, successively larger contours, num-
bered Ny can be arranged so that the contour Ny, encloses one more pole
of the integrand than the contour Ny. Then the value of the integral becomes

L : eStPl(s) =1
g,(t) = lim Jsum of the residues of ——2~! within the contour Ny |» (26)
k—+o0 H(s)
or
61(t) = im D exp(s t)py(t), (27)
Nk

where exp(s,t)p.(t) is the residue of eStpl(s)/H(s) at the zero, s, of H(s).
The function pr(t) is a polynomial of one degree less than the multiplicity
of sp. Because the zeros can be put into a definite order and they have a
certain limiting distance between them, 61(t) can be expressed as a con-
vergent infinite series as follows:

00

6,(t) = rZI exp(srt)pr(t). (28)
If H(s) has no multiple zeros,

6(t) = r}: Cr exp(syt), (29)



where

Py(sy) . _ dH(s)
Cr = m and H' = a5 .

(30)

The expression for 6,(t) is the same, except for the subscripts.

Similar series expansions can be obtained even when the system is
forced. Therefore, for the system considered in this study, the response
is determined by the zeros of the characteristic equation of the system.
For example, if its characteristic equation has any zeros with positive real
parts, the time response of the system to any disturbance will be a growing
exponential and, therefore, the system is unstable. Much attention will be
devoted to determining the regions in the complex plane where there are no
zeros of the characteristic equation

H(s) = 0. (31)

E. Network Representation

A force reflecting servomechanism can be represented by a four-
terminal, two-port network. This representation has been useful in previous
studies'?’?! and in this case provides a convenient device for discussing load
effects or terminal conditions. Although the input and output variables are
mechanical rotations and torques, the techniques of electric-network theory
are applicable either directly or by using a suitable electrical-mechanical
analog. The current-torque, voltage-velocity analog has been the more use-
ful one for these systems and is employed here. Figure 3 shows analogous

electrical and mechanical networks

W il and their common admittance param-
@ AT Yia ©  eters. The equations, in transformed
s Vp (8) form, for the electric network with
o Y5y Yo ——o zero initial values, in terms of the
admittance parameters are

A ELECTRICAL

NETWORK
Li(s) = Yuls)v,(s) + Y,,(s)V,(s), (32)
and
7,(8) T,l8) L(s) = Yz(s)Vi(s) + Yau(s)Va(s) (33)
i Yiz = o : ;
s, (s) B0 The equations for the mechanical
network are
e Y2 Y22 o
Ty(s) = Yy(s5)s8,(s) + Y 2(s)s8.(s), (34)
B MECHANICAL
NETWORK
and

Fig. 3. Network Representation of a Force-
reflecting Servomechanism Ta(s) = Yals)st(s) + Y2:(s)s8,(s). (35)

29
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The Y-terms in Eqs. 34 and 35 are the mechanical-ad.mlttance pilx:zniesters
of the mechanical network. They can be manipulated in an); w:::-)l'< o b
permitted for the admittance parameters of th? electr1§ nte “lroval.ues ol
parison with Eqs. 18 and 19 for the situation with zero 1n; 1athe forc,e-

is, A = 0, gives the mechanical-admittance parameters for

reflecting servomechanism under study. These are

Y, (s) = J;8 + Dy, + Kyy/s, (36)
¥ials) = ~(Dy; +Kyafa) e84, (37)
Yau(s) = - (Do +Ka/s) e 5%, (38)
and
(39)

1

Yz2(s) = Jp5 + Dy + Kzo/s-

F. Characteristic Equation of Loaded System

A force-reflecting servomechanism must be stable for various con-
ditions of load. The first requirement is that it be stable for no load. This
involves investigating the zeros of the characteristic equation. The charac-
teristic equation can also be written in terms of the admittance parameters.

From Egs. 34 and 35 for T;(s) = T,(s) = 0, it is

H(s) = SZ[Yu(S)Yzz(S)'le(S)Yzl(S)]' (40)
This reduces to Eq. 22 when Eqgs. 36-39 are substituted for the Y's.

For a passive load on the output terminals, consisting of each of the
three elements, an inertia, J1,, a spring, Ky, and a viscous damper, Dy,
there is an additional equation relating T, and 6,,

-Ta(s) = Y, (s)s6,, (41)
where

Y1.(s) = Ji,s +Dp, + KL/s. (42)
Substituting Eq. 41 into Eq. 35 gives the set of equations

Ty(s) = Y,,(s)s6,(s) + Y,,(s)s6,(s), (34)

and

0 = Yai(s)s6y(s) + [Yaa(s) + Yy (s)] s8,(s). (43)
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The characteristic equation for this set is
H(s) = Bz{Yll(S)[Yzz(S)"'YL(S)] - Yy,(s)¥(s)) (44)

As can be seen by comparison to Eq. 40, this characteristic equation is
modified by the addition of Y, to Y,,. Since Y,, has been maintained as
a separate term, different from Y,,, the effects of loading can be included
in Y;;. If the base system is assumed to be symmetrical, then any varia-
tion from symmetry can be considered as partially due to loading. With
the following substitutions

J] = J; Jz = J(]' +a)t
D), = D, Dp; = D(1+p); (45)
Kn = K, Kzz = K(l +'y);

the characteristic equation becomes
H(s) = J*(1+a) s* + 2JD(1 +0.50.40.58) s°
+ 2JK(1 +0.50 +0.5v) s?
+ [D?(1 + B) - D,,D,,e~25}] g2
+ [2KD(1 +0.58+0.5Y) - K;;Dz, +Kz,Dyz) e 252 s
+ [K2(1 +7) - K ,Kp e~ 252, (46)

L]
where a, B, and 7y are the variations from symmetry that include load

effects.

G. Modification and Normalization of the Characteristic Equation

Some terms in Eq. 46 have been combined in a slightly different
way to illustrate their significance. For an unloaded system, the magnitudes
of the coefficients of the first-order and zero-order terms are close to zero
for small values of s. Therefore, small changes in the coefficients could
have significant effect on system behavior. As discussed earlier, the con-
stituent terms, K;;, K;;, D;;, and D;;, which include the signal-transmission
channel gains, are very likely to vary from their nominal values of K and D.
When the K's have their nominal value, the characteristic equation has a
zero at the origin. To emphasize the variations from nominal values, the
following changes in the designation of the parameters are used:

Kz = KK, Dy, = d4,D;
Kz = kK, D = d;D;

(47)
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where the lower-case k's and d's have the nominal value ofdone.thAfZex;a-
substitution of these into Eq. 46 and rearrangement of the order, the eq

tion becomes

H(s) = J2(1+a) s* + 2IJD(1 +0.5a +0.58) s?
+ 2JK(1 +0.50+0.57y) s% + D*(1 +p) s?

+ 2KD(1 +0.5B8 +0.5) s + K%(1+7)
-2s)
- [D2%d,d,s% +KD(k,d, +k,d;) s + K’kjk,] e ™54, (48)

Since the zeros of Eq. 48, the characteristic equation, are to be
investigated, numerical values must be substituted for some of the' parame-
ters to keep the problem tractable. The values chosen are approximately
those of a system used in a manipulator application without signal time
delay. The facility for load changes and signal-channel gain changes is re-

tained. The values used are
J = 0.05 slug-ft?,

D = 5 ft-1b-sec,

(49)
and
K = 250 ft-1b/rad.
After substitution of these values, Eq. 48 becomes
H(s) = 0.0025(1 +a) s* + 0.5(1 +0.5a.+ 0.5p) s
+25(1+0.5a+0.5Y) s? + 25(1 +B) s?
+2500(140.58 +0.5v) s + 62,500(1 +7)
- [25d)d,5° +1250(kd, +k,d,) s + 62,500k,k,] e~25X, (50)

Because of the range of values of the coefficients, it is desirable to
normalize this equation. The undamped natural frequency of the system
with all nominal values and no signal delay is

2K
Wn =’\/T = 100 rad/sec. (51)

This factor is used to change the complex frequency and the time variables
as follows:



s = 1008
(52)
x = 1/100
The equation in terms of the new variables is
H(s) = 2.5x 10° {(1+a) s* + (2+a + B) &3
+(2+0.5a + B +0.5v) 82
+(1+0.58+0.5y) s + 0.25(1 +7)
- [d;d,8% +0.5(k,d, +k,d,) & + 0.25kk,] e 257}, (53)

Since only the zeros in this equation are of interest, the constant
multiplying factor can be dropped. Also, since the normalized equation can
be identified by the 7, the circumflex over the s is dropped. In addition,
another substitution is convenient:

a = dle' T
b = kk,,
> (54)
and
¢ = 0.5(kd; +kzdy). |

After these changes, the characteristic equation is in its final general form,
H(s) = (1+a)s*+ (2+a+B)s® +(2+0.5a + B + 0.57y) s?
+(1+0.58+0.5Y) s +0.25(1 +7)
- (as®+cs+0.25b) e %57, (55)

H. Other Terminal Conditions

The other terminal conditions to be considered are those with one
or both shafts locked so that they cannot move. This is equivalent to
grounding or shorting the input or output terminals. If it is assumed that
the output shaft is locked, s8,(s) = 0, and Eqs. 34 and 35 become

Ty(s) = Yyu88,(s), (56)

and

Ta(s) = Yz56,(s). (57)
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The response of 8, to an input torque is, from Eq. 56,

x(s) =3y 1) (58)

Therefore, the system characteristic equation is

59
Hgcls) = s¥uls). (59)
T, cannot exist without 6, because Y,

ot B0 ly relates T, to 6.
Equation 57 merely 2 . because 1/Y11 does

has no finite poles, whereas 6, can exist without T,

have finite poles.

The details of the characteristic equation are found by substituting

Eq. 36 into Eq. 59 and obtaining

Hgc(s) = Jys? + Dyys + Kyy- (60)

This equation contains no delayed-signal terms. Since motion is prevented

at the output end, no signals are generated there. The zeros of this equation
are obviously in the left half complex plane. Therefore, this terminal condi-
tion need not be considered any further with regard to stability and the effects
of signal delay. Similar conclusions can be drawn for the input shaft locked
or both shafts locked.

The more important case is that of imperfect grounding, that is,
locking a shaft through a resilient member. This is equivalent to connecting
a stiff spring across the output terminals. No further development is neces-
sary, however, because this case is included in Egs. 46 and 55 as another
load condition.

The effects of a human operator on the system are not considered to
any extent in this investigation. It is tacitly assumed that he is lightly
coupled to the input. Therefore, he is equivalent to a force generator with
almost infinite internal impedance (zero admittance) connected to the input
terminals. For a manipulator with seven motions in operation, this is the
case for several of the motions much of the time, especially when the
operator is positioning the arm or handling very light loads. Therefore,
this study was limited to the stability of a system itself without any effects
due to the operator. However, to the extent that the dynamic characteristics
of a human operator can be described as a linear, lumped-constant imped-
ance, he can be considered as another load on the system.

I. Comments on the Characteristic Equation

' As poi'nted out in Section H above, Eq. 55 is the system characteristic
equation that is most significant. It is the one to be studied at length. Much



of the study, however, is done on the unloaded system since that form of
the equation is sufficient to illustrate most of the techniques employed.
Also, the first requirement of any force-reflecting system is that it be
stable for no load. For the no-load case, @ = B = y = 0, and Eq. 55
becomes L

H(s) = s* + 25 + 252 + 5 + 0.25 - (as®+cs+0.25b) e™ 257, (61)

This is the equation for a fourth-order system with time delay. In the
absence of time delay, this reduces to a fourth-order polynomial. The
delay causes the exponential terms, making the equation transcendental;
that is, it cannot be written as an algebraic equation with a finite number
of terms. Because of the exponential terms, the equation has an infinite
number of zeros. For a stable system, none of these are in the right half
complex plane.

J. Zeros at the Origin

If, in Eq. 61, b = 1, the characteristic equation has a zero at the
origin. This is an acceptable location for a zero. Consider, for example,
the solution indicated by Eq. 28 or 29 for the system excited by an initial
fixed displacement of A units. If K,K,, = K;;K;,, the characteristic
equation has a simple zero at the origin. Calculating the residue of 8,(s)
at the origin shows the first term of the solution to be

K;2DjA - KppDg)A +AAK K,
K D2, + Kp2Dyy - KDy - KpyDyp + 20K, Ky,

R, = (62)

If the system has gain parameters with the nominal values of K and D, this
first term reduces to A/Z. If all the remaining zeros of the characteristic
equation are in the left half plane, R is the final position of the input shaft.
There would be a similar response if the system hadbeen excited by an im-
pulse of torque. This is a desirable response for a force-reflecting servo-
mechanism. It means that there is no special rest position, such as zero,
and the system can be placed anywhere within its working range.

If b is not equal to one, there is no zero at the origin, and the sys-
tem has the "home" position of 8, = 8, = 0. If all the zeros of the charac~
teristic equation are in the left half plane, the system will return to that
position when all external torques are removed. If b is very close to one,
there is a zero on the real axis close to the origin. (This can be shown by
using a series expansion of H(s) for small s.) The rate at which the sys-
tem moves with respect to the "home" position is approximately propor-
tional to the distance of this zero from the origin. If b is less than one,
the zero is to the left of the origin and the system returns to "home"; if
b is greater than one, the zero is to the right of the origin, and the system
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diverges from "home." In the first case, the motion at.ppears Fo be a slow
drift and can be tolerated. The latter case, however, is tech.mcally un- :
stable and is considered as such in this study. Even if the. divergent velocity
is small at the beginning, it increases exponentially with time.

A force-reflecting servomechanism without signal time delay can
be stable and have a characteristic equation with a double zero at the
origin. If a = b = ¢ = l1and 7= 0, Eq. 61 reduces to

H(s) = s%(s®+2s+2). (63)
This system, when excited by an impulse and after the transient subsides,
continues to move with a constant velocity. During this motion, the system
does not dissipate any energy. For a system with signal delay, the series
expansion for its characteristic equation, Eq. 61, is

H(s) = 0.25(1-b) + (1-c +0.5b7) s

+(2-a+2cT-0.5b7?) s? + higher terms. (64)

This indicates that a double zero at the origin occurs when b = 1 and
c = 1 +0.57. Whether the system is unstable under these conditions due to

the location of the other zeros must be investigated.

K. Acceptable Location of Zeros for Stability

The above discussion leads to the conclusion that, for a force-
reflecting servomechanism to be stable, all the zeros of the characteristic
equation must be in the left half complex plane except for either one or two
at the origin. Zeros on the imaginary axis, except at the origin, are not
acceptable because they indicate a response of sustained oscillation.



CHAPTER III
APPLICATION OF CONVENTIONAL TECHNIQUES

Several conventional techniques were used early in this study to
obtain preliminary stability information about the force-reflecting servo-
mechanism described in Chapter II both with and without time delay. This
information helped in the formulation of the problem. The techniques used
and some of the results are described briefly in this chapter.

A. Application of Nyquiét's Criterion

One of the initial investigations of the stability of the system
involved making complex-plane plots of its characteristic equation for
values of the independent variable along the imaginary axis and then
applying a stability criterion similar to that of Nyquist. The Nyquist
criterion is usually applied to the plot of an open-loop transfer function
composed of a ratio of polynomials. (A reprint of Nyquist's paper appears
in a collection of classical papers.’®) However, the application of essentially
the same criterion to transcendental characteristic equations is brought out
in a paper by Dzung.%® In the discussion of that paper, Tizard refers to such
application as the use of a "generalized Nyquist criterion." As Hoffman
pointed out,*' the resulting plots are conformal maps of a region that includes
most of the right half complex plane, and these criteria are based on
Cauchy's principle of the argument. The criterion used in Chapter IV of
this report is an application of the same principle.

The normalized characteristic equation of the system considered
here is, from Eq. 61, b

H(s) = s*+ 283+ 252 + s + 0.25 - (s?+s+0.25) e~257. (65)
The system considered has no load (thatis, @ = B = y = 0) and has the
nominal values of transmission gains, a = b = ¢ = 1. The equation was
plotted for values along the positive imaginary axis, that is, for s = jw for

W = 0, and several different values of 7. The equation was split into its
real and imaginary parts as follows:

H(jw) = F(w) + jG(w), (66)
where
F(w) = w* - 2w? + 0.25 + (w?-0.25) cos 2wT -  sin 2WT, (67)

and

G(w) = -20® + w - @ cos 2wT - (w?-0.25) sin 20T (68)
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Each part was calculated on a digital computer for incremental values of

w and then plotted. Figure 4A shows these plots for real time-delay values
of A = 0, 0.01, and 0.25 sec (T = 0, 1.0, and 2.5 sec); Fig. 4B, forA = 0.05sec
(T = 5 sec). The plots for A = 0 and 0.01 sec indicate stable systems; the
plots for A = 0.025 and 0.05 sec indicate unstable systems. The stability

is determined in the usual manner by counting encirclements of the origin,
taking into account the entire contour. In this case, since the characteristic
equation has no poles in the right half plane, there must be no encirclements
for stability. The entire contour in the s-plane consists of the usual
infinite-radius semicircle and the imaginary axis with an indentation to
miss the zero at the origin. Appendix A gives the details of the contours
and the stability determination.

