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PREFACE 

On July 1-3, 1974, a conference of Monte Carlo specialists was held at 
Argonne National Laboratory under the auspices of the Nuclear Energy Agency 
Committee on Reactor Physics (NEACRP). This was one of a continuing series 
of NEACRP working meetings convoked to expedite the exchange of views and in
formation among specialists in many fields. All papers presented at the 
Meeting (and reproduced in these transactions) dealt with the application of 
Monte Carlo methods to neutron transport problems. Since the topic of the 
Meeting was already so narrowly defined, it seemed undesirable to attempt to 
organize each session around some still more sharply delimited subtopic. The 
reader will note, however, that the papers presented here do fall, generally, 
into two broad categories. Most of the papers read at the first two sessions 
were concerned with the implementation of Monte Carlo methods in certain 
specified codes. Papers in the last three sessions, for the most part, 
focussed on the methods themselves. 

But the presentation of technical papers was not the sole or main purpose 
of this meeting. All Information in these papers could, of course, have been 
disseminated in technical journals or company reports. A meeting, on the 
other hand, offers unique opportunities for discussion, evaluation, and specu
lation. For this reason the meeting schedule was arranged to allow ample 
time for discussion after each paper, and (during the closing session) for a 
period of general discussion after the formal presentation of papers had been 
completed. All the discussion (which was recorded and transcribed) has been 
reproduced here in some form. It has been extensively edited and, in fact, 
at certain points, is presented only in sumiaary. Nevertheless we hope that 
the participants will find that the edited transcripts Incorporated in these 
transactions are substantially correct. 

We are greatly indebted to Dr. J. Royen and the other members of the 
staff of the NEACRP for the work they have done to make this meeting possible. 
We thank Mrs. Mirlan Holden and Mrs. Joyce Stejskal of the Argonne Conference 
Planning and Arrangements Office for taking charge of the local meeting 
arrangements. Finally, it is a pleasure to acknowledge the assistance of 
Miss Cyrilla Hytry, who helped to organize these transactions, to deal with 
meeting correspondence, and to prepare the transcripts of comments and 
discussions. 

Ely M. Gelbard 
Chairman 
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OPENING REMARKS 

C. E. Till, Director 

Applied Physics Division 
Argonne National Laboratory 

On the behalf of the United States Atomic Energy Commission, 
and on behalf of Argonne National Laboratory as your host, I would 
like to welcome you all and to open this meeting of specialists on 
Monte Carlo methods. In particular, I would like to welcome our 
overseas guests — we are happy to see you here. It is the 
Laboratory's honor to act as host for what I am sure will be a most 
interesting meeting. Meetings of this kind, where information is 
exchanged between experts in the field, are possibly the most valu
able of the types of technical meetings that we hold. Such meet
ings I think are important, not only because of their technical 
content, but also because they represent a continuation of the 
tradition of exchange and cooperation between our nations. I 
believe that it is Important that we maintain such exchanges and 
Indeed actively encourage them or inertia tends to act to reduce 
them, to the detriment of the programs of all of us. 

I wish you all a most successful meeting. I know that the 
papers have been selected with care, and I am sure that your dis
cussions will be lively and interesting. I would like to close by 
wishing you all a very pleasant stay in the Chicago area and here 
at the Laboratory. 
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EFFICIENT DATA MANAGEMENT TECHNIQUES IMPLEMENTED 

IN THE KARLSRUHE MONTE CARLO CODE KAMCCO 

G. Amecke, H. Borgwaldt, V. Brandl and M. Lalovlc 

Institut fur Neutronenphyslk und Reaktortechnik 
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EFFICIENT DATA MANAGEMENT TECHNIQUES IMPLEMENTED 
IN THE KARLSRUHE MONTE CARLO CODE KAMCCO 

G. Arnecke, H. Borgwaldt, V. Brandl, M. Lalovic 

Institut fiir Neutronenphyslk und Reaktortechnik 
Kernforschungszentrum Karlsruhe, Germany 

ABSTRACT 

The Karlsruhe Monte Carlo Code KAMCCO is a forward neutron 
transport code with an eigenfunction and a fixed source option, in
cluding time-dependence. A continuous energy model is combined with 
a detailed representation of neutron cross sections, based on lin
ear interpolation, Breit-Wigner resonances and probability tables. 
All input is processed into densely packed, dynamically addressed 
parameter fields and networks of pointers (addresses) . Estimation 
routines are decoupled from random walk and analyze a storage 
region with sample records. This technique leads to fast execution 
with moderate storage requirements and without any I/O-operations 
except in the input and output stages. 

INTRODUCTION 

The general purpose fast neutron Monte Carlo (MC) code KAMCCO has been 
developed, starting from previous work by U. Mbller [ij , as an instrument for 
(a) analyzing fast neutron experiments, including time-dependent pulsed neu
tron problems, (b) checking nuclear data available in the format of our KEDAK 
library [2], and (c) checking other techniques of fast reactor neutronic cal
culations. No stress was put on shielding and similar deep penetration prob
lems. Following these aims, the natural approach chosen was to use a good 
model of the neutron physics involved, even at the cost of some increase in 
computation time, and to avoid many of the approximations usually accepted 
in reactor computation. Thus, KAMCCO fully includes the time-dependence of 
neutron transport and uses a continuous energy treatment instead of a multi-
group model. In addition to a good physical model we required that the code 
should possess considerable freedom in problem specification (i.e. input and 
output options) and be easily adapted to improved physical models and/or 
unforeseen neutronic applications. All these requirements ask for modular 
programming and for refined data management techniques, as otherwise the 
required flexibility will involve an excessive overhead for clerical tasks. 
The programming language is FORTRAN IV, for a group of functional routines 
ASSEMBLER-routines may be substituted. 



GENERAL FEATURES OF KAMCCO 

In our code neutrons carry the energy E, the time t and a weight W as 
continuous variables. Russian roulette and non-analogue treatment of capture 
can be used to an extent specified by input. At each collision a special 
technique is used to reduce the variance normally connected with (n,2n) and 
fission processes. For this purpose the reaction type is selected from a 
suitably modified set of probabilities, so that the resulting neutron weight 
becomes independent of the isotope and reaction type involved. - KAMCCO has 
2 main options: 
The standard option 1 is mostly used for kgff calculations, a source itera
tion scheme (i.e. generation cycle) is performed. A pool of fission neutron 
coordinates (cf. subpool A3 in diagram 1) is established and repetitively 
updated with coordinates of new fission neutrons. These coordinates are 
obtained as imaginary marks (positions) on the (Wvlf)-weighted cumulated neu
tron flight paths, with an exponential distribution of distances between 
these marks [3]. The regeneration process for this source pool can be made 
virtually free of bias, when the pool size is sufficiently large and some 
superimposed randomization is applied. 

KAMCCO option 2 is a census time scheme, mostly used for the layout and ana
lysis of neutron physics experiments. Neutrons with predetermined source 
coordinates are started at time t=0. These neutrons, and also all daughters 
from fission and (n,2n)-reactions, are pursued up to a certain time limit 
tmax- Additional variance reducing techniques operative for this option are 
a combination of truncated track length distributions at outer boundaries, 
ELP, and its improved modification MELP [4]. Weight limits for Russian 
roulette, ELP/MELP and splitting float with time t. 

The geometry package allows to describe assemblies with all regions bounded 
by first and second order surfaces. Inner void regions are admitted, outer 
boundary conditions are total absorption (vacuum) or reflection on planes. 

In order to retain the complete model of neutron physics, neutron collisions 
are processed on a per isotope basis. In elastic collisions first order 
anisotropy is introduced in the center-of-mass system. In this system the 
scattering angle is chosen uniformly from a cone, thereafter a transformation 
to the lab system is performed. Inelastic scattering at high energies is 
processed via the evaporation model, at lower energies via the excitation of 
discrete levels, that are represented in a way very similar to that of global 
cross sections (see next section). For fission a Cranberg spectrum is imple
mented, for the secondary distribution of (n,2n) neutrons an ad hoc spectrum 
has been introduced. 

THE REPRESENTATION OF NUCLEAR DATA 

Part of the KAMCCO input (cf.diagram 1) is a nuclear data set in a 
special format. Such data sets are prepared off-line, in principle once for 
each isotope, by running two codes, DASU and DISTRESS, and a third, DACONT, 
for merging, editing and listing their outputs. In a MC job the data set is 
handled as easily as any multigroup data set. 

The code DASU [5] operates on the nuclear data file KEDAK and performs two 
tasks: (a) Point cross sections from the KEDAK file are linearly fitted on 



optimally chosen energy grids; (b) other data, e.g. resonance parameters. 
are converted, so that during the MC run only a minimum of computer opera 
tions need be executed on such parameters. - DISTRESS is a special MC code 
that computes tabulated probability distributions for cross sections in tne 
region of narrowly spaced resonances, for selected energies and 3 tempera
tures. DISTRESS uses a ladder method for generating, via the single level 
Breit-Wigner formalism, a large sample of cross sections, which is sorted 
and partitioned with respect to the size of the total cross section. 
During the MC run, the neutron cross sections and other nuclear data are 
processed pointwise, on a per isotope basis, composite macroscopic cross 
sections by simple superposition. Main technique is table lookup with l̂ ^̂ ear 
interpolation in energy. Maximum economy in computer storage is achieved by 
using tables with energy grids individually and optimally fixed for each 
isotope, reaction type and broad energy region. 

For the representation of nuclear data 4 broad energy regions are distin
guished. For a single isotope several regions or reaction types may be miss
ing, such information and the boundaries of the broad energy regions are 
individually fixed for an isotope and included in a short block of control 
data. 

In the lowest energy region elastic scattering is represented by interpola
tion coefficients A^ , B^ which allow a good representation 

a (E) = B. + A.E (') 
s ' 1 1 

with the energy E in an interval (Ej^, E^.j). The data actually tabulated in 
our data sets are sequences of triplets (Ei,Aj;,B£) with E^+i < ££. For ab
sorption (and also for fission) a modified piecewise representation 

a^(E) = (B^ + A! E)//E", Ee(E!, E!_|) , (2) 

is used for obvious reasons with tabulated (E.',A|,B!). 

For the next higher energy region, the resolved resonance region, our data 
sets contain converted resonance data. In this region, point cross sections 
are computed during the MC run, in the Breit-Wigner single level formalism, 
from a number of contributing resonances above and below the reference energy. 
This number is limited and fixed in advance. Doppler-broadening is optional, 
also this option must be fixed when the data set is generated. 

In the unresolved resonance region, or more generally in the region of 
narrowly spaced, partially overlapping resonances, where we can trust the 
narrow resonance approximation, it is advantageous to use off-line generated 
probablility tables, instead of computing the contributions of many reso
nances in-line. In our scheme we can easily make use of isotope-based 
probability tables, in view of the superposition principle employed. In our 
data sets these tables are organized as a sequence of sub-tables for a 
number of reference energies. One such sub-table, for a specific reference 
energy, consists of a number, 3 to 10, of septets (decuplets) of data for 
non-fissile (fissile) isotopes. A septet (decuplet) of data starts with a 
value, between 0. and 1., of the cumulative probability distribution function 
followed by 6 (9) coefficients, which allow the necessary interpolation of 



cross section values in energy and temperature. 

In the highest energy region all cross sections, for elastic and inelastic 
scattering, absorption, fission and (n,2n) reactions, are represented by 
sequences of mesh points E^ and coefficients A^, B- used for linear inter
polation as in Eq. (!). When necessary, small fixed groups of data, needed 
for generating the secondary spectra of fission or (n,n') neutrons etc., are 
included, contingent to the respective cross section data. For the sake of 
completeness, we mention a tabulation, in energy, of the minimum and maximum 
scattering cosines in the center-of-mass system and a representation of the 
excitation cross sections of discrete inelastic levels, along the lines of 
Eq. (1) with minor organizational refinements. 

The data structure, explained here only in outline, is an ambitious scheme, 
in that we can represent data in as much detail as desired. Smooth data are 
given by a minimum of parameters. In addition the scheme is flexible, as we 
have been and will be able to introduce, locally, necessary improvements. On 
the other hand, the efficiency of such procedure, with multiple table lookup 
and interpolation, relies largely on good coding and the optimized layout of 
these data during the execution of a MC job. 

OPTIONS FOR THE ESTIMATION PROCEDURE 

In a MC code with a multigroup cross section library estimates of the 
neutron flux or the collision density obtained in regions of phase space are 
primary quantities, from which any reaction rate is derived. This is no 
longer true with our scheme of nuclear data. Effective cross sections, aver
aged over energy intervals, are not part of the input but may instead be 
obtained as an estimated quantity. This becomes obvious when we think of 
energy regions with resonances or threshold cross sections, where effective 
cross sections are based on a known weighting spectrum which does not enter 
our MC scheme working on a continous energy model. 

The user is given a free and wide choice of options for the estimation proce
dure as part of his problem specification. All estimates are, of course, 
obtained with their standard errors. 

The user may choose a collision or a track length estimator or an optimum 
combination. He may choose global estimates (multiplication, gain, loss, 
leakage, time to death/birth) and/or estimates of reaction rates integrated 
over regions in phase space. Here, the user specifies, for the purpose of 
editing only, an energy grid completely independent of any grid used in the 
nuclear data set. 

Estimates may be specified in complete detail or as energy spectra in selec
ted spatial regions or as distributions over all spatial regions. The random 
walk information can be analyzed with respect to regions, energy intervals, 
isotopes and reaction types (including flux). Furthermore, the desired 
estimates can be specified as directly estimated combinations of simpler 
quantities, e.g. by specifying: capture plus fission, in 3 identified iso
topes, as a spectrum, summed over 5 identified regions. The code is used to 
a large extent for the analysis of time-dependent problems, i.e. pulsed neu
tron experiments in subcritical or non-multiplying assemblies [&]. Therefore, 
the extention of the estimation procedure to multiple estimates of the types 
just explained, for a series of time intervals, has been implemented. 



Finally, we added another valuable feature that allows us to estimate ^^^ 

directly the ratios of reaction rates, which are often measured in cri ic 

assemblies. 

It is obvious that this flexibility in specifying estimation OP*^^""^.J^^'^^at 
duces an amount of complexity, which can be handled only by P'^°8ramming^ 
decouples almost completely the routines for the execution of the ran 
walk process from the estimation routines. 

OVERALL PROGRAM AND DATA STRUCTURE 

Diagram I (see next page) demonstrates in a simplified form the data 
flow and organization of KAMCCO. The blocks R2 and E2 of subroutines execute 
the random walk and estimation, respectively. Rl and El are additional blocks 
of routines, the associated input processors. A rudimentary main program, 
which is not shown, calls these blocks in due sequence. The data pool B is 
loaded by block El with processed input data and address fields, which are 
required for the estimation routines. 

Central part is the data pool A, at this time a COMMON block of 28 000 full 
words, containing all data needed by the random walk routines alone or shared 
with the estimation routines. It is subdivided into a 210-words subpool Al 
with fixed-address data, largely for coordination, and 3 subpools, A2 to A4, 
that use dynamic addressing. Between these subpools no gaps are left. Sub-
pools A2 and A3 are used only for the random walk. Subpool A2 contains, in 
densely packed form, all random walk input data, i.e. nuclear data and 
specifications for surfaces, boundaries, material compositions, and spatial 
regions. Program block Rl loads these data without gaps into subpool A2, 
converts and structures them into a complete network of parameters and 
pointers to their locations. During the random walk these pointers give fast 
access to any data needed. 

Subpool A3 is the space allocated to the relevant data of source or split 
neutrons, its size is determined by input. Subpool A4 serves mainly for the 
communication of relevant information on the random walk process to the 
estimation routines. Such data associated with random walk paths and events 
comprise: identifiers of the spatial region and the energy interval, neutron 
weight, velocity (energy) , collision and escape times, mean free path, 
lengths of actual and virtual flight paths, and the associated macroscopic 
cross sections of all isotopes. This information is stored during the random 
walk computations and asynchronously analyzed by the estimation routines. The 
storing format is an 8-word record starting with a type identifier. Actually, 
types 1, 3, 5 signal a source event, a collision and a restart of a split 
neutron. The augmented type 2 communicates cross sections. Type 4 contains the 
flight path data and may be augmented for ELP/MELP. Types 8 and 9 are pure 
control records for switching between the program blocks. 

This scheme decouples random walk and estimation almost completely without 

using external data carriers, that would involve costly, slow and, to some 

extent, unreliable I/O-operations. 
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ADDRESSING SCHEME FOR THE GEOMETRY DATA 

In diagram 2 we describe, in a simplified form, the addressing scheme 
employed in the random walk of a neutron. Basic pointer is PT-REG that 
contains the address of an I 1-word block of data referring to the region in 
which the neutron is found. With fixed offset values of 0, 1, 2 to PT-REG we 
find a region identifier and 2 further addresses, PT-COMP and PT-LBAD. 

The value of PT-COMP, the composition pointer, is the address of a list of 
parameters, viz. isotope addresses PT-ISOT^ and atomic densities Nj^ for the 
material composition connected with this region. This list is self-limiting, 
i.e. it contains its final address as its leading list element. PT-COMP, thus, 
gives access to all data needed for computing the microscopic and macroscopic 
cross sections in this region. 

PT-LBAD is the address of a self-limiting list of boundary addresses PT-BOUNDj. 
Each list element PT-BOUND is itself the address of a triplet of addresses 
(PT-SRF,PT-REG,PT-REG'). In such a boundary-defining triplet PT-SRF points to 
a self-defining set of parameters, giving the equation for a special or 
general first or second order surface forming the boundary. PT-REG and 
PT-REG' are pointers related to the two regions on each side of the boundary, 
one of which is always known. Through this addressing scheme one can quickly 
compute the shortest distance, in a given direction, to a region boundary and 
if necessary, follow the neutron into the neighbouring region with the new 
region pointer PT-REG'. 
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ADDRESSING SCHEME FOR THE NUCLEAR DATA 

A step in the random walk process, that is very often executed, is the 
computation of neutron cross sections and similar nuclear data. In the pre
ceding section we explained the addressing scheme 

PT-REG ->• PT-COMP -»• PT-ISOT, from a region pointer via a composition pointer 

to an isotope pointer. At the start of a KAMCCO run those isotopes ISOT^, 
which are part of the problem specification, are loaded by block Rl into data 
subpool A2. For each isotope ISOT^ the pointer value PT-ISOT^ is inserted 
into all tables describing a material composition which contains ISOT^. 
Nuclear data in KAMCCO format start for each isotope with a fixed amount of 
control data. When program block Rl loads the isotope ISOT- , it structures 
and converts the data so that a 40-word section of storage with fixed offset 
values versus PT-ISOT^ will contain all such control specifications. They 
consist of: 

(a) simple tags and descriptors, e.g. for the distinction of fissile, non-
fissile and fast-fission isotopes etc., 

(b) limits of the broad energy regions in which different data representations 
CRS; are applicable, or in which specific cross sections, e.g. (n,2n) or 
fast-fission, must be computed, 

(c) addresses PT-CRST- pointing, in most cases, to intermediate address 
tables. 
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We recall, from Eq. (1), that the data for a representation CRSj are, in the 

regular case, a sequence of triplets (E^,AJ,B^) of energy grid points E^ (in 

descending order) and interpolation coefficients A^,B^. When E is the neutron 

energy, table-lookup is performed to identify that triplet for which 

Ee(Ej.EJ_,). 
The intermediate address tables mentioned considerably reduce the time spent 
for table-lookup operations. Instead of starting at the top of the table 
intermediate addressing allows to start the search in the immediate vicinity 
of the unknown E^-entry. The intermediate address table for a representation 
CRSj consists of a list of 37 addresses PT-CRSj (IUEN), IUEN= I 37. These 
tables are generated and inserted into the nuclear data by the program block 
Rl in loading the isotope. They are based on an internal, universal energy 
grid of 37 intervals between .01 eV and 15. MeV, with k intervals per decade. 
After each redefinition of neutron energy, e.g. by a collision, the interval 
index IUEN in this energy grid is determined. The intermediate address table, 
then, contains in its relative position IUEN that address PT-CRS;(IUEN) which 
can be used to optimally initialize the table-search in the representation 
CRSj, assuming the neutron has an interval index IUEN (cf. diagram 3 ) . 
This scheme is used, sometimes with minor modifications, whereever table-look
up operations must be optimized. Its benefit is achieved by some additional 
work in block Rl, which is called only once and, thus, is comparable to a 
sequence of operations taken out from a loop. 

The subroutines for computing cross sections also perform some additional 
book-keeping to save time. Computed microscopic cross sections are saved so 
that they can be re-used, when a neutron path crosses several regions. 
Temperature-dependent resonance cross sections and the consistent re-use of 
probability table entries in the unresolved resonance region in such case 
introduce additional problems, which are important in practical coding but 
shall not be explained in further detail. 

FEATURES OF THE ESTIMATION PROCEDURE 

In computing cross sections we solved two problems: 
(1) for a given energy E we can directly determine the applicable data 
representation, (2) table-search operations can be reduced almost to direct 
addressing. With a wide and flexible choice of options for estimation similar 
problems come up and can be handled by similar techniques. The estimation 
routines, block E2 of diagram 1, analyze asynchronously the data subpool A4, 
i.e. a field of sample records related primarily to neutron flight paths. 
The information communicated by the random walk routines can be roughly 
classified as: 

(a) data used only in computational expressions, e.g. neutron weight, veloci
ty, cross sections etc., 

(b) data used partly for deciding, whether a neutron flight contributes to any 
estimate, i.e. the time coordinates of collisions and of the actual or virtual 
escapes etc. 

(c) data primarily serving for such decisions, i.e. the identifiers of spatial 
regions, energy intervals and isotopes in a region. 

At the start of a KAMCCO run, program block El processes all input related 
to estimation. For each type of estimate dynamically addressable, densely 
packed result fields are allocated for the accumulation of contributions to 



estimates, variances and covariances. Composite estimates are directly 
estimated and not only treated as an editing task. The addresses of these 
allocations are collected in address tables. All specifications for estima
tion are processed as a large number of extended tables which are either 
address tables or decision tables (containing the values 0,1). Both types are 
used, as one type requires more storage, the other more computing. These 
tabulations enable a fast decision regarding each estimate, as to whether a 
neutron flight with specified region and energy interval identifiers contrib
utes to that estimate. In the positive case, all addressing of the data to be 
processed in the data subpool AA or the result fields is performed through 
these pre-processed address tables. 

Decisions performed on time coordinates cannot be accelerated to a large 
extent, in some cases one logical decision can be used to skip subsequent 
neutron flight paths. As mentioned above, one may obtain the same group of 
estimates for several time intervals. Originally, we proceeded without any 
sophistication by multiply scanning the subpool A4 and multiple swapping of 
data between the result fields and a save area. Recently, multiple time 
interval estimation has been fully incorporated into the addressing and 
decision tables. As in this case the sample records in A4 are scanned only 
once, a significant acceleration of the estimation procedure is obtained, when 
2 or more time intervals are required. 

A special technique has been developed for estimating ratios of more elemen
tary estimates. Such ratios are needed for the analysis of experiments and 
for the determination of effective cross sections. MC estimates become 
problematic when denominator and numerator have significant statistical errors. 
Quite often, however, these quantities are positively correlated to some 
degree and their errors will cancel partly in the ratios formed. What we still 
need is an exact expression for the expected error of such ratios and a 
practical method to handle these quantities. The theoretical background of 
the estimation of ratios can be described as follows [7]: Two random variables 
X) and X2, estimated in the same random walk process, are assumed to be 
distributed according to the two-dimensional central limit theorem. Starting 
from this distribution the probability distribution of the ratio Z = X]/X2 
can be developed as: 

, 2 . 2 w 2 
f^(z) = K e^" '"^ • (e"" + 2 w / e''' dx) (3) 

o 

K, c and w are algebraic functions of z, dependent on 4 parameters, 

o./M , O-lM , M /M and p. M. , M. , a , a. and p are the expectation 

values, variances and the correlation coefficient of X] and X2. 
The most interesting feature of Eq. (3) regarding the estimation of Z is: 

Let z,, be the maximum of f (z) , and o,/M, << 1, a./M„ << 1. Then f (z) can be 
M o 1 1 / . : o 

approximated in a region about z^ which contributes essentially to / f (z)dz, 

by 

1 1 -(•^)^ 



M,/M^ and 2 P ^ * <.%' 
(5) 

in contrast to f„(z), the " o - - - - - - - f.^!> ^ ^^l^li^^ll^t^:^::^" 

oTelch hislrrro" h i r L " t re"Ldia:n°ariy%he L a n value of the cross 

t L m ? C ! which needs some more storage but a negUgeable amount of 

computer time. 

PERFORMANCE OF THE IMPLEMENTED SCHEME 

Obviously, many different criteria may be taken as a basis of Judgement 
on the performance of a proposed method. It is our belief, that in MC code 
development the following aspects are of special importance. A cho en tech
nique of programme linking and data handling must not impose a rigid frame of 
its own. The resulting restrictions may create difficulties, when a user-
supplied problem has an unexpected size, or with necessary new developments 
(eg. incorporation of better physics models, improved estimation procedures 
or new eigenvalue strategies). Our code is run on an IBM/370-168 with 
240-300 k bytes of storage, which is quite sufficient but could be expanded 
immediately. The implemented scheme has proved sufficiently flexible for code 
development and is virtually free of limitations of problem size. 
A second requirement is. that partial tasks of a MC job must not require dis
proportionate shares of the total computer time. With KAMCCO this concerns 
mainly the techniques for estimation and handling cross sections. Estimation 
time is highly problem-dependent, in practice we found 10 and 30 per cent as 
minimum and maximum values, which we think acceptable. 

The performance of cross section handling is best demonstrated by the follow
ing short selection of criticality calculations for reactors with different 
numbers of isotopes and differing neutron spectra. 

Reactor 

JEZEBEL 

POPSY 

SNEAK 3A1 

Multiplication kgff 

.9824 

.9691 

.9686 

Error 6k 

.0015 

.0063 

.0077 

Isotopes 

2 

4 

8 

Collisions 

360.000 

490,000 

310,000 

The data set used was a standard set for MC code testing without adaptations 
to improve k ff. Cross sections are computed after each collision, computa
tions at low energies are more complicated. For each job about 6 minutes of 
CPU-time was used. As the number of collisions processed is only moderately 
affected by the numbers of isotopes and type of spectrum, we may conclude 
that our scheme of representing nuclear data is, indeed, practicable and 
efficient. 
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DISCUSSION 

Steinberg: It is not clear to me how yo-\^°f "^'I'^^l ? l f i T t h f core, 
you have such a large number of Isotopes that the data won t fit in the 

Borgualdt: I don't understand your query. 

Steinberg: How do you handle a problem in which you have 20, 30. or 40 
isotopes and ?he total volume of the data Is such that the machine won t han
dle the entire energy range all at once for all the elements? 

Borgwaldt: We are handling the complete energy range, and so far we have 
gotten along with the storage that we have. If the storage is not «"«^"^"'' 
then we can easily expand the code to use twice the - ° - ' ' °'^^^'''^!\"'"^ ''̂ ^ 
amount that we have now for storing data. On the other hand, there are two 
comments worth making. I think that it is not wise, in such a code, to in-
elude minor Isotopes only for the sake of completeness: one can, m practical 
cases, reduce the number of Isotopes to, let us say, 10. Further, with our 
scheme, we can describe some Isotopes, in full detail, using only a few hun
dred full words because (in these cases) linearly fitting a curve works very 
nicely, works better than using a multigroup scheme. Other isotopes, for in
stance 238u or plutonium isotopes, of course use more data. But this flexible 
scheme of energy grids allows us to describe data with a low number of storage 
positions in one case and a large number when it is necessary. 

Kalos: I think that part of the problem here lies in the fact that you 
have the advantage over us in using the Karlsruhe data set, where we are at 
the mercies of ENDF/B, a library which Includes a great deal more data which 
we feel constrained to present in the computer. For example, the full des
cription of anisotropic elastic scattering Itself requires a very large amount 
of data for us when we go from a few electron volts to 16 MeV. I believe that 
your data are much sparser. 

Borgwaldt: No, I wouldn't say that. I think that the point is that if I 
perform a Monte Carlo calculation, I use a model; if I perform a computation 
in any multigroup scheme, I also use a model. We have at Karlsruhe, a 280-
group data set for multigroup calculations. Usually we take a 26-group set. 
I take the position that if I create a nuclear data set for Monte Carlo calcu
lations I will also compromise. I will not try to fit every minor deviation 
of the cross-section curve, but if the Monte Carlo data set has the quality 
of let us say a 40- or 60-group data set, then it will be sufficient for me. 
It is my personal point of view that I cannot put stronger demands on the data 
sets used for a Monte Carlo code than I would put on data used for a multigroup 
code. 

Gelbard: Is it true that part of the reason that you don't have such 
serious storage problems is that you construct the resonance cross sections at 
execution time? 

Borgwaldt: The resonance cross sections in the low-energy region (which 
range Is seldom used since we are primarily interested in fast neutron calcu
lations) are computed at execution time. Above the region of narrowly spaced 
resonances we use probability tables. 



Gelbard: So that if you were doing a Doppler calculation you would in 
that case be concerned with the resonance structure, and then would the 
Doppler actually broaden at execution time? 

Borgwaldt: Our probability tables also contain temperature dependence. 
Our code computes probability tables for different temperatures at specified 
energies and we can also use these tables for Doppler-broadened cross sections. 
Insofar as the single-level Breit-Wigner formula, the i() and x function forma
lism, is valid. 

Gelbard: But in the resolved range, below the unresolved resonance, you 
do use explicit resonance parameters? 

Borgwaldt: Yes. 

Gelbard: You do the Doppler broadening at run time? 

Borgwaldt: Yes. 

Gelbard: Is that a serious problem? When you Doppler broaden at run 
time, how much computer time is Involved? 

Borgwaldt: May I make another point here? Sometimes people make a sharp 
distinction between the unresolved resonance region and the resolved resonance 
region. I am prepared to use probability tables even in the resolved resonance 
region In situations where a neutron can jump over two or more resonances in a 
single collision. I don't stop using probability tables at the resolved reso
nance region; on the contrary, I try to use the probability tables as long as 
neutron physics, the collision physics, allows me to say that I am not con
cerned with what occurs In a single collision In a Monte Carlo but only with 
what occurs in the sample average. Does that answer your question? For in
stance, for 2̂ Û our probability tables start with 60 or 100 eV and in ̂ ^^U 
our probability tables start with 1 keV and not with 2 or 3 keV, a figure that 
would be based on the physical knowledge of the'resonance parameters. 

Moore: It is interesting that you used your code to check nuclear data 
and other methods of calculation. We have been unable to Interest reactor 
physics people In the United Kingdom in these aspects. I can only deduce from 
this that your variance reduction techniques are very good. The sort of prob
lems that our physics people are Interested in require a standard deviation In 
kgff of the order of 0.1%, and so far we have been unable to achieve this. 
Can you say something about your success in this field? 

Borgwaldt: Yes. Could I have Slide No. 8? We haven't been able to cre
ate enthusiasm among reactor physicists of the type you are thinking about, but 
at Karlsruhe we are doing certain experiments which can only be analyzed by 
Monte Carlo techniques. Here you see an iron cylinder which Is pulsed; it is a 
pulsed nonmultiplying system. An analysis is done for the time-dependent 
leakage spectra and one wants to deduce inelastic cross sections from such an 
experiment. We have a three-dimensional problem with time dependence and all 
other codes break down. 

Summary of Borgwaldt's remaining comments: Monte Carlo analysis of the 
pulsed cylinder suggested substantial modifications in the iron cross sections. 



and particularly in the inelastic cross sections. Agreement between computa
tional and experimental results was very much Improved after Introduction ot 
the adjusted cross-section sets. Borgwaldt commented that Monte Carlo can do 
much more than it is called upon to do by the average user. 

Moore: Can you give us some figures for the standard deviations you get 

on kgff for critical systems? 

Borgwaldt: In small critical systems like GODIVA and JEZEBEL, we get in 
6 min on our 370/168, a deviation of 0.2-0.25%. On even smaller systems we 
obtain an accuracy of 0.1-0.2%. For typical larger systems, like POPSY-TOPSY 
and SNEAK assemblies, we obtained 0.5-0.7% in 6 min. But, I think we can 
Improve on that by Improved source iteration techniques. 

Gelbard: I think probably that the laboratory that has the most experi
ence with the analysis of criticals by Monte Carlo is Bettls; now I don't 
know if Bob Gast would be willing to discuss this experience, but I would 
like to ask Bob what kind of running times are generally required to get the 
kind of accuracy they need, and what kind of usage they have made of Monte 
Carlo. 

Gast: Our experience has been rather gruesome and we have wound up 
spending many hundreds of hours on Monte Carlo runs. In my talk I would like 
to go Into more details about what our experience has been, but I can't give 
you specific running times. 

Borgwaldt: I might add that we are talking about fast-neutron calcula
tions and I think that the conditions with fast criticals are more favorable 
than those for thermal criticals, especially If you have low-absorption 
regions In your thermal criticals. Our codes have broken down completely in 
a case where we had a D2O reflector, I must admit; and I warn every user at 
our center when he tries to use our code on a thermal system. If you have a 
really thermal region with low absorption, then be careful. 

Gelbard: I thought it might be worthwhile coming back to this question 
of philosophy. I think that there are two different points of view, at least, 
about Monte Carlo usage. The point of view that I am familiar with is that, 
since you are going to regard the Monte Carlo code as a standard, you cut as 
few corners as possible. This means that you not only have to represent the 
resonances in some detail, but also that you represent the very complicated 
cross-section structure of materials like iron and aluminum In great detail. 
There are situations where you are concerned about the accuracy of a multi-
group scheme, and the function of the Monte Carlo code in such cases Is to 
check the accuracy. For example, there was one situation that we had at 
Argonne where neutrons left the core into an aluminum reflector, and then 
returned from the reflector into the core streaming through the windows in 
the cross sections of the aluminum. These windows had a strong influence on 
the core spectrum, causing large peaks in this spectrum. It was for this 
reason that it was very difficult to define multigroup cross-section sets. 
For this sort of a Monte Carlo calculation you need as detailed a structure 
as you can get; so there seems to be many different levels at which Monte 
Carlo codes operate, and sometimes you are forced Into a position where you 
want all the detail you can get. 



Borgwaldt: I agree with you. What we feel is that by using a linear in
terpolation you are really far better off than by using normal multigroup sets. 
I agree with you that you may come into a position where it does not pay any
more to do linear fitting, but where you have to use the real point cross sec
tions as they come from NEDF/B. But, just as In scjme situations you collapse 
neutron cross sections In a deterministic reactor computation, and in other 
cases you do not, you can also proceed in this fashion in Monte Carlo. You 
can create one data set which contains the iron or nickel data in great detail 
and so uses a large amount of storage, and you can reduce the representation 
of other data in which you are not so much interested, to some degree. We 
have not yet come to our upper limit. So far we have not had the problem that 
we have had to say to any user that we cannot represent his data. 

Hoogenboom: I have a question about the anisotropic scattering in your 
code. As I understood it, you define a Pmax ^^^ Pmin- Is it correct that you 
choose isotropic scattering angles between the two boundaries? 

Borgwaldt: Yes. In the center-of-mass system we find a scattering angle 
(by a rejection technique) which fits in with these Pmax ^^^ Mmin limits. The 
l̂ max ̂ ""̂  I'mln ^^^ part of the data set and are fixed in such a fashion that 
the sum divided by two Is the known average y in this energy region. The 
scattering takes place in a cone. We feel that for our applications so far 
this approximation has been adequate, and also this scheme is expandable. We 
have put it Into our code in a form so that if somebody really did come up 
with problems where anisotropy must be described in more detail, we can do so. 
So far nobody has come up with such a problem. 

Hoogenboom: I don't understand. No matter what kind of anisotropy you 
have, the p in the center-of-mass system always lies in the range from -1 to 
+1; you cannot exclude a certain range of y values. 

Kalos: Remember they are only trying to reproduce the average cosine of 
scattering in the center-of-mass system. That is the only datum about aniso
tropic scattering that they are trying to put irt. 

Moore: Oh, yes, I see. 

Borgwaldt: We give only a rough picture of the scattering. The true 
distribution of the scattering angle in the center-of-mass system is replaced 
by a rectangular distribution; and, if you have strong forward scattering, 
then perhaps the approximation that the cosine of the scattering angle, p lies 
between 0.7 and 1.0 is not so bad, particularly when detailed angular distri
bution data are unavailable. 

Gelbard: One reason that I asked this question is that I noticed that 
the IAEA has started some sort of benchmark activity and there is some sort 
of benchmark activity in the American Nuclear Society. It seems to me that 
it might be worthwhile at some point to have detailed benchmark output from 
different Monte Carlo codes. So far the only data that people have reported 
are eigenvalues for JEZEBEL and some other reactors. One could get much more 
detailed output from different codes which are supposed to be using the same 
cross sections, so as to compare cross-section treatments in different ranges. 
We have found it rather difficult to decide when we have a good enough repre
sentation of resonances to meet our needs, and we have only been able to make 
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this decision by comparing one code with another. So it seems to me that it 
would be a very good Idea to start some sort of cooperative benchmark activity. 

Borgwaldt: I agree with you. Unfortunately, we have the same sort of 
trouble at our own center. Our data are based on KEDAK because we need to use 
KEDAK processing codes. The multigroup data sets which are mostly used for 
our computations contain some secondary corrections, because people say that 
the KEDAK set cannot be taken as a standard since we know for sure that in 
some areas the cross sections must be corrected. So we even have trouble com
paring calculations performed with our own multigroup sets and our Monte Carlo 
data sets. 
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ABSTRACT 

The Monte Carlo code MONK is a general program written to 
provide a high degree of flexibility to the user. MONK is 
distinguished by its detailed representation of nuclear data in 
point form i.e. the cross-section is tabulated at specific energies 
instead of the more usual group representation. The nuclear data 
are unadjusted in the point form but recently the code has been 
modified to accept adjusted group data as used in fast and thermal 
reactor applications. 

The various geometrical handling capabilities and importance 
sampling techniques are described. 

In addition to the nuclear data aspects, the following 
features are also described; geometrical handling routines, 
tracking cycles, neutron source and output facilities. 

INTRODUCTION 

The Monte Carlo code MONK was originally written to replace the Monte 
Carlo code GEI'l £''\,2.J. GEI1 was primarily written to help in the assessment 
of criticality in chemical and metallurgical plant processing fissile 
materials and also the storage and transport of these materials. MONK not 
only will perform these tasks but also can perform calculations of interest 
to the reactor physicist. In criticality assessment work, 'boundary' tracking 
is quite often used, especially for problems involved in the transport of 
fissile materials, since this option enables interactions between several 
similar items to be calculated as a subsidiary calculation. Fission to 
fission tracking has been incorporated as an optional choice in MONK to 
enable the effective multiplication constant, keffi to be calculated directly 
from the number of neutrons in successive.generations. 

MONK, in common with most Monte Carlo codes, is in principle capable of 
dealing with any geometrical arrangement. A description is given of the 
standard geometry types available which enable most systems to be reduced to 

24 



some idealised system. When complex geometries, not amenable to description 
by the basic types arise, the concept of 'hole routines' enables this to be 
done. In cases where an existing hole routine will not give adequate 
description it is a relatively simple matter to add further 'hole routine' 
modules, but because of the large choice available this is hardly ever 
necessary. 

MONK is distinguished by its detailed representation of nuclear data. 
The total cross-section used in MONK is in the form of point data i.e., the 
cross-section is tabulated at specific energies instead of the more usual 
group representation. Linear interpolation is done between cross—section 
values enabling lethargy to be carried as a continuous variable in the 
calculation. A particular reaction is calculated by sampling the ratio of 
the partial cross-section to the total cross-section; this ratio is stored in a 
subsidiary group structure. The basic source of the nuclear data is the UK 
nuclear data library which covers the range from thermal energies up to 
10 MeV. The nuclear data used in the point version is unadjusted, but 
recently the code has been modified to accept adjusted data as used in fast 
reactor calculations viz. FD5, and data used for thermal reactors viz. WIMS. 

NUCLEAR DATA 

The calculation of the distance that a neutron will travel in a material 
is found by sampling an exponential probability distribution; thus if P(x) 
is the probability of a neutron travelling at least a distance x in an 
infinite homogeneous medium of macroscopic total cross-section 2 then: 

P(x) = exp (-Sx) (1) 

This equation is used to associate a given distance x with a random number Z 
by equating Z to P(x). HONK uses equation (l) to determine the next 
collision point. Thus it is necessary to calculate ^ for each medium from 
the compositions and nuclear cross—sections. 

Point Nuclear Data 

In the version of MONK which uses point data the basic source of data is 
the UK nuclear data library /^3i4_7' I" '"̂ s data library cross-sections and 
energies are given in pairs such that linear interpolation on a log—log scale 
introduces acceptably small errors. MONK determines the interval in which 
the incident neutron energy lies and calculates the microscopic cross-
section from equation (2): 

log cr = A log E + B (2) 

where a is the microscopic total cross-section and E the incident neutron 
energy. The quantities A and B are determined by a data preparation program, 
FOND /"5_7 f°r each energy interval. Thus the total cross-section is as 
accurate as the main data library. 

Since nuclides are often common to several materials, the microscopic 
cross-section is saved, so that if it is required in another material, at the 
same neutron energy, it is immediately available. This saves the time taken 
to identify the energy interval and to compute the value of the cross—section. 
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In order to do this it is also necessary to save the neutron energy to compare 
with the incident neutron energy for the next time that the total cross-
section is needed for that nuclide. 

Types of collision and their determination 

liThen it has been determined that a collision has occurred with a partic
ular type of nucleus it is necessary to determine the type of collision m 
order to determine the parameters of motion for any secondary neutrons. 

MONK recognises six basic types of collision which are; 

(i) elastic scatter 
(ii) absorption 
(iii) fission 
(iv) (n,n') or inelastic scatter 
(v) (n,2n) reaction 
(vi) (n,3n) reaction 

The data library gives cross-sections for these reactions at the same 
energy points and in the same manner as for the total cross-section. The 
probability of a particular reaction is identified by sampling the ratio of 
partial cross-section to total cross—section. 

The data preparation program POND produces a subsidiary group structure 
for each nuclide. These are broad groups and the probability of each reaction 
is constant within the group. The choice of group boundaries is optimised by 
a group reduction technique for each nuclide but each will be one of the 
energy points given in the original data file. This means that when the 
interval in the total cross—section curve has been found the broad energy 
group interval is uniquely determined. The probabilities are sampled in the 
order in which the basic collisions have been defined. 

It should be mentioned that although group constants are used for the 
partial cross-sections and point cross-sections for the total cross-section; 
the group constants used are those for the probability of the separate 
reactions. This implies that the partial cross-section varies as a constant 
fraction of the total cross-section for that group and is therefore not 
constant in a group in the usual way. 

Group reduction process 

The aim of the group reduction process is to find a good representation 
of the different probabilities using step functions. Given the number of 
steps to be used over a given range, POND will obtain the best set of 
boundaries and the value of the probability in each group. 

This is achieved by discarding a single point at a time from the mesh 
used for the total cross-section curve. An average value of each probability 
IS calculated for each interval and at every energy point the reaction with 
the largest weight change is found. The point with the smallest of these 
maximum changes is now discarded and a new group is formed from the groups on 
either side of the point with recomputed average probabilities. A means is 
provided whereby certain energy points may not be removed. 



In this section the suffix k refers to quantities associated with energy 
points and the suffix j refers to reaction types. There are NT energy points 
and A actions. 

Each cross-section at every point is converted to a probability using 
the sum of the partial cross—sections 

o , 
Pĵ . = - ^ for k = 1, NT and j = 1, A (3) 
"̂  k 

where V"' 

\ - L\j (4) 
J 

When the data file is consistent, "k is equal to the total cross-section. The 
probabilities at each point are now replaced by a set of group probabilities 
in the (NT-1) intervals, as follows: 

'k-1.j = "''"' \ y ^ ' \ ''"^ ^'°" k = 2, NT and j = 1, A) (5) 

where Wĵ  is an energy weighting function. Pj;; j is a quantity referring to 
the interval above the energy point Ek;. The function W is constant, up to the 
peak of the fission spectrum, and above this energy follows the Rosen-Cranberg 
fission spectrum. 

In addition to an energy weighting, each reaction type is assigned an 
importance Wj such that Wj is zero when neutrons are neither gained nor lost, 
unity when one neutron is either lost or gained, two if two neutrons are 
gained in an (n,3n) reaction and " for a fission. 

The variation of probabilities from interval to interval, taking into 
account the reaction weighting, is incorporated*in the quantities 

"̂ k.j = "j |Pk,j - Pk-1,j I ^'°- ^ - 2. NT-1 and j = 1, A) (6) 

At every point the maximum value of q, . is used to obtain the function 

Q^ = Wĵ  majc (q̂ ^ .) (for k = 2, NT-1) (7) 

where Q, is the maximum weighted variation between the two intervals about the 
energy point E, . 

The procedure is to discard the energy point, Eĵ ., with the smallest value 
of Q and form a single interval from the two intervals which meet at that 
point. This is done by preserving the weighted area under a graph of proba
bility step function against lethargy. The probabilities for each interval 
are weighted by the mean of the weights at its end points. 

The weighted area under two intervals of the graph S, is given by 
ecjuation (8) 

2S,, = (W, , + W, )P, , . (U^ - a J + (W, + W, ,)P, . (U, . - U, ) (8) k ^ k-1 k' k-1, J '' k k-l' ^ k k+V k,j ^ k+1 k' ^ ' 



A new value, Pj j is chosen for the interval hetween Uk_i and U^+i which 

would preserve S^ ^^ ^k -j* Thus, 

( V . - V V i , i ( " k - \ y - ^\ - "k.i)^k..("k.i - "k) 
"k.j = —(Wk_i - vlK - "k-i^ * "̂k - "k+i^^\.i - k̂̂  

A value of Pj -: is computed for each reaction, the energy point at U^ is 
eliminated and the'quantities q and Q are recomputed for the points at Ufc-i 
and Uk+1. The process is repeated until the number of group intervals has 
been reduced to a specified number. It can be arranged that certain energy 
points may never be removed and this will always apply at natural threshold 
energies and any range boundaries. 

Number of secondary neutrons 

The number of neutrons emerging from a collision is automatically 
determined when the collision is elastic scatter, absorption, (n,n ), (n,2n) 
or an (n,3n) reaction. At a fission, however, the number of secondaries is 
a function of the incident neutron energy. This function is described in the 
data library by the mean number of neutrons per fission, ̂ ŝtoch is presented 
in the data library in a similar manner to cross-section, except that, 
generally, fewer points are used and interpolation is linear for V against 
energy. The number of secondary neutrons released in a fission, is an 
integral random variable whose expectation is equal to 17. 

Anisotropic calculation of emergent direction cosines 

If (1, m, n) and (l', m', n') are the incident and emergent direction 
cosines of the neutron respectively, </> the angle of scatter (obtained from 
collision theory) in the laboratory system of co-ordinates and * the 
azimuthal angle which is random in the range (0,2Tr) then for anisotropic 
scattering in the laboratory system 

fl'l ll\ (^\ l-nl \ 
sin 4' sin * 

I + / -nm V (10) 

2 2 
for n <r 0.9999. When n > O.9999 a degenerate formula is used: 

II'l ^sin cf, cos *| 

m' V = •( sin cf sin * ? (II) 

n'j ( n* cos ĉ  } 
where n* = + 1 according as n ̂ ^ + 1. 

Isotropic calculation of emergent direction cosines 

When the angular distribution is isotropic in the laboratory system, the 
direction cosines (1', m', n') are independent of (1, m, n ) . In this case 
(1', m', n') are computed from equation (11) with n« = 1 and the angle if> is 
sampled from a cosine distribution so that 
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oos <fi = 2z-1 (12) 

where z is a random number in the range (0,1). Because cf lies in the rsinge 
(0,7r), sin <t> can be found uniquely. 

Determination of azimuthal angle 

In the preceding equations ^ is a random angle in the range (0,2f) and 
appears in the form as sin + and cos +. In order to save computing time the 
following algorithm is used instead of direct calculation of * followed by 
taking its cosine and sine. 

If zi, Zg are random numbers, let 5 = 2z-) - 1 and f) = zgi then 5 will be 
random in the range (-1, +1) and rj random in the range (0,1). 

Let cos * = % ""- , sin * = - ^ ^ (13) 

where 10 * 5 +1 * 1.0, then it can be shown that * occurs with equal 
probability. 

Dependence of emergent energy upon scatter ajigle 

At elastic scatter collisions and when a discrete energy level is excited 
in an (n,n') reaction, the standard kinetic equations may be used. The 
following equations are used to calculate the scatter angle cf in the 
laboratory system from the scatter angle 9 in the centre of mass system and 
the emergent energy E' in terms of the incident energy E. 

2 
1 -I- 2B cos 9 + B 

(1+A)2 
(14) 

J . 1 + B cos S , , 
and cos cf = , (15) 

y/| + 2B cos e + B 

where B^ = A^ + '̂ ^̂ "̂ ^ ̂  and B > 0 (l6) 

where Q is the 'Q value' of the reaction, A is the ratio of the mass of the 
nucleus to that of a neutron. 

Note that for elastic scatter, Q = 0 so that B = A and the equations 
simplify to a familiar form. 

2 
The condition B * 0 leads to the threshold condition 

An approximate form may be used when A » 1, because 
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B^ - A^ (1 + |) (18) 

giving that 

E' ^ E + Q (19) 

and cos 4' "̂ ^ cos 6 (20; 

Determination of scatter angles 

The angle through which a neutron is scattered at a collision is a 
function of the incident neutron energy and the type of collision nucleus. 
The angle of scatter is obtained by sampling a statistical angular distribu
tion given in the nuclear data library as a frequency curve of probability 
against ^i, the cosine of the scatter angle. 

Distributions are sometimes given for particular energies with an implied 
interpolation, or over energy ranges. The data preparation program POND 
converts pointwise distributions to rangewise distributions. 

Since the scatter angle data is given in the form of a probability 
distribution, to simulate this the standard statistical approach is to sample 
from a cumulative probability distribution. The probability of a neutron 
being scattered through an angle cos~1p is pd^ so that in general it is 
necessary to solve the following equation for /j, 

.+1 
/ pd/J = z / pd;j (21) 

This is not a very convenient form for a Monte Carlo program so that unless 
an analytical solution is possible special technicjues are adopted. 

When the distribution is isotropic, the solution is simple, because p{^) 
is constant and one obtains, 

/. = 2z-1 (22) 

When a distribution is anisotropic the program uses two techniques. The 
first technique is the discrete scatter angle approximation. POND produces 
32 "equiprobable angles". At a scatter, the integral part of (l + 32z) is 
used to identify the appropriate angle. The angles P. are obtained as 
solutions of equation (21) for 

î = 'W' fô ' i = 1. 32 (23) 

This technique is fast but needs a lot of computer storage. It is used 
for anisotropic scatters for the (n,n'), (n,2n), (n,3n) reactions which are 
relatively few. 

The second technique evaluates P as a cubic polynomial in z. 32 equi
probable angles are obtained as before and m is now considered as a function 
01 Zi. A cubic polynomial is fitted through the 32 points to obtain the 



coefficients of 

2 3 
a + bz + CZ + dz (24) 

This technique allows ^ to be continuous and recjuires less machine storage. 
It is used for elastic scatter. 

Calculation of secondary energies 

When it is not possible to use the standsird kinetic equations, the 
emergent neutron energy cannot be calculated from the scatter angle. The 
nuclear data library provides secondary energy laws in these instances as 
follows; 

1. E ' = E^ (25) 

the neutron is emitted with a fixed energy, E, 

2. E' = k(E-E^) (26) 

the neutron is emitted with a fraction of the incident energy reduced 
by a discrete energy loss E, 

3. E , is obtained from a probability distribution which is independent 
of E 

4. E', is obtained from a probability distribution dependent on E 

5« E', is obtained from a probability distribution dependent on E, and 
E'/VE 

6. E , is obtained from a probability distribution dependent on E, and 

E'/E 

7. E, is obtained from an evaporation spectrum given by 

q(x) = ax exp (- xVa) (2?) 
where x = E'//E" (28) 

Secondary energy laws hold over specified ranges and in any range one neutron 
may have any combination of these laws with an associated probability. 

Laws 3i 4i 5 and 6 are represented in the data library as arguments of 
X which are E', E', E'/VE and E'/E respectively against a probability function 
q(x). As with scatter aĵ gles this is not very convenient since one must 
solve the equation 

A q(x)dx = z / q(x)dx (29) 

Except in the case of equation (27). equation (29) does not give an 
analytical solution. To overcome this, the program uses the discrete 
argument method and produces 64 values of X^ corresponding to 
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Z. 
1 

^ (fori = 1, 64) (30) 

and the integral part of (l + 64z) is used to identify the value of X which 

is chosen. 

Fission spectrum 

The fission spectrum used by the program is common for all the fissile 

isotopes and incident energies. It is the Rosen-Cranberg fission spectrum. 

f(E)dE = 0.4527 exp (- E/O.965) slnh (V2T29E)dE (31) 

Although equation (31) does have an analytic solution involving two error 

functions, the discrete argument method is again used because of its smaller 

computation time. 

Thermal data 

Part of the input data to the program POND requires the specification of 
two energies, Emin and E^ax' POND then processes the nuclear data library 
only between these energies. MONK uses the static nucleus model for colli
sions between E^in and Ê gjc on the assumption that the kinetic energy of the 
nuclei of the medium between these limits is negligible compared with the _ 
kinetic energy of the neutron. The current values of Emin ^^'^ ^ a x ^^^ l'̂  
MeV and 10 MeV respectively. Neutrons below 10~7 MeV are assumed to neither 
gain nor lose energy in a collision and all scattering is isotropic in the 
laboratory system. Neutrons may also be absorbed or cause fission in the 
thermal region. Group constants are associated with this single energy 
group and are based on cross-sections averaged over a Maxwellian energy 
spectrum. Since inelastic scattering is not allowed, molecular binding 
effects are ignored. 

The thermal constants are part of the input data to the processing 
program POND are therefore presented to MONK together with the data above 
10~' MeV. An option exists in the input specification of MONK of overwriting 
the thermal constants provided by POND by inserting the control word THDATA 
followed by the appropriate constants. 

Resonance cross—section data 

If resonances are present in the nuclear data library these are fully 
tabulated in the total cross-section. In the unresolved resonance region 
MONK merely takes the unresolved cross-section data without any further 
additions. 

Accuracy of HONK calculations using point nuclear data 

Calculations have been done with MONK on a wide range of critical systems. 
The calculation of k-effective for various hydrogen to fissile ratios has 
shown some definite trends. It appears that k-effective is undei^predicted by 
about 5^ in the under-moderated region, over-predicted by 55; in the region of 
optimum moderation. These accuracies are typical for unadjusted data and 
although this accuracy is probably good enough for criticality clearance work 



it certainly would not be good enough for reaotor physics applications. 

The main use of MONK in the past has been in criticality clearance work 
where a versatile general code has been necessary in order to treat the 
diversity of problems found in chemical plant and transport problems. The 
use of point data covering a very wide range of problems, has, to date, been 
found preferable to the use of adjusted group data, although the accuracy is 
inferior. The advantages of point data are that it does not require a 
fundamental mode calculation to produce the data and secondly there is no 
need to calculate resonance self-shielding as a special exercise as this is 
automatically accounted for, if the resonance shape is present in the original 
data library. 

GROUP NUCLEAR DATA 

As mentioned ahove, point nuclear data is based on the nuclear data 
library which contains so called unadjusted nuclear data. A considerable 
expertise has arisen in the field of reactor physics known as 'nuclear data 
adjustment studies' / 6_/. In this, the aim is to adjust the library data or 
some condensed form of it in order to improve agreement between integral 
experiments and calculations done using either Diffusion Theory or Transport 
Theory. In the UK this has given rise to FD5, /~7_7 'tbe 37 group data for 
fast reactor calculations and the nuclear* data associated with the computational 
scheme known generally as WIMS /^8_/ £ 9_7* ^'^ has become clear that if 
Monte Carlo codes are to be used in reactor physics work then in the first 
instance they must use nuclear data which is in common use in these fields. 
It was for this reason, and the fact that group data could give better 
representation in the unresolved resonance region and thermal region that 
MONK has been modified to accept FD5 and WIMS data. The version of MONK using 
group data is known as MONKO. 

MONKG Using FD5 Data , 

In MONKG the input data is the same as for HONK except the nuclear data 
section. The nuclear data is provided by a fundamental mode calculation 
using MURAL, a collision probability code /~10_7- The PI)5 37 group data was 
obtained from the 2000 group library PGL5 by condensation using the funda
mental mode spectrum. At present the nuclear data is read from punched cards 
but may be written to magnetic tape by MONKG by inserting the word WRITE, 
subsequent runs can then read the nuclear data from tape. In contrast to the 
point data, the group data is in the form of macroscopic cross-sections. 
Previously a limit was imposed on the number of downscatter groups but this 
has been removed in the present version. The lowest energy bound for each 
group in turn is read in the input data followed by the fission spectrum for 
each group. In MONKG only isotropic scattering is possible, this is compensa^ 
ted in the usual way by using the transport cross-section Z. where 

,^^ ._ Z^.HZ^ (32) 

where 2 is the total cross-section and ^' the average cosine of the 
laboratory scattering angle. 
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The s c a t t e r within a group i s not given e x p l i c i t l y and i s t h e r e f o r e 
ca l cu l a t ed from NS ^ 

^ s s c ( ^ ) = ^ t r - f w ^ ) * 'f^'^ * £ ^ d s ^ ^ ' ' ^ ' ^ ^''^ 
<- J+1 -• 

where 

2 f I ) = se l f s c a t t e r c r o s s - s e c t i o n in group I 
ssc ^ ' 
T. ( I ) = capture c r o s s - s e c t i o n in group I 

cap^ ' 

2 , ( I , I+J) = downscatter c r o s s - s e c t i o n from group I to group ( l + J ) 
ds^ ' 

NS = downscatter groups 

The term in square b racke t s in equat ion (33) i s r e f e r r e d 
to as the 'removal c r o s s - s e c t i o n ' 2) . 

rem 
At present no upscatters are allowed in this version of MONKG and none of the 
input cross-sections may be negative. 

The number of neutrons per fission is calculated from i'Lf(l)/2f(I) since 
V is not given explicitly for each group. 

MONKG Using WIMS Data 

The data format produced by the WIMS scheme is different from that of 
FD5. In this case the number of upscatters need not be zero. The total 
cross-section is obtained by summing the partial cross-sections 

NG 

^(I) = ^ap(l)*^f(^)- y ^SC(^' J) (34) 

where ̂ sc(I. J) is the scatter cross-section from group I to J. The removal 
cross—section in this case is 

2^(1) = S^(l) -2^(1, I) (35) 

In the WIMS output 2s(l, l) is adjusted so that 

Ztr(l) = ^(I) (36) 

which sometimes causes 23(1. I) to become negative, and 2_(i)> 2 + (i) so that 
the MONKG reduces Ẑ .(l) so that 

2^(1) - S^{1) (37) 

Determination of reactions in MONKG 

The scheme for the calculation of reactions in MONK using PD5 and WIMS 
data is as follows: 
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V 2 (i) ^ 3 

Ew(^)-E 
^r-

2dsc(^) *^r 

i -usc^^) ^ T ^ d s c ( ^ ) ^. ^f ., ^ .. ^ s 

USCAT(i) DSCAT(j) PISS REM 

where 2 = upscatter cross-section 
use 
2, = downscatter cross-section 
dsc 
2_ = fission cross-section 

2 = absorbtion cross-section 
a 

2 = self scatter cross-section 
ss 
2 = capture cross-section 

2 = removal cross-section r 
i = number of upscatter groups , 

j = number of downscatter groups 

and USCAT, DSCAT, FISS, REM represent the cumulative probabilities, obtained 
by dividing the appropriate cross-sections by the total cross-section. 

A number RN between 0.0 and 1.0 is chosen randomly and the reaction 
determined by the following algorithm: 
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SELF SCATTER 

YES FISSION 

NO 

CAPTURE 

^ DOWNSCATTER 

N0>' 

UPSCATTER 

Sampling in this way is obviously the most eff ic ient . 



Experience with MONKG 

MONKG using WIMS data has teen tested for a few simple cases and appears 
to be working satisfactorily; no comparisons, however, have been done with 
MONK using point data. MONKG using FD5 has been compared with MONK using 
point data,and MURAL using PGL5 the 2000 group data set from which FD5 is 
derived, for four ZEBRA /~11_7 cores. The results are shown in Table I. 

It can be seen that the agreement between the methods is very good in 
view of the fact the standard deviation is as large as 2Jo in some cases. It 
is interesting to note that the calculations for MONK and MONKG were allowed 
for the same computing time and MONKG has about half the standard deviation of 
MONK. It was found that in fact MONKG was four times faster than MONK. The 
heavy penalty to be paid for the greater degree of sophistication in the 
nuclear data in MONK is obvious, with apparently no significant improvement 
in accuracy. 

GEOMETRY 

Basic Geometry 

The geometry routines in MONK permit complicated geometrical configura
tions to be treated. Despite this the input remains simple and often it is 
possible to specify a system in a number of ways. Care has to be taken 
however in the choice of options, as the efficiency of calculation varies with 
the particular route chosen in the program. 

The basic geometry of the system is described by a combination of "TYPES". 
TYPES may touch or be completely enveloped by another TYPE but may not 
intersect: in some cases a TYPE may have inner "REGION" boundaries which 
separate different materials or further geometrical detail. Each REGION may 
have one of the following basic shapes; sphere, cuboid, or a cylinder. The 
basic TYPES are as follows; 

1. A NEST is a set of regions, each successive one entirely enclosing the 
previous region. 

2. A CLUSTER consists of exclusive REGIONS not enclosing each other but 
contained in an outer surface. 

3. An ARRAY is a three dimensional array of cuboidal TYPES which may be 
different in size and shape subject to the limitation that the entire 
array is specified everywhere as a series of TYPES. 