~ wlrod/sec)

A=005 sec

A=0.025 sec
T

J

»m{n(,uﬂ

wlrad/sec)




B. Satche Diagrams

Another graphical technique for determining stability, due to Satche,
is particularly suited to systems with time lag.**® It involves splitting the
characteristic equation into two parts so that one consists only of the expo-
nential term. Each part is plotted for the values on the contour that en-
closes the right half plane, the same contour as in Section A above. The
plot of the exponential term is simple. It consists of the unit circle for
values of s along the imaginary axis, and points within the unit circle
for values of s along the large semicircle. A vector joining the two plots
at points corresponding to the same values of s will change in magnitude
and angle as the contour in the s-plane is traversed. If no poles in the
right half plane have been introduced, the total change in angle of this
vector must be zero for stable systems. If, for each value of s, the tail
of this vector was placed at the origin, its head would describe a locus
similar, but not identical, to the Nyquist plots of Section A above. There-~
fore, the requirement of zero change in angle is the same as the requirement
of no encirclements.

To apply the Satche technique, the system characteristic equation,
Eq. 65, was split as follows:

H(s) = (s%+8 +0.25)(54+283+ZSZ+8+0.25 i e'st). (69)
s®+s+0.25

Then, if

Fy(s) = st + Zsz +2s8% +s +0.25 . (70)

8+ 8 4+ 0.25

and

S T (71)
the characteristic equation becomes

H(s) = (s®+s+0.25) [F,(s) - F,(s)]. (72)

Since the zeros of s + s + 0.25 are in the left half plane, F,(s) has no poles
in the right half plane. Then, if

F(s) = Fy(s) - Fy(s), (73)
the functions F(s) and H(s) have the same zeros, if there are any, in the

right half plane. Therefore, it is sufficient to examine the function F(s)
to determine stability.
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Figure 5 shows plots of the functions Fj(jw) and F,(jw) for w =0.

from the locus of
i j b resented by a vector drawn
Rl F,(jw), the unit circle, to the locus

of Fy(jw). The ends of the vector are
at points on each locus that have the
same value of . The locus F,(jw)
represents the function of Eq. 70 with
that set of parameters. The shape of
i (if0) the locus of F,(jw), however, is the
& same for any value of 7. As T changes,
W only the value of ® associated with
each point on the unit circle changes.
Therefore, Fig. 5 can be used to
determine the effects of all values
of time delay.

|5

Rl

|m[ Fi(jw)]

F(Ju) e
(STABLE)

Foljw)

The critical value of time
delay, that is, the one for which the
system just becomes unstable, is
determined by the intersection of
the two loci in the second quadrant.
F,(jw) intersects the unit circle for
w = 1. The apparent intersection
at the point +1 + jO is due to the
characteristic equation having the zero at the origin. Appendix B discusses
the details of stability determination involving the complete contour. How-
ever, if T is less than the critical value, the point on F, for w = 1 will not
have reached the point of intersection, and the direction of F is generally
upward as o increases in this region. On the other hand, for 7 greater
than the critical value, the w = 1 point on F, is beyond the intersection
and the vector F will make an extra rotation as @ increases in this
region. This, along with a similar rotation for the negative frequencies,
results in a change of angle of F of 47, which indicates two zeros in the
right half plane and instability for the system.

Fig. 5. Satche Diagram for System

The critical value of time delay for the system can be determined
from Fig. 5. For that value of 7, the angle of F, is such that the point for

@ = 1 also falls on the point of intersection. In this case, -2WT = -ZTC =

-¢ = -4.42 rad and 7, = 2.21 sec for the normalized system and
A = 0.022 sec for the real time system.

The use of the Satche diagram results in a great improvement in
fiet«'ermining the effects of time delay for this system. The diagram
indicates that increasing the time delay beyond the critical value will
result only in more rotations of F and, therefore, greater instability.

If other parameters vary, however, this method is less helpful. For
examplfe, Fy(jw) might have to be replotted for many changes in signal-
transmission gain or load to discover any trends. Any modification of F,



that advances the point of intersection to the right probably would increase
stability, but each case would have to be checked. If, however, F, can be
modified so that it always remains outside the unit circle and never inter-
sects it, the system so represented would never become unstable regardless
of the time delay; it would be unconditionally stable. The technique for
accomplishing this is more easily achieved by the method discussed in
Section C below.

C. Bode Diagrams

The equations for the system can be rearranged so that an open-
loop-type transfer function appears. In that case, the usual analytical
techniques using Nyquist and Bode diagrams can be applied. If no external
torques are applied and the initial values are zero, Eqs. 19 and 18 can be
written as

(Dyy8 + Ky,) e~SA
6(s) = — 8i(s), (74)
J,8° + D8 + K,;

and
(Dyzs +Kyp) ™
6y(s) = — 6a(s). (75)
J,8°+ D;;s + K,
Figure 6 is a block diagram representing these equations, where
.
8, (s) 8,(s) D..s + K
L I 6 (s) Gy(s) = —; 21 a (76)
J,s°+D,,s + K,,
A
|Q (s) 6,(s) and
Gpls) oS\
- D,;s + K,
Fig. 6. Block Diagram Showing Tandem, Single- i(8) = ————————— (77)

= .
$

loop Composition of the System B atinliye iy,

The entire system is essentially composed of two second-order positional

systems connected in tandem in a loop and with time delays in the connecting

signal links. If the loop is opened at point A, é 1(s), the output of the G,(s)

block, is

él(s) = Gy(s) e S g,(s), (78)
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and

B,(s) = Gy(s) e=SA By(s). (79)
Combining these equations gives

] (80)

= G,(s) Gu(s) e84,

0y(s)
When the loop is closed, ébl(s) and 6,(s) are identical.

If this system is compared to a standard single-loop system with
negative feedback, the equivalent open-loop transfer function is

W(s) = -Gy(s) Gals) e, (81)
and the stability of the system depends on the roots of the equation
1 +W(e) = 1 - Gyfs) Gufs) e8> = 0. (82)

Equation 82 gives the same characteristic equation as before.

With the equations in this form, the usual Nyquist diagrams for the
open-loop transfer function W(s) can be drawn. Similar information for this
system can be found more easily from Bode diagrams. Nevertheless, a
necessary condition for stability can be derived from a consideration of the
Nyquist diagram. The zero-frequency point will be located at s = -K K
K11K;z, and the infinite-frequency point at the origin. If the magnitude of
KIZKZI/KHKZZ is greater than one, the Nyquist diagram will begin at a
point to the left of the -1 point and go to the origin for the range of positive
frequencies, and there will be a conjugate plot for the negative frequencies.
Under these conditions, the -1 point must be encircled at least once. When
szsz/KuKzz equals one, the characteristic equation has a zero at the origin
as previously mentioned, and the system can be stable. for example, with
no delay as discussed in Section II.J. Therefore, a necessary condition for
stability is

KIZKZI =
KIIKZZ =i (83)

A sufficient condition for stability can also be derived from the
Nyquist diagram. If ]W(juo)| is less than one for all frequencies greater
thé;;DZZfro, the -1 point cannot be encircled and the system is stable. Since
le | =1 for any value of A, the equivalent condition is |G;(jw)G,(jw)| < 1.
Therefore, a sufficient condition for stability for any value of time delay is



|Giw)G,(jw)| < 1,  for w >0, (84)
in addition to the condition of Eq. 83.
The system can be examined for this condition by using a Bode

diagram.*® After the substitution of the normalization factors and compo-
nent values of Eqs. 47 and 49, the transfer function becomes

W(s) = Gy(s) Gy(s) e™257, (85)
where
d,s + 0.5 k
o oy (86)
and
Byl ot o2 (87)
8 +8 ¥ 0.5

If it is assumed that the two systems are identical, that is, k; = k; = k and
d, = d; = d, the individual transfer functions become

ds + 0.5 k

Gy(s) = G(s) = G(s) = BT

(88)

and the condition of Eq. 84 becomes |G%(jw)| < 1, which is the same as
|G(jw)| <1. Figure 7 is an asymptotic plot of the Bode diagram for
|G(jw)f for k = 1 and d = 1. Since

+6 . : T T the magnitude is greater than one
for a large range of frequency, the
+3 = SEE 3
r_ condition is not met.
"’_ i In this case, values of d and k
T -1 that will provide unconditional sta-
_E_ i | bility can be found relatively easily.

This is because the damping ratio
e - of the denominator term is 0.707 and
|G(jw)| has no resonant peaking due

b A : . . to this term. The condition |G(jw)| < 1
0.128 025 05 10 20 4.0
w, rod/sec becomes, for allw > 0,
Fig. 7. Asymptotic Bode Plot for |G(jaw)| J0.25 +o* > Jw?d®+0.25k%, (89)

or, when rearranged,

o - w?d? + 0.25(1 -k?) >0. (90)
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The condition is satisfied when

a* + k2 < 1, (91)
which can be found by equating Eq. 90 to zero, solving for w, and finding
the conditions for which the solutions are imaginary.

Equation 91 indicates that the condition can be satisfied with either

k or d equal to zero. Each of these, however, would basically change the
If k = 0, there would be no positional

system by eliminating these signals.
Such a system could not hold a steady

coupling between master and slave.
load unless there was a velocity difference between the two ends. This
would be undesirable for most applications. Making d = 0 would eliminate
the signal that has been most effective in improving the impulse response
of systems without delay. Such improvement increases the operator's
sense of feel of changing load forces. It could be expected to do the same
for systems with delay, at least for some range of delays. If k = d, con-
dition 91 becomes

k = d <0.787, (92)

which shows that both k and d can be reasonably sized even for uncon-
ditional stability. If the load or other parameters change so that the
damping ratio of the denominator of Eq. 88 becomes different from 0.707,
the analytical computation becomes much more complicated.

Another method of achieving unconditional stability is to add one or
more compensation networks in tandem in the loop. For example, low-pass
filters could be used to compensate for any magnitude increases due to
either the numerator or denominator of G(jw) without requiring the position
coupling, k, to be reduced to a small value. The required characteristics
of these filters could be determined from the Bode plot of |G(jw)|. These
filters, however, by attenuating the higher frequencies, would also degrade
the dynamic response of the system. Since the achievement of unconditional
stability is not a primary objective of this investigation, this technique was

not pursued. An unconditionally stable system is used mainly for comparison
in later sections.

A system that is used as a basis for comparison throughout this
report is one with a fixed d, equal to 0.9, and variable and different k's,
k;, and k,. Stability boundaries will be found in the k,, k, parameter plane
using different techniques. The unconditional stability boundary can be
fo.und by using the technique discussed in this section. From Egqs. 86 and 87
with a fixed d, by algebraic manipulation, the condition of Eq. 84 becomes

w® + w*(0.5-d%) + 1/16 > (k2kZ/16) + (k2 + k) d%w?/4. (93)



For d = 0.9, Eq. 93 becomes
w® - 0.1561 w* + 0.0625 > 0.2025(k} +k3) w? + 0.0625 kkZ. (94)

The boundaries of this inequality can be determined graphically. With a
change in variable, Q = a? each side of the equation can be plotted as a
function of . The right side will be a straight line whose location depends
on the values of k; and k,. The inequality boundary occurs when the straight
line is tangent to the curve of the left side of the equation. All other lines
below the tangent line satisfy the inequality. Thus, the allowable ranges of
values of the slopes and intercepts of these lines can be found. From this
information the allowable values of
10 T T T T k, and k;, can be determined. Fig-
ure 8 shows the unconditional sta-
bility boundary in the (k,, k;)-plane
determined by this process.

08 [, ===

BOUNDARY
08 [— = Although the unconditional
stability boundary above could be
it determined with only moderate dif-
ad| 52 STABILITY — ficulty, it becomes much more
difficult to use this method to deter-
mine the actual stability boundaries
for systems with fixed delays. In
that case, both magnitude and phase
60 | | of the open-loop transfer function
o0 o g% K o8 Ll '©  must be considered simultaneously
and bgth are complicated functions
Fig. 8. Region of Unconditional Stability in the of the k's and d's. Additional com~
(ky, ko)-plane for d = dg = 0.9 plication would be introduced by
adding a load to the system, by
changing other parameters, or by using a compensation network. Also,
very little information concerning relative stability can be derived from
Bode plots. Therefore, other methods were sought to obtain both absolute
and relative stability boundaries.

02 =

D. Analog Computer Setup

The system under study was simulated on an analog computer first
to investigate its behavior as the various parameters were varied and later
to verify some of the conclusions established analytically. For this purpose
the system equations, Eqs. 1-4, were reduced and rearranged as follows:

1161(t) = Ty(t) - Kpy6y(t) + Ky28,(t = 2) = Dyyéy(t) + Doyt - 2), (95)
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and

1562(t) = Ty(t) + Kpby(t-2) - K;26,(t) + D6yt -2) - Dj28,(t)- (96)

After one makes the substitutions of Eq. 45, makes provisions for a time-

scale change by letting t' = at, and rearranges the terms, the above

equations become

h k,K -
i NN A _iel(i .2 ez(t ax)
\a 227 a AT a 227 a

; d,D e
R Y ] (97)
alJ a alJ a

4D /tr_a2\ D . [t (t) _BD [t YK [t
oy a(t2) -Zely) - all) -8R ef) B oks) - oo

The numerical values for the nonvarying parameters from Eq. 49 are used.
Also, the arguments of the functions T and 6 are abbreviated by dropping
the symbol a. Thus, the equations become:

a 5000 k
Bir) =22 Ty - 20 gtey 4 ——Lg(r - )
- a? 72
100 d
100 - L
- —6,(t) + 8,(t' - an), (99)
and
5 0 5000 k, EBO0 100 d,
6,(t") :;TTZ(t') + a—zel(t' -ah) - z 6,(t") + = B,(t' -ax)
00 100 B . 5000y
-Tez(: ) = aB,(t') - = 6,(t") = ——— B,(t1) (100)
Three time scales were used in this study. The first, a = 100,

provided for the normalization used in Chapter II and defined 7 = 100 A,
In most of the stability determinations, two values of T were used, 7T/8
and 37/4. These correspond to the real time delays of 71’/800 = 3.93 msec
and 37T/400 = 23.6 msec. With this value of a, the system equations become
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Bi(t') = 0.002 Ty(t') - 0.5 6,(t') + 0.5 kyB,(t' =7) - 6,(t') + dyd,(t' =7),  (101)
and
By(t') = 0.002 T,(t') + 0.5 k6, (t' =7) = 0.5 8,(t') + d,6,(t' -7) - 8,(t")

- aB,(t') - B6,(t') - 0.5v6,(t'). (102)

The other time scales were necessary because of the fixed time
delays available from the magnetic tape recorder used in this simulation.
The delays available were 0.14, 1.4, and 14 sec, but only the first two were
used. The 0.14-sec delay was used to simulate 7 = 7r/8 or A = 7r/800. In
this case, a is determined from the relation a\ = 0.14 sec which gives
a = 35.7. The l.4-sec delay was used for 7 = 37\'/4 or A = 37'r/400‘ This
gives a = 59.3. The system equations with these time scales are, for
gh= 35,7 t,
By(t') = 0.016 Ty(t') - 3.92 6,(t') + 3.92 k,6,(t' - 0.14) - 2.80 &,(t")

+2.80 d,6,(t' - 0.14), (103)
and
By(t') = 0.016 T,(t') + 3.92 k,6,(t' - 0.14) - 3.92 6,(t') + 2.80 d,8,(t' - 0.14)

- 2.80 6,(t') - aby(t') - 2.80 B6,(t') - 3.9278,(t"); (104)

and, for t' = 59.3 t,

6y(t') = 0.057 T,(t') - 1.42 6,(t') + 1.42 k,8,(t" - 1.4) - 1.68 8,(t")
+ 1.68 d,6,(t' - 1.4), (105)
and
6y(t') = 0.057 T,(t') + 1.42 k,0,(t' - 1.4) - 1.42 6,(t') + 1.68 d,8,(t" - 1.4)
- 1.68 B,(t") - afy(t') - 1.68 BE,(t') - 1.42 Y6,(t"). (106)

The two major items of equipment used in this simulation were an

. analog computer and a magnetic tape recorder. The analog computer con-

sists of conventional, patchable amplifiers and integrators made of solid-
state components and having a dynamic voltage range of 100 V. Different
summing and feedback components can be chosen to give amplifier and
integrator gains of one to ten. The tape recorder has eight separate chan-
nels, each with FM modulating and detecting amplifiers and, therefore,
with a signal frequency bandwidth from dc up to at least 100 Hz, depending
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on an output filter. The unit has separate record and playback heads so the
recorded signal can be played back after the time required for a point on the
tape to move from one head to the other. The signal voltage range is about
2 V.,

Figure 9 shows the analog-computer component arrangement used
for this study. With the gain of ten chosen, either set of equations, Egs. 103
and 104 or Eqs. 105 and 106, could be simulated by merely resetting the
potentiometers at the inputs of amplifiers No. 5 and 11 and changing the tape
speed of the tape recorder. Balancing the recorder amplifiers, however,
was necessary after a speed change. The potentiometers and amplifiers
in each tape-recorder channel were necessary, first to attenuate 100-V
range signals to a 1.5-V range suitable for recording and then amplifying
back to the 100-V range. Because of the filtering of the integrators, noise
generated in the tape-recorder channels, although very apparent in oscil-
loscope patterns, proved to be no problem.