4. SAME - This type will repeat a previously defined TYPE in a different 
geometrical position. 

5. LIKE - This type will repeat a previously defined TYPE except that the 
contents of the REGIONS will be different. 

Each type has its own origin and frame of co-ordinates, and in addition there 
is the facility for changing the origin of a REGION with respect to the TYPE 
origin. Provided the linkage between TYPES is specified in the data, MONK 
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not specify the co-ordinates of the type origm v, f 
TYPE. 

Hole Routines 

In the basic geometrical TYPES described so far, the REGIONS may contain 
either another type or a single material. If this is insufficient it may be 
necessary to have more detailed representation of the geometry supplied by a 
'HOLE routine'. HOLE routines will describe systems containing non-standard 
shapes e.g. hemispheres, cones, rings, intersecting cylinders or arrays of 
rods not suitable for ARRAY specification. A HOLE may in principle contain 
any number of objects of any shape, several such routines are available in 
MONK and others can easily be added as sub-routines. 

In the normal type of tracking in a single material, the mean free path 
is calculated as the reciprocal of the macroscopic total cross-section and is 
used to calculate a random path. If this path, taken in the direction of 
motion of the neutron, crosses a region boundary, the neutron is moved along 
its line of motion just as far as the houndary and a new mean free path is 
taken in the next region. If the neutron does not reach a boundary, it is 
moved along the whole random path and is then assumed to have a collision in 
that material, which will give rise to some appropriate action. 

When a neutron is in a region containing a HOLE, the mean free path is 
always taken to be that corresponding to the material in the region with the 
largest total cross-section, 2 , when a collision point is determined, a sub
routine called a HOLE routine is called upon to decide which material is 
present at that particular point, 2i. If the material at the point has 
cross-section 2, then a collision occurs. If 2i is less than 2 then the 
program decides whether a true collision has occurred by comparing ^i/2 and 
1 - (2i/2) with a random number, z. If z > 2i/2 the neutron continues on the 
same path with no change in energy. 

In general provided that 2 S 2 i it can be shown that the correct distri
bution of collision density is obtained. The effect of this is to make a 
region containing a number of materials typified by a single mean free path 
for tracking purposes. Thus the tracking in HOLE routines is simpler since a 
calculation of boundary crossings has been replaced by the testing of 
inequalities. 

The development which has taken place in this context has been the 
facility of replacing materials in HOLE routines by further HOLE routines and 
the process can be continued as often as required. In this way effectively 
all geometrical restrictions are removed from the program. A further refine
ment in HOLE tracking is associated with an attempt to remove one of the 
disadvantages. In a region containing a HOLE, the neutron tracking proceeds 
in steps of average length equal to the shortest mean free path appropriate 
to any material declared as present. If a material with a high cross-section 
is present in only a small volume of the region, the tracking steps are short 
over the whole region and consequently tracking is slow. In some cases this 
handicap can be overcome by isolating these materials and respecifying the 
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Ax + By + Cz 

Ax + By + Cz 

= ^1 

= "2 

HOLE routines, when this is not feasible an option exists in MONK to include 
the material between two planes expressed as 

(38) 

(39) 

in the co-ordinates appropriate to the region. Tracking then proceeds ignoring 
the materials occurring solely in the specified zone except when the track so 
calculated crosses that zone when reversion is made to the normal method. 

IMPORTANCE SAMPLING 

A 'PILTER' provides a simple form of importance sampling and the position 
and operation is optional to the user. 

PiIters 

A PILTER can be used on any region boundary in a system and is typified 
by its power and the direction in which it is acting. Thus, when the power of 
a PILTER is N, only every N-th neutron moving outwards across the PILTER 
boundary is tracked; when a neutron returns to this boundary it will be taken 
N times. The N neutrons will have identical 00-ordinates on entering the 
inner region but their tracks will diverge after one collision each. 

NEUTRON SOURCES 

A neutron source is used to begin the first stage or cycle of any 
calculation; in normal use the source neutrons are chosen at random from the 
fission spectrimi. In other applications a source of specified spectrum and 
angular distribution may be used to start every stage or in some cases the 
first stage or any stage which becomes extinct. 

Type of Source 

The source may be defined in terms of geometrical shape, energy and 
direction. 

Geometry 

The source may be placed at any specified point, line, surface or 
distributed throughout a volume. In the case of a surface source, the surface 
may be that of any sphere, cylinder or cuboid or any particular face of a 
cylinder or cuboid. 

Energy spectrum 

The source energy distribution may be sampled from a fission spectrum or 
a set of energies defining ecjuiprobable ranges. 
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Direction 

The source neutrons can be isotropically distributed in direction, in a 
fixed direcUon or within given ranges of the direction cosines. 

Magnetic tape and punched card options 

An option exists in MONK for writing the neutron co-ordinates, energy, 
and direction cosines on to magnetic tape when neutrons cross a ̂ P^cified 
boundary; this tape can subsequently be used as a source <̂f neutrons. In 
addition at the end of a calculation, 'continuation cards' may be punched. 
These cards contain all the necessary information concerning neutron oo-
ordinates and boundary crossings to enable the previous run to be extended 
without any discontinuity. In this case a source of neutrons is not required 
to re-commence the calculation. 

NEUTRON TRACKING 

In MONK there are two types of tracking available and are known as "fis
sion to fission" and "boundary" tracking. 

In "fission to fission" tracking, the tracking cycle or stage is defined 
as that between one fission generation and the next. In "boundary tracking" 
the tracking cycle is defined by tracking neutrons which begin and end on a 
specified boundary. 

Pission to Pission Tracking 

Fission tracking enables aji estimate of the multiplication constant kgff 
to be made from the ratio of successive generations of neutrons. 

^i = / N^+i(x)d^/ / Ni(x)dx (40) 

•fe R 
where x is a multidimensional vector in phase space, composed of geometrical 
and energy vectors. When sufficient cycles have been sampled the fundamental 
mode will be reached and 

lim k̂  = kg^j (41) 
i-'co 

If kgff is less or greater than unity the population either decreases or 
increases, in this situation MONK adjusts the neutron population at each stage 
so that a constant number of neutrons is tracked each time. 

In addition to this, HONK also estimates keff from the probability of a 
fission occurring at every collision. Since every collision makes some 
contribution, one might expect this estimate to be better, statistically. 
Analysis of various calculations to date has shown that both estimates appear 
to be statistically independent and within one standard deviation of each 
other. It would seem that the best estimate of kgff would be obtained by 
averaging the two estimates. 
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Boundary Tracking 

The techniques of boundary tracking have been described elsewhere /~1|2_7 
so only a brief summary will be given here. The usual procedure is to 
enclose the fissile material by a boundary which is then used for the purposes 
of establishing the tracking cycle. The system is then divided into a "core" 
containing the fissile material and a "reflector" containing no fissile 
material. 

If it is assumed that a settled distribution of neutrons has been 
achieved, then one neutron crossing the bomidary into the core will on 
average produce M neutrons that return to the boundary, and if a neutron 
crossing the boundary into the reflector results, on average, in R neutrons 
returning, then the (juantity MR is a measure of criticality. The system is 
supercritical, critical or subcritical according to whether MR is greater 
than, equal to or less than unity. 

Neutron interaction between fissile units in an array 

A problem commonly met in criticality work is the assessment of the 
criticality of an array of different interacting units. In principle a Monte 
Carlo code could estimate the criticality of such a system by tracking 
neutrons in the normal way. In large arrays the tracking time can be 
prohibitive. The alternative is to use a method referred to generally as the 
interacticn parameter method / 12_/. 

Let P. = number of neutrons leaving ith element of the array 

P. . = probability of a neutron leaving the jth element reaching the 
ith element without interacting with any other element of the 
array 

M. . = surface multiplication of the ith, element of the array to 
neutrons reaching it directly from the jth element of the 
array 

The cjuantity 

Q. . = M. . P. . (42) 
ij ij iJ 

is known as the interaction parameter between elements i and j. 

The steady state ecjuations for the neutron fluxes axe 

F. = ) M. . P. . P. (i=1,n) (43) 

J=1 
The criticality condition is then that the largest eigen value of the matrix 
equation 

shall be equal to unity. 
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The Monte Carlo method is a suitable ^"-^°f,°^--^:f^^tHriti^iiiS^^f 

r a r r r ^ " " ^ " - :rrONTknl"a^ BLAC^MONK has been written which 

c-ai:ur:j;sthrcollision probabilities 

?hr::uifi:n ;ro^riir^:frL"s1h^'multipued by the surface multiplica-

tions and equation (44) is solved for A. 

In the case of an interacting array of identical units, MONK will auto
matically calculate the number of unit lattice cells which form a o"tioal 
assembly from the results of a calculation relating to one unit cell. This is 
made possible since all that is required are the numbers of neutrons entering 
and leaving each face of the unit cell and these are stored during the 
boundary tracking. This method is known as the PQR method /I 12_/. 

PROGRAM OUTPUT 

The options have already been mentioned whereby information may be 
transferred to magnetic tape or punched card, normally for use in re
commencing calculations. The printed output gives a complete edited output 
of all the input data, an edit of all the collisions at each stage and a final 
edit on completion of the calculations. The final edit contains information 
on all the different nuclear interactions which have occurred and region 
crossings for every type. The quantities keff, M and R are also printed and 
their standard deviations. 

Neutron fluxes, defined as the total track length per unit volume, are 
calculated in every region of the system in the full energy spectrum but are 
finally condensed to sixteen energy groups. Reaction rates may also be 
obtained by specifying a nuclide with a negative concentration in the input 
data. The reaction rates are calculated as they occur in the calculation and 
are available in the detailed energy spectrum. 

CHECKING FACILITIES 

A comprehensive set of checks are built into MONK which are in operation 
during input and initialisation and a few which occiir during the calculation. 
However the program may not necessarily fail when an erroneous specification 
is given. To overcome this difficulty the options in MONK known as SCAN and 
PERCY have been devised. These are particularly useful when the geometry is 
complex. 

The Option SCAN 

The option SCAN was written to check the geometrical arrangement of the 
materials and will print out material numbers to give a two dimensional 
picture of a plane section through the system. The plane can be at any angle 
to the co-ordinate axes. SCAN uses the tracking routines of MONK to follow 
paths through the system with a predetermined step length. The material 
number is printed according to a prespecified code of symbols. The tracking 
procedure scans a line at a time, at the end of each line the path is turned 
to take it to the next line. It is then turned again so that it is parallel 
to the original path. The scanning continues back and forth until the picture 
is complete. 
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The Option PERCY 

In complicated geometries it is difficult to estimate the amount of a 
given material in region containing a hole routine. The option PERCY generates 
points at random evaluating the material number at each point. A prespecified 
number of points are sampled and the percentage of each material in the region 
calculated. 

ACKNOWLEDGMENTS 

The author would like to thank Mr. P, J. Hemmings who wrote the first 
version of MONK, Mr. J. J. Cruickshank and Mr. A. Brickstock who removed many 
of the errors in the code and finally Mr. E. R. Woodcock and other colleagues 
in the UKAEA for many helpful discussions. 

REFERENCES 

1. P. J. HEMMINGS, "The GEM Code", AHSB(S)R105 (I967). 

2. T. C. LONGWORTH, "The GEM4 Code", AHSB(S)R146 (I968). 

3. D. S. NORTON, "The UKAEA Nuclear Data Library", AEEW-M828 (1968). 

4. A. L. POPE and J. S. STORY, "Minigal Output from UK Nuclear Data Library -
NDLI (1973) Thermal Cross-sections, Resonance Integrals and Fission 
Spectrum Averages", AEEW-MI191. 

5. P. J. HEMMINGS, "Use of the UK Nuclear Data Library in the Monte Carlo 
Code MONK", AHSB(S)Rl84 (1970). 

6. C. G. CAMPBELL and J. L. ROWLANDS, "The Relationship of Microscopic and 
Integral Data", IAEA International Conference on Nuclear Data for Reactors 
IAEA-CN-26/116, Helsinki, Finland (June 1970). 

7. J. L. ROWLANDS et al, "The Production and Performance of the Adjusted 
Cross-sections set FGL5", International Symposium on Physics of Fast 
Reactors, Tokyo (October 1973), Vol. Ill, p. 1133. 

8. • J. R, ASKEW, F. J. PAYERS and P. B. KEMSHELL, "A General Description of 
the Lattice Code WIMS", Journal of the British Nuclear Energy Society, 
Volume 5, Number 4, PP 564-585 (October 1966). 

9. R. CHAWLA, "An Assessment of Methods and Data for Predicting Integral 
Properties for Thermal Reactor Physics Experiments", AEEW-R797. 

10. J. D. MacDOUGALL, R. W. ROSS and J. L. ROWLANDS, "The Calculation of 
Neutron Spectra and Group Averaged Cross-sections Using the Computer 
Programs FRESCO and MURAL", AEEW-M843 (I968). 

11. R. D. SMITH, A. R. BAKER, and J. L. ROWLANDS, "Theoretical and Experi
mental Work on the Physics of Fast Reactors", Journal of the British 



44 

Nuclear Energy Society, London Conference on Fast Breeder Reactors (May 
1966). 

12. A. F. THOMAS and P. ABBEY, "Calculational Methods for Interacting Arrays 
of Fissile Materials", Pergamon Press Ltd., International Series of 
Monographs in Nuclear Energy, Volume IO8 (1973). 

TABLE I 

Comparison of k-effective using MURAL, 
HONK and MONKG for four ZEBRA assemblies 

ASSEMBLY 

ZEBRA 1 

ZEBRA 2 

ZEBRA 3 

ZEBRA 6A 

FUEL 

U 

U 

Pu 

Pu 

DATA SET 

FGLS 
RD48 
FD5 

FGL5 
RD48 
FD5 

FGL5 
7ES184 
FD5 

PGL5 
7ESI84 
PD5 

PROGRAM 

MURAL 
HONK 
MONKG 

MURAL 
MONK 
MONKG 

MURAL 
MONK 
MONKG 

MURAL 
MONK 
MONKG 

'̂ eff 

0.993 
1.001 
1.003 

0.992 
0.979 
0.996 

0.984 
0.984 
0.987 

0.976 
0.944 
0.970 

S.D. 

0.018 
0.008 

0.021 
0.008 

0.019 
0.008 

0.021 
0.008 
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DISCUSSION 

Kalos: Did I understand correctly that In black MONK you track from one 
region into another and then stop the history, regarding the next region as a 
purely black absorber? 

Moore: Yes. 

Kalos: How do you select the starting positions in the regions in which 
you start? 

Moore: The points are taken at random on the surface of each array. 

Kalos: Then that version of the code represents an approximation. The 
k that you get is then an approximation to the kgff of the assembly. The 
equation you wrote down is correct only when the points are chosen in region I 
according to the equilibrium distribution of collisions in region I. 

Moore: Black MONK is only used to calculate collision probabilities. It 
does not separately calculate the eigenvalue. 

Kalos: That's true, but the approximation of the probabilities really 
should be calculated not from uniformly distributed collisions within the 
region but collisions distributed according to the eigenvector, the elgendls-
tribution. 

Moore: It is an approximate method, but one has to remember that it is 
used in criticality work and that ... 

Kalos: Well, is there any reason why you couln't use the black MONK idea 
in the course of doing an ordinary MONK calculation? It is just a matter of 
tallying and then you can have your cake and eat it too. 

* 
Moore: I hadn't thought of that. 

Gelbard: Now aren't you describing something very much like the Green's 
function technique where people accumulate the Green's function as they go 
along? 

Kalos: Yes, I'm Just pointing out that, to be correct, the Green's func
tion must be accumulated in the eigenfunction. 

Gelbard: In the main mode. Yes, that is an approach that has been used 
at a number of places. 

Cashwell: Did I hear you say that you have an energy-dependent fission 
spectrum in the code? 

Moore: Yes. 

Cashwell: That means t h a t you d o n ' t have to worry about p r e f l s s l o n neu
t rons? Do you worry about t h a t a t a l l ? 
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•, £ .-1,0 fn-rmiila I save . whlch i s the Rose and Cranberg 
Moore: We sample from the formula i gave, 

fission spectrum. 
Cashwell: Which is, I guess, what I call a Maxwellian? 

Moore: Yes. 

Whitesides: Why does the point version run so much longer than the mul
tigroup' I really don't see what you are doing so differently m the point 
and multigroup versions so as to make the point version take so much longer 
to run. 

Moore: Well, I guess it's because one does not have to do linear inter
polation in the cross sections and there are fewer energy groups to look for 
In the calculation. 

Whitesides: But linear Interpolation shouldn't take that long to do. 

Moore: There's also isotropic scattering in the multigroup version. 

Whitesides: MONKG uses Isotropic scattering? 

Moore: Yes. 

Whitesides: Did GEM do that? 

Moore: No, it used anisotropic scattering. GEM was a point version. 

Bending: In reference to a previous question: You said that the cross 
sections were evaluated by linear interpolation in the point version. Is this 
linear interpolation in energy or lethargy? 

Moore: Le thargy. 

Bending: May I ask a second unrelated question about the multigroup ver
sions of MONK using WIMS data? I'm Interested in knowing what action you take 
when your transport correction to the self-scatter term generates a negative 
self-scatter term. I believe there was something about this on one of your 
slides. 

Moore: If any self-scatter term becomes negative, in that case we adjust 
the cross sections to keep it positive. We adjust the total cross section. 

Bending: I am not able to give full details of the methods used from 
memory, but I know that another Monte Carlo code used in the UKAEA does treat 
the problem of negative self-scatter cross sections by introducing a special 
scattering law which, instead of being isotropic, includes a certain proba
bility of anisotropic scatter and a certain probability of a direct forward 
scatter. I am not able to give accurate details of how that Is done, but I 
know that it is done and gives very good results. 

Borgwaldt: In the summary of your paper you referred to the "concept of 
filters" as a form of Importance sampling. I'm not sure whether I missed this 
point. Could you elaborate? 
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Moore: I didn't mention it in the talk—It's In the paper. It Is a very 
simple form of Importance sampling and only applied to the fluxes. A filter 
can be used on any region boundary and is typified by its power and its direc
tion so that if the power of the filter is n, every n-th neutron moving out is 
tracked, and the reverse happens when the neutrons come in the opposite direc
tion. 

Gelbard: I don't understand how this is a filter. Could you explain a 
little more? 

Moore: If you have a filter you can have it operating in either direc
tion. For Instance, if you have n neutrons crossing a boundary, and the fil
ter is operating in a way in which it reduces the flux, then only one neutron 
will be tracked across that boundary. 

Kalos: Is this to be distinguished from Russian Roulette and splitting? 

Moore: I don't really think that it is one or the other, but it is just 
a simpler version of It. 

Gelbard: 1 might mention that I think the reason for some confusion is 
that there has been a paper on the use of filtering in Monte Carlo. There is 
a thesis on filtering in Monte Carlo as an application of techniques that are 
used in communication theory. Perhaps that is part of the reason for the con
fusion in this term. 

Moore: The two types of filtering probably aren't related. 

Gelbcxrd: No, filtering, as you use the term, sounds like Russian 
Roulette. 

Coveyou: You quoted a 7% error. Was that 7% in k or Ak? 

Moore: A 5% error in k. 

Coveyou: 5%? 

Gelbard: That sounds like a rather big error. I think it would be much 
bigger than what you would get using ENDF/B unadjusted. That is my impression, 
based on information from people who have done critical calculations using 
ENDF/B. 

Coveyou: Perhaps I misunderstood. Is this 5Z as compared with the experi
mental values or is this a 5% statistical error? 

Moore: These are on critical systems and one could get values of k rang
ing from 0.95 to 1.05. The standard deviation might be 1%. So it is unlikely 
that the discrepancies can be attributed to statistics. More likely they are 
systematic errors associated with the inadequacy of the data in certain energy 
regions. I have seen results of Monte Carlo calculations on other codes which 
gave similar accuracies for unadjusted data. 

Taormina: Is your code able to treat shielding problems? 
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Moore: No. 

Gelbard: I wonder if there are any other comments about the accuracy of 
critical eigenvalues using other data sets? 

Borgwaldt: I should say that with our unadjusted data we normally lie, 
let us say 2 or 3% from the experimental values. That's normal. But the 
unadjusted data which we use are based on a rather old nuclear data library. 
Our KEDAK file is in the stage of being updated. We hope that in a few weeks 
we will have an updated set. But, 2 or 3% seems plausible for fast criticals. 

Gelbard: Any other comments on this subject? 

Hoogenboom: I have a remark on the formulas used with the scattering 
process. You select a direction in the center-of-mass system and then trans
form to the laboratory system. But there is a simple relation between the 
direction in the center-of-mass system before and after scattering, and that 
relation can be used whether the scattering is Isotropic or anisotropic. The 
same relation can be used with only a small change if the scattering is elas
tic or unelastlc. I think that it is much simpler than the transformation to 
the laboratory system. 

Moore: I don't think there is much penalty in computing time in perform
ing the transformation as we do. 

Borgwaldt: I would like to comment on the concept of filters. Of course, 
the filtering in one direction is related to Russian Roulette. One know that 
Russian Roulette is free of bias but can Introduce variance. This filtering 
technique, which is a systematic technique, seems to be of lower variance, but 
I question if one can guarantee that such a procedure is free of bias. 

Moore: I should say that we use this filtering mainly in thick reflec
tors, so that we don't expend a lot of time in unimportant regions. 

Kalos: Would you please explain again exactly what the filtering proce
dure is? 

Moore: If we had a filter of the power n in a region, and if n neutrons 
Impinge on that region in a given direction, then only one neutron will be 
tracked on the other side. 

Kalos: On the average, or do you track every n-th neutron? 

Moore: Just 1 over n of the number of neutrons. 

Kalos: Is this just chosen at random? 

Moore: Yes. 

Kalos: Then it is Russian Roulette I 

Whitesides: I think it is Russian Roulette because as you move into 
regions you deem to be less and less Important, you track fewer and fewer neu
trons, and as you move back you split into more and more neutrons and you do It 
at a boundary. 
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Kalos: Yes. 

Whitesides: It is just a device for implementing Russian Roulette, and 
you split coming back in the other direction. 

Gelbard: Is it correct that you do split when you come back out? 

Moore: Yes. 

Kalos: Then that technique is unbiased, and either Introduces or does 
not Introduce variance according as to how well the weights approximate the 
relative importance of the two regions, and according to other tactics as 
well. 

Bending: As far as I understand it, the system used In MONK is precisely 
that which is normally termed splitting and Russian Roulette, and I think just 
by way of comment that the fact it is called filtering is historical accident 
based on the considerable age of the original GEM code. I think It is a 
rather unfortunate confusion, but I think had the code been written maybe 
five, six, or ten years later it would have been called splitting and Russian 
Roulette. Then there would be no confusion. 

Kalos: Actually I think that the phrase "Russian Roulette" is the unfor
tunate phrase and I wish we had adopted the phrase "filtering" from the begin
ning. I would like to point out a fact that ought to be well known, but prob
ably is not. In using splitting and Russian Roulette, one does two things: 
First, one assumes that the Importance function depends upon the region and 
has a discontinuity at the surface of the region. Second, one accomplishes 
the biased sampling required for Importance sampling by splitting and Russian 
Roulette at the surface. There are other ways of implementing exactly the 
same assumption about the Importance function with lower variance In the final 
answer. These other techniques also lower the collision density in the regions 
deemed to be of lesser Importance, with lower variance in the final answer. 
They lower the collision density in the regions deelned to be of lesser impor
tance, but do so In a more systematic and continuous way. I will give you 
references later. One such scheme is implemented in the SAM codes, and is 
used systematically in place of splitting and Russian Roulette at the 
boundaries. 

Coveyou: Actually in 05R for a long time we didn't do the splitting and 
Russian Roulette at the boundaries; we did it at the first collision point in 
the region. 

Kalos: That's the worst scheme of all of these as far as ultimate vari
ance of the Monte Carlo estimates is concerned. 

Gelbard: I would like to refer back to the subject we were discussing 
before, mainly the utility of Monte Carlo in general. I noticed that there 
have been some Monte Carlo studies of the ZEBRA assemblies. These were safety 
assemblies in which there were small perturbations introduced to test the 
effects of accidents. In accident analysis you often have configurations in 
which the geometry Is really pretty hideous. You have situations where you 
have voided the moderator and have vacuum streaming through large voids. It 
seems to me that no one really has any right to trust diffusion theory in this 
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sort of situation. Why can't we get practical people (and I imagine that 
deludes some of us here), why can't we get nuclear designers and safety ana-
!^sts to use Monte Carlo in this sort of situation? It seems to - tha one 
ought to be able to sell Monte Carlo capability in the analysis of a safety 
configuration. Now in ZEBRA I think there was a problem in that the pertur
bations were very small, which might be a difficulty. To some extent, maybe, 
one could get around this difficulty by having Monte Carlo In mind when an 
experiment of this sort is done. But, I really don't see how anyone can trust 
the standard diffusion theory calculation in this sort of case. 

Moore: I'm familiar with the experiments you referred to and I have seen 
comparisons of diffusion theory and transport theory on these experiments. 
They usually refer to single subassembly experiments where the changes were 
very small and the agreement was remarkably good. What I suppose one is in
terested in are the ramps in reactivity because variations in these ramps lead 
to variation of explosion yield in fast reactor calculations. I have mentioned 
to the experimental people that when they design the next set of experiments 
they ought to look at larger configurations to see if they can get larger 
changes and then the Monte Carlo would come in on its own. But certainly the 
changes in reactivity that we're getting (typically about 0.1%) are way out
side any Monte Carlo capabilities at present, I think. 

Gelbard: Except possibly for Monte Carlo calculation using fancy pertur
bation techniques. 

Moore: Are there any codes using such schemes? 

Gelbard: Well, yes, I think a perturbation code is going to be discussed 
here later at this meeting. There are perturbation methods in the SAM codes, 
so that there are perturbations methods available for this sort of thing, but 
they have to be programmed separately. 

Gast: I would like to make a few comments about Russian Roulette. In 
the early version of our program, we used the approach of using Russian Rou
lette at boundary crossings. However, as the geometry of the program built 
up, it became more and more difficult to track these additional boundary cross
ings. We, therefore, retreated to splitting and Russian Roulette at collision 
sites. As Kalos pointed out, we did find that there was a drop, to some 
degree, in the efficiency of the approach; however, it was not so severe that 
we did not retain it. We felt that the simplicity of the new scheme made up 
for the slight loss in efficiency. 

Summary of Comments by Gast: Gast explained that, in the Bettls code, 
the details of implementation of the tracking method in complicated geometries 
made the use of Russian Roulette at boundaries very awkward. 

Moore: So it's the extra geometry that caused the difficulty? 

Gczst: Yes, that's the reason we retreated, I guess I should say ... 

Moore: Reverted? • 

Gast: Reverted — Coveyou Indicated that this was an old approach in 05R. 
We feel it has worked out fairly well. 
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Gelbard: In your experience, what sort of splitting factors would you 
normally use on a boundary? Do you have any Ideas as to what's reasonable and 
what's not? 

Gast: Some people tend to use a splitting factor of about 5 and we may 
have a total of 10 splitting boundaries, roughly. 

Kalos: Perhaps since both of you brought up some ancient history, I will 
too. In the very early days, people like Kahn and Von Neumann supposed that 
the optimum splitting was probably a factor of 2. One of the first things I 
did in Monte Carlo was to set up a model Monte Carlo problem which could be 
solved analytically with splitting. That Is, I assumed I had a slab and there 
was straight-ahead penetration in the slab. The slab was divided into p sub-
slabs and the splitting was adjusted so that the total ratio of importance 
function from slab to slab was constant. Then by means of generating func
tions, I calculated the variance for each case and found that Indeed the opti
mum was about one-half, very close to one-half, with a rather broad middle. 
So, if you find yourself splitting by regions, a good rule of thumb Is to put 
in a region when you Judge that the importance changes by a factor of 2. 

Gelbcxrd: Do you think there is any geometry effect, and do you think 
that it would basically be the same sort of thing If you were nesting around 
a point? 

Kalos: No, of course, the Importance function must take into accound the 
geometrical effects of nesting around a point. If you are trying to get flux 
at a point by simply concentrating collisions in the neighborhood of a point 
(which I think is not a very good procedure), then you would get an infinite 
number of 

Gelbard: I didn't mean literally a point. You might be dealing with a 
small cylinder, or a small three-dimensional region rather than a planar 
region, and then you're saying that this factor of 2 is not something that 
you could simply accept and generalize to such a problem. Then, it is not 
really clear theoretically what you have to do in this case. 

Kalos: I think the rule of thumb is that the factor of 2 probably works 
pretty well there too. 

Gast: Basically our experience with Russian Roulette has been somewhat 
disappointing in that a problem that is completely out of range in terms of 
machine time is not generally brought into range by Russian Roulette. We have 
had a few cases which might be called borderline where the technique has 
helped. 

Gelbard: I wonder If anyone has ever tried to optimize splitting by 
using a technique that was described by Jerry Spanier in a paper presented at 
the ANS Topical Meeting in Idaho Falls. This is really one I can't claim to 
have looked at very thoroughly, and I wonder if anyone else has? This is a 
theoretical approach to optimizing parameters of Monte Carlo. Does anybody 
have any feeling about it? 
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Bending: I would like to go back. Just briefly, to something which 
Gelbard mentioned and this Is the application of Monte Carlo to the study, for 
example of small perturbations in safety problems. It seems to me, as has been 
pointed out, that the difficulty in using Monte Carlo to estimate perturbations 
is great and it seems to me that the role of Monte Carlo might be modified to 
avoid Monte Carlo perturbation calculations. Let us take, for example, a 
situation in which we would want to know the reactivity effect of introducing 
a void, and obviously we are a bit unhappy about using diffusion theory. Pos
sibly one could use Monte Carlo directly to work out what would be an appro
priate axial diffusion coefficient to use In this case, and then use diffusion 
theory. Perhaps one could argue that reactivity is the wrong thing to measure 
when one Is looking at small configuration changes. Secondly, we have a little 
bit of experience in using Monte Carlo perturbation methods and we have found 
that there are significant difficulties in interpreting the statistics. There 
are obvious dangers when one Introduces a small perturbation. The number of 
neutrons which contribute to the perturbation in the results is very small and 
the statistics on the perturbation are not so good, either as one might hope 
or as good as the correlation type of studies on the results would suggest. 
We have found that one has to be careful that one does not underestimate the 
variance, and that the statistics don't lead one to underestimate the pertur
bation. I say this Just by way of warning. 
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ABSTRACT 

The present status of Monte Carlo code development at Los Alamos 
Scientific Laboratory is discussed. A brief summary is given of 
several of the most Important neutron, photon, and electron trans
port codes. 

INTRODUCTION 

Beginning with the ideas of von Neumann, Fermi, Ulam, and others after 
World War II when Monte Carlo emerged as a recognized discipline, Los Alamos 
has carried on a program of Monte Carlo code development. The value of this 
method in treating complicated particle transport problems was clearly demon
strated very early in the game, and Monte Carlo played an Important role in 
weapons development and In many other programs at the Los Alamos Scientific 
Laboratory [1]. 

In the following remarks, some of the most important Monte Carlo codes 
at LASL will be described briefly. All of them are under constant development 
In order to meet the Increased demands upon them, both as to the difficulty of 
the problems they are asked to solve and with respect to the task of handling 
the vast amount of cross-section data now available. With one exception, the 
neutron and photon codes considered here use a continuous energy treatment of 
the cross sections. Pointwise data are provided at discrete energies, with 
Interpolation employed in between. The cross sections are read into the codes 
in considerable detail in an attempt to use the information with no signifi
cant approximations or distortions. This puts a considerable burden on the 
storage capacity of the computer, especially in view of the increasing size of 
nuclear data compilations such as the Evaluated Nuclear Data Files (ENDF). 

The codes described below all have the same three-dimensional geometry 
package [2]. Each has the capability of handling an arbitrary configuration 
of materials in regions which are bounded by first- and second-degree surfaces, 
as well as some fourth-degree surfaces (elliptical tori) [3]. The language 
used In all of the following programs Is FORTRAN IV. 

54 
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MCN - A NEUTRON MONTE CARLO CODE 

This [2] Is our standard neutron transport code and it has formed the 
basis for a number of other codes, some of which will be mentioned here. A 
great deal of work has gone into making this program as general and versatile 
as possible, while at the same time keeping It simple to use. It is the 
latest of a series of Monte Carlo neutron codes at Los Alamos, the first of 
which was described by R. Johnston [4]. 

The pointwise cross sections used In MCN at present are from the nuclear 
data compilations of Howerton's group at LLL, from ENDF, or from the British 
(AWRE). The ENDF data is processed for use in MCN by D. R. Harris' group 
(Group T-2) at LASL. Pointwise data are provided us with the resonance treat
ment included, data may be thinned to prescribed tolerances, and in some cases 
interpolated data may be added in order to permit accurate linear interpola
tion in MCN. In particular, angular data may be excessive In some evaluations, 
and by thinning, storage requirements may be reduced considerably. 

Included in the code are standard variance-reducing techniques, which are 
optional. These Include particle splitting and Russian roulette, path-length 
stretching, and machinery for biasing the source with respect to both energy 
and angle of emission. Provision is made for forcing collisions in designated 
cells, obtaining flux estimates at point detectors, and for calculating reac
tions In small regions by using track-length estimators. 

MCN employs an energy-dependent fission routine, with pre-fisslon 
neutrons emitted in an evaporation spectrum and the remaining neutrons in a 
fission spectrum. Both types of spectra depend upon the energy of the incom
ing neutron. 

The code includes a neutron thermalization routine employing the free 
gas model. Below a thermal cut-in energy, the lighter atoms such as hydrogen 
and deuterium are assumed to be in thermal motion, with a Maxwellian distribu
tion of velocities determined by the thermal temperature of the region. Each 
geometric cell of the problem has its own thermal temperature which may be 
given as a function of time—that is, these temperatures may be specified at 
discrete times ti, with linear interpolation employed to yield the thermal 
temperature at time t. Scattering from the light nuclei includes the effect 
of the thermal motion. For nuclei not belonging to this select group of light 
atoms, and for energies in the thermal range, elastic scattering is assumed 
to occur isotropically in the laboratory system with no energy loss. 

The standard output of MCN includes two-way currents as a function of 
energy, time, and angle with the normal, across any subset of bounding sur
faces in the problem. Fluxes at any set of bounding surfaces are available as 
a function of time and energy. Similarly, the flux at designated points, and 
the average flux in a cell (track length per unit volume) are standard tallies. 
Reactions such as fissions or absorptions may be obtained in a subset of the 
geometric cells. In addition, particles may be flagged when they cross spec
ified surfaces or enter designated cells, and the contributions of these 
flagged particles to certain of the tallies above are listed separately. All 
quantities printed out have their relative errors listed also—here the rela
tive error is defined as the ratio of one standard deviation in the sample 
mean to the sample mean. 
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MCNA - A NEUTRON ADJOINT CODE 

The code MCNA [5,6], a companion code to MCN, was set up to sample from 
the aSolnt neutron t;an;port equation. The identical cross sections and 
scattering models are used by both the forward and adjoint codes. This fea
ture is often used to check for errors by comparing forward and adjoint re
sults for standard test problems. 

The principal use of MCNA at Los Alamos has been in computing F-numbers, 
i e in computing reaction rates in some portion of a system as a function of 
the'neutron source distribution incident upon the system. The computation is 
typically carried out in a coupled mode to optimize the Monte Carlo. A short 
forward calculation is first made with a "typical" incident neutron source in 
order to compute the energy-dependent flux in each region of the system. 
These flux estimates are then used to bias the selection of the emerging 
energy at collision events in the adjoint calculation by numerically approxi
mating the near-optimal adjoint density function 

KE)^. 2(E •* E O J ^ 

f(E; E')^ 

j <ti(E^')^ 2 ( E " ->• E')i^ dE 

where <f>(E)k is the energy-dependent flux averaged over the cell volume denoted 
by k and 2(E -»• E')k is the cross section for an energy transfer from E to E' 
at a collision. The "particle" weight is adjusted at each collision in the 
calculation to obtain unbiased results. 

MCG - A GAMMA-RAY TRANSPORT CODE 

We shall give a brief description of MCG [7], a Monte Carlo program for 
transporting gamma rays which has been in existence for many years. This code 
has a number of features in common with MCN, such as the geometry package, the 
variance-reduction techniques, and some of the output. Photon interaction 
cross sections from the LLL library [8] are used. 

Since this program is designed to transport high energy photons, it 
considers only the following reactions: 

(1) Compton Scattering - Sampling from the Klein-Nlshlna scattering law 
is accomplished very efficiently through the use of simple but accurate fits 
to the inverse of the distribution function [9, 10]. 

(2) Pair Production - When an electron-positron pair is produced by a 
gamma ray, the difference between the energy of the incoming gamma ray and the 
resulting annihilation radiation is deposited locally at the site of collision. 
The two 0.511 MeV photons emitted are assumed to be emitted isotropically at 
the site of collision and are transported further. 
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(3) Photoelectric Effect - This reaction Is treated as absorption, 
resulting in the removal of the photon with its energy deposited locally. 

The current and flux tallies described In MCN are also standard in MCG. 
Information about the energy deposited In each cell of the problem is auto
matically listed. The energy deposited due to Compton collisions, pair 
production, and photoelectric absorption is listed separately for each type 
of reaction, along with the total energy deposited per cell. 

HCP - A GENERAL MONTE CARLO PHOTON CODE 

The gamma code MCG is not designed to deal with low energy photons, say 
in the range 1-50 keV for some materials. Fluorescence and coherent scatter
ing are ignored, and Incoherent scattering is assumed to be governed by the 
Klien-Nlshina cross section for free electrons. 

The Monte Carlo code MCF [7] corrects some of the deficiencies In MCG. 
Designed to handle photons of energies 1 keV to 100 MeV, MCP provides for 
fluorescent emission, and modifies the Thomson and Klein-Nlshlna differential 
cross sections by scattering factors which take binding effects into account. 

With the exception of a more sophisticated collision routine, the code 
MCP has much in common with MCG, containing the same geometry routine, 
variance-reducing techniques, and output. The distinctive features of the 
collision routine are summarized: 

(1) The cross sections in the compilation of Storm and Israel [11] are 
used, with log-log Interpolation, on the energy range .001-100 MeV. 

(2) Incoherent scattering is governed by the function 

K(a,p) I(Z,v) dp , 

where K(a,y) is the Klein-Nlshlna differential cross section and I(Z,v) is a 
form factor correcting for bound effects. Here a is the Incoming photon 
energy, Z is the atomic number of the scattering atom, y is the cosine of the 
scattering angle, and v is proportional to the momentum transfer to the elec
tron. Sampling the incoherent scattering density is effected by a rejection 
technique, using the rapid sampling scheme [10] for the Klein-Nlshlna distri
bution described above for the code MCG. 

(3) The coherent scattering density Is proportional to the function 

C^(Z,v) T(y) dp , 

where C(Z,v) is a form factor modifying the energy independent Thomson cross 
section, T(p) ~ (1 + p2). A rejection scheme is also used to sample the 
coherent scattering. 
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Although the collision routine is much more complex in this code than it 
is in MCG, the running times are not greatly different for all but the sim
plest geometries. 

MCNG - A COMBINED NEUTRON-GAMMA RAY TRANSPORT CODE 

This Monte Carlo code [12] has the capability of transporting neutrons 
with the code MCN, producing gammas from neutron reactions by means of stored 
gamma production cross sections, and transporting gamma rays with the code 
MCG. It is designed to replace the separate codes MCN and MCG, and it may be 
run in three modes: (1) mode 0 - MCN only; (2) mode 1 - MCN and MCG (combined 
mode); and (3) mode 2 - MCG only. 

When run in the combined mode 1, the code provides for the study of total 
heating or energy deposition in the medium by neutrons, photons, and products 
of neutron reactions. In a specific neutron reaction, the conservation of 
energy requires that 

k + Q = H + N' + r , 

where k is the kinetic energy of the neutron, Q is the Q-value of the reaction 
and depends only on the rest energies of the material particles involved, H is 
the total kinetic energy of the charged particles or nuclear products result
ing, N stands for the sum of the kinetic energies of all outcomlng neutrons, 
and r is the total energy of the gammas emitted. Partly because of the 
complexity of gamma production data and the existence of cross sections for 
materials consisting of natural mixtures of isotopes for which the component 
cross-section data are unknown, the code MCNG computes the heating per neutron 
collision. 

H = k + Q - N ' - r 

H is the expected nuclear product heating per neutron collision and Q, N', f 
are the corresponding expectations per collision of the rest energy cLnge, 

al reasorfornr?^ ""^r^'^ '"' °' '""^ ^'"^^ ^"^^^y produced. An addition
al reason for obtaining the charged particle heating per collision is to re-

?i:e%^:cW hLtf""""'°?f/"'"^2' ^" ̂ ^"P^^"S '^' individual reL ion . 
^e t^al reacti^ ' ' " collision, H, is listed on the same energy grid that 
tne total reaction cross sections use. 

n̂™.̂ ^̂ ''̂ "'̂ '̂  photons may produce further heating from pair production 
t "n s ̂ l^o :ive"n' ̂ ^Ph^-l^tric absorption.' This photon^nergy d;posi-
the product nLtronf îi T ' " " ' ''""'"^ ^" P̂ "̂'"" collision, similarly, 
llslons In transnorM ' ̂ ' ''" '° additional heating from further col-
wlth th; medium ar^^^'/'"''°"' ""^ "™' '^^ 8̂ "°̂ = P"^""^ ^^^^ collisions 
S MCG at the end of thr "^ ^^^'' """ '^^^ ̂ °™ ^ «°"^" ^^^^ i« processed 
these two Odes until t h e T r 7'''- ^^ "''^ ^' ^^^^^^^^ '° <=y'='- "-'""" codes until the required statistical accuracy is attained. The 
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heating tallies give the energy deposition per starting neutron. In addition 
to collision tallies, provision is made in the code to obtain heating in 
small regions by track length tallies. 

Currently the gamma production cross sections are used in multigroup 
form (30 neutron groups and 12 gamma groups), even though our transport codes 
use a continuous energy dependence on cross sections. This has been a matter 
of convenience, since some multigroup data existed when the code was set up. 
Our present plans call for the gamma production cross sections to be given on 
the same energy points our neutron cross sections use, with the gamma output 
spectra to be given in much finer detail. 

MCK - A MONTE CARLO CRITICALITY CODE 

One of the codes which is a modification of MCN—with essentially the 
same input, collision routine, biasing techniques, and general geometry 
package—is the code MCK. This program is an Iterative scheme, similar in 
many respects to the code KENO [13], for finding the multiplication in a 
static configuration containing fissile materials. From a given fission 
source, the code transports the neutrons, creating a new fission source. The 
procedure is iterative, using the latest distribution as the source for a 
new cycle until convergence is attained. The multiplication constant kgff is 
estimated from the ratio of the neutron population in the (n + l)8t generation 
to that in the n'" generation. 

The source is self-corrective in the sense that if the user decides to 
use a source of N particles, then the code generates a new source of approx
imately N neutrons. Of course, the total weight started from the source at 
the beginning of each cycle remains constant. Since the code is adapted from 
MCN, it contains the thermalization routine as well as the energy-dependent 
fission treatment. 

Simple to use and versatile because of its general geometry, this program 
has been applied to a wide range of problems, e.g., in the design of very 
complex reactors [14] as well as in safety calculations. 

MCMG - MULTIGROUP MONTE CARLO 

The continuous energy Monte Carlo codes have been, and will continue to 
be, the backbone of our Monte Carlo effort. However, there are some applica
tions for which our present codes are somewhat limited. Consequently we have 
developed a multigroup code with three general problem areas in mind: 
(1) the treatment of adjoint problems not amenable to solution with MCNA, 
e.g., coupled neutron and neutron-induced gamma-ray transport problems; 
(2) calculations by both multigroup Monte Carlo and multigroup discrete 
ordinates methods, using identical cross section sets; (3) the simulation of 
particle transport with relatively simple cross-section input. 

The programming of the multigroup code MCMG is based on our combined 
neutron-gamma code MCNG. Most of the input data, the geometry package, the 
biasing schemes, the majority of the output formats, and many of the control 
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cards are identical to their counterparts in MCNG. The code permits the 
caras are lueucx.. 4„r,ut in a variety of standard formats. It 
multigroup cross sections to be input in a vaLfci-y 
will operate in either the forward or adjoint mode. 

Various methods have been suggested in the literature for treating the 
aneular scattering distribution after a group-to-group scattering event. 
SIree options are'provlded in MCMG. The first uses the first N Legendre 
moments to construct a step function with N - 1 non-zero steps which conserves 
(in some cases, approximately) these N moments. The area under each non-zero 
step is chosen to be 1/(N - 1 ) . so that the p^-endpoints of the non-zero steps 
are determined from the N moments. The second option is the method used in 
the MORSE code which allows the scattering to occur at discrete angles. The 
third option samples the scattering angle from a density function that is 
proportional to the absolute value of a truncated Legendre series. The last 
option can lead to negative weights and, from a Monte Carlo standpoint, is 
not usually a desirable mode. It is included as an option since it is a 
close analog to the discrete ordinates treatment. 

MCGE - A COUPLED ELECTRON-PHOTON TRANSPORT CODE 

One of the newer members of our family of Monte Carlo codes is an 
electron-photon transport code containing the general three-dimensional 
geometry package. This program goes to considerable lengths to include the 
physics of electron-photon interactions and the transport of both types of 
radiation. In the primary-photon mode, the effect of secondary electrons can 
be studied definitively. Cases in which secondary electrons are important 
include (1) response function calculations of detector systems if the range of 
the typical secondary electron is comparable to the dimensions of the system; 
(2) gamma-ray shielding calculations if bremsstrahlung is important—in a 
6 m.f.p. lead shield irradiated by 10 MeV photons, bremsstrahlung Increases 
the Goldstein-Wilkins exposure buildup factor by 60% and the dose albedo 
factor by 140%; and (3) gamma-ray heating problems if local energy deposition 
is a poor assumption (because the energy is transported by secondary electrons 
and bremsstrahlung). In the primary-electron mode, the code is useful in the 
study of electron transport and the production of bremsstrahlung. Applica
tions include verification of experimental results from high-energy electron 
accelerators, laser fusion calculations, and energy deposition in tissue and 
bone for medical studies. 

MCGE [15] treats the physics of electron and photon transport, Including 
the generation of bremsstrahlung radiation, in considerable detail. The 
electron portion of the code is based on the procedures used by Berger and 
Seltzer in ETRAN [16] but includes several modifications and refinements not 
found in ETRAN—most apparent is the generalized geometry, mixed-media capa
bility of MCGE. 

Photon histories are followed with standard collision-by-colllsion Monte 
Carlo methods, accounting for Compton scattering, pair production, and photo
electric absorption. Photoelectric absorption is considered explicitly in 
order to include the effect of the photoelectron. Pair production in MCGE 
refers only to the absorption of a photon and the subsequent production of an 
electron-positron pair. Annihilation is a completely separate event, occur
ring only at the end of the positron's path (path and range are not equated) 
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and not at the point where the electron-positron pair was produced. If the 
positron escapes from the system, the annihilation quanta are not produced. 

Histories of electrons (and positrons) are followed in MCGE by using 
multiple-scattering theories to describe the electron's behavior over a small 
increment of its path, not collision-by-colllsion since tens of thousands of 
collisions may be associated with each history. The electron energy loss 
(including straggling effects) over an Increment of its path is determined by 
sampling the appropriate theories to account for ionization, bremsstrahlung, 
and the angular deflection. The production of bremsstrahlung in each incre
ment is determined from corrected cross sections derived by using the Born 
approximation. 

All generations of electrons and photons are accounted for in MCGE: 
delta rays, bremsstrahlung, characteristic x-rays, photoelectrons, Compton 
electrons, the electron-positron pairs, annihilation quanta, fluorescence 
radiation, and Auger electrons. The code requires about 300,000 decimal words 
of computer storage, and the problem of 10-MeV photons normally incident on a 
6 m.f.p. lead slab requires about two hours of CDC-7600 computer time for 
40,000 primary photon histories. 

MCGB - A GAMMA CODE WITH BREMSSTRAHLUNG 

The conventional gamma code MCG described earlier has been modified to 
include the effects of secondary electrons (i.e., bremsstrahlung) for situa
tions where the dimensions of the system are much greater than the typical 
range of a secondary electron—e.g., in gamma-ray shielding calculations. 
MCGB includes the effects of bremsstrahlung, without going to the trouble and 
expense of actually following secondary electron histories, by using thick-
target bremsstrahlung theory [17]. Only 50,000 decimal words of storage are 
needed (much of this is taken up by the geometry package—a one-dimensional 
version would need only a few thousand words) and tlje 40,000 histories of 
10 MeV gamma rays in lead require only 10 minutes of CDC-7600 time. MCGB is 
basically a simple Monte Carlo code. Compton scattering, pair production, and 
photoelectric absorption are accounted for using the conventions of MCG 
(photoelectric absorption is not "weighted-out", however, since the photo-
electron is needed for bremsstrahlung production). The energy and direction 
of the Compton recoil electrons are easily found from energy and momentum 
relations. The photoelectron is assumed to be produced straight ahead (a very 
good assumption if the energy of the electron is greater than 1 MeV) with 
energy equal to the energy of the absorbed photon, neglecting the binding 
energy. The energy distribution of the members in the electron-positron pair 
is assumed to be equally split, with each member having kinetic energy equal 
to (k - 2 moc2)/2, k being the energy of the Incident photon. The emission 
angle of the pair is assumed to be moc2/T radians, where T is the kinetic 
energy of the electron or positron. 
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DISCUSSION 

Borcrwaldt: I understand that your code MCNA is a continuous energy 
adjoint code. Could you give a few details? How does this code work? Of 
course, we all know about the problem of fitting an adjoint code into a con
tinuous energy model. 

Cashwell: Well, I am not absolutely sure about what it is that you want 
to go into here. The sampling is done essentially as is MCN in a reverse pro
cedure, but the code uses a continuous model at all stages. The outcomlng 
energy is sampled continuously and so is the scattering angle. 

Kalos: There are several papers published on this subject. I had two 
in Nuclear Science and Engineering about 1969: "On the Integration of the 
Adjoint Gamma Ray Transport Equation," and "On the Monte Carlo Integration of 
the Adjoint Neutron Transport Equation". These papers explained in nauseating 
detail how one does the continuous sampling of an adjoint neutron problem. 

Borgwaldt: Excuse me, may I reply to this directly? I was asking what 
type of strategy Carter is really using? That was my point. Does he use any 
special tricks? 

Kalos: No tricks! If I remember, Carter does not calculate the kind of 
adjoint cross sections that are defined in our paper. He Instead looks at the 
kernel and samples it in a more or less direct way using weights that derive 
from the normalization of the adjoint kernel. 

Cashwell: Carter has a paper on this subject, besides the two papers to 
which Kalos referred. Carter and McCormick, I guess, had the first paper; and 
in his Los Alamos report, Carter goes into great detail on how all of this Is 
carried out. I can give you a reference to it, if you would like, but he sim
ply samples in every stage from a continuous distribution. 

Gelbcxrd: Is that a Los Alamos report to which you are referring? 

Cashwell: Yes, there is a paper in Nuclear Science and Engineering by 
Carter and McCormick, and then the paper to which I am referring is a Los 
Alamos report which I think has more detail. 

Gelbard: I have some brief questions about the resonance treatment. Your 
resonance cross sections come. I believe you said, thinned, from Don Harris' 
group? 

Cashwell: That's right. 

Gelbtzfd: Does the MCK code then use a separate energy structure for each 
nuclide or does it combine them all into one? 

Cashwell: No, we make no attempt to combine nuclides. The only code I 
have talked about that combines the energy mesh is the MCG Code — the gamma 
code. We can do this in MCG fairly easily because it treats high-energy 
photons, but all the neutron codes use a separate mesh for each nuclide. 
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Gelbard: Do you have any idea, off-hand, how many points are needed to 
treat ^^^U? The reason that I ask is that it turns out to be a lot more diffi
cult in our experience, to get an accurate cross-section representation, than 
we originally had expected. 

Cashwell: Well, I really don't know but I would guess it's perhaps 
15,000-20,000. 

Steinberg: In the beginning you Just barely mentioned the fact that your 
codes do include point and small volume detectors of some sort. I would like 
to know whether this is true; and could you describe whatever treatment that 
you have to keep the variance within reason? 

Cashuell: Well, we don't have the Steinberg-Kalos treatment of the point 
detector, so that is a weakness as far as point detection is concerned. We 
have our difficulties, in some cases. There are a lot of detector problems 
where the detector is sitting some distance away from the collision point. If 
it is not, we may have some trouble. We have looked into the Steinberg-Kalos 
methods, and we are in the process of trying to Implement some such methods, 
but have not done so yet. In some cases we do get average flux in a small 
region, but, as you know, that is not very feasible in some applications. 

Bemnat: How can you treat light moderators in the thermalization pro
cess, light moderators in which the free gas model is not valid? 

Cashwell: No, we have no provision for anything beyond the free gas 
model. Keep in mind, now, that this model is a little more applicable to some 
of our work. You're thinking perhaps of a more exact treatment using S(a,6) 
or something of that sort. No, we don't have that. Elliot Whitesides. didn't 
you look into the S(a,B) scheme? 

Whitesides: Yes. we have an S(a.6) sampling scheme. 

Cashwell: And how expensive is it, and how does it work? 

Whitesides: The whole code is reasonably Inexpensive. As a matter of 
fact, that's why I was a little bit concerned about the computing time 
required by the British code, because we find that treating everything in very 
much detail and using point data really costs us little more than the use of 
a multigroup form. 

Cashwell: I agree with you about running time. Where we have compared 
our point code with our multigroup code, we find that, if the geometry is at 
all complicated, the time is essentially spent in the geometry and you can get 
very little benefit, I think, from using a multigroup code in those cases. 

Kalos: Elliot, someone at KAPL or RPI published a paper on S(a,6) which 
involved, essentially, a preprocessing of everything, so that the sampling was 
very, very short. Is yours the same as that or similar? 

Whitesides: Yes, we simply took this work and extended it somewhat for 

actual application in our code. 

Kalos: Cady was one of the people Involved. 
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Whitesides: I have forgotten the names now. Lester P"^^\°^ ° « J ^ ° " P 
has done this work. I believe he gave a paper at Miami in which he reported 
some results on using this technique. 

Kalos: How did it work? 

Whitesides: It worked pretty well, although with the ENDF data of 
course, we don't get very good results for normal systems. But we attribute 
that more to the data than to the method of treating cross sections, because 
we simply don't get very good results for thermal systems in any fashion. 

Gelbard- I think it is worth mentioning that the alternative scheme, the 
older scheme for treating thermal neutrons, is simply a transfer matrix method. 
This scheme has been used in a number of places and is also a perfectly feasi
ble one. But, Elliot, you say that you do not get very good results with 
thermal systems. You mean water-moderated systems, or some other kind of 
systems? 

Whitesides: For PWR and BWR-type fuel elements and their environments. 
We have been looking mainly at shipping casket environments, and have been do
ing some criticals at Oak Ridge with some 5% metal rods that are about the 
diameter of a pencil. We don't get very good results for those experiments. 

Gelbard: Did you mention a tamped system in your talk? 

Cashwell: Yes. 

Gelbard: What is a tamped system? 

Cashwell: I mean by the term "tamper" a reflector of some sort. 

Gelbard: You also mentioned something about a step function that pre
served moments? Are you talking about a histogram treatment? 

Cashwell: Yes, that's right. A histogram treatment which preserves the 
first n Legendre moments. Carter is still working on the method. He can only 
preserve the moments approximately, in some cases, but the method does, in the 
cases he's tried, give a step function which mimmlcks the scattering distribu
tion quite well. Of course, it has the advantage that everything is positive. 
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A DISCRETE APPROACH TO COMPLEX PLANAR GEOMETRIES 

E. Cupini and A. De Matteis 

Comltato Nazlonale Energia Nucleare 
Centre dl Calcolo 

Bologna, Italy 

ABSTRACT 

Planar regions in Monte Carlo transport problems have been 
represented by a finite set of points with a corresponding region 
index for each. The simulation of particle free-flight reduces 
then to the simple operations necessary for scanning appropriate 
grid points to determine whether a region other than the starting 
one is encountered. When the complexity of the geometry is res
tricted to only some regions of the assembly examined, a mixed 
discrete-continuous philosophy may be adopted. By this approach, 
the lattice of a thermal reactor has been treated, dlscretlzlng 
only the central regions of the cell containing the fuel rods. 
Excellent agreement with experimental results has been obtained 
in the computation of cell parameters in the energy range from 
fission to thermalization through the ^ ^ % resonance region. 

INTRODUCTION 

A discrete approach to planar complex geometries has been described in 
Ref. 1 and special algorithms for geometrical configurations which may be des
cribed by an overlay of convex polygons and circles have been given in Ref. 2. 

Planar regions are represented in a computer memory by means of a set of 
points belonging to a square grid. A region index is associated to each point 
and the simulation of a particle free-flight between two grid points reduces 
to the simple operations necessary for scanning appropriate grid points to 
determine whether a region other than the starting one is encountered. 

The geometrical part in the tracing of particle histories becomes in this 
approach Independent of the complexity of the configuration examined, avoid
ing, too, the usual onerous tests to ensure correct correspondence between the 
particle position and the region index. On the other hand, it demans a large 
storage capacity, although only a few bits will be sufficient to encode the 
main information, I.e. the index of the .region to which a point belongs. 

When the complexity of the geometry is restlrcted to some regions only, a 
mixed discrete-continuous philosophy may be adopted by converting integer coordi-
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nates into real ones (or vice versa) at a certain boundary (this conversion 
requires some adjustment to ensure that the new coordinates belong to the new 
region entered) . In this way both memory economy and speed are obtained in 
large simple regions. 

The question of the degree of approximation of this approach is partially 
answered by the excellent agreement with the experimental results obtained in 
the computation of cell parameters, in the energy range from fission to ther
malization through the ^^°U resonance region. 

SCANNING ALGORITHM AND BOUNDARY CONDITIONS 

The first operation to perform is the transformation of a geometrical 
configuration into a discrete map, trying to preserve the area of the regions 
and their geometrical shape as much as possible. The configuration is 
embedded in a rectangular background giving rise to a "boundary region" sur
rounding the configuration, so that when the image has been digitized in some 
way, the whole figure will be described by a rectangular matrix of elements. 
Those corresponding to the boundary region may contain Information about the 
boundary conditions, while all others represent a square element of area h , 
h being the mesh size of the grid. Although any elementary-given figure (such 
as a circle or a rectangle) may be represented with the approximation h^/2, 
the final represented area of the regions may have a larger approximation, due 
to the operation of overlaying elementary figures one upon the other. The 
small difference between the true and the represented areas may be taken into 
account in some final results (typical: the reaction rates) through a correc
tion assuming linear dependence of the effects on the represented areas. 

Once a discrete map has been prepared, given the starting point, the 
direction of motion and the free-flight of a particle, a scanning algorithm 
will determine the grid points visited in succession by the particle, which 
jumps from one grid point to another keeping as closa as possible (in a sense 
later specified) to the ideal path in the continuum, until a new region is 
encountered. Let the mesh size h be the unit of length, XQ, yo the Integer 
coordinates of the starting point, Jl the free-flight, 6' the angle between the 
line of flight and the x-axis. The end-point coordinates of the free-flight 
are 

Yf = yj + (I sin 6' . 

Let Xf and yf be the Integers resulting from the rounding off of Xf and Xj. 
If (xo.yo) = (xf.Xf), the path is terminated. Otherwise the direction of 
motion is corrected from 9' to 6 with tg 6 = (yf - yo)/(xf - X Q ) . In the case 
0 ^ 6 ^ TT/4, the scanning procedure may be essentially described as follows. 
Denoting by [q] the integer part of q, the point visited at the n-th step is 

x = x , + l = x + n 
n n-1 " 

y^ = yp + [n tg 6 + 0.5] . 

i.e. the y^ coordinate is the grid coordinate nearest to the ideal one. 
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yo + (xn - xo) tg 6 . 

Two types of direct transition from one grid point to another are thus 
possible: along one of the coordinate directions and along the diagonal of a 
grid cell. Therefore (for 0 1 9 £ 11/4), for each xi only one point is scanned 
(it must be noted that the direct transition along the diagonal of a grid cell 
could fail to detect the crossing of a new thin region only if this region is 
very poorly represented in the digitized image). Figure 1 shows an example of 
a path simulation. 

Periodicity for Infinite lattices of rectangular or hexagonal cells is 
taken into account by reflection on the cell boundary during path simulation. 
In the algorithm given in Ref. 2, this operation is very simply accomplished 
by moving the particle from one boundary to another according to information 
stored in the grid points corresponding to the boundary region, whenever this 
region is reached. 

SOME RESULTS 

The geometrical approach described was tested against experimental results 
concerning the lattice of a D20-moderated, H20-cooled reactor, with hexagonal 
cells at a pitch of 29 cm, at room temperature [3] . The fuel cluster was com
posed of 19 rodlets (diameter 2 cm) of natural UO2, arranged in three rings of 
1, 6, and 12 elements, respectively, contained in an aluminum pressure tube 
(Internal diameter 10.6 cm) surrounded by an air annulus and a Zircaloy calan-
drla tube (external diameter 12.11 cm). In this lattice the measurement of kc 
was obtained by the null reactivity method (PCTR) and the neutron densities by 
activation of copper foils, with and without the coolant. 

In the Monte Carlo computation only the part inside the pressure tube has 
been discretlzed with about 10^ points, while the other regions were treated 
as a continuum; moreover the Zircaloy sheaths of the fuel elements (too thin 
to be realistically represented by a discrete image) were taken into account 
by a dilution in the coolant. In the energy range 16-MeV- keV, a 12-group 
approximation for cross sections (Including anisotropic scattering and inelas
tic scattering) was adopted. In the energy region 50 keV-5 eV, 64 groups 
were considered, except for ^SSy „hose resonance cross sections were computed 
at each energy, with a random generation of resonance parameters for the un
resolved resonances. Finally, below 5 eV, 256 energy points were used to des
cribe cross sections with, moreover, two 33 x 33 x 10 scattering matrices 

(E' ->• E, cos 6) for H2O and D2O in the thermal region below 1 eV. 