-6, (1 %.m |> 611

T(1)

82 (1-a))

Fig. 9. Analog-computer Setup for Simulation of the System

Extra amplifiers were used
conditions. In Eqs.

written separately a

to make it convenient for changi

ging load
104 and 106, the terms containing a, B, andy were
lthough they could have been included in other terms.



Amplifiers No. 23 and 24 simulate these terms. Amplifier No. 11 is not an
integrator, so that the variable éz(t) is available. With this arrangement,
each potentiometer at the input to amplifier No. 23 has independent control
over one of the load parameters, a, B, and 7.

During most of the testing, the system was excited by setting in an
initial condition on amplifier No. 6 for 6,(t). No external excitation was
used. The variable 6,(t) was recorded, and 6,(t) - 6,(t) was generated and
recorded. The latter term is the error in position between the two ends
of the system. The transmission-gain parameters k;, k;, d;, and d, were
changed by adjusting potentiometers No. 8, 21, 25, and 26, respectively.
Chapter VI gives the results of some of these tests.

As mentioned in the Introduction, during the initial tests, there
seemed to be some anomalous behavior of the system. Even when the
tape-recorder channels were bypassed, eliminating the delay, unstable
operation occurred for most settings of the transmission-gain parameters.
Reducing the position-gain parameters, k; and k;, did not seem to help.
Section E below describes the investigation of this anomaly.

E. The System without Delay

To resolve the anomalous behavior of the analog~computer simulation
of the system mentioned in Section D above, the stability of the system was
investigated analytically. Since no time delay was involved and only absolute
stability was to be determined, straightforward application of conventional
techniques was appropriate. The desired results were obtained primarily
by using Routh's criterion. Some informatiop was obtained using the root-
locus techniques.

The system characteristic equation considered in this section is
that of Eq. 55 with 7 = 0 and no load on the system. Under these con-
ditions and with the use of Eq. 54, Eq. 55 becomes
H(s) = s* + 25 + (2 -d,d;) s* + [1-0.5(k;d, +k,d,)] s +0.25(1 - k;k;).  (107)
In the standard form, the equation is

H(s) = azs* + a;s® + 2,82 + a;s + a,, (108)
where

a, =1, a3 = 2, a, = 2 -4d,d,,

1 - 0.5 (kyd, +kpd;), and a, = 0.25(1-Kkk;). (109)

a)
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The Routh array for this equation is

ay az ag

as ay
bl ag ) (llo)
C)
ag
where
a.a
by = g ;3‘*, (111)
and
a,a,
€; = 8y - (112)

For the equation to have no zeros with positive real parts, Routh's criterion®*

requires that all the a's be positive (since a4 and a; are positive) and that
there be no sign changes in the first column of the array.

One case that gave anomalous behavior of the system was that for
d, = d, = 1. For that case, the various elements become:

a, = 1, 1

a, = 1-0.5(k, +k;),

5
1

0.5 + 0.25(k;k,),
0.25(k, k)2 [ (113)
T 1+40.5(k +ky)’

and

ap = 0.25(1 =k}

The only nonnegative value of ¢, occurs when k, = k,, making ¢c; = 0. All
othe?- values of k; and k, produce an unstable system. Also, ¢; = 0 indicates
a pair of imaginary zeros, and, therefore, the response of the system would
be a sustained oscillation. The system is stable for only one condition, that
of ky = k, = 1. In this case, a, and a, both are zero, and the system char-
acteristic equation reduces to one with two zeros at origin and two<in the

left half plane, the stable configuration discussed in Chapter II.



Since only one point in the (k;, k;)-plane represents a stable system,
it becomes apparent why it was difficult to obtain a stable system with the
analog computer. This situation would also prevail in the systems that
have been applied to manipulators. Stability in those cases, however, is
not difficult to achieve for two reasons. First, because only a single
positional error, e(t) = K[8,(t) - 6,(t)], is generated, the different values
of the K's do not exist and k; = k, = 1. In addition, every practical system
has some friction so that the F-terms in Eqs. 16 and 17 are not zero. Also,
since there is only one velocity error, all the D's in those equations are
equal. Therefore, effectively, D;; = D+F >D,;, = Dand D,; = D +F >
D;; = D. This makes both d, and d, less than one, and, as is shown below,
increases the stable region for the system.

When the d's are less than one, the stability requirements are less
stringent. (The system is always unstable when the d's are each greater
than one.) For all the zeros to be in the left half plane, all the a's in the
equation and all the terms in the first column of the Routh array must be
positive. Since all the a's must be positive, ¢, > 0 includes the condition
b, > 0. Also, c; > 0 can be reduced to the condition

ajazay - aja, = aga3 > 0. (114)

After substitution of the fixed values, the conditions for stability are

a, = 2 -d;d, >0 (this is assured since d,d, <1 g
by assumption),
a, = 1 -0.5(k,d, +k,d,) >0, >
ap = 0.25(1 -k,k;) > 0, e (115)

and

2a,a, -af - 43, > 0. J

For the case used for comparison, in which d, = d, = 0.9, the
conditions become

(1) 1 -0.45(k;+k;) >0,
(2) 1=Kk, >0,
(116)

and

(3) 1.52 - 0.684(k, +k;) + 2.38 kjk, - 0.81(k}+k}) > 0.

51
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Figure 10A is a plot of the stable region of the (k,, kp)-plane. Eaf:}.x of 1the
three conditions above contributes to part of the boundary. Condition
provides the straight-line sections; Condition 2, the. part of.the hyp?rzola
that passes through the 1,1 point; Condition 3, the side sectxon.‘f, whic 1 aze
also conic sections. Only positive values of k, and k; are considered in this
report, although the stable region extends into the other quandrants.

B) e
STABL
REGION

Fig. 10. Stable Regions in (k1, ko) -plane for System with No Delay

In a similar manner, the stable region for the case ofd, = d, = 0.95
was determined, as is shown in Fig. 10B.

Some information about the zeros in the stable regions of Fig. 10
was determined from root-locus plots. For d, = d, = 0.9, the system
equation is

st + 253 + 1.19 s% + [1-0.45(k, +k;)] s + 0.25(1 -k;k;) = 0. (117)

To put this equation in standard form, one of the parameters had to be
eliminated. This was done by assigning a specific value to it. With the
substitution k; = 1, the equation becomes

s* + 25+ 1.19 s* + 0.55 s + 0.25 - 0.45 k,s - 0.25 k, = 0. (118)

When put into the open-loop form, the equation is

0.45 k,(s +0.56)

i =0 119
s* 4+ 253+ 1.19 s + 0.55 s + 0.25 v

To put the open-loop term in factored form required finding the zeros of
the denominator. When these are used, the equation becomes

0.45 ky(s +0.56)

] = i
(s+0.70)(s + 1.29)(5 + 0.0011 +j0.52)(s +0.0011 - j0.52) ~ - (Les)

The ?oot loci in Fig. 11A were made using the above equation. The
asymptotes intersect the real axis at -0.48. The stable range of k;, from
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application of Routh's criterion, is -0.07< k, < 1. In a similar manner, the
root loci in Fig. 11B were made for k; = 0.5. In Figs. 11C and 11D are
root loci for d; = d, = 0.95 and the same values of the k's as above.

d,d,7095 /
" /
K= /

jos 4o,
(c0)/

(0)\} / ]l m
-05 °
® 0k

d,=d,0095

k=05

/ios
/
r/

N o) ()

3 O
/.05

Fig. 11. Root-locus Plots for System with No Delay, (Only the top half
of the s-plane is shown. Values of kg are in parentheses.)

As can be seen in Figs. 11A and 11B, when either of the k's is about
0.5 or less, the system is lightly damped. Although Fig. 10A shows a large
stable region, part of it is a region of low relative stability. Similar com-
ments apply to d;, = d, = 0.95, except that the stable region is even smaller.
This is another indication that it is desirable to have a means of determining
relative stability in addition to absolute stability.

Although the above methods produced the desired results for the
system without delay, their extension to systems with delay is difficult or
impossible. The Routh criterion, as it exists, cannot be applied. Root-locus
techniques have been applied to time-lag systems,*® but the application would
require much computation and many plots. Even in the above case without
delay, putting the system equation into the standard form was difficult. It
was accomplished only by fixing the value of three of the parameters and
allowing the fourth to vary. In addition, although the general form of the
plots could be determined beforehand, most of the zeros had to be obtained
on a computer. For some of these reasons, another stability-determining
technique was desired like the Pontryagin criterion discussed in Chapter IV.
That criterion has been referred to as an extension of Routh's criterion to
transcendental equations.
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CHAPTER IV

DEVELOPMENT OF A NEW METHOD OF APPLICATION
OF PONTRYAGIN'S STABILITY CRITERION FOR
FORCE-REFLECTING SERVOMECHANISMS

A. Introduction

This chapter describes the method developed to determine the
stable regions in gain-parameter space for the force-reflecting se-rvo-
mechanism under study. The method is based on a stability criterion for
time-lag systems due to Pontryagin. The criterion was adapted to the
problem and then applied by using a new graphical technique. By means
of this graphical technique, the effects of variations of the gain parameters
could be found easily. In this way, we avoided the main difficulties, de-
scribed in Chapter III, in using conventional stability criteria.

The stability criterion is a statement of the conditions under which
the zeros of a certain class of transcendental functions have only negative
real parts. Pontryagin presented the proofs of the criterion and its basic
theorems.’® Bellman included a short English summary of the Pontryagin
paper in his monograph in 195431 Choksy restated the theorems in
control-system terminology, gave brief outlines of the proofs, and also
gave some examples of applications of the criterion to classical problems.
In their book, published in 1963, Bellman and Cooke devoted a chapter to the
criterion and its application to classical pr:oblerns.28 The theorems were
not proved; instead, the reader was referred to Pontryagin's paper.

29

Although the Pontryagin criterion has been available for more than
10 years, there have been a few published discussions and extensions of it.
Since the main source of information regarding the basic proofs of the cri-
terion is Pontryagin's original paper, its mathematically rigorous presen-
tation may partially account for this situation by making it appear that the
proofs are difficult to understand. Therefore, a different approach is used
here. The bases of the proofs are explained with more emphasis on con-
cepts and terms familiar to control engineers. In addition, rather than a
general development being given, the particular characteristic equation of
the system under study is used throughout the discussion.

To obtain the desired results from this criterion required the develop-
ment of a new method of application. The criterion has been used often to
determine stability boundaries in parameter space. Before this study, how-
ever, there have been no known published applications in which the equation
of main consideration could not be reduced to one with only one trigonomet-
ric term. Such a reduction was not possible in this case because of the
complexity of the system. Furthermore, the classical equations discussed
by Choksy and Bellman and by Bhatt and Hsu®?*'*? are second order or less.
The only other exception, besides the one in this study, is a third-order
equa.tion discussed by Jeffrey.** For the type of systems under study, the
application of the criterion can be extended to equations of anv order.



The transcendental equation to which the criterion is applied in this
chapter is the characteristic equation of the force-reflecting servomecha-
nism system described in Chapter II. The equation is the one for the sys-
tem with no load. It is Eq. 61, which is repeated and renumbered here for
convenience:

H(s) = s* + 25 + 252 + 5 + 0.25 - (as?+cs+0.25b) e"25T, 121
)

The objective of this chapter is to find the values of the parameters, a, b,
and c, for which the zeros of H(s) are in the left half plane, except for
possibly one at the origin. If, as explained in Chapter II, the zeros of H(s)
are so located, the system is stable. These parameters, a, b, and c, are
related to the transmission gain parameters of the system by Eq. 54.

B. Preliminary Considerations

The Pontryagin criterion gives the necessary and sufficient condi-
tions for an exponential polynomial to have zeros only in the left half
plane. Exponential polynomials are members of a class of transcendental
functions of the form P(z) = p(z,ez), where p(z,q) is a polynomial.

The characteristic equation of the system, Eq. 121, can be put into
the form of an exponential polynomial. Since it cannot have negative expo-
nents, Eq. 121 is divided by e *57. This gives

Hp(s) = (s*+2s®+2s%+5+0.25) €57 - (as® +cs +0.25b). (122)
This equation has the same finite zeros as Eq. 121, because the divisor,

e 25T has no finite zeros. After the substitution of z = s7, where
z = x + jy, the equation becomes

R S . S 1) 2z

P(z)-—(T4z +T3z +_rzz t=ztg]e
S L R ) 123
(?z +?z+4b). (123)

In this equation, the powers of 7 are considered as parts of the constant
coefficients of the exponential polynomial in z and q = e#. Since T is a
positive constant, the real part of a particular value of s has the same
sign as that of the corresponding z. Therefore, the stable zeros of Eq. 123
are also stable zeros of Eq. 122.

The first question with regard to the exponential polynomial is
whether it has a principal term. A polynomial of the form
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plz,q) = z apnzMq™ (124)
m,n

has a principal term if and only if the maximum values of the exponents m
and n each occur together in the same term. Although other terms may
contain one of the maximum exponents, only the principal term contains
both. In Eq. 123, a,,z*q® is the principal term, where ag = 1 T,
Pontryagin's f.rst theorem states that, if the function p(z,q) has no prin-
cipal terr., t.e function P(z,eZ) in Eq. 123 has an unbounded number of
zeros with positive real parts. Therefore, a necessary condition for
stability is that the exponential polynomial derived from the system charac-
teristic equation have a principal term.

Pontryagin's proof of this theorem involves seeking solutions for
the general equation P(z,eZ) = 0 that have positive real parts and finding
that the equation must not have a principal term for the solutions to exist.
However, the presence or lack of a principal term in an equation of this
type determines whether the zeros of large magnitude are in the left or
right half plane. But asymptotic values for these zeros can be found, as
shown in Pinney*® and in Bellman and Cooke.?® The zeros far from the
origin lie in a finite number of chains extending to infinity. If the equa-
tion does not have a principal term, these chains are in the right half
plane. The asymptotic zeros of Eq. 123 are shown in Appendix C to be in
chains in the left half plane. The stability of the system represented by
an equation with a principal term, such as Eq. 123, is determined by the
location of a finite number of zeros near the origin.

The requirement for having a principal term is easily achieved for
the equations considered here. In fact, it is difficult to produce an equa-
tion without a principal term unless unusual changes are made in the sys-
tem. One way is to change the sign of 7. Then, no division of Eq. 121 is
necessary and the substitution of z = s7 yields the highest powers of z
and q = eZ in the different terms, z"qo and zzq?‘, respectively. With this
change, the motor torques would depend on the future values of position
and velocity. Such a system, of course, is not physically possible. Another
way of changing the system to eliminate the principal term is to take suc-
cessive derivatives of the signals so that an s® term occurs after the
negative sign in Eq. 122. This, while possible, is not reasonable. There-
fore, the major consideration will be with the equation with the principal
term.

C. The Pontryagin Criterion

If the system function P(z), an exponential polynomial, has a prin-
cipal term, the stability of the system is determined by the behavior of the



equation along the imaginary axis, that is, P(z) for z = jy. Splitting the
function P(jy) into its real and imaginary parts gives

P(jy) = Fly) + jGly). (125)

The following theorem gives the most often used form of Pontryagin's
criterion:

Theorem la. If P(z) is an exponential polynomial with a principal
term, then, in order that all its zeros lie to the left of the imaginary axis,
it is sufficient that one of the following conditions be satisfied:

a. All the zeros of the functions F(y) and G(y) are real, simple,
and alternate, and, for at least one value of vy,

G'(y) F(y) - G(y) F'(y) >0, (126)

where

dG(y)

dF(y)
dy

dy

Gi(y) = , and F'(y) =

b. All the zeros, yg, of F(y) are real and simple, and for each
zero, the condition of Eq. 126 is satisfied; that is,

Glyo) F'(yo) < 0. (127)

c. All the zeros, yg, of G(y) are real and simple, and for each
zero, the condition of Eq. 126 is satisfied; thit is,

G'(yo) Flyo) > 0. (128)

Theorem lb. Conversely, if all the zeros of P(z) lie to the left of
the imaginary axis, then the zeros of F(y) and G(y) are real, simple, and
alternating, and the condition of Eq. 126 exists for each y.

A second theorem that states another form of the criterion is:

Theorem 2a. Let P(z) be an exponential polynomial with the prin-
cipal term apyz¥qV (q = eZ). Also, let the vector W = P(jy) for all real vy,
and W ;{ 0 for any value of y. Then, if the vector W subtends an angle
4kmv + 7r + 6,;, where

lim 61 =0,
K20
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| -2km = y = 2k, then the zeros of P(z)
It also follows that W rotates in the
which is the same as the condition

when y ranges over the interva
lie to the left of the imaginary axis.
positive direction with positive velocity,
in Eq. 126.

Theorem 2b. Conversely, if all the zeros of P(z) lie to t-h.e left of
the imaginary axis, W rotates in a positive direction with a positive veloc-
ity, and when y is in the interval -2km =y = 2Kk, the vecto.r w subter}ds
an angle 4mkv +7r + 0. The statement in Theorem 2a rt?lai':lng the posi-
tive velocity of W to Eq. 126 can be verified by differentiating the argu-
ment of W with respect to y. Let ¢ = Arg W; then

P = tan'l-ciy—), \12%)
Fly
and
d¢ _ G'ly) Fly) - F'(y) Gly) (130)
dy F(y) + G%(y)

Therefore, the signs of d¢/dy and of the numerator of the right side of
Eq. 130 are the same.

D. Basis of the Criterion

The basis of the criterion is Cauchy's principle of the argument.47
Each of the above theorems can be derived from this principle. The prin-
ciple states that if a meromorphic function, P(z), of the complex variable
z is considered for values of z that lie on a simple, closed contour in the
z-plane, the change in the argument of P(z) as z traverses the contour
depends on the difference between the number of zeros and the number of
poles of P(z) enclosed by the contour. In particular, the change in argu-
ment of P(z) equals 27(N, - Np), where N, is the number of zeros of P(z)
and N, is the number of poles enclosed as z traverses the contour in a
counterclockwise direction. No singularities of P(z) are permitted on
this contour. If Np = 0, as it is in the case being considered, the varia-
tion in argument gives the number of zeros. The variation in argument is
an integral multiple of 27. Therefore, if the function P(z) is plotted in the
P(z)-plane for values of z on the contour, the number of encirclements of
the origin in the positive (counterclockwise) direction by the plot of P(z)
is equal to the number of zeros of P(z) inside the contour.

The contour in the z-plane used in this case is the rectangle deter-
mined by the values 0 = x = a and -2km+€ = y = 2k7T + €, as shown in
Fig. 12. This contour encloses the entire right half plane as k = ® and
a > ©. The value of € is chosen so that the functions F(y), G(y), and %%,
considered later, are not zero on the horizontal parts of the contour.
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iy An wnusual situation occurs
e when the argument principle is ap-
o c plied to exponential polynomials.
L . The different parts of the contour

contribute a large, but countable,
number of encirclements of the ori-
gin. For a stable system, however,
the net number must be zero. For
example, the change in argument as
z traverses ABCD, the three sides
of the contour, must be cancelled by
change as z traverses DA, the
imaginary axis. The change in ar-
gument due to ABCD is relatively
easy to determine as described

2 o below.

To evaluate the change in ar-
gument of P(z) for the contour ABCD,
it is necessary to separate the term
with the maximum power of z and
rewrite Eq. 123 as
P(z) = & z'q? + Z B gl

-Zwkoe\ ,7_4
m< 4
A H n=<z
» (131)
Fig. 12. Contour Used in Pontryagin ey ‘ y
Criterion Dividing out the first term gives
L a2
P(z) = — z'q%[1 + 6 (2)]. (132)
T

The value of € is chosen so there is no division by zero, but, since

|qz| = e?X = 1 on the contour, any € will do. Also, since &(z) contains
only negative powers of z, 8(z) =0 as k = ®and a = =. Therefore, the
change in argument of P(z) on this part of the contour approaches that of
(1/7%) 2*e?% as k and a increase. The change in argument for z'e?Z is
the sum of changes for z* and e??. For 2% as Arg z varies from -7/2
to 7T/Z, the change is 4m. For the function e??, the change along the upper
side of the contour cancels the change along the lower side because

exp{2[x+j(e+2km)]} = exp{2[x+j(e-2k7)]} = exp{2[x+je]},

and these sides are traversed in opposite directions. The change along the
right side is 8kw. Thus, the total change in argument of P(z) as z traverses
the three sides approaches 8k7 + 47 = 27(4k +2) radians, or 4k + 2
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In order that there be no zeros within the rectangle, it is necessary
and sufficient that the change in argument of P(z) along the imaginary axis
from D to A cancel the above variation. If the direction of traversing the
imaginary axis is reversed so that it is from A to D, the changt? in axl'gu-
ment of P(z) must approach 8km + 471 radians, or 4k + 2 revolutions, in the
positive direction as k = «. This is a demonstration of most of the state-

ments of Theorem 2 for r = 4 and v = 2.

Theorem 1 states that for stability the zeros of the functions Fly)
and G(y) must be real and simple and must alternate. The alternation is
an indication of encirclements of the origin made by the tip of the vector
W = P(jy), and, therefore, the change in argument of P(jy). One full
revolution of W requires two zeros each of the functions F(y) and G(y) in
alternating order. Since, in this case, W must make 4k + 2 revolutions,
F(y) and Gly) each must have twice as many, that is, 8k + 4 zeros that
alternate in the range between y = -27k + € and y = 2nk + €. Therefore,
the requirement for a certain change in argument of P(jy) stated in
Theorem 2 is related to the requirement for certain conditions on the zeros
of F(y)and G(y) stated in Theorem 1.

Although it is not stated, the exact number of zeros of F(y) and
G(y) in this interval is implied by the statement that the zeros are real
and simple. Thus, a specific change in argument of P(jy) is also implied.
Another of Pontryagin's theorems states that the total number of zeros
(including nonreal ones) of each function like F(y) and G(y) in this interval
1s 4kv + r, where v and r are the exponents of the principal term,
a_,2'qV, of P(z). In this case, for r = 4 and v = 2, the total number is
8k + 4. Therefore, the statement that all zeros are real implies that the
number of real zeros is also 8k + 4. In addition, if all the zeros are sim-
ple, the proper number of revolutions of W follows.

The above theorem can be explained with reference to the analytical
expressions for the function P(jy) = F(y) + jG(y). Therefore, substituting
z = Jy into Eq. 123, applying De Moivre's theorem, and combining terms
gives

NI 2v3 = 5
Fl(y) :(y_q'—y+1 cos 2y + —Z-%) sin Zy+aLz-—b, (133)

T T Tt z 4
and
(. Ly Yoy e
Gly) = (—;3—+— cos 2y + == +T>Sln 2y - o (134)
For large values of k and most values of € in y = 21k + €, the ends of

ths 'n;ter‘val, F(y) and G(y) have dominant terms (y‘/T’) cos 2y and
(y*/7%) sin 2y, respectively. By application of Rouche's theorem,*’ it can



be shown that F(y) and G(y) each have the same number of zeros as their
dominant terms for the same range of y. For each dominant term there

are four zeros due to y* and 8k zeros due to the trigonometric functions.

Therefore, F(y) and G(y) each have 8k + 4 zeros, some of which may not
be real.

The direction of rotation of the vector W must be positive to give
the proper sign to the change in argument. The direction is positive if
G'(y) F(y) - G(y) F'(y) > 0 for at least one value of y. If F(y)and Gly)
have the proper number of zeros, the direction remains the same through-
out the entire range. If it did not remain the same, the tip of the vector W
would cross a line through the origin of the W-plane more than 8k + 4
times. But this is impossible because it requires a function that 1s a linear
combination of F(y) and G(y) and has a number of zeros greater than the
maximum number, 8k + 4, determined by its dominant term. The domi-
nant term would have the form Ay* cos (2y +7).

The above discussion shows that the Pontryagin criterion can be
considered as another extension of the principle of the argument. Like the
Nyquist and Satche criteria, it requires investigation of a system function
only along the imaginary axis. Whether the zeros of F(y) and G(y) are
checked or the angle subtended by P(jy) is found, the objective is the
same. It is determining if there is enough change in the argument of P(z)
along the imaginary axis to cancel the change due to the rest of the con-
tour that encloses the right half plane when extended to its limits. The
method of determining the change in argument is arbitrary; any method
will suffice: Often it is done analytically if the functions are simple
enough. In this case, however, a partially gzaphical procedure is used.

E. Discussion of the Application of the Criterion

The procedure used in this investigation is to plot certain forms of
the functions F(y) and G(y) to determine if the conditions of the Pontryagin
criterion are met. First, however, a return to the original variables is
made by substituting z = s7 for z. Since z = x +jyand s = 0 + jw, the
substitution gives x = 70 and y = Tw. When these substitutions are made,
Egs. 133 and 134 become

F(tw) = (w*- 20w?+0.25) cos 27w + (2w*- ) sin 27w +aaf - 0.25b, (135)
and

G(tw) = (-2w* +w) cos 2Tw + (w*- 2u? +0.25) sin 27w - cw, (136)
where

Hp(jow) = Flrw) +jGlrw), (137)
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and Hy(s) = 0 is Eq. 122, essentially the characteristic equation of the
system. In this form, the changes in 7 can be more easily accommodated.
In the present study, different values of time delay are considered, so it is
convenient not to have the algebraic parts of the functions depend on 7.

This is basically only a coordinate scale change and does not affect the num-

ber of zeros of the functions F and G or their alternation.

Before a graphical method was selected, attempts were made to
simplify Eqs. 135 and 136 so that the zeros could be determined analyti-
cally. In all published applications of the criterion, one function could be
reduced to an equation with only one trigonometric quantity, usually the
tangent. It is possible in this case, only if either ¢ or both a and b are
zero. The sine and cosine terms in each function can be combined, but the
resulting sine (or cosine) term has a phase angle that is a complicated
function of w.

Plotting the functions F and G directly against w can give the nec-
essary information for determining stability for particular cases, but this
method has the same disadvantage of the conventional techniques discussed
in Chapter III. Almost every case, for different values of the parameters
a, b, and c would have to be plotted. This difficulty was overcome by the
development of the method of application described in Section F below.

F. The New Method of Application

A useful extension of the application of the criterion is developed
here. The method developed consists of splitting each function F and G
into two parts, one containing all the trigonometric terms, the other, only
algebraic terms and the parameters. Then, the effects of variation of the
parameters on stability can be found by a simple graphical procedure.
The two parts are

F(rw) = F)(1,0) - Flw), (138)
and

G(Tw) = Gy(7,w) - G,(w), (139)
where

Fi(T,w) = (w*- 20?+0.25) cos 27w + (20® - @) sin 27w, (140)

Fa(w) = 0.25b - aw?, (141)

G(T,w) = (-20® + w) cos 27w +.(u)‘— 20# +0.25) sin 27w, (142)
and

G, = cw. 143\



The advantage of the splitting may be seen by examining the parts
above. F; and G; are complicated trigonometric functions, but they can be
easily computed on a digital computer for suitable ranges of @ and different
values of 7. The parts that depend on the parameters F, and G, are rela-
tively simple functions and are easily calculated by hand. Moreover, they
represent simple geometric curves that can be easily plotted and adjusted
for changes in parameters. For example, G; is a straight line (passing
through the origin) whose slope depends on c. The zeros of F can be
determined by the intersections between a plot of F; and a plot of F,. That
is, when F; = F,, F = F; - F, = 0. The zeros of G can be determined
similarly.

Therefore, the following procedure was developed:

1. Compute F, and G, for each desired value of 7. Some prelimi-
nary computation may be necessary to determine the range of w. A suit-
able range for this system is 0 = 27w = n7m, where n is 2, 3, or 4, for the
chosen values of 7. As will be shown, only a few cycles of the functions
need be plotted. In addition, only positive values of w are necessary since
F), is an even function of @ and G, is odd. Similarly, F is even and G is
odd.

2. Plot each function F; and G, for a particular value of 7 on
separate graphs. Then, plot F, for some nominal values of a and b, such
as a = land b = 1, on the same graph as F,. Similarly, plot G, on the
graph of G, with ¢ = 1.

3. Examine the points of intersection between F, and F, and those
between G, and G,. These are the zeros of F and G, respectively. Check
that the proper number of zeros are present and they alternate as required
by the Pontryagin criterion. Also check that the direction of change of the
argument of H,(jw) is positive as w increases. If these conditions are
met, the system is stable.

4. If the system is not stable, or on the boundary of stability, ad-
just the graphs of F; and G; to obtain the desired intersections by changing

the values of the parameters a, b, and c.

The detailed mechanics of the procedure and some short cuts are
best illustrated by the example given in Section G below

G. Example of the Procedure

Figures 13 and 14 are examples of typical graphs of the F and G
functions for T = 3"/4 = 2.35 sec. Because of the time-scale factor of 100,
this corresponds to a real time delay of 23.5 msec. In Fig. 13, the oscilla-
tory curve is G;; the straight lines are G, for different values of c. The
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line for ¢ = 1 does not intersect the second peak. Therefore the number
of real roots of this G is two less than the G's for the othfexj cases. A.s
will be shown, this demonstrates an obvious case of ins‘taplllty.. No adjust-
ment of the other parameters, a and b, can correct this instability.

F
05 v : [ —

-10
2
=08
b=0.8 |
15
\' asl0
\\/b-l,o
20 | | | |
"o 05 10 1.5 20 25 0s 10 15 20
w, rad/sec w, rod/sec
Fig. 13. G Functions for T = 3T/4 sec Fig. 14. F Functions for T = 3m/4 sec

In Fig. 14, F, is shown with a few F, curves for different values
of a and b. The F, curve for a = 1, b = 1 intersects F; at w = 0.
This indicates a zero of F at w = 0. However, Fig. 13 shows that G al-
ways has a zero at @ = 0. This combination indicates a zero of H(s) on
the imaginary axis at the origin. Because of this, the zeros of F and G
do not alternate, and that condition of the criterion is not met. This is the
situation with the zero at the origin discussed in Chapter II. For the pres-
ent, this difficulty will be avoided by considering curves an incremental
amount below this one. This curve actually indicates a stability boundary
because an F, curve slightly above this one misses intersecting this peak
of F;. This results in nonreal zeros of F and denotes instability. In
Appendix D it is shown that this zero at the origin can be accommodated by
indenting the contour of Fig. 12 around it with a small semicircle, as is
often done when applying the Nyquist criterion.

Another general point mentioned earlier is illustrated in these fig-
ures. The amplitude of each function F, and G, increases rapidly with @
because of the w* term as compared to F, and G;, which increase with w?
and o', respectively. Therefore, intersections are assured beyond a



certain value of @ for any reasonable changes in a, b, or c. As can be
seen, the intersections beyond @ = 2 occur at points where the F, and G,
curves are almost vertical. Therefore, the zeros of F and G are practi-
cally the zeros of F, and G, beyond w = 2. Also, for larger values of w
the functions become approximately

n

F; = w* cos 21w, (144)

and
G; = o sin 27w. (145)

These functions are 90° out of phase with respect to each other; therefore,
the alternation of zeros is assured. As a result, after the existence of a
sufficient number of zeros has been determined, the investigation of the
effects of adjusting the parameters can be confined to a small range of w (in
this case, for @ from zero to about two).

The procedure for determining if F and G have the proper number
of alternating zeros is demonstrated for a = b = ¢ = 0.8. For this set of
parameters, the zeros of F and G can be tabulated from Figs. 13 and 14
and the digital-computer data for the values of the functions beyond the
range of the figures. These zeros are marked off on the w-axes in Fig. 15.
Oscillating curves are drawn through these zeros to roughly indicate the
form of F and G. These curves have a distorted ordinate scale and serve
only to indicate the location of the zeros of the functions and their sign be-
tween the zeros. Figure 15 shows that for values of W greater than about

two, the distance between zeros is almost comstant and approximately equal
to/2T = 2/3 = 0.67:
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The range of @ in which zeros are counted is, from Fig. 12 for
y =T, -2Tk + € = WT =27k + €. The index k must be large enough so that
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every increase of the index by one results in the appearance of the same
number of new zeros in the range. This occurs when the zeros of the func-
tions F and G are almost periodic, and, for Fig. 15, it occurs before

@ = 5. With this value of W, the approximate value of k can be determined
from k = Tw/ZTr - 15/8. Since k must be an integer, k = 2 is chosen.
One-half the range of @ is ZTTk/T - 16/3 = 5.33. Therefore, the total

range of W is -5.33 + e=w =5.33 t €.

Counting the zeros of the functions F and G is a method of deter-
mining if all the zeros are real. This is also accomplished by comparing
the number of zeros of each function with that of its dominant term for the
same suitable range of independent variable. For all the zeros to be real,
the number must be the same, as discussed at the end of Section D of this
chapter.

The end points of a suitable range of w are selected by the proper
choice of €. Figure 15 also shows the zeros of w! sin 27w, the dominant
term of G. For very large values of w, the zeros of each function and its
dominant term approach each other, and they can be matched on a one-to-
one basis. The zeros of G at @ = #5.4 correspond to those of the dominant
term at w = +5.33. The range of w should include the corresponding zeros
of each function. Also, the ends of the range should be sufficiently far from
any zeros so there is no confusion as to whether a zero is within the range.
The value € = 0.17 provides the suitable range of -5.16 = @ = 5.50 as
shown in Fig. 15. In addition, this choice is well suited to the function F
since the ends of the range are away from the zeros of F.

In the above range of w, the functions F and G each have 20 zeros.
Notice, for example, that w* sin 27w has a quintuple zero at w = 0. As a
consequence, the zeros of F and G are all real and simple, and, as indi-
cated in Fig. 15, they alternate not only in this range, but for all w from
-® to t«. Finally, at @ = 0, notice that G(0) = 0, G'(0) is positive, and
F(0) is positive; therefore, G'(0) F(0) > 0, and the condition of Eq. 126,
concerning the positive velocity of the vector W, is satisfied. Thus, all
the conditions of Theorem la are met, and the conclusion is that the sys-
tem with a = b = ¢ = 0.8 is stable.

The same conclusion is reached when Theorem 2a is considered.
For v = 2 and r = 4, the angle that must be subtended by the vector W is
8k + 47 + 6; radians. For k = 2, the angle is 207 + &;, or very nearly
10 revolutions. The 20 zeros of F and G, distributed as shown in g, 18]
also indicate an angle of 207 + 6, or approximately 10 revolutions. The
value of §, is less than 7T/Z.', otherwise F or G would have a different
number of zeros. This limit on the value of 6, is small enough because
the only errors possible in determining the angle subtended by W are inte-
gralmultiples of 27. The tip of W describes a closed contour in the
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W-plane and makes either full encirclements of the origin or none at all.
Therefore, the value of angle deduced from Fig. 15 sufficiently matches
that required by Theorem 2a, and this again indicates a stable condition.