In Table I, experimental and Monte Carlo results (based on 8000 histories) 
are quoted. The numerical results obtained, together with other positive com
parison made for similar fuel assemblies of Canadian type, seem to encourage 
further experimentation with discrete geometry simulation. 
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TABLE I 

Average Neutron Densities in Various Regions and k 

I ring 

II ring 

III ring 

Coolant 

Pressure tube 

Calandria tube 

Moderator 

'^oo 

PHJO ' 1 

Experiment 

0.056 

0.068 

0.108 

0.124 

0.190 

0.199 

0.254 

1.054 

MC 

0.056 

0.069 

0.110 

0.124 

0.192 

0.195 

0.254 

1.057 ± 0.005 

. . 

PH2O = ° 

Experiment 

0.095 

0.104 

0.136 

0.184 

0.192 

0.289 

1.15 

- — . - • • . . 

MC 

0.098 

0.109 

0.143 

0.183 

0.187 

0.280 

1.15 ± 0.005 

(xo 
<¥^—(^ 
yo) 

< ) ^ 'X'T (.^ 

<H—:€) (Xf.yf) 

Fig. 1. A path simulation with tg 9 = 2/7. The 
grid points scanned are circled. 
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DISCUSSION 

Kalos: There is one thing that I have not understood here. I can see 
the advantages of dlscretlzlng the geometrical description, but I don't see 
the advantage of dlscretlzlng the position, or Insisting that the particle be 
on one of the lattice points of your discretlzed geometry. Why not let the 
position be a continuous variable, and not approximate 9 or 9'? The arithme
tic is almost exactly the same. Secondly, would you repeat the ratio of the 
computing times for the geometrical tracking? 

Simonini: The time to treat seven centered annular regions discretlzed 
to about 107 points was about 1.5 times that required by the usual approach, 
and the time was found to be roughly proportional to the square root of the 
number of grid points used. 

Gelbard: You seem to be saying that it takes longer to treat the dis
cretlzed geometry than to use the usual approach. 

Kalos: Suppose you took a geometry that you were Interested in, and 
discretlzed it to a degree that you thought was pretty good. Do you think it 
would run faster or slower? 

Simonini: I don't know; it would depend on the geometry. If you add 
more elementary regions to the geometry, the tracking time using the discre
tlzed approach remains the same. 

Gelbard: Are you also saying that one substantial advantage is in pro
gramming simplicity, not in the running time but in the fact that you can 
use one program to treat many different types ot geometries? 

Simonini: Yes. In any case when the geometry becomes very complicated 
I believe that my approach would be much faster than the usual one. 

Kalos: Why? 

Simonini: When you use the conventional approach you have to take into 
account all the possible Intersections of all the elementary figures and these 
figures may be combined in a complicated way. When the geometry is discre
tlzed the boundaries don't have to be considered explicitly. 

Coveyou: But you do have to have every point in the lattice labeled 
according to the region it is in. 

Kalos: Yes, that is his scheme. 

l « r » / r T " ' ' /^^" ^' ^^ "'^^^'^ '^^' y°" =^""°t "se this method for a very large number of lattice points. 

Simonini: No. 

Kalos: And it would be very cumbersome for three-dimensional geometries. 
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ABSTRACT 

The Monte Carlo code SPARTAN is a general-purpose code Intended 
for neutron or gamma transport calculations. The code is designed to 
accept physics data from a number of external libraries (which may be 
used singly or in combination) and to use this data with as little 
alteration as possible. 

Data obtained from one or several libraries is placed in an in
terface file on magnetic tape or disk, using a general hierarchical 
structure which allows particular data items to be assessed in a 
straightforward way. The Interface file, with or without additional 
data from cards, is regarded as a data source for the main Monte Carlo 
calculation. 

Within the Monte Carlo calculations Itself, generality in the 
evaluation of cross sections and secondary particle parameters, as 
well as economy of coding, is achieved by the use of unified data 
structures for function evaluation and random sampling. 

This paper includes a summary of the functional forms, sampling 
distributions, and particle interaction laws which are available at 
present, and Indicates some of the mathematical methods used. 

INTRODUCTION 

One of the features of Monte Carlo techniques for particle transport cal
culations is the ability to use a very detailed physics data. Unlike most 
numerical methods. In which material cross sections are reduced to a multi-
group form with fairly simple scattering laws, the cross sections and angle 
or energy distributions used in a Monte Carlo code may, in principle, be speci
fied in great detail and in almost any functional form. For this reason, 
Monte Carlo techniques are useful for the evaluation of physics data against 
exprlmental results, and for checking the validity of approximate physics 
models. At the other extreme, where multigroup data is well-established or 
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where it is required to check a numerical technique using consistent data, 
it is useful for a Monte Carlo code to accept multigroup physics data. 

In the Monte Carlo code SPARTAN, which is being developed at Berkeley 
Nuclear Laboratories (United Kingdom Central Electricity Generating Board), 
this wide range of requirements is being met by the provision of a compre
hensive physics data system designed to accept data from a number of dif
ferent sources. Data from different source libraries is combined on an 
interface in a standard, but very general, hierarchical structure which 
reflects the data facilities required by the Monte Carlo calculation. All 
or part of this interface may be transferred into the computer core in 
order to carry out such a calculation. A unified approach to function 
evaluation and random sampling allows great generality as well as economy 
in coding. The system is designed to permit extension to other data 
libraries and formats as required. 

In this paper a brief description is given of the data formats and 
structures used by the system and of some of the random sampling techniques 
employed. The structure of the physics data Interface, used to store data 
on magnetic tape or disk, is also described, and a summary of the present 
capabilities and future development of the system is given. 

FACILITIES REQUIRED BY A MONTE CARLO CALCULATION 

During the course of particle tracking, a number of occasions arise 
when physics data is required. Whenever a particle enters a region, it 
is necessary to evaluate the total cross-section (and possibly the partial 
cross-section) for each of the nuclides which make up the material 
concerned. On the basis of this information, it is decided whether the 
particle has a collision in that region. « 

If the particle has a collision, further information is required. 
Partial cross-sections for all possible actions in the material of 
interest are used to select which type of event occurs. Further data is 
required to find the number of secondary particles produced. For each 
secondary, the number of available scattering laws is determined and a 
law chosen. Detailed data for this law is then employed to sample for 
a scattering angle and secondary energy. 

It"will be evident from the above paragraphs that there is a 
hierarchical structure implicit in the physics data used by a Monte Carlo 
calculation. This hierarchy, which is reflected by the way in which the 
data is structure in SPARTAN, is summarised in figure 1. 

STANDARD DATA FORMAT FOR FUNCTION EVALUATION 

At several points in the calculation it may be necessary to evaluate 
a function. These include: 
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a) Cross-section as a function of particle energy 

b) Number of secondaries as a function of energy 

c) Scattering angle as a function of energy 

d) Secondary energy as a function of scattering angle. 

In SPARTAN, a unified approach to function evaluation is adopted 
and a single routine is used for all the above situations. The functional 
forms which are included permit a wide range of specifications, and may 
be extended in a straightforward way as required. Consider, for example, 
a cross-section which is inversely proportional to particle velocity. 
Approximate representation of such a cross-section could be obtained using 
a multigroup approach or linear interpolation between point values. 
Alternatively, the cross-section could be described exactly by specifying 
log-log interpolation between the values at two points, or by describing 
the function as a general power series in energy. 

The permitted functional forms and interpolation methods are 

summarised in Table I. 

STANDARD DATA FORMAT FOR RANDOM SAMPLING 

Similarly, there are several occasions on which random sampling is 
required. Of these, the selection of scattering angle and/or secondary 
energy are of great importance, and a wide variety of functional forms 
for angle and energy distributions may be found in different physics data 
libraries. The philosophy of SPARTAN is that, rather than risk the 
introduction of systematic errors by reducing these functions to a 
standard representation, this variety should be retained, and facilities 
provided within the code for sampling from frequency functions in many 
forms. 

The functional forms at present permitted are shown in Table II. 
In most cases the sampling methods are trivial; those methods in which 
the random sampling technique is of some interest are described in 
Appendix A. 

SECONDARY LAW SPECIFICATION 

Once a particle has suffered an event, it is necessary to calculate 
the number, energy and direction of any secondaries produced. This may 
be done in a number of ways. For example, energy may be sampled 
randomly and angle calculated from it, or both may be sampled, and so 
on. In SPARTAN, this variation in the logic of secondary law specifications 
is retained, and several law types are available. These are listed in 
Table III. Provision is included for either energy or angle to be 
sampled, or for both to be sampled independently. Bivariate sampling, 
particularly useful for thermal neutron studies, is not yet available, 
but the data structures would allow it to be included without difficulty. 
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In many cases, the energy range of interest is divided into a 
number of 'law energy ranges' and a separate secondary law specification 
is given for each range. At any particular energy, a choice must be made 
between the law specification given for the upper end of the relevant 
energy range and that given for the lower end. In SPARTAN, there are 
three alternatives: 

(a) For all energies in the range, the specification given for 
the lower end of the range is used. 

(b) The law specification 'varies linearly' over the energy 
range. This means that if E2 and Eĵ  are the upper and lower 
energy limites and E is the particle energy, then the specification 
given for the lower end of the range is used with probability 
(E2-E)/(E2-Ex). 

(c) The law specification 'varies logarithmically' over the 
energy range. The specification given for the lower end of the 
range is used with probability log (E2/E)/log (E2/E1). 

THE SPARTAN PHYSICS INTERFACE 

Data from various source libraries is combined to form an interface 
file which has a standard, though very general, structure. This file 
normally resides on magnetic tape or disk, and is used as the physics 
data source for the Monte Carlo calculation itself. It was noted above 
that the physics data has an implicit hierarchical structure, and this is 
reflected in the physics interface. Each record in the interface refers 
to information at the level below it in the hierarchy, and the use of a 
standard record structure enables particular parts of the interface to 
be located by a routine which 'knows' nothing of the meaning of the data. 
The standard record structure is shown in Table IV. , The records are stored 
in the 'natural' order for a hierarchical file, which is best illustrated 
by the example shown in figure 2. The hierarchy used in the physics 
interface file is shown in figure 3. and the various types of record are 
described below. 

Interface Level 1 

This is the primary level of the interface file, containing the number 

of data source libraries and the interface title. 

Source Level 2 

There is one record for each data source library, containing the 
number of species used from that library, and information on energy 
group structures used in that source. 

Species Level 3 

This record gives the number of possible actions for the species 

concerned, a species code and the atomic mass. 
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Action Level 4 

This record gives the number of data energy ranges and the action 

classification, which indicates whether the action is scatter, capture 

or fission. 

Data Energy Range Level 5 

The volume of data in some physics libraries is such that it is not 
possible to retain all relevant data in core at the same time. This is 
particularly true of neutron resonance data, as found in the FGL [1] and 
GENEX [2] libraries; when such a library is used it is necessary to bring 
data into core from time to time during particle tracking. In SPARTAN, 
this may be accomplished by dividing the energy range of interest into 
several data energy ranges. When the interface file is read in preparation 
for a Monte Carlo calculation, only the data for the first data energy range 
is retained in core, while the remainder is placed in temporary storage to 
be read as required. The introduction of data energy ranges is made at 
the action level in recognition of the fact that these large quantities of 
data are often encountered only for particular actions in particular 
nuclides, such as resonance capture in uranium-238. The data energy 
range record specifies the number of cross-section and law energy ranges 
and the energy limits of the data energy range. The facilities for 
using several data energy ranges have not yet been used in SPARTAN. 

Cross-section Energy Range Level 6 

The energy range of interest may be divided into a number of sections 
for the description of nuclide cross-sections. This is usually done to 
enable a different functional form to be used at different energies, and 
is particularly useful when a cross-section vanishes above or below a 
particular threshold energy. The cross-section energy range record 
contains the lower energy bound of the range and the cross-section, 
defined in the standard format for function evaluation. No reference 
is made to records at a lower level in the hierarchy. 

Law Energy Range Level 6 

The law energy range record gives the number of distinguishable 
secondaries, the lower energy bound of the range, a description of the 
average number of secondaries, and a parameter indicating the way in 
which the law data is selected for energies within the range (see 
section on secondary law specification). 

Secondary Level 7 

The secondary record give the number of laws which may apply for 
the secondary concerned. 

Law Level 8 

This record gives the probability, delay and energy release for this 
law, the co-ordinate system in which the angular distribution is given, 
ttie law type and law data (see section on secondary law specification). 
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For many problems, all the physics data required will be available 
in the interface file, and the user will need only to provide instructions 
to the program to locate the relevant data. Facilities are provided in 
SPARTAN, however, to combine data from the interface with data on cards 
(or indeed to use card data alone) in order to set up the files used in 
the main Monte Carlo calculation. Reference to the interface may be 
made at the species, action, data energy range or cross-section energy 
range level. Appendix B gives an example of the card data used to set 
up an interface file and to construct from it, with additional card data, 
a file for use in the Monte Carlo calculation. 

PRESENT AND FUTURE DEVELOPMENT 

At the time of writing, the SPARTAN physics system is able to use 
data from the FD5 [1], a multigroup neutron data library suitable for 
fast reactor calculations and GAMBLE [3], (a gamma data library) data sets. 
An earlier version of the system uses the thermal reactor neutron library 
associated with the WIMS-E program [4], and the DICE neutron library, 
which is intended primarily for shielding calculations [5]. 

Future development of the code will provide access to the FGL libraries 
[1] and possibly to ENDF/B data. It is anticipated that the range of data 
libraries which can be used, and the facilities provided within the physics 
system, will be extended from time to time, and the system has been 
designed to allow this. 

CONCLUSIONS 

A description has been given of the physics data system used by the 
Monte Carlo code SPARTAN. The system is designed to allow data to be 
obtained from number of different source libraries,«and used in the Monte 
Carlo calculation with as little alteration as possible. The generality 
is achieved in an economic way through the use of standard systems for 
function evaluation and random sampling, and a formalised hierarchical 
structure for the relevant data files. Facilities exist at present to 
read both neutron and gamma data, and access to additional data libraries 
will be provided in the future. 
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APPENDIX A 

SPECIAL RANDOM SAMPLING METHODS 

Maxwellian, evaporation and Watt spectra 

The Maxwellian, evaporation and Watt spectra are given by the respective 
formulas 

1 
m (E) dE = k E^ exp (-a E)dE 

V (E) dE = k E exp (- a E)dE 
V V 

w (E) dE = k sinh (/bE) exp (- a E)dE 
w w 

where k , k , k , a , a , a and b are independent of E. m V w m V w 
2 Noting that the Maxwellian frequency function is x frequency 

function with three degrees of freedom, we may sample for E by forming the 
sum of the squares of three random normal deviates and applying an 
appropriate scale factor. 

. . . 2 
Similarly, the evaporation spectrum is a x frequency function with 

four degrees of freedom. 

Sampling from the Watt spectrum is more difficult, and we employ a 
rejection method. Consider the function 

f(E) = k /bE exp (- qE) * 
w 

In order to construct a rejection test, we need to find a value of q such 
that for all positive E, 

f(E) > w(E) 

It is found that the value 

q = a - b/6 
^ w 

has the required property, for with this value 
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f(E) - w(E) = k exp (-â E) ((bE)^ exp (bE/6) - sinh (bE)^) 

= k exp (-a E) ((.—^) - TV) (bE)^''^ + 
w w 2'6 

(̂ -i (bE)^^^ ....) 

> 0 

The sampling procedure for the Watt spectrum is to select a value of E 
from the Maxwellian spectrum obtained by normalising f(E), f*(E), and 
accept it with probability 

w(E)/f(E) 

A typical Watt spectrum, and the corresponding bounding function f(E), are 
shown in figure 4. 

Legendre Polynominal Series 

Let f(u) be the frequency function of the cosine of the angle of scatter, 
and let f(u) be described by means of a series of Legendre polynominals, 

n 

f(u)du = .^ a. Pi(u) du 
i=o 1 

In order to construct a rejection test, we seek a frequency function of 
similar shape to f(u) which can^ by means of a constant factor, be 
converted to an upper bound for f(u). 

Using the results 

|Pi(u)| < V2/(Tri(l-u^)) 

Po(u) = 1 

P^(u) 



We may write 

f(u)< 

Vw 
= V" I E l//r 

i=2 
C^ (1+u) + 0̂ + C^ (1-u) 

where 

h(u), say. 

max (a ,o) 

a - a 
o 1 

a + a, 
o 1 

a > a, > o 
o 1 

-a < a, < o 
o 1 
otherwise 

C = max (-a , o) 

writing b = J- Z-, |a.| //T 
i=2 

the frequency function proportional to h(u) is 

h*(u) = 
b / y i - u + Cl (1+u) + C2 -I- C3 (1-u) 

bit + 2C + 2C + 2C 

We regard h*(u) as the sum of four frequency func t ions . 

T r \ / l ^ 

1+u l_ 1-u 
2 2 2 

with appropriate coefficients. In order to sample from h*(u), we select 
one of these frequency functions (the probability of selection being equal 
to the coefficient) and sample from it using elementary methods. 

Having obtained a sample from h*(u), we accept it with probability 

f(u)/h(u) 

The frequency function f(u) and bounding function h(u) are shown 
for an notional angular distribution in figure 5. 



APPENDIX B 

EXAMPLE OF CARD INPUT USED TO READ PHYSICS DATA 

(Explanatory comments are in brackets) 

CREATE PHYSICS 

DATA NEW UNIT 10 

* TEST GAMMA DATA 

FROM UNIT 15 GAMBLE SPECIES 4 

6 7 92 1000 

ENERGY 1.0E7 1.0E4 1 SOURCE 1 1 

2 4 1.0E7 1.0E6 1.0E5 3.0E4 1.0E4 

SPECIES 

CARBON SOURCE 1 1 

NITROGEN 14.0 ACTIONS 3 

1 SOURCE 1 2 1 

2 SOURCE 1 2 2 

3 ABSORPTION DATA 1 1 0 

ENERGY 1.0E4 XSEC FIXED 0.3E-4 

URANIUM SOURCE 1 3 

(Interface is to be created on 
FORTRAN unit 10) 

(Interface title) 

(GAMBLE library is on FORTRAN unit 15; 
four species are to be read) 

(Species numbers in the library) 

(Two energy structures; one from the 
interface, one given explicitly) 

(Carbon, uranium and pure Compton 

scatter data are obtained direct 

from the interface. For nitrogen 

the interface is entered at the 

action level, permitting an additional 

action, a fixed absorption specified 

in the card data, to be included) 

COMPTON SOURCE 1 4 

MATERIALS 

1 CONTAINS 3 CARBON 0.01 NITROGEN 0.003 COMPTON 0.06 

2 CONTAINS 2 URANIUM l.OE-4 COMPTON 9.2E-3 

(when this data has been read, the files used in the main calculation 
will have been set up) 



FORMAT 
NUMBER 

TABLE I 

STANDARD FORMATS FOR FUNCTION EVALUATION 

FUNCTIONAL REPRESENTATION 

1 f(x) is independent of x 

2 f(x) is tabulated at equal intervals ^ 

3 f(x) is tabulated at equal intervals 
in log X 

f(x) is tabulated at intervals defined 
in a separate array 

5 f(x) is tabulated as (x,f(x)) pairs 

6-10 Not yet allocated 

11 f(x) is a polynominal in x 

12 f(x) is a polynominal in log x 

13-20 Not yet allocated 

21 f(x) is a series of real powers in x 

Over 21 Not yet allocated 

Interpolation between x values may be: 

f(x) constant (value given at lower bound) 
f(x) linear in x 

f(x) linear in log x 
log f(x) linear in x 

log f(x) linear in log x 

00 
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TABLE II 

STANDARD FORMATS FOR RANDOM SAMPLING 

FORMAT 
NUMBER 

SAMPLING DISTRIBUTION 

7-10 

11 

12 

13 

14 

X has a fixed value 

X is uniformly random on (-1, 1) 

X is uniformly random between given limits 

X is given by a histogram 
with equal intervals 

X is given by a set of 
equi-probable intervals 

X is given by a general 
histogram whose intervals 
are defined in a 
separate array 

Not yet allocated 

X is given by a Legendre polynominal series 

X is given by a Maxwellian spectrum 

f(x) a /x exp (- ax) 

X is given by an evaporation spectrum 

f(x) a X exp (- ax) 

X is given by a Watt spectrum 

f(x) a sinh /bx exp (- ax) 

The frequency function of x 
within each interval may be 
constant or proportional to 
l/x 



TABLE III 

LAW TYPES 
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LAW 
TYPE 
NUMBER 

DESCRIPTION 

5-10 

11 

12 

13-20 

21-30 

31 

Over 31 

Angle sampled from standard disribution; secondary energy 
computed from angle by conservation of momentum. 

Angle sampled from standard distribution; secondary energy 
a standard function of angle. 

Angle sampled from standard distribution; secondary energy 
sampled independently from standard distribution 

Angle sampled from standard distribution; secondary energy 

a standard function of primary energy. 

Not yet allocated 

Energy sampled from standard distribution; angle computed 
from energy by conservation of momentum. 

Energy sampled from standard distribution; angle a standard 

function of secondary energy. 

Not yet allocated. 

Allocated for bivariate distributions. 

Angle sampled from standard distribution; secondary energy 
computed from angle by Compton scattering law. 

Not yet allocated. 
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TABLE IV 

STANDARD RECORD STRUCTURE ON PHYSICS INTERFACE 

ITEM MEANING 

Number of branches from this record to the next level 

in the hierarchy. 

Length of data block (in words). 

Data block (containing all other physics information). 
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secondary 
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Fig. 1 

Hierarchy of physics 
data used in Monte Carlo 
c a l c u l a t i o n . 
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Fig. 2 . Example of hierarchical s tructure . 
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law energy range 

Fig. 3 

Hierarchy used in the 
physics interface file. 

secondarv 

I 
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V/t,U Bp^ctrun 

Eounoirig func t ion 

Fig. 4. Sampling from a Watt spectrum. 

- " ' " -SPo +-2P, +.IP3 
Bounding (unction 

Fig- 5. Sampling from a Legendre 
polynomial series. 
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DISCUSSION 

(The discussion pertaining to this paper is included with that for the next 
paper by R. C. Bending and P. G. Easter.) 

/ ; • • 
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THE GEOMETRY SYSTEM USED IN THE 
GENERAL MONTE CARLO TRANSPORT CODE SPARTAN 

R. C. Bending and P. G. Easter 

Berkeley Nuclear Laboratories 
U.K. Central Electricity Generating Board 

Berkeley, Gloucestershire, England 

The paper describes the geometry routines used in the general-
purpose, three-dimensional particle transport code SPARTAN. The 
code is designed to deal with the very complex geometries encountered 
in lattice cell and fuel handling calculations, health physics, and 
shielding problems. Regions of the system being studied may be 
represented by simple shapes (Spheres, cylinders, and so on) or by 
multinomial surfaces of any order, and many simple shapes may be com
bined to make up a complex layout. 

The geometry routines are designed to allow the program to 
carry out a number of tasks (such as sampling for a random point or 
tracking a path through several regions) in any order, so that the 
use of the routines is not restricted to a particular tracking or 
scoring method. Routines for reading, checking, and printing the 
data are included. 

INTRODUCTION 

SPARTAN (^ystem for PARticle X^acking and ANalysis) is a general-
purpose three-dimensional Monte Carlo code capable of tracking neutrons or 
photons. This paper describes the SPARTAN geometry routines, which are to 
a great extent independent of the rest of the code, and which allow very 
complex geometrical layouts to be described. 

One of the features of Monte Carlo techniques, as opposed to deter
ministic methods, is their applicability to geometries of arbitrary 
complexity. A general purpose Monte Carlo code must therefore contain 
routines capable of accepting a description of a complex geometry and of 
tracking particle trajectories through it. These tasks are carried out in 
SPARTAN by a set of routines which are largely modular in construction, and 
could therefore be of use in other Monte Carlo codes. The way in which the 
routines are called allows the user considerable freedom in his choice of 
tracking or scoring techniques. 

96 
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In most nuclear reactor systems, complex geometrical layouts are usually 
made up of many simple shapes, such as cylindrical fuel pins. For this 
reason much of the SPARTAN geometry system is intended to deal with simple 
shapes, such as spheres and prisms of various cross-sections. Objects 
having one of these shapes (known as geometric units) may be subdivided to 
form, for example, a set of concentric spheres. Geometric units may contain 
other geometric units in any positions and with any orientation. This 
facility allows complex layouts, such as a lattice of fuel pins with control 
elements, or even a whole reactor, to be described economically. 

Despite the generality of the system provided by the standard shapes, 
circumstances do arise in which the layout cannot conveniently be described 
by this means. For such situations, the SPARTAN geometry system allows the 
surfaces of physical regions to be described by any number of multinomial 
surfaces of (in principle) any order. This makes it possible to describe, 
for example, a human phantom, or a venturi region in a cylindrical pipe. 

The facilities which are provided by the geometry routines (apart from 
slight restrictions where multinomial surfaces are used) include the 
selection of uniformly random points in a region or on a boundary, the 
location of intersections of a particle trajectory with a set of regions(such 
as concentric annuli in a cylinder), evaluations of volumes and areas, 
calculation of a vector normal to a boundary, determination of the location 
of a given point with respect to a co-ordinate mesh (used when scores are 
required in great geometric detail) and reflection and translation operations 
for use at the boundary of the geometry layout itself. The system also 
includes routines which read geometry data in a comprehensible form, print it, 
and check it for internal errors. 

REPRESENTATION OF THE GEOMETRY LAYOUT 

The geometry layout is described by specifying the surfaces of every 
physical region. Regions are usually grouped into geometric units (see 
below). Geometric units may themselves be grouped to form structures 
(e.g. ring), and may be contained within one another. 

A standard geometric unit is a group of nested surfaces having a common 
shape, orientation and origin, and differing in only one size parameter. 
The shape of the unit is one of the standard shapes described below. Examples 
of standard geometric units are a set of concentric spheres or of coaxial 
cylinders. The regions which make up the geometric unit are distinguished 
by their nesting level within the unit; the outermost region is at level 1, 
the next at level 2, and so on. 

The innermost region of a standard geometric unit may itself contain 
other geometric units in any position and orientation. The entire geometry 
layout may be defined in terms of nested units in this way. The outer 
boundary of the layout (which may be fictitious) must be the outer surface of 
a standard geometric unit. 

If some of the units contained within the innermost region of any 
geometric unit form a particular structure, either a right-angled lattice or 
a ring they may be described as such in the data input, giving savings of 
both storage and data. Facilities are also provided to generate a random 



distribution of contained units (all units have the same orientation, and 
their origins have a uniformly random distribution within the innermost region 
of the containing units, with a minimum separation between origins imposed on 
the distribution). 

A non-standard geometric unit is one which is created by a group of 
multinomial surfaces, of which further details are given below. A non
standard unit is treated within the program in much the same way as a standard 
unit except that it must be contained within a standard unit and cannot 
contain any further units. The way in which standard and non-standard 
geometric units are used to describe a complex layout is illustrated by 
Figures 1 to 4. Figure 1 shows a square reactor lattice cell with a central 
cylindrical channel containing a cluster of pins. Three geometric units 
(the outer block, the cylindrical channel and a fuel pin) are sufficient to 
describe the layout. 

Figure 2 shows a model of a group of buildings, which might be used to 
assess the effect of radiation from airborne contamination. The use may be 
noted of intersecting regions (to describe the hemispherical dome) and the 
orientation of standard units (for the horizontal cylinders and the building 
set at an angle). 

An example using multinomial surfaces is shown in Figure 3, which 
represents a simple human phantom as might be used for health physics studies. 
The head, trunk and legs of the phantom are described by second order 
equations. In order to truncate the surfaces at appropriate planes, each 
surface could be enclosed by a (physically non-significant) cylinder, and the 
layout completed by specifying a standard unit to provide an outer boundary. 

Figure 4 shows a venturi region of a cylindrical pipe. In this case a 
single high-order multinomial surface is required. The card data required 
by SPARTAN to describe each of these geometry layouts is given in Appendix A. 

Several standard shapes for geometric units are available. Table I 
gives the shape names and definitions, the size parameters used to describe 
them, the size parameters which may be varied to produce a nested geometric 
unit and the positions of the local origin and co-ordinate axes for each 
shape. Only one size parameter may be varied within one geometric unit. 
The standard shapes and permitted nesting are shown in Figure 5. 

Coding is provided in the shape routines (see following section) for 
various tasks which may be required for Monte Carlo calculations. Details 
of the tasks are given in Tables II to V. 

Any of the standard shapes may be used for the boundary of the whole 
layout. Apart from some restrictions noted in Table II, the boundary 
conditions may be specified separately at each boundary face as either 
periodic transmission, mirror reflection or diffuse reflection. 

Circumstances arise in which it is not possible (or not convenient) to 
describe the layout solely in terms of tlie standard shapes listed in Table II. 
In this case a more general representation is available. A geometric unit 
consisting of several disjoint regions may be created by a number of surfaces 
expressed as multinomials of any order in the Cartesian co-ordinates (x,y,z). 



99 

For data input purposes, general surfaces are described in a form directly 
resembling the polynomial concerned (see examples in Appendix A). Each 
disjoint region created by the group of surfaces is identified to the computer 
by specifying a point which the region contains. 

The specification of the geometry layout may allow two or more geometric 
units to intersect. This is permitted in SPARTAN, but certain conventions 
are used to determine in which of several interesecting regions a point lies. 
These conventions are applied in the tracking routines of SPARTAN, outside 
the geometry system, and their operation is beyond the scope of this report. 
The conventions are as follows: 

(1) Any geometric unit is truncated by the surface of the innermost region of 
the geometric unit which contains it. 

(2) If two or more units which are contained within a single unit intersect 
one another, then any point common to the two units is assumed to be in the 
unit which was specified earlier in the input data. 

(3) If a unit intersects another unit other than one of its contained units, 
then it may not contain any units. (In other words, a unit which is 
truncated must be empty). 

Intersecting regions are particularly useful when a plane of symmetry 
cuts some of the regions of a layout, or where compound shapes (such as a 
cylindrical channel with slotted walls) are required. 

ROUTINES IN THE GEOMETRY SYSTEM 

Input of geometry data is performed using the routines GEOIN, GUNIT 
(which is called from GEOIN), and POLYIN (which is called from GUNIT). This 
group of routines reads data either from cards, in a free-format code-word-
controlled form, or in binary form from a disk or magnetic tape. For 
examples of the data input, see Appendix A. 

The routine GEOUT either gives a printed summary of the data or dumps 
the data file onto an external device for subsequent reading by GEOIN. 

Detailed geometry calculations are carried out by a set of shape 
routines, one for each standard shape (SPHERE, CYLIND, TRIANG, CUBOID,_ 
HEXAGO), and one for groups of multinomial surfaces (SURFAC). This divis 
enables certain routines to be omitted from a load module which does not 
require them, leading to a saving in core space. For each shape, a set of 
tasks is available. Table II lists the tasks, noting which tasks are 
available for each shape routine. Most of the calculations are straight 
forward; Appendix B gives details of any special techniques used. 

The geometry system contains a number of other routines which are used 
to obtain or check data, carry out rotations or boundary transformations, 
evaluate multinomial expressions and carry out random sampling tasks. 
Details of non-trivial methods are given m Appendix B. 

ion 
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CONCLUSIONS 

The geometry system of the SPARTAN Monte Carlo code allows a wide range 
of geometric layouts to be described, including several commonly-encountered 
shapes and more general shapes for unusual geometries. No restrictions are 
placed on the position or orientation of geometric objects, and, subject to 
certain conventions, geometric shapes may intersect one another. The 
routines which make up the system are in most respects independent of the 
rest of the code, and may readily be adapted for use outside SPARTAN. 
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APPENDIX A: EXAMPLES OF DATA INPUT 

Channel and pin cluster (Figure 1) 

PIN CYLINDER RADIUS NEST 3 1.50 1.30 1.25 HEIGHT 1000.0 EMPTY 
CHAN CYLINDER RADIUS 20.0 HEIGHT 1000.0 CONTAINS 3 

RING 6.0 1.570796 4 PIN 
RING 10.0 1.047198 6 PIN 
RING 16.0 0.523599 12 PIN 

CELL CUBOID SIDES 48.0 48.0 1000.0 CONTAINS 1 
AT 24.0 24.0 0.0 CHAN 

Group of buildings (Figure 2) 

TANK CYLINDER RADIUS 2.0 HEIGHT 6.0 EMPTY 
SILO CYLINDER RADIUS 8.0 HEIGHT 16.0 EMPTY 
DOME SPHERE RADIUS 8.0 EMPTY 
BLOCK CUBOID SIDES 40 10 10 EMPTY 
OUT CUBOID SIDES 200 200 50 CONTAINS 6 

AT 91 95 2 ANGLE 0.0 -1.5708 0.0 TANK 
AT 96 95 2 ANGLE 0.0 -1.5708 0.0 TANK 
AT 112 90 0 SILO 
AT 112 90 16 DOME 
AT 50 110 0 BLOCK 
AT 100 120 0 ANGLE -0.524 0.0 0.0 BLOCK 

Human Phantom (Figure 3) 

HEAD SURFACE 1 100 X (2) + 49Y(2) = 4900 
REGIONS 2 CONTAINS 0 0 0 

CONTAINS 100 100 100 
CYLH CYLINDER RADIUS 10 HEIGHT 24 CONTAINS 1 HEAD 
TRUNK SURFACE 1 1 X (2) + 4Y(2) = 400 

REGIONS 2 CONTAINS 1 1 1 
CONTAINS 10 10 10 

CYLT CYLINDER RADIUS 20 HEIGHT 70 CONTATOS 1 TRUNK 
LEGS SURFACE 1 25 X (2) + 100Y(2) - 1Z(2) - 40Z = 400 
REGIONS 2 CONTAINS -1 -1 -1 

CONTAINS 100 100 100 
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CYLL CYLINDER RADIUS 20 HEIGHT 80 CONTAINS 1 LEGS 
OUT SPHERE RADIUS 100 CONTAINS 3 

AT 0 0 70 CYLH 
CYLT 

AT 0 0 -80 CYLL 

The head, trunk and legs are specified as second order multinomial 
surfaces; each is surrounded by a fictitious cylinder which truncates it 
vertically. The whole phantom is surrounded by a sphere which provides 
the boundary of the layout. 

Cylindrical venturi (Figure 4) 

VENT SURFACE 1 1.0X(2) + 1.OY(2)-4.0E-8Z(8) + 1.6E-5Z(6)-4.0E-4Z(4) 
-0.24Z(2) = 9 

REGIONS 2 CONTAINS 0 0 0 
CONTAINS 4 0 0 

CYL CYLINDER RADIUS 5.0 HEIGHT 20.0 CONTAINS 1 
AT 0.0 0.0 10.0 VENT 

PIPE CYLINDER RADIUS 5.0 HEIGHT 100.0 CONTAINS 1 
AT 0.0 0.0 50.0 CYL 

APPENDIX B: SPECIAL TECHNIQUES USED BY THE GEOMETRY ROUTINES 

Sampling for a random point in a spherical shell 

Let the inner and outer radii of the shell be rĵ  and r2. Then the 
frequency function of the radius of a uniformly random point is: 

f(r)dr = 3r^dr/(r2^ - r^^) 

This curve is bounded above (see Figure 6) by 

g(r) = 3r2r/(r2^ - r^^), 

which is proportional to the frequency function 

g*(r) = 2r/(r2^ - r^^) 

In order to select r from f(r), we select r from g*(r) using RANRAD (see 
below), and accept it with probability 

P = iMI., (r) 

i.e. p = r/r 
2 

The efficiency of this rejection test (number of trials/acceptable value) is 

2(r^^ + r^r^ + r2^)/(3r2(r^ + r^)), 

which has a minimum value, when r̂^ = 0. of 2/3. 
The angular co-ordinates of the point are found using RANG3D (see below) 
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Sampling for a random point in a triangle 

Triangular shapes in the SPARTAN geometry system are always orientated 
with respect to local co-ordinate axes so that the base of the triangle lies 
along the local x axis (see Figure 7). A pair of uniformly random points 
are chosen on the base AB. and from each of these is constructed a line 
parallel to the side to which it is nearest (i.e. the right-hand point is 
nearest to side BC. the left-hand to side AC). The intersection of these 
lines is then uniformly random over the area of the triangle. 

Sampling for a random point in the area between two hexagons 

Figure 8 shows two concentric hexagons, and we need to select a 
uniformly random point from the area between them. The method adopted is to 
construct the rectangle shown along the uppermost side, and select a point in 
the rectangle. The point is accepted provided it does not lie in the shaded 
portions shown. This rejection test has an efficiency 

(r^^r^)l2r^ 

where r. and r. are the inner and outer radii, and gives a minimum efficiency, 
when r = 0, of 1/2. 

A uniformly random integer between 0 and 5 is selected, and is used to 
rotate the sample point, if required, to another segment of the hexagon. 

Calculation of the intersection of a given trajectory with a group of surfaces. 

The method used in SURFAC to calculate the distance along a trajectory 
to a particular surface depends on the order of the multinomial expression 
used to describe the surface. For order one or two. elementary algebraic 
methods are used. For higher order, a Newton-Raphson iterative technique is 
used to find all the roots of the appropriate equation. As each real root 
or pair of complex roots is found, the order of the polynomial is reduced 
appropriately, so that exactly the correct number of roots is found. Only 
real, positive roots are retained as meaningful intersections. 

Calculation of the normal to a given multinomial surface 

Use is made of the fact that the surface <(.(x.y.z) = 0 has a normal given 
by the vector 

AiKx.y.z). 

Rotational transformation (routine GEROT) 

The routine carries out Che transformation of a point (given with 
respect to a right-handed set of Cartesian axes) due to a rotation of the 
axes through specified Euler angles. 

The total rotation is brought about by three successive rotations through 
angles, a, B. y (see Figure 9) in that order. The rotations are -
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(i) about the original z-axis 
(ii) about the new x-axis 
(iii) about the new z-axis. 
and the axes rotate in a positive sense for positive Euler angles. 

The matrix describing the transformation is 

/ cosacosY - sinacosBsiny sinacosy + cosacosBsiny sinSsinyX 
l-cosasiny - sinacosgcosy -sinasiny + cosacosBcosy sinBcosy I 
\ sinasinB -sinBcosa cosB / 

which premultiplies the co-ordinate vector of the point. 

Mirror reflection (routine MIRROR) 

The routine is supplied with the direction cosines of the normal to a 
surface and the direction cosines of the flight of an incident particle. 
The direction cosines of the particle flight after mirror reflections are 
calculated using the relations 

u = u . - u a r i n 

V = V. - V a 
r i n 

where a = 2(u .u + v .v + w.w ) . 
i n i n i n 

(u., v., w.) are the incident direction cosines. 
1 1 1 

(u , V , w ) are the normal direction cosines, 
n n n 

(u , V , w ) are the reflected direction cosines. (See figure 10) 
r r r 

Sampling for angles (routines RANG and RANG3D) 

The routine RANG samples for the cosine and sine of an angle uniformly 
random on (0.2TT). The von Neumann method is used. Pairs of uniformly 
random numbers Ci between -1 and 1 and 52 between 0 and 1 are selected until 
a pair is obtained for which 

^1 - ̂ 2 
Then u = cos6 = — 2 2 

and V = sine - 2 2 
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The speed of this method is assisted by the fact that no square root 

operation is required. 

The routine RANG3D samples for the direction cosines of a uniformly 
random direction is three dimensions. The routine RANG is used to find 
direction cosines relative to the x and y axes, and the third direction 
cosine is taken to be uniformly random on (-1.1), 

Sampling for a uniformly random point in an annulus (routine RANRAD) 

Two numbers C. and C.. uniformly random on (0.1). are selected, and the 
radius is set using 

r = max {((r^ - r̂ )̂ ^.^ + r^^), ((r^ + r̂ )̂ 5^ " ĵ̂ )} 

where r and r are the inner and outer radii. 

This formula is derived as follows. The frequency function of r is 

f(r)dr = 2r/(r2^ - r^^) dr 

with distribution function 

2 2 
•̂  " ""l 

F(r) = 
2 2 

'2 -'^l 

Now, 

prob [max{((r2 - r^) Ĉ ^ + r^), ((r^ + r̂ )̂ 5^ " r̂ )̂} < r] 

= prob [ (r^ - r ^ C^ + r̂^ < r and (r^ + r^) 5^ " r^ < r] 

., r + r 
_L 1 „ „,„>. rr ^ 1 prob [S < ] X prob [C, < —!^ ] 

1 r^ r̂  2 r^ + r^ 

1 r + r. 

'2 -^1 ' 2 ' -̂ 1 

= F(r) as required. 

Diffuse reflection (routine WHITE) 

The routine WHITE generates the direction cosines of a particle flight 
path after diffuse reflection at a surface with given normal direction. By 
diffuse reflection, we mean that the cosine a of the angle between the flight 
path and the normal has a frequency function proportional to a. 



The direction cosines relative to axes tangential to the surface, B and 
Y are found using RANG, while a is found as the larger of two uniformly 
random number on (0, 1) (see Figure 11). If the normal to the surface is 
(u v ,w ), then the reflected direction cosines (u ,v ,w ) are given by 
n, n n r v r " ' 

T 1 - w 
-r { u W Y + v B } + u a 2 n n n n 

JI3 
T 1 - w 

( v w y - u B ) + v a 
n n n n 

I 2 2 
( l - a ) ( l - w ) Y + w a 

n n 
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TABLE I 

Standard shapes 

Shape 
code 

1 

2 

3 

4 

5 

Shape 
name 

Sphere 

Cylinder 

Triangle 

Cuboid 

Hexagon 

Description 

Sphere 

Right circular 
cylinder 

Triangular 
prism 

General 
cuboid 

Hexagonal 
prism 

Size 
parameters 

Radius r 

Radius r 
Height 

Sides a,b,c 
Height h 

Sides a,b,c 

Radius r. 
Height h 

Nesting 

r 

r or 
h 

h 

a or 
b or c 

r or 
h 

Local origin and co-ordinate axes 

Centre of sphere. No restriction on axes. 

Centre of base of cylinder. Positive z axis 
along axis of cylinder. 

One corner of base. Positive z axis parallel 
to axis of prism. Positive x axis along edge 
a of base. Triangle lies towards (y > 0) 
side of X axis. 

One corner of base. Positive x, y and z axes 
along edges, a, b, c of cuboid. 

As cylinder. The x axis cuts a vertex of the 
base. 
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TABLE II 

Tasks performed by shape routines 

Task Description Notes 

Find a uniformly random point in a given 
region of a given geometric unit 

Find whether a given point lies in a 
given geometric unit 

Given the direction cosines and starting 
position of a line, find all the posi
tive distances along the line to inter
sections with the regions in a given 
Ceometric unit or group of surfaces 

Find the total surface area of a given 
geometric unit or group of surfaces 

Find the total surface area of a 
given geometric unit or group of 
surfaces 

Given a point close to the surface 
of a region, find the inward pointing 
normal at that point 

Find a uniformly random point on 
all or part of the boundary of a 
given region 

Given a co-ordinate mesh by which 
a region is subdivided, and a point 
in the region, find in which sub
division the point lies 

Given a point close to the surface 
of a geometric unit, find the cor
responding boundary type and adjust 
the point and direction cosines 
accordingly 

Not available in 
SURFAC 

Not available in 
SURFAC 

In SURFAC, an error 
is generated unless 
the appropriate 
values have been 
included as input 
data 

In SURFAC, the 
direction of the 
normal is defined by 
the vector grad ^, 
where (f is the 
multinomial expres
sion 

Not available in 
SURFAC 

See table III 

Not available in 
SURFAC see tables 
IV and V. Periodic 
boundary conditions 
cannot be used for 
vertical faces in 
TRIANG 
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TABLE III 

Subdivision of regions for scoring 

Shape 

Sphere 

Cylinder 

Triangle 

Cuboid 

Hexagon 

Co-ordinate system in which subdivision are 
made, in conventional order. 

r, cose, (f 

r, e, z 

*, *, h (*indicates no subdivision permitted) 

X, y. z 

*. 9. z (No. of 9 divisions must be 1 or 6) 

TABLE IV 

Boundary conditions used in shape routines task 9 

Shape Use 

Periodic boundary condition. Direction cosines unchanged, 
position changed to appropriate point. 

Specular reflection boundary condition. Position 
unchanged, direction cosines undergo mirror reflection. 

Diffuse reflection boundary condition. Position unchanged, 
direction cosines random with inward-facing cosine 
distribution. 
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Conventional ordering of boundary faces 
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Shape Order (bracketed items included for task 6 and 7 but not task 9) 

Sphere 

Cylinder 

Triangle 

Cuboid 

Hexagon 

Surface 

(Inner radius), outer radius. 

(Inner radius, outer radius, base, top. 

Base of triangle, second side, third side, base of prism, 
top of prism. 

X = 0, X = a, y = 0, y = b, z = 0, z = c. 

(6 faces of inner surface), 6 faces of outer surface, base, 
top. (Note: ver t ica l surface count anticlockwise from 
X ax is ) . 

Order defined by the order in which the surfaces are 
specified. 
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Fig. 1 

Pin cluster in cylindrical channel. 

0 

Fig . 2 

Group of b u i l d i n g s . 

Fig. 3 

Human phantom. 

.20cin ^ 

• ^ ^ ^ z s ^ ^ ^ ^ 

—-f^^TTTT-^^ 

Fig. 4. Cylindrical venturi. 
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TRIANGLE 

Fig. 5 

Standard shapes. 

frii 

o 
1 . 

a 

Upper bound g ( r ) 

R e q u i r e d f r e q u e n c y 
f u n c t i o n f ( r ) 

Points are uniformly rondom on AB, 
Construct through each point o line 
parallel to the nearest side. 
Intersection of the lines ts the 
required point P. 

Fig. 6. Sampling in a spherical 
shell. 

Fig. 7. Sampling for a random 
point in a triangle. 
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1. Select o point in the rectangle. 

2 . Re ject po i n t s in the shaded a reas . 

3. Rota te i f required. 

O r i g i n a l axes X,Y, Z. 

Final axes x S Y S Z^ 

Fig . 8. Sampling from the space between 
two hexagons. 

F ig . 9. Rotat ion of axes 
us ing Euler ang les . 

E Unit vector along 
emergent path. 

^ P Non.iol vector of 
/ length cos 0 

J Unit vector along 
incident path 

Results obtained by setting I P = » P i ; 

F i g . 10. M i r r o r r e f l e c t i o n . 

cos y3 

Emergent path 

* Nori.iol to surfoce 

A r b i t r o r y ax is in 
plone ot su r foce . 

Fig. 11. Diffusion reflection. 
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DISCUSSION 

Kalos: 1 would like to point out that, if you want to sample from the 
Watt spectrum, there is another rejection technique which can be used. If you 
sample two exponentials, and then calculate a quadratic expression in one of 
the sample values, and if this quadratic exceeds the second sample value, then 
one of the sample values is a valid sample from the Watt spectrum. The 
efficiency of this rejection technique is 70%. 

Bending: That seems to be about the same as the efficiency of the tech
nique I used. 

Kalos: But you wouldn't have to compute a hyperbolic sine.... 

Bending: Yes, we have an exponential and a hyperbolic sine to compute 
against your two logs and a square, so you will probably win. Thank you. 

Cashwell: You also sample from the Maxwellian. How do you do that? 

Bending: The Maxwellian is a x-square with three degrees of freedom 
(with a trivial adjustment) , so we sample by taking the sum of squares from 
three normal deviants. 

Cas'hwell: Incidentally, Kalos has a very nice way to do that also. One 
other point, if I may. You don't have a great deal of difficulty when you go 
to higher-order surfaces with geometry routines? Considering the difficulty 
we have had treating a torus, I am a little surprised. Do you find it neces
sary to know which side of a surface you are on? 

Bending: Yes, we do this by arranging the surfaces into groups. We 
divide our configuration space into subspaces with perhaps half a dozen sur
faces in a particular subspace. Then we define regions within each subspace 
by looking at the sign of each multinomial expression at any given point. 

Cashwell: From our experience with toroidal geometries we find that there 
are degenerate tori with properties such that you can find yourselves on both 
sides of the surface at the same time, and that is what bothers me. That sort 
of thing may happen where you have fourth-degree surfaces and have to take 
square roots to determine which side of a surface you are on. 

Bending: Sometimes one can have trouble identifying to the computer speci
fic regions of space one is Interested in. This is something which has caused 
us problems which I don't know of any simple and general way '° ̂ ^f ̂- f "^ 
ambigultlves can be eliminated by introducing extra planar surfaces. But there 
are difficulties in the use of higher-order surfaces. 

llTllTs'. tItTapJ::: l: iTruLml tlme.^s compared to running time for 

other geometries? 

W.n..- This is a proble.. Clearly the^ 

::;"ap^ro"pri:tr:::h:d!° l l t X \ T . not gotten enough experience in using 
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higher-order surfaces to know, really, where the method ceases to work. We 
don't see any solution in geometries which intrinsically require this kind of 
representation, except perhaps to go to a neutron-tracking method which does 
not require one to identify boundary crossings. Now, this can be done, and 
is done in many codes. It is not something which we do because such an 
approach does not fit into the philosophy of our code. For example, I was 
looking at a very complicated human phantom some time ago, in which almost all 
the bodily organs were represented (and very well represented) in mathematical 
form. This sort of geometry would have been extremely difficult for us to 
deal with, but it was quite possible to treat using a form of tracking in 
which one only needed to be able to identify the region in which a point lies, 
without locating boundary crossings. I think in cases of very hard geometry 
It may be better to use this kind of a scheme. We don't, and there will be 
cases for which our scheme is a bit unwieldy. 

Gelbard: If you are dealing with a thermal system and are in a resonance 
band, and if you try to make the cross sections spatially constant, you could 
have a real mess on your hands; so this approach does not seem to be to be a 
completely general solution. 

Coveyou: Well actually, in very complicated geometries, I would think 
that the introduction of artificial cross sections would work very well, since 
you wouldn't have to know where a particle crosses a boundary but only which 
region it is in. 

Gelbard: Yes. but my point was that with ficticious cross sections you 
have a problem with resonances. First of all. everytime you make a collision, 
you have got to find the maximum cross section. Secondly, if you happen to be 
in a resonance the cross sections may be very large, and unless you go to some 
other scheme in which you use fictious cross sections in some parts of the 
geometry and not in others, you have to track through the whole geometry with 
a huge cross section. 

Coveyou: I think Bending was talking about problems where there is no 
multiplication, where there isn't likely to be any uranium. 

Kalos: But there are some important resonances in my calcium. 

Bending: When we say that our code is a rather general Monte Carlo code, 
we are saying that it has general capabilities. We are not saying necessarily 
that our method is the only, or the best, or even a viable method for every 
conceivable Monte Carlo problem. I think one could certainly construct situa
tions in which the combination of geometry problems, and perhaps thermal track
ing problems and resonances are such that perhaps none of us can conceive of a 
viable route for solving them. In such situations we cannot contribute a 
great deal. We would like to feel that we are able to make a significant con
tribution to a wide range of problems, but not necessarily to every one. 

Gelbard: You mentioned something about thermal neutron scattering. Do 
you have a thermal neutron scattering treatment? 

Bending: No, we have a slot into which it could fit. We have space 
reserved for bivariate distributions. Now, the principal object in that space 
will be some sort of treatment of S(ci,B) thermal scattering. We have not as 
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yet done any coding to fit into that space, so we can't contribute to that one 
at the moment. 

Gelbard: You mentioned S(a,6) sampling and a number of other people have. 
Is it generally felt that this is very much superior to the use of a transfer 
matrix? It seems to me that the coding for a transfer matrix is much simpler, 
and I don't see that much advantage to the S(a,B) scheme, with its added 
complications. 

Bending: I can't comment on the technical virtues of S(a,6) sampling 
relative to a transfer matrix except to say that the philosophy of SPARTAN is 
that the code writer does not determine the physical laws which are contained 
in it. If a user wants us to write the code so that it can deal with S(a,6), 
then we will make it deal with S(a,B). If that makes it cost twice as much, 
then that is his problem. We obviously would look at alternatives, but we 
don't feel that it is right for the code's designer or programmer to specifi
cally decide against a particular method, and not make his code capable of 
using it. 

Gelbard: It struck me that your geometry treatment is very similar to 
MAGI'S combinatorial geometry package. I was wondering if anyone has any com
ment as to the relative merits of the two schemes? Is there any obvious advan
tage of one over the other? 

Kalos: I got the same impression, but I don't think that I could comment 
on the basis of Bending's presentation. One would have to ask a lot of techni
cal questions. 

Steinberg: The combinatorial geometry systems that we use in SAM-CE has 
been around for quite a while, and has undergone an extensive amount of develop
ment and shakeout. We have had a lot experience with it. In fact, as you men
tioned, you are putting it in VIM — people have put it into the Morse code. 
So that it has been used a lot and it has been proved out, and I suppose in 
that sense it has some advantages. I think that structurally the two schemes 
look very similar. I see no fundamental difference. The combinatorial package 
is there and has been shaken down; that is about all I can say. In fact, you 
can even make motion pictures with it. 

Kalos: We have been much more conservative, however, about adding higher-

degree surfaces. 

Bending: We have added these surfaces as a facility which is available. 
The code will find the proper roots in the proper places. The fact that we 
have added this facility does not imply that we necessarily recommend its use 
all that freely. As we have pointed out, there are cases where it may be 
needed, but at the same time we need to be aware of the time penalties in
volved in using that part of the system. 

BorcfWaldt: I am not so familiar with such types of geometry routines, 
can you say anymore about it? Is there any documentation on this combinatorial 
geometry? 

Bending: Yes. there is. 
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Borgwaldt: Fine, I'll see you later. 

Kalos: Briefly, there is a simple input, and there is a processing code 
which translates it into an organization of equations which must be solved. 
In current versions some of the topological data that you need to know about, 
the information that region 75 is on the other side of region 31, does not 
have to be specified as input. It is learned heurlstlcally in the course of 
running a Monte Carlo. The procedure is self-learning. 

Borgwaldt: I have another remark. If I use normal first- and second-
order surfaces, and the equations for them, then I have a means of finding out 
whether some input is complete nonsense because I have a failure mechanism. 
If one really wants to Introduce higher-order equations, can one find failure 
mechanisms which identify illegal surface equations? 

Steinberg: In the combinatorial geometry system, as we use it, there is 
nothing higher than second degree, so all our checking mechanisms have been 
based on second-degree equations. We have not Implemented the torus. I 
should mentioned that at MAGI we have one basic version and many specialized 
versions. Now, in the basic version, the torus does not exist. On the other 
hand, the torus has been Implemented in some of the special versions. The 
CHECKER code, for example, which was discussed at the last ANS meeting, in the 
basic version, is only dealing with the quadratic surfaces — quadratic and 
planar. 

Bending: In SPARTAN, to answer your question on behalf of the SPARTAN 
geometry system, there are three levels of checking. One is a check that the 
data are Internally self-consistent, and there are quite a few mistakes that 
one can make that will be picked up by the data checking routine and thrown 
back at you. Beyond that there are facilities for drawing pictures of the 
layout. These are relatively the same as the ones which were described in 
connection with MONK earlier. Ultimately, if you get into the situation which 
was mentioned earlier, of accidentally creating regions in space and then for
getting to say what material they contain or anything like that, you would 
get some type of failure during run time, and I think a failure is preferable 
to a wrong answer. The intention is that, to check for errors, one should use 
the facility for drawing out maps of the surface, of the layout as a whole. 

Coveyou: What happens if you have one of these illegal layouts and a 
particle never gets into it? 

Bending: It does not matter, in that case. You get the right answer. 
Nothing goes wrong: if you accidentally create a region for which you specify 
no parameters, nothing goes wrong until a particle happens to get into it. 
When it does, you'll get an error message from one of the geometry routines. 

Gelbcxrd: In the discussion of the error checking routine at the Phila
delphia ANS Meeting, the point was made that in the original combinatorial 
geometry package one could define a region multiply (i.e., a region could be 
Included separately in hwo different definitions) and that without the new 
checking capability, the code would not stop, that it would do something when 
it got to that region. Now, if the region is not defined, the code has got 
to stop, but if it is multiply defined, at least in this case it will not. 
Could that happen in SPARTAN? 
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Bending: If a region is multiply defined, in SPARTAN, one definition 
overrides the other one in a systematic way. There are circumstances in which 
the material in a given region may be specified twice, and if the definitions 
disagree, this would not be flagged as an error. One will always know which 
material was actually used by the code. 

Gelbard: In fact, it may not be an error; it may be a legitimate way to 
write input? 

Bending: 1 have regarded this as a legitimate way of presenting the 
input. 

Gelbard: Is this code Intended primarily for safety studies and for the 
study of radiation effects? 

Bending: These are two principal uses. I think probably the biggest 
area of usage we anticipate for the code will be in safety studies. We also 
hope that it will find a use in shielding calculations: not in regular shield
ing calculations on fairly straightforward geometries, for which we have 
already gotten capabilities elsewhere, but for particular shielding problems 
where the geometry is beyond the range of other codes. One thinks of deep 
penetration streaming calculations, for example, as typical of the sort of 
problem to which we may make a useful contribution. 

Gelbard: But it does seem to be true, as we pointed out before that there 
is relatively little use of Monte Carlo, generally, for critical calculations. 
Your code is not really primarily meant forcrltical calculations, and appa
rently there has not been much use for Monte Carlo in critical calculations. 
Is that fair to say of other installations? Whatever our own feelings may be. 
must we concede that Monte Carlo as a tool for analysis of criticals has so 
far not been very successful? 

Gcxst: I would just like to make a comment on the S(a.B) treatment in the 
thermal group. Following the suggestions Gelbard made while at Bettls, a sim
ple test program was written which had a complete continuum of exit energies 
and angles and sampled S(a,B). We compared results we got with this test 
code with those given by our standard treatment, in which we use a 25 x 25 
transfer matrix with P3 scattering. All this was done for hydrogen bound in 
water. We found, in a test problem which was much more severe than any we 
would normally encounter in a water lattice, that S(a,6) and the transfer 
matrix gave results, in this case, which were indistinguishable. 

Bending: This is interesting to note. In fact, the standard transfer 
matrix approach could probably be accommodated within our existing framework 
without extending our physical system at all, I think. 

Gelbcxrd: I would like to make one more comment before we leave the sub
ject. There seem to be several Monte Carlo codes which either use some form 
of thermal multi-energy treatment, or in which such a treatment is proposed. 
On the other hand we hear very little about the treatment of the epl-thermal 
band, and the proper treatment of epi-thermal neutrons is a fairly tricky 
business. The epi-thermal binding in water does have a significant effect on 
the flux spectrum up to 2, 3, and 4 eV, and this is sometimes important. So 
it seems to me that if you are going to go to the trouble of putting in a 
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thermal binding treatment of some sort, that it really would be necessary to 
make some sort of provision for binding in the epi-thermal range also. 

Kalos: I wanted to add a very simple-minded remark about geometry check
ing: namely that in complex situations (situations where, for example, you 
are dealing with multinomial surfaces) the device of picking a couple of 
points at random, tracking from one to another and then backwards, and then 
checking that you got back to where you came from, can be a powerful, though, 
naive scheme of data checking. 
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ABSTRACT 

The subject of random number generation is currently contro
versial. Differing opinions on this subject seem to stem from 
implicit or explicit differences in philosophy; in particular, 
from differing ideas concerning the role of probability in the 
real world of physical processes, electronic computers, and Monte 
Carlo calculations. 

An attempt is made here to reconcile these views. We pro
pose not to discuss the role of stochastic ideas in the real 
world, but rather to discuss their role in our mathematical 
models. In illustration of these ideas, we construct a mathe
matical model of the use of random number generators in Monte 
Carlo calculations, and use the analysis of this model to set up 
criteria for the comparison and evaluation of random number 
generators. 

INTRODUCTION 

It is not easy to understand why the design, used in Monte Carlo calcu
lations, and analysis of random number generators (RNG) is so hard to 
understand. Or, put another way, why it is so easy to understand in several 
different, and mutually inconsistent, ways. 

Nevertheless, the set of all expressed understandings of the subject 
slightly outnumbers the set of all workers who have devoted a significant 
amount of attention to it (people sometimes change their minds). 

It is my belief that some of the current variant opinions concerning the 
design and use, in Monte Carlo calculations, of RNG stem from equally variant 
opinions, explicit and implicit, conce.rning the wider question of the logic 
of the application of stochastic (indeed, any mathematical) methods to the 
analysis of physical (and other scientific) problems. 
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This is neither the time nor the place for an extended discussion of 
these wider questions. We will attempt to deal with them here only insofar 
as is necessary for the partial understanding of the subject at hand. 

The philosophical questions referred to here are those revolving around 
the relations between physical reality and our mathematical comprehension of 
this reality. Just what these relations really are, I do not pretend to know. 
And, so far as I can tell, the physicists don't really pretend to know either. 

Here, we can and must restrict ourselves to narrower issues. These 
issues are those which revolve around the relations between the physical 
realities which we seek to model in Monte Carlo calculations, and our mathe
matical models of these realities. 

Suppose that we wish to analyze some physical (or other) problem. Let 
us say that the problem is that of the effective prediction of the future 
behavior of some physical system. For whatever reason, we desire to use a 
stochastic model of the system in our analysis. It may well be that our 
choice is motivated by experience; that we know that stochastic models of 
systems similar to the system of interest have been effective in the past. 
Or it may be motivated by reasons of personal preference for stochastic 
models. The point is that the reasons for the choice of a stochastic model 
are not so much logical as aesthetic. 

So, we construct a mathematical model, of stochastic character, for the 
physical system which gives rise to our problem, and for its operation. This 
model takes the form of a probability space, each member of which is inter
preted as (a possible record of) a possible outcome of the operation of the 
system. There is a distinguished single member of the probability space, 
whose identity we may or may not know, which is interpreted as (the record of) 
the actual performance of the system. We may also interpret observations of 
the actual performance of the system as an effort to identify this distin
guished element, as precisely as is feasible. 

Having constructed our model, we decide, for whatever reason, to use the 
Monte Carlo method in our analysis (perhaps we wish to present our results 
at this meeting). 