The detailed attention given to the behavior of the functions F and
G beyond the range of Figs. 13 and 14 is necessary only when an unknown
system is being considered. If some prior information about the stability
of the system is known, shortcuts are possible. For example, in the sys-
tem under study, if all the signal-transmission channels are disconnected,
the system is obviously stable. In this case, a = b = ¢ = 0, the curvesF,
and G, in Figs. 13 and 14 coincide with the horizontal axis, and the zeros
of F and G are the zeros of F;, and G;. Thus, the number and order of
zeros that represent a stable system are the same as the number and
order of the zeros of F, and G;.

Similarly, since the system with a = b = ¢ = 0.8 is stable, any
change in the number of zeros of the functions F or G or their order will
result in instability. For example, increasing the value of ¢ to 1.0 does
this by reducing the number of zeros of G by two. These two zeros become
nonreal. Adjusting the curves of F, and G, from a stable to an unstable
configuration enables the limits of stability to be found in terms of the
parameters a, b, and c.

H. Adjustment of the Parameters to Find Stability Boundaries

The adjustment of the F, and G, curves in Figs. 13 and 14 to find
the stability boundaries can be done in many ways. The procedure used de-
pends often on which parameters have majorsinterest. The method chosen
here is more for illustrative purposes than efficiency. First, the stability
conditions are found for the parameters a, b, and c, and then these results
are used to determine the stable regions in gain-parameter space.

Since certain values of the parameter ¢ cause unconditional insta-
bility, this parameter is adjusted initially. It is adjusted incrementally to
permit stability. Then, for each value of c, the allowable values of a and
b are found. Figure 13 shows G; lines for three different values of c. As
stated before, since the line for ¢ = 1 does not intersect the second peak
of G;, the system is unstable, regardless of the values of a and b. For
each of the other two lines, five intersections with G, are shown, including
two at the second peak and one at the origin. These are the zeros of the
function G. The location of these zeros can be shown as points on a graph
of F. For example, four of the zeros of G for the line ¢ = 0.9 are shown
as the points A, B, C, and D in Fig. 16. The abscissa values of these
points are the locations of the zeros of G. For alternation of the zeros of
F and G and hence stability, the F, curves must intersect the F, curve
once and only once between each pair of adjacent points.
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I I I In this case, the stability

—  boundaries are determined com-
pletely by the location of these four
points. Because of the growth of F
and G; with w, all other intersections
are assured. The pairs of points AB
—{ and CD form openings like windows.
The size of the window CD depends
much on the value of c¢c. For example,
—| for the line just tangent to the second
peak of G;, points C and D come
together, and the window closes to a
7] single point. On the other hand, there
is very little change in the window

— AB for the same changes in c.

The extrema of a and b are
o 025 05 075 100 found from the four curves shown in

w, rad/sec Fig. 16. Each F, function has the
form 0.25b - aw®. The corresponding
curve must start on the ordinate axis
between zero and 0.25. The system
under study considers only positive values of a and b. Because of point A,
no values of b greater than one are allowed. Curve I sets the minimum
value of a when b = 1. If a were smaller, the curve would pass above
point C. The minimum value of a = 0 is permitted only for values of b
below that for curve II. Similarly, point D establishes the maximum
values of a for b = 0 and b = 1. For this value of c, point B is not a
limitation. If negative values of b were permitted, point B would be a
limitation.

Fig. 16. Allowable Fg Curves for ¢ =0.9
and T = 31/4 sec

The other limiting curves are those that start somewhere between
zero and 0.25 on the ordinate and pass through either point C or D. They
give the intermediate values of a and b on the stability boundaries. The
values of a and b that cause an F, curve to pass through a point
[wo, Fi(we)] on the F,; curve can be found from the relation

Fa(w) = Fy(wg) = 0.25b - awi. (146)

But this is an equation for a straight line in the (b,a)-plane. Thus the sta-
bility boundaries in this plane are straight lines between the extremum
points found previously.

I. Stability Diagrams .

If the procedure of Section H above is repeated for different values
of ¢, the various stability boundaries in the (b,a)-plane can be found.
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Some of these are shown in Fig. 17. The stable regions are located between
the pairs of lines corresponding to the same values of c. The region
reduces to a single line for ¢ = 0.99, the tangent line. For ¢ = 0.8 and
less, there is no boundary on the left side; therefore, the stable region
extends to the a = 0 axis.
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Fig. 17. Stability Diagram for a, b, and c with T = 37/4 sec

The values of the transmission-gain parameters that result in a
stable system can be found from Fig. 17. The gain parameters are related
to a, b, and c by Eq. 54, which is repeated here:

a = dd;,
b = klkZ'
(147)
and
¢ = 0.5(k,d, +k;d;).
In the case used for comparison throughout this study, d, = d, = 0.9,
and the above equations become
a = 081,
b = kk;,
o (148)
and
c = 0.45(k; +k;).



70

This case is represented by the vertical line at a = 0.81. For any value
of ¢ that crosses this line, all the values of b on the line above the inter-
section indicate a stable system. The intersection is a stability boundary

point.

The points corresponding to the above intersection points can be

found in the (k;,k;)-plane. In this plane, as indicated by Eq. 148, each value
of b represents a hyberbola, and each

value of c, a straight line. Figure 18
shows some of the hyperbolas and
straight lines corresponding to the
values of b and c at the points of
intersection in Fig. 17. For each
point of intersection in Fig. 17, there
are two in Fig. 18, because each
hyperbola intersects the corresponding
straight line at two points.

25

20

These points of intersection in
(k,k;)-plane are on the boundary of
the stable region. For example, the
points on the hyperbola k;k, = 0.27
(or b = 0.27) are stable, provided
that the points are located to the left

Fig, 18. Stable Region in (k;,k5)-plane for of the straight line for ¢ = 0.925,
T =3n/4sec and dy = dy = 0.9 0.45(k, +k;) = 0.925. Similar condi-
tions apply for the other hyperbolas.

Connecting the corresponding points of intersection gives the stability
boundary. The hyperbola kjk, = 1 is also part of the boundary. Points on
this boundary, however, indicate a zero of the system equation at the origin,
which is acceptable as discussed earlier. Figure 18 shows the complete
boundary.

0.5

In a manner similar to that described in Sections G and H, of this
chapter, stability diagrams for other values of time delay can be constructed.
Figure 19 shows the stable regions in the (b,a)-plane for different values
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Stability Diagram for a, b, Bk S —
and ¢ with T=7/8 sec




25 T T T T of ¢ with 7 = ’rr/8 = 0.393 sec or
a real transmission time delay of
3.93 msec. In this case, the stable
regions are above the lines for
each value of c. The value of

= c =1+40.57 = 1.20 is a critical
value; stability is impossible for a
greater value. Figure 20 shows the
stable region in the (k;,k;)-plane
for T =7m/8 and d, = d, = 0.9.

J. Summary of the Procedure

25 A brief summary of the steps
in the entire procedure for deter-
mining stability, as presented in this
chapter, follows:

Fig. 20, Stable Region in (k;,ks)-plane for
T =7/8 sec and dy = dy = 0.9

1. Find the characteristic equation of the system being
investigated.

2. Put the equation into the form of an exponential polynomial, P(z).

3. Check that P(z) has a principal term.

4. Find the real and imaginary parts of P(z) for values along the
imaginary axis, P(jy) = Fl(y) + jGl(y).

5. Split the real and imaginary parts‘ each into two parts,
F =F, - F,;, G =G, - G;, so that the first parts, F;, and G,, do not con-
tain any variable parameters and the second parts, F, and G,, are as
simple as possible.

6. If necessary, change the independent variable to one that is

convenient for computation, such as y = wT.
7. Compute and plot F, for an appropriate range of independent

variable; compute and plot F, on the same graph for nominal values of
the variable parameters. Repeat for G, and G, on another graph.

8. Note the points of intersection of each graph. These are the
zeros of F and G.

9. Check that the location and number of the zeros of F and G
meet the conditions for stability required by Theorem 1 of the Pontryagin
criterion. Or, alternately, check that the angle subtended by the vector
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W = F +jG, as indicated by the zeros of F and G, equals the value re-
quired for stability as stated in Theorem 2 of the criterion or, more basi-
cally, as deduced from application of the principle of the argument.

10. If necessary, adjust the parameters to obtain the desired inter-
sections on the F and G graphs.

11. Determine the ranges of parameters required for stability.

Some comments on the procedure are appropriate. The effective-
ness of the procedure depends on the success achieved in splitting the
functions F and G in step No. 5. With the transmission gains as param-
eters, the splitting was very effective in the investigation of the force-
reflecting servomechanism under study. Chapter VII discusses the
application of the procedure to other systems or when other parameters vary
If T= 0,when there is no delay, the procedure can also be applied. In that
case, the principal term always exists. Finally, Chapter V discusses the
use of another contour path besides the imaginary axis in step No. 4.
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CHAPTER V

EXTENSION OF THE CRITERION TO
DETERMINE RELATIVE STABILITY

The Pontryagin stability criterion basically requires determining
the encirclements of the origin by a plot of P(z) or, what is essentially the
same, measuring the change in argument of P(z) as z traverses the given
contour. Since this is an application of the principle of the argument that
does not require a particular contour, it is appropriate to consider extending
the application of the criterion to other contours that could give information
about relative stability. Such contours would include some regions of the
left half plane in addition to the right half plane. The objective would be to
find the values of adjustable parameters such that no zeros of the charac-
teristic equation lie inside these contours. This chapter pursues this
objective. Several contours are considered, but some include regions from
which it is impossible to exclude zeros. Such a contour is discussed first
to illustrate the method, and also to provide results that will be used later.

A. Contour with Radial Boundaries

Figure 21 shows the first contour investigated that includes part of
the left half plane. The left boundary consists of two radial lines extending
from the origin into the left half plane,

iy each making an angle of 30° with the
2- PLANE imaginary axis. The rest of the contour
< 2 9 is the same as the one in Fig. 12 with
4“( the horizontal lines extended. The ob-

jective inwsing this contour was to try
to eliminate any zeros of the system
function that had arguments of less than
120° or greater than 240°. Thus, all
zeros would have a damping ratio of

[ B-120° 0.5 or greater. This value was chosen
x  because it is a commonly used lower
°_|,‘,I°. limit for a damping factor. With this
e limit, the system would have no lightly
° damped time responses,.

The same system function, P(z),
of Eq. 123 is used in this chapter. Also,
-2Tk+€ a similar procedure is attempted for

/ evaluating the change in argument of
% r # P(z) as discussed in Section IV.D. There-
fore, as z traverses the part of the con-
Fig. 21. First Contour for Determination of tour from A through B and C to D, as
Relative Stability shown in Fig. 20, the change in argument
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of P(z) approaches 8kT + 41, because the approximation of P(z) & (1/7")z‘e.zz
still applied on this part of the contour. As z traverses the additional hori-
zontal parts A'A and DD', however, the above approximation does not hold.
because the exponent of e has a negative real part and one of the po.lynom1a1
terms becomes significant. Although the exact change in argum'ent 1's not
easily determined, limits on its value can be found. The a grg:znmatlon that
is valid for these parts of the contour is P(z) = (zZ/TZ)[(zz )e?? - a]. The
contribution to the change in argument of the term in the brackets as z tra-
verses DD' does not increase indefinitely with k, but has a value between

-q and +7 radians. The contribution due to the (zz/Tz) term is 7T/3. The
same changes in argument occur as z traverses A'A. Therefore, the total
contribution due to z traversing DD' and A'A is a value between 217/3 - 2m
and 27/3 + 27 radians. Finally, the total change in argument of P(z), as

z traverses A'BCD’, lies between 8kw + 87T/3 and 8k + 20'n/3 radians, or
between 4k + 4/3 and 4k + 10/3 revolutions, as k approaches infinity.

In order that there be no zeros inside this contour, the change in
argument of P(z), as z traverses the whole contour, must be zero as re-
quired by the principle of the argument. Therefore, the change in argument
as z traverses A'OD' must equal the value found above as z traverses
A'BCD".

The argument of P(z) along contour A'OD' is determined as before
by splitting P(z) into real and imaginary parts and determining the number
of zeros of each by a graphical method. Although the exact number of zeros
required for each function is not known because of the above approximations,
establishing a minimum is sufficient at this time. The required argument
variation requires no less than 8k + 2 zeros of the real and imaginary parts,
to produce 4k + 4/3 revolutions. Again, the important points to be determined
are that there are no nonreal or multiple zeros.

To carry out the process, P(z) must be evaluated along the contour.
Only the part OD' is necessary since the values along A'O will be the con-
jugates of these. Also, it is again convenient to return to the original
variables by substituting z = s7 for z. This does not change the angle of
the radial lines of the contour. Therefore, the contour in the s-plane has
the identical shape as the contour in the z-plane shown in Fig. 21. Thus,
the values of s along the part of the contour in the s-plane corresponding
to OD' are s = relY, where 8 = 120° or ZTT/3 radians and r is the distance
from the origin. Substituting for s in Eq. 122 and splitting Hp(s) into real
and imaginary parts yields

Hp(rel™%) = F (1) + jG(r), (149)



where
Fe(r) = e T5(-0.57* +2r% - r?- 0.5r +0.25) cos (/3 Tr)
- e T /3(0.5r* - r2+0.5r) sin (V/371)
+ 0.5ar? + 0.5cr - 0.25b (150)
and

Ge(z) = e T /3 (0.5r%- 1%+ 0.5r) cos (/3 71)

+e T7(-0.5r*+2r* - r2-0.5r +0.25) sin (/3 7r)

+ 0.5 ﬁ(arz-cr). (151)
Again the real and imaginary parts each can be separated into a

complicated trigonometric part without the parameters a, b, or c, and a
simpler algebraic part containing the parameters. This yields

Fp(r) = Fri(r) - Fra(r), (152)
and

Gr(r) = Gri(r) - Gralr), (153)
where

Fra(r) = 0.25b - 0.5¢cr - 0.5ar? 1 (154)
and

Gra(r) = 0.5 /3 (cr - ar?). (155)

The remaining terms are contained in the complicated parts, Fr,;
and Gpr;, and, as before, can be evaluated on a computer. The simpler parts,
though not as simple as before, are still only quadratics and are manageable
for variations of a, b, and c.

The objective, as before, is to find zeros of Fy and Gy by finding the
points of intersection between Fr, and Fr; and between Gy, and Gr;, respec-
tively. There is, however, an essential difference between this case and the
imaginary-axis case. The Fr; and Gr, terms contain negative exponentials,
e 7T, and as r increases to infinity, Fr, and Gr, approach zero. Fyr; and
Gy, however, continue to grow so that for r greater than a certain value,
the amplitudes of Fr; and Gy, will be less than Fr; and Gy;, respectively,
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and there will be no more intersections. But as k increases, more inter-

sections are required to provide the minimum number of zeros, 8k + 2. This
means that some of the zeros of Fy and G, are not real, and some z.eros.of
the system function lie in the wedge between the radial line and the 1magu?a.ry
axis, regardless of the values of a, b, and c. This is the case for any radial
line whose angle is greater than 7T/Z. As shown in Appendix C, there are
chains of roots of the system equation far from the origin whose arguments
approach ’n‘/Z from values greater than 7T/2. Therefore, the zeros cannot

be excluded from inside contours of the type shown in Fig. 21.

B. The Composite Contour

A different contour was chosen to include part of the left half s-plane.
(The change to the variable s is retained in this section.) Although the
arguments of the zeros in chains far from the origin approach 7T/2, the real
parts of the zeros continue to increase in magnitude proportional to log r so
the chains do move away from the imaginary axis.
Therefore, it is possible to choose a region to the
e lo e c left of the imaginary axis for the exclusion of
fevkvelre S zeros. A line parallel to the imaginary axis and
to the left of it by ¢ units was chosen as part of
the left boundary, as shown in Fig. 22. With the
region between this line and the imaginary axis
excluded, any lightly damped time response due
to a zero with a large ratio of imaginary part to
- real part will decay at least as fast as e~07,
Mizoe Also, since the magnitude of response due to
zeros farther from the origin is generally less,
g o/t it is more important that the zeros close to the
origin be more restricted. The contour was
not run straight past the origin since there is
often a zero at or very near the origin. Also,
any negative real zeros between the o-line and
the origin are acceptable because they do not
(2mh-€1/T~ indicate an oscillatory response. The radial
line is run at the angle of 120° as before and is
terminated at r = 1. This is about the magnitude
Fig. 92. Composite Contour for of the natural frequency of the system and was
Determination of Rela- chosen so that only oscillatory zeros of greater
tive Stability magnitude are permitted. Therefore, any higher-
frequency oscillations would probably have
smaller magnitudes and be less significant. The choice of the terminal
value of r results in the value of g = —I/Z.

jw

@
°

To evaluate Hp(s) along the vertical line of this contour, the value
s = -0.5 + jw is substituted into Eq. 122, Splitting Hp into real and imaginary
parts, separating the terms containing parameters, and simplifying yields



Hp(-0.5+ jo) = Fglw) + jGglw), (156)
Fs(w) = Fg1 - Foz (157)
Gglw) = Gq - Ggas (158)
Foy =oer llay® - 0.5w2+1/16) cos 2Tw, (159)
Gor = e T(w*-0.5w%+1/16) sin 27w, (160)
Fgz = 0.25b + 0.25a - 0.5¢c - aw?, (161)
and
Ggz = (c-a)w. (162)

The form of Egs. 159 and 160 is deceptively simple. If a different
value of 0 were chosen, both sine and cosine terms would occur in each
function. Although F5, and G4, contain exponentials, their exponents are
constant; therefore, intersections for large w are assured.