Now, an actual Monte Carlo calculation is, itself, a physical process, 
involving the physical (and, sometimes, mental and emotional) behavior of 
computers; human, electronic, and other. Hence, discussion of the (stochas
tic or deterministic) character of the calculation is subject to much the 
same difficulties as before. These difficulties can be bypassed, if not 
resolved, by the same (model theoretic) technique. 

So, we here discuss, not actual Monte Carlo calculations, but mathemati
cal models of such calculations. And, in particular, a specific model for 
such calculations, chosen so that the properties of the RNG, used in Monte 
Carlo calculations, are emphasized in the analysis of the model. 
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THE MODEL 

We will base our analysis of RNG on consideration of their performance 
in the evaluation of definite integrals of integrable functions defined on 
the real unit interval and on higher-dimensional analogues of the unit 
interval. All of the results here can be and will be extended to evaluation 
of such integrals defined on compact separable abelian topological groups, 
which are the most general manageable by the methods here used. 

Let 

U = [ u e R : 0 < u < l ] 

denote the real unit interval, considered as a compact, separable, abelian 
topological group, with group operation ordinary addition (mod 1), furnished 
with Haar measure equivalent to ordinary Lebesque measure. 

For the positive integral n, let 

U" = fU^ = [Ul-••-,"„]: Uj e U; 1 < j < n] 

denote the n-dimensional real unit cube, furnished with appropriate alge
braic, topological, and measure theoretic paraphenalia. These too are as 
described above. 

Let n denote the space of all real (or complex) valued integralbe 
functions 

tu- U^ -• R: (i)(u) 

defined on U^. 

We will make Q into a probability space, in accordance with rules set 
down later. Then each u) e Q will be a random function. 

Definition: a random number generator (RNG) is (a procedure designed 
to produce) a sequence 

r{Yo.Yi,---,Y i-Yp-Y^^i--.], 

with each y. e U. 
J 

For specific ou, T, and positive integers N, let 
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1(a)) = / u)(u) du 

denote the integral of uj over u", and let 

N-l 

l(u),r,N) = I y (u(7j) 

N-l 

= N I '^(Yj.Yj+l,---,Yj^n.l) 
j=0 

denote the familiar Monte Carlo estimate of the integral of ui of sample size 
N firnished by the RNG r. 

Our interpretation of this model for the use of RNG in Monte Carlo 
calculations is that, being armed with a specific RNG r, we contract, given 
any function u) e Q, to provide an estimate I of the integral I of uj. 

We also assume that the functions uj, presented to us for estimate of 
their integrals, are chosen at random from the probability distribution we 
have imposed on Ci-

Of course, the specification of the model is not yet complete. We 
have not yet specified the required probability distribution on the space Cl 
of problems. 

For a really detailed analysis, it would be necessary to specify this 
distribution exactly. But it would not be wise to follow this course, since 
it would inevitably lead to the suspicion that the resulting judgments 
concerning the evaluation of specific RNG, or specific classes of RNG, 
would be quite sensitive to the choice of problem distribution, and would, 
possibly be quite different for different distributions. 

So, we will not specify the problem distribution in complete detail 
here. In fact, we will specify the problem distribution to that extent here, 
and to that extent only, that allows us to make some little progress with 
the analysis. 

So, we ask just what we need to know about the problem distribution 
before we can say anything meaningful about the comparison of RNG in the 
light of our chosen criterium of mean square error. 

Since we have allowed any sequence f to call itself a RNG, we must also 
set forth criteria which will serve to separate "good" RNG from "bad." It 
seems to me that a very natural figure of merit for specific RNG is furnished 
by the mean square error Qpj(r,n) 
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= <u) e fi: |l(i»),r,N) - I(n))l^) • 

An easy calculation yields that 

Qj,(r,n) 
N-l N-l 

ig y y /u) e n: UJ(YJ)«)(^)^ iJ" 
«' j=0 k=0 

+ / / /u) e n: (j)(u) u)(v)) du dv 

N-l N-l 

A (v., 
J' i I I (̂7j,7,) 

N 
j=0 k=0 

N-l 

j=0 Û  

+ / / A(u,v) du dv, 

if we assume the existence of the correlation function 

A(u,v) = l̂u e n: u)(u) (o(v)^ . 

It is quite natural to assume, as we do, that 

A(u,v) = A(u - v ) ; 

that is, that A is translation invariant. Then 

N-l W-1 

S.̂ '̂«) = b I I ^(YJ - y^) - j A(u) du. 
j=0 fe=0 u" 
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Therefore, in order to make some progress in our analysis, we explicitly 
make the following assumptions concerning the problem distribution, and for 
the moment, these only: 

For each u e u", (O) 

(̂U e n: (u(u))> = 0. 

These exists a function H) 

A: u" - R: A(u) 

such that, for each u and v in u", 

^U) e n: (ju(u) u)(u + v ) ^ = A(v). 

also, 

<̂ <« e n: |u)(u)|^^ = A(0) = 1. (2) 

It is known that, given an otherwise appropriate function A defined on 
Û  , the formal necessary and sufficient condition that A be the correlation 
(or covariance) function of a distribution of random functions defined on U^ 
is that, for each set of N points uj; 1 < j < N; oS U", and each set of N 
real constant 2, ; 1 < k < N, we have 

j=l k=l 

That is, A must be a real, positive definite, function defined on U^. 

The analysis thus far furnishes criteria for the comparison of RNG; it 
is natural to say that, of the two RNG r, and fi is preferable to r2 
iff Q(fi,ri) < Q(n,r2)- m ^^^^ case, of course, all we can yet say is that 
To with respect to the problem distribution Q. 

But another natural question, and one for which we must, if we can, pro
vide some sort of answer, is that of determining whether or not a specific 
RNG, of those RNG of u specific class, or the best ENG of u specific class 
may be regarded as satisfactory at all. 
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Now, it might seem natural to assume that the best RNG r are those 
which most clearly resemble a sequence formed by successive random indepen
dent choices from U" with probability distribution that specified by Haar (or 
Lebesque) measure. We will not find this to be true. But it does seem 
natural to define a RNG to be satisfactory if it is at least as good as the 
average such random sequence. 

Now this average is quite easily calculated to be 

1-/ A(u) du 

N 

and we can say that the RNG r is satisfactory (at least for sample size N, 
starting with u.) iff 

1-/ A(u) du 
J Q(n,r) < 

N 

DISCUSSION 

I have carried this analysis much further and, in particular, have 
carried out the indicated generalization to compact separable abelian groups, 
and have used the theory of harmonic analysis on such groups to get much 
more extensive results. 

In particular, I have some interesting results about periodic RNG. I 
have found quite strong evidence that periodic RNG whose output vectors fill 
a lattice (finite subgroup) of the unit cube may be very good RNG and, in 
particular, may be quite a bit better than the "random" RNG briefly dis
cussed above. I should also say that some are much worse! This has a bear
ing on the current, widespread, and, I think, unmotivated, distrust of such 
lattice filling periodic RNG. 
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DISCUSSION 

Gelbcxrd: Is it not true that the first objection to conventional random 
number generators came from Marsaglla, who was playing poker on the computer 
and found that he was losing consistently? Doesn't this suggest a significant 
defect in the generator? 

Kalos: It was dice! 

Coveyou: In Marsaglla's original paper, to which my paper on the Fourier 
analysis was a partial reply, he said that the conventional method was bad. 
Actually what he had found out was that this choice X = >^ is a very bad 
choice. It's bad because, while it makes two random consecutive numbers prac
tically independent, it makes three consecutive numbers almost completely 
dependent, in a very simple way. The fact is that each one of Marsaglla's 
examples (the first time he wrote about this subject) was a random number 
generator in which the choice of parameters was faulty and, the fact that it 
was faulty was known in the business at the time. What I did in my paper was 
to apply my test to each of the generators he had analyzed, and I found that 
my test predicted that they would be faulty. On the other hand, Marsaglla's 
test, a particular form of an x-square test that he used, showed nothing at 
all to be wrong with his generator. I said at the time that he had simply 
chosen random number generators that were not typical of the performance of 
the best congruential generators. If you chose the multiplier at random, 
your chance of getting a random number generator as bad as the ones that 
Marsaglla analyzed would be practically zero. 

Cashwell: There does seem to be something funny about Marsaglla's tests, 
because Whitesides said that with our generator he could not duplicate 
Marsaglla's results at all. He got good results. 

Kalos: Maybe he just had a bad run. 

Coveyou: Marsaglla had a bad congruential random number generator, and 
he simply assumed that he had a typical congruential random generator. He did 
not — he had a bad one. It was one which, at the time, people in the field 
knew was not good. In fact, it was not one — it was three or four like this 
that he tried. All of them had this characteristic. 

Gast: In his talk Coveyou discussed a figure of merit, q. which he used 
to test random number generators. Why isn't it sufficient to use the serial 
coefficient of various lags, directly, to test the quality of a random number 
generator? 

Coveyou: Because, as I pointed out yesterday, the serial correlation 
coefficient is not invariant under translations of the addend. Now, what that 
means is that effectively identical random number generators can have different 
correlation coefficients. This is a characteristic of correlation coefficients 
of lag 1, and all other lags for that matter. This fact was first pointed out 
in Berger Johnson's book. He didn't stress it, but he did point out that the 
serial correlation coefficient is distinctly not a good test. It is a good 
test in the sense that, if a random number generator has a high serial corre
lation coefficient, then it is not a good generator. However, a random number 
generator that is not good can also have a low serial correlation coefficient. 
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Indeed it has been suggested (and I was guilty of making the suggestion) that 
you can reduce the serial correlation coefficient of an additive, linear, con
gruential random number generator simply by changing the addend. In fact, 
there is a choice for the addend that actually makes the serial correlation 
coefficient very small and Berger Johnson pointed out that changing the addend 
does not change the distribution of the pairs or triplets at all. Without 
actually going through the mathematics it is a little difficult to see how this 
can happen: but it does happen, and therefore the serial correlation coeffi
cient is just not a complete description of the correlation. 

Kalos: But it must be true that the amount by which the serial correla
tion coefficient can be changed by this translation is bounded. 

Cashwell: Yes. 

Kalos: If you know that they are bounded, you know that serial correla
tion coefficients below some value are all equally good. So if you use this 
Information and try to make as many serial correlation coefficients as small 
as possible, that sounds like a sensible test. 

Coveyou: Perhaps it could be. Maybe you can actually exploit this fact 
I talked about by essentially adjusting the addend not to make the serial cor
relation coefficient as small as possible, but to make it as large as possible. 
The maximized correlation coefficients might be used as a test for the original 
random number generator. You wouldn't actually use the random number generator 
that you constructed to have as high a correlation as possible. You just use 
it as an example of this whole class of generators which really all have the 
same distribution of pairs and triplets. 

Kalos: But what you are telling us is that minimum serial correlation 
coefficient is not the right criterion. 

Coveyou: Right. 

Kalos: But at the same time there is a bound which you ought to attain, 
if the generator is any good. 

Coveyou: Yes. that is true. 

Kalos: So I think that you dismissed Cast's suggestion a little bit too 
quickly. 

Borgwaldt: I have heard the argument, in connection with application of 
random nimiber generators, that the main point is the character of the problem 
that you are treating. In other words, that a well-behaved problem will get 
along with a bad random number generator, if one could specify what a bad ran
dom number generator is. Now, I would say that if this is true, and if one 
can say whether a problem is well behaved or not, that this should enter into 
your definition of a probability space. Badly behaved problems should have 
very low measure in your probability space. Could you comment on the defini
tion of the probability space, R, which-you introduced. I think you skipped 
some Important points in your argument at that time. 



Coveyou: Well, what I have to say about such an approach is this. I am 
thinking about doing large Monte Carlo calculations on computers, and I believe 
that the only reasonable choice for my purpose is a random number generator 
that is. generally.essentially as good as you can make it. In point of fact. 
I do not agree with the argument. It is true that, in certain problems, you 
can afford a sloppy random number generator, but, I do not think that should 
be relevant. The point is that one thing that we all do not want to do is to 
wonder, everytime we do a Monte Carlo calculation, what random number genera
tor we can get away with. The Monte Carlo user wants a generator he can depend 
upon. 

Kalos: I would like to make two comments: An example, an amusing exam
ple, of a situation in which you can get away with a sloppy random number 
generator is a linear transport problem in which Importance sampling has been 
carried out to the ultimate so that, in fact, you use a zero variance estima
tion procedure. Then the answer is the same. Independent of what random num
ber you use. Independent of all properties of the random generator. Thus, in 
some sense you can get away with sloppy random number generation. The second 
remark is that I assume that everybody does soluble test problems, from time 
to time, of a general character. One such problem, for example, is the linear 
straight-ahead model Boltzman equation. One solves such a problem and looks 
for the right answer. And one does a few Integrals here and there to make 
sure he gets the right answer for those Integrals. You don't tell your friends 
about this, but you want to make sure that, as installed and as you use it, 
your random number generator can be relied upon. 

Coveyou: I think that is probably correct, the right way to do business. 
But I suspect that, when people do this, they are not particularly thinking 
about the random number generator. They ary thinking about the logic of their 
Monte Carlo code. 

Gelbard: Yes, I think that you are agreeing that you would like a random 
nimiber generator that you can rely on even when ̂ ou are doing rather peculiar, 
over-simplified problems, in which the systematics of the generator might be
come Important; I think that was Kalos' point. 

Coveyou: I should have mentioned further, the magnitudes of the errors 
we are talking about. Let me be more specific. If you choose the multiplier 
at random, then the largest magnitude you expect in the mean square error is 
proportional to 1/vp for a randomly chosen random number generator, and that 
means that the errors Introduced by the random number generator, unless it is 
very bad, are quite small. In fact they are, in almost every case, far smal
ler than the statistical error of the calculation. 

Borgwaldt: Well, I must come back again to the problem of specification. 
A random number generator which creates random numbers between zero and one 
may have a period of p or p over four. But, if I use this random number gene
rator in a specific problem, and call it up in different situations, I will 
not get this period, but a period which is considerably larger. At one time, 
for example, we used the following system. We used one random number genera
tor to drive four secondary random generators for exponential distribution, 
isotropic angular distribution and so on. Each was initialized by a separate 
initial random number. But then we found that there was a big advantage in 
having all of these random number generators driven by one primary generator. 



130 

and this should, according to my understanding, give a period which is far 
higher than that of the fundamental random number generator with a period of 
p over four. Is that right? 

Coveyou: But my one comment is that the fact that the random number gene
rator is periodic, and the magnitude of the period, are just simply not rele
vant to Monte Carlo problems. Perhaps I should make an exception of very 
extensive Monte Carlo calculations done on the IBM-360 with a single precision 
random number generator. There the period is a billion. For almost every 
other machine it is far higher than that. It is just not relevant what that 
period is; it is just too big already. 

Kalos: As I understand the comment, there is a conjecture that when you 
go through the period, and come back to the same random numbers, they are be
ing used for a different purpose, so that the period does not matter. 

Coveyou: I agree with that. 

Kalos: However, that strikes me as being something that I would not want 
to rely on. It is perfectly possible, but I don't want to rely upon it. I 
suggest, for everybody who is engaged in this sort of work, the following cal
culation that I make. Consider the period of the random number generator you 
have, and suppose that your machine is generating nothing but random numbers 
as fast as it can generate random numbers. On the 6600 in assembly language, 
since there are two multipliers and there is an Instruction which generates 
one random number, you can generate random numbers at the rate of two per 
microsecond. If you write a little program, an assembly language program, to 
generate the whole sequence of random numbers, it will repeat itself after a 
year. So you run your 6600 for a year doing nothing but generating random 
numbers before you exhaust the period. I was somewhat reassured by that. On 
the 7600 the calculation was a little bit harder because of the fact that the 
multiplier is pipelined; exactly what the cycle time is, I do not know, but 
it is the order of months. Now, you should do that calculation with your 
IBM-360 using, I would hope, a double precision generator. 

Coveyou: A double precision generator on the IBM-360 would last forever. 
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ABSTRACT 

An exposition and extension is given of some work of M. Bell 
at CERN. involving the construction of a radially symmetric prob
ability density in the plane which has a given marginal density. 
The problem is of Importance in certain Monte Carlo procedures. 
While our results are more extensive and precise, the crucial step 
relies on a remarkable Integral transform discovered by Bell. 

INTRODUCTION 

Let Y be the set of all strictly decreasing functions y(r) on the inter
val [O.R]. with y(0) = 1, y(R) = 0, which are of class C^ on (0,R), and F the 
set of continuous functions f(r) > 0 on (0,R), not identically zero on any 
subinterval, with 

R 

I 2Trr f(r) dr = 1 . (1) 

0 

The functions f(r) of F define a class of radially symmetric densities 
p(x.y) = f(/ x2 + y2) on the circle C = {(x,y); x^ + y2 < R2}. in particular 
It follows from Eq. (1) that 

2ir R 

I I f(/x2 + y2) dxdy = I I f(r)rdrde = 1 . (2) 

C 0 0 

Let P be the set of all marginal densities 

r / R 2 - x 2 ^ 
p(x) = 2 I f ( / x 2 + y2)dy (3) 

0 
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on (-R.R) for the functions f(r) of F. Finally, define Y* as the set of all 
functions y*(r) on [O.R] arising from the marginal densities p(x) of P by way 
of the integral transform 

r/R2 - r2 
y*(r) = 2 p ( / r 2 + x2)dx . (4) 

0 

This transform, which has the appearance of a marginal density, was introduced 
and exploited by M. Bell [1]. and is the key to all that follows. 

Now consider the mappings 

y(r) ->• f (r) - p(x) - y*(r) (5) 

for these sets Y. F, P, Y*. defined respectively by 

f (r) •= - - dy/dr2 ; 0 < r < R (6) 

and Eqs. (3) and (4). It is shown below that y*(r) = y(r) for every y(r) in 
Y. and that all three of the correspondences in (5) are one-to-one. and 
onto all of the sets F. P, Y* respectively. 

It follows that a given marginal density p(x) uniquely determines Its 
radially symmetric density f(r). It is also proved that a given continuous 
density p(x) on (-R,R), which is an even function, not zero on any subinter
val, is Indeed the marginal density of some f(r) of F if and only if its Bell 
transform y (r) defined by Eq. (4) is strictly decreasing and of class Cl on 
(0,R). The unique f(r) for such a density p(x) is then explicitly construct-
ible via the mappings of (5), in the order 

p(x) -> y*(r) H y(r) - f (r) (7) 

THE MAPPING y(r) ->• f (r) 

We consider as basic here the more familiar correspondence f(r) •* y(r) 
defined on F to Y by the relation 

1. 

I 2Trf y(r) "=1 - 2Trf (r)rdr ; 0 < r < R (8) 
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where the integral is simply the distribution function of the density 
2TTf (r)r on (0,R). and y. or 1 - y. plays the role of the random number in 
straightforward Monte Carlo sampling of this radial density for r on (O.R). 

Theorem 1 

The correspondence f (r) ->• y(r) defined by Eq. (8) is one-one on F to all 
of Y, its inverse y(r) -> f (r) being given by the relation 

f(r) = - - dy/dr2 ; 0 < r < R . (9) 

Proof: (a) The function y(r) in Eq. (8) is well defined on [O.R]. with 
y(0) = 1. y(R) = 0, and of class C^ on (O.R). since f(r) is continuous, with 
Integral (1); moreover y(r) is strictly decreasing since f(r) > 0 and not zero 
on any subinterval. Hence y(r) is in the set Y. (b) The correspondence is 
one-to-one, since f -<• y and g -*• y Implies by Eq. (8) that 

f(r)rdr E g(r)rdr . (10) 

Differentiation in Eq. (10) shows that f(r)r = g(r)r and hence f(r) = g(r) on 
(O.R). (c) The mapping (8) carries F onto all of Y. In fact, if y(r) is a 
given function in Y. then the function (6), namely 

f (r) s - -i dy/dr2 

Is well defined and continuous on (O.R) since y(r) is of class cl; f(r) > 0 
and not zero on any interval since y(r) is strictly decreasing; finally we 
verify the Integral property (1). 

R R R 

j 2Trf(r)rdr = - J (dy/dr2) (2rdr) = - j (dy/dr)dr = y(0) - y(R) 

1 - 0 

Hence the f(r) so defined is in F. Finally, we see that this f(r) maps into 
the given y(r) under (8). and therefore that Eq. (6) defines the mapping y(r) 
+ f(r) which is inverse to f(r) ->• y(r). In fact, we have for r on [O.R]. 



r r r 

0 0 b 

r r r 
1 - I 2Trf (r)rdr = 1 + 1 (dy/dr2)2rdr = 1 + f (dy/dr)dr 

- 1 + y(r) - y(0) = y ( r ) . 

THE ITERATED MAPPING y -»• f ->• p -• y* 

It is obvious by definition that the correspondences f -*• p and p -̂  y* 
given by Eqs. (3) and (4) are respectively on F to all of P, and on P to all 
of Y*. The remarkable transform (4) now serves to show that, in the iterated 
mapping (5), namely 

y(r) - f(r) -t p(x) ->- y*(r) 

we have actually come full circle. 

Theorem 2 

The correspondence (5) takes Y into Y Identically, i.e.. y*(r) = y(r) 
for every y(r) oi_ Y, and hence Y* = Y. In fact, under the mapping 

f (r) - p(x) - y'*(r) (11) 

% 
It appears that 

r 

y*(r) - 1 - J 2Trf(r)rdr = y ( r ) ; 0 < r < R . (12) 

0 

Moreover, all three of the correspondences in (5) are one-to-one and onto all 
of the sets F, P, Y*, respectively. 

Proof: Evaluation of y (r) in terms of f(r) via the mapping (11) shows 
that 
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, / R 2 - r 2 
y*(r) = 2 p ( / r 2 + x2)dx 

r /R2 - r2 I-/ R2 - (r2 + x2) 
2 dx 2 f ( / ( r2 + x2) + y2)dy 

0 0 

> r ^ 2 ~ l ^ 
= 4 dx f ( / r 2 + (x2 + y2))dy 

0 0 

where we have set the constant R2 - r2 = b2 temporarily. We thus obtain an 
integral over the circle x2 + y2 < b2 in the first quadrant, and introducing 
polar coordinates via the transformation 

X = p cos ' 

y = p sin 

shows that 

Illl b 

y*(r) = 4 j I f(/r2 + p2)pdpde 

0 0 

r/ R2 - r2 
= TT f (/ r2 + p2)2pdp 

0 

Changing from p to the variable s = / r 2 + p2 then yields 

R r 

y*(r) = j 2TTf(s)sds = 1 " f 2TTf(s)sds = y(r) , 

r 0 
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as characterized In terms of f by Eq. (8). We have still to show that the 
two correspondences in (II) are one-to-one. This will follow at once if we 
prove that the net mapping f(r) ->• y*(r) induced by (11) is one-to-one. But 
this is obvious from Eq. (12). since f(r) ->• y(r) is one-to-one by Theorem 1. 

Corollary 1 

A given density p(x) oii (-R.R) which is in fact a marginal density of 
some f(r) ̂  F. uniquely determines its source density f(r) via the corre
spondences 

p(x) rt y*(r) E y(r) - f (r) 

in the explicit form 

tc s I d f (r) = 2 
TT d r 

r/R2 - r2 
2 p ( / r 2 + x2)dx 

. 0 

(13) 

which thus provides the Inverse of the mapping f(r) -*• p(x). 

Proof: The result follows from Theorem 2. using the relations (4) and 
(6). 

The formula (13) is due to Bell [1]. 

DENSITIES WHICH ARE INDEED MARGJNAL DENSITIES 

A density p(x) on (-R.R) which is in fact a marginal density of some 
f(r) in F certainly belongs to the set E of continuous even functions e(x) on 
(-R.R) with e(x) > 0. not zero on any subinterval, and of course having 

e(x)dx 

We have seen in Corollary 1 how the ancestral density f(r) may be constructed 
for a density p(x) known to be marginal. There remains the problem of 
determining which functions e(x) of the set E are actually marginal densities. 
An answer is provided by 
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Theorem 3 

A denslty_e(x) of the set E is a marginal density in P if and only if 
its transform y(r), defined on [O.R] b^ 

r/R2 
y(r) = 2 e ( / r 2 + x2)dx (14) 

0 

Is strictly decreasing and of class C^ on̂  (O.R). 

Proof: If e(x) is in P. its transform y(r) in Eq. (14) coincides with 
its transform y*(r) in Eq. (4) which we know is in the set Y* = Y by Theorem 
2. Hence y(r) is decreasing and of class C^ on (O.R) by definition of Y. 
Conversely, suppose y(r) in Eq. (14) has the stipulated properties, for a 
given function e(x) in the set E. Then clearly y(r) is Itself in the set Y. 
since y(0) = 1 and 5(R) = 0 by (14). We may therefore define for this y of Y 

' ' '" i.e., with 

y(r) + f (r) -> p(x) - y'*(r) . 

By Theorem 2, this implies y*(r) = y(r) and hence we should have 

f/R2 - r2 r/R2 - r2 
p ( / r 2 + x2)dx E e ( / r 2 + x2)dx (15) 

where p(x) is in P. Now the even densities p(x) and e(x) on (-R.R) may be 
regarded as defining radial functions p(r) and e(r) on (O.R), and hence when 
suitably renormed to satisfy the requirement (1), as functions in the set F. 
But then Eq. (15) asserts that the radial densities so defined have a coimnon 
marginal density, and we know from the one-to-one character of the mapping 
f(r) •* p(x) proved in Theorem 2, that this Implies p(r) E e(r) on (0,R), and 
hence p(x) E e(x) on (-R,R), since both are even functions. Hence e(x) is 
indeed in the set P of marginal densities. 

For example. Theorem 3 shows that the functions e(x) = 1/TT(1 - x2) 
and e(x) = 3 x2 of the set E (R = 1) are not marginal densities. (Note that 

both are increasing on (0,1)). The former has the transform y(r) E 1. while 
the latter has a non-monotone y(r) = 3r2(l - r2)l/2 + (i _ ,-2)3/2̂  with a 
maximum at r = l/v'z . 

The test of Theorem 3 may be difficult to apply in practice, and simpler 
criteria are desirable. A trivial sufficient condition may be mentioned. 



Corollary 2 

A density e(x) of̂  E, of class Ĉ- on (0,R), is a marginal density In P 
provided e(x) is non-increasing on (0,R). 

Proof: For 0 < r < s < R, one has 

r/R2 - r2 f/R2 - s2 
J ?(r) = I e(/r2 + x2)dx > e(/r2 + x2)dx 

0 0 

r/R2-82 
> e(/ s2 + x2)dx = J y(s) 

0 

and the result follows from Theorem 3. 

Examples 1 and 2 below exhibit marginal densities which are respectively 
strictly decreasing, and constant, in accord with Corollary 2, while Examples 
3 and 4, displaying such densities which are non-monotone and even strictly 
Increasing, show that the sufficient condition of the Corollary is far from 
necessary. 

SOME EXAMPLES 

We Include here some examples (for the case R = 1) which Illustrate 
various features of the mappings (5). ^ 

Example 1 

y ( r ) = 1 - r2 ->• f ( r ) = 1/TI -t p(x) - f (1 " x 2 ) l / 2 ^ y*(r ) . i _ r2 

" y(r); p(x) decreasing on (0,1). 

Example 2 

y(r) = (1 - r2)l/2 -t f(r) = I/2Tr(I - r2)l/2 -t p(x) = 1/2 - y*(r) - y(r); 

p(x) constant. 

Example 3 

y ( r ) = 1 - r« ^ f ( r ) - f r2 -> p(x) = ^ x 2 ( l - x2)^'^ + | (1 - x2)^^^} 

"*• y*(r') = y ( r ) ; p(x) non-monotone on ( 0 . 1 ) , maximum a t x = lli/I , 
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Example 4 

y(r) = I (1 - r2)^/2 ^j + r2) -* f (r) - 3r2/4TT(l - r2)^/2 ̂  p^^^ 

= I (1 + x2) -V y*(r) = y(r). p(x) increasing on (0,1). 

Note that all four functions p(x) necessarily have decreasing transforms 
y*(r). 

The construction of f(r) from p(x) by the formula (13) is easily verified 
in the above cases. 

THE INFINITE CASE R = " 

The previous results for the case of radially symmetric densities on the 
circle of finite radius R extend in an obvious way to such densities defined 
on the infinite plane, and indeed with simpler underlying formulas. Rather 
than repeat the steps in a formal way, we simply state the analogous methods 
without proof. 

We now take for Y and F the sets defined above with R replaced by °°; P is 
then the set of marginal densities 

p(x) = 2 f(/x2 + y2)dy 

on (- "o,"") for the radial function f(r) of F, and Y* the set of Bell trans
forms 

y'*(r) = 2 j p(/r2 + x2)dx 

on [0,°») arising from the densities p(x) in P. The mappings (5). 

y(r) - f (r) ̂  p(x) - y*(r) 

are defined as before with (5) unchanged. 

Theorem 1 on the correspondence y(r) ->• f(r) then applies verbatim, as 
does Theorem 2 on the Iterated mapping (5). 
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The analogue of Corollary 1 gives the inverse of the mapping f(r) ->• p(x) 
in the form 

f ('̂> • - 7 d ^ 2 j p(/r2 + x2)dj 
(16) 

and provides the construction of the (unique) radial density with a given 
marginal density p(x) on (-","). 

A density e(x) of the set E, defined as before with R replaced by "», 
is found to be a marginal density iff its Bell transform 

y(r) = 2 e(/r2 + x2)dx ; 0 < 

is strictly decreasing and of class ci on (0.<»). just as in Theorem 3, and 
the non-increasing property on (O,") of a class C^ function e(x) suffices to 
identify it as a marginal density. 

We conclude with two illustrations of Eq. (16). 

Example 5 

For the normal dens i ty 

, , 1 -x2/2 
p(x) = - — e 

/2Tr 

1 -r2/2 
on (-",'»), (16) yields the ancestral radial density f(r) - -r— e on (0,<») 

(it had better!), with the accompanying density 

p(x.y) - f(/x2 + y2) = i e 

x2+y2 

on the entire plane. 
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Example 6 

From (16). one finds that the Cauchy density p(x) = 1/TT(1 + x2) on 
(-'»,'») is the marginal density of the less well known radial function 
f(r) - 1/2TT(1 + r2)3/2 . 

Note that the functions p(x) in both examples have decreasing Bell trans
forms on (0,<»), as required by Theorem 3. 
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DISCUSSION 

Kalos: It looks to me as though the problem that was originally put was 
that of inferring the radial distribution of some quantity from measured line 
integrals. Is that correct? If you have, for example, a plasma which is 
known to be radially syiranetric and you measure the density, with a laser for 
example, along a line, then p of x is precisely such a line integral. You now 
are asked to infer the radial distribution of the density of the plasma, which 
is the y or r. So this is the sort of problem you are talking about. Now 
this problem is one that I have been acquainted with for a long time. Some
time around 1960 a mathematician by the name of Mort Slater solved a more gene
ral problem, which I don't think he was the first one to solve. The problem 
can be formulated as follows: x and y have some unknown distribution, p of x 
and y. Given the ability to measure line Integrals as a function of distance 
of closest approach and angle, how do you infer p of x and y? He showed that 
it was possible to do this, and that the solution involves an Able Integral 
equation. So there is still more that can be done with the problem you posed. 
I don't think that his proof was as elegant and as clearcut as yours, but there 
is more here to be mined. 

Cashwell: Well, I am glad that you told me because obviously, with a 
result like ours, we certainly felt there had to be a lot of work that had been 
done on this problem, work that we were not aware df. Our analysis started, 
simply, as an attempt to understand what went on in the Bell paper. This was 
done by Slater? 

Kalos: Slater, Mort Slater. I don't know if he published this in any 
mathematical journal. I know of Slater's work only through a memorandum at 
United Nuclear Corporation. It was made the basis of a device for measuring 
densities by gamma-ray transmission, and was actually applied to the measure
ment of the density distribution of space capsules. 

Cas'hwell: I see, very Interesting. . 

Coveyou: The radial distributions you are talking about here are in two 
dimensions? 

Caehuell: Two dimensions, right. 

Coveyou: I am going to stick my neck out here. Can you find any one-
dimensional distribution which is not a marginal of a radial distribution? I 
have a feeling that any one-dimensional function which is a distribution is 
the marginal distribution of some radial distribution, and I think that is 
true regardless of the number of dimensions. 

Cashwell: You don't believe my necessary and sufficient conditions? 

Coveyou: No, I think that you could find a case where they were not 
satisfied. 

Cashwell: But there are examples in my paper. 

Coveyou: Examples of one-dimensional distributions which are not margi
nal distributions of any radial distribution? My original intuitive feeling 
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is that simply any one-dimensional distribution (any one-dimensional distribu
tion that is symmetric, of course) has got to be the marginal of some radial 
distribution. Now you can find functions which do not satisfy your condition, 
but are they distribution functions? 

Cashwell: Can you produce the radial distribution for any given one-
dimensional function? 

Coveyou: I think I can write down a formula for it. In fact. I suspect 
that more than this is true, that if you take any two dimension numbers, one 
smaller than the other, and take a distribution in the smaller-dimensional 
space, then you can represent it as a marginal distribution of a radial dis
tribution in the larger dimensional space. I don't see how it can fall. I 
think you can write down a formula for it. 

Cashwell: I would be very Interested in seeing it. 

Coveyou: Another coiranent is that I think this has been done in one 
dimension versus three. Isn't this what is usually called the Blizzard 
transform, or something of the sort? And I believe that case, the transfor
mation from one dimension to three dimension, is discussed in Feller. I 
think I have seen it there, either that or something that is very closely 
related. 

Kalos: Suppose the one-dimensional function is 0 at the origin and rises 
as X Increases. How can that be the marginal distribution of a radial distri
bution function? It is out of the question. 

Coveyou: The density may have to be decreasing. 

Kalos: That is right. 

Summary of Subsequent Discussion: Cashwell pointed out, and discussed, 
counterexamples in his paper, i.e. examples of one-dimensional distribution 
functions which are marginal distributions of any radial distribution. 

Gelbard: I am curious whether Bell said anything about where he encoun
tered this problem? 

Cas'hwell: Very little is said in the paper but it is apparently in con
nection with a beam of particles. 

Gelbard: That is essentially what Mai Kalos said. 

Cashwell: It is what Kalos said. They had a projected density and wanted 
to infer the radial density function. 

Gelbard: Dr. Borgwaldt wanted to make some points on another subject. 

Borgwaldt: Bob Gast asked to hear from other people how they are dealing 
with the eigenfunction strategy. I will try to explain the scheme we are imple
menting now. We have decided to have a fixed, rather small, number of fission 
neutron sites with varying weight. I think that, if we had a stochastic 
operator, we could perform an eigenfunction iteration with a single neutron. 



Now, our operator is not stochastic, so what we are trying to do is to modify 
the operator in such a fashion as to give it a more stochastic character. We 
are trying to decouple the source iteration procedure from the estimation pro
cedure. We are trying to develop an estimation procedure which uses each 
source neutron site once, and only once as a contributor to an estimate, and 
to estimate errors along the lines which Kalos has explained. The source itera
tion procedure we are developing is a random walk in a 4 x n dimensional space, 
where n is the number of the fission neutron sites and 4 is the number of the 
coordinates. This random walk procedure is formulated as a controlled proce
dure where the control parameter is the sum of the neutron weights. We try to 
control this process in such a fashion that the total neutron weight of these 
n fission neutrons is equal to one. And, on the other hand, we try to formu
late the process in such a fashion that this control of the neutron weights 
will not lead to a bias which is higher than that which we can tolerate. The 
control procedure will hopefully show when the neutron number in our calcula
tion is too small, because then the controller will hunt. We are using a 
limited controller which will warn us when the requirements for control are 
too high on account of the low number of neutrons. Essentially what we are 
doing is this. If we have, let us say, 100 neutrons, we start them one after 
another. If 85 neutrons are sufficient to create a new generation of IOO new 
source sites, then we prevent the remaining 15 neutrons from creating progeny, 
but they are used for the estimation procedure. The difference between these 
numbers, 100 and 85, is used to create a new weight for the following neutron 
generation, for giving a weight to the new generation. On the other hand, if 
we start the 100 neutrons and still have a deficit in progeny, we start a few 
neutrons a second time. These additional starters are not used for the esti
mation procedure, but only for creating progeny. We hope to be able to prove 
that this scheme will have a bias which is a second-order effect, that the 
first-order effect will cancel out. The implementation has not yet been com
pleted. Our first tests show that this method works quite nicely, but I still 
have to add some minor corrections. The complete scheme which will guarantee 
that each neutron is used once and only once, for estimation is not yet in 
operation, but our remaining problems are simply programming problems. 

Kalos: By a second-order bias you mean a bias that is of order 1/n^? Is 
that right? 

Borgwaldt: Yes. 

Kalos: That would be very nice. 

Gelbcxrd: But you don't mean to assert that your scheme would be unbiased 
in the limit where you used only one history per generation? 

Borgwaldt: I would say that one cannot use such a scheme on a one-neutron 
basis. That is clear. But I believe that with such a procedure the number of 
neutrons can be significantly smaller than the 500 neutrons mentioned by Gast. 
But I must concede that the situation in a large thermal reactor is different 
from the situation in a fast reactor. We are thinking about 50 to 100 neutrons 
per generation in fast criticals, like the ZPR-348, for example. 
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ABSTRACT 

The coarse-mesh rebalance method is adopted for Monte Carlo 
schemes for aiming at accelerating the convergence of a source 
iteration process. At every completion of the Monte Carlo game 
for one batch of neutron histories, the scaling factor for the 
neutron flux is calculated to achieve the neutron balance in each 
coarse-mesh zone into which the total system is divided. This 
rebalance factor is multiplied te the weight of each fission source 
neutron in the coarse-mesh zone for playing the next Monte Carlo 
game. 

The numerical examples have shown that the coarse-mesh 
rebalance Monte Carlo calculation gives a good estimate of the 
eigenvalue already after several batches with a negligible extra 
computer time compared to the standard Monte Carlo. 

INTRODUCTION 

The Monte Carlo method has recently become more and more to play an 
important role in a wide field of theoretical studies of reactor physics 
because of the developinent of the computer softwares and hardwares. In 
addition, it gives a benchmark to check other mathematical models as well 
as the physics data attached to them. This tool is, however, not yet 
handled as skilfully as one might do, mainly due to a large calculation 
time required for obtaining the result within a reasonably snail statistical 
error. To improve this situation, an effort will be required for developing 
further new biasing methods and their theoretical foundations, as well as 
practical methods for obtaining usable sampling functions [1]. 

In eigenvalue problems, also the acceleration of the convergence rate 
of iterative processes is essential for enlarging the range of applicability 
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of the method. This situation is the same as for deterministic methods for 
which the outer or source iterations are required for solving problems. An 
acceleration algorithm of iteration processes having been developed for 
deterministic methods can therefore be applied in principle also to Monte 
Carlo calculations with iterative batch processes. 

CONVERGENCE ACCELERATION ALGORITHMS 

Many acceleration techniques have been suggested for use with iterative 
deterministic methods for solving the steady state transport equation. The 
Chebychev acceleration is used most often in one-dimensional problems and is 
usually quite effective. In two-dimensional geometries, however, the 
technique is less satisfactory by reasons which are not throughly understood. 
The most effective acceleration method is generally the coarse-mesh rebalance 
method though there are problems for which the use of this technique leads to 
an unstable algorithm. The synthetic method as an acceleration technique has 
similar characteristics and these two methods are in fact equivalent, 
provided that the balance equation is used as a low-order equation for the 
synthetic algorithm [2]. 

For applying the acceleration algorithm of the outer iterations to the 
Monte Carlo method, consideration should be taken not to consume an extra 
time for executing the algorithm in computer codes. This suggests that the 
coarse-mesh acceleration technique is most suited to the Monte Carlo calcu
lation, if the homogeneous regions of the reactor system are chosen as coarse-
mesh zones. 

The source iteration mtthod can be written in the form: 

% 
where jL stands for the angular flux at the 7i-th outer iteration. The low-
order equation to it is a balance equation written as 

?- CD ^ < CD (2) 

For practical applications, the source operator S can be assimied to be 
isotropic and hence 5*4̂ .̂  depends only on the scalar flux 'fL. The geometrical 
system is divided into the coarse-mesh zones and the transport equation is 
integrated over all directions and over a coarse-mesh zone. The resulting 
equations, one for each coarse-mesh zone, involve the scalar fluxes within 
the coarse-mesh zone and the currents across the coarse-mesh boundaries: 

I(r)=)(^l2(J2-n)ya51). (3) 
Therefore, a low-order approximation to the equation for the scalar flux ^ 
i^ sought instead o^Eq.(l) for y . Upon assuming that an approximation 
cp (and therefore <P„ ) is available and the flux shape within a coarse-mesh 
zone is that of ̂  , thejj the additional assumpt^ion that the current obtained 
from a relationship of < ^ must match ICr^from <p leads to a set of equations 



for the flux amplitude or a set of balance equations. ri^ 
The iteration proceeds as follows. Given ̂ (therefore S * ^ ) . ̂ ^ i8=then 

obtained from 

L%-S%. (4; 
The currents i(T) are computed from appropriate integrals of X, . A set of 
balance equations are formulated for these fluxes and currents, and the 
scalar flux 'f̂ ĵ is obtained by solving these equations. 

APPLICATION OF COARSE-MESH REBALANCE METHOD 

Since in Monte Carlo games neutrons crossing the boundaries between 
different media are sampled for the determination of their flight distances, 
the homogeneous regions can conveniently be chosen as the coarse-mesh zones. 
The balance equation for obtaining the scale factor^ , by which all fluxes 
in the region £ are multiplied to insure the neutron oalance, may then be 
written as 

I rf;((̂ URV^AB)/(SD;̂ ]KQQ)̂ ^̂ 4CCUR\.̂ ^ (5) 
where, upon denoting the weight of the-^-th history neutron at the I-th 
collision point by "[K;. 

/^TTfp'A _ •5'5'TTT-t''.^ . the total neutron current across the 
^t'U/Vy^^^^ jpl • '̂ ^̂ j ' boundary from the region^ to ^' , 

1 

3f neutrons absorbed 

(^r))~y^JU tbe total number of neutrons slowed down tSow the 
•X iT '^•^ ' cut-off energy in the region / (J stands for the 

last collision number for the-^-th history neutron), 

( Q Q 2 ~ t h e total number of fission source neutrons for the region/, 
X which is normalized as 

•^(QQl-(the total number of histories for the present batch, H ) 
'^ * K (initial weight of each source neutron,]y) = 1. 

The source term can be rewritten as 
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where (FS2~^2r(v2^/Xt^/iTO^, > the total number of fission neutrons 
'^ '"' i ^ i produced in the region^. 

In this case, a source iteration is required for determining the rebalance 
factors and it gives a better estimate of the eigenvalue -%M. 

Equation (5) is solved by using a forward elimination aMd backward 
substitution [3]. In one-dimensional geometries, for example, by assuming 

(7) 

where (FLX is the total neutron current crossing leftwards the left boundary 
of the region ^ from the £ to (i-Q-fn region, and CFI?)tf+( is the current 
crossing rightwards the right boundary o f ^ from jl to ̂ +f , the set of Eq. (5) 
can be rewritten as 

-^2 a^ -A 
0 

0 ^<^^-4 
-Ct a 

L-l 

L' 4. IQO.J 

where 

The forward elimination is therefore performed as (with \^=Q=Q^ 

and then the backward substitution is carried out as follows: 

(S) 

(V 

(/o) 
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If the source iteration for Eq. (5) with (6) fails to converge, if any factor 
j£ becomes negative-, or, if any denominator "C becomes zero, all ̂^ ' s are set 
equal to the single-system factor j - given by 

f = fCQQ)^/[TCR+|:CAB)^+(SD)^], Hi) 
whereTC|\ stands for the total neutron flow leaking out of the whole system. 

The rebalancing based on Eq. (5) with (6) will be required only for 
the first few outer iterations (batches) of the Monte Carlo game and there
after Eq. (5) with the fixed source (QQ)o= (FS^/-^fii will be enough for 
obtaining the rebalance factors. As the number of batches increases, the 
factors all usually approach unity and the deviations from unity will 
become much smaller than the standard deviations of the quantities of Eq. (5), 
for example, the standard deviation of -iSM as a typical representative of 
the quantities: " 

ĉ --%')!%/"N »xi ' -^ . 
where f\ stands for the total number of batches. In this case, Eq. (11) will 
also be applied for achieving the whole system rebalance or the rebalance 
technique will not be necessary any more. 

NUMERICAL EXAMPLES AND DISCUSSIONS 

The present coarse-mesh rebalance technique has been incorporated in 
the MORSE computer code [4] by attaching two new subroutines. One is the 
COARSE subroutine for evaluating the quantities of Eq. (5) and the other is 
the REBAL for computing the rebalance factors according to Eqs. (9) and (10), 
or (11) if required. After obtained the converged values ef j ^ ' s as a result 
of i iterations in the REBAL, the weight of each fission neutron produced in 
the region ^ , stored in the fission bank in the MORSE code, is multiplied 
by fr jf^^4ell°y4Ji^ . "bere - ^ ^ ( " and -̂ ^̂ '̂  are respectively 
the -jfcjT̂ 'values ffbtaineH in the MORSE prior to the rebalance calculation and 
in the^EBAL after the i iterations. 

In order to test the effectiveness of the coarse-mesh rebalance acceler
ation applied to Monte Carlo eigenvalue calculations, the -^M of a homo
geneous spherical fast reactor of 55 cm radius was calculated with a 5-
energy-group model by dividing the system into two coarse-mesh zones at a 
radius of 35 cm. n . . • » j j • 

The results for the average values of -KM and their standard deviations 
are shown in Fig. 1 as a function of the total number of neutron histories, 
where the first batch is excluded from calculating the ̂ averages. As seen 
from Fie 1. after several batches the values of -»^ obtained from the 
coarse-mesh rebalance Monte Carlo (white circles m fig. 1) are already very 
Mose to the S,9 value calculated by the ANISN computer code [5], while the 
s andard Monte^'carlo by using the original MORSE (black circles) gives still 
a sliehtly too low value after about 4,000 histories. It should be noted 
that the coarse-mesh rebalance Monte Carlo requires only a negligible extra 
computer time (only 2 % more per collision) compared to the standard 



calculation. 
In Table I are shown the final results for the total number of col

lisions suffered in each coarse-mesh zone and the number of fission neutrons 
produced in each zone. The Monte Carlo results obtained from about 4,000 
histories agree well with the S(2values. 

As another example, the calculations were performed on a two-region 
spherical fast reactor composed of the core of 35 cm radius and the blanket 
of 55 cm outer radius, The coarse-mesh zones are chosen as the same as 
these two regions. 

It is seen from Fig, 2 that in this case the coarse-mesh rebalance 
version is much better than the standard version, though neither of two 
calculations did not converge yet to the Si2 value. The difference between 
the Monte Carlo results for -R^ and the S|2 value comes mainly from the 
underestimation of the fourth group contribution in the Monte Carlo calcu
lations (see Table II). This fact indicates that it is desirable to sample 
more neutron histories per batch than used here. It may be worthwhile to 
mention here again that the coarse-mesh rebalance Monte Carlo calculation 
takes more computer time by only 2 % per collision than that of the standard 
calculation. 

CONCLUSIONS 

It has been shown in this article that the coarse-mesh rebalance method 
can successfully be applied to Monte Carlo calculations for accelerating the 
convergence of a source iterative process. Even for the present numerical 
examples on spherical systems with only two coarse-mesh zones, the eigenvalue 
obtained from the coarse-mesh rebalance Monte Carlo calculation approaches 
quickly to the correct value. The computer time required for the extra 
rebalance calculation is negligibly small compared to that for the standard 
Monte Carlo calculation. 

It is therefore expected that the coarse-mesh rebalance technique is 
certainly more effective for complex systems composed of different media. 
In addition, the technique will be useful also for estimating the neutron 
flux at a point detector position. 
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TABLE I 

The Total Number of Collisions and the Number of Fission Neutrons 
Produced in Each Coarse-Mesh Zone of a Homogeneous Spherical 

Fast Reactor with a Unit Neutron Source 

157 

Calculation 
Method 

Standard 
Monte Carlo 

Coarse-Mesh 
Rebalance 
Monte Carlo 

Sj2 

Energy-Group 
Index 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

J dV 
First Zone 

0.043 
1.234 
5.256 
6.075 
0.733 

0.046 
1.284 
S.298 
5.871 
0.759 

0.049 
1.181 
5.172 
5.867 
0.710 

Et* 
Second Zone 

0.049 
1.210 
5.111 
5.738 
0.574 

0.050 
1.251 
5.250 
0.537 
0.611 

0.052 
1.230 
5.243 
5.723 
0.679 

[ dV V 
First Zone 

0.0073 
0.1148 
0.1938 
0.2199 
0.0309 

0.0079 
0.1193 
0.1957 
0.2114 
0.U320 

0.0085 
0.1099 
0.1905 
0.2120 
0.0299 

lf<t> 
Second Zone 

0.0083 
0.1128 
0.1880 
0.2068 
0.0242 

0.0086 
0.1160 
0.1938 
0.1995 
0.0257 

0.0089 
0.1144 
0.1931 
0.2068 
0.0286 



TABLE II 

The Total Number of Collisions and the Number of Fission Neutrons 
Produced in Each Region of a Two-Region Spherical Fast Reactor 

with a Unit Neutron Source 

Calculation 
Method 

Standard 
Monte Carlo 

Coarse-Mesh 
Rebalance 
Monte Carlo 

S, 
12 

Energy-Group 
Index 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

/ dV 
Core 

0.057 
1.634 
7.276 
8.100 
1.013 

0.060 
1.666 
7.67S 
8.432 
0.996 

0.078 
1.778 
8.021 
9.032 
1.003 

It* 
Blanket 

0.035 
0.759 
7.976 
10.104 
0.090 

0.032 
0.696 
7.940 
10.048 
0.083 

0.032 
0.610 
7.303 
9.728 
0.110 

/ dV 
Core 

0.0097 
0.1510 
0.2677 
0.2924 
0.0427 

0.0103 
0.1553 
0.2827 
0.3055 
0.0419 

0.0133 
0.1653 
0.2955 
0.3264 
0.0422 

vSfi}i 

Blanket 

0.0111 
0.0929 
0.0188 
0.0240 
0.0004 

0.0103 
0.0851 
0.0187 
0.0239 
0.0004 

0.0103 
0.0747 
0.0172 
0.0231 
0.0005 
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MONTE CARLO EIGENFUNCTION STRATEGIES AND UNCEJWAIHTIES 

R. C. Gast and N. R. Candelore 

Bettls Atomic Power Laboratory 
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ABSTRACT 

Comparisons of convergence rates for several possible 
eigenfunction source strategies led to the seleetion of the 
"straight" analog of the analytic power method as the source 
strategy for Monte Carlo eigenfunction calculations. To 
insure a fair game strategy, the number of histories per 
iteration increases with increasing iteration number. The 
estimate of eigenfunction uncertainty is obtained frcm a 
modification of a proposal by D. B. MacMillan and involves 
only estimates of the usual purely statistical component 
of uncertainty and a serial correlation coefficient of 
lag one. 

I . nrFHODOcnoN 

I t i s convenient to consider each possible Monte Carlo eigenfunction 
s t ra tegy as cooiposed of two basic pa r t s . The f i r s t part is the to ta l i ty of 
the Monte Carlo procedures that would be involved in a fixed source calcula
t ion . The second par t i s the eigenfunction source shape strategy that con
nects successive generations. 

The construction of an eff ic ient overall eigenfunction strategy requires 
t ha t the fixed source procedui^es, and the method of connecting successive 
generat ions, each be made ef f ic ient . Methods for improving the efficiency, 
i . e . reducing the standard deviation per unit machine time. In fixed source 
procedures have been frequently investigated and developed. In contrast, 
methods for reducing the variance arising from the source shape strategy 
have received re la t ive ly l i t t l e attention; even the basic requirements for 
a " f a i r game" s trategy appear to have been l i t t l e understood. 

Al l source shape s t ra tegies considered in this report are required by 
the authors to be " f t i r game" s t ra tegies . Thus, the f i r s t subsection of 
S ^ t l o f ^ r i s a l l s c ^ s l o n of "fair game" x^quiremente. TMs subsection also 
becxion 11 IB a "J.B "^.rprence" strategy which i s used to provide a 
includes a description of a J f ' ^ f f ^ ^ ^ g " r a i l other s t ra tegies . The re-
comparison of ^ ^ ^ " Y ^ = ° " ^ ^ : " ^ r l ^ ^ " s o 1 r c e shape strategies conslde^d, 

162 



16; 

extrapolation factors, and strategies using Importance ssonpling. The final 
subsection of Section II discusses the details of the source strategy 
selected. 

Having seleeted a definite strategy. Section III of the report then 
describes the approach that led to the means of assigning eigenfunction un
certainties. The resulting uncertainty formula is partly empirical, and for 
that reason it required extensive nimerioal testing. The results of these 
tests are also presented in Section III. 

II. EIGENFUNCTION SOURCE STRATEGY 

The investigation that led to the selected source shape strategy is 
described in this section. First, however, the "fair game" requirements for 
a general eigenfunction strategy are discussed and a reference strategy is 
defined. 

a. Requirements for Fair Otune and a Reference Strategy 

The presentation in this subsection will summarize some results given in 
detail in Ref. [1]. 

First, we introduce for convenience the tenn "limit in probability" de
noted by the symbol "FLim." Thus PLim XM = X means that for the sequence of 

N-oa " 

random variables Xjj, and for some parameter X, the condition 

Lim [P{|Xjj-X|< e}] « 1 is met for any arbitrarily chosen positive c. In this 
case we say that the sequence of random variables, Xjj, converges in proba
bility to X. The concept of repeatability involved in determining 
P{|Xjj-X|< €} for a given value of N = N,,, where Xjj is a sequence of dependent 
random variables, is to repeatedly return to the calculation beginning with 
new sets of random numbers and obtain a sequenoe of valties for Xw • The 

o 
fraction of such values for which jXjj -X|< c is an estimate of the desired 
probability. o 

We may write any overall Monte Carlo eigenfunction strategy using a 
neutron jnroduction Green's function as 

The three random variables in this equation are defined as follows: 

1) G?^ is an estimate of the fission neutron production rate in 
elementary volume i due to a unit fission source in elementary volume J in 
the n**̂  iteration. Possible values of this random variable are determined 
by starting one or more neutrons in elementary volume j and deteimining the 
neutron production rate per start neutron in elementary volume i by Monte 
Carlo tracking. Consequently, the number of neutron histories in a value of 
Gji will be the ntanber of starting neutrons in elementary volume j in the 
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n Iteration. If the number of histories in a value of of. approaches 
infinity, then the limit in probability of GP, is G^j wherfi-'Gij ̂ ^ ^^^ 
analytic Green's function over elementary volumes. 

m-l 
2) i/^ is an estimate of the fission neutron production rate in ele

mentary volume i at the n'tb iteration of the iteration process used. As 
implied by the above equation, t|î  Is a dependent random variable. 

3) K (S.) is another estimate of the fission neutron production rate in 
elementary volume j at the n**̂  iteration, but in general, is only relative 
to other elementary volumes. S? alone is another estimate of the fission 
neutron production rate in elementary volume J at the n*'' iteration, and is 
obtained in some manner, yet to be specified, from previous iteration re
sults. One possible means of doing this is the analog of the analytic power 
method, i.e, set S? = •?. The symbol K"(S^) denotes an operator K"* acting 
of s". In general, the operator K° involves a sampling process and a nor
malization process, although one or both of these processes may be absent. 
The sampling operator K° in the Monte Carlo eigenfunction iteration process 
defines the means by which neutron starting sites and weights are determined 
in the n**̂  iteration. For example, a possible definition of the operator K" 
which involves both sampling and normalization processes is as follows: 
First a finite number of neutron starting sites are distributed among the 

elementary volumes using —si— as the frequency distribution function and 

I =; 

using a set of random numbers designated by the index n. Second, the sum of 
neutron weights (say unity per site) over the starting sites are normalized 
to unity. If we let N° be the number of neutron histories in iteration n, 
and if we let Sj be a source strength per elementary volume j that is inde
pendent of n (i.e. a fixed source), then we may write 

'y 

where S. are normalized values of S,, i.e. \ S.«l. 

J 
The only sampling operator used in this report is that given above as 

an example. In the discussion of this particular operator, we did not 
identify the precise means by which starting sites are selected using 
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<5° 

I 
as the frequency distribution function. For example, a purely 

s" 

random sampling could be used, or one that Is purely systematic, or some 
combination of both (semi-systematic). We do not need to be concerned with 
these details, since all that is required to demonstrate a fair game is that 
the above PLlm equation is satisfied; that is, the sampling operator will 
properly treat a fixed source. 

We will now exhibit the condition to be met for a fair game in a Monte 
Carlo eigenfunction strategy. Let Ŷ ^ be the fundamental mode eigenfunction 
neutron production rate over elementary volume 1 from analytic transport 
theory. Thus, Yi satisfies the equation 

*i=I«iJ V 
i 

where GJ^ is the analytic Green's function over elementary volumes, and 

where Y. = ^— . Here the eigenvalue, X, is a normalization factor, i.e. 

0 

X = \ If .. Using PLimits, the condition to be met for a fciir game in an 

J 
eigenfunction strategy where iteration results are accumulated with weights 
equal to number of histories per iteration, N", is given by 

''i-

As discussed previously, y? satisfies an equation of the fom 

It may be observed at this point that it will generally be desirable to 
accumulate iteration results with weights equal to number of histories per 
iteration, since this will i«sult in minimum variance in a fixed source 
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calculation. 

The simplest Monte Carlo eigenfunction strategy is the analog of the 
analytic power method, i.e. set S^ = Y^. This strategy will be taken as the 
reference strategy, i.e. all other strategies will be compared to the power 
method to judge relative convergence rates. As shown in Ref. [11, this 
power method strategy is not a fair game if the number of histories per 
iteration, N", is a constant independent of n. (The appendix of this report 
gives a weighting scheme for neutron starting weights such that a fair game 
is obtained in this case). A sufficient set of conditions to insure a fair 
game in the power method strategy are: 

(1) Lim N" = » . 

(2) The sampling operator properly treats a fixed source. 
Since the number of histories per iteration becomes large as 
n increases (condition l), we must have PLlm K"(SJ) = S.. 

n-»ot. 

(3) Because the strategy is a Markov process, we must require that 
all iterations used in the calculation produce progeny. This 
is easily done with the device that should an iteration not 
produce progeny, then the first prior iteration with progeny is 
used to continue the process. 

(k) The physical problem under consideration must be one for which 
the analytic neutron transport equation has a unique fundamental 
mode eigenfunction. That is, certain sufficient "connectivity" 
conditions among the elementary volumes are met which insure such 
a unique eigenfunction. These connectivity conditions will be met 
for all reactor problems of practical interest. 

With these conditions, it follows essentially by definition that the 
resulting "power method" strategy Is a fair game. This is easily seen by 
considering the representation of the n*^ iteration of the Monte Carlo 
calculation, i.e. 

^r=i«ij>^(^j)-

Becavise of conditions (3) and (k), we know that the PLim Y" does exis t . Let 
i t s value be y . . "ftiking PLimits of both sides of the above equation, we 
Immediately obtain ibtai 

'^i I'^lj'^J-
J 

This i s the analyt ic neutron transport equation over elementaiy volumes. 
Since negative neutrons are not pemit ted to be bom at fission s i tes and 
since the t r i v i a l zero solution i s not possible because of condition (3) , 



then the above Y. must be the fundamental mode eigenfunction. Th\w the 
general condition for a fair game is met, i.e. 

v< 
PLlm 

n=l 

I"" 
*i' 

n=l 

where Ŷ ^ Is the fundamental mode eigenfunction over elementary volvmies from 
analytic transport theory. 

All of the source shape strategies considered in the remainder of this 
section are made fair games by the same approach used for the power method 
described above. That is, the number of histories per iteration will in
crease with increasing iteration number. 

The subsequent subsections will describe the new eigenfunction strat
egies that were considered and the results of comparing their convergence 
rates to the reference strategy. In order to make these comparisons more 
meaningful, a source guess accuracy requirement was adopted. However, there 
Is another obvious reason for adopting such a requirement. That is, in any 
conceivable eigenfunction strategy, one cannot peimit an arbitrarily poor 
source guess In a large core and obtain satisfactory convergence in reason
able computing times. Thus in all strategies considered, we will require 
that the eigenfunction guess be within about 2 P.E.'s of the true eigen
function, where the P.E. is computed for the nimiber of histories in the 1st 
iteration. This condition can be easily met, since such a guess is not 
highly accurate. A workable method of verifjring that the source guess is of 
this accuracy for practical size cores is to compare the eigenfunction 
estimate at the end of the problem with the guess. Should this comparison 
reveal that the guess was not within 2 P.E.'s, then a sequence of initial 
iterations should be omitted until the source accxiracy condition is met. 
This procedure will be carried out in all subsequent testing of eigenfunc
tion strategies. 

b. Source Strategies Using Green's Function 

An accumulated neutron production Green's function in an eigenfunction 
Monte Carlo calculation, say S^i', is defined as the estimate of the fission 
neutron production rate in region j due to a unit fission source in region 
j'. This matrix is the result of noimalizing an accumulative matrix formed 
by adding to a corresponding matrix element the fission neutron production 
as each neutron collision occurs. The noimalization is performed by row; 
the normalization factor for the J ' row being the reciprocal of the total 
number of neutrons bom in region j'. The index n indicates the total 
nxmiber of Iterations contributing to the accimulation. Thus if the Monte 
Carlo eigenfunction calculation is a fair game, i.e. capable of converging 
to the true transport theory solution, then at any stage of sych a calcula
tion an estimate of the region integrated eigenfunction, say Pj, and an 
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estimate of the eigenvalue, say X, may be made using the above Green's func
tion. Of course these estimates would be in addition to those already 
available directly from the Monte Carlo calculation. The relative merits of 
these two types of estimates will be discussed later. 

Knowing G'?'J7, at the end of iteration n-1, we may obtain the estimated, 
i.e. projected, eigenvector PJ and^the projected eigenvalue X by the analytic 
power method. That is, we define P-y as, 

I ^ = ^ G - ^ l ; : ^ where 

J' 

P̂  

In 
3 

The above iterative process is carried out by starting with some eigenvector 
guess and continuing until some convergence criterion for the eigenvector is 
met. Let L be the total number of iterations so perfonned. Then P^ is the 
projected eigenvector and J 

Ii H' is the projected eigenvalue. 