The real and imaginary parts of Hp(s) are different functions on the
various sections of the part of the contour HGOFE shown in Fig. 22. When
the functions are evaluated, only the top half of the contour need be con-
sidered since the bottom half produces conjugate values. Therefore, for
the line OF, the functions are

F Bolr), 0=z =i, » (163)

"

and

G = Gy(r), g=r =13 (164)

and for the line FE,

v

[}

0.5 /3, (165)
0.5 /3. (166)

F Fo(w), w

1\

G

"

Gglw),

The above functions are used to evaluate the change in argument of
Hp(s) along the contour HGOFE by investigating the zeros of ¥ and G. The
change in argument must equal that for Hp(s) when s traverses the contour
between the same points but on the right side; that is, the path HBCE. The
change in argument for ABCD has already been evaluated as approaching
8k7m + 47 radians or 4k + 2 revolutions. The contribution due to traversing
the segments HA and DE is negligible as k approaches infinity. Therefore,
this again leads to the requirement of 8k + 4 alternating and simple zeros
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for F and G on the path HGFOE. Since all the functions of F and G on

this path have been split so that the simpler parts contain the parameters,
the zeros of F and G are found in the same manner as in Chapter IV, by
using the intersections between the plots of the two parts of each function.

C. Example of the Procedure

Figures 23 and 24 are typical plots of the F and G functions for
the composite contour for 7 = 7r/8. The functions Fyr;, Fr;, Gr;, and Gy,
are plotted against the imaginary-axis component, w, of their independent
variable r. Since w = r cos 120° = 0,866 r, this is equivalent to an
abscissa scale change for the interval 0 =r = 1.0 or 0 = w = 0.866.
Although this is not necessary and is not done in the next example, it
shows that the functions are continuous at the point w = 0.866. For
example, Fr; = Fg; and Gr; = Gg, at this point.

o 1 T
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005

-005 —
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I | 064 08
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o as 10
w, rod/sec w, rod/sec
Fig. 23. Relative-stability F Functions for Fig. 24, Relative-stability G Functions for
T = m/8sec T = T/8 sec

Each of the functions F, and G, are shown for three sets of values
of the parameters, as follows: X



No. I:
No. II:

a

a

1.0,
0.8,

1
(g]
n

I
0
n
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and
No. III; a = 1.0, b = 0,64, c = 0.8,

The proper places for intersections are not as obvious as in the
examples in Chapter IV. Figure 23 shows, however, that if Fr, for parame-
ter set No. II represents a system that meets the conditions for relative
stability, Fy, for set No. III does not, because it does not intersect this
negative peak of Fr,. The curve for Fr, for set No. I indicates a zero of
Hp(s) at the origin. This zero is avoided by indenting the contour around
it, as discussed in Appendix D. Therefore, attention is confined to the
curves for set No. IL

The important range of w for the consideration of intersections is
that shown in Figs. 23 and 24, Beyond the range of the figures, the values
of w at the points of intersection approach those for the zeros of the func-
tions Fg; and Gy because the amplitudes of these functions grow so rapidly
with w. Even the next point of intersection between each F, curve shown in
Fig. 23 and the one F) curve lies between w = 2.3 and 2.4, while the zero
of F; occurs at w = 2,0,

From the intersections in Figs. 23 and 24 and the computer data
for the values of the functions F; and G,, the locations of the zeros of
F and G are found. These zeros are shown on the w-axes in Fig. 25.
.

ZEROS OF F
2N i ™
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-
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r=-€:=05
2

{-155 <wsg 15.5}

Fig. 25. Zerosof F and G along Relative-stability Contour for
a=b=c=08and T=7/8sec
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As for the example in Chapter IV, the zeros are joined by a smooth curve
that has no specific amplitude relationship to the actual functions except
that it denotes the sign of the function between zeros. The range of W
chosen is that for k = 2. Then the range -27k + € = WT = 2Tk + € becomes,
for 7 = -rr/8, -16 + €, = ® = 16 + €;. At the ends of this range and beyond,
the zeros of F and G are spaced very regularly. The value of €; = 0.5

is chosen as being sufficient to exclude from the range the zero of G at

w = -16.0 and include the one at w = 16.0.

Each function F and G has the required number of zeros, which is
4k + 4 or 12 zeros, for the range in Fig. 25. Since these zeros alternate,
the vector Hp(s), as s traverses the left side of the composite contour,
subtends an angle of 8km + 47 + 6 radians, where & is less than 77/2. Also,
at each zero, the sign of the other function indicates that the angle increases
in the positive direction as W increases. Therefore, it has been determined
that the change in argument of Hp(s), as s traverses the entire composite
contour, is zero to within an error of much less than 7 radians. Since the
change must be zero or an integral multiple of 27, the change is zero. Con-
sequently, no zeros are located inside the contour, and the system with
a = b = ¢ = 0.8, has the desired relative stability.

In effect, a variation of Theorem 2 has been used, except that the
contour has been distorted slightly. The condition of Eq. 126 has not been
used because the discontinuities of F' and G' at ® = 0 and w = 0.866 would
require special consideration. Rather, the direction of the angle was found
from the signs of the functions shown in Fig. 25. Also, an applicable varia-
tion of Theorem 1 was not developed completely because the procedure used
here is primarily a graphical one and is very satisfactory. Theorem 1
would be more necessary in an exclusively analytical procedure. The main
requirement to establish Theorem 1 for this case is to show that Hp(s), for
values of s on the left side of the contour, always yields functions F and G
that have a maximum number of zeros equal to 4kv + r, where v and r are
the exponents of the principal term of Hp(s). Then, if the zeros of F and G
were real and simple, the exact number in a given range would be known.

D. Relative-stability Diagrams

In a manner similar to that described in Chapter IV for absolute
stability, information for relative-stability boundaries are found. Since
the F; and G, curves for a = b = ¢ = 0.8 in Figs. 23 and 24 give the correct
intersections, the curves are adjusted to the limiting positions where the
number of order of zeros would just change. Because of the rapid growth
of the functions F, and G, with w, attention again can be confined to the
range of w from 0.0 to 0.866 or r from 0.0 to 1.0, Therefore, only the
functions Fy; and Gy, of Eqs, 154 and 155 need be considered for F, and G,.
In this case, however, the functions are not so simple, and the parameters

a and c appear in both functions. Nevertheless, results can be obtained
relatively easily,



The case used for comparison throughout this investigation has
d; = d; = 0.9 and, therefore, a fixed value of a = 0.81. With this value,
Eqgs. 154 and 155 become

Fra(r) = 0.25b - 0.5cr - 0.405r7, (167)

and

Gyrz(r) = 0.866cr - 0,7015r% (168)

The function Gy, now contains only the one parameter, c. Figure 24 indi-
cates that for a large value of ¢ the Gr, curve will be completely above
the first hump of G, and there will be one less intersection in this range.
Also, for a small enough value of ¢, Gy, will be completely below the first
hump and there will be two less intersections. In this way, the limits of
the allowable values of ¢ are found. Then, for particular allowable values
of c, the Gy, curves can be drawn. Their intersections with G, yield the
zeros of G, which then can be indicated on the plot of F,.

For each value of c, the function Fy,; has b as the only variable
parameter. Since b is in the constant term, the shapes of the Fy, curves
remain the same as b changes; only
10 T T T their ordinate intercepts change.
w BBk ANE Furthermore, it is simple to shde'
5l e B the Fr; curyes up an.d down t‘o obtain
a the proper intersections, which are
between the zeros of G, and thereby
| | Je. | obtain the allowable range of b. In
o this manner, the region of allowable
values of b and ¢ was obtained and
= | | I [ is shown in Fig. 26A. It is the area
(8) (k;.kp)-PLANE inside the designated boundary.
20— / d,7d,=09 =
/ Tem/8 By the method described in
Section IV.], of using intersections
—| Dbetween the hyperbolas and straight
lines derived from the values of
b and c, respectively, the region of
relative stability can be found in the
(k;, k;)-plane. The region for this
—  case is shown in Fig. 26B. Not all
the allowable values of b and ¢
contribute to defining the region in
Fig. 26B. This occurs because when
b and c are related to k;, and k;,
they are not completely independent.
Fig. 26. Relative-stability Diagrams for The region of useful values of b and
T =7/8 sec c is shown shaded in Fig. 26A.
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In Fig. 26B, the boundaries of the absolute-stability region are also
shown by dashed lines. An interesting feature of this diagram is t.hat the '
desired relative stability is not achieved for small values of positional gain
for these values of d; and d,. On the other hand, if all gains are small,
equal to zero, for example, the desired degree of relative stability exists,
but the system has poor performance.

E. Another Example

Another example illustrates that, although absolute stability is rela-
tively easy to achieve, the desired amount of relative stability is not. For
the same composite contour of Fig. 22, the functions F and G for 7 = 37T/4
are shown in Figs. 27 and 28. (The comparable curves for determining
absolute stability are those in Figs. 13 and 14.) In this case, the F; and G,
curves are such that the F, and G, curves associated with the nominal values
of the parameters do not intersect their second or third humps. For example,
if a = 0.81, no curves can be found that provide the required intersections.

025 T T = T T
020
0=0.01
b=004
S 002
0.10 - 6,00 =
2 |
005 =
~Gez(r) ~Ggp (w)
] & t
00
N J
G, lw)
005 |- = —
il I 1 | ] (N |
(] 025 05 075 10 10 12 14
r-SCALE w- SCALE r - SCALE w-SCALE
0 1010 0866 TO® 0 Toi0 0866 TO @
Fig. 27. Relative-stability F Functions Fig. 28. Relative-stability G Functions
for T = 37/4 sec, for T = 3n/4 sec.

Some sets of parameters can be found to provide the desired relative
stability. The trivial case ofa = b = ¢ = 0 is one. Another is the set
a = 0.01, b = 0.04, and ¢ = 0.02 as shown in Figs. 27 and 28. These can
be verified in the same manner as the previous examples. A corresponding
set of transmission-gain parameters is k; = k = 0.2and d; = d, = 0.1,
Therefore, the transmission gains must be reduced to 20% of their nominal
values for the positional signal channels and 10% for the velocity signal
channels. This is a severe reduction.”® Even low gain, however, does not
ensure relative stability. The set of parameters a = b = ¢ = 0.0225 does
not produce the proper intersections.
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F. Summary

The procedure developed in this chapter is one for determining the
range of gain parameters that produces a certain amount of relative
stability in the response of the system under study. The criterion of
relative stability is the requirement that the characteristic equation of
the system has no zeros inside the contour of Fig. 22, even as k and a go
to infinity. The procedure is essentially the same as that pertaining to
absolute stability given in Section IV.J, except for small changes in two
steps. In Step 4 the real and imaginary parts of P(z), or Hy(s), are found
for values along the left side of the contour of Fig. 22 instead of along the
imaginary axis. In Step 9, the zeros of F and G are used to determine
if the change in argument of Hp(s) along the left side of the contour is
sufficient to cancel that due to the rest of the contour. Specific reference
to Theorem 1 is omitted because its use has not been completely justified.
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CHAPTER VI
ANALYTICAL AND EXPERIMENTAL RESULTS

A. Analytical Results

The main analytical results have already been presented in the
form of stability diagrams in the various chapters as they were developed.
In this section some are assembled for comparison.

The several stability regions for the case used throughout this re-
port of d; = d; = 0.9 are shown superimposed in Fig. 29. The boundary
nearest the origin, labeled "any 7,"
5 I I I [ encloses the region of unconditional
stability. The values of k; and k; for
any point inside this region produce
a system that is stable for any value
of time delay. Successively larger
regions are enclosed by the bounda-
ries for T = 0 and T = m/8. The
boundary for 7 = 37r/4 shows the
tendency for the regions to be
smaller as T increases further and
to approach that of "any 7." The
dashed line is the left boundary of
the relative stability region for 7 =
Tr/8 developed in Chapter V.

In all cases, except that for
"any T," the hyperbola kjk; = 1
Fig. 29. Stability Regions in (kj, ko) -plane for forms part of the boundary. As dis-

S1= % = 0.9%and Different Values cussed previously, points on this

iRl Delyy boundary indicate a zero at the ori-

gin and are considered in the stable

region. Points on the side borders are not considered in the stable re-
gion; they indicate a system response of sustained oscillations. The axes
are arbitrary boundaries because negative gains are not permitted. Actu-
ally, there are substantial stable regions in the other quadrants.

112-9487

Some general conclusions can be drawn from Fig. 29. The larger
stable region for 7 = 7r/8, compared to 7 = 0, indicates the stabilizing
effects of a time delay under certain conditions. On the other hand, for
the symmetrical system with k; = k;, the stable range is the same for the
two time delays considered. For some larger value of time delay, how-
ever, the stable range will be decreased. The region of unconditional
stability may be one of poor relative stability. For example, for 7 = ’IT/B. it
is well separated from the region of designated relative stability. Finally,
as determined in Chapter V, Fig. 29 has no region in which the required
relative stability exists for T = 37r/4.
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B. Experimental Results

Some analytical results were checked on the analog computer setup
described in Section III.D. Approximately 150 test runs were made with
different combinations of parameters. In general, the tests corroborated
the analytical results.

The procedure used the setup shown in Fig. 9. The potentiometers
were adjusted to give the proper parameter values. The desired time de-
lay was established by selecting the tape speed of the magnetic tape re-
corder. The recorder amplifiers were adjusted for proper gain and balance.
With the tape recorder operating, an initial value was set for the variable
8,(t), the input position of the system. After waiting at least a length of
time equal to the time delay, we started the problem. The variable &,(t)
and the instantaneous error, 6,(t) - 6,(t), were recorded on a strip-chart
recorder. The instantaneous error is not measurable in a physical system
because of the time delay, but it is conveniently available in the simulation.

The main difficulties encountered in the testing were due to the drift
and offset of the amplifiers of the tape recorder. These are enhanced by a
factor of about 60 by the analog-computer amplifiers that follow in the same
signal channels. Some of the initial tests gave recorder traces of signals
that went off-scale and seemed to indicate unexpected instability. The drift
and offset were substantially reduced by providing more warmup time for
the amplifiers. However, any errors due to these difficulties are conserva-
tive; that is, only stable systems would possibly be identified incorrectly
as unstable, but the reverse would not occur

»
Most of the tests were performed for the normalized time delays of
T =0, 77/8, and 311’/4 sec. These correspond to the real time delays of
A= 0, 71'/800, and 37/400 sec. The time-scale factors and the tape-recorder
delays used are discussed in Section III.D. In addition, however, many of the
tests for A = 37/400 sec were repeated with a different arrangement. The
computer is equipped with a feature that allows switching its time scale to
speed up the problem by a factor of 10. With this change and the 10-times-
faster tape-recorder speed, the same real time delay is simulated. The
recorder traces of the repeated tests were almost identical with the origi-
nals. Also, with various combinations of the computer time-scale switch
and the tape-recorder speeds, several tests were made using time delays
not examined analytically. These were equivalent to real time delays of
31m/40, 37/4000, 7/80, and 7/8 sec.

All the recorded traces of the tests for the time delays of X = 0,
71/800, and 37/400 sec strongly resembled exponential functions or expo-
nentially varying sinusoids. Almost all appeared to be the responses of
second-order, or sometimes third-order, systems to a step input. Only
for A = 371'/40 sec and greater were the traces substantially different
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Some results warrant special mention. It was shown early in the
development of the F and G curves in Chapter IV that the nominal system
with a = b = ¢ = 1.0 was not stable for X = 37/400 sec. The tests for
this condition showed a slowly growing sinusoid, which indicates a system
just barely unstable. When the d's were reduced to 0.9, the tests showed a
slowly decaying sinusoid and hence stability. Increasing the time delay to
37/40 sec again caused instability; reducing the k's to 0.9 did not eliminate
it. The latter tests indicate the tendency of the stability boundary in Fig. 29
to shrink toward the "any 7" boundary as the time delay increases.

The point k; = 1.5, k, = 0.67 on the stability boundary in Fig. 29
for X = 377/400 sec was checked. After careful adjustments and many
trials, the results indicated that the system was stable but could easily
become unstable with a slight change in parameters. On the other hand,
the checking of a point just inside the boundary at k; = 1.8, k, = 0.2 indi-
cated stability with no difficulty.