Using the representation of a general Monte Carlo eigenfunction 
strategy from subsection (a), i.e. 

*i''=l«ij^(3?)^ 
J 

we may hopefully define an accelerated strategy by setting the source for the 
n''̂  iteration as 

Sj = Pj • 

Of course, th i s could be done with some chosen regularity during the course 
of the calculation rather than every i te ra t ion . 

Use has been made of the projected eigenvalue, and the quantity L in con-
Junction with the 05R Monte Carlo program. For example, G. W. Morrison, 
J . T. Mlhalczo, and D. C. Irving [21 use the quantity L to decide how many 
i n i t i a l Monte Carlo i t e ra t ions do not have a sufficiently converged source in 
order that they may be excluded from the eigenfunction accumulation. Of 



course, in this application, the eigenvector guess, by region j, would be 
taken as the original source guess in the Monte Carlo calculation. 

The projected, I.e. matrix, eigenvalue has been used in connection with 
05R criticality calculations. This estimated eigenvalue is of interest since 
it is a separate estimate from that obtainable directly from the Monte Carlo 
calculation, i.e. the ratio of total neutron production to total source. Of 
course these two estimates are not independent. Mlhalczo, in his 05R calcu
lations of delayed-critlcal assemblies [,33, found that the matrix eigenvalue 
was always within a standard deviation of that computed from the ratio of 
total neutron production to total source. A similar conclusion was arrived 
at by M. R. Mendelson in his Monte Carlo criticality calculations using the 
KAPL version of 05R [^1. Mendelson found that if a reasonable soxirce guess 
was used, then the matrix eigenvalue does not appear to be any better than 
that obtained from a ratio. 

The idea of using a Green's function in Monte Carlo eigenfunction calcu
lations to obtain better estimates of the eigenfunction and eigenvalue has 
been frequently discussed by Monte Carlo workers. It appears to have 
originated with K. W. Morton [.5] and was further developed by E. L. Kaplan 
[6]; however, it also appears that their work was purely theoretical. This 
idea is especially appealing if one views it as follows: Consider a reaotor 
broken up into a finite number of gross regions over which a Green's function 
matrix is tabulated. In applying the analytic analog of the power method to 
such a problem, the eigenfunction error would consist principally of the 
first overtone component. 

It intuitively seems that the matrix eigenfunction should enable rapid 
removal of the lower overtone modes, since they would be easily sensed over 
gross regions. After local normalization, deviations from the eigenfunction 
Interior to a gross region would be more dependent on the higher overtones, 
which die out rapidly. Thus it would seem that if the projected eigenfunc
tion over gross regions at Iteration n were use^ to determine the source for 
iteration n+1, then a considerable gain in convergence rate would be obtained. 
This differs from the approach used with OJE calculations, since knowledge of 
the projected eigenfunction was not used to determine the source for the sub
sequent iteration. 

This idea has been more recently discussed by L. L. Carter and N. J. 
McCormick [J'\. Again, however, it was not actually tried in a Monte Carlo 
calculation. Instead, they constructed what was believed to be a reasonable 
analytic representation of the Monte Carlo procedure using diffusion theory. 
In their analysis of convergence rates with this model, they considered the 
straight power method, the use of the Green's function as in 05R, and the use 
of the Green's function at iteration n to determine the source shape over 
gross regions for iteration n+1. They found that the 05R approach gave 
faster convergence than the power method and that the last approach above 
gave much faster convergence than the power method. It should be noted that 
the first pert of their conclusion is in conflict with actiial Monte Carlo 
calculations as performed by Mlhalczo [3] and Mendelson [4]. 

Because of the intuitive appeal of using the Green's function at itera
tion n to determine source shape over gross regions for iteration n+1, the 
technique was tried. The projected eigenfunction as described earlier was 
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used to determine the source shape over gross regions in the power method. 
Semi-systematic sampling of actual sites within a gross region was used to 
accurately obtain the desired source strength by gross region. Also, the 
projected eigenfunction was made with a variety of periods, that is every 
iteration, every 2nd iteration, every 5th iteration, every 10th iteration. 

In all cases that were tested, which covered a variety of core sizes, no 
gain in eigenfunction convergence rates could be detected relative to the 
straight power method. Since this Green's function procedure was more elab
orate than the corresponding procedure used for 05R by Mlhalczo and Mendelson, 
then by inference we have verified their conclusion of no gain in convergence 
rates with the simpler procedure. We must also conclude that the analytic 
modeling of Monte Carlo by Carter and McConnlok was much too crude to pennit 
reasonable estimates of gains in convergence rates using Green's functions. 

In view of the complete failure of the Green's function approach, one 
might ask what is wrong with the intuitive argument that was given to support 
it. The best way to answer this is to state a proper view of the Green's 
function approach which is as follows: Within the straight Monte Carlo analog 
of the power method, the eigenfunction by gross region may be estimated by 
either the total cumulated soiorce or the total cumulated fission neutron pro
duction. Since in the power method, the neutron production for the n'''" itera
tion becomes, within statistics resulting from the semi-systematic sampling, 
the source for the n+1^ iteration, then it follows that the total cumulated 
source at the n iteration will be very close in shape to the cumulated 
fission neutron production. This will occur even for n small if a reasonable 
source guess is made. The Green's function matrix elements are formed frcm 
the same neutron histories that contribute to the cimulated neutron produc
tion. The eigenvector from this matrix, by definition, is a source that will 
yield a neutron production of the same shape. But based on the infoimation 
content of the matrix, i.e. all histories, this is already nearly the case 
since the cumulated source is very close in shape to the cumulated neutron 
production. Thus the eigenvector from the matrix will always be close to 
that obtained by the power method after very few iterations. That is, the 
Green's function approach cannot provide a worthwhile improvement is con
vergence rate relative to the power method in Monte Carlo. 

c. Source Strategies Using ExtrajxilBtlon Factors 

The success of extrapolation factors in accelerating eigenfunction con
vergence in analytic diffusion theory calculations is well known; this 
suggests the application of such factors In Monte Carlo eigenfunction calcu
lations. 

First we will consider the use of a single linear extrapolation factor 
in the reference strategy, that is, a straight analog of the analytic power 
method. This will be done by obtaining the fonn of this factor for the 
analytic power method and applying it directly in a series of Monte Carlo test 
calculations. Making use of the neutron production Green's function, Gĵ j, as 
in subsection (a), we may write the analytic power method for the fundamental 
mode, using matrix notation and using subscripts for region indices, as 

'^ ̂ 1 " Gij'*j'^ f°^ *^^ -̂ -̂ *̂ iteration, 
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where X^ is the multiplication factor for the jt*̂  iteration, i.e. X^ = ̂  i!;f, 

and where bars denote normalization, e.g. iirf = i _ . When a single linear 

extrapolation factor, lu, is used in the power method to obtain the fundamental 
mode eigenfunction, then the above procedure is altered as follows. After 

obtaining Gj_ji'-j from the ^-1^* iteration, we nomalize it by dividing by 

the multiplication factor, xf, and define 

- - 1 - 1 I 

4 I 

= * (1-U)) + (" ^^^- - -

4 
This lit* is then used on the right hand side of the equation for the jt 
iteration, i.e. 

• jf+l ,/+l _ r -rl' 
^0 *i - <̂ iĵ j-

For the Monte Carlo eigenfunction calculation, a corresponding procedure 
may be defined as follows. First write a general eigenfunction strategy as 
in subsection (a), i.e. 

^i''=I°?j'^(^j)-
J 

After obtaining Yĵ  from the n-1^ iteration, we define 

S^ for the n iteration as, 

gn ̂ -^-l ^ ^ (Y^.Y^-1). 

The value of the extrapolation factor, ou, in the analytic calculation is 
defined by the following considerations. Let Ŷ  be a general eigenfunction 
of XŶ  = G. .S'.. When the extrapolation procedure is used, the corresponding 

eigenfunction equation with eigenvalues \i is. 



Gi/j 
^ = YJ(I-U)) + u ) — , 

Jt 

where \^ is the fundamental mode eigenvalue, i.e. X„ - LUn XQ-

We may rewrite this equation as 

Y. = G. ,Y. 

That is, the eigenfunction is the same but the eigenvalues |j have xmdergone a 
linear transfonnation, 

(J = (D A_ + 1-U). 

Let X„ be the eigenvalue associated with the n*" mode eigenfunction of 
XYJ = G. .Y .. We know that XQ > Xj_ > Xg > • • • Xĵ  > ... > 0 and for large 

n,X -•0 (this is known from physical considerations; not mathematical ones). 
Since the fundeunental mode eigenfunction error for w = 1 and large Z is pro-

I XT \ Z 
_i then we may make use of the linear transformation to 
Xo i 

reduce the size of this quantity. If n can take on large values then the 
optimum transfonnation occurs when (-H = -UU 'COT n large, since in this case 
we will have the minimum value of Max (iil, n=l,2,...). The value of ai to 

Wo 
achieve this transfonnation is obtained as follows. For n large î-•l-u)(u)> 1). 

Thus the desired w is given by (D-1 

( .^ is called the dominance Mtio). 

The fundamental mode eigenfunction error for large i in the analytic pro-

/ — \ •* ( X 

cedure is now proportional to j — = (u)-l)'̂  = — instead of L - . 

A series of test problems were carried out using the single linear ex-
trapolatlon factor. The indices 1 and j refer to different IMel composi
tions. The values of u) used were set by the dominance ratio as described 

Also 

^1 
U) • : — 

^ 

we 

+ 

know 

1-U) or 

that 

U) = 

^̂1 

2 

2 -

= U) 

b. 

^0 

- ( 

+ 1-U) 

1̂ 

ki 
is 
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above and the oi was applied every iteration. The test problems demonstrated 

that no gain in convergence rates could be obtained relative to the reference 

strategy. This failure occurs because the difference required in the extrap

olation, (Y? - "Y"" ), is dominated by statistical fluctuations; this happens 

even when only a few gross regions (i.e. compositions) are used and with as 
many as 2000 histories per iteration. In all tests, the source accuracy 
conditions were met as described in subsection (a). 

In spite of the failure of the use of a single linear extrapolation 
factor in the reference strategy, the question still remains as to whether a 
more elaborate extrapolation scheme could provide a gain in Monte Carlo eigen
function convergence rates. One of the more elaborate extrapolation schemes 
involves the use of multiple linear extrapolation factors, i.e. the Chebyshev 
polynomial scheme such as that applied in diffusion theory calculations [8l. 
In this scheme the above extrapolation equation, 

Y^=Y^^-1+JfiZ^_-Yf^] 

is replaced by, 

• 4'^ + "i 

„ -Z-1 
G. .Y. 
Ij J - Z - 1 

'i " • • l 1 ' 

Here cv. and p. are functions of the iteration number l and of the dominance 

'̂ l ratio 
^ 

The expressions for ra and B. are 

2- -=• 

= 0, 

where y = cosh -1 

[ cosh [je-l)Y"' 

cosh rxvi 

cosh rx-2)Y'! 

cosh [XY'' 
i> 2, 

Thus, if repeated applications of Chebyshev polynomials of degree one are 
made then the scheme is identical to the previous one with a single extrapo
lation factor. In general applications c^i and fi^ would approach values given 
by 
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Lim ry = — , Lim B^ = 1. It is now clear that if the use of 

\ \ \ 
the single extrapolation factor fails because of statistical fluctuations in 
the difference 

h2L - /-̂  
x^ 

then the Chebyshev polynomial approach must fail also (it will fail all the 
more because rt, > m). 

In rejecting both of the above extrapolation schemes for Monte Carlo cal
culations, we have rejected successful schemes for analytic calculations. 
One still might raise the question as to whether an extrapolation scheme could 
be devised for Monte Carlo that could overcome the difficulties caused by 
statistical fluctuations. In attempting to answer this question, it is con
venient to use some concepts from information theory. First, however, let us 
recall that the Chebyshev polynomial scheme originated by asking the follow
ing question: Is it possible when forming iJ-" for the l^'^ iteration to take 
as the value of ^^ a linear combination of ly and all previous ii's and there
by accelerate convergence? That is, if we write 

t 
a. A , then can we choose constants a. , independent of source 

n=0 
guess, such that this ii* is closer to the fundamental mode eigenfunction? 
The answer is yes, and although the â ^̂  are not obtained explicitly, the re
sulting procedure is the three-tenn Chebyshev polynomial extrapolation de
scribed above. 

There is an analogous question we may ask when considering a Monte Carlo 
eigenfunction procedure, and as stated earlier it can be developed using some 
notation from information theory. Let the eigenfunction estimate from the 
i'th iteration be written as, i^ = S-̂  + N'̂ , where S'̂  represents a wanted signal 
from the V' iteration and N'̂  is a random noise. Consider now a prediction of 
the eigenfunction at iteration I, + n, say §•*•'"", written as a linear combina
tion of •", m=l,...,;e. That is: 

;i+n 

I' 

S" 
I 

m=l 

where the constants ĥ^̂  are to be chosen such that S is closer in some 
sense to the fundamental mode eigenfunction. Here the hj^^are called a l inear 
f i l t e r . The problem of finding an optimum linear f i l ter-has been considered 
by N. Wiener [91. In par t icu lar , he solves for h„ which wil l minimize 
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|rgX+n . g^+n^2 I ̂  

where E denotes expected value. What is required then, is an extension of 
the linear filter approach which will have the property that if the noise 
approaches zero (i.e. number of histories per iteration becomes large), then 
the h^'s become similar to those that are obtained from the Chebyshev poly
nomial approach. If the signal is constant (i.e. a fixed source problem), 
then clearly minimum variance will occur for S'̂ *" if the hjn's are propor
tional to the number of histories in \if ^'*'l. 

Initial iterations, with on the order of 500 histories each, will be 
closer to the latter case than to the former. That Is, the initial itera
tions will be more like constant signal with random noise than like variable 
signal with zero noise. But the reference strategy already weighs iteration 
results by the number of histories per iteration. Of course, the noise to 
signal ratio does diminish with increasing iteration number because of the 
Increasing number of histories per iteration. 

If the above extension of linear filter theory were obtained. Its use 
might not result in large gains in Monte Carlo eigenfunction convergence 
rates; nevertheless this approach has some premise [lo], but is outside the 
scope of this study. 

d. Source Strategies Using Importance Sampling 

Importance sampling offers a general means of reducing the Monte Carlo 
uncertainty in a specified neutron reaction rate. For example, if an 
approximate solution of the adjoint transport equation is known, where the 
adjoint source Is the space-energy dependent cross section for the desired 
reaction rate, then one may alter the frequency distribution functions in the 
nonnal Monte Carlo process (and introduce weightfe to retain a fair game) in 
such a way that the standard deviation for the desired reaction rate is de
creased per history. As the approximate adjoint solution approaches the true 
adjoint solution, this standard deviation per history approaches zero; if 
the approximate solution becomes too crude, the standard deviation can be
come larger than that from a normal Monte Carlo calculation. 

In addition to the difficulty of obtaining a sufficiently aco\irate 
approximate solution of the adjoint transport equation, the importance 
sampling approach described above has another serious drawback. Namely, one 
may choose only one neutron reaction rate per calculation to be obtained with 
small standard deviation. In general, importance sampling may be viewed as 
a process where the reduction of variance for a reaction of interest is ob
tained at the cost of increasing the variance for other reactions. Thus, 
such a process would not be generally acceptable when attempting to obtain 
the eigenfunction shape by Monte Carlo. 

However, one may still raise the question as to whether there are im
portance sampling techniques that could significantly Improve the definition 
of the overall eigenfunction shape by reducing the ratio of the source shape 
uncertainty to the statistical uncertainty and by reducing the total 



uncertainty. A definitive answer to this question is outside the scope of 
this study, but the answer is conjectured to be no. For example, consider 
the following limited form of importance sampling, a form that may be called 
"source" importance sampling. Start with the observation that neutrons from 
the high energy part of the fission spectrum are more important in determining 
overall eigenfunction shape than those from the low energy part. Thus, 
source importance sampling that would start more neutrons at high energy 
(with adjusted weights to retain the proper source spectrum) could result in 
some reduction of source shape uncertainty, but would increase statistical 
uncertainty because of the non-constant starting weights. Intuitively, we 
feel that such a process could not result in a significant reduction of total 
eigenfunction uncertainty. 

More generally, several specialized forms of importance sampling are 
frequently available for fixed source problems that could be used in eigen
function calculations. These are available in splitting and Russian 
Roulette. Such forms of importance sampling have not been used in test 
calculations because again we intuitively believed that significant reduc
tions in total eigenfunction uncertainty would not occur. An exception, 
which is used routinely in eigenfunction calculation, is Russian Roulette in 
the thermal group in large water reflectors. 

3. A Reference Strategy 

In the preceding subsections, we have discussed several possible source 
strategies including a reference strategy, ie. the straight analog of the 
analytic power method with an increasing number of histories per iteration. 
The strategies discussed include: 1) those using a Green's function approach, 
2) those using extrapolation factors, and 3) those using importance sampling. 
The test calculations performed in this study did not reveal any strategy 
superior to a reference strategy, which «ill be described. Also from this 
study, the approach that has been deemed most likely to offer some improve
ment in Monte Carlo eigenfunction convergence rates relative to the reference 
strategy is the extension of linear filter theory discussed in subsection 
(c)} but, as stated earlier, this is beyond the scope of this work. 

Some important operational details of the reference strategy are as 
follows: Because all neutrons in a given iteration are processed through an 
energy group before proceeding to the next energy group, then the calcula
tional time per history becomes shorter if the problem has fewer iterations 
with more histories per iteration. On the other hand, it is desirable in an 
eigenfunction calculation to have as many iterations as possible. Thus, re
ducing the number of histories as far as possible without losing too much 
machine efficiency in initial iterations led the authors to adopt 50O as the 
minimum number of histories per iteration. Because of correlated sampling, 
it is desirable that all eigenfunction problems have the same number of 
histories per iteration. 

The reference strategy uses an increase of 10 histories per iteration in 
successive iterations. Thus in the N*'' iteration, the number of histories 
per iteration would be 50O + 10 N and the.total number of histories through 
the N*'' iteration would be 50ON + 5N(N«-1) . 



The rate of increase of 10 histories per iteration was arrived at as 
follows: Prom the work of Lieberoth [111, i* is known that the eigenfunction 
error that results from an infinite number of power iterations, each with a 
constant number of histories per iteration, decreases as i . Thus, the de-

N 
sire to keep the total number of iterations as large as possible for a fixed 
total number of histories, and at the same time to Insure a reasonable re
moval rate for the eigenfunction error that would result frcm a fixed number 
of histories, led the authors to adopt the rate Increase of 10 histories per 
iteration. Prom the discussion of this error removal in Ref. [11, it is 
evident that this error will tend to cause the approach to the eigenfunction 
to be on the side in which there is some power shift toward regions of low km, 
and that the el"enva?.ue will tend to converge from below rather than above. 
However, calculations for realistic types of reactors have not shown such a 
discernible trend. This suggests, for realistic calculations, that in general 
such a component of the source shape uncertainty Is small relative to the 
statistical uncertainty. 

There is one final important operational detail connected with the eigen
function strategy adopted; the procedure to be used to obtain an estimate of 
the total eigenfunction uncertainty. The remainder of this report will deal 
with arriving at such a procedure. 

III. EIGENFUNCTION UMCERTAINY 

This section presents the arguments that led to a formula for total 
eigenfunction uncertainty for the strategy adopted. As in previous sections, 
it will again be convenient to consider the overall strategy as composed of 
the same two parts. That is, the first part is the totality of the Monte 
Carlo procedures that would be involved in a fixed source calculation; the 
uncertainties in this part are called statistical. The second part is the 
eigenfunction source strategy that connects successive generations; the un
certainties in this part are called source shape uncertainties. It is 
obvious that in any eigenfunction calculation, the uncertainties from these 
two parts are connected. However, this breakdown is convenient here simply 
because uncertainties that arise frcm fixed source calculations are very 
easily obtained and are an integral part of all fixed source Monte Carlo 
calculations. Some insights as to the nature of the source shape uncertain
ties can be obtained by considering some properties of the statistical un
certainties. This is done in subsection (a). Subsection (b) fonnallzes these 
observations through use of serial correlation coefficients and arrives at a 
formula for total eigenfunction uncertainty by a modification of an approach 
proposed by D. B. MacMillan. Because the overall fonnula for eigenfunction 
uncertainty is partly empirical, subsection (c) then gives some results of 
its verification by numerical testing. 

a. Seme Properties of the Statistical Uncertainties 

There are two commonly used methods in Monte Carlo to provide estimates 
of statistical vincertalntles. The first is a variance calculation based on 
a history by history basis; i.e. each expejriment is taken to be one history. 
This estimate is an accurate estimate of the purely statistical uncertainty, 
since it yields the identical resxilt that one would obtain from a 



hypothetical fixed source problem where the total sampling from the fixed 
source yields the total set of source sites from all iterations in the 
eigenfunction calculation. 

The second estimate of statistical uncertainty that is commonly used 
appears superficially to be a correct combination of source shape uncertainty 
and statistical uncertainty. This estimate is that obtained from a variance 
calculation on an iteration by iteration basis. This estimate appears to in
clude the source shape uncertainty, because within the power method the itera
tion source change is by iteration. However, test calculations which compare 
these two estimates of uncertainty have shown that their magnitudes are 
reasonably close to each other. Since the first estimate is without question 
the purely statistical uncertainty, then we must consider the second estimate 
the same uncertainty as the first. 

The above observations suggest the following argument. Since the un
certainty calculation on an iteration by iteration basis does sense the 
changing source shape, this uncertainty could be of the same magnitude as the 
statistical uncertainty only if there exists a correlation among iteration 
source shapes such that there is almost a cancellation of the source shape 
component of uncertainty. But the existence of such a correlation suggests 
that asymptotically (i.e. after a large number of iterations) the source 
shape uncertainty is some constant times the statistical uncertainty. Stated 
differently, after a large number of iterations we can visualize that the 
sampling of possible source shapes lags behind the sampling of possible 
neutron production shapes based on these source shapes, and that the ratio of 
sampling rates tends to some constant. 

Of course, the above argument, which suggests that the ratio of source 
shape and statistical uncertainties tends to a constant for a large number 
of iterations, is of little value unless the magnitude of this constant can 
be estimated. This ratio strongly depends on the type of quantity being 
edited in the Monte Carlo calculation; for example, let us consider the 
region dependence of the ratio for neutron production rates. If the region 
size starts to approach the whole reactor, then because the neutron produc
tion shape error will most likely consist of the lower overtones which will 
roughly integrate to zero, the ratio of soxirce shape and statistical un
certainty decreases. Stated differently, there are negative correlations 
among neutron production rates over some large subregions of a reactor. At 
the other extreme of a region size becoming small, it is obvious that again 
the ratio of source shape and statistical uncertainties decreases. Thus, one 
concludes that the ratio becomes a maximum for some intennediate sized region. 

An early approach taken by the authors for obtaining the asymptotic 
source shape imcertainty was to obtain a maximum ratio of source shape and 
statistical uncertainties from test calculations and use this constant 
universally [121. Thus, in practice we computed the usual statistical un
certainty, and applied a constant multiplicative factor to obtain the source 
shape uncertainty. When continuing calculations revealed that this factor 
•was greater than 10 for some edit quantities, this approach was dropped since 
It would force unreasonable conservatism in the uncertainties for most edit 
quantities. 
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b. Eigenfunction Uncertainty Using Serial Correlation 

The conjecture of the previous subsection, that in the asymptotic range 
the source shape uncertainty is some constant times the statistical uncer
tainty, may be formalized as follows: Let Xjj be an estimate of some neutron 
reaction rate from iteration n in an eigenfunction calculation. Accumulating 
iteration results for N iterations yields the Monte Carlo estimate of this 
reaction rate, say Rjj, where 

N 

%° IVn' 
n=l 

Nn 
where a.^ = ~jj , and N i s the number of neutron h is tor ies in I temat ion n. 

n=l 

As discxissed in Section II, the eigenfunction strategy insures that PLim Rfj 
N-» 

is the transport theory value of the reaction rate. Following a well-known 
derivation using expected value notation, we may write 

c2(Rjj) = E [Rj^. E(Rj,)l2. 

Let Pjj = E(X ) , then we have 

CT2(RJ,) = E [a^(x^-v.j) + . . . ajj(Xjj-p^)l2 

N 

= 1(4 E(x„-Pn)^ + ^'l^n^ ^ ( V ^ ) ( V ^ m ) l -
n^l n<n 

But tĴ (Xjj) = E(XJJ-4J)2, and the correlation coefficient between x and x , 

say pjjĵ , is defined by, 

"nm ''̂ "'n̂  " (^ = El^(^-»^n)(xm-l%)], 

Thus we may write, 

N ,_ . 

° (%) = H ^n "^(^ ) + 2 ^anam Pnmff(xn) "(^m) • 

n=l n«3n 

Let a?(Rji) be the purely statistical component of variance for Rjj, after N 

iterations; then in the asyinptotic range we must have 
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<''(%)= ^ - X ) . 
We may write 

_2 
1̂  

(%) = 4i\) [l*2 I I /̂ r ̂  "nm ] • 
n=l n< m 

Now if the source shape uncertainty is some constant times the statistical 
uncertainty, then this only implies that 

N 

^ ^ L i z . ^ ^ " ^ ^"^ ] ^^^^^' However, if the 
n=l n< m 

1 
number of histories per iteration were a constant, that is, â j = a^ = [f, 

then it is also obvious that in the asymptotic range the correlation co
efficient, pnni, is a function only of the difference in n and m. The expec
tation that this should be true even when the number of histories per 
iteration increases with iteration mmiber has been verified by test calcula
tions. Thus, if we set k = n-m, then we may write 

Pnm = Pk' 

where pv is called the serial correlation coefficient of lag k. 

The expression for <J2(R„) now becomes 

cH^) - af(V [1-25; C f v ^ ^f^:^ Pk )]• 
k=l >n=l 

Let us define 

^ \/J 'n VSn+k Pk I • 

We may note in passing, that if we assume that the purely statistical un
certainty and source shape uncertainty are independent, then tf'Wa (R„) 
is the magnitude of the source shape uncertainty. ^ 

Attempts by the authors to use the above expression for a2(Rj.) in test 
eigenfunction calculations did not prove to be workable. For example, for 
some edit quantities the series that defines A was slowly converging, and the 
pjj involved appeared erratic for larger values of k even after a few hundred 
iterations. Also, there are practical difficulties in this approach because 
of the machine storage requirements in obtaining a large number of serial 

jl 
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correlation coefficients for every edit quantity. 

A workable alternative to this approach was proposed by D. B. MacMillan 
[131. He proposed that only the serial correlation coefficient of lag 1 be 
calculated explicitly and that those of higher labs be inferred. He argues 
on a physical basis that an upper bound on the value of pv may be obtained by 
writing 

Pk = Pl 
/_Xi k-1 

'̂ 1 
wheie — is the dominance ratio. 

''O 
Test calculations by MacMillan as well as subsequent tests by the authors 

have shown that this argument is sound. Thus with MacMillan's approach we 
have upper estimates for all p^ once we have estimated p, and supplied a 
value of 1^. We will now consider Lim A with values of p-^ obtained from 

XQ N - » 
MacMillan's conjecture. Because of the fixed increase in number of histories 
per iteration, we may write 

N-k 

N-> oo 
Lim Y \/^ V ^ l ^ = ̂  

n=l 

for any value of k. Thus we have 

I ' ^ - ^ l ^ 
u ."-i Lim A 

k=l k=l ° 1 - T^ 
\ ) 

MacMillan's formula for total eigenfunction uncertainty in reaction rate Rjj 
becomes 

(%) - <'s(V / T T Z ^ 

-1^ 
A modification of this approach for estimating ai'R^) was developed by the 

authors for two reasons. First, the above approach requires supplying the 
dominance ratio, •vrtiich is not always easy to obtain. Second, test calcula
tions reveal that the estimated a(Rj,) is conservative if p^ Is small in a 
core with large ^1 . Recall from the discussion in subsection (a) that we 

^0 
can expect, for a core with a given dominance ratio, there will be reaction 
rates for which the ratio of source shape and statistical uncertainties will 
be a maximum and hence pi will be a maximum. Further, this maximum value of 
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'̂ 1 p-j will increase as —= Increases. The authors concluded by test calculations 

\i 
that MacMillan's formula is not overly conservative in its estimate of a(Rjj) 
for reaction rates for which p-, is a maximum. These same test calculations 
have revealed that for reaction rates for which pĵ  is much less than its 
m£ixlmum value, the values of pĵ  decline with increasing k more like p^"^ than 

like 
XJ lk-1 
—= . That is, 
XQI 

k-1 
Pk ̂  Pi(Pi) (̂ °̂  ̂ ^^^ Pl)' 

This would lead to 

Pl 
Lim A BS (for small p.). 
N-> 00 1 - Pl 

But since the maximum value of pi depends on .r-=, we may hopefully scale this 
'•O 

expression such that we obtain a reasonable value of T,lm A for the maximum 
N- ~ 

value of pj_. This scale factor was empirically determined to be about 5. 
Thus we have 

5PI 
Lim A « (for maximum p, ). 
N - CO 1-P]_ 1 

We may now linearly connect the values of Lim A for maximum p, and for small 
N-* 00 1 

p. a t the values Pi = 1 and p. = 0.2 by writing 

Lim A « — ± - . 
l-Pj. 

Thi s gives an alternate formula for a(R[j), i.e. 

2 

^(%) = °s(h) \/l+-—i- . 
1-Pl 

As a result of test calculations which will be described in the next sub
section, this fonnula for a(Rif) was adopted. 

c. Numerical Testing of Formula for Total Eigenfunction Uncertainty 

The formula for total eigenfunction imcertainty in a reaction rate Rjj 
is given in the previous subsection as 

lOpf 
<'(%) ='̂ s(%) /^*Tri 
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where Og(RjT) is the purely statistical standard deviation, and p^ is the 
serial correlation coefficient of lag 1. Seme details of the calculational 
steps are as follows: If the estimate of the reaction rate Rjj is given by 

% ' I V n ' 
n=l 

then the purely statistical variance ag(Ru) is given by 

''s(%) = 1 I « n ( V V ' 
n=l 

Since for convenience we desire to use the above Rj} and Og(Rjj) in ob
taining p-j, we may introduce the number of histories per Iteration, Nji, as 
weights in the definition of p^ as follows: 

I Ti-i I, n 

where a , = , a = 'n-1 N ' n N 

IVi \ \ 
n=2 n=2 

N 

K = I <-iVi' 
n"2 

N 

V = I < ^ n 
n=2 

By making use of the approximations 

Kl^Ki: ^~^ 
,n=2 
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and R^' - Y \/^ V^ ^ 
n=2 \ ) /r;^ / ^ 

.n=2 

we obtain the expression used, that is 

1 

Nc^(Ri,) -\n=2 ' \ n=2 i 

The eigenfunction test calculations may be described as follows: The 
cross sections and fixed source procedures are such that a zero variance re
sults in an infinite medium calculation. In particular, the cross sections 
are energy independent and purely absorbing. The Monte Carlo eigenfunction 
calculations were performed for a series of eight slab cores with dominance 
ratios ranging from O.36 to 0.995' Although the dominance ratio, 

^1 
— 7 — , Is not required in the uncertainty formula adopted, it is estimated 
^0 

for each of the slab cores in the following manner: The neutron flux distribu
tion, say tp(x), due to a plane unit source at x=0 in an infinite purely 
absorbing medium with constant cross section is given by tp(x) = J: E (i;|x|). 

T 2-1-
The neutron flux age, J, is then • . 

35:2 
Using well known results from two-group diffusion theory, we may write 

the n'''" mode eigenvalue as proportional to —= - • 3 - , where B^ is the geometric 
1+JB^ " 

buckling for the n''"'̂  mode eigenfunctions. For a slab reactor, B^ = (—)2 
' 0 ^H ̂  

and Bĵ  = (-jj—), where H is the effective slab width, given as the actual slab 
width plus twice the extrapolation distance. The extrapolation distance may 
be taken as _ _ . Thus the dominance ratio may be estimated as 

1̂ '^¥^^ 
^0 1+1(211.) 2 

For each slab core calculated, IT different region edits of the neutron 
production rate were obtained and compared to accurate production rates. The 
17 regions are: 2 symmetrically placed Blab regions of volume fraction 0.01 
each, 10 uniform slabs of volume fraction 0.1 each, 2 symmetrically placed 
slab regions of volume fraction O.3 each, 2 symmetrically placed slab regions 
of volume fraction 0.3 each, 2 symmetrically placed slab regions of volume 
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fraction 0.5 each, and the whole core. The accurate production rates were 
obtained by averaging results in symmetrically placed regions after toO 
iterations and a total of 10° histories. In all calculations, the source 
guess accuracy requirement was met as discussed in subsection (b) of Part II. 

The eigenfunction vmcertainties for the five different sizes of regions, 
in each of the eight cores, are tabulated at multiples of 50 iterations up to 
250 iterations In Table I. The eigenfunction uncertainties are tabulated 
using naively the purely statistical standard deviation as well as using the 
standard deviation obtained with the formula. The method of uncertainty tab-
xilation is by use of a figure of merit, f̂ .̂ For example, the figure of merit 
for the regions of size 0.1 is the number of the ten regions with a neutron 
production rate error greater than one probable error, plus the number of the 
ten regions with an error greater than two probable errors, et£. to an in
finite sum. Thus, in this case the expected figure of merit, f^, Is 7.58. 
A value much greater than this Indicates that the uncertainty estimates are 
too small, and a smaller value indicates a conservative estimate. Shown in 
Table I is the expected figure of merit plus 2a. An acceptable means of 
estimating eigenfunction uncertainties is defined to be one with a figure 
of merit less than this. 

'̂l 
Table I shows that for a very small core, -— = .36, an acceptable estimate 

\) 
of uncertainties is provided by the purely statistical standard deviation, 
and that the formula gives only a slightly more consenrative result. As the 
cores become larger, we see that the purely statistical estimate of uncer
tainty becomes, in general, unacceptable, whereas the fonnula gives acceptable 
results. We may note that in the special case of the neutron production over 
the whole core, i.e. the eigenvalue, the purely statistical standard devia
tion for all cores is acceptable and that the formula gives essentially the 
same standard deviation. For the case of the largest core, M. = .995, the 

unacceptable results from the fonnula when the number of iterations is 5O or 
100 is because the magnitude of the serial correlation coefficient, p^, Is 
not reasonably estimated for a large core unless more than 100 iterations are 
performed. Although more than 100 iterations appears to be necessary to 
obtain acceptable eigenfunction shape uncertainties, this is not required if 
only an acceptable eigenvalue uncertainty is desired. 

One final observation will be made concerning the approach of an esti
mated Monte Carlo eigenfunction shape to the true eigenfunction shape. When 
viewing an accumulation by iteration of a neutron reaction rate, one almost 
naturally looks for an oscillation about the true reaction rate as the number 
of iterations increases. Of course this tendency also exists when viewing a 
fixed source calculation. The properties of accumulated results by iteration 
in a fixed source calculation are those of the classical random walk problem. 
W. Feller [lii-1 points out that in such a problem, the most probable number 
of times that the estimated reaction rate crosses the true reaction rate is 
zero, and that zero times Is more probable than one time, etc. Further, the 
mean number of iterations between crossings approaches infinity as the number 
of iterations increases. 

These same properties exist in a somewhat more severe fonn in a Monte 
Carlo eigenfunction calculation even though the number of histories increases 
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with increasing iteration number. This is because of the positive correla
tion between successive iteration reaction rates. Thus, if the neutron source 
shape at one iteration tends to make a single iteration reaction rate too 
high, then more likely than not the source shape of the next iteration will 
tend to make the next single iteration reaction rate too high. In contrast, 
for a fixed source calculation, each single iteration result, assuming a 
symmetrical frequency distribution function, is equally likely to be above or 
below the true reaction rate. By analogy to the classical random walk prob
lem, we conclude for the eigenfunction calculation that the mean number of 
iterations between crossings of the estimated and tme reaction rates 
approaches infinity as the number of iterations Increases. 

REFERENCES 

1. R. C. GAST, "Monte Carlo Eigenfunction Iteration Strategies that are 
and are not Fair Games," WAPD-m-878, (I969). 

2. G. W. M)RRISON, J. T. MIHALCZO, and D. C. IRVING, "REACT and CONVRG-
Fortran Subroutines for Determining Source Convergence for the 05R 
Monte Carlo Neutron Transport Code," ORNL-TM-1325, (I966). 

3. J. T. MIHALCZO, "Multiplication Factor of Uranium Metal by One Velocity 
Monte Carlo Calculations," Nuc. Sci. and Eng., Vol. 27, pg. 557, (1967). 

k. M. R. MENDELSON, "Monte Carlo Criticality Calculations for Thermal 
Reaetors," Nuc. Sci. and Eng., Vol. _32, pg. 319, (1968). 

5. J. B. PARKER and E. R. WOODCOCK, "Monte Carlo Criticality Calculations," 
Progress in Nuclear Energy, Series IV, Vol. jj, pg îJ+l, Pergamon Press, 
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APFEHDIX 

As discussed in Section II, the strategy adopted is an analog of the 
analytic power method, with an increasing number of histories per iteration. 
A question that naturally arises is whether neutron weights could be intro
duced in an analog of the power method with a fixed number of histories per 
iteration so as to make It a fair game. This appendix gives a procedure for 
doing this and a proof that the result is a fair game. 

We know from Section II.a that the equation describing the analog of the 
I>ower method with an increasing number of histories per iteration, i.e. 

*r^=I«?j'^(*? 
results in the analytic transport equation. 

•l" I°1J*J 
j 

upon taking the P Lim as n- <». 

Suppose now we have a system that is supercritical and follow all 
progeny such that the number of histories increases with iteration number 
(continuation of the Markov process must be assured as discussed in Section 
II.a. This process may be represented in a power method analog with a fixed 
number of histories per iteration by the use of weights as follows: Let k 
be the multiplication factor for the n**̂  iteration, i.e. the total neutron 
production divided by the total starting weight in the n* iteration. Then 
the supercritical process could be represented by having the weight for 

n-1 
Iteration n, say W determined by W o 1, W = 11 k . Suppose for the 

1=0 
moment there are no statistical fluctuations in the multiplication factor k , 
then asymptotically (n large) ku becomes a constant, say E. In this case 
the weight W will have an exponential increase, i.e., we may write W •• 

K = e where a » In k. With such a weighting, the effective number of 
histories contributing to any estimated reaction rate remains finite as n 
increases and hence the process cannot be a fair game. This is easily seen by 
observing that the effective number of histories contributing to a reaction 
rate is proportional to the mean value of n for a fixed number of histories 
per iteration} that is the mean value of n, say n, over previous iterations 
up to Iteration N« But, 
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•5 = J^e°'(N-n) (j,.„)^ - ^ Cl - e-«N((.N+l)l, 

and 
_ 1 

I n = — 
N-» <» Ol' 

Lim n •= —g-

hence the effective number of histories contributing to a reaction rate is 
finite as N-* oo (of course the same occurs in a subcritical reactor). 

If we did not have statistical fluctuations in the asymptotic multi
plication factor k, then a scaling of v (neutrons per fission) such that 
k = 1 and hence cc = 0 will produce the basic requirement that the effective 
number of histories contributing to a reaction rate approaches oo as N-» oo. 
In this case the weight W^ would be, 

n-1 
TT kj 

W„ = 1 ^ . 

Because of the statistical fluctuations in k^, the estimated multiplication 
factor for iteration 1, caused by a finite number of histories in the Monte 
Carlo calculation, a reactor that is Just critical as defined by the analytic 
transport equation Is subcritical in reality and the neutron density will 
approach zero as the Iterations approach oo (this also occurs in a real 
reactor). This may be easily seen as follows: A reactor that is Just crit
ical mathematically (i.e. continuous neutron density in the linear transport 
equation) will meet the condition: 

N 
PLim — 
N - 00 

1=1 

1 " 

N I ^ 

We may write ki = 1 - A. where t^ are the s t a t i s t i c a l fluctuations and 
assume without loss of generality 

n 

I A i = 0 . 

1=1 

The amplitude of the spatially integrated neutron density after N iterations 
is then proportional to 

H 
IT kf 
1=1 
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We may write 

N N /^ \ f ^ \ 
n (i-^i) = 1 - y ^ + M l ' ^ i +^21 I ^ i +...-K)(fi3), 

^"^ 1-1 ^1=2 / \ i = 3 / 

Making use of 

(AI+V-+'^N) = 'i + 4 ^"-^^ ^ %( i^i r ^"^l 1 î] 

we may write 

N 
n 

1-1 
Sd-A^) = l - | [ I^ i ] + O(A3) < 1 . 

1=1 
Hence it is clear that the expected neutron density amplitude will approach 
zero as N-" oo. The degree of supercriticality required to keep the expected 
neutron density amplitude at a constant for a large number of generations, 
N, in a reactor with finite neutron density, is obtained by scaling v by 

1=1 

Thus the desired neutron weight at iteration n in a problem with a total of N 
iterations is given by 

"n(N) •= ̂ . 1 > where K = , TT k̂  
K" -̂  \ 1=1 

(This weighting was first suggested by D. B. MacMillan, private cemmunica-
tlon). 

The proof that the use of the above weight, W (N), in the Monte Carlo 
process produces a fair game may be summarized as follows: Using the 
definitions of Section II.a, we may write the Monte Carlo process as 

n+1 V n / . n. n, 
4 = } o" W (N)K * )• 
1 î  ij n J 

J 
Summing both sides of this equation over n, we have 



191 

n=l J 

^G^jW„(N)K"(*-) 

a 
N 

^W„(N)K"(*^) 

1 V,. , , n, n. 
- 2,Wn(N)K (*J) 

n=l 

L 'n=l 

The quantity in the parenthesis above is simply a weighted average of the 
estimated neutron production in elementary volume i due to a neutron bom in 
elementary volume j; hence, its PLlm as N- oo is the analytic neutron pro
duction Green's function G^,. All that is additionally required to show 
that the above equation reduces to the analytic transport equation, 

N 

J N ^ 00 
n'l 

is to show that 

PLim i ^WjN)K"(*")=PLim^i ^ .^^^ 
''•*" n=l -̂  N - - ^^^ 

where 

1 V' V n+1 . 
PLlm N Z. Lh 
W - 00 n=l 1 

X = • 
N 

^ i Iw„(N) 
n=l 

The desired result is immediately obtained by recognizing that the product, 
WJJ(N) times the sampling operator K", defines simply a Russian Roulette 
operator. 

The weights W (N) and a fixed number of histories per iteration were 
not used, since the weight for the n*'̂  iteration continually changes as the 
total number of iterations increases, thereby destroying the ability to use 
accumulative counters for internal editing of reaction rates (this diffi
culty would not exist for post editing). 
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TABLE I 

Slab Core Eigenfunction Uncertainties 

' ' I 
Values of f̂  f o r - i = .36 

Region 
Data 

No. 

2 
10 

2 
2 
1 

F r a c t . 
Size 

. 01 

. 1 

.3 

.5 
1.0 

No. of I t e r a t i o n s 
50 

S t a t . 

1 
10 

1 
0 
0 

For 

1 
9 
1 
0 
0 

100 

S t a t . 

1 
9 
2 
2 
1 

For 

1 
8 
2 
2 
1 

150 

S t a t . 

2 
12 

3 
3 
1 

For 

2 
12 

3 
3 
1 

200 

S t a t . 

3 
5 
0 
1 
1 

For 

3 
5 
0 
1 
1 

250 

S t a t . 

1 
10 

1 
1 
1 

For 

1 
10 

1 
1 
1 

1 

% 

1.51 
7.58 
1.51 
1.51 

.76 

fm+2a 

k.kk 
14.12 

k.kk 
k.kk 
2.82 

^1 
Values of f„ f o r - — = .68 

Region 
Data 

No. 

2 
10 

2 
2 
1 

F r a c t . 
Size 

.01 

. 1 

.3 

.5 
1.0 

Region 
Data 

No. 

2 
10 

2 
2 
1 

F r a c t . 
Size 

. 01 

. 1 
• 3 
.5 

1.0 

No. of I t e r a t i o n s 
50 

S t a t . 

1 
10 

2 
1 
1 

For 

1 
k 
0 
0 
1 

100 

S t a t . 

0 
10 

2 
0 
1 

For 

0 
6 
0 
0 
1 

150 

S t a t . 

2 
16 

it 
1 
0 

For 

2 
9 
1 
0 
0 

200 

S t a t 

2 
15 

5 
1 
0 

For 

2 
9 
2 
0 
0 

250 

S t a t . 

3 
13 

5 
5 
0 

For 

3 
7 
2 
2 
0 

fm 

1.51 
7.58 
1.51 
1.51 

.76 

fm+2o 

k.kk 
14.12 

4.44 
4.44 
2.82 

Values of f̂  f o r - i = .84 

50 

S t a t 

2 
13 
3 
0 
0 

For 

0 
6 
0 
0 
0 

No. of I t e r a t i o n s 
100 

S t a t 

0 
19 
k 
6 
1 

For 

0 
7 
1 
0 
1 

150 

S t a t . 

1 
17 

6 
1 
2 

For 

1 
6 
1 
0 
2 

200 

S t a t 

0 
13 

3 
0 
1 

For 

0 
6 
1 
0 
1 

250 

S t a t . 

1 
17 

6 
1 
1 

For 

1 
8 
1 
0 
1 

fm 

1.51 
7.58 
1.51 
1.51 

.76 

fm+2a 

4.44 
14.12 

4.44 
4.44 
2.82 
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TABLE I - (Cont'd] 

'^l 
Values of fm for .^ = .92 

Region 
Data 

No. 

2 
10 
2 
2 
1 

Fract. 
Size 

.01 

.1 

.3 

.5 
1.0 

No. of Iterations 
50 

Stat. 

4 
16 
12 
9 
0 

For 

3 
6 
3 
2 
0 

100 150 200 

Stat. 

7 
28 
19 
16 
1 

For 

6 
13 
6 
4 
0 

Stat. 

4 
27 
21 
11 
1 

For 

3 
11 
6 
2 
1 

Stat. 

4 
.38 
25 
23 
1 

For 

4 
14 
7 
4 
1 

250 

Stat. 

5 
33 
10 
8 
1 

For 

4 
10 
1 
0 
1 

fm 

1.51 
7.58 
1.51 
1.51 
.76 

fm+2a 

4.44 
14.12 
4.44 
4,44 
2.82 

X, 
Values of fĵ  for -i-i = .96 

Region 
Data 

No. 

2 
10 
2 
2 
1 

Fract. 
Size 

.01 

.1 

.3 

.5 
1.0 

No. of Iterations 
50 

Stat. 

2 
36 
12 
18 
1 

For 

2 
6 
1 
0 
1 

100 

Stat. 

2 
43 
13 
28 
1 

For 

2 
9 
1 
2 
1 

150 200 

Stat. 

1 
41 
4 
18 
0 

For 

1 
8 
0 
1 
0 

Stat. 

3 
41 
1 
19 
0 

For 

3 
9 
0 
2 
0 

250 

Stat. 

4 
.36 
5 
26 
1 

For 

3 
9 
0 
2 
1 

fm 

1.51 
7.58 
1.51 
1.51 
.76 

fm+2o 

4.44 
14.12 
4.44 
4.44 
2.82 

Values of fji for _± = .98 

Region 
Data 

No 

? 
10 
? 
? 
1 

Fract. 
Size 

.01 

.1 

.3 

.5 
1.0 

No. of Iterations 
50 

Stat. 

1 
61 
33 
36 
1 

For 

1 
16 
7 
13 
1 

100 

Stat. 

2 
53 
19 
24 
1 

For 

2 
12 
2 
4 
1 

150 

Stat. 

3 
45 
14 
12 
0 

For 

2 
8 
1 
0 
0 

200 

Stat. For 

3 
26 
12 
2 
0 

2 
6 
1 
0 
0 

250 

Stat. 

3 
40 
18 
0 
0 

For 

2 
10 
2 
0 
0 

% 

1.51 
7.58 
1.51 
1.51 
.76 

4.44 
14.12 
4.44 
4.44 
2.82 
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TABLE I - (Co it'd) 

Xl 
Values of f^ for -j— = .99 

Region 
Data 

No. 

2 
10 
P 
? 
1 

Fract. 
Size 

.01 

.1 

.3 
• 5 

1.0 

No. of Iterations 

50 

Stat. 

5 
50 
?4 
20 
0 

For 

? 
9 
? 
2 
0 

100 

Stat. 

1 
36 
2 
0 
0 

For 

0 
3 
0 
0 
0 

150 

Stat. 

3 
42 
8 
10 
0 

For 

1 
5 
0 
0 
0 

200 

Stat. 

4 
41 
14 
17 
0 

For 

2 
4 
1 
0 
0 

250 

Stat. 

6 
56 
17 
24 
0 

For 

3 
8 
2 
2 
0 

'̂l 
Values of fjj f or-i = .995 

Region 
Data 

No 

2 
10 
2 
2 
1 

Fract. 
Size 

.01 

.1 

.3 

.5 
1.0 

No. of Iterations 
50 

Stat. 

5 
81 
46 
38 
0 

For 

3 
23 
9 
5 
0 

100 

Stat. 

5 
124 
29 
18 
1 

For 

3 
26 
3 
2 
1 

150 

Stat. 

7 
90 
13 
6 
1 

For 

1 
13 
1 
1 
1 

200 

Stat. 

6 
95 
8 
25 
1 

For 

4 
13 
0 
2 
1 

250 

Stat. 

7 
69 
16 
24 
1 

For 

3 
10 
1 
2 
0 

^m 

1.51 
7.58 
1.51 
1.51 
.76 

fm+20 

4.44 
14.12 
4.44 
4.44 
2.82 

fm 

1.51 
7.58 
1.51 
1.51 
.76 

fm-̂ 2c 

4.44 
14.12 
4.44 
4.44 
2.82 
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DISCUSSION 

Gelbard: You say that in one case irun at Knolls Atomic Power Laboratory 
(KAPL) it was observed that there was a tenth of a percent bias in the eigen
value. How many histories were run per generation in that case? 

Gcxst: Five hundred. The 0.1% bias was not considered acceptable by 
people at KAPL. Their approach was simply to go to approximately 2000 his
tories per iteration on the assumption that the bias would then drop to 0.025%. 

Gelbcxrd: Did they have other information about other problems? For 
example, was this 0.1% particularly large or was it typical of the problems 
they ran? 

Gast: Their conclusion was that it could be typical. 

Kalos: I was there at the time. They were trying to compute k's to about 
0.1% and they wanted their errors to be small compared with that. 

Gelbard: Any questions or comments? 

Kalos: I have a great many comments, because I think that this was a 
very stimulating, careful, and interesting paper. First of all, once you have 
decided for various reasons that you must make your simulated system super
critical, why Insist on any restrictions on the number of histories in succes
sive generations, or on the number of fissions? Why not simply let these num
bers vary freely and prepare yourself to contend with the mild programming 
problem of handling lists of variable length. The lists will probably go out 
on discs anyway, and you totally remove the bias. The bias associated with 
increasing n is removed from the problem, and the game is fairer still. It 
seems to me that the use of an Increasing n presents complications in under
standing and analyzing errors. As I remarked to you before, a scheme for 
analyzing errors that I find seems to work in situations of this kind is to do 
the following. Assume that I am going to do 120 iterations, of which the 
first twenty are to be ignored. I then divide the remaining 100 into groups 
of 20, and I calculate a mean for each group. This, of course, is a biased 
mean, and the bias is different from the bias of the grand ensemble mean. 
Then I compute the standard deviation of the individual means, estimate serial 
correlation coefficients between each group, and infer a statistical error for 
the whole problem. It is a rather simple strategy. 

Gelbard: Let me comment on one of the suggestions that Kalos was making. 
The suggestion seems to be essentially that, when you average over generations, 
you do this without normalizing the eigenvectors per generation. You then end 
up with an arbitrarily normalized eigenvector which you may normalize, of 
course, after you are finished. Suppose that is what you do. Now that you 
have normalized you will Introduce a bias again, because the bias comes from 
the fluctuation in the denominator when you normalize. That is the conclusion 
that comes out of the analysis that we are going to talk about in our next 
paper. The bias comes from nonlinear terms in the iteration equations, the 
nonlinear terms being introduced by the denominator in the normalization pro
cess. So, if the bias is to be decreased by the process that you described, 
the amplitude of the fluctuations in the denominator must be decreased. Now, 
you might expect that they would be decreased because the denominator now 



196 

comes, not from one generation, but from a sum over all of the generations 
which are being averaged. In other words, if you take as your estimate of the 
eigenfunction a sum over, let us say 100 generations, then to normalize, you 
divide by the volume Integral of this sum. You might expect that the denomina
tor, being a mean over many generations, might not fluctuate much. Mal, do 
you disagree? 

Kalos: 1 disagree with the whole argument. There is no fundamental nor
malization here for the eigenfunction anyway. 

Gelbard: That's the real question. What I am asserting is that when you 
go to use the eigenvector, you always find yourself forced to normalize it in 
some way. You may want to estimate ratios between the eigenvector at one 
point and another, and when you find these ratios, you are adopting a particu
lar normalization procedure. The simplest normalization to adopt, in princi
ple, is the one where you normalize the final average to one. 

Kalos: But in estimating ratios my procedure Introduces no bias. 

Gelbcxrd: That is where I disagree. I disagree because any estimate you 
make eventually is based on a normalized eigenvector. 

Kalos: But the normalization drops out. 

Gelbard: Why does it drop out? You divide the vector you are getting by 
an Integral of that vector. 

Kalos: Suppose I decided to divide the eigenvector by 73. 

Gelbard: If you always divided it by 73 you would again have an unnor-
malized eigenfunction. 

Kalos: Right I 

Gelbard: And you could not compare the value at one point with the value 
at another point. To make a comparison of values at one point with values at 
another point, you always must, in one way or another, introduce a normaliza
tion. 

Kalos: I am afraid I don't understand that remark at all. 

Gelbard: What I am saying is that you cannot get away from normalizing 
the eigenvector that comes out of a Monte Carlo code calculation. 1 am say
ing that the value of the eigenvector at a point, unnormallzed, is not useable, 
is not what you are after. You are after a value at a point normalized in some 
way, or else the value at one point divided by the value at another point. 

Kalos: Well, if it is the value at one point divided by value at another 
point, then obviously the normalization is irrelevant. 

Gelbard: Well, I would say that.the normalization then is the normaliza
tion to the value at the point at which you are getting the ratio. But another 
way of doing the same thing, of comparing different eigenvectors, or eigen
vectors at different points, is to normalize the eigenvector so that its 
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integral is one. This is the most convenient way of normalizing; and once you 
normalize in this way, you are taking the eigenfunction and dividing it by a 
fluctuating denominator, and you have a bias again. So I think that the elimi
nation of the bias in this way, although it sounds attractive at first glance, 
is really an illusion. I think that you must normalize the eigenvector, even
tually, when you use it for any practical purpose, and when you do, you will 
again introduce a bias. The question is whether you have diminished the bias 
by normalizing in this modified way. 

Coveyou: Are you talking about taking the value of the eigenfunction at 
two different points and comparing them? 

Gelbard: I say that that is what you usually do when you compute the 
eigenvector. 

Cashwell: Isn't it clear then that, when you take the ratio, normaliza
tion cancels out? 

Kalos: Therefore, the bias that comes from the denominator is totally 
irrelevant, and if you bring it into the analysis of variance you are making 
a mistake? 

Gelbcxrd: Let me then define an alternative way of normalizing. I will 
take one point in the problem and normalize to one. That is another way of 
normalizing. I also say that it is a biased way of normalizing. 

Kalos: All ways of normalizing are biased. 

Gelbcxpd: So, I am saying that you cannot get away from a normalization 
procedure of one kind or another and when you introduce a normalization proce
dure, whether you like it or not, you will come back with a bias. 

Kalos: It is true that the ratio of the two,estimates of the eigenfunc
tion, being a ratio, is very likely to be a biased quantity. But, one must 
deal with the bias in that ratio directly, and in fact the bias introduced by 
another normalization factor, is totally irrelvant. 

Gelbard: What I am saying is that some sort of normalization of the 
eigenvector is inescapable when you go to use or exhibit your results; and 
whatever normalization you use will introduce bias. Every time that you in
troduce a normalization procedure, you Introduce the bias again. The question 
is: How large is the bias for different normalization procedures? Suppose 
you normalize in the way I described, namely you get the sum over many many 
unnormallzed generations, then divide by that sum. You now have an alternate 
way of normalizing. Now, you may ask, how is this mean biased, compared to 
the other mean? I think that is a question that you have to look at if you 
are going to propose this procedure. I think you have to recognize that the 
end result is going to be normalized; the most convenient way to normalize is 
to divide by the integral. You can ask: what kind of bias you have once that 
normalization is carried out. Is it smaller than the bias you would get by 
normalizing each eigenvector and averaging? This I think is a question one 
ought to be able to answer. 
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Cashwell: Yes, but still, the question is: What is biased? The estimate 
of the normalized eigenfunction is biased, each estimate separately. The ratio 
of two of the values of the eigenfunction is biased also. But, the second is 
not biased because the first one is biased. The ratio is biased because it is 
a ratio. 

Gelbard: Normalizing to a value at one point is one way of normalizing. 
I am saying a more common, and also perfectly satisfactory way, is to normalize 
so that the integral is one. In any case you must normalize to exhibit your 
results, and to use them, and then you come back with a bias. The question 
that you should ask is whether one of these approaches gives you less bias in 
the normalized result than the other. My suspicion is that the bias in this 
alternative procedure, which does sound attractive when you think about it 
first, is not really smaller than the bias in the conventional normalization. 

Gast: I would like to make one point about normalization. In our RECAP 
program the eigenfunction can be represented, either by the accumulated neu
tron source which is input at the beginning of each iteration, or by the accu
mulated output of an iteration, the neutron production. You can visualize nor
malizing either end of the generation. We always normalize the input. To nor
malize the input one keeps the total starting weight of all neutrons the same 
in each generation. If you want to normalize the output, the neutron produc
tion (and 1 am not sure whether you were referring to this) , the process be
comes much more complex. 

Gelbard: Another way of avoiding bias in the eigenvector is to keep a 
fixed number of histories per generation but, when you average, to assign each 
generation a weight — the weight being equal to the eigenvalue coming from 
that generation. I think this approach is very closely related to what is in 
one of Lieberoth's papers. But I suspect, again, that when you try to use the 
eigenfunction you are forced to normalize it. And, when you normalize it, you 
are again forced to divide by a fluctuating denominator, and again I think 
that you will get a bias when you finally do normalize. It is just hard to 
see what you can do with the unnormallzed shape: every time you try to use it 
you are forced to normalize in one way or another. Well, anymore comments? 

Kalos: Yes, I would like to comment on the subject of importance sampl
ing. You conjecture that there is no other form of importance sampling which 
would have direct application to the reduction of variance of the eigenfunc
tion or, in general, to the acceleration of the Iterative process. This is 
false. There is such a form of Importance sampling, at least, in theory. 
Work on this sort of importance sampling originally goes back to Goad and 
Johnson. A variant of their method was published by me in a paper presented 
at the ANS Topical Meeting in Klamesha Lake. There 1 pointed out that if you 
solve the adjoint transport equation, and if you use the fundamental mode of 
the power distribution as an importance function then, in the limit where 
ordinary Importance sampling is carried out exactly, you get zero variance 
estimates for the flux at any point you care to choose to start the history. 
This process converges in one generation and, therefore, you have an accelera
tion and zero variance technique at the same time. The estimates you need to 
bias with are the value of the power. . Thus you have the possibility of start
ing with an approximation and, perhaps, doing a multi-stage sampling in which 
Improvements in your guess are fed back. I have no idea how this would work 
out in practice but at least, in theory, there is an Importance sampling method 
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which reduces variance and accelerates convergence. It is of the same general 
character as those you have looked at, but the point of view is quite different. 

Gast: Our feeling was that because we need the flux or the power over 
many edit regions, that in trying to get a shape we would be confronted with 
a sequence of adjoints, and we .... 

Kalos: No, it is one adjoint only — there is a single adjoint. There 
is a single adjoint which gives the flux at any point in the reactor with zero 
variance. 

Gast: At a prechosen point. Then you have to do many points. 

Kalos: Yes, yes. 

Gast: It is our Intuitive feeling (though we intend to look into this in 
more detail, by the way) that we could probably not gain very much relative to 
a normal forward run. 

Gelbard: Because of the number of points you are Interested in? 

Gast: Yes, but I am very Interested in your feelings as to what the gain 
could be. 

Kalos: I wish I had feelings as to what the gain could be. 

Cashwell: My experience has been mainly with shielding problems, not 
criticality problems, but my guess is that almost any method of getting an 
approximate adjoint function will help a lot. Whether that is true for the 
reactor, for the criticality problem, I do not know, but I see no reason why 
it would not be true. 
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ABSTRACT 

This paper is divided into three parts. In Part I we describe 
a simple model of the Monte Carlo process and develop a (nonlinear) 
recursion relation between fission sources in successive genera
tions. From the linearized form of these recursion relations, it 
is possible to derive expressions for the mean square coefficients 
of error modes in the iterates and for correlation coefficients be
tween fluctuations in successive generations. In a simple test 
problem, we find that MacMillan's prescription for computing vari
ances in means in fairly accurate. 

Part II deals with first-order nonlinear terms in the recur
sion relation. From these nonlinear terms an expression for the 
bias in the eigenvalue estimator is derived, and prescriptions for 
measuring the bias are formulated. 

In Part III we outline plans for the development of the VIM 
code, and describe briefly the proposed treatment of small sample 
perturbations in VIM. 

Part I 

THEORETICAL STUDY OF THE MONTE CARLO EIGENVALUE COMPUTATION, 
LINEARIZED EQUATIONS 

A. Basic Features of the Mathematical Model 

Although the mathematical principle underlying the Monte Carlo method in 
fixed-source computations are well understood, the Monte Carlo methods used 
in eigenvalue calculations have generally been based primarily on intuition. 
It is known that many of the methods in use today are biased [1,2]. It is 
known that correlations between generations tend to complicate the statisti
cal estimation process [3]; but one finds very little theoretical work in the 
technical literature on the magnitude of the bias, or on the nature of these 
correlations. We propose here a mathematical model of the Monte Carlo pro
cess, a model from which perhaps some of the mathematical properties of the 
Monte Carlo process can be deduced. For convenience we deal with a K x K 
matrix eigenvalue equation rather than an Integral equation. 
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Suppose that, in the Monte Carlo process, we treat precisely N sample 
particles per generation. One is to imagine that these particles execute a 
random walk among K boxes. Let Tyy be the probability that a particle in the 
v-th box will step, next, into the v-th. Suppose, further, that the v-th box 
has a fixed weight, W„ (y = 1, 2, K), attached to it. Define a diago
nal matrix, W, such that its vv-th element is equal to the weight, Wy. Let 
WT = H. Then our matrix analogue of the reactor eigenvalue equation is the 
matrix equation 

(1) 

It should be understood that each box in our model represents an elementary 
volume of phase-space in the reactor. We are interested in estimating the 
largest eigenvalue, Xj, the corresponding eigenvector Hi and, perhaps inte
grals of Ul over specified regions in the reactor configuration. 

Assume that, at the end of the i-I'st generation, NJ particles have ter
minated their histories in the v-th box. Here, of course, 

K 

.,1 
i N 

y-1 
N , 

where K, again, in the order of the matrix, H. 

To begin the next generation we form the probability distribution 

K 

= V 

V"l 
NSJ , 

V V 
(2) 

and select N starters for the i-th generation from this distribution, 
tor notation * 

' iJ' 

In vec-

(3) 

Note that in our model, each particle of the i-l'st generation produces one, 
and only one, potential fission site for the i-t?:. Thus, our analysis will 
not apply to a process in which the site of each collision is a potential fis
sion site or, generally, to any process in which the number of fission sites 
generated, per history, is a random variable. Note that every box in which a 
history terminates is, in our terminology, a "potential fission site", even 
if the weight assigned to that box is zero. This peculiarity in terminology 
is of no importance here, since in order to avoid substantial theoretical com
plications, we shall assume that all the weights are positive. Although we 
do not allow any weights to vanish, the Wy may be arbitrarily small, and it 
seems reasonable to assume that a Monte Carlo process in which some weights 
are very small will be practically indistinguishable from a process in which 
those weights are set to zero. 

Define 
Vl/(T.T 

a K-dimenslonal vector T̂^ = (Ij 1, 
• Vi). 

1). Clearly 
— > 1 

The vectors Vi and V̂ "̂""! are connected by the recursion 
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relation 

^1+1 nvj 
^ ^ ^ v^ 

T • V 

+ e 

V̂ +l = M H V ^ + e^ Â  E L ^ - / ] / N . 

(4) 

(5) 

Here X^ is a familiar 1-1'st generation estimate of the dominant eigenvalue 
while V̂^ is an estimate of the corresponding eigenvector. In Eq. (5), e} is 
the net statistical error committed during the i-th generation in transfer
ring particles from their starting locations into the v-th box. More pre
cisely 

1 , vi+1 - E vi+HvM = vi+1 - V,i+1 . 
k k k I I k k 

It will be seen that Vĵ  is the conditional mean of Vjj , given V . From 
Eq. (6), 

(6) 

^K\ - HH<r 
E^V^ 

1+1 ,-1+1 

E{E{vf 1 - K^^kl 

= 0 . (7) 

Of course V̂  and V̂  are not independent, so that e_ and e_ cannot be 
independent either. But 

. f P (v̂ +l IV^) dV^+1 v f 1 - E |vf 11 v 4 . 

Here P(V̂ ,̂V-'̂"-'-) is the joint probability distribution function of V^ and V'-"-'̂, 
while P(\?iTl|v̂ i) is the conditional distribution function of \/i+l given V̂ l. 
By definition 

/p(v'^'|v^] dV^^' v f 1 - Efvfl|v4 0 , 

and it follows that 

E(e^4-1} = 0 . 
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Thus, although e_ and £_ are not independent, they are, in the technical 
sense, uncorrelated. It will be necessary, later, to examine the properties 
of the statistical errors, £•"•, more closely, but we need say no more about 
them at this point. Note that it follows from Eq. (7) that 

EJV̂ -'I} = H EJvVx^l . (8) 

Define 

V^ = N Ul + _6̂  , (9) 

T Uj being the main mode eigenvector normalized so that T_ • UJ = AI. From 
Eqs. (5) and (9) we see that 

1+1 ^ P 1̂ + ^i 
N Ul + y-'^^ = N J ^ f ~rj + L • (10) 

T_ • N Uj + «_" 

Equation (10) is clearly nonlinear in ̂  . In our analysis it will be con
venient to treat separately those effects which can be deduced from the 
linearized form of Eq. (10), and those whose study requires retention of 
higher terms. Intergeneration correlations fall into the first category, 
biases into the second. 

B. The Linearized Iteration Equation and Correlations 

Retaining only linear terms in Eq. (10), we get 

i^+^ % i^+1 E All T 
H - £iT_ 6^ + E^ . • (11) 

Taking expectation values of both sides, it is easy to show that E{&_ } -*• 0 as 
1 ->• °°, so that to first order in £ the bias vanishes. In all the work which 
follows, we will assume that H has a complete set of eigenvectors and that 
all eigenvalues are real and nonnegative. It is our hope that, even when 
these assumptions fail, our analysis will still give us some valid insight 
into the character of the Monte Carlo iterative process. At any rate, assum
ing completeness, we write 

— t-^ n-l 
(12) 

n-n 

where, as in Eq. (1), the Uj, are the eigenvectors of H. We have already 
specified that jrj • Ul = Xi. It will be convenient to normalize the other 
eigenvectors similarly if possible. If 'l} ' '^n ^ ^n> 1st I Un = Aj,; 
otherwise the normalization of U^ will remain unspecified. Clearly 
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T 
where the primed summation runs over all n such that T_ • UJ, # 0. 

Write Eq. (11) in the form 

&^'^^ = A6_̂  + £^ , A E H - Uix''' , 

H = H/Ai , ~i_ = T/AI . (14) 

Assume that the iterative process has been in progress for an infinite number 
of generations. It is easy to show, given our assumptions on H, that 
||A|| < 1. It follows then, from Eq. (14), that 

11+1 7 .n i-n , , 
L = Z-« A £ • (15) 

n=0 

where, of course, the superscript on €_ is an Iteration index, not an exponent. 

The reader can verify that 

A" = H" - UiiV"^ , n 1 1 . (16) 

Putting Eq. (16) into Eq. (15), we see that 

Â''"-'- - • „i J. > N „n \ n 1-n 
— ^ •*" ' ' / ^ •̂iĉi, ~ Hi / t Pĵe,̂  

''*S£v"^-^'|jv"° (17) 
k=2 " " 

Here Pk E A^/Ai, while z^ is the coefficient of the k-t?i eigenvector in the 
eigenfunction expansion for £_!; 

K 

^ = L^ ^X • (18) 
k=l '"^ 

It follows from Eq. (17) that 

K ' », 
a+1 1 V* > n 1 

k=2 n=l 
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t l+1 _ > n i-n 
*lc - ^ \ \ ' " ^ ^ • (19) 

To compute the mean-square coefficients of the error modes, we write 
00 00 

[ \ - LJLJ\W \ ' k^ 1 . _ (20) 
^ ' n=0 m=0 

Defining r̂^̂^ = z\&^ s f |, we see from Eq. (20) that 

\ k 

""kk - :; 2 ' k -ft 1 . (21) 
^ - p k 

For later use, we also cite, here, expressions for the other r, 's: 
k£ 

K ' K -

a 4 1 

(22) 

' • l l -

-"ll = 

^u 

Above, 

1̂ 11 "'• Z-.<^_< 
k=2 1=2 

""ll = = u -

\z 
( l - PkP^) 

and in a l l the 

' It 1 ^kJl' -
[1 - PkPJl) 

K , 

"=2 (1 - PkP,) ' " ' ' 

k ?i 1 , I ^ 

work which fo l lows . 

» 

1 

'•kl m • (23) 

Note that we are assuming that the right-hand side of Eq. (23) is independent 
of i. 

The quantity rĵ k is the mean-square coefficient of the k-t?! eigenvector 
in an expansion of the "asymptotic" fission source (i.e., the fission source 
in any single generation preceded by infinitely many iterations). At this 
point we want to derive a corresponding expression for r̂ k 1" a fission 
source averaged over M successive generations. Define 

M 

6f3. = - Z ^ «;"'•" . (24) 
L+1 1 V ^ il+2-n 
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and 

'̂ kk,M = 1[\.M. 

M 
.-l+2-n-l+2-m| 

-kk.M - . ^ ^ ^ \ *k 
M n=l m=l 

Ju+2-n:i+2-m| fk \ I 

(25) 

(26) 

We consider, for the sake of simplicity, only the variance in the ampli
tudes of contaminating modes, modes for which k > 1. For such modes 

_ I i 1+1-n'^ 1+1-m 

If n > m, then 

X ^ \ ^ j il„l i-n-j i-m-J.) 

2.2-,PkPk^(^k ^^k ) . 
k > 1 (27) 

„,"l+l-n~l+l-ml N j n-nri-j 
E<\ \ I " ^''k^k \k ' Spipk" k > 1 (28) 

E{6f^-"6fl-'" 
[̂  - P̂ ] 

2-1 'kk 
k > 1 (29) 

Putting Eq. (29) into Eq. (26), we find after some manipulation that 

1 ^kk 
kk,M „ (., 2) 

M [1 - PkJ L 

1 + 2! ^i[\] k > 1 . (30) 

where 

^ ' • ^ ) ' ( ^ 

1 M 
, . 1 , ^ - k 

" (̂  - ̂ .) 

(31) 

Obviously hM(p) -• p/(1 - p) as M ̂  ». It is easy to show in addition that 
hfj(p) % (M - l)/2 if pM ;}; 1. Thus 

''kk,M "̂  
kk 

( ' - -K) 

if M « -fdn p 1' k > 1 , (32) 

and 



\k,M ^ 
'•kk 

M [I - p2j 

2P,. 
1 + 

(̂  - ̂  J 
'kk 

M (1 - pJ' 

if M » -Un pJ ^ • k > 1 . (33) 

Note that if successive generations were uncorrelated, one would find that 

•^kk 

kk,M M (1 - p y 
(without correlation) . (34) 

Thus we see that the factor I + 2p^l(1 - Pĵ ) in Eq. (33) is an amplifica
tion factor embodying effects due to intergeneration correlations. A closely 
related amplification factor is introduced by MacMillan in Ref. 3. 

In order to make any use of the expressions derived above, it will be 
necessary to evaluate the covariances Ekk- We discuss this problem next. 

C. Computation of Ekj, 

The quantity EJ"- in Eq. (5) is a vector whose spatial components have the 
form 

E = W A 
V V V 

.i+l N^+1 - E N^-^>^ 
V I V I— 

Expanding £ into eigenvectors of H, we find that 

Z/ u! w. 
v=l 

kv V V 

(35) 

(36) 

Here U* is the v-t̂ i components of the adjoint eigenvector Uj^. Thus 
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e = tiut^WWEJA^+V^^ 
•̂ ki £ - J i ^ kv £ii V p I V V I 

(37) 

To evaluate E , we must now compute the expectation value which appears on 

the right-hand side of Eq. (37). 

Neglecting any bias^ we shall assume that the expected number of parti

cles in the M-th box is N , where 

W N 
V V 

N U 
Iv 

(38) 
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Further, we suppose that in each generation the probability that a typical par
ticle will be assigned to the v-th box is equal to N^/N. Under these assump
tions one can show that 

V V 
N^|l - N^/NJ , (39) 

Ê Â '̂ -'-Â "̂ -'- = -N N /N , V ?i p . (40) 
' V p ( V p 

Putting Eqs. (39) and (40) into Eq. (37), we find that 

K 

kJ. 
v=. 

K K 

E U* V. W^N fl - N /NI 
kv J-v V V V j v=l ^ ' 

K K 

- /. / , fuf U* W W N N I/N 
frf ̂  I kv ilp V p V pjl/ 

K 

£ ("kv"£v"vNv]/« . (41) 

K 

+ 

'k£ " = Z , U, U. W^N 
* ^ kv iv V V 

K^ Y. 

- I J I J ( " L " 1 " V W P } A - («) 

Because of the blorthogonality of eigenvectors and adjoints, the second 
term on the right-hand side of Eq. (42) vanishes unless k = £ = 1: 

K 

^U = ^ "kv"tv"v^v • k ̂  1 or £ ̂  1 . (43) 
v=l 

Again using blorthogonality, one finds that 
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K^ 

11 = Z ^ ("!v"v) "v-" • (44) 

It is interesting to note that the vector 

I, = W U.* 
-k -k \ = " Hk . (45) 

(where W is the weight matrix, defined in Section A) is the importance func
tion for absorption. From Eq. (42), it is easy to show that, in general. 

Cv 

where 

K 

I, = A J II, n . 
k *—• kv V 

v-1 

n = N /N . 
V V 

Clearly 11̂  is the fundamental-mode absorption probability in the v-th box. 
Thus the quantity (Eki/'̂ ) "̂ ^̂  ^^ interpreted as the covariance of the impor
tance functions, Ik and l£, with respect to the absorption probability distri
bution function. 

D. Qualitative Features of the Monte Carlo Estimates 

Note that we have, so far, been discussing the fluctuations in the net 
fission source produced in a typical generation by N sample particles. The 
amplitude of such a fission source would, of course, be proportional to N. It 
is, however, somewhat more Interesting to consider the behavior of a fission 
source whose normalization is independent of N. Define 

^1+1 ^ ^i+I/j, _ („) 

It will be seen that x Is an estimate of the fission source density produced, 
at the end of the i-th generation, by one fission neutron born at the begin
ning of the i-th generation. Correspondingly, we define 

,1+1 J1+1/., X = 6 /N , 

^ 1 ^ 
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and 

\ l = „2 ""kZ = ^ 
Li+l-l+ll r-" r 

In terms of the newly defined quantities, we may write 

'kJ, 

^U 

kk,M 

Ell 

U 

{' - PkP.) 
k ?i 1 , H ^ 1 , 

K ' K ' 

rn = eu + Z-J 2.^ 
k=2 £=I (1 - P^P,] 

'-ki ' 

I kk 

M^ (1 - P^ 

•̂ =2 (1 - PkP,) 

1 + 2h^(Pk] 

k£ = "̂u • ^ '' ^ ' 

k ,i I , 

'kk 
kk.M ^, _ ^2| 

K 

N ̂  i Iv vj V 

M >> -fUn p^-l| , k ?i 1 , 
r" -k 

1 , 

(48) 

(49) 

(50) 

(51) 

(52) 

(54) 

(55) 

e.. = - 2 ^ uf U. W^n , k,£ ?! 1 . 
N ^f kv Jlv V V 

(56) 

We see from Eqs. (49)-(51) that the asymptotic fission source contains an 
"equilibrium" distribution of modes. Although the amplitude of all error 
modes tends to vanish like 1/N (since the Ek^ vanish like 1/N), the spectrum 
of error modes is Independent of N. 

Generally one would expect that the z^-^ would decrease with k, since the 
number of zeros in U, increases with k. On the other hand there seem to be no 
reason to suppose that Ekk Is very sensitive to k and we shall assume that 
variations in Ekk are not very important. Certainly this is true in the model 
problems discussed in Section E. Neglecting variations in Ekk. "̂"̂  assuming 
that p. % 1, p % 1, we find that 
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\kAu ^ ( '- ^ ] / ( ' - ' ' k ] (57) 

Clearly it is not safe to assume (as one does in a deterministic eigenvalue 
calculation) that only a single error mode survives after many Iterations. 

Averaging over many generations, we find that 

^kk,M/̂ z.,M ^ (1 - '^y^ - p j ' • (58) 

It will be seen that when M is sufficiently large the spectrum of error modes, 
which is always Independent of N, becomes Independent of M as well. In the 
averaged fission source the Importance of error modes with large p is con
siderably enhanced though higher-order error modes persist. 

To compute the variance of the eigenvalue estimate, we recall that 

^ = (x."̂  . V^] N ^ A i + / • £^ . 

AA^/A .) - t'^ 
k=l 

U '^ L 

,1 
k\ • 

k=l 

(59) 

(60) 

(61) 

From Eq. (19) we see t h a t 

£ V k = N 
k=I 

K ' 

1 
E l -

K -

V* n i-n ^ V* y ^ ^'i+l.i-n 
Z-/Pk^k +Z^ f - /Pk k̂ 
n=l n=0 k=2 

From Eqs. (61) and (63) , i t fol lows t h a t 

|(AA^/AI)' = £ 2 J p 

(62) 

(63) 

a E E{ 'k^l^Si 

K ' K ' 

'kS. 
(64) 
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Define 

0 H'̂ kjl 
N-̂  

(65) 

After a little manipulation, one finds that 

'0 " ~ 

K K 

N \jsi I J v=l 

(66) 

This ao is equal to 1/N times the variance of the weights. It can be shown 
that ao has, in addition, the following significance. Suppose one were to 
draw N fission source sites from the main mode fission source distribution, 
starting one sample particle from each site. Each sample particle is to be 
followed for one generation. Let N^ be the number of sample particles which 
end their histories in box v, and define 

N W (67) 

Then ao is the variance in (A/Ai). The second term on the right of Eq. (66) 
is, then, the additional variance Induced by the iterative process. This 
second term may be written in the form 

ai = ^n](^ kl 
(68) 

Since the e, are elements of a covariance matrix, and such a matrix must be 
non-negative definite, ai is a sum of non-negative quadratic forms. It is, 
therefore, non-negative. The Iterative process will tend to increase (and 
will certainly not decrease) the variance of the eigenvalue estimator. 

We have seen that in the asymptotic mixture of modes, the modes with 
p % 1 ("low-order" modes) occur with relatively large mean-square amplitudes. 
On the other hand, because of the factor (I - Pk) (1 - Pj,). such modes do not 
play a particularly Important role in amplifying the variance of the eigen
value estimator. In fact, the fluctuations in amplitude of low-order modes 
has little effect on the eigenvalue estimates precisely because the eigen
values of such modes are almost the same as the main mode eigenvalue. Be
cause the contributions of low-order modes are suppressed in ai , one would 
expect the net amplification in the variance of the eigenvalue to be small. 

Suppose, now, that we are interested in estimating the fission rate in 
a volume, k, within a reactor configuration. From Eq. (48) 
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^ ^ Hi + i . v^ - Uj 

ER ' _{ t ' - ^J ''̂  = I J \ik • \ = I Mkdv . 

'̂  - ̂  K o^ = E 
J l = l 

'^k'^i'^ki • 

Define 

°R.M = E' 

and 

-^i:r -^ -

M 

By straightforward computation, we find that 

^ _ K K 
^h^+3 
^11 £=UP£ + , j V £ 

r . ' ^ ^ p , , ^k. 
"k^^j 

-1,1+j - j , V " j ^k°i. 
' 'lk = ~ ^it,K + Z^Pi.-. E ' lk"k 

[̂  - ''kP.] 
kJl k ?< 1 , 

z L l + J 
"^kl 

£=2 

i ' 'k^Jl 

"l ~ T =k£ • ^-^^ ' 
[' - ^k^^j 

and 

r.̂ '̂ Ĵ = P I - 7 ^ ^ ^ ^ . . . •^''1. ^-^^ ^kl 
"k^i] 

"ki 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

Making use of the above expressions we find that 
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•M-gvi-' i l l . (78) 

where the ak are complicated functions of all the p's and all the E ' S . Using 

MacMillan's approach, we write 

M 

"R.M = M^R"" 

so thus, for large M 

2 2 /K4- i -Z ,Mvr} - -
(79) 

2̂ 
R,M + 2 

k=l 
(̂  - ̂ k) 

(80) 

Equation (80) is a generalization of the equation for o on page 74 of 
Ref. 3, and is identical with MacMillan's expression if only one Pk is dif
ferent from zero. It is possible that one could use Eq. (80) assuming, per
haps, that only two of the Pk (P2 and P3 for example) are different from zero. 
The four parmeters 02, 03, p2, and P3 could, then, be fitted to match observed 
correlation coefficients of lag 1, 2, 3, and 4. Whether or not such a pro
cedure would be practical is not clear at present. 

E. Analysis of Model Problems 

In our analysis of the Monte Carlo process we have dealt with a random 
walk in a discretlzed phase space, i.e., a random walk among K distinct boxes. 
It is easy, however, to adapt this analysis to a continuous random walk by 
letting K go to Infinity, while replacing sums over v by Integrals over space 
and energy. The model problems discussed in this section are problems in 
which the position and energy variables are regarded as continuous. 

We consider, as our model problem configuration, a homogeneous cube of 
thickness T. Suppose that the scalar flux vanishes on all faces of the cube, 
and that T is large enough so that diffusion theory is valid. In one group 
the eigenvectors are, then, given by the expression 

U, „ = C, „ sin B, X sin B.Y sin B Z , 
k£m kJlm k i m 

B i TT/T , k,£,m = I, 2, . . . 

kB , 

(81) 

where the C, . are normalization constants. The adjoints take the form kJcm -• 

\£m = (8/T'\£m] «̂ " V ^̂ " \^ ^̂ " V (82) 



217 

k̂£m.k£m = ^ [^'''\imY[''ui^'''] \ W 

for k, i , and m are not all equal to one, and 

Oĵ  i 1 + l/(4k2 - 1) 

Our normalization condition requires that 

C m = Am(B/2)3 , 

so that we may write 

k£m,k£m jj 8A JJJ /|T3CJ^J,^J 

In the proposed model problem 

k£m E I + TB^(k^ + £^ + m' r 
Consequently 

''k£m ^ ^ " tB^(k^ + 5,2 + ni2 _ 3 ) / A I I I . 

and, to first order in B 2 , 

1 - p2 = 2TB2(k2 + £2 + „2 _ 3)/XJJJ . 
kx,m ' 

Approximately, then 

1 ^^lll°k°£"m 

k£m,k£m ^ r^ ̂  mPf''^ + £2 + m2 - 3] 

Thus the root-mean-square coefficient of the k£m-t;z mode is 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 
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'^k£m 

4A2j j a aj^a / ^ ^ l l l " ° £ " 

NTB'^ fT^C 12fk2 + m2 + £2 - 3) j N T B 2 T 6 ( k 2 + £2 + m2 - 3} 
[ k£mj ^ T 

(89) 

On the other hand, the expected fission source density produced, at the end of 
the i-th generation, by a single fission neutron of the i-l'st generation has 
the form 

s = Aiii(B/2)^ sin BX sin BY sin BZ 

= AIII(TT/2T)3 sin BX sin BY sin BZ . (90) 

Therefore the ratio, f, „ , of the root-mean-square coefficient of the k£m-t?2 
error mode, to the expected coefficient of the main mode, is given by the 
expression 

J 256 a, a.a 
k £ m 

NitSTB2(k2 + £2 + 
f = ^^-JS . (91) 
k£m ^/>,^s_„?/,.2 j_ ™2 j_ _2 3) 

The quantity f, . is a rough measure of the relative amplitude of the k£m-tfi 
error mode in the fission source distribution. If the main mode leakage proba
bility is 30% (fairly typical for experimental fast reactors), then TB2 = 0.1. 
In this case we find that roughly 15,000 histories would be required, per 
generation, to reduce contamination by each of the three principle error 
modes to 1%. On present computers it is generally unfeasible to work with 
such a large number of histories per generation. 

Averaging over M generations we get 

Q,M = y ; 
512 a, a„a A, , , 

f = / k £ m 111 

'̂ "̂'̂  •^NMw6(TB2)2(k2 + , 2 + „ 2 _ 3)2 ' 

assuming that M is sufficiently large so that Eq. (54) is valid. Now we find 
that 100,000 histories would be required (i.e. NM = 100,000), after settling 
to reduce contaminations by each of the three principle error modes to 1%. 
This is a rather large number of histories, but a Monte Carlo problem with 
100,000 histories can be run in roughly three hours, generally, on the latest 
IBM or CDC computers. 

This simple analysis may give us some idea of the nature of the modal 
spectrum in the asymptotic fission source, and of the dependence of the spec
trum on the number of histories. On the other hand, it tells us very little 
about fluctuations in the source, or in reaction rates, in specified 
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subregions of the problem configuration. Certainly it would be possible to 
study local fluctuations in this first model problem. However, to shorten our 
computations, we turn now to a model problem which is similar to the first, 
but still simpler. The second problem configuration is again a cube of thick
ness T, but with reflecting boundary conditions imposed on each face. It will 
be convenient, in this case, to designate the main mode with subscripts 000, 
in place of the subscripts 111. In this modified notation 

\,„ = II\(-)h,(y)h„(z) . (93) 
k£m 

Here the a, „ are normalization constants; further 
k£m 

(94) 

hĵ (x) E I , k = 0 , 

h, (x) E cos kBx , k jt 0 , 

where B = ir/T. As for the adjoints 

"k£m = {^\im]^k\^-^\\^y^'.\^^^ • 

6̂  E (2/T) , k ?i 0 , 

6̂  = (1/T) , k = 0 . (95) 

From Eqs. (93) and (95) we see t h a t 

a S, e„6 » 
- = .111 J L - L i un less k = £ = m = 0 . (96) 

k£m,k£m ., 2 
k£m 

Further it is clear that 

- n (97) 
^000,000 - 0 , 

and that 

£ , = 0 unless k = k', £ = £', m = m' . (98) 
k£m,k £ m 

As in Eq. (70) define 

i - [ fe' - 5. Ij dV = / ^ W k £ m • ^̂ ^̂  
k,£,m 
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/ " > C, 0 = / U. . dV . (99) 
k£m /„ k£m 

Let R be the cube bounded by the planes x = 0 , x = t , y = 0 , y = t , 
z = 0, and z = t. Then 

'̂ k£m " \£m^k^£^m ' 

f^ = (sin kBt)/kB , k ?* 0 , 

fĵ  = t , k = 0 . (100) 

As in Eq. (71) 

PD = Z-J 2-1 C, . C, ,.. ,r, . ,..,,. (101) R ,^rr^ , ;~TT k£m k £ m k£m,k £ m k,£,m k ,£ ,m 

But one can show from Eqs. (50), (51), (97), and (98) that 

^000,000 = 0 • (102) 

^k£m,k'£'m' = ° ' ""^^^^ k = k', £ = £', m = m' . (103) 

Therefore 

P' = 3 X ] 2 £ C2̂ m'k£m,k£m ' (104) 
k=l £=0 m=0 

n' - T y / / r^ k£m,k£m 

^ " Ui^U^'- i-p2 
k£m 

N k.£.m 1 - p2^^ 

(105) 

(106) 

(107) 
, 3 V [V£̂ J' 
R ~ ~ *-^ ' 

Nk,£,m I - p 2 ^ ^ 

since aooo ~ T^. Here 

\ "̂' V{v^ 'k, 
= (t/T) , k = 0 , 

= (V^/TT) sin (kBt)/k , k jt 0 . (108) 
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Since high harmonics may contribute substantially to the variance, it seems 
worthwhile, in Eq. (107), to use a rigorous expression for p . For the sake 
of simplicity, we assume that the medium in the cube is a pure absorber. Then 

(109) '•̂ k£m 

k£m 

\£m/Soo 

B/k2 + £2 + 0)2 
tan" 

f 
B/k2 + £2 

^ t 

+ m2 

. 

(110) 

Via Eqs. (107), (108), and (110), it is possible to compute ol numerically tc 
any desired level of accuracy. ^ 

By methods now familiar, it can be shown that 

2 

£kf£^ml 
Pk£m 

k, £,m 

and that, for M sufficiently large 

.(i^i-ij _ 3 y ^ ^ Lv£ 
RR ( N Z-^ 'k£m:̂  2 

k£m 
(111) 

R,M 

1 2 1 .\4:-m^'-^-[Wm]V(^-^Lm)[^-Pk£m) 
= — ai; \ 1 + '—' — • 

NM 

On the other hand, MacMillan's method gives 

I _j, ,\?m^4Wm]V(^--Lm] 

/ 

(112) 

% a (113) 

We see, again, that MacMillan's approximation would be rigorous if all the 
eigenvalues were zero, except for AQQO and for AIQO = ̂ 010 ~ ^001-

In the absence of correlations we would have 

R,M 
1 2 
~ ° R 
NM ^ 

Thus, in Eqs. (112) and (113), the quantities in parentheses act as amplifi
cation factors embodying the correlation effects. Define 
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6 Z Pk£mrV£^m]7(' ' ''"m) (̂  " Pk£m) 
1 + '^>^°' = , (114) 

Z Pk£m[V£^m]V(^ " ̂ Mm] 
k,£,m '^ -' ' 

a|(l - Pioo] 

6 

; = 1 + ^•"''^—-—^^^— . (115) 

Here A is the "true" amplification factor while A is the approximate "MacMillan 
amplification factor". It will be seen that A and A depend only on the absorp
tion probability p = (t/T)3, and on TB2 = B2/3E2. The Intergeneration corre
lation coefficient 

^(VR"^/^ 

is also determined by p and TB2. Values of A, A, and C are listed in Table I 
for various combinations of p and TB^. In the last colume of Table I we have 
displayed the percentage errors in /A (in place of the errors in A) since vK 
is a measure of the uncertainty in the fission rate within R. Note that when 
TB2 = 0.1 the dominance ratio (Pioo) is approximately equal to 0.9, and that 
this dominance ratio is not at all large for a thermal reactor. On the other 
hand, TB2 = 0.3 corresponds to Pioo "^ 0.7, a dominance ratio characteristic of 
a small fast reactor. 

The entries in Table I display some fairly obvious regularities. First 
of all we see that: 

(a) As one would expect, the amplification factors tend to be large when 
the dominance ratio is close to one. In fact it is clear from Eq. 
(114) that as Pioo ->- 1, A ->- •». 

(b) Secondly, A and C are large when p is large (i.e., when t/T is 
large), and both are small when p is small. For k << (l/ir) (T/t), we 
see that Fk % p: thus if p is small, Fk is almost constant for a 
wide range of k's. Many modes, including many for which PkJini ̂ ^ 
small, then contribute to the sums in Eqs. (Ill) and (112). The 
presence of Pk£ni as a factor in these sums then tends to make the 
correlation coefficient C, and the amplification factor. A, small. 
On the other hand, when p is large, Fk decreases as 1/k, enhancing 
the importance of modes near the main mode. A and C then become 
large. 

Finally we see that when Pipo ^ 0.09, the MacMillan method is reasonably 
accurate down to p = 0.005. In leakier reactors with Pioo % 0.07, the 
MacMillan method is adequate for p's as low as 0.001. Eventually, as p be
comes still smaller, C approaches zero and A approaches one. Significant 
errors in the MacMillan method do occur, but in a range where p is so small 
that the binomial estimator (the only absorptions estimator we can deal with 
here) starts to become ineffective. 
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TABLE I 

Amplification Factors and Correlation Coefficients 
for Various Values of the Problem Parameters 

TB2 

0.1 
0.1 
0.1 
0.1 
0.1 
0.3 
0.3 
0.3 

P 

0.25 
0.1 
0.01 
0.005 
0.001 
0.1 
0.01 
O.OOI 

C 

0.86 
0.84 
0.69 
0.62 
0.45 
0.67 
0.49 
0.28 

A 

18.1 
16.5 
8.9 
7.0 
3.8 
6.4 
3.7 
2.0 

A 

18.2 
17.8 
14.8 
13.4 
10.0 
7.7 
5.9 
3.8 

Error in 

A (%) 

0 
4 
29 
38 
160 
10 
26 
38 

On the other hand there are many other estimators which can be introduced 
in this range. Track length estimators, collision and line-of-sight estima
tors are often used, when p is small, to reduce the variance in reaction rate 
estimates. We cannot say what these estimators will do to correlation coeffi
cients or amplification factors. It is possible, however, that such estima
tors reduce variance by suppressing the uncorrelated "noise" component of the 
statistical fluctuations, without strongly affecting correlated large-scale 
fluctuations. In this case, amplification factors would again become large 
and a more extended analysis of MacMillan's method would be necessary. 

Part II 

THEORETICAL STUDY OF THE MONTE CARLO EIGENVALUE COMPUTATION, 
BIASES 

A. Calculation of the Eigenvalue Bias in the Mathematical Model 

As discussed in Part I, the retention of terms nonlinear in statistical 
fluctuations when calculating deviations from the fundamental mode eigenvector 
will give rise to estimates of the bias in the calculated eigenvalue. Follow
ing the definitions of Section A of Part I, one obtains from Eq. (10) 

,,1+1 A« .al - 1 { ? • i^] A6.1 + (116) 

where A and i are defined by Eq. (14). The statistical error vector z_ is 
defined in Eq. (6) and has the property EJ^lj = 0. However, due to the pres
ence of nonlinear terms in Eq. (116), the expectation value of «̂ i+l does not 
generally vanish even in the limit 1 + ". Since the deviation of the esti
mated eigenvalue of the i-th generation from the fundamental mode eigenvalue 
is given by 
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ixl = X^ - Al = — L^ • 6.̂  . (117) 
N 

the expected value of the bias may be obtained from 

AA E lim EIAA^I = — lim EIT' • 6^}. (118) 
N 1- - ' 

i-Ko i-H» 

If we retain only terms quadratic in E_ in Eq. (116), we have the 
equation 

^1+1 .,1 1 f"T :i] ~i , 1 ,,,„. 
^ = A ^ [j_ ' §_ j ^§_ + £_ , (119) 

N 

where 

Co 

ri+1 _ N ,n i-n ,, , 
i ~ Z^ A £ (120) 

n̂ O 

was obtained in Eq. (15). Assuming again that an infinite number of genera
tions have passed, Eq. (119) possesses the solution 

N n=0 
(121) 

Defining 

a E AA/Xi 

and noting that 

EII^^M = 0 , 

we obtain 

N2 n=0 ' I 
(122) 

Upon substitution of Eq. (120), 
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a = 

N2 n=0 p=0 q=0 { I 

- £ £ E((X' • AV"-^-')(T' • A"+P+V-"-''"')! . (123) 
N2 n=0 p=0 I ) 

since the statistical fluctuations in different generations are uncorrelated. 
Using Eqs. (18) and (23), we obtain 

N 2 n = 0 p = 0 k £ >• •" '• •' 
k̂£ 

P= 

From Eq. (16), we obtain 

'^ • '̂5Jk = (Pk - 1) Pk ' 

"T 
for p ̂  1 and for all modes k such that T_ • U, 7* 0. It then follows that 

a = + ~2-( 2-1 PkP£fl • P£l ̂  P£''k£ 

" ' 00 PO 

- ^ i ; s ; E ( i - P k ] ( i - P £ ] p ^ ' £ S . 
N2 k'=2 £=2 p=l '̂  -"• •' n=0 

n+1 

which reduces 

a = 

to 

1^ 

N2 k=I £=2 

\'i{^ • 
1 - P, 

• ^ 1 
.Po 

^k£ 
(124) 

As in Part I, Pk = ^^^l' and the summations designated with primes run over 

those modes with I^ ' ̂ k '' " 

B. Approximations for Estimating the Eigenvalue Bias 

Equation (124), for the fractional eigenvalue bias, may be written as 
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ao + Ol + a2 , 

where 

1 y' 
N2 £=2 

N2 k=2 £=2 1 - Pĵ p̂  'k£ 

(125) 

(126) 

(127) 

In the above partition, OQ contains all contributions which are weighted by 
the fundamental mode and can be expected to contain a large contribution to 
the bias; ai is the leading term in the series expansion of that part of a 
which contains contributions only from higher-order modes. The expressions 
for ao and ai can be converted into sums over regions rather than over modes 
by utilizing the following relations: 

k£ Z uf U* E , 
kp £v pv 

p ,v 

6 W U, - U, U., 
pv V Iv Ip i v 

and 

2—1 Pi 1̂0 = —2—12^ z^./ fit uf ut E 
7 ~ r k k£ Xl T ^ * — ^ * - ^ * - J ka kp £v uv 
k=l '*! k=I a u V 

1̂ o p V 
£v pv 

'̂ 1 p V 

where completeness has been assumed. Applying the above relationships to 
Eq. (125), we obtain 
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—.yiy^ute -y]u*ut = 
, tm^ tm^ IV pv i - ^ IP IV pv 
Al p V p,v 

= ^E 
Al N V 

In Eq. (126), we obtain 

uf W U, 
Iv V Iv 

^ S p, (i-p,) Z)"L%. 
Al £=1 ^ ' P,v 

- Ep̂ l-pjẐ tp"̂  
£=1 '• -' p,v 

* 
£v pv 

Noting that 

(' -».) "- • ? 6 - H 
ov ov 

and 

£=1 A, £ = 1 T ^1 T '̂l 

(128) 

we obtain 

"1 = -\-: Z-j 
N2A2 o.pv 

6 - H 

av av '•̂ ^ N2AI a^^v 

6 
av 

Inserting the expression for E^^ gives 

NAi V 1^1 J 

Define the quantity G^ by 

1 - X yH 
^•^ ov 
a 

W U, . 
V Iv 

- H 
av 

U* E 
Ip pv 

(129) 



228 

= Sv = îSv (130) 

Then 

n N 
'--< 
h A J A 2 

W U, 
V I v 

If we now estimate a with the approximation 

a ^ Uj) + ai , 

we obtain 

a % ̂ 2 ^ 
N V 

1__ U* 
A ^̂  -̂1 

^ + U * - ^ G 
X '" A2 ^ 
AJ AJ 

W U, 
V Iv 

(131) 

The approximation, Eq. (131), may be evaluated during a Monte Carlo run if 
the appropriately normalized importance function Uj^ is supplied. The other 
quantities appearing have the following interpretation: Uj^/Ai is the contri
bution of a unit source in region v; W^ is the weight of a site produced by 
the absorption of a unit-weight neutron in region v; and Gy is the weight of 
a site produced by a unit-weight neutron born in region v. 

that 
Another approximation for the eigenvalue bias may be derived by noting 

"̂ "̂̂  = tSSSP-^JP-^J(^-^^]M"' k£ 

E 4\L • [I - Uiŷ ]HV-"-i 
N2 ~ 

X \TJ • [I - UiUiJlfin - H"+1] . - - ) ) , 

It follows that 
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(i-yiyt)i^ ? • (i-uiyi)(i^-ii+i) 

If, in the above equation, we make the approximation that 

— — — -ave 

then 

^J ai + 02 % "̂ ^ E^ 
H2 

yl - V yl - V 

The approximation for ai + a2 may be estimated from a Monte Carlo run if the 
importance functions are either supplied externally or generated by the run. 
When combined with UQ from Eq. (128), an estimate of the eigenvalue bias will 
be obtained. 

C. The Bias in the Eigenvector 

The bias which occurs in the eigenvector is related to our previously 
defined quantities by 

AU = ^E{S_^] . 
N 

(132) 

where 6_ is obtained from Eq. (116). The eigenvalue bias is related to AU^ by 

a = — = T • AU . 

By steps similar to those used in the derivation of Eq. (124), we obtain 

AU 
N 2 k=l £=2 1 - p, P 

=-k£ 

k̂ £ ^ 

1 • "£ 1̂ - ' i \ (133) 

By examination of Eq. (133), two features may be noticed. First, contributions 
from modes may be present which do not contribute at all to the eigenvalue bias 
(i.e., those with 1.1 * Uj^ = 0 ) . Second, modes with eigenvalues close to the 
fundamental, which contribute only slightly to the eigenvalue bias, are much 
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stronger contributors to the eigenvector bias. As a consequence, large local 
bias in source shape may be present even when eigenvalue bias is unimportant. 

Some understanding of the potential difficulty may be gained by examining 
the leading term in Eq. (135) coming from the series expansion of [1 - PkP^J" 

AU 
N2 k=I £=2 

\ Ji£ ^ 1 P£^£ k£ 

Using the relationships of the previous section, we obtain 

AU^®^ = H ^ ^ 7 ^ W U, 
— „, 2 ^—^ M Ip 

NA^ p 

— Ul -2^u* y 
Al £=I •"*• *• 

(134) 

By using the assumed completeness of the eigenvectors, Eq. (134) may be 

reduced to the form 

AU ^̂  = H S_ , (135) 

where 

^ [̂  - w"| Uj 
NAT '- -̂  

(136) 

In Eq. (136), W is the diagonal matrix with elements W S and 

W -

E W U 
P Ip 

Îp 

I . (137) 

The lowest-order estimate for the eigenvector bias may thus be obtained from 
a source vector constructed by weighting the fundamental mode eigenvector by 
the deviation of the weight from its average over the fundamental mode. 
Applying the appropriate operator to £ as defined in Eq. (136) will produce 
corresponding results for the bias in reaction rate estimates. 

D. A Note on Reducing the Bias 

It has been suggested by Lieberoth [1] that the bias may be reduced by 
modifying the Monte Carlo procedure. The analog of his suggestion which 
applies to our mathematical model may be described as follows. 

(1) define a maximum weight W^gj^ >_ Wy for all v; 
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(2) at each absorption, accept a source site with probabllitv W /W 
and ^ ^ V max' 

(3) if the site is accepted, assign the weight W 
max 

The effect of the procedure is to do a Monte Carlo calculation with only 
constant or zero weights allowed. A correlation matrix analogous to E may 
be derived which is given by ^^ 

e 
pv 

N/S W„.„U, - U, u, 
I pv ™ax ly Ip Iv 

and 

%XE.\/,UJ^-6^^5^_JI 4 = Tmax^.\p"lp"lp- ^£.1^ • (138) 

The effect may be seen in Eq. (134) by the replacement Wy •* Ŵ ^̂ ,̂ causing the 
lowgst-order estimate of the eigenvector bias to vanish identically: 
AÛ ^ ' ->• 0 when Wy -> Ŵ ĵ jj . The Increase in the magnitude of the correlation 
matrix, Eq. (138), will Increase the magnitude of the nonvanishing terms, 
partly offsetting the gain obtained by eliminating the first term. Variances 
in calculated quantities will be Increased as well. 

If the presence of the bias is considered to be a potential difficulty, 
then the simplest and most direct approach is to try to use as large a number 
N of neutrons per generation as is feasible after sufficient source settling 
and to take advantage of the 1/N dependence of the bias. 

Part III » 

MONTE CARLO CODE DEVELOPMENT AT ARGONNE NATIONAL LABORATORY, 
VIM DEVELOPMENT 

Monte Carlo work at Argonne has, as its main goal, the construction of a 
Monte Carlo code for use in the analysis of Argonne critical experiments. The 
code presently available at Argonne is the VIM code originally wrltted by 
Levitt, et al, [4] at Atomics International. Responsibility for the mainte
nance of VIM, and for its future development, was transferred about a year ago 
from Atomics International to Argonne. 

VIM is a continuous energy Monte Carlo code designed to treat a fast 
reactor lattice of rectangular subassemblies (or "drawers"). In the original 
VIM it was assumed that all interfaces within any drawer would be planar sur
faces, and that each planar Interface would be parallel to one of the three 
cartesian coordinate planes. Recently, however, combinatorial geometry rou
tines written by MAGI [5] have been incorporated into VIM. The use of combi
natorial geometry allows VIM calculations to be made in complex. Irregular 
geometries as well as in lattice geometries. The combinatorial routines are 
being extended to the lattice environment to permit a full range of geometric 
options within repeating subassemblies. This capability is required for the 
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analysis of small-sample-worth experiments and for the analysis of pin-type 
fuel loadings, since small cylinders are used within the drawers. 

The VIM cross-section library at present consists of 20 Isotopes. Cross 
sections are specified pointwise from 10 eV to 10 MeV with different interpola
tion schemes possible in different energy ranges. ENDF/B data specifications 
are closely followed in the VIM library with respect to scattering angular 
distributions and individual isotopic fission spectra. Probability tables 
[6] are used for unresolved resonance cross sections. In the present library, 
all resonance data has been Doppler broadened to 300°K. Since the VIM cross-
section library codes are now operational at Argonne, the number of Isotopes 
in the library is being extended and it is now feasible to generate a multi-
temperature library. 

Among the modifications to VIM, which have been made at Argonne, has been 
the inclusion of variable dimensioning with dynamic allocation of storage. A 
small test problem may be executed in a total core requirement of about 
60,000 words, with a realistic full-core eigenvalue problem requiring perhaps 
400,000 words. The Monte Carlo calculation is completely core contained. The 
use of variable dimensioning has removed most limitations on problem complex
ity, with the exception of a temporary limit of 20 isotopes in a calculation; 
core size is the practical limitation on problem specification. 

The computation of small sample worths is a primary goal in the VIM code 
development program. Such calculations are difficult simply because the sam
ples are small. It is our intention, at present, to explore carrying out 
these calculations by a combination of three techniques, namely, 

(1) roulette and splitting, to build up the density of particles around 
the sample; 

(2) llne-of-slght estimation, to make optimum use of collisions near the 
sample; and 

(3) complete correlation. 

By "complete correlation" we mean the simultaneous treatment of perturbed and 
unperturbed problems in a single random walk. The proposed computational 
method has the advantage that it is exact and that it does not require the 
simulation of the adjoint transport equation. 
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DISCUSSION 

Gast: I think Don MacMillan recognized that his error estimates would be 
conservative for very small regions. His arguments are much more valid when 
applied to Integrals over large subregions of the critical system than when 
they are applied to small regions. The modifications that we made at Bettls 
did recognize that, as the correlation coefficient of lag I approached zero, 
MacMillan's formula was overconservatlve and we did try to remedy this defect. 
We would be interested in the results of any tests you make on the Bettls 
scheme. 

Gelbard: I would also like to look at a model problem that would have 
some leakage. We could put an antl-reflecting boundary on one side and then 
look at configurations of different sizes. At least the presence of leakage 
would tend to make the model problem a shade more realistic. The other possi
bility that seems to me to be interesting is to try to analyze the fluctua
tions that you observe in a practical Monte Carlo, to try to compute from those 
fluctuations, somehow, what the eigenvalues are. The question is, how relia
bly can you compute correlation coefficients of lag one, or lag two, or lag 
three, from a reasonable number of generations? If it is a hundred genera
tions, that is one problem. If you can tolerate, let us say, going to a 
smaller number of histories per generation and then using 200 generations, it 
might be a lot easier. That is why I said, at the beginning of my talk, that 
there would be some advantage to being able to cut down the number of histories 
per generation. Incidentally, in our second paper, Prael has proposed ways to 
estimate the bias in the course of the running of a Monte Carlo, so that one 
might be able to tell in any given case whether it is permissible to use a 
relatively small number of histories per generation. If you can estimate the 
eigenvalues from the correlation coefficients of various lags you would get 
around the problem of having to use the dominance ratio, computed externally. 
In addition you might be able to get a much better fit than MacMillan gets by 
using only one eigenvalue, and taking that eigenvalue to be the dominance 
ratio. This is the sort of thing we would like to be able to do. 

Gast: We at Bettis have leaned toward doing more generations with fewer 
histories because of the problem of estimating the correlation coefficient. 
But the extent to which we can do this is limited, because we operate in a 
manner similar to 05R. Between generations there is a good deal of what I 
call "dead time", used for reading nuclear data and so forth. To avoid build
ing up this dead time, we have more or less decided to use no fewer than 500 
histories per iteration. But if it were not for that problem we would like to 
go to a lower number. 

Borgwaldt: I hope that, in the afternoon, I will have the occasion to 
say a little bit more about our ideas concerning eigenfunction strategies. At 
this point I have only one simple question. Your theoretical work is based on 
a simple matrix model and I think that this is a reasonable approach. But have 
you tried to verify, with a model Monte Carlo calculation, that the approxima
tions which you have had to Introduce, like linearization for Instance, are 
justified? Have you done model calculations to test your approximations? 

Gelbard: No, simply because we have not had the time to do it. But this 
is certainly something that we would like to do. We would like to do a calcu
lation specifically for the model problem, first, and to see if the theory 
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makes sense. Then, if it does, we want to try to analyze realistic problems. 
But, we have not had time to do this yet. 

Coveyou: I would just like to comment on what Bob Gast said. There is 
no reason at all why you cannot do an 05R calculation, let us say, with 400 
neutrons per generation, and then analyze it as if it were ten separate cal
culations each with forty neutrons per generation. 

Gelbard: I think that this suggestion is very similar to a proposal that 
Kalos made earlier, namely that you batch the neutrons in independent groups 
and try to look at their statistical behavior from group to group. 

Coveyou: It seems to me that there are two sources of the errors and 
biases that you get. One is precisely the fact that you analyze histories in 
batches. That is apparent from your paper since, invariably, the estimates of 
the variances and covariances all had a factor of exactly N in them. In other 
words, the fact that you had N particles had absolutely no Influence on your 
results. 

Gelbard: It just lowered the fluctuations uniformly for all modes. 

Coveyou: Really you are not doing a batch of N particles and averaging 
over them — you are doing N different experiments with one particle each. 

Kalos: That is right. 

Gelbard: You are not saying that we have omitted something in our treat
ment of the correlation between generations are you? 

Coveyou: No, no, the point here is that, because you kept the number of 
particles fixed, it is clear that you are not really analyzing what happened 
to N particles in a generation. Well, in a way you are, but you are also 
equivalently analyzing N different experiments, each with one particle. And 
that is shown by the fact that you have invariably just one N-dependent fac
tor. The only way your results depend upon N is that N divides the variances 
and covariances. 

Gelbcxrd: That is right. Now, do you think that is an unrealistic model? 

Coveyou: No, but I am beginning to doubt that you get any advantage, 
from a statistical point of view, out of using a large number of particles in 
a generation. I would guess, just off the top of my head, that possibly if 
you analyze the progeny of one source neutron, and then get estimates from 
each source neutron, that your error may even be less. 

Gelbard: You run into the bias problem. 

Coveyou: No, I think that such a procedure removes a part of the bias 
problem. Part of the bias comes from this normalization. 

Gelbcxrd: Oh, I see, you are talking about not normalizing, you are talk
ing again about the suggestion that one should treat each particle separately 
and make independent estimates from each history. 
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Coveyou: Right. 

Gelbcxrd: Yes, but I think you are coming to the same question as to 
whether there is an advantage to be gained by not normalizing each generation. 
That is really the question we were discussing earlier. I think it is a really 
crucial question; I think this idea of not normalizing is very similar to the 
idea of weighting each generation by the eigenvalue. That idea is, essentially, 
in Lleberoth's paper. Originally I thought it was a good idea, but then I found 
myself asking whether you really don't always have to normalize in one way or 
another before you use an eigenfunction. 



237 

DISCUSSION ON VIM CODE 

Borgwaldt: Do you keep the data for the nuclear cross sections in 
storage and, if not, what is the relationship between your turnaround time and 
the computer time, the CPU time? 

Prael: We keep them in-core at all times; and, turnaround is terrible 
anyway. Even the small job that runs only 15 minutes here does not get good 
turnaround time. 

Grimstone: With this very large amount of data, is your main problem the 
storage and the resultant slow turnaround time, or do you feel you have any 
problem with the actual speed of the code itself in handling this very large 
amount of data? 

Prael: I think we probably spend most of our running time sorting 
through all the cross-section data; and the running time is about linear in 
the number of Isotopes in the problem. 

Gast: I was just going to contrast your experience with what we have 
found at Bettis. I think that of all the run time in our Monte Carlo (with 
what we consider a very detailed cross-section representation), about only 40% 
typically is in the tracking. The remainder of the time is in handling data, 
reading in and out, etc. I think the question of the adequacy of the cross-
section representation is a very difficult one when one is using Monte Carlo 
as a standard. The approach that we have frequently taken is, in effect, to 
base the cross-section structure on intuitive feelings as to what constitutes 
an adequate representation, and then to hold the cross sections fixed for 
perhaps several years. This is essential, we feel, if (for example), we are 
to be able to review and Intercompare results of benchmark studies carried 
out at different times. Independently a cross-section evaluation group is 
constantly checking, through subsidiary calculation, the adequacy of the 
cross-section representation. If it is decided tljat more detail is required, 
then there has to be an overlap period in which old calculations are compared 
with new, and the process really becomes very complex. To avoid such compli
cations, the cross sections and their representations in our Monte Carlo codes 
tend to be held fixed. For example, our current cross sections and library 
structures have been fixed for perhaps five years. We are, however, just now 
starting some subsidiary calculations to see if our current representation 
really need to be refined as the cross sections on ENDF/B themselves become 
more refined. 

Prael: That is certainly the right way to go. At the present time we 
are taking our first close look at a detailed analysis of the cross sections 
that are available to us. I would hope that we will be able to fix our 
library for the duration of the use of ENDF/B-III very shortly; and, when we 
prepare for any changes which may be required by ENDF/B-IV, we hope to use 
our experience to help us generate any new sets we may need. 

Cas'hwell: The one-fourth million of words was for how many elements? 

Prael: About twenty. We are limited to twenty Isotopes per problem. 
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Cashwell: That is about our limit. We were shooting for an even smaller 
number — about fifteen — but I think we can do better. 

Prael: One change we did make in the VIM code, here, was to introduce 
the use of the Argonne BPOINTER package for dynamic allocation of storage. 
Except for the limit of twenty Isotopes per problem, there are essentially no 
other fixed limits on problem specifications other than the size of the core. 

Gelbard: Any other questions? I gather that our code is one of the few 
that does not do any packing. Is that correct? It seems to me that KAMCCO 
actually uses packing for cross-section data. 

Borgwaldt: Yes. 

Gelbard: And is that what the Los Alamos codes do? 

Cashwell: Yes. 

Borgwaldt: So you use packing, and the Bettls code tries to handle the 
cross-section problem by reading the cross sections in batches. Is that cor
rect? In other words you process neutrons through an energy range, and then 
throw out the cross sections for that range? 

Gast: Yes, but we use packing too. 

Kalos: How much can you pack into an IBM/360 word? 

Gast: On our CDC-7600 we pack two words into one. 

Kalos: Yes, but you have a big word; the IBM/360 has a little word. 

Borgwaldt: I mean by packing that we leave no gaps between data. 

Kalos: Oh, you squeeze. 

Borgwaldt: Yes, we squeeze. Perhaps I may make another remark. At our 
computer installation, when we use more than 480 K bytes, we get a very low 
priority. For this reason we have always been forced to use a data representa
tion that does not use up too much storage. 

Prael: One of the limitations that we are working under is to try to keep 
our code easily convertible to any other machine, and some of the features that 
one would commonly use in coding for IBM machines are not used. For instance, 
integer arrays of small magnitude are not written in half-words but in full-
words, which is totally wasteful. 

Kalos: Perhaps it is worth mentioning that the SAM code uses both pack
ing (in the sense that you are using the term) and banding, or supergrouplng 
of the cross sections. They are swapped in and out of core as needed, but 
they are not sparse, either. 

GelbtXfd: I gather that the reason that we can get away without packing 
of this sort, or banding, is that the core of our IBM machine is very large. 
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Kalos: Your particular IBM machine. 

Gelbard: We may eventually be forced to do something more drastic than 
that, but so far we have been very conservative. Dr. Borgwaldt, I think that 
in your talk you mentioned that you used an optimum-combined estimator? 

Borgwaldt: Yes. We compute the variance and the covariance and, in the 
usual fashion, we find tbe optimum combination for the two estimates. But we 
have found that usually this combined estimation does not have a very great 
effect. We have only found a very few cases in which the optimally combined 
estimator has given us a real advantage. 

Gelbard: I think that the method which you are using to get combined 
estimators is a fairly straightforward one compared to the one that has some
times been used at Bettls. At Bettis and Knolls Atomic Power Laboratory the 
treatment of the optimum-combined estimator takes into account the fact that 
the combination coefficients are, themselves, random variables. The variance 
of this combined estimator was analyzed in a very nice piece of work, some 
time ago, by a statistician at KAPL. To compute the variance of the combined 
estimator is a very difficult statistical problem. 

Coveyou: In fact, are you sure that the estimates are unbiased? I have 
a feeling that they are not. If you could calculate the combination coeffi
cients from the sample, then I think that you will find that you have the old 
problem. You are dividing by a random variable, and the mean value of the 
quotient is not the quotient of the mean values. I think that, unless some
thing is specifically done about this, the estimates themselves are biased. 
If you use part of the sample to calculate the combination coefficients, and 
the other part of the sample uses these combination coefficients, then the 
method is unbiased. But, if you use the same sample to calculate the combina
tion coefficient as you do to calculate the mean values, then your results 
will definitely be biased. 

Kalos: If you don't gain much by making the optimum combination, then I 
think you might as well forget the whole thing. 

Coveyou: I would think so, yes. 

Prael: We ought to check the paper. I think the author claims to show 
that his estimator is not biased. 

Gelbard: I would like to cut this short as I don't think we have enough 
information on this subject at this time, and it seems to me that it would be 
worthwhile to look at this paper very closely. But I would like to ask Bob 
Gast whether, in his experience, very much is gained through use of the com
bined estimator, assuming that it is unbiased. 

Gast: We have found that we have not bought much by combining esti
mators. We do not do it in our program, and since we have some comparisons 

Editor's Note: Max Halperln, "Almost Linearly-Optimum Combination of Unbiased 
Estimates," 4m. Statistical Assoc. J., 56̂ , 36 (1961). 
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which indicate that they would not buy us much, we have never taken combined 
estimators very seriously. 

Kalos: I am glad to hear it. I heard about combined estimators many 
years ago and great claims were made for them; so I would always feel guilty 
about not using them. 

Borgwaldt: I might perhaps add that you cannot say, a priori, whether 
the track length estimator or the collision estimator is better. In some 
cases one is better, in some cases the other. In most cases we find that 
track length estimation is better. We normally use the combined estimator at 
least to take advantage of the best features of both. It does not cost much 
either — that is another point. 



SESSION IV 

241 



242 



FOCUS — A N0N-MULTI(5RDUP ADJOINT MONTE CARLO CXIDE 

WITH IMPROVED VARIANffi REDUCTION 

J . E. Hoogenboom 

Delf t Technological Univers i ty 
D e l f t , The Netherlands 

243 



FOCUS — A NON-MULTIGROUP ADJOINT MONTE CARLO CODE 
WITH IMPROVED VARIANCE REDUCTION 

J. E. Hoogenboom 

Delft Technological University 
Delft, The Netherlands 

ABSTRACT 

A description is given of the selection mechanism in the 
adjoint Monte Carlo code FOCUS in which the energy is treated 
as a continuous variable. The method of Kalos who Introduced 
the idea of adjoint cross sections is followed to derive a 
sampling scheme for the adjoint equation solved in FOCUS which 
is in most aspects analogous to the normal Monte Carlo game. 
The disadvantages of the use of these adjoint cross sections 
are removed to some extent by introduction of a new definition 
for the adjoint cross sections resulting in appreciable vari
ance reduction. At the cost of introducing a weight factor 
slightly different from unity, the direction and energy are 
selected in a simple way without the need of two-dimensional 
probability tables. 

Finally the handling of geometry and cross section in 
FOCUS is briefly discussed. 

INTRODUCTION 

The problem of deriving an adjoint equation which is analogous to the 
normal integral equation has been discussed by Eriksson et al and Kalos [1]. 
With some changes we folow essentially their derivation although other ways 
are possible [2]. 

First the normal Integral equation is given and from that an adjoint 
equation is deduced. This equation, however, is not easy to handle in a Monte 
Carlo game. Therefore a transformation of this equation is necessary by which 
adjoint cross sections are Introduced. Some properties of these adjoint cross 
sections, especially when dealing with inelastic scattering, are discussed in 
more detail. 
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THE INTEGRAL TRANSPORT EQUATION 

We define the following quantities: 

i|)(r_,E,f2)dVdEdn = the number of neutrons entering a collision in the 
volume element dV at r with energies between E and E+dE 
and directions in the solid angle dfi about f2. 

X(r,E,f2)dVdEdn = the number of neutrons leaving a collision or the source 
in the volume element dV at r̂  with energies between E 
and E+dE and directions in the solid angle dfl about f2. 

S(£,E,f2)dVdEdfi = the number of source neutrons in the volume element dV 
at r_ with energies between E and E+dE and directions 
in the solid angle dfi about fl. 

T(r'-<Tr,E,fi)dV = the probability for a neutron at £'with energy E and 
direction Q to have its next collision in the volume 
element dV at r. 

P (r,E) = the non-absorption probability for neutrons with energy 
E which have a collision at r̂ . 

C (r,E'->-E,jM2)dEdn = the probability for a neutron with energy E and direction 
ft'having a scattering collision at r̂  to obtain an energy 
after collision between E and E+dE and a direction in 
the solid angle dQ about f2.̂  

From these definitions we obtain the following equation between i|) and x 

i|j(r_,E,n) = T(r'->T,E,fi)x(r',E,fi)dV' 

X(r̂ ,E,fi) = [c^(r_,E'->-E,fi'-^)Pg(r,E')iKr,E',fi')dE'dn'+S(r,E,n) 

Substitution of (1) in (2) leads to the integral equation for x 

X(£,E,n) = |K(r_'->T,E'+E,fl'->fl)x(£'.E',n')dV'dE'dfi'+S(i^,E,n) 

with the kernel K given by 

K(r_'->T,E'-̂ E, «'->«) = T(£'-»T,E',n')Pg(r,E')Cg(£,E'-^E,n'-H;2) 

From the definitions of T, Pg and C we have 
Ir-r'l 

T(r'-.T,E,n)=E (r,E)exp{-7r^ (r'+sn,E)ds}5(fiTp^|) / |r-r' | ̂  
I Tr,E) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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C (r,E'+E,fi'->fl)= I N^(r) I a. .(E')f, .(E'^E,fi'+«)/i; (r,E') (7) 
A J 

where 

Z (£,E) is the total macroscopic cross section at r_ for neutrons with 
energy E 

Z (r̂ .E) the total scattering cross section 

N (£) the atom density for a nuclide of type A 

O, .(E) the microscopic cross section for reaction type j of nuclide A 
A| J 
f. . (E'->-E,n'->fl) the scattering function for reaction type j of nuclide A, 
A, J — — 

With these definitions the kernels T and Cg are normalised probability density 
functions for T_ and (E,Q) respectively and can be sampled in the familiar way. 
The non-absorption probability Ps has been used explicitly in the formulas 
because it is mostly taken into account as a weight factor. 