Figures 30-32 are oscillograph traces of test results. Each d and
k was set equal to 0.9 for the three time delays of 0, 7T/800, and 371'/400 sec.
The time scale of the traces depends on the time-scale factors used in the
simulation. The factors were 35.7 for the test runs with A = 71'/800 sec,
and 59.3 with )\ = 37T/400 sec. For convenience, the latter was used for
A = 0. The results were typical. The average value of the error settles
to zero relatively quickly, but the input (and output) positions do not.
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Fig. 30. Oscillograph Traces for Tests with k1 = kg = 0.9, d] = dg = 0.9, and A= 0
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The offset of the tape-recorder amplifiers is responsible for the final
values of the position signal being different from zero. This did not occur
when the tape recorder was not used in the tests with A = 0.

Figure 31 shows an effect of time delay on relative stability. The
trace of the position signal for A = 71’/800 sec should indicate a damping
ratio of 0.5 or greater, because the gain parameters used define a point
in the relative stability region of Fig. 29. Comparison of this trace with
the response of a second-order system with a damping ratio of 0.5 indi-
cates that this is the case. In contrast, the other position traces indicate
smaller damping ratios. In fact, all the test results for A = 31r/400 sec
indicated a small damping ratio.

Figure 33 is an excerpt of another oscillograph trace. Here the
response is not a simple damped sinusoid. It is a case of unconditional
stability with the d's equal to zero and longest time delay of any test,

A = 7r/8 sec. (The corresponding normalized time delay is T = 12.5 Tsec.)
Although the system is stable, it would probably not have any use.
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Fig. 33. Oscillograph Traces for an Unconditionally Stable System
with k] = kg = 1.0, dy = dg =0,and A = /8 sec

Several tests were run to verify the stability diagram for \ =
7r/800 sec, redrawn in Fig. 34. Tests were run for every numbered point
in the diagram. The results in all cases except Item 12 were exponen-
tially varying sinusoids. For this kind of response, it was relatively easy
to measure the period of oscillation and the decrease in amplitude of the
peaks. If the form of the response is assumed to be Ae97T sin (wt +¢), the
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values of 0 and @ can be determined
from the measured information. Ta-
ble I lists the values so determined,
These values are normalized to be
consistent with the normalized values
of s and T used throughout.

All items in Table I agreed
with the results predicted from the
stability diagram of Fig. 34 except
Item 1. The data of Item 1 indicate
a damping factor of about 0.28 rather
than an expected value greater than
0.5. It was difficult to obtain good
tests for this point. This was often
the case for points along the k;k, =
I hyperbola away from the midpoint.
For many of the tests, it could not be
easily determined if the oscillograph
trace was aiming for a constant final

value off-scale or infinity. Repeated adjustments of the gain potentiom-
eters, however, usually resulted in the final value being on-scale. Tests
for other points away from that hyperbola gave consistent results without
much difficulty. In those cases, the responses had a final value of zero,
except for small differences due to amplifier offset.

TABLE I. Analog-computer Results for
T = ‘n/8 sec and d, = d; = 0.9
Item k; k, o (sec™?) w (rad/sec) Comment

1 2.0 0.5 -0.022 0.072 Stable

2 2.0 0.425 -0.01 0.15 Stable

3 2.0 035 0.0 0.21 Sustained

oscillation

4 2.0 0.2 +0.02 0.28 Unstable

5 2.0 0.05 +0.04 0.34 Unstable

6 2.0 0.0 +0.05 0.35 Unstable

7 15 0.0 +0.01 0.39 Unstable

8 1.35 0.0 -0.004 0.41 Stable

9 1.0 0.0 -0.03 0.46 Stable

10 15D 0.5 -0.09 0.32 Stable

11 1.5 0.5 -0.05 0.21 Stable
12 0.9 0.9 -0.1b 0.2b Stable

4Data for this item varied. This is the best of several trials.
bDifficult to estimate these values.
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The effects of amplifier offset on final values can be determined
from the equations for motor torque, Egs. 3 and 4. If the system is stable,
it should come to rest with the motor torques and the velocity signals each
equal to zero. Under these conditions, the final shaft positions, 6,f and B,
appear in these equations as follows:

-K16if + Ki262f = 0, (169)
and

Ki261f - Kz262¢ = 0. (170)
However, if offset voltages are present, the equations become

-K16if + Ki262f + Vy = 0, (171)
and

K26if - Kp2626 + V2 = 0. (172)

Here V, and V, represent the combined effects of the offset voltages on
motors No. 1 and No. 2, respectively. Solving for the final values yields

ViKazz + V2Kp;

6 e e
i KKz - K2Kay

(173)

and

VK2 + VoK

0,f = ———————— (174)
g KnKzz - Ki2Kp)

Since K;;K;; - Kj;K;) is usually small, the final values are very dependent
on offset. When K;;K;; - K;;K;; = 0, which is the same as k;k, = 1, the
final values are infinite, if there is any offset.

In addition to the difficulty with Item 1, there was a problem of ob-
taining any better than rough values for 0 and @ from the test results for
Item 12. As can be seen from Fig. 31, measuring the amplitude of succes-
sive peaks is impossible. The value of ¢ was based on an estimate of the
location of an envelope of the trace. Since there was some doubt about the
quantitative results of both tests in the region of relative stability, another
method of verification was used.

C. Other Verification

The results of Items 1 and 12 in Table I and some other points were
verified by calculating the zeros of the appropriate system equation. Since



no computer program was available for finding the zeros of such equations,
some of the programs for previous calculations were used. The values of
the functions F and G, in polar-coordinate form, were calculated for in-
cremental values of the modulus r, from zero to two, and the argument &,
of the independent variable s in the upper half plane. From these data, the
loci of the zeros of F and G were plotted in the s-plane. The intersections
of the loci indicated the zeros of Hp(s) Where necessary to improve accu-
racy in the vicinity of a zero, smaller increments were used.

First, for the conditions of Item 12, the calculated zeros are at
-0.75 and 0.192/%122.5°. Apparently the complex pair with its smaller
modulus mainly determines the response. These zeros are outside the
contour of Fig. 22 and therefore meet the requirements for relative
stability.

The calculated zeros for the conditions of Item | are 0.0, -0.036,
and 1.97/*162°. But these are outside the relative stability contour, as
they should be. The calculation was repeated with the value of k, changed

slightly to 0.49. The zeros for this condition are 0.051/£100° and 1.98/%162°

The two dominant zeros are now almost on the imaginary axis. Apparently,
in this case the location of the dominant zeros is very dependent on only
slight changes in parameters. Therefore, the unexpected response in the
test of Item 1 was probably due to slight errors in the setting of the param-
eters. This sensitivity of the response to parameter changes is indicated
by the narrowness of the relative-stability region in this vicinity. For
Item 2, the calculated values for the dominant zeros are -0.007 * j 0.13.
These indicate reasonable agreement with the values of ¢ and @ in

Table I. .

Zeros were calculated for a few more conditions. Again, since
some difficulty was experienced in setting up these parameters, the zeros
for a = b = ¢ = 1.0 were found. They are:

for T = 0O: 0, 0, -1, -1 (stable);

for T = m/8: 0, -0.14, -0.73 (stable);
and

for T = 371‘/4: 0, -0.33, -0.57, 0.95/%89° (unstable).

Finally, the estimated values of the zeros found from the traces shown in
Fig. 32 were compared to the calculated values. They are:

as estimated: -0.06, -0.03 £ 0.99;

as calculated: -0.05, -0.02 +j 0.95, -0.33, -0.57.
Estimates for the larger zeros at -0.33 and -0.57 were not made because of

the rapxd decay of the response associated with them. That part of the re-
han 4% of its initial value with 0.1 sec
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CHAPTER VII
OTHER APPLICATIONS OF THE NEW TECHNIQUES

This chapter briefly discusses other possible extensions or appli-
cations of the new techniques developed in the earlier chapters for deter-
mining the stability of time-lag systems. Since these topics are beyond
the planned scope of the investigation, they will not be developed or demon-
strated in complete detail.

A. Load Effects

An important consideration of any force-reflecting servomechanism
is its behavior under load. A system with time delay is no exception. In a
manipulator application, the system encounters different loads ranging in
magnitude from zero to infinity. Of first interest is the effect of simple
passive loads on the stability of the system. This could be investigated by
the methods already developed, if each load condition is considered indi-
vidually. This would be a tedious process, however, if carried out for the
full range of loads. Therefore, an alternate procedure that avoids this dif-
ficulty is developed as outlined below.

The characteristic equation of the system with a general passive
load has been already derived in Chapter II. (It is Eq. 55.) The load con-
sists of an inertia, a viscous damper, and a spring whose magnitudes are
linearly related to the factors a, B, and 7, respectively, as indicated by
Eq. 45. If this equation is multiplied by e?T and evaluated along the imag-
inary axis, the following expressions for the real and imaginary parts
result:

F(tw) = [Ag cos 27w - By sin 27w] + a[A; cos 27w - B, sin 27w)

+ B[A; cos 27w - B, sin 27w] + y[A; cos 27w - B; sin 27w]
+ aw? - 0.25b, (175)
and

G(Tw) = [Bg cos 27w + Ag sin 27w] + a[B; cos 27w + A, sin 2Tw]

+ B[B; cos 27w + A, sin 2Tw] + Y[B; cos 27w + A; sin 27Tw)

- e (176)



where

A, = @ - 20% +0.25, )

A; = o - 0.507%

Ay = -0, L (177)
and

Ay = -0.50% + 0.25;
and

By = -2 + w,

Bl = -CU3|

B, = -w® + 0.5w, (178)
and

B, = 0.5w.

When o = B = y = 0, Egs. 175 and 176 reduce to Egs. 135 and 136, the
equations for the system with no load, which were investigated in
Chapter IV.

Splitting the equations as in Chapter IV gives

Flrw) = Fi(1 ) - Fa(w), (179)
and

GlTw) = Gi(T: ®) - Ga(w) (180)
where F,(T, @) and G(T, ) are the trigonometric parts and, as before,

F,(w) = 0.25b - aw? (181)
and

G(w) = cw. (182)

In this case, F(T, ®) and G,(T, w) are linear combinations of the terms
inside the brackets in Eqs. 175 and 176. But the terms in the brackets do

not depend on the load parameters. Therefore, they can be calculated easily

on a digital computer, just as the first term was for the data needed in
Chapter IV.
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With these data, the procedure in this case is to plot the first term
of F;. This results in a curve such as that for F, in Fig. 14, Then one
or more of the other terms in the brackets are plotted on the same graph.
The total ordinate of F, at each value of & is the sum of the ordinates
of each part, appropriately weighted by its associated load factor, @, B,
or 7. Then intersections with the F, curves can be found, which give the
zeros of the function F. A similar procedure yields the zeros of the func-
tion G. With this information, Pontryagin's criterion can be applied to
determine stability.

In practice, it is difficult to work simultaneously with the parts
associated with all the load parameters. If each type of load is considered
individually, however, the procedure is much easier. It also demonstrates
any stabilizing or destabilizing tendency due to increasing a load parameter.
In addition, construction of the summation curves is not necessary at all
points but only in the vicinity of intersections.

As an example, the system with 7 = 37/4 and the nominal value of
gain parameters, a = b = ¢ = 1.0, was briefly investigated. With no load,
this system is unstable. Increasing f, the viscous friction, has the greatest
stabilizing effect. The system is stable with B = 0.l1. Increasing @, the
inertia, has a similar effect but not as great. The system is not stable
when o = 0.1, but it is when @ = 1.0, Increasing 7, the spring, at first
does not tend to stabilize the system. With v = 1.0, the zeros of F and G
are farther out of order than with y = 0. When 7y = 5.0, however, the sys-
tem is stable. As each parameter is increased beyond its stable value
above, the system remains stable. Thus, the ranges of values of load pa-
rameters that produce stability could be determined.

If the system equation is evaluated along the relative stability con-
tour of Chapter V, there is a similar separation of terms possible as in
Eqgs. 175 and 176. That is, F; and G; each will consist of a linear com-
bination of terms weighted by the factors @, B, and y. Therefore, the pro-
cedure of Chapter V can also be used to determine the effects of load
parameters on the relative stability of the system.

B. Application to Classical Problems

A classical equation used in an example of the application of
Pontryagin's criterion by Bellman and Cooke?® is

s) = s%e® +as + b. (183)

This could represent a system with a time lag 7 = 1. The objective, as
usual, is to determine the values of the parameters a and b for which
Eq. 183 has zeros in the left half plane only. To apply the criterion, H_(s)
is evaluated along the imaginary axis. The resulting real and imaginary
parts of Hp(jm) are



F(w) = -w? cos w+ b, (184)
and
G(w) = -w? sin ® + aw. (185)

In Ref. 28, the conformance of these equations with the conditions
of the criterion is determined analytically. However, the graphical tech-
nique developed in this investigation can also be applied. The parameters
are contained in simple functions. Both functions represent straight lines;
one of them is horizontal. Either method will yield the same results. The
great advantage of the technique developed here is that it can easily be ex-
tended to much more complicated problems of similar form. For example,
the equation

Hp(s) = f(s)e® + as + b, (186)
where f(s) is a polynomial in s of order of two or greater, can be investi-
gated almost as easily as Eq. 183, since a and b still appear in simple
terms. Equation 186 could not be treated analytically except when f(s) is
simple.

In addition, Eq. 183 or 186 is evaluated along the relative stability

contour of Fig. 22, the techniques of Chapter V can be applied. Thus, the
effects of the parameters a and b on relative stability can also be found.

Another classical equation is

Hp(s) = oe® + b - seS, (187)
Along the imaginary axis, the real and imaginary parts of Hp(jw) are

F(w) = @ cos W + W sin W + b, (188)
and

G(w) = a sin @ - W cos W. (189)
Again the procedures developed in this investigation can be applied. In

this case, however, the parameter a occurs in the trigonometric terms.
Therefore, the procedure discussed in Section A of this chapter would be

used.

In addition, by these procedures, a more complicated equation of the
similar form could be investigated almost as easily. Such an equation is

Hp(s) = ag(s)es + f(s)eS + b, (190)

where f(s) and g(s) are polynomials of any order except zero.
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C. An Alternate Procedure

Once it has been determined that the system function has a princi-
pal term and, therefore, does not have chains of zeros with positiv.e real
parts, it can be restored to a form with negative exponentials. This may
lead to an advantage in certain cases. For example, if Eq. 187 is multiplied
by e~ S, the result is

H(s) = (@-s) + be™®, (191)

When this function is considered on the Pontryagin contour of
Fig. 12, the contribution to the change in argument, due to the three sides
not including the imaginary axis, results almost entirely from the terms
without the exponentials. On these three sides, because |e"s| - 0, the
exponential term has very little contribution. Therefore, examination is
again required of the behavior of the entire function along the imaginary
axis. There, the real and imaginary parts of H(jw) are

F(w) = @ + b cos w, (192)
and
G(w) = -w - b sin W, (193)

Dividing these equations by b puts them into a form for finding their zeros
more easily. Thus, the equations become

Fp(w) (@/b) + cos w, (194)

and
Gb(w) = -(d)/b) = Bin @, (195)

The conditions of the Pontryagin criterion cannot be applied to the
equations in this form. The main reason is that the dominant or principal
trigonometric terms do not exist in Eqs. 194 and 195. As a result, the
number of encirclements of the origin by H(j®w) is not uniquely related to
the number of zeros of F(w) and G(w). In this case, there are many
superfluous zeros of F(w).

Nevertheless, the principle of the argument can be applied. And
the change in argument of H(jw) can be found from an examination of the
zeros of Eqs. 194 and 195 and their magnitudes at certain values of w.
The zeros can be found by the usual graphical techniques.

Two main difficulties arise in this procedure. The many extra
zeros must be taken carefully into account so that they do not contribute



to errors in the determination of the change in argument. Also, since the
trigonometric terms are not dominant, significant changes in the order of
intersections can occur at any value of w. Therefore, the entire range
must be carefully examined.

This procedure could be fairly easily applied to Eq. 191, but its
range of application appears to be restricted to simple equations. For
example, no useful results could be obtained when the procedure was ap-
plied to the equations for the system with load parameters investigated in
Section A of this chapter. One purpose of the procedure is that it serves
as a basis of comparison for the many advantages of the methods based on
the Pontryagin criterion.
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CHAPTER VIII
CONCLUSIONS, EXTENSIONS, AND RECOMMENDATIONS

A. Summary and Conclusions

The research subject has been the force-reflecting servomechanism
of the type currently in use in manipulator applications, but with the addi-
tion of time delay in the signal-transmission channels. The absolute and
relative stability of the system has been investigated using several tech-
niques. Some of these are new procedures that have been developed.

Conventional techniques for determining stability were useful in ob-
taining some preliminary and general information. The generalized form of
the Nyquist criterion yielded diagrams that demonstrated the instability of
the system under certain conditions. However, no general conclusions
could be derived from the diagrams as to the dependence of system stability
on the values of parameters or even time delay. Almost every case would
require a separate diagram.

A more useful and much more easily applied technique was that due
to Satche. The Satche diagram easily supplied the critical value of time
delay at which instability just occurs for a system with a particular set of
parameters. It also indicated the shape of the system characteristic plot
that would give higher critical values of time delay up to infinity. Bode
diagrams were better, however, for determining the parameter values for
which the system has an infinite critical value of time delay and therefore
is unconditionally stable. Neither technique, however, was very useful in
determining the range of values of parameters for which a system is stable
with intermediate values of time delay.