Suppose the aim of our calculation is a quantity F that is some average 
over the collision density ip, say 

g(£,E,fi)>l'(r,E,n)dVdEdn (8) 

with 8 some specified function. If we want to calculate for example the 
response of a point detector at rj;j with an efficiency ri(E) with regard to the 
neutron flux we have 

g(£,E,n) = n(E)6(£-£j)/I|.(£j,E) (9) 

We can also write F as an average over the density of particles leaving 
collisions 

F = h(r;,E,fl)x(r;,E,n)dVdEdfl (10) 

From (1) and (2) we obtain the relation between h and g 

h(£,E,ft) = lg(£',E,n)T(r_+r',E,n)dV' (I I) 

Monte Carlo calculations of F will break down if g(£,E,n) is only non-zero 
in a small part of the phase space, as in the case of a point detector. One 
of the possibilities to overcome such problems may be the use of adjoint 
Monte Carlo. 

THE ADJOINT EQUATION 

If we define a kernel K^ adjoint to the kernel K from (4) by 

K'''(£'-^,E'->-E,ft'^) = K(_r->T',E->-E',JM2') 

then the following integral equation determines a function x^(r,E,n) 

x'''(r,E,fi) = jK''"(r'-.r,E'-E,£'^)x'''(r',E',n')dV'dE'dn'+h(r,E.n) 

(12) 

(13) 
with h(r,E,fl) from (10). Multiplying (13) by x and (3) by x+ and integrating 
over all variables we obtain the relation 



h(r_,E,n)x(£,E,n)dVdEdfi = S(r_,E,n)x'''(r_,E,n)dVdEdn (14) 

+ 
F = /S(£,E,n)x~(£,E,n)dVdEdn (15) 

So we can calculate F by sampling x (£iE,n) from (13) and use the physical 
source S(£,E,fi) as the scoring function. From (15) we see that x^(l.>E>n) is 
the contribution to F of a source neutron at (r,E,n), so x^ ""ay be interpreted 
as the importance of a neutron to F. It will be clear that calculating F by 
solving the adjoint equation (13) will only be successful if the physical 
source S is not a point source or only non-zero in a small volume. , 

Now our problem is to design a sampling scheme for the kernel K which 
can be written as 

t k-1'I 
K (r;+r ,E'->E,n'-̂ f2)= Z^(£',E)exp{-7 Z|.(r+sn,E)ds}6 (nj^^p-, ] / |r_'-£| ̂  

X i\r'',-E) ^ \^l'^ I Oj^^^mi^^^(E-*-E' ,^Ml')ll^(r^' ,E) (16) 

t A J 

From the 6-function we see that 

£' = £ -|£-£' |n (17) 

By substitution of s'=|r-r'|-s in the integral in (16) we can rewrite K 
as follows 

+ I ^ - L ' I 
K (r'->£,E'+E,ft'->fl = 2 (£,E)exp{-7 Z (£'-s'n,E)ds'}6 (n+.^^i) / |£-£'P 

^ 0 I l l l 

x I N,(r') I a.(E)f. .(E-^E',fM!')/J: (r.E) (18) 
^ A j J A,j t 

The first part of this expression is equal to T(£'-•£,E,-SJ), so we can sample 
this part of K in the familiar way except that tracking is in the direction 
-Q. However, E and Q must then be known, so they must follow from the second 
part of (18). But this is not a normalised probability density function (pdf) 
and besides it depends on £ owing to the factor I (£,E). 

To remove this difficulty and to obtain a selection mechanism analogous 
to the normal Monte Carlo game, we apply the following transformation 

'̂''(r.E.fi) = i:'''(r,E)x'''(£,E,n) (19) 

s"''(£,E,fi) = j:'''(r,E)h(£,E,!]) (20) 

L"^(£'^,E'->-E.n'^) = z'''(£,E)K"''(£'-«£,E'-*E,n'-»fi)/x''"(r',E') (21) 

with E (£,E) a function that we shall define later. Then (13) and (15) 
transform into 

C'''(£,E,n)=/L'''(£'-^,E'+E,£'->£)C'''(r',E',fl')dV'dE'dn'+s'^(£,E,n) (22) 

F = ; ^j^;^^y^ 5'''(£,E,£)dvdEdn (23) 
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If we perform the same manipulations on L+ as we did on K+ we can rearrange 

Lt to 

L+(r'+£,E'-'-E,£'->£)=r^(£,E)exp{-7~E^(£'-s'fl.E)ds'}6[S>|7l|r|)/|£-£'l^ 

''IIT:!) I V l ' ^ I a,.j(E)f,.j(E-^E'.£il')/lt(r':^7 
t A J 

We now define the adjoint kernels 

Ir-r'I 
T'''(£'-*r,E'+E,n'^)-E^(£,E)exp{-7~5:|.(£'-s£.E)ds}6[fi+|^^|)/|£-£'|^ (25) 

=T(r'+r,E,-ft ) 

r:(i.K)= f | : i j (26) 

C+(r,E'+E,n'-H2)= ^ N J r ) I a, .(E)f. . (E->E',fMJ')/E+(£,E') (27) 
s A " : ^»J "»J 

L'''(£'->T,E'-*E,n'-H2)=C+(£' ,E'+E,n'+ft)T+(r'-+r,E,f2)P'''(r,E) (28) 
s 

If we require C^ to be a normalised pdf for E and Q we must define the 

function 2I(r,E) as 

2:+(£,E)= 5] N (£)); /a .(E)f .(E->-E',JW2')dEdn (29) 
^ A . A,J A,J 

In order to satisfy this condition we can define a (macroscopic) adjoint 
cross section according to the definition of Kalos [1], that we shall call 

definition I: a .(E')=/a. .(E)f, . (E->E',fM2')dE<Jn-
A,J A,j A,j - - ^^^^ 

=JOA .(E)f. .(E->-E')dE 

with the last equality from the fact that f (E-*E',fM2') only depends on fl 
through fJ.fl'. Handling the adjoint cross sections just like normal crosT 
sections we have 

4^.(r.E')=N^(£)at^.(E') (3,) 

4(l-^')= I ^Ijd.E") (32) 

Z+(£.E')= I 2:t(r,E') (33J 

With these definitions we can now sample C+ by first selecting a nuclide and 
reaction type from the pdf ^ 



''i(l')4 4(E') 5:t(r',E') 0+ .(E') 
p(A,j)= - ^ ^ = -^ ilJ (34) 

Z+(£',B^ ?:•'•(£',E') a+(E') 

that is we select a nuclide according to the microscopic adjoint cross 
section for that nuclide and a reaction type according to the partial 
microscopic adjoint cross section for that reaction. Then results the problem 
of selecting energy and direction from the pdf 

p(E,n)=a .(E)f (E-«-E',£>+«')/at .(£') (35) 
A»J A,J A,J 

To sample the kernel L^ completely we use P as a weight factor just as P 

in the normal game and select £ from T^ by tracking in the direction -Q. 
Some words may be said about sampling the function S"''(£,E,n) that 

appears as a "source" in the adjoint problem. For the general case of a 
"detector" with volume V and "efficiency" n(£,E) with regard to the 
neutron flux, we have 

with 

g(£,E,n)=n(£,B)p(£)/E^(£,E) (36) 

I if £eV 
P(£)H (37) 

o else 

The factor E (£,E) in r\ appears because n is defined with regard to the 
flux and the function g is averaged over the collision density. If we want 
to calculate for example some reaction rate in a volume V of a system we 
take ri equal to the macroscopic cross section for that reaction. If we want 
to calculate the flux at a point for a given energy range, we set Tl to 
unity for energies within that range. 

From (11) we obtain for h 

h(r,E,£)=/n(r',E)p(£') I^l^^l?^^dV' (38) 

and for S t 

S+(r,E,n)=E+(r,E)h(£,E,n)=Z+(£,E)/n(£',E) p(r') l-ill^Ii^>dV 
5:̂ (£,E) 

=P+(r,E) fn(r',E)T'''(r'-fr,E,f2)dV' 

^ " ^d " 

(39) 

If we select successively £' uniform in V , j2 isotropically, E from the pdf 

n(£',E)//n(£',E)dE, then £ from T+(£'+£,E,j2) and finally apply a weight 

factor P'''(r,E) then we have selected (r,E,n) from the pdf 
s — *~ ~ 

P(£.Ea= 4ir ^s^i'^)-^ /n(r'!E?dE ^'(L'-L>^ nXiV W) 

d 

So if we want to sample S^ we must introduce an additional weight factor 
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w=vjTl(r',E)dE///ri(r',E)dV'dE (̂ ') 
a - V 

and multiply the final^esult of our Monte Carlo calculation by 
4Tr//n(£',E)dV'dE. Note that if n is independent of space the additional 

weight factor is unity. 

ANALYSIS OF THE ADJOINT CROSS SECTIONS 

To get a better insight in the properties of the adjoint cross sections 
we take the case of a constant elastic scattering cross section Oei and 
assume isotropic scattering in the center of mass system. We then have 

hi^^-^^'^WTE) "̂"̂ '̂̂^ '̂'̂  

with 

with A the mass of the nuclide. Then 

''el<^')=^!ClE(b)--el^^f^ <̂ ^̂  
E 

The factor log(l/a)/(l-a) is always greater than unity but tends to unity 
for heavy masses. However, for the very light nuclides this factor becomes 
large and even infinite in the case of hydrogen. It is therefore necessary 
to introduce an upper limit in the integration over energy in (30) equal 
to the highest energy in the problem at hand. This removes difficulties with 
an infinite adjoint cross section but makes the adjoint cross sections 
problem dependent. If we compute the adjoint cross section for inelastic 
scattering with a threshold energy e, still assuming a constant cross section 
and isotropic scattering, we obtain fig.l. The scattering function fî j,(E->-E') 
and the integration limits are derived later. The adjoint inelastic cross 
section for this case is constant for E>e/(A+1)^ and equal to 

^in^^^-in^^f^ ^>^/(^^')^ (̂ 5) 
and falls off for lower energies. 

From this figure we see that the adjoint cross sections will generally 
be greater than the corresponding normal cross sections. In systems with 
small absorption the adjoint scattering factor pJ=Z+/i:^ will therefore in 
general be greater than unity. Because the weight of the "adjoint particle" 
is multiplied by this factor at every event, the weight of the particle may 
become very large, which may result in large variancies. This is especially 
the case when both elastic and inelastic scattering is important. Suppose 
we have a system with only one nuclide that does not absorb neutrons and 
scatters them elastically or inelastically by one level with threshold 
energy e. Suppose further that the cross sections are constant and that the 
elastic cross section is twice the inelastic cross section. We can then 
calculate the factor P for this medium. Fig. 2 shows the result, where we 
have taken a threshold energy of 1.037 MeV and a mass A=27 for the nuclide. 
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Fig.l. Adjoint inelastic cross section Fig.2. P as a function of energy, 
as a function of energy. 

We see that P^ is much greater than unity for a large energy range. If the 
nuclide had a very large mass, the factor P' would have been 1.5 for E<e 
and unity for E>e. So in the case of both elastic and inelastic scattering 
the factor P^ may even be much larger than in the case of elastic scattering 
only. 

ANOTHER DEFINITION FOR THE ADJOINT CROSS SECTIONS 

Up to now we always used the energy as a variable, but we could have 
equally well used the lethargy defined by 

u=log ^ (46) 

with E some reference energy. If we repeat the whole derivation we would 
have arrived at the following definition for the adjoint cross section 

'^I,j^"'>=K,j(")^A,j^"^')<^" 

On physical grounds we have 

f. .(u->u')|du'|=f. .(E-<-E')|dE'| 
A, J A, J 

But in (47) we integrate over u instead of u', so (47) is a different 
definition of the adjoint cross section. If we transform (47) back to 
energies with 

idE'i 
^A,j("-')=^j<^^^')l5^'l=^A,j(^-E')-^" 

and 

du= 
dE 

(47) 

(48) 

(49) 

(50) 

we arrive at our second definition for the adjoint cross sections 

definition II: 0+ .(E')=Ja. .(E)f .(E-E') f'dE (51) 
A,J A,l A,J t 

Instead of introducing the lethargy as a variable we could have introduced 
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a function Cf(£.E.n) as a transform of C+(£.E,n) by 

(52) 
?'''(£,E,i]) = C+(£.E,il)/E 

Then the adjoint equation (22) transforms into 

C+(£.E,fl)=/M+(£'-£.E'-E,n'-«)S+(£'.E',n')dV'dE'dn' + R+(£,E,n) (53) 

with 

R+(£,E,n)=S+(£,E,n)/E (5*) 

M+(r'+r,E'+E,n'->fl)=E'L+(r'-«-r,E'-^E,«'-*)/£ 
- - (55) 

=Dt(£',E'+E,n'->£)Tt(£'-»T,E,£)P+(£,E) 

D+(r',E'->E,!:2'->fl)= y N,(r')y a. .(E)f^ . (E+E',JM2') (E'/E)/Z+(£',E') (56) 
^ A - j A,j A,J 

For F we get from (23) 

F=/ ^ % 7 ^ ^ C+(£.E.iJ)dVdEdfl (57) 

When sampling M^ the only change compared with sampling L T is that after 
selection of the nuclide and reaction type just as before, we have to select 
E and U from the pdf 

p(E,fi)=a, .(E)f. .(E-E',fM2') (E'/E)/a| .(E') (58) 
A,J A,J A,J 

which problem we shall discuss in the next section. 

If we look again at the adjoint cross sections, now according to 
definition II, we get for the case of a constant elastic cross section 

?'/" 1 F-

<l(^'>=KlI(FS)I'^^%l (59) 
E' 

The result for a constant inelastic cross section with threshold energy E is 
also given in Fig. 1. Due to the factor E'/E in definition II for the adjoint 
cross section, it resembles now much more the normal cross section. The energy 
dependence appeared to be almost independent of the mass of the nuclide. 

The weight factor P+ for the medium defined before is shown in Fig 2 when 
using definition II. From this figure we see not only that the maximum value 
for Pj is less than for definition I, but also that the energy range in which 
Pj is much greater than unity is rather small. Besides a value of Pg greater 
than unity at energies below the threshold will be compensated to some extent 
by a value of Pg less than unity at energies above the threshold. 

To have an idea of the variance reduction obtained when using definition 
II, we calculated the flux at the center of a sphere containing the artificial 
nuclide mentioned before with mass A = 27. The threshold energy E was again 
chosen at 1.037 MeV. The radius of the sphere was 5 mean free paths at 
energies below the threshold. A uniform and isotropic artificial neutron 
source was assumed in the sphere with a fission spectrum as the energy 
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distribution. In table I the flux per unit lethargy per source neutron for 
the energy ranges 0.1 - 0.2 MeV, 0.4 - 0.8.MeV and 1.4 -2.5 MeV are given 
with their standard deviations after processing of 1000 "adjoint particles" 
The variance reduction obtained by using definition II is clear. 

TABLE I 

Comparison of Standard Deviations Using Definitions I and II 
for the Adjoint Cross Sections 

energy range 
(MeV) 

0.1 - 0.2 

0.4 - 0.8 

1.4 - 2.5 

definition I 

flux 
per unit 
lethargy 

5.55 10~^ 

9.15 lo"'' 

2.79 lo""' 

standard 
deviation 
(%) 

32 

8.6 

1.6 

definition II 

flux 
per unit 
lethargy 

6.89 lO"^ 

9.26 10~^ 

2.79 10~^ 

standard 
deviation 
(%) 

6.2 

2.6 

0.8 

SAMPLING THE ADJOINT COLLISION KERNEL 

Now we have to look in more detail to the selection of the energy and 
direction from (58). We limit ourselves here to the case of inelastic level 
scattering. Elastic scattering is then automatically included by setting the 
level energy to zero. If the inelastic level has an energy Q above the ground 
state, the neutron must have at least the threshold energy 

A+1 (60) 

to excite the level. From elementary collision mechanics one can derive the 
relation between the energy before and after the collision and the scattering 
angle. Throughout this section we shall adopt E' for the higher energy (that 
is the energy before collision in the normal case) and E for the lower energy 
We then have 

E'. 
E ' 

A^(l-e/E) + 2A.yc/l-e/E + 1 
(A+1)^ 

App/l-e/E + 1 

A^d-e/E) + 2Au^/l-e/E + 1 

(61) 

(62) 

with Uc and V the cosines of the scattering angle in the center of mass 
system and the laboratory system respectively. For e=0 we have the familiar 
expressions for elastic scattering. 

Now we can write for the scattering function f. (E-<-E',fMJ') 

f, (E.E'.^') = f, (a.«)6(E'- A-(l-^/E)j 2Au,/rirE + 1 3 (63) 
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We expand f. (n.f2')=f. (u ) in a series of Legendre polynomials 
m m o 

with f (E) denoting the 1-th Legendre component in the laboratory system. The 
factorll/2lT appears because the scattering will be azimuthally symmetric. 
If the angular dependence is needed in the center of mass system we can use 

f. (iJ ) and f. (U^) are connected through the relation 
m o m C 

4(^c)=^in^^o> ̂ ^'^^^^ in C m o 3U. 

By integrating (63) over fi we get the energy scattering function 

f. (E-i-E')=2TT/f. (E+E',y )du =2iT/f̂  (E*E',p„)du 
in •' m o o ' in L C 

I (21+l)f^(E)P^(y^) 

(65) 

(66) 

(67) 

This function has to be used in the computation of the adjoint cross section 
as defined by (51). To determine the range of E and E' for which f̂  (E->-E') 
is non-zero we first examine the relation between y and UQ as given by (62) 
and shown graphically in fig. 3. If we set A'=A/1-£/E in (62) we have the 
same formula as for elastic scattering with a nuclide of mass A'. So for 
E>EA /(A^-1) the functional dependence is the same as for elastic scattering 
and for E=eA^/(A^-l) it is the same as for elastic scattering on hydrogen. 
For e<E<£A^/(A^-l) we see that the value of UQ is restricted. 

42 
E<E 

E=E' 

Fig. 3. V as a function of y 
for inelastic scattering. 
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Fig. 4. Relation between E' and E 
with V as a parameter. 

Fig. 5. Relation between E' and E 
with V as a parameter. 

In fig. 4 the relation between E' and E from (61) is shown with UQ as a 
parameter. For E>E all values for UQ between -1 and +1 are possible. For given 
E' as in the adjoint case this is also true for E'>e/(A+1)^ but not for 
E'<e/(A+1) . However, if we use y^ as a parameter we get fig. 5. Now for every 
E' all values for yo between -1 and +1 are allowed. So in the adjoint game 
it is easier to use yo- From (61) and (62) we can find E as a function of E' 
and yo. 

J. , (A+l)^(A^ + 2y^-l)E'+A'(A^-l)e-2yg(A+l)/(A+l)^(A-'+y^-l)E''"^A'(A^-l)EE' ^^g^ 

By setting y =-1 and +1 we obtain the minimum and maximum value for E given E' 
The pdf for E irrespective of fi can be written as 

„rF^ _ Oin(E)fin(EHtE')E'/E _ 
p(E) - at^(E') 

= l f # ) E-d-co'J.-e/E I(2.-.)f^E)P,[y,(E,E ')] (69) 

By numerical integration it is possible to construct in advance of the Monte 
Carlo calculation probability tables from which E can be selected by inter
polation. This is the method suggested by Kalos and used in the ANTE code [3]. 
This requires the storing of two dimensional tables. In FOCUS we followed an 
other method. We select fl isotropically and apply a weight factor to account 
for not using the correct pdf. Than E is calculated from (68). By integrating 
(58) over E we obtain the true pdf for tt 

P(ii)= 17 
,(E) 

"L<-'>" 
E' 3E(E',yn) r 21+1 

3E' 
f,(E)P,(y^) (70) 

where E is now determined by means of (68). The weight factor must be 

a-̂ (̂E) g, 3E(E'.y„) 

<J^'^ ' 
-^ I (21 + l)f,(E)P,(y„) (71) 
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If the Legendre components are given in the center of mass system w is equal 

to 

°in(^^ E^3E(E',y„) ly^:(Po^y (2^1 )f^(E)P, (y^) (72) 

o! (E') E '^ ' ^ T ' > C 
m 

This procedure seems to increase the variance only slightly. The appearance of 
oin in (72) forces the code to have also available the normal cross sections 
for all reaction types at hand. An advantage of this method is that it is 
exact and that any degree of anisotropic scattering can be easily incorporated. 
Besides it will be very easy to incorporate some form of directimal importance 
sampling if desired. 

GEOMETRY AND CROSS SECTION HANDLING IN FOCUS 

Geometry handling 

Because the adjoint transport kernel T is the same as the normal trans
port kernel except for the flight direction, the geometry treatment may be 
same as in normal Monte Carlo codes. FOCUS uses the well known general geometry 
package from the 05R [4] and MORSE [5] codes. This geometry package allows 
any quadratic surface in the system and offers the possibility of detailed 
geometry for only a restricted part of the system without the need of testing 
all surfaces in the system for crossing. 

Cross section handling 

For sampling the adjoint transport kernel T we need the total cross 
section If. for every medium in the system. Besides we need the weight factor 
Ps'I^/Zt for every medium. To select a nuclide and a reaction type when 
sampling the adjoint scattering kernel D+ there are two ways. We can select 
directly a reaction type of a nuclide from the probabilities if ./it or select 

t t 'J 
first the nuclide from the probabilities l^ll. and then select for this nuclide 

the reaction type from the probabilities a]" ./o]'. In FOCUS we have chosen the 
A, J A 

second method mainly because it saves computer storage when a nuclide with 
many inelastic levels appear in the more than one medium in the system. 

Because of the applied section technique for the direction and energy, 

the partial cross sections for every nuclide are also needed together with the 

Legendre coefficients, if any. So the quantities 1^,1^11^ and Ê /z''' are grouped 

by medium and the quantities ol^.lal.o^^. and f^ are grouped by nuclide. All 

these cross sections are tabulated by energy. Because great detail in energy 

may be desired the cross sections can not be stored for all energies in 

computer memory. Therefore the energy range is devided in groups with energy 

boundaries that differ by a factor of 2 (called supergroups in the 05R code) 

Each supergroup is devided in a variable number of subgroups. Only the cross 

sections for one supergroup are held in computer memory. So if a particle in 

the adjoint game has received an energy above the upper boundary of the super

group for which cross sections are held in the memory, its parameters are 

stored untill all particles with energy in the current supergroup are processed 
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Then the cross sections for the next supergroup are read in from an external 
memory, e.g. a magnetic tape. 

We have tacitly assumed that the adjoint cross sections were available. 
Because of our definition II the adjoint cross sections are essentially 
problem independent and need be computed once for all nuclides and scattering 
reaction types. Then these cross sections may be incorporated in a existent 
data file. Work is in progress to compute the adjoint cross sections from 
the ENDF/B file [6] and store them with the original cross sections in a 
special ENDF/B file from which all the data needed for anadjoint Monte Carlo 
calculation can be selected. 
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DISCUSSION 

Kalos: I am gratified to find that we can gain so much by so simple a 
device. It is really very very nice/ but I would also like to call attention 
to the fact that the 1/E function, which seems to be a very good universal 
Importance function, could be replaced by other functions. This paper then 
provides us with a model which shows how one must define reaction cross sec
tions in order to carry out Importance sampling in full detail, and it is not 
a trivial matter to do so. But, apparently just the 1/E factor makes an.enor
mous difference, and 1 hope that we can get it into our code as soon as 
possible. 

Hoogenboom: Yes, of course, there are other possibilities. One is led 
to this scheme in particular Ifi right from the start, one works consistently 
with lethargies Instead of energies in the derivation. Incidentally it seems 
rather natural that, if the elastic scattering cross section is constant, the 
adjoint cross section should also be constant, and the two cross sections 
should be equal. That this should be true does not help much from a practical 
point of view, but it seems to be natural. 

Borgwaldt: Can you recall the name of the code in which you have imple
mented your scheme? And can you say whether you have any trouble defining 
these adjoint cross sections in the statistical resonance region? 

Hoogenboom: The code is called FOCUS, because we have tried to use it to 
compute fluxes at a point. 

Borgwaldt: I thought you were talking about an NT code. 

Hoogenboom: Yes, that was the code developed, as I understood, by Mal 
Kalos at New York; and it was in that code that the adjoint cross sections 
were first defined. 

Borgwaldt: How is that spelled? 

Kalos: ANTE. 

Hoogenboom: That is the code which uses your original proposal? 

Kalos: Which uses the original definition of the adjoint cross section. 

Gelbard: Other comments? I might point out that the use of a transfor
mation specifically chosen to eliminate weights is Implemented in the MARC 
code, a code for use in thermal groups only. It turns out that if you assume 

in^Rn 1^ "̂"""f- "̂ '̂ "̂  ̂ " ^^^ °"̂ y moderator (and this is assumed 

in MARC) then you can pick a transformation function which eliminates the 
need for weights completely. This sort of a choice of a transformation be-
a t r L s f Z ! T ^T^'h ""' '' '̂  conceivable that you could come urwith 
this sorH^H r r ^ ^ ° " '''f """̂ '̂  "̂ ^ *^"'P^"^- '^^^^ ""^ ^""^ "tempts of 
this sort made by Spanier and Levitt but, 1 think, they were not really totally 
successful. But to come back to the method that you are using, it has al^avs 
seemed to me that the most likely source of trouble in this kl^d of method 
would be resonances. If you are right below a scattering resonance, the in
tegral, over higher energies, over the scattering resonance, will give vm, a 
very large weight. ^ 



Hoogenboom: Yes. 

Gelbard: This would be true in the resolved range and would be true at 
higher energies if you are dealing with, let us say, resonances of a scatterer 
like iron. Do you find this to be a problem? 

Hoogenboom: Well, this is correct, but we have not done enough computa
tions so that I can give you a complete answer. I have calculated fluxes in a 
system that was composed of uranium with aluminum as a construction material 
and have not seen any difficulties. 

Kalos: What about the narrow resonance range? Very narrow resonances? 

Hoogenboom: The weight factor fluctuates in the neighborhood of a reso
nance, being higher than one at the bottom of the resonance and lower than one 
near the top. To some extent the high weight factors are compensated by the 
low weight factors. Not compensated fully, but to some extent. 

Gelbard: Well, not compensated insofar as the variance is concerned. 

Kalos: It depends on the problem. If the neutron makes a few scattering 
collisions within the resonance then the higher weights will be compensated by 
the lower weights. That is, if the resonance is wide enough so that neutrons 
travel through the resonances slowly. In all cases the right thing to do is 
to introduce the local energy-dependent adjoint. And that should not be diffi
cult to do in specific cases, especially in the narrow resonance range, 
although I have not worked it out. 

Gelbard: Well, that is really what was done in MARC where the use of the 
adjoint was straightforward. But do you mean, by the adjoint, the importance 
function that you would have in an Infinite medium of the material you are in? 

Kalos: No, I don't mean that. 

Gelbcxrd: You mean a space-dependent adjoint? 

Kalos: It would have to be somewhat space dependent ... 

Gelbard: Yes, then you have a problem with the computation and use of 
the adjoint. Incidentally in looking at the efficiency of the adjoint mode in 
MARC we used a device which we found to be helpful. Through this device one 
can estimate how much inherent loss in efficiency is Introduced through the in
troduction of weights in the adjoint. Let us suppose that you have a slab of 
a homogeneous material. Divide the slab in half. Let us say the problem is 
to compute the resonance absorption in region 2 due to a source in region I. 
You can do this in the direct mode, ahd you can do the same thing in the 
adjoint mode. From a geometric point of view the adjoint and direct mode cal
culations are identical. In one case you put the source in region 1 and get 
the absorptions in region 2 and in the other case you put the adjoint source 
in region 2 and tally in region 1. Because you have no geometric difference 
between the two problems you will generally find the variance in the adjoint 
calculation is greater. You have, then, some estimate of how much efficiency 
you are losing. In other words, you have an estimate of where the break-even 
point would be between the efficiency of the adjoint and the efficiency of the 
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direct mode. This is a sort of figure of the merit for whatever scheme you are 
trying to use. One more conm>ent. It seems to be true that the adjoint is 
easiest to " ; in fixed source problems. In the eigenvalue problem, some sort 
of additional technique is required. In the eigenvalue problem the use of the 
adjoint becomes a lot harder. Suppose that 1 want the eigenvalue perturbation 
due to, let us say. a small sample or to some small perturbation that I make in 
a region. I hope that we will get to discuss how you might use the adjoint in 
this case, because here there are additional problems beyond those which are 
encountered in the fixed source case. I don't mean to imply that you cannot 
use the adjoint, but there does seem to be difficulties. 

Hoogenboom: I agree that there is a problem in this case. Suppose that, 
in a multiplying system, I want to calculate a detector response at several 
points, or in several small volumes. The source distribution is the eigen
function, which must be used as a scoring function. But you don t know the 
eigenfunction. This is a problem which I don't know how to solve. It should 
be possible to make a connection between the adjoint and the forward calcula
tion in attacking the eigenvalue problem. 

Gelbard: One thing you can do is this. You can keep a record of the 
location of the source sites in the direct mode problem. Then in the adjoint 
problem, on every collision, you get a line-of-sight estimate (a point estimate 
essentially) at the location of the fission source sites. In other words, you 
ask what is the adjoint flux at the various fission source sites. You do this 
by line-of-sight estimation. 

Kalos: We have done things of this kind, you know, and it can be a big 

pain in the neck. 

C^lbard: 1 think it is out of the question to sight to every fission 
source site on every collision. But you might weight the source sites with an 
Importance function and, on every collision, pick one that you are going to 
contribute to. Suppose, also, that you draw a circle around the point where 
you want to estimate a reaction rate. If the site that you are contributing 
to is outside of that circle, then instead of actually drawing a line to the 
site and computing the contributions, you simply select a path length and lay 
it off. If you don't get to the selected site you make no contribution: if 
you do, you score. If the selected site lies inside the circle, then you use 
point estimation. 

Kalos: 1 want to remind you that, in principle, there is a very simple 
and direct way to attack this problem. 

Hoogenboom: I don't see how at the moment, specifically. Perhaps you 
can explain it to me later. 
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ABSTRACT 

The use of the Monte Carlo method for the 
calculation of reactivity perturbations in multi
plying systems due to changes in geometry or compo
sition requires a correlated sampling technique to 
make such calculations economical or in the case of 
very small perturbations even feasible. The technique 
discussed here is suitable for local perturbations. 
Very small perturbation regions will be treated by an 
adjoint mode. The perturbation of the source distri
bution due to the changed system and its reaction on 
the reactivity worth or other values of interest is 
taken into account by a fission matrix method. The 
formulation of the method and its application is 
discussed. 

INTRODUCTION 

Changes in the geometry or composition of a reactor 
system produce perturbations in reactivity and fluxes. To 
compute such perturbations by two independent Monte Carlo 
simulations is frequently very expensive because of the error in 
the differential value is as much as the sum of the errors of 
the two independent calculations. It is known that the error of 
differential values can be reduced drastically by means of a 
correlated sampling technique. Such a correlation can be achieved 
by estimating the perturbed and unperturbed system with an 
identical set of histories f^J. To realize a complete correlation 
between the perturbed and unperturbed system is difficult if the 
perturbation is complicated to describe. However, for the case 
of local perturbations a relative sufficient result can be 
achieved even if only a subset of histories in the respective 
systems is identical. Obvious if the perturbed problem will be 
estimated over the set of histories of the unperturbed problem, 
the corresponding estimator must be weighted. The weighting 
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accounts for the different source distribution and transport-
kernel of the perturbed system with respect to the unperturbed 
system. In multiplying systems the source distribution will be 
calculated by a source iteration procedure. In practice such a 
source iteration will be carried out only for the unperturbed 
system. The source distribution of the perturbed system therefore 
has to be approximated. If the perturbation of the source 
distribution is only slight a first order approach will be 
sufficient /27. Approximations of higher order can be achieved 
by means of a fission matrix method described in this paper. 
This method is also helpful to improve the convergence of the 
source iteration /3,47. In the computation of local pertur
bations by the correlated sampling method one has to 
differentiate wether perturbation regions are large enough so 
that a reasonable number of neutrons will cross these regions. 
In the case of large regions it will be sufficient to calculate 
the differential value by correlated forward simulations. For 
small perturbation regions an additional adjoint run should be 
carried out to get an adequate number of neutrons which cross 
the small regions Zl»57• 

THE CORRELATED SAMPLING METHOD 

Reaction rates or integrals of the form 

R = /"glElv (£) dP = y^lCl M-IC) dP ,.,. 

where g(P) is a response function 
i|i(P) the collision density 
at the phase space point P 

will be estimated by an estimator ^(C), where C denotes a chain 
of collision points C(P-, P, , . . . ,P]^, . . .) » |-L (C) is the 
probability that the chain C occures. A change of the regarded 
system in geometry or composition leads to the integral 

R = /glP)ilP) d£ = / §10(1(0 dP (2) 

We are interested in the difference of the integrals (2) and (1) 
AR=R -R. To reduce the^variance of AR the neutron chains 

C(P.,,P2/...,P,^,...) and C (P., , Pj / • • •/Pjj. - • • •) in the perturbed 
and the unperturbed system should be identical. That means R 
should be estimated over the .chains C of the unperturbed system. 
The corresponding estimator | (C) for the perturbed system 
then must be weighted by 

k 
6(R) n K(_P ,, P ) 

^(C1=?(C) ^-^ ^^ ^ (3) 

^ 1 = 2 -^r-^i ' 
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A R now can be e s t i m a t e d by 

AR = / [ I (O -^(C ) ]|1(C) df 

Obviously the nominator in (3) must be equal to zero if the 
denominator is zero. However, this is not a severe restriction 
since the definition of perturbed or unperturbed system may be 
interchanged or an artifical system can be defined as the un
perturbed system. 

In the case of local perturbations there are many neutron 
chains which do not cross a perturbation region. The chains 
C (P., 1,, ...» P. , ) of such histories are identical. The 

corresponding estimators § (C) and ^ (C) differ only by the 
factor S(P^)/s(p^)_ 

For histories which cross after some collisions a perturbation 
region, the weighting is more complicated. Frequently reasonable 
results can be achieved if only the histories from a source 
event up to their first crossing into a perturbation region are 
correlated. All corresponding contributions of such histories in 
the perturbed and unperturbed system differ only by a constant 
factor and therefore they are linear dependent so that these 
histories will not contribute to the statistical error of the 
difference value AR. For local perturbations it is useful to 
split the computation of A R into two parts as described by 
equation (4) 

AR = J glOl ̂ , . - il|I(C) df W [ ^(Cl- §(C) l|i (C) dP (4) 
^ "I Fp 

The first integral is taken over all histories which have not 
yet crossed a perturbation region. The second integral is taken 
over histories after crossing a perturbation region. The first 
integral in (4) is easy to calculate by Monte Carlo if the 
source distribution S (P) of the perturbed system is known. If 
we have only a slight perturbation in the source distribution 
S (P) may be calculated by the first order approach £27 

' V r » , v-1 I I d) 
S ( P) = / KJf, P) S (P) d P *̂ ' T 

-p> ̂  . 

Here the source distribution S (P) at the V-th iteration step 
js calculated from the unperturbed source at the v-1st step. 
K^ (̂ /P) is the number of fissions in P due to a source neutron 
at P' for the perturbed system. 

A second technique to calculate the perturbed source 
distribution is possible by a fission matrix method as described 



below. For the calculation of the second integral in (4), which 
is the main contribution toAR, we consider only those neutron 
events starting from points P- of the surface A of a pertur
bation region into the region itself. To get the source distri
bution Sp(P„) on the surface A of a perturbation region we 
assume that the region is blacK for all neutrons /5/. This is 
an adequate assumption if the perturbation region contains no 
fissionable materials. However, by a modified procedure we can 
also treat regions containing a fission source. The source 
S_(P_) we can describe by the following expression 

SR(_PR)=/D(P,P̂ l;̂ (_P)dP (g) 

where D(P,P ) is a suitable response function for S_(P_)which 
is only different from zero if P lies on a surface point f„. If 
a perturbation region is small, then S_ (P_) cannot be estimated 
sufficiently by a forward calculation. Here we make use from the 
duality 

SRIER)=/ D(f.^)v(P)dP = / S(P)̂ j*(P)dP 

where ^i (P) and '+'*(£) are defined by the forward and adjoint 
transport equations 

^ IP)= fKi.p',£\\){P] 6P t s(_pi 

(7) 

^*(P)= f K ( f . f X p l f l d f ' + D I P . P I 

T 
The second i n t e g r a l of (4) now we can w r i t e by 

i § (c) - § (c) i|a(c) dP 

=^glP)tKQ(P^,E ) - KQ(P^,P)1 S^(P^) 6P^ dP 

(8) 

r r 
The kernel KQ(P,P) in (8) is defined by 

i\){P) = f KQ(P', P)S(p')dp'. 

Now if we know S (P„) by a forward or adjoint Monte Carlo 
simulation we are able to calculate the integral (8) by a 
complete or not complete correlated set of histories drawn from 

SR(5R)-
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THE FISSION MATRIX METHOD 

To get an acceleration of the source iteration in eigen
value problems Kaplan /3/ has developed a fission matrix method. 
A refinement of this method has been made by Carter et al . L\/ • 
The basic idea is the following. 

We assume that the zones of the system containing fission
able material are subdivided into a number of spatial regions 
AVi, 1 = 1,2,...,N. Then we compute the number of fission 
neutrons in AVi due to a source neutron in A.VJ by 

m.. 
IJ 

/ \Y.J.P .P) S IP ' ) d f ' d P 
Vi/AVi/ F - -AViMVf. 

, / = 

(9) 
, S (P) dP 

Avr' 

where K (p',P) is the number of fission neutrons in P due to a 
source neutron at P . The numbers m..form a matrix M=|m^.} 
which is a discrete approximation of-̂ the kernel 
K„(p',P). Now it is evident that the following equation holds. 
r 

S = i- M'̂  S (10) 
- k ^ 

where ^= |si( is the source vector and M is the transposed of 
the matrix M. The largest eigenvalue of M is an estimate of the 
criticality factor. If the source distribution S(P) in (9) is 
identical with the equilibrium distribution then the estimate 
of k by equation (10) is unbiased. But for a sufficient number 
of regions and sufficiently long tracking a very good 
approximation of the elements m. . can be achieved even if the 
source distribution S(P) in (9) """dlif fers remarkably from the 
equilibrium distribution. This fact was the reason for us to use 
this method for perturbation problems. Under the assumption that 
S(P) must not be necessarily identical to the equilibrium 
distribution we can compute the corresponding elements m. . of 
the perturbed problem by means of the unperturbed source'"'-' 
distribution S(P) 

Kp(p',f) Slf') df'df 

m-.s* -L_l _ . (11) 
IJ 

A Vr 
PjdP 

As pointed out above, this is a good approximation of m. . 
although the true equilibrium distribution S (P) has not^been 
taken into_^account. However, the restriction 
si = 0 => si = 0 must hold. The criticality worth of the 
perturbed system is the largest eigenvalue of the equation 

» 1 "T * 
S_ = ^ M' S (12) 
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The^reactivity change A k is__very easy to calculate now 
by A k=k -k. We get k, K and S, ̂  by numerical solution of 
the equations (10) and (12). 

For the calculation of M and M the correlated sampling 
method as described above must be used, of course. In practice 
we will compute m.. by a forward source iteration. Then for 
local perturbations we compute S (P ) on the surfaces of 
perturbation regions in the regardea system. S_(P_) may be 
determined during the forward source iteration or by an 
additional adjoint run C^J. If we have M and S_(P_) then we 
may compute starting from Sp(P„) an arbitrary set of sequential 
runs for changed systems with complete correlated or not complete 
correlated sampling techniques to get Am... By writing 

m. . = m. . + Am. . 
ij iJ ij 

we get the elements of the matrix M so that we can solve 
equation (12). Changes in activation rates or fluxes we compute 
by equation (4). Here the difference between unperturbed and 
perturbed source distribution will be corrected zonewise by 

si^g^ 1 = 1 ,2, . . . ,N 

with si, si from the solutions of (10) and (12). 

In some problems it is more effective to compute the 
differential change ^R/SX , not the absolute value AR. 
Examples were given by Olhoeft in the calculation of Doppler 
coefficients dR/^i /6/, Takahashi for geometrical changes 
^^1 9X I'll and others. As a consequence for such differential 
changes we have to compute ^'"i-i/^x i'̂ ^̂ ®*'̂  °^ A m^ . . If such 
changes are very small we should no longer compute A k as the 
difference of the eigenvalues of equation (10) and (12) because 
the relative numerical error in A k increases. 

Here it is advantageous to make use of the perturbation 
theory. We can show /37» that the fundamental (right) eigen
vector of the matrix M, defined by the equation 

W = — M W 
k 

can be interpreted as an importance vector. The elements 
wi of W have the meaning of the importance of a fission neutron 
starting in A Vi (see also Matthes [1]) . Now we can calculate 
small effects by the following 

1 . Ai 
k Sx [WM^] 

where [ W M S_ ] denotes a space integration. The computation of 
W,W Is as easy as the computation of S,S. if the matrixes M,M 
are known. The error in Ak or in other differential values of 
interest depends on the effectiveness of the correlated sampling 
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technique and the choice of the region subdivision and the num
ber of followed histories, of course. 

APPLICATION 

The applicability of the here discussed method was studied 
on several problems. The program which we used for our purpose 
was the MORSE-K code /B/ wich is a modified version of the multi-
group MORSE-code /9/. The calculation of strong local pertur
bations due to moving reflector elements or control rods in both 
compact reactors and power reactors (pebble-bed reactor) were 
calculated by means of the not complete correlated Monte Carlo 
technique, using the fission matrix method to take into account 
the source perturbation f\Oj. Reasonable results were obtained. 
At time the not complete correlated sampling technique and the 
fission matrix method is standard in MORSE-K. The complete 
correlated method is very problem dependent and requires often 
a special treatment by the user. The computation of differential 
effects for small perturbation regions by an additional adjoint 
run is possible by a special version of MORSE-K /5_/. To demon
strate the method a simple one-dimensional problem was calculated 
by Monte Carlo and S . The description of the unperturbed system 
is given in tab. 1. The core is divided into IO regions. In the 
basic problem all core regions contain the same material UZrH. 
The example is related to an experiment on a compact zirconium-
hydride moderated and beryllium reflected zero power reactor. 
The thickness of the beryllium reflector is 6 cm in the unper
turbed case. Now some changes of the system have been studied by 
Monte Carlo and S as described in Table 2. In this table also 
the k-values and the A k-values calculated by Monte Carlo and S„ 
are presented. It is clear that this changes are not very small, 
but nevertheless the saving of the computing time is remarkable 
if the correlated method is used. Further the assumption that 
the fission matrix elements may be calculated by the unperturbed 
source distribution can be proved. The fission source vectors 
(fission rates) for the unperturbed and three perturbed systems 
described by Table 2 are given in Tables 1 and 3. The results are 
quite sufficient. Though this example is for a small reactor 
only, the application of the method to power reactors has proved 
to be very efficient /loy. 

CONCLUSIONS 

For local perturbations in multiplying systems it is 
effective to calculate differential values by a correlated 
sampling technique. Though a complete correlated sampling is the 
best method the operation with the simpler not fully correlated 
method is sufficient for many problems. To get unbiased 
differential values the source perturbation must be taken into 
account. The fission matrix method here gives a reasonable 
approximation to the perturbed source. Large perturbation regions 
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may be treated by means of forward calculations for the un
perturbed problem and the perturbed problem, in the case of small 
perturbation regions an additional adjoint run should be used. 
The method implemented in MORSE-K is not necessarily restricted 
to multigroup-Monte Carlo, however, running adjoint problems 
is simpler by a multigroup code. 
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TABLE I 

Description of the Unperturbed Test Problem 
(Infinite Cylinder). Fission Rates Calculated 

by Monte Carlo and S^ 

Zone 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Material 

UZrH 
X 

UZrH^ 

UZrH 
X 

UZrH 
X 

UZrH 
X 

UZrH 
X 

UZrH 
X 

UZrH 
X 

UZrH 
X 

UZrH 
X 

Be 

Outer 
Radius 
(cm) 

1 .5 

2 .0 

2.5 

3.0 

4 .0 

5.0 

6.0 

7.0 

8.0 

9.0 

15-0 

Fission 
Rate^ 
Monte Carlo 

0.0333 

0.0264 

0.0335 

0.0407 

0-1007 

0.1247 

0.1425 

0.1587 

0.1692 

0.1928 

0. 

Error 
(%) 

6.8 

6-0 

5-0 

4.2 

3-2 

3.0 

3.0 

2.6 

2.7 

2.7 

-

Fission 
Rate Sjj 

.0342 

.0263 

.0335 

.0404 

.1005 

.1242 

.1443 

.1606 

.1739 

.1954 

0. 

90 batches with 200 neutrons are processed for the 
source iteration. 

the estimated error is given in +2 0 -bounds 
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TABLE II 

Description of Changed Systems and Results 
Calculated by Monte Carlo and Sj, 

0 

1 

2 

3 

4 

5 

Change 

No 

Outer radius 

14.14 cm 

Outer radius 

13.28 cm 

Outer radius 

11.14 cm 

Al in zone 1 
Outer radius 

15.00 cm 

Al in zone 1 
Outer radius 

11.14 cm 

Monte Carlo 

k^ 

1.023 

0.9894 

0.9525 

0.8259 

1 .002 

0.7994 

Monte Carlo 

^Vk 

-

-0.034 

-0.074 

-0.239 

-0.021 

-0.280 

Error 

-

7.5 

6.1 

3.2 

9.5 

3.2 

^N 

^Vk "" 

-

-0.035 

-0.078 

-0.242 

-0.020 

-0.284 

^The error in k is 1.1 % (+2 0 - bounds ) 

'̂ the estimated error is given in + 2 0 - bounds 

^the unperturbed value of k calculated by the 
S„ method is k = 1.0335. 
N 
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TABLE III 

Comparison of Fission Rates for Changed 
Systems Calculated by Monte Carlo and Sĵ  

Zone 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Changed 

Fissior 

M. c ' 

0.0332 

0.0263 

0.0333 

0.0404 

0.0989 

0.1202 

0.1355 

0.1489 

0.1546 

0.1613 

system 2 

1 Rate 

' S 

0.0338 

0.0260 

0.0330 

0.0397 

0.0980 

0.1196 

0.1367 

0.1487 

0.1553 

0.1613 

Changed 

Fission 

M. C. 

0.0326 

0.0253 

0.0324 

0.0390 

0.0942 

0.1122 

0.1228 

0.1285 

0.1257 

0.1131 

system 3 

Rate 

S N 

0.0332 

0.0254 

0.0321 

0.0384 

0.0934 

0.1115 

0.1234 

0.1285 

0.1257 

0.1143 

Changed 

Fission 

M. C. 

0.0 

0.0258 

0.0336 

0.0402 

0.0992 

0.1236 

0.1451 

0.1619 

0.1743 

0.1963 

system 4 

Rate 

[ % 

0.0 

0.0256 

0.0329 

0.0400 

0.0998 

0.1239 

0.1459 

0.1614 

0.1749 

0.1967 

Calculated by Monte Carlo, the estimated errors are 
similar as in Table I. 
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DISCUSSION 

Hoffman: Do I understand correctly that, if you extend the region around 
your local perturbation to Include your entire system, you are doing essen
tially the same thing that Matthes did? Is that fair to say? 

Bemnat: No. I don't understand your question. 

Hoffman: You had two terms in your treatment. One was just an integral 
over the perturbed region. If you extended that boundary of the perturbed 
region to Include your entire system, would you be doing essentially the same 
thing that Matthes did? 

Bemnat: I would say that in this case the perturbation is not a local 
perturbation and this method would not be adequate. You would then have to 
use complete Monte Carlo correlation methods. If your whole system is changed, 
for example, due to a temperature change or a change in atomic density, and 
if the cross-section perturbations are not very large, then it is better to do 
the calculation by a complete correlation calculation. But, here in the case 
of strong local perturbation the complete correlation method seems to me to be 
not very efficient because the first collision in the perturbed region, in the 
perturbed system, may change the weight of one of the sample particles to zero. 
Then, on subsequent collisions, the weight of the particle representing the 
perturbed system will remain zero. 

Gelbard: Are there other comments? 

Borgwaldt: I have a question for Dr. Gelbard. In your paper you men
tioned the method of complete correlation. Could you give some details about 
the method which you are going to use? 

Gelbcxrd: At this point, we are hoping that we can get away with some
thing very much less sophisticated than Bemnat's .method. We want to do a 
local perturbation calculation by introducing a composition halfway between 
the perturbed and unperturbed composition, tracking in this intermediate com
position and simultaneously using weights for the perturbed and unperturbed 
problems. Now we realize that the most serious difficulty, if you try to do 
this, is just the difficulty that has been discussed already, namely that you 
have to get particles into the perturbed region. Ue would like to try the 
simplest approach we can think of, which is simply to build up the density in 
the neighborhood of the perturbation by splitting. We don't know whether this 
will really work. Before we would make a very large commitment to this method, 
we think that we can get an estimate as to whether it is feasible or not by 
simply asking ourselves, not whether we can compute the perturbation due to a 
small sample accurately, but simply whether we can compute the absorption rate 
in a small sample reasonably accurately. We feel that if we can get enough 
histories into the sample so that we could get a reasonable estimate of the 
absorption rate, then by later introducing the simultaneous tracking technique 
we would perhaps be able to get a reasonable estimate of the perturbation. 
This proposed method does not turn out to be adequate, then we will have to 
try something more complicated, and probably something that does Involve an 
adjoint. We have considered many methods involving the adjoint and there 
always seem to be some difficulties Involved. If there are no other questions 
about Bemnat's paper, I would like to bring up some of these problems that 
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seem awkward to us. In computing the - ' ^ f - ^ ^ - - ' = : j - „ r s u^^e fr^m'thrsur-

f a ^ f " ^ r t h e n ' r f c r i ; ^hr^adj^ I Z e l n f t f u y l ^ ^ ^ p r o r u c t of the adjoint 

u:-and°thf:ourcrdensity. If you try to get a <ie-iled energy ang e space 
distribution of particles entering the perturbed region, then 1°"^ ^^^^y K" ! 
angle and position you need an adjoint. Presumably, you don' do that but 
then how can you be sure that you have an adequate energy angle and space dis
tribution of Incoming particles? That is the first question. 

Bemnat: It may be that if I have no knowledge of the spectrum in the 
surrounding region, this adjoint method will be very inefficient. But it may 
be possible to calculate, by simpler methods, the spectrum m the neighborhood 
of such a perturbed region. If you have some knowledge about the spectrum, 
then you can start your adjoint mode calculation very easily. We have tested 
this method only in a multigroup program. In such a case it is very easy to 
use. 

Gelbard: Well, then the energy variation would be simplified, but you 
would still have to get a space-angle distribution at each energy, and that 
still seems like quite a computational problem. But you would have a diffi
cult time knowing whether you had adequately sampled the incoming particles, 
which leads me to the other problem. If you are trying to analyze an experi
ment, and there is a 10% discrepancy between the observed perturbation and 
somebody's computed perturbation, you would like to be able to guarantee that 
your perturbation calculation is accurate to much better than 10%. If you 
could do a rigorous Monte Carlo and get a reliable uncertainty estimate, then 
you could argue that, if you disagree with the experiment by five standard 
deviations, there is probably something wrong. On the other hand, if you do a 
calculation in which you have made approximations which you cannot evaluate, 
then you will probably have to go back and spend a good deal of effort trying 
to understand what these approximations do. In the end you will not be able 
to say whether the 10% discrepancy between Monte Carlo and experiment is real, 
or is due to your approximations. This is another thing that has made us 
reluctant to go this way. If you use the Green's function approach and try to 
accumulate the Green's function over regions in the course of the Monte Carlo, 
then you have the following delemma. If you make the regions too coarse you 
are Introducing an unevaluated approximation; but, if you make the regions too 
fine, the statistical fluctuations in the Green's function again introduce an 
unevaluated approximation. You may argue that the fluctuations in one region 
will cancel those in the other regions. But again, if somebody pins you down 
and says,"Look, there is a 10% discrepancy between the Monte Carlo and the 
experiment. Now, is there something wrong, or are you just not giving us the 
right answer? What do you say? 

Bemnat: Well, 1 say that I have tested the method against an S^ calcu
lation and the agreement was rather good. Of course, this was a very simple 
problem. Further, we have compared computed results with measurements and we 
have found that our agreement was within about 10%. In addition, we have 
changed the role of our reference and perturbed problems. This method tends 
to rather over or underestimate the perturbed source distribution, depending on 
whether you start from control rods in'or from control rods out, and we have 
found that if we Interchange the roles of the perturbed and unperturbed sys
tems the results remain about the same. We think we can say that substantial 
discrepancies with experiment cannot be due to the method. 
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Gelbcxrd: In the c o n t r o l rod c a l c u l a t i o n t h a t you showed, did you use 
the ad jo in t method? 

Bemnat: No. 

Gelbard: Now, in the slab calculation, the adjoint method was a particu
larly easy one because you had no spatial variation over the surface of the 
slab. You had an angle variation and an energy variation. If the incoming 
flux is more or less Isotropic, the angular variation does not matter very 
much. Now, if you have a small sample perturbation due, let us say, to a 
finite cylinder that is inside some sort of a fairly complicated lattice array, 
then you have to worry about sampling the positions on the surface adequately, 
and you would have a more difficult problem. These are reasons why we are 
hoping to use an approach which has no approximations. In the method we were 
trying to use there are two difficulties. First, it is not clear that we can 
really get enough particles into the perturbed region to give us reliable esti
mates. The second problem, I think, has been mentioned by a number of people. 
When you go to such a biased sampling scheme, there is always a serious ques
tion as to whether you can trust the variances; so we could be driven to all 
kinds of other possibilities. But this is our motivation. We were trying a 
simple scheme first. We will go to all kind of lengths to build up the parti
cle density in the perturbed region. For example, we might draw a boundary, 
let us say, a spherical boundary, around our cylindrical sample, and on every 
collision which is made within a certain distance of this sphere, we might do 
Ilne-of-slght estimation into this sphere. So we build up the particle density 
in the neighborhood of the cylinder by splitting, and additionally do line-of-
sight estimations. Finally, we plan to use a perturbation technique, taking 
as our base problem one Intermediate between the perturbed and unperturbed 
problems. There is an interesting Russian paper in which the author tries to 
fix optimum parameters for an intermediate problem. In the case where you have 
material in or material out, you would like your base problem to be intermedi
ate between these two extremes. The authors determine what the cross sections 
in this base problem should be in order to mlnlmiie the variance. We would 
use this sort of intermediate problem. 

Whi-tesides: I should point out that Tom Hoffman developed a method while 
he was with us at Oak Ridge in which he modified the method of Matthes to be 
an exact treatment. We have done a number of test calculations with this 
modified method in situations where we could check Monte Carlo results against 
ANISN. We have calculated Ak's from 0.004 up to about 8% in k, and obtained 
quite good agreement with ANISN for various types of perturbations. The prob
lem, as Gelbard pointed out, is getting enough histories into the region you 
are interested in. We have actually been applying Hoffman's method to practi
cal problems, looking at control rod worths in ZPR-type experiments, and we 
think we are having better luck than most people in calculating the Ak's. Our 
largest error appears to be about 10% with most of the errors down about 3 or 
4%. So we think this is a viable approach. We have it built into our code 
and are using it fairly extensively now. 

Gelbcxrd: So you're getting Ak's to within 3 or 4% of Ak? 

Whitesides: Of the experimental value. 
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Gelbard: Oh, I see, you are getting Ak to within 3 or 4% of the experi
mental value. Are you analyzing central-worth experiments? Are you seeing 
the usual central-worth discrepancies? 

Whitesides: For the particular experiments we have carried out we have 
not seen them. We have not analyzed some of the most dif f icul t experiments, 
and we don't know whether we can. But, our agreement with the ANISN calcula
tions is just spectacular. The technique is reasonably fas t : i t takes about 
twice as long to do a perturbation calculation as i t does to do a normal cal
culation. The problems we are having now are ones that you would have expected. 
One is that the method works quite well for absorption changes, jus t because 
al l of the changes are in the same direction. Scattering changes are more dif
ficult and the errors, of course, are larger for those. At present we're using 
a collision estimator, so i t is necessary to be careful in defining the unper
turbed problem. The unperturbed problem should always be the problem in which 
more collisions occur. For example, if you have a void region, and perturb 
the configuration by putting material into the void, the configuration with 
the material present should be the base configuration. But we're putting a 
track length estimator into our code, and when we use the track length estima
tor i t should be possible to use either problem as the base problem. 

Gelbard: I t might be interesting to hear a l i t t l e more about Hoffman's 
method. 

Hoffman: Well, Matthes' method Involves calculating the adjoint simul
taneously with the forward function, and this is done in the unperturbed sys
tem; Matthes ends up with a first-order approximation to his change in k. On 
the other hand, once we generate this perturbation source, we change the geome
try system. We really keep track of two geometries and track in the perturbed 
system. By doing this we can make an adjustment in the Importance function 
and also an adjustment in one of the terms in the expression for Ak; and we' 
end up with an exact method, except for the fact that (as in Matthes' method) 
the f iss i le material must be divided into sections where the importance func
tion is assumed to be constant. 

G e Z W : Now let me compare the Matthes method and the correlation method 
and see whether there is any disagreement about th i s . The main problem in the 
sample " ''' ' " ' " " • ' ° " ' " " ' ' ° ''' """"^'^ par t ic les into the 

Hoffman: Yes. but one thing that is nice about this method is that the 
change in the system is your perturbation source. 

region!'^^'^•' ' " ' ' ' ° " ' " " ' ' ° ' ^ " " ^ '° ^^' part icles into the perturbed 

Hoffman: You have to be able to calculate the perturbation source. 

put them'herl?" ' ° " ' ' ' ' " ' '° ''' '^^^ ''''''• ° " " ^ ^ " l - ^ ^ t e them, you 

the particlfs l n t n ' ; h ' ° " ' ' - ' ° ^ '""^ ' ° ' " '= ' ' ^^ '''^ '^^-'^t "•°<̂ - ^i^st to get 
n one"ay ^r another' " ' H ° " ""̂  ^ ° " ^"" "^^ Une-of-sight e s t ima t lon ; \u t 

way or another you have to get information about the flux entering the 
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perturbed region. Now it seems to me that in correlated tracking the problem 
is exactly the same. You have to build up a density of information in the 
perturbed region. In the Matthes method you have a problem in that some 
sources are positive and some sources are negative. In the direct correlation 
method you have the problem that some weights are bigger than one and some 
weights are smaller than one. All in all. I don't see that one method is 
likely to be any better than the other. 

Hoffman: Well, all in all, I don't see why one method would be equiva
lent to the other either. 

Gelbcxrd: Oh, I am not saying that they are going to be the same all the 
time, but I see no a priori reason why I would go one way rather than the 
other. It is strictly a matter of convenience. I am saying that if Matthes' 
method really works, then it must be that you are able to get enough informa
tion into the perturbed region, that the perturbed source can be computed ade
quately. If you can do that there is a good likelihood that you have enough 
information in the perturbed region to estimate the difference between the per
turbed and unperturbed weights adequately. So, in looking at the two methods, 
it seems to me that there is, on the face of it, no reason to prefer one over 
the other. 

Bemnat: I find that the adjoint vector of the Matthes method is exactly 
the right eigenvector of the matrix I discussed earlier. 

Gelbcxrd: But, I need make no approximations at all in the complete cor
relation method. While (whether the approximation is a good one or a bad one) 
I do have to make an approximation if I am forced to assume that the adjoint 
is flat over blocks. I must worry about whether it is or it is not. So I 
don't see what I am burying for that approximation. 

Bemnat: The problem is to get enough samples in the perturbation region. 

Gelbard: Yes, you approach this problem by starting an adjoint from the 
surface. 

Bemnat: Actually the control rod calculations 1 described were not per
formed by an adjoint calculation. In the control rod problem, the density of 
neutrons in the upper core was amplified by splitting. 

Steinberg: 1 would like to comment on the direct correlation method. You 
can avoid the problem of weights greater than one by a procedure that we used 
in the SAMCEP code, where we set up our sampling based on the maximum of the 
density functions of the various perturbed and unperturbed distributions. 

Prael: I don't think that any of the perturbations which have been con
sidered there are small, when compared with the perturbations we have been 
asked to deal with at Argonne. 

Gelbard: But the problems that were done at Oak Ridge were, as I under
stand it. small sample perturbations like those in some of the Argonne experi
ments, and they actually would be the kind of perturbation in which we would 
be interested. 
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Prael: How small? The samples in our experiments were cylinders a few 

centimeters high. 

Whitesides: We have looked at several things, but obviously nothing that 

small. We have been dealing with several control rods moving inside the 

reactor. 

Kalos: Ely, I think I have been getting lost — lost again! When you 
say you propose to do an exact calculation you are talking about a Ak? Do I 
understand correctly that, in effect, you are going to do two correlated prob
lems and get an eigenvalue for each of them? Which means correlating weights 
in many generations? 

Gelbcxrd: That is right, we would. In other words, when a fission parti
cle is produced — if it is produced in a region where in the other problem 
there would not be any fission — it carries a zero weight. You are saying 
they get uncorrelated as we go through generations? 

Kalos: I'm afraid that sort of effect would tend to build up. 

Whitesides: I would say that the method of Matthes works beautifully if 
the perturbation, ho matter how small it is, extends over a large volume. But 
correlated sampling works best if you have a very small perturbed region with 
everything else in the unperturbed system. So it seems to me that they are 
complementary methods. 

Gelbard: Do I understand correctly that, in doing the adjoint calcula
tion, you pick the sample points uniformly on the surface? And that you then 
pick energies uniformly from an energy band? Do you pick angles uniformly? 

Bemnat: Yes. 

Gelbard: Once you have chosen an angle and a p o i n t , do you run j u s t one 
h i s to ry and then go on to another one? Or do you s t a r t more than one h i s t o r y 
from a given point in the given d i r ec t ion? 