The simulation of the system on the analog computer produced good
results conveniently. The use of the magnetic tape recorder to provide the
signal time delay was advantageous. Difficulties with the recorder ampli-
fiers due to drift, offset, and a small signal-voltage range were easily over-
come. The absence of problems with signal distortion and noise and the
convenience of setting the delay provided the advantages over any other
method such as Padé approximations. Although the tape speed could be
adjusted only by a factor of ten, changing the time scale of the problem
enabled the simulation of any delay required for the testing. The simula-
tion brought attention to the special dependence of the stability of the sys-
tem on the transmission-gain parameters and later helped verify most of
the analytical developments.

Routh's criterion provided quantitative information about the depen-
dence on gain parameters of the stability of the system without delay. The
other techniques mentioned above or the root-locus method were much less
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helpful because of the number of parameters involved or their location in
the system equations. For systems with delay, the objective was to find a
criterion as useful as Routh's.

The objective was accomplished by an adaptation and extension of
the Pontryagin stability criterion for time-lag systems. Since the criterion
had not been used for systems of this order (fourth crder), a method of ap-
plication was developed that was not restricted to second- or third-order
systems. In the process of developing the new method, the Pontryagin cri-
terion was explained by relating it to a fundamental theorem of complex
variable theory, Cauchy's principle of the argument. The criterion is
actually an extension of that principle. Therefore, extensions of the crite-
rion could be made, if adherence to the principle was maintained.

Such an extension was accomplished by distorting the contour used
in the criterion for enclosing the right half plane, so that it also includes
part of the left half plane near the imaginary axis. By employing the prin-
ciple of the argument, a procedure was developed by which it could be de-
termined if zeros of the characteristic equation of the system were outside
this contour. In addition, it was shown how to adjust the gain parameters,
to exclude zeros from this region. Thus, the procedure provides a means
for checking that a system has a certain amount of relative stability and
for adjusting the variable parameters of the system to achieve that relative
stability.

The procedure developed for determining either absolute or relative
stability involves finding the change in the argument of the system function
for values along the appropriate contour. Eor absolute stability, the
Pontryagin criterion reduces this process to an investigaticn of the zeros
of the real and imaginary parts of the system function evaluated along the
imaginary axis. For relative stability, the change in argument can also
be determined by a similar investigation of zeros. In this case, however,
the system function is evaluated along the left side of the relative-stability
contour.

In addition, it was shown that the real and imaginary parts of cer-
tain system functions can each be split into two parts in such a way as to
yield many advantages. The characteristic function of the system under
study is one of this class. One partis a complicated trigonometric func-
tion; the other is a relatively simple one containing the variable parameters
of the system. The complicated parts can easily be calculated on a digital
computer and plotted. The simple parts are easily calculated manually and
plotted. Their plots are either straight lines or simple guadratic curves.
The intersections between the plots of the complicated and simple functions
yield the zeros that are sought. A procedure was given for changing the
locations of the zeros by moving the simple lines and curves to achieve a

x : iy
desired arrangement of intersections. The new location of the lines and
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curves determines the values of the parameters. Thus, a2 desired condi.tion
of stability or relative stability can be produced, provided it can be achieved
within the range of adjustment of the parameters.

The stable regions in parameter space were determined by using the
above procedures. A set of diagrams was presented showing the regions of
stability in the position-gain parameter plane for particular values of time
delay. A region of relative stability was also shown in one of the diagrams.
Various points in these diagrams were verified by the analog-computer
tests or by direct calculation of the zeros of the system functions.

In addition to verifying the analytical results, the analog-computer
tests brought attention to important conditions that might have been over-
looked in a completely analytical study. The early tests showed that the
stability of the system could be sensitive to changes in the values of the
gain parameters when separate signal-transmission channels were used.
After better stability regions had been established, later tests showed a
similar sensitivity to parameter changes under certain conditions. Fur-
ther investigation revealed the sensitive regions in the stability diagrams,
as discussed in Section VI.C. The testing also revealed the undesirable
effects of offset voltages in the signal-transmission amplifiers.

Finally, it was shown that the procedures developed for determining
stability or relative stability can be extended to other cases. The effects
of load variations on the system under study were investigated by an adap-
tation of the procedures. Their use on classical equations, either directly
or with a similar adaptation, was indicated. Other extensions are discussed
in Section B below.

The procedures developed in this investigation have been effective
in producing the desired results in all cases attempted.

As a result of this research, some general conclusions can be
drawn regarding force-reflecting servomechanisms with time delay. For
the shorter time delay of about 4 msec (A = 77/800 sec) used in this study,
there was some improvement in stability. For the same parameter set-
tings, the system with this short delay displayed a better damping ratio
than one without delay. For the longer delay of about 22 msec (A = 37r/

400 sec), however, the system was much less stable. Although absolute
stability could be achieved by adjustment of the parameters, the same
degree of relative stability that was possible with the shorter delay could
not be achieved with the longer delay. Similarly, the few tests made with
longer delays also indicated that, even if absolute stability was possible,

the system would have a low damping ratio and tend to be very oscillatory.
Therefore, there are serious doubts as to whether a system with a delay of
more than 25 msec can be made to have anywhere near the normal behav-
1or of a system without delay unless major changes are made in the system.
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B. Extension of Application of the Procedure

The procedures developed here can be applied to force-reflecting
servomechanisms of much more complexity. In any practical system, addi-
tional time constants are associated with the various elements. For ex-
ample, the torque of a motor, Tp,(s), is related to the control current in
its field winding, I(s), by the relation

K
1 +sm™m

Toale) = 1(s), (196)

where T, is the time constant of torque buildup. Likewise, other time
constants are associated with the reactive circuit elements in the motor-
field circuit, in the signal and power amplifiers, and in the filters of any
demodulating amplifiers. In each case, the input, X;(s), and the output,
X,(s), can be related by

1

Xile) = 1955

Xy(s). (197)

where 7, is the appropriate time constant.

The characteristic equation of such systems is more complex. Its
order increases by two for each additional time constant. However, the
complexity increases only in the already complicated part of the equation.
When put into the form of an exponential polynomial, the system function
has the form

.

Hp(s) = f(s)e?ST - (as?+cs+0.25b), (198)
where f(s) is a higher-order polynomial. For example, with one additional
time constant on each side of the system, the order of f(s) would be six.
But, when the function is split into its real and imaginary parts, the addi-
tional complexity occurs only in the trigonometric parts. More algebraic
manipulation and computer programming are required, but no additional
manual computation, since the terms containing the parameters are the
same, Therefore, the new procedures can be applied directly.

However, if any changes in the system are made that increase the
order of the terms containing the parameters, the procedure could become
difficult. In that case, additional digital computation would probably be

helpful.

Only the term representing twice the time delay, €257, occurs in

Eq. 198. If the term eS7T had appeared, the system function could still be
an exponential polynomial. And, if the function had a principal term, the
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procedures developed could be used. Therefore, a general form of the
system equation to which the procedures can be applied is

Hp(s) = £(s)e?ST + g(s)eST + h(s), (199)

where f(s), g(s), and h(s) are polynomials, where the order of h(s) is two
or less and the equation has a principal term. It is preferable, however,
that the order of f(s) be at least one or two greater than the order of h(s)
so that the important intersections occur at low values of w. Finally,
higher-order exponential terms could also be included, provided they were
integral powers of eS7, but these would occur in systems beyond the scope
of this study.

C. Recommendations for Future Research

Adequate means for investigating the stability of a linear force-
reflecting servomechanism with time delay have been developed. However,
this is only the beginning of a long series of problems that must be resolved
before a practical system can be evolved. One next major area requiring
investigation is that involving the quality of force reflection or feel. This
could possibly be carried out by using the impedance or admittance param-
eters discussed in Chapter II. Another area includes the effects of the
operator and the system on each other. This probably involves a consider-
ation of nonlinear impedances and additional time lags and time constants
to account for the dynamic response of the operator. An experimental model
of the system would be necessary for this investigation.

Other smaller but important practical problems require investiga-
tion. For example, the nonlinear characteristics of nonideal components
could produce undesirable effects. Also, a practical transmission system
using some form of pulse-code modulation could change the system behavior
due to its sampling and filtering action.

Finally, there are many other possible extensions, modifications,
and applications of the Pontryagin criterion. For example, one application
could result in a digital-computer program for solving for the complex
roots of exponential polynomials. Some attention in this area would be
beneficial.



APPENDIX A
Complete Nyquist Diagrams

Figure 35A shows the complete contour used for the Nyquist crite-
rion. The contour consists of the semicircle with the large radius R, the

imaginary axis, and the semicircular

indentation around the origin of
radius r. In application of the crite-
rion, the entire right half plane is
enclosed by letting R approach in-
finity and r approach zero. There-
fore, approximations can be used in
evaluating the system characteristic
equation on these semicircles. The
(A) S-PLANE (B) H(S)-PLANE value of the equation along the posi-
tive imaginary axis is determined as

in Section III.A, and its complex
conjugate is the value along the nega-
= tive imaginary axis.
on 8 For large values of s, Eq. 65
- becomes
¢ H(s) = s*. (A.1)
Along the large semicircle, s = Rel?;
(C) H(S)-PLANE (D) H(S)- PLANE
A=001 sec A=0025 sec therefore,
. s
Fig. 35. Complete Nyquist Diagrams H(Rel?) = R*ei*?. (A.2)

For small s, the series expansion for the exponential term is used.

It is
e 28T = 1 - 2sT7 + s;sz S et (A.3)
Substituting this into Eq. 65 gives
H(s) = 0.25 - 0.25(1 - 2sT+2s2t2-...) +s - s(l-2sT +...)
4250 Pl = 2eT . ) F EsP 48 (A.4)
For small s, the equation becomes
H(s) = 0.5sT + s2(1 +27-0.57%). (A.5)

Along the small semicircle, s = reJ?, and the equation becomes

H(rei®) = 0.57rel® + rlel?(1 +27-0.57%). (A.6)
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If r << 7, the equation becomes

H(rei®) ~ 0.57rel?. (A.7)
If, however, 7 = 0, the equation becomes

H(rel®) = r2eiz @, (A.8)

With the use of these approximations and the information from the
diagrams in Fig. 4, the complete Nyquist diagrams can be made. They are
shown in Figs. 35B, C, and D for A = 0, 0.01, and 0.025 sec, respectively.
The axis scales are highly distorted to show the general shape of the en-
tire diagram. The letters show the corresponding points on the contours
in the s-plane and in the H(s)-plane. The arrows indicate the corresponding
directions of traversal.

For there to be no zeros in the right half plane, the change in argu-
ment of H(s) must be zero as s traverses the entire contour in the
s-plane. That is, the total change in angle of a vector from the origin to a
point on the contour in the H(s)-plane must be zero as the tip of the vector
traces the entire contour. For this to be true, the contours in the H(s)-
plane must not completely encircle the origin. In Figs. 35B and C, the
origin is not encircled and the systems are stable; in Fig. 35D, the origin
is encircled twice and therefore the system is unstable.

The encirclements are more evident if one visualizes unwrapping
the contours from the origin. In Figs. 35B and C, the "wings" at points A
and C can be brought around to completely expose the origin on its left.
This cannot be done in Fig. 35D.



APPENDIX B

Complete Satche Diagram

The same contour in the s-plane, shown in Fig. 35A, used for the
Nyquist diagram, is used for the Satche diagram. Also, similar approxi-
mations on the large and small semicircles are used as in Appendix A.

For large values of s, Eq. 70 becomes

Fi(s) = s2. (B.1)
On the large semicircle, Eq. 70 becomes

Fi(Rel?) = R2j20. (B.2)
For large s, Eq. 71 yields

[F,(s)| =1. (B.3)

Therefore, for values of s on the large semicircle, the points of F,(s) lie
on or in the unit circle.

After Eq. 70 is divided out, the approximation for small s becomes

Fi(s) =~ 1 +4s2, (B.4)
On the small semicircle, this equation beco‘mes

Fi(rel®) =~ 1 + 4r2ei2®. (B.5)
From its series expansion, the approximation of Eq. 71 for small s is

Fo(s) =1 - 2s7, (B.6)
which, on the small semicircle, becomes

Fz(re-w) =1 - 27rel?. (B.7)

With the use of these approximations and the information from the
plot in Fig. 5, the distorted but complete Satche diagram is drawn as shown

in Fig. 36. The objective again is to find any change in argument of a vector,

in this case F = F,; - F,, as s traverses the entire contour in Fig. 35A.

The angular orientation of F can be determined by drawing a line from each

unprimed point to the corresponding primed point in the figure.
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Fig. 36. Complete Satche Diagram

For T less than the critical
value and starting with EE', the
angle of the vector F can be traced.
It is zero at EE', becomes about
-'IT/Z at FF', and approaches -7 for
GG', HH', and AA'. At BB', the
angle is back to zero. On the rest
of the contour, it ranges to +m and
back to zero. Therefore, the net
change is zero, and the system is
stable.

When 7 is greater than the
critical value, the points G" and
H" apply, and the angles are differ-
ent. At GG", the angle returns to
zero but continues in a positive
direction through +7T/Z at HEY, “tar
at AA', and to +27 at BB'. The
rest of the contour contributes

another 2m; in this case, therefore, the total change is 47. This indicates
two zeros in the right half plane and instability.
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APPENDIX C
Asymptotic Zeros of System Equation

From Eq. 122, the system equation is

Hp(s) = (s* +2s%+25%+5+0.25) €257 - (as?+cs +0.25b). (c.1)
For very large values of s, the equation can be approximated by

Hp(s) = gie?87 . ag?, (C:2)
As s becomes large, the zeros of H,(s) asymptotically approach those of

the right side of Eq. C.2. Therefore, the problem is reduced to finding the
zeros of

B(s) = s%e®®" - a. (c.3)

The double zero at s = 0 is discarded because this is not a large value
of s.

If the substitution
w = geST (C.4)
is made, Eq. C.3 becomes

W(w) = w? - a. (C.5)
The zeros of this equation are

Wl’z = +ﬁ, -ﬁ. (CG)

If only the first zero is considered,

w = /3 e (c.7)
Then
log w = log/a + j(0 +27n), (c.8)
where
n = 0,1, *2, .. -
From Eq. C.4,
(c.9)

log w = sT + log s.
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Therefore
sT +log s = log+/a + j(0+27n). (c.10)

The solution of this equation gives one chain of asymptotic zeros ?f Hp(s).
The equation for the other chain comes from the other zeroof w in
Eq. C.6 and is

sT +log s = log./a + j(m +27n). (C.11)
Since
g =N +_]U.) = rej¢, (C.IZ)

the real and imaginary parts of Eq. C.10 give

oT +log r = log +/a (c.13)
and

wT + ¢ = 0 + 27n. (C.14)

From Eq. C.13,

o = -l;logﬁ, (C.15)
and, since 0 = r cos ¢,

cos ¢ = -% log%. (C.16)

a

But since r is very large,

¢ = x(n/2+¢€), (C.17)
where € - 0 as r =». Therefore, from Eq. C.14,

wT = 0 + 27n ¥ (/2 +€). (C.18)

Since W = r sin ¢, sin ¢ = 1, and r must be positive,

r =%0+27m¥(7r/2+€), d (C.19)



Substituting this into Eq. C.15 gives

2mn ¥ (m/2 +€
g e | [2+e) | (C.20)
T Tof2
From Eq. C.18,
W =l[+Z7TnT'(7T/Z+€)] (c.21)
T ' *

Thus, Eqs. C.20 and C.21 give the real and imaginary parts of the
asymptotic zeros of one chain. The values for the other chain are

o= '% log ZiZna s (n/2¥e) : (C.22)
TSa
and
w = é[w +2mn F (1/2 +€)]. (c.23)

The derivation could have been made in the same way if 7 was a
negative quantity. Then the real parts of the zeros would be positive. Thus,
this demonstrates that an equation without a principal term has an infinite
number of zeros with positive real parts.
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APPENDIX D
Adapting the Procedure for a Zero at the Origin

This appendix demonstrates the method of applying the crite.rxon. to
the case where the system equation has a zero at the origin. Attgntlon is
confined to a small region around the origin where |sT| << 1. Using the
series expansion for €287 in the system equation, Eq. 122, gives

Hp(s) =0.25(1 = b) +!(1-c+0.57) 8
+(2-a+2T +0.572) s? + higher terms. (D.1)

If b = 1, there is a zero at the origin. For this case and small values of
s, the equation can be approximated by a single term,

Hp(s) = (1-c+0.57) 8. (D.2)

The zero at the origin is excluded from inside either the absolute-
or relative-stability contours by indenting each contour onto a circular
path of small radius, r;, around and to the right of the origin. On this path,
Eq. D.2 becomes

Hp(red?) = (1-c+0.57) red?. (D.3)
The real and imaginary parts of the right side of this equation are

F(¢) = (1-c+0.57) r, cos ¢, (D.4)

and

G(9) (1-c+0.57) r; sin ¢. (D.5)

The range of ¢ depends on the type of contour. If it is the one for
determining absolute stability, ¢ ranges from -7T/2 to 'IT/Z; if, for rela-
tive stability, ¢ ranges from —27r/3 to 27/3. In either case, the zeros of
F and G no longer occur together; a double zero of F at the origin has
separated into two. Therefore, with this identation, these alternating
zeros can be considered along with those for the rest of the contour in
determining system stability or relative stability.
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