Bemnat: I don ' t understand qu i t e . . . 

Gelbard: Well, there are two ways one might do i t . On having chosen an 
energy, and a point on the su r f ace , one approach would be to a c t u a l l y t r y , by 
using the adjoint method, to cons t ruc t the angle-dependent source a t t ha t 
po in t . That would requi re running many ad jo in t h i s t o r i e s from t h a t p o i n t . 

Bemnat: Yes. 

Gelbard: I was thinking that another approach would not be necessarily 
to try to construct the incoming source at that point exactly. Once you pick 
a point you could randomly pick one energy and one angle and run one adjoint 
history from that point, and then switch to another point. It is not neces
sary really to try to construct the Incoming flux with any accuracy at each 
point since you are going to take a sum anyhow over all contributions. Have 
you thought about this strategy, or exactly how do you do it? 
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Bemnat: No, I sample from a distribution. I don't pick one point and 
then sample all energies and all angles. I assume a distribution on the sur
face, say a constant spatial distribution, and perhaps a cosine distribution 
for the angle. Then I sample of lot of neutron histories from this distribu
tion; but I don't repeatedly use the same sample point. 

Gelbard: In other words, what you do is to pick a space point uniformly, 
pick an energy, pick an angle, send out one history, get its contribution, and 
then pick another starting set? 

Bemnat: Yes. 

Gelbard: You then have to eva lua t e the i n t e g r a l of the ad jo in t f lux times 
the source . 

Bemnat: Yes. 

Gelbard: Presumably you have to assume then that the source is uniform 
over specified regions. 

Bemnat: Yes. 

Gelbard: Another approach would be the one that was suggested yesterday. 
That is to say that, when you are running the adjoint problem, then on each 
collision, in principle, you could use a line-of-sight estimator to one of the 
source points (if that were practical). You could weight the source points by 
the value of the importance function at each point. From the weights you could 
form a probability distribution. At each collision you could take a source 
point from this distribution and get a contribution to that source point. 

Bemnat: I have never tried this. 

Gelbard: 1 was thinking of what you might do* to avoid any approximation. 
In this way, if it were practical, you could avoid the approximation that the 
fission source is uniform over boxes. 

Bemnat: It may be practical but it is more difficult. I would have to 
change my process . 

Gelbcxrd: Could you not, in this way, completely avoid the Green's func
tion method also? In other words, is it really necessary to separate out the 
perturbed source contribution and calculate it by a Green's function method? 
Couldn't you avoid the Green's function method completely. 

Bemnat: Yes, I can. But in the case of very strong perturbations, I 
must take into account the perturbed source distributions, and I need the 
Green's function to calculate my perturbed source distribution. Of course, 
for my adjoint calculation I would not need a Green's function, really. 
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ABSTRACT 

The procedure for biasing the collision density of Monte 
Carlo particles, so that the estimation of flux at a point detect
or is bounded,is described. The theory and program design of the 
solution of the problem of obtaining estimates for several de
tectors during a single Monte Carlo calculation is presented. 

INTRODUCTION 

The estimation of neutron or photon flux at a specified point in space 
is a major objective of radiation transport calculations. In carrying out 
calculations for problems in three dimensions, it is usually necessary to 
resort to Monte Carlo methods. The typical procedure that is invoked for 
estimating flux at a point involves the generation of particles with random 
positions and momenta, sampled from the collision density, and using a last 
flight estimator to obtain an estimate of the flux at the prescribed posi
tion. The standard last flight estimator W is given by: 

W = g{a))exp(-X(x,D))/r^ (1) 

(See Table I and Figure 1 for definitions.) 

The major problem in the treatment of point detectors is that W-x" as 
r->0, i.e. the estimator is unbounded. Furthermore, as an added complication 
for Monte Carlo calculations, ̂ W^^ is infinite when it is averaged with re
spect to the natural collision density. As a result convergence of a Monte 
Carlo average to the correct answer is slower than the usual l/vH, where N 
is the number of samples. 

HISTORICAL BACKGROUND 

The first significant attempt at solving this problem was made by 
Kalos' >, using the concept of a once more collided estimator. Here, in
stead of using the estimator described by Equation (1), a procedure was 
developed where an intermediate point was selected from a biased distribu
tion. The estimation then was the product of two terms of the form of 
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Equation (1). Although the resultant estimation was still unbounded, the 
second moment, and therefore the variance, was finite, so that the convergence 
was 1//IT. 

However, the possibility of arbitrarily large estimates remained, thus 
leaving room for a large error in a given Monte Carlo calculation, albeit 
with a small probability. To mitigate this problem, Steinberg and Kalos'^1 
developed the concept of a bounded estimator. They invoked the principle 
that, as long as the mean is finite, it is always possible to establish a 
biased sampling scheme in which the singularity becomes part of the prob
ability density. 

SINGLE DETECTOR-THEORY 

The problem of handling the l/r^ singularity in Equation (1) was treated 
by using biased distributions for the selection of the direction out of 
collision (or source) and for the position of the next collision. This re
sults in a biased collision density in the neighborhood of the detector pro
portional to the "natural" collision density divided by r^. The resultant 
modified estimator Wr is therefore bounded. 

As an aid to the implementation of the biasing procedure, the reselect-
ion principle was developed. In general terms, this procedure involves first 
the selection of a point in phase space by means of some prescribed (e.g. 
natural) distribution. Then, if the point is in some critical domain (e.g. 
where W as given in Equation (1) is large), reselect the point within the 
domain from an appropriately biased distribution. 

Reselection would be invoked when two conditions are met. First it is 
desirable to keep the biasing local, i.e. there is some critical domain in 
which biasing is necessary, while for the rest of phase space the "natural" 
distribution is preferred. Second, the "natural" .probability, that a point 
selected in the first stage will fall in the critical domain, is not known 
a priori or is difficult to calculate. In [2] weight adjustments which do 
not use this probability are described. 

To select the direction, it is convenient to define a coordinate system 
using the line between the particle position and the detector as a polar 
axis (direction co ). The differential solid angle dii can then be expressed 
as: 

dtt = sinadodij; (2) 

where a is the polar angle and iji is an azimuth around it. The biasing pro
cedure here involves a only. Specifically the density function is set to be 
proportional to 1/sina for 0<oi<a , where a is some preassigned limit. This 
means simply that within the range (0,0^^),"a is chosen by means of a uniform 
distribution in angle, rather than uniform in the cosine of the angle. The 
biasing weight adjustment F is then given by: 

F = K g(u)sina (3) 

where K is determined by a . 
0 m 
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To select the position of the subsequent collision, the density function 
is set proportional to l/r^, and the weight adjustment factor F^, propor-

tional to r , is given by 

^ = ̂ <<s-VH''/^o "' 
where rg, SQ, and S are given in Table I, K̂ ^ is determined by the range 
over which S is biased, and includes the adjustments for the "natural" ex
ponential attenuation. The product WFgF]^, used for flux estimation, can 
then be shown to be bounded, solving the problem of the l/r singularity. 

SINGLE DETECTOR IMPLEMENTATION 

An implementation of the theory was described in [2], using the re-
selection principle. Essentially if a collision was found to be within a 
prescribed volume around the detector, both the previously selected direc
tion and the position along the track were reselected. This led to serious 
programming problems. Furthermore, no attempt was made to handle the 
"natural" exponential attenuation, 

Steinberg and Lichtenstein described an improved implementation pro
cedure which took into account both the exponential attenuation and the 
l/r^ term In carrying out the spatial sampling. In addition, to avoid the 
above mentioned programming difficulty, it was determined that the direction 
and distance biasing should be decoupled. The direction biasing, using the 
reselection principle, was carried out as soon as the direction was chosen 
(and not later as in [2]). Then the biasing of position along the track 
near a detector can be carried out without any further effect on the direc
tion and also without the use of reselection. 

Specifically, when selecting a direction (o , a test is made to deter
mine if the initially selected direction ai lies within a specified cone, 
i.e. if the angle UQ between u and u Is less than a^ (see Figure 1). If so,a 
new a is chosen uniformly between 0 and a and u is calculated from 

u = au + bu (5) 
P q * ' 

where a = slna/sina and b = sin(a -a)/sina^. when o„>a , u becomes u , 
u 0 0 0 m q p 

When reselection is used, the weight adjustment F is then given by: 

(sina a g(u ) 
= \ 7 1°, E_ 

0 1-cosa g (u ) (6) 
m q 

F 

For position along the track, biasing can be carried out without re
sorting to reselection. The procedure is kept local by defining a range of 
distances along the track, near the detector where biasing is used. The 
range (S_,S^) is determined from 

S^ = S„ + / 

+ 0 —y 

„2 2 
P - rg (7) 
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This interval defines the portion of the path within P of the detector. 
If r >P, then no special biasing is needed. 

For S_<S<S_̂ , a sampling density f (S)=g(S)/ / """ g(t)dt can be used 
where ^S 

g(S) = y (S)exp(-A(s_,S))/((S-Sj^)^+rQ^) (8) 

Because yg(S)dS is difficult to obtain analytically, g(S) is replaced 
by an approximation, constructed by dividing up the range (S ,S ) into short 
intervals and replacing either the exponential or the inverse square factor 
by a constant. A full description of the algorithm is given in the SAM-CE 
Manual t*̂  . 

SEVERAL DETECTORS SOLUTION 

The problem of treating several point detectors simultaneously although 
not a difficult problem in theory, was not satisfactorily solved in either 
[2] or [3]. 

In [2] the theoretical solution of sampling from the average distri
bution was described, but the implementation suggested proved impractical. 
In [3] a practical solution, involving the use of Russian Roulette procedure 
to reduce the problem to that of one detector, was described. When imple
mented, however, this approach results in a serious degradation in the 
statistical quality of the resultant flux estimates. A full description 
can be found in [4]. 

However, by combining the method of [3] directly with the theoretical 
solution of [2], it is feasible to define a procedure which would be satis
factory statistically, and still be tractable for; implementation. The 
procedure is based on a simple but important theorem of Monte Carlo. 
Specifically: 

Theorem 1: 

Let F2(x), , Fjj(x) be a collection of probability distribution func
tions. Let a,, , a^ be constants so that â]̂ =l and all aj^O. Let 
F{x) = j:ajjF]̂ (x). Then F(x) is a distribution function, and a random vari
able X with distribution function F(x) can be generated by means of the 
following two-step procedure: 

1: choose k at random with probability a . 

2: choose a random variable X with distribution function 
F^(x). 
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Proof: 

Prob(Xix) = EProb (k selected) Prob (X<.x|k selected) 

k 

^^a^F^(x) 

= F(x) Q.E.D. 

This theorem leads to the following estimation theorem. 

Theorem 2: 

Let Fv(x) and a^ be defined as in Theorem 1, let X be chosen as 
described in Theorem 1, let T(x) be integrable over the domain of x, and let 
{bk(x)} be any functions of x, provided that J:a„b„(x) is never 0. Then 
an unbiased estimate J of/T(x)dx is given by: 

T(X)b^(X) ^̂ ^ 

•̂ '̂ ' fĵ (X) 2:ambn,(X) 
m 

where f (x) = F'(x). Note that J depends on k. 
k k 

Proof: 

<^J^ = la.^ /j(x)fj^(x)dx 

'T(x)b (X) ,10) 
= Ea, / :=—; , . dx 

= J'T(x)dx 
Q.E.D. 

Implementation of the solution described in [2] is then very straight
forward. Before choosing a direction out of collision, detector number k 
is chosen with probability aĵ  (where the a, are defined in advance to re
flect the relative importance of the various detectors) . 

th 
The direction and next position sampling are carried out as if the k 

detector were the only detector present using essentially the same pro
cedure as described above for one detector. 

The estimation theorem can then be invoked using 

b^(x) = max(l,p ^/r ^) (11) 
m mm 
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For each detector Wj/Ia^b^(x) is bounded. (In fact, IajWj/Iâ bn,(x) is 
bounded.) Furthermore bj. (x)KoK']̂ , where k is the detector used for sampling 
and KQK^ are the biasing weight adjustments, is also bounded. Therefore 
the estimation for all detectors is bounded. 

Since the bound on Wj/Iajj|bj„(x) can be l/aj larger than the one detector 
bound, it is recommended that this procedure be invoked only when necessary, 
i.e. if the direction out of collision has to be biased by more than one 
detector. 

REFERENCES 

1. M. H. Kalos, "On the Estimation of Flux-at-a-Point by Monte Carlo", 
Nucl. Sci. Eng. 16̂ , 111 (1963). 

2. H. A. Steinberg and M. H. Kalos, "Bounded Estimators for Flux-at-a-Point 
in Monte Carlo", Nucl. Sci. Eng. £4, 406 (1971). 

3. H. Steinberg and H. Lichtenstein, "Implementation of Bounded Point 
Estimators in Point Cross-Section Monte Carlo Codes", Trans. Am. Nucl. 
Soc. 12, 259 (1973). 

4. M. O. Cohen et al, "SAM-CE: A Three Dimensional Monte Carlo Code for the 
Solution of the Forward Neutron and Forward and Adjoint Gamma Ray 
Transport Equations - Revision B", DNA 2830F-B, Mathematical Applications 
Group, Inc. (1973). 



288 

TABLE I 

SYMBOLS 

VECTORS 

D, D^ 

X 

y 

u,u^ 

u 

p 

"C'^Ok 

position of (k*̂ *̂ ) detector 

collision position 

position of previous event (source or collision) 

direction from y to D or D̂ ^ 

direction from y to x 

direction from x to D or D 

SCALARS 

S 

P,Pv 

^O'^Ok 

'' °k 

^-Y| 

|X-D| (or |x-Dĵ |) 

|y-D| (or |y-D^|) 

"critical" radius (always <R (or K^)) 

sin"'''(p/R) (or sin" (P]^/\)) 

angle between to (or u. ) and oj 

Rsina (or R^sina^^) 

Rcosa (or R^cosa, ) 

angle between Uj. (or u-, ) and u 

FUNCTIONS 

g(uo) 

X(u,v) 

density function of angular distribution: 
scattering - g(u„) = a{9), where o O ) is 
differential cross-section; 

source - prescribed, usually 1/4TI (isotropic) 

distance from u to v in mean free paths 

total macroscopic cross-section 
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Actual Path 
Extended or Estimation Paths 

(S , S, Sg, S distances from y.) 

F ig . 1. Geometry for po in t d e t e c t o r . 
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DISCUSSION 

Gelbard- What you are talking about seems to be, in some sense, equiva
lent to splitting continuously, with some distribution of splitting boundaries. 

Kalos: No, it is better than splitting because the biasing of the angle 
makes you able to find the neighborhood of the point you are interested in 
without just having to reach it by chance. 

Steinberg: Well, the effectiveness of the technique depends very much on 
a reasonable selection of the parameter p. We found in practice that some
thing roughly like one mean free path seems to be a sensible distance. This 
is not a strict rule, but an order of magnitude of that nature seems to be 
most sensible. 

Kalos: Have you made any attempt to calculate the variance of the esti
mates you get this way? 

Steinberg: Well, we have run many problems using the method I have des
cribed, and we have calculated variances internally the typical way. We have 
not tried to make a theoretical calculation because, obviously, the variance 
depends on all the biasing techniques used in the computation, not just on 
this particular technique. 

Gelbard: You would still have to rely on some other techniques to get 
you within a mean free path of the region of interest? 

Steinberg: Remember that the angle biasing is done at every point. At 
any point in space you are starting to aim at the selected sphere. You are 
getting rays in that direction from every point, which means that more and 
more paths will pass through that sphere, and once you have a ray passing 
through you will Increase the collision density along that ray. 

Kalos: For deep penetration problems, however, this alone is not a sub
stitute for some good Important sampling scheme that brings you to within a 
few mean free paths of the point in question. 

Steinberg: Well, I was thinking again of the small sample problem not ... 

Kalos: In the small sample problem, if you are within a few mean free 
paths of the sample, this will do you a lot of good, I believe. 

Cashwell: In the case of the point detector you turn this on when you 
get reasonably close to the detector? 

Steinberg: The angle biasing takes place throughout the entire space. 
The cones get smaller and smaller as you get further away, but the biasing is 
always present. The position biasing is only put into effect when you are 
within that one mean path sphere. 

Cashwell: One other question. Using the latest scheme, the Steinberg-
Lichtensteln scheme... I gather you pick up some speed in implementation 
over the earlier methods? 
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Steinberg: There are practical programing problems in the earlier 
methods. The first problem by which we were hit was the almost impossible 
problem of retrieving the cross section for the previous collision. That 
cross section might no longer be in the fast memory and this was potentially 
a horrendous mess. Further, in our codes, the tracking portion is the most 
expensive and time-consuming portion and using the older scheme we have to go 
back and retrack. This way we avoid those two problems. 

Cashwell: Yes, retracking would be expensive. 

Gelbcxrd: I would like to pick up a comment that was made a little 
earlier. We were talking about how one might join the adjoint method to an 
eigenvalue problem. I was suggesting that, during the adjoint calculation, at 
every collision, you might somehow make an estimate either at all, or at some 
selected direct-mode fission source sites. I gather that Kalos and Steinberg 
have some experience in this sort of thing. Could you say something about it? 

Steinberg: Our experiences have always been with transport radiation 
problems, rather than with reactor problems. As a result, we do not have 
experience with eigenvalue problems in this sort of context. We have been us
ing our biasing methods as concentrators in various and sundry transport prob
lems and they work. In fact, we have used them very specifically in the kind 
of context we have described, where one is putting in a nonexistlng detector 
just so that one can use this sort of a concentrator. 

Gelbard: I think I am talking about a slightly different subject. Let 
us say that you have previously done a direct mode problem, you have accumu
lated a certain number of fission sites, and what you would really like to get 
is the integral of \ti adjoint times the fission source density. 

Steinberg: The closest analog of that kind of a problem is a secondary 
gamma calculation where the neutron transport is simulated in a forward mode 
and the gammas are adjointed back to the productipn sites. In the forward 
neutron calculation this procedure is used as a concentrator for the gamma 
detector. So, we have an enhanced collision density, or gamma source density, 
in the neighborhood of the detector. 

Gelbcxrd: But, if you were trying to get the value of the adjoint flux at 
every one of 10,000 source sites, that would clearly be unfeasible. So that 
if you want to integrate the adjoint flux times the direct mode source, you 
could not on every collision get a contribution at every point. 

Steinberg: No, what we do is to accumulate what we call a "forward 
source tape" and each adjoint gamma history contributes to just one source 
point. 

Kalos: If you had at your disposal a large number of fission positions, 
I think that a sensible procedure might be to select one at random from some 
distribution which represented the Importance function of the sites. That 
would then be the point at which you make an estimate. But you have the prob
lem of organizing the collection of flsion sites so that you can efficiently 
pick one that is worthwhile. I think that could probably be done. The proce
dure might well work. It would depend a lot on how well you could do the point 
estimation. 
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Gelbcxrd: You have no direct experience with such a technique? 

Kalos: Well, the way that we did it was rather clumsy. It worked. But 
how it might compare with some other hypothetical scheme is very hard to 
predict. 
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ABSTRACT 

When Monte Carlo methods are applied to penetration problems, 
the use of variance reduction techniques is essential if realistic 
computing times are to be achieved. This paper describes a tech
nique known as direction-dependent exponential blasslng, which is 
simple to apply and therefore suitable for problems with difficult 
geometry. The material cross section in any region is multiplied 
by a factor which depends on the particle direction, so that parti
cles travelling in a preferred direction 'see' a smaller cross 
section than those travelling in the opposite direction. A theo
retical study shows that substantial gains may be obtained, and 
that the choice of blasslng parameter is not critical. 

The method has been implemented alongside other importance 
sampling techniques in the general Monte Carlo code SPARTAN, and 
results obtained for simple problems using this code are included 
in this paper. 

INTRODUCTION 

Importance sampling techniques enable considerable savings to be made 
in Monte Carlo calculations. In tractable geometries, an adjoint transport 
or diffusion calculation may be performed to obtain a near-optimum 
importance function. In more complicated geometries, however, it is often 
impossible to calculate an importance function, and a simpler approach 
is required. This paper gives a theoretical analysis of a biassing system 
which is suitable for shielding calculations, and which has been found very 
simple to apply. 

In a shielding problem, the aim of a biassing system should be to 
encourage particle flights towards regions of low flux or of particular 
interest and to discourage flights towards the source. In the system 
described in this paper, which was developed for use in the Monte Carlo 
code SPARTAN, this aim is achieved by introducing a factor on the 
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material cross-section which depends on the flight direction relative to a 
preferred direction. As a result of this, particles travelling in the 
preferred direction see a smaller cross-section than those travelling in the 
opposite direction. A theoretical study based on a notional slab system 
shows that considerable gains may be achieved by this method, and that the 
choice of biassing parameters is uncritical. 

The method has been implemented alongside other variance reduction 
method in the Monte Carlo code SPARTAN. A number of methods are available 
for the specification of preferred directions, allowing a fixed direction, 
a direction which is a function of position, or a direction which encourages 
flights towards a small target region. The paper includes a brief 
description of the results of some test cases using direction-dependent 
exponential biassing in SPARTAN. 

EXPONENTIAL BIASSING 

Consider a particle travelling in a material of macroscopic cross-
section I. The distance to first event is obtained by sampling from the 
frequency function 

p(x)dx = Eexp(-Ex)dx (1) 

In the biassed case, we sample instead from the frequency function 

q(x)dx = aZexp(-aZx)dx (2) 

where 'a' is a positive biassing parameter. In order to compensate for 
the physical distortion caused by the introduction of 'a', we assign to 
a particle suffering an event at distance x a weight 

w(x) = - exp (-j;x(l-a)), (3) 

so that 

q(x)w(x) = p(x) W 

Suppose that the particle flight path emerges from the material at 
distance X. On reaching X in the unbiassed case, the neutron will have 
statistical weight 1.0 (i.e. will not have suffered an event) with 
probability 

exp(-ZX) (5) 

and zero weight otherwise. In the biassed case, the particle reaches X 
with probability 

exp(-EaX) (6) 

and it is assigned at X a weight 

exp(-Z(l-a)X) (̂ ) 
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so that the expected weight at X is preserved. 

DlRECTION-DtPENDENT CHOICE OF BIASSING PARAMETER 

In principle, the biassing parameter 'a', introduced in the previous 
section, may have any positive value, and its value may vary from flight 
to flight. A number of methods for the optimisation of 'a' have been 
proposed L1,2,3J. In this paper a method is examined in which the value 
of 'a' depends on the particle flight direction. This approach seems 
promising in view of the fact that the aim of importance sampling techniques 
in shielding calculations is to encourage flights towards regions of low flux. 

The value of 'a' is calculated as 

a = 1 - bu (8) 

where u is the cosine of the angle between the flight path and some 
preferred direction and b is a constant. This formula is chosen for 
its simplicity; any expression which is monotonic decreasing in u and 
positive in the range of u could be used, and no attempt is made in 
this paper to establish a 'best' formula. 

In the appendix, random walk theory is applied to a slab problem 
in order to find the optimal choice of b (i.e. the value of b which 
minimises the variance of the estimated penetration through the shield 
for a given number of particle flights). It is found that the optimal 
value is only weakly dependent on shield thickness and scatter probability, 
so that tne method is easy to apply. 

CHOICE OF PREFERRED DIRECTION 

The Monte Carlo code SPARTAN, in which the biassing system described 
in this paper has been implemented, provides three options for the choice 
of preferred direction in any region of the system being studied. 

Fixed 

The preferred direction is defined by a fixed vector (u , v , w ). 
This option is used in slab-like geometry. o o o 

Variable 

The preferred direction depends on position within the region as 
follows. If the particle is at (x, y, z) in Cartesian co-ordinates, then 
a vector in the preferred direction is given by 

^"o' " o ' "o^ " (""'• ^y' Y^) 

for constants (a, g, Y) specified for that region. For example, 

(a. B, y) - (1, 1, 0) gives a preferred direction along an outgoing radius 
of a cylinder. • o o & 
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Towards a Target Area 

A point (x ,y ,z ) is specified, and if the particle is at 
O O O . . . 

(x, y, z) then a vector in the preferred direction is given by 

(u , v , w ) = (x - x, y - y, z - z) 
o o o o o o 

This option is used to encourage flights towards a particular region, 
such as that occupied by a particle detector. 

USE OF RUSSIAN ROULETTE 

Like many Monte Carlo codes, SPARTAN uses weighting in lieu of 
absorption as a variance reduction device. If a particle has an event 
for which the non-absorption probability is p , then, instead of continuing 
with probability p , the particle continues with probability 1.0, carrying 
a statistical weight of p . 

When weighting is used in lieu of absorption, the only way in which 
a particle history can be terminated is for the particle to have an event 
in a purely absorbing region or to escape through the boundary of the 
system. In many situations, this leads to the uneconomic use of computing 
time, and Russian Roulette is introduced to provide an additional means of 
terminating particle histories. If a particle has a statistical weight 
w which is less than a specified limit w , then with probability "/« the 
particle is allowed to continue, with weight w , or else it is stopped. 

When direction-dependent biassing is used, particle weights vary 
as a result of the application of equations 3 and 7, and the effect of 
the biassing may be reduced by Russian Roulette. For this reason, the 
use of Russian Roulette is delayed until after a specified number of 
events for each particle. It has been found in practice that the value 
of this number is important for the successful application of the technique 
to shielding problems. An appropriate value is the mean number of flights 
to escape, given by equation A15 of the appendix. Figure 1 gives the 
number of flights to escape per unit shield thickness (in mean free paths) 
as a function of the biassing parameter b. This value, is, of course, 
specific to the semi-infinite slab geometry used in the appendix, but is 
a useful approximation in more general situations. 

RESULTS 

Figures 2 and 3 give results obtained by the use of direction-
dependent exponential biassing in SPARTAN. Both calculations are of 
neutron flux in one energy group in a symmetric slab, with data 
approprate for thermal neutrons in sodium (figure 2) and thermal 
neutrons in water (figure 3). The results of similar calculations 
without using biassing are also shown, together with the exact analytic 
results for these simple problems. For reasons of clarity, error 
estimates are included only near the edge of the shield. Each case was run 
for a computing time of about 10 minutes. 
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For transport through sodium (figure 2) in which the probability 
of absorption at each event is about 0.1, biassing improves the results 
throughout the shield, particularly beyond 180 cms, where the unbiassed 
solution collapses rapidly. In water, where the probability of absorption 
at each event is about 0.006, a shield with the same total attenuation must 
have a far greater optical thickness, so that good results are more difficult 
to obtain than for sodium. Nevertheless, a substantial improvement is 
obtained in the biassed case, and the collapse of the solution, 
characteristic of the unbiassed calculation, is largely averted. 

CONCLUSIONS 

The method of direction-dependent exponential biassing has been shown 
to lead to a substantial improvement in results for simple penetration 
calculations. It appears that the improvement is brought about principally 
through a reduction in the number of flights required for a particle to 
traverse a given shield thickness. The method is used in conjunction with 
weighting in lieu of absorption and the delayed application of Russian 
roulette. Approximate theoretical studies indicate that the choice of 
biassing parameter is not critical, so that the application of the 
technique to more general problems is straightforward. 

This technique, which has been implemented in the Monte Carlo code 
SPARTAN, is expected to be of value in geometries where a detailed 
importance function cannot readily be evaluated. 
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APPENDIX - OPTIMISATION OF THE BIASSING PARAMETER b 

In order to study the effect of varying the biassing parameter b, we 
shall consider the special case of a'slab shield which is infinite in the 
-x direction and of thickness d in the +x direction. An isotropic source 
of particles is situated at the origin. Particles are scattered 



isotropically at each event, and the statistical weight of a particle (which 
is 1.0 at birth) is multiplied by the non-absorption probability p at each 
event, as well as by any factor arising from the biassing process (that is, 
we use weighting in lieu of absorption). The physical macroscopic cross-
section of the shield material is Z, and a biassing parameter 'a' is used 
to give a biassed cross-section aZ. 

If u is the cosine of the angle between the flight path and the x-axis, 
then the biassing parameter 'a' is given by 

a = 1 - bu (Al) 

We shall treat the problem as a random walk defined in one dimension 

by 

X , = X + X (A2) 
n+1 n 

where x is the distance of the particle from the x = 0 plane after n events, 
n • . . . 

and where x has a frequency function f(x) with positive mean y and variance 

Values of v and a^ may be obtained as follows. Referring to figure 4 
the frequency function of £ for a given value of u is 

p(il|u)dil = (l-bu)Zexp(-Z(l-bu)£)d(l (A3) 

p(x|u)dx = p(£|u) |^|dx 

= ,-, Z(l-bu)exp(-Z(l-bu)x/u)dx, (A4) 

where x and u have the same sign. Integrating over the frequency function 

of u, 

f (x)dx = I exp (bZx) {Eĵ (Z |x| )+bE2(Z | x|) }dx 

'°' il : 0 (̂ ^̂  
where E.(q) is the i-th exponential integral 
Direct integration yields the moment generating function of x. 

'*'''-!.. 

+00 

exp(ex)f(x)dx (*̂ > 

Z 2b 9 Z-bZ-9 (A7) 

= 2 J b I ^ - W^iy^ ^°g|zTbzT6|( ^^'' 
Expanding in powers of 9 gives for the mean and var iance of x 

^ = ziU ̂ -N"l 
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The variable x has mean nv and variance no^. As we are mainly 
concerned with largg values of n, we may invoke the central limit theorem 
to say that x has a normal distribution, and we shall where necessary 
regard f(x) as a normal frequency function. 

Now let N be the number of flights to escape. We may apply Wald's 

identity Le.g. reference 4, Ch.2, equ.74j; 

(AIO) 
|f*(9)| - ^ = E(exp (-9Xĵ ) 

where f*(9) is the moment generating function of x, as above, and E stands 

for 'expected value o f . 

Thus E(exp(-9Xjj - N log f*(9))) = 1 (̂ ^̂ ^ 

Now, log f*(9), which is simply related to the cumulant generating 

function of x, is equal to (treating f(x) as normal) 

-yB 

so that 

(A12) 

(A13) E(exp(-8Xjj + Ny9 - ^^gZ)) = i 

Expanding the exponential and collecting powers of 9, (noting that 
since y is positive eventual escape is certain and 

E(x^)^d'^), (A14) 

we have; 

E(N) = d/y (A15) 

E ( N 2 ) = i E(Nx^) - ^ - ^ ^ (A16) 

Now, since escape is certain, and always occurs at x^ 2; '*' ** ̂ "'̂  ^ 
are independent, and 

E(NXjj) = E(x^)E(N) = d2/y, so that ^̂ ĵ ĵ 

E(N2) = 4 + ^ ("8) 
y y 

Now, consider a particle which escapes on its Nth flight. At each 
collision, its weight is multiplied by p and by a factor given by 
equation 3, which depends on the flight length and on the value of the 
biassing parameter 'a'. This factor, which is not independent of N, 
is not easy to calculate. We shall assume that the score arising from this 
particle has the functional form 

S^ = r'̂ "̂  . (A19) 

and we shall treat r as independent of N for the purpose of evaluating the 
mean and variance of the score. Since we know that the mean score should 
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be independent of b, and since r = p for zero b, we can find an appropriate 
value of r for each value of b. The calculation of the score for zero b 
is described later. 

In order to find the mean and variance of S.,, we need to know the 
N 

distribution of N. The mean and variance of N are given by equations 
A15 and A18, and we regard N as a continuous variable having a gamma 
distribution defined on 1 < N < <». This is somewhat arbitrary choice, 
and is made only for computational convenience and because the gamma 
distribution has the right type of domain. Thus the frequency function 
of N is 

(̂") = IrTEy (¥^ ' ' exp(-^), (A20) 

with mean 1 + 6t and variance tB^. 

In this case, using equations A15 and A18, 

V^ = d/y = tB + 1 (A21) 

a2 = da2/y3 = tB^ (A22) 

The mean score is thus 

S = f°° f(N)r'^"^dN (A23) 

= (1 - 6 log r)"', (A24) 

after a little algebra. Similarly, 

S^ = (1 - 2B log r)"*^ (A25) 

— It is desirable to minimise the relative variance of the score, 
(S2 - 's^)l'S^, and also the mean number of flights ŷ , by varying b. We 
therefore seek a minimum of 

.2t 

C = 
( (1-Blog r) _ ̂  

N < t 

I (l-2Blog r) 

(A26) 

There remains the problem of finding the score for b = 0. In this 
case y = 0 and the moments of N are not defined. In order to ensure 
consistency in the mathematics, we introduce a second shield boundary at 
X = -d, and argue on physical grounds that the score for the one-sided 
shield will, for sufficiently large d, be half that for the two-sided 
shield. 

In this case, we obtain 

V = 0 (A27) 

a2 = 2/(3Z2), (A28) 
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and a c a l c u l a t i o n analogous to t h a t given in equat ions AIO to A18 y i e l d s 
the r e s u l t s 

^N(2) = ''"^^ ' ' ' ' ' 

al^^^ - 2dV3a^ (A30) 

where the suffix 2 indicates the two-sided shield. In this case r = p^, 
so the score for the one-sided shield is approximately 

? = Hi - Blog Pg) " ("1) 

where B and t are given by 

1 + Bt = y,(2) ("2) 

B̂ t =a2^,^ (A33) 

This value of the score should apply for all b, so that from equation A24 
we may write 

^ t 

This value of r may then be used in equation A26 to estimate C. 

r = exp ̂ i (1 - exp(- ̂ ^^^ ))) (A34) 

The value of C (the parameter which is to be minimised) has been 
computed for various values of the other parameters. Figure 5 gives 
an example of the results obtained. These show that any value of b 
larger than about 0.2 leads to a substantial reduction in C, and that 
the position of the minimum is not closely dependent on p . Similar 
results apply for other values of Zd. 
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DISCUSSION 

Kalos: I have a number of technical questions and one comment. The com
ment is that I am interested and a little disappointed to discover that you do 
not actually reduce the variance per sample. In some naive schemes I had al
ways supposed that this was the case, and that, in fact, what you did was sim
ply to avoid doing unncessary work. But I am really surprised to discover 
that the pure exponential transformation does not work, and that it does not 
reduce the variance. I am really taken aback. 

Bending: Perhaps I should not say that it does not improve the variance. 
I think it would be more accurate to say that the bulk of the improvement is 
not attained in this way. My results show that there was an improvement in 
variance at first as b moved away from zero. 

Kalos: It is important to note that the increase in variance that comes 
from the factor 1/(1 - b) can be avoided. That is a kind of a spurious effect 
that really does not have to occur. I discovered this problem in a very old 
paper on Importance sampling in hydrogen. In particular, you might ask your
self what happens if b becomes one? Using your approach that would be a total 
disaster. But that need not be true. It is not in the least true that when b 
equals one the exponential transform necessarily breaks down. So I think you 
can improve the performance of the exponential transformation by paying atten
tion to the behavior in the limit as b goes to one. I don't suggest that us
ing b equal to one is a good thing to do; but it is not a disaster area. 

Bending: I am interested in this problem; in fact, because the equation 
gives the immediate impression that b = 1 is a diaster, we have simply elimi
nated that case. We have deliberately run cases close to one to see what hap
pened. These high b's appear not to be optimum, but they do not appear to in
dicate a total disaster. 

Kalos: Oh you cannot just apply the method as it stands with b = 1 — 

that would not work. 

Bending: Of course when b = 1 you run into trouble like dividing by zero, 

and things like that. 

Kalos: In curved geometries what do you do? Do you choose a path accord

ing to the b selected at the last flight? 

Bending: Yes. 

Kalos: As you move your preferred direction changes. Do you take that 

into account? 

Bending: Yes, we vary the preferred direction in that the preferred 

direction at one point in a given region may be different from the preferred 

direction at the next event point. 

Kalos: But you change preferred directions just as the events occur? 

Bending: Yes, we do it as the events occur. We don't anticipate that in 
the direction we are going the preferred direction is going to be changing. 
We only consider the preferred direction at the last event point. 
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Kalos: Thank you. 

Steinberg: 1 would like to comment just a little bit on some historical 
experience. About 15 years ago I was doing some one-dimensional gamma-ray 
calculations, and this is how 1 first got into Monte Carlo. At that time we 
started using the exponential transform and we quickly discovered that it 
would be quite valuable to make b position and energy-dependent. In fact, 
when we were doing one deep penetration problem we found that the closer you 
got to the escape surface the closer you wanted b to be to one. Soon after
wards we decided that the "bu" term, specifically, could be replaced by an 
arbitrary function. More or less by trial and error we tried to decide on 
some kind of reasonable optimum function of direction, energy, and position; 
and we found we got very successful results in the deep penetration problem. 

Bending: We haven't explored the use of formulae other than 1 - bu and 
it has been obvious to us throughout that this was a totally arbitrary choice. 
It was justified by the moderate gains which it produced. But we would com
pletely accept that there is undoubtedly a lot of room for improvement here. 

Steinberg: Actually once you put in a general form for the "bu", you can 
show that this is equivalent, mathematically, to some biasing function in which 
the exponential form happends to be the form you are using. But you can use a 
different biasing function which will imply a more general form of the expo
nent in the exponential transformation. 

Bending: We are principally interested in a method which can be applied 
with very little insight into the problem being solved, and without doing any
thing like an adjoint calculation. Now, if the more general exponential trans
formation has these properties, and can give better results without penalizing 
the user, without forcing the user to really understand the method, then this 
would be something in which we would be very interested. Sometimes separately, 
and sometimes along with the exponential transform, we use importance sampling 
based on splitting and Russian Roulette in the normal way. But we find that 
splitting and Russian Roulette can give completely wrong results, through mis
use, more easily than our method. So, to some extent, political questions are 
involved in the choice of a method. 

Steinberg: Yes, I think what you are saying is that the code designer, 
if he invests enough time and effort, can build in reasonably optimized impor
tance functions for a whole wide class of problems. But unfortunately, in 
really complex codes, the code designer does not have complete control over 
what the code will ultimately be used for, and has to allow the user to put in 
importance function for untested situations. 

Bending: Yes. 

Kalos: I want to point out that Steinberg's experience, although it is 
very valuable, was for a one-dimensional deep gamma-ray penetration problem 
and he spent a year experimentally optimizing the importance functions. 1 
would say that that was a discouraging report, rather than an encouraging 
report, from Dr. Bending's point of yiew. I would like to make one technical 
remark. In the criticality problem I believe that importance sampling is a 
valuable technique; but the importance function that one must use is not the 
probability of getting back to an important region in the current generation, 
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but the probability of getting back asymptotically, after a lot of generations. 
This should tend to influence your use of importance sampling to gather the 
nuetrons back from the moderator. 

Bending: We have found experimentally that one cannot try to push this 
kind of approach too hard in criticality calculations. 

Cashwell: Now, in slab geometry presumably your preferred direction does 
not change very much as you penetrate the slab. Do you have any experience in 
complicated geometry where the preferred directions change rather drastically 
as you go, in cases where you try to lead the particles down some tortuous 
path? 

Bending: We have no experience of this sort. In fact in all the cases 
we have done in any geometry the preferred direction has not changed very much 
within several mean-free paths; and, I think, if one were in a situation in 
which the preferred direction changed radiacally, changed by a right angle, 
within roughly one or two mean-free paths, then I think that one would find 
this approach much less effective. But I am guessing. We have had no experi
ence in that situation. 

Bemat: I have a question with respect to criticality problems. It may 
be that in the case of a water reflector this importance sampling is a very 
good method. But in the case of beryllium or graphite or D2O reflectors, I 
am not sure that this is a reasonable method. 

Kalos: Did you say D2O? Well, I have absolutely no experience with such 
a case, and I hesitate to speak to on this question. But I am sure that, in 
principle, savings can be obtained. 1 can only speculate that perhaps your 
negative experience is based on trying to do too much, which is easy to do. 
Also, I would strongly recommend that anybody who uses biasing, splitting, and 
Russian Roulette do it the way we do it at MAGI in the SAM codes, and this is 
described in an appendix to my paper called, "0|} the Integration of the Adjoint 
Gamma Ray Transport Equation." There is an algorithm there which, for the 
flight, is the minimum variance splitting and Russian Roulette scheme that one 
can devise. 

Gelbard: Do you have another kind of identification for that paper? Is 

there a report number? 

Kalos: Nuclear Science and Engineering, ^ , 284 (1968). There is a lit
tle appendix in that paper that happens to be rather clear, for a change, and 
which describes the minimum variance splitting and Russian Roulette technique. 

Gelbard: Let me get onto a somewhat different subject. I noticed in 
your last slide that the truth was pretty far outside the error bars, and I 
wonder how serious a problem this is. I refer again to the problem mentioned 
many times before, namely, that when you use a very severe kind of biasing it 
is very difficult to estimate the error bars. 1 remember a case where some
body I know was doing a shielding calculation, got very nice standard devia
tions, but later found out that he was a factor of 5 away from the truth. Now, 
you were specifically talking about the problem of constructing a foolproof 
system, and isn't this a difficulty in constructing a foolproof system? The 
user has, at this point, no warning of any sort of trouble. I want to ask, in 
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this connection, whether a test of normality has been tried, and whether it has 
been found to be useful in giving the user a warning as to the validity of the 
error estimates. 

Moore: It is our experience, in shielding calculations in general, that 
it is very easy to generate error bars which are not in any physical sense a 
realistic estimate of the error. We don't find that this is necessarily asso
ciated with a particular biasing scheme. It seems to be a property of deep 
penetration calculations in general. We have put some effort into this prob
lem, but have not succeeded in finding a method of interpreting results which 
will guarantee that the error bars are reasonable. In fact, we have done what 
you suggested. We have put in some forms of normality testing and what we find 
is that, in shielding in particular, there are quite often situations in which 
the normality test indicates that the results are not good, when in fact they 
are quite satisfactory. But, when the results are not satisfactory, then 
almost universally the normality test tells us that they are not satisfactory. 

Gelbard: What test do you use? 

Bending: It is a Shapiro-Wllkes test based on the order statistics. 

Coveyou: I am a little puzzled by all this because I have always been of 
the opinion that these distributions, except in very rare cases, are just not 
normal, and that the whole theory that is used to calculate confidence inter
vals and so on just simply does not apply here. 

Kalos: That is a different question. 

Coveyou: I know, but the point here is that there is a simple way to get 
error estimates which are rigorous. 

Kalos: But it is conservative. 

Coveyou: Yes, very conservative, just Chebycheff's inequality. If the 
error bars calculated from Chebycheff's inequality do not lie near a known 
truth, then you know that something is wrong. 

Gelbard: But 1 think you are liable to have a very bad psychological 
effect on the user if you quote such conservative error bars. 

user ^ZTV ^ Tt " ° ' T^/^^^ '"" ^^^^ ^^^ ^"^^' i« b^d if you warn the user his bad results are bad. 

point'^of ̂ fw 'f""'̂ " '*'" '' ""̂ ^ ̂ ^^" ̂  ''̂'̂  ̂ ""'='' ^̂ "-̂  '^^ P""^'^ relations 
point of view, if you quote errors which are so conservative that thev unneces
sarily discourage the user. ^ unneces 

These^arf not 957'^' f°H ' ^ '̂ ''̂ '̂" "^^' '^"^ "'"̂ "- ^""^'^ ^^^ "°t ^^^°^ bars, 
can sav 4at th '̂ °"̂ ^̂ "̂'=̂  intervals for normally distributed samples. You 
can say what the error bars mean in terms of probability. 

is characSistlc of h n^" '""""u'' ""' ^'"^ '° '^^ ^"^''^ ^^^^ '^^^ b-havior 
I think th ^ ̂ r shielding problems and I wanted to say that I agree. But 
I think that the reason this is characteristic of shielding problems is ̂ hat 



if you do no biasing, practically no particles get through. Then you are cer
tainly in trouble. And if you do biasing then the biasing gets particles 
through, but your sample distributions are non-normal. 

Kalos: I cannot agree with the thesis that pathological confidence in
tervals are characteristic of biasing schemes. No biasing is also a biasing 
scheme. When a biasing scheme gives trouble it means that you need better 
biasing. I think normality is almost a sufficient but not a necessary test. 
Anyway, I would like to suggest a more practical approach. That is, that with
in practical limits, you vary the b's and see what happens in a practical prob
lem. You instruct the user to run his problem twice with different b's and 
see what the differences are. This would be very illuminating. 

Bending: There is one thing we try to do to avoid trouble. We use 
Russian Roulette to terminate histories when we are not interested in them any 
longer. But we delay the application of Russian Roulette until the particle 
has had at least v^t flights, where y^ is the mean number of flights to escape; 
and preferably we allow it to have rather more than this many flights before 
we apply the Russian Roulette. We do this when the situation is such that one 
can calculate v^, and then add something as a safety margin. We find that 
under such circumstances we normally do not run into serious problems with 
error bars being unrealistic. But this tends to be, to some extent, a 
slightly handwaving exercise in that it is only easy to use such an approach 
in a one-group slab shield. On the other hand, in a problem configuration 
with any degree of complexity, it becomes difficult to insure that one actually 
has an appropriate value for v^y unless one puts in a lot of conservatism in 
which case the program runs more slowly. But we have found that if one's v^t's 
are sufficiently high, if you force the neutron to continue so that, virtually, 
its only way to terminate its history is to physically escape from the system, 
then in general, this avoids the problem of uninterpretable errors. 

Gelbard: Is it correct, as Coveyou suggested, that you almost never find 
that the normality test is satisfied? 

« 
Bending: This is to a great extent true, and this is why I said that very 

often the results which the normality test throws out are. in fact, physically 
acceptable. I have toyed with various ideas which should enable one to draw 
conclusions from a series of results which are manifestly not drawn from a nor
mal distribution, but 1 have not succeeded in finding a scheme which does bet
ter than simply to give you a warning and tell you that something is wrong. I 
would value someone else's experience in interpreting results which are obvi
ously drawn from a very strongly skewed distribution. 

Gelbard: In cases where you don't use biasing, but are examining an 
unlikely event, characteristically you tend to underestimate the probability 
of that event. Now, there was a suggestion here that by varying b you would 
see whether you are in trouble or not. I am wondering whether, with exponen
tial biasing, you have any such a characteristic behavior. In the cases which 
you described, when the truth was outside your error bar, you tended to be be
low the truth. If that is true characteristically, then varying b will still, 
certainly, give you some information. But you might vary b and find what looks 
like a satisfactory situation, when in fact, with all the b's you have tried, 
your answers are systematically low. So there is still some danger. There 
does not seem to be any really decent way around this problem. I mention this 
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again in connection with the desire to make Monte Carlo foolproof. It seems 
to me that this is still a nonfoolproof aspect of Bending's method, and of ,ust 
about any method designed to do this sort of difficult problem. 

Kalos- It is easy to construct hypothetical problems in which this scheme 
will make unlikely the most important events. Consider any situation with a 
Ttrong -d'mportLt minimum in the cross sections at an energy well below the 
energy you are starting at. By biasing forward you are not giving the neutron 
the time it needs to slow down into the minimum and then stream through the 
window. You need an energy biasing but, in fact I think that this exponential 
biasing scheme even goes slightly in the wrong direction in such a situation. 
It is not, necessarily, absolutely worse than no biasing at all but I think 
that it goes in the wrong direction. 

Gelbard: In some cases you may know that there is some special reason 
why you should not use a particular biasing scheme. On the other hand, you 
may not be aware that there is a very important cross-section window m your 
problem, in which case you might systematically get the wrong answer by using 
the biasing, and not realize that you are doing anything wrong. 

Bending: In the kind of situation that you are speaking of, where the 
systematic error is induced by a particular form of the cross sections, I sus
pect that there would be no statistical effect which could be picked up by any 
statistical test, whether a normality test or any other kind. This would be a 
particularly difficult problem to detect. 

Gelbard: Now I want to turn to a different subject. Yesterday I was 
arguing that Monte Carlo methods ought to be exact. But, if one is willing 
to accept approximations, then how useful are albedo methods to get rid of the 
problem of the reflector? If you have a regularly shaped outer boundary, and 
the core is very large, it would seem that you could just replace the reflec
tor by an albedo, and this has in fact been done. Has anybody any feeling 
about the utility of this method? In a thermal reactor the Monte Carlo treat
ment of the reflector does take an awfully long time. 

Whitesides: We have used this approach quite extensively in the KENO pro
gram, generally for rectangular reflectors. We assume that the particle comes 
back in at the point that it leaves the system, and to make this approximation 
reasonable the reflector boundary must be large. In the simplest form of the 
albedo method we do not account for corners, although we have actually treated 
corners, using two-dimensional DOT calculations to generate the albedo infor
mation. 

Gelbard: Normally, you would get the albedo information from ANISN? 

Whitesides: That is correct. We run a series of ANISN calculations. 
For every energy group we compute the albedo for various incoming angles. We 
assume that the incoming and outgoing flux can be considered azimuthally sym
metric, and find that the rectangular boundary of the core does not have to 
be very large to make this approximation almost exact. But I want to point 
out that this method is only valid in certain special cases. To use it to 
treat reflectors with complicated shapes is not very practical. 
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Gelbard: Well, how about moving the albedo surface out into the reflec
tor? Perhaps a mean free path or so out? 

Whitesides: That helps, but also limits the savings. 

Kalos: Do you think half a mean-free path might work? 

Whitesides: I guess we actually used a mean-free path or two and felt 
that we had to move the boundary into the reflector by at least that much. Do 
you think that is too much? 

Coveyou: Isn't that just a geometrical question? The point is that you 
ought to use as little of the reflector as you can to get a regular boundary 
around the pseudo-core. How far you move the boundary cannot have any physi
cal significance. 

Kalos: It can, because of the approximations you are making. You are 
returning each reflected neutron exactly at the point where it entered the 
albedo boundary, instead of smearing the reflected neutrons over a mean-free 
path or so. 

Whitesides: That is right. 

Gelbcxrd: Let us say that the geometry of a boundary is roughly cylindri
cal, but has comers. You can ask how far out in the reflector you have to get 
before the flux distribution in the reflector really has cylindrical symmetry. 
If you can go out a mean free path, and if the effect of comers has worn off 
in that the flux is azimuthally symmetric, then at that point you could safely 
put an albedo boundary. 

Whitesides: Actually what we prefer to do in the reflector is to use 
Russian Roulette and splitting, with importance functions generated by ANISN 
slab calculations. We feel that this approach wcrks much better than the 
albedo method if you have got to move the boundary into the reflector. 
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ABSTRACT 

A suite of Monte Carlo codes is being developed for use on 
a routine basis in commercial reactor shield design. The methods 
adopted for this purpose include the modular construction of codes, 
simplified geometries, automatic variance reduction techniques, 
continuous energy treatment of cross section data, and albedo 
methods for streaming. Descriptions are given of the implementation 
of these methods and of their use in practical calculations. 

1 DWRODUCTION 

The objectives of the work on Monte Carlo at Winfrith have heen to 
develop methods which can be used by engineers for commercial reaotor shield 
design. The central problem in practical shielding calculations is the 
determination of radiation attenuation in systems with complicated geometries. 
Whilst Monte Carlo is the obvious choice of method for treating problems 
v;ith strong geometric effects, it is not well suited to deep penetration 
calculations. Two general lines of approach have been adopted to overcome 
these difficulties: semi-analytic techniques exploiting the well-tried 
removal and albedo approximations are used for the treatment of streaming 
phenomena in ducts and voids; and adjoint diffusion theory solutions furnish 
approximate importance functions for acceleration in bulk penetration 
problems. 

This marriage of the conventional methods which have long been estab
lished for shield design with Monte Carlo in "hybrid" calculations has 
proved to be the deciding factor which has led to the extensive use of Monte 
Carlo as a shield design tool in the United Kingdom. Thus Dutton, for 
example, used line-of-sight formulae to calculate neutron sources from AGR 
fuel clusters for the Monte Carlo treatment of the PCRV penetration-head 
region [1]. Similarly, Avery and Pugh used two-dimensional Monte Carlo to 
investigate streaming phenomena in the refuelling machine of the Majnox 
station at Trawsfynydd [2]. Avery and Warman have employed an albedo-Monte 
Carlo method in calculating the streaming of neutrons and gamma-rays along 
air gaps and passageways between the vessel and primary shield of a PWR [3] • 
The use of diffusion theory in adjoint mode to provide approximate importance 
functions for accelerating Monte Carlo calculations has been demonstrated by 
Bendall and McCracken C if]. 
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This paper describes how the methods of coding, data handling and 
parlance reduction have evolved as a result of this emphasis on design 
applications. The calculational scheme is under continual development to 
meet the changing needs of reactor programmes; the current status of codes 
is reviewed, and some indication is given of future trends. 

2 Ga'ERAL DESCRIPTION OF THE METHODS 

The capabilities outlined above are being provided for shield designers 
in the form of codes of modular construction [5]. There are two levels of 
approximation in the basic suite of modules, the Monte Carlo options being 
supplemented by the fast and approximate methods based on linp-of-sight, 
kernel albedo, and diffusion theory in the various forms used for shielding 
applications (eg the COMPRASH removal-diffusion method [6] and the Adjusted 
Diffusion Coefficients (ADC) Method L'7] ). Apart from their role in the 
hybrid Monte Carlo calculations these approximate methods furnish a powerful 
range of tools in their own right for rapid survey calculations and for 
repetitive runs in shield optimisation studies. The codes and methods 
developed at Winfrith are complementary to the generalised geometry code MONK 
which is the subject of another paper at this Conference [8]. This code is 
used primarily for criticality applications, but it can be utilised for 
shielding studies where the geometric capabilities are essential for an 
adequate representation of the problem. 

There are a number of special features required for Monte Carlo methods 
used for shield design. The code system must be flexible so that it is easy 
to introduce new capabilities as different problems arise. Speed of execution 
and economical storage requirements are important, and these may even have to 
be pursued at the expense of some accuracy. It is also essential to reduce as 
far as possible the def̂ ree to which the efficiency and accuracy of the codes 
depend on the expertise of the users or on preliminary trial runs. Key 
features which have been developed specifically 1̂o meet these requirements 
include: 

(i) modular construction of codes; 

(ii) simplified geometries or specially written geometry modules; 

(iii) automatic variance reduction facilities; 

(iv) a continuous energy treatment of data so that the user is not 
left with the choice of basic material parameters which affect 
the accuracy of the calculation; 

(v) albedo methods for the solution of streaming problems. 

It will be convenient to discuss the shielding code scheme under these five 
headings. At present, it comprises a series of modules from which a variety 
of Monte Carlo codes can be assembled. These can be used on a stand-alone 
basis. Alternatively, they can be coupled to diffusion modules, run ill the 
adjoint mode, for the automatic generation of importance functions m bulk 
penetration calculations, or to kernel-albedo modules for semi-analytio 
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solutions of streaming problems, in a range of one-, two- or three-dimensional 

geometries. 

3 THE WRS MODULAR CODING SYSTEM 

3.1 Relation to other schemes 

While the modular approach to programming is now common practice the 
particular forms which it takes are very varied, reflecting the special 
requirements of their users. Basically, the term "modular" implies one of 
the follc'lng approaches: 

(i) the assembly of programmes from units or "modules" with data 
linkages achieved via the fast store; 

(ii) the performance of a calculation by means of several separate 
computer runs with automated data transfers via backing storage. 

The Winfrith Radiation Physics and Shielding Group (WRS) System [9] comes 
into the first category. Programmes assembled from WRS modules are Fortran 
programmes running under the normal operating system but using standardised 
coding techniques and standard routines for house-keeping. The aim is to 
improve the ease and flexibility with which codes can be constructed, 
especially for the complex series of steps frequently required in a shield 
design calculation. It is because these calculations include iterative 
processes, of which the Monte Carlo tracking cycle may be classed as one, 
that the WRS system concentrates on the constnaction of single codes rather 
than automated linkages between separate computer runs as in the second of 
the basic approaches mentioned above. However, for calculations which can 
be run efficiently as separate jobs this second approach can be made very 
powerful through the use of a highly organised data base with special data 
management routines as, for example, in the COSMOS system [10^ which has been 
developed at Winfrith. The two approaches are complementary since the basic 
unit in the COSMOS scheme is a code, and this code may be one assembled from 
WRS modules. Thus, if the shield designers using 'WRS codes require extensive 
data banking facilities or automated links with core calculations then these 
are available through COSMOS. 

3.2 Description of the WRS svstem 

A WRS module consists of one or more subroutines. A programme is 
assembled from one or more modules tc^ether with a linking module (a Fortran 
main programme possibly supplemented by subroutines) which controls the 
logical flow of the calculation. The ease and flexibility of code construction 
is achieved through two main features. The first is the convention that a 
module must be capable of accepting its initial data either from cards or 
from a general location in core store or on backing store. A similar rule 
applies to the output, with the line printer replacing the card reader. Tiiis 
provides considerable flexibility since the same module can be used, for 
example, either on a stand-alone basis (vdth just a very simple linking 
module) or as part of a programme in Vhich some or all of its initial data is 
calculated by other modules. The second feature is the method for the djmamio 
storage of data in core and on backing store. The data in core resides in a 
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single array in a common area which is partitioned into "data groups". The 
first partition is a directory containing information about all the data groups 
in core and also about those on backing storage. Subroutines are provided to 
perform such tasks as the allocation of space, the freeing of space no longer 
required, the communication of data between modules, and the transfer of data 
groups to and from core store. These routines are responsible for the upkeep 
of the directory, the details of which need not concern the programmer, who 
needs only to know how to call the routines. 

3.3 Use in Monte Carlo programming 

The WRS system is used for all coding in the two option scheme described 
in Section 2. In the Monte Carlo field it is proving to be of considerable 
value in the assembly of codes from modules tyoically having the functions 
of source sampling, tracking, collision mechanics, splittig, or scoring. 
Experience was gained earlier when the system was used for writing the 
prototype XY geometry code McBOX L11I which was developed primarily as a test-
bed for variance reduction methods in one and two dimensions (see Section 5). 
Modular programming necessarily involves some penalties but these can be 
minimised in a well designed scheme. Three basic issues which must be 
considered are speed of execution, storage requirements, and programming 
complexity. 

(i) The problem of execution speed is especially crdtioal in Monte 
Carlo codes, in which modules are entered many thousands of times 
and any fixed overheads are multiplied correspondingly. Care was 
taken in the writing of McBOX to avoid these overheads during the 
generation of particle histories so that the efficiency of the 
code is not significantly impaired by its modular nature. 

(ii) There are two factors which lead to an increase in the storage 
requirements of WRS programmes. The first is the presence of the 
system routines which occupy 25 K by^es, and the second is the 
presence of the full input and output options in every module. 
However, the latter are often written as separate subroutines so 
that space can be saved through the use of an overlay. In addition, 
the dynamic storage system ensures that very economical use can be 
made of the data storage area by keeping the storage compacted and 
by removing data when it is no longer required. 

(iii) It is a feature of all but the simplest modular systems that the 
initial task of programming becomes protracted and more complex. 
This is acknowledged to be true of the WRS system, though by no 
means to an unacceptable degree. 

Experience with the use of the system has confirmed the view that the extra 
initial coding effort is repaid ultimately during the assembly of large 
programmes. The ability to use modules on a stand-alone basis has been found 
useful during the testing stages, which are often especially lengthy and 
difficult in the case of Monte Carlo codes. The system also provides a very 
convenient way of linking Monte Carlo with the approximate methods for the 
types of hybrid calculation described in the Introduction. 
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4 GEOMETRY 

I:i planning the geometric capabilities of Monte Carlo codes for shield 

design there are two possible approaches: 

(i) to provide a very general three-dimensional capability; 

(ii) to rely mainly on the use of simple (though up to three-dimensional) 
geometries, and to write special geometry routines for specific 
applications when necessary. (The term "simple geometry" is used 
here to signify that the material boundaries are surfaces of the 
form o< = constant, where «< represents any of the co-ordinates.) 

The second of these methods has been adopted in the interests of computing 
speed and on the basis of past experience which has shown that many practical 
shielding configurations can be adequately represented by means of simple 
geometries and that the input data for such representations can be quickly 
set up. 

Thus the modules now written allow the tracking of particles in XYZ and 
RZ geometries (and therefore also in X, XY or cylindrical geometries), and 
these can accommodate a wide range of practical design problems. However, in 
the fast reactor and HTR fields there is a need to represent internal shields 
and core/breeder configurations in triangular-prismatic geometry with provision 
for the introduction of cylindrical regions representing fuel channels, control 
rods or, in the case of a sodium-cooled fast reactor, materials testing rigs 
containing cylindrical specimens. The McRIG code [121 has accordingly been 
written for this purpose, initially in two-dimensional geometry in which the 
horizontal reactor plan consists of a mesh of equilateral triangles on which 
are superimposed circles which may be nested. Within each triangle the 
technique of Woodcock tracking [13] is used, in which the collision points are 
determined using the mean free path corresponding to the highest cross section 
of any material in the triangle. At each point the ratio of the true cross 
section to this maximum cross section is calculated, and using this ratio as 
a probability a choice is made between a real reaction and a pseudo-reaction 
in which no change of energy or direction occurs. This method has the 
advantage that it is not necessary to calculate distances to region bound
aries within the triangle but only to test whether a co-ordinate is inside or 
outside a region. There is a danger that this saving of effort will be offset 
by the generation of large numbers of pseudo-collisions if there are materials 
present with widely different cross sections. However, this has not proved 
to be a problem in the application of MoRIG to gamma-ray heating in fast 
reactor cores. This is probably due in part to the particular geometric 
configurations, and also to the fact that the energies at which widely differ
ent cross sections occur are unimportant. 

While this approach provides geometry capabilities adequate for a large 
range of problems it is essential to have a more general code for those which 
are not amenable to a simplified representation and which are not sufficiently 
common to warrant specially written geometry modules. Reference has already 
been made to the general Monte Carlo coS-e MONK developed at Risley. An example 
of this type of problem occurred in the design of the Prototype Past Reactor 
when the general geometry code GEM [14] (the forerunner of MONK) was used in 



ca lcu la t ions f o r t he fue l s to rage r o t o r which involved both neutron m u l t i 
p l i c a t i o n and neutron p e n e t r a t i o n [ 1 5 ] . In the f i e l d of HTR s h i e l d design and 
in some c a l c u l a t i o n s of gamma-ray hea t ing in f a s t r e a c t o r s (such as a p a r t i a l l y 
i n se r t ed con t ro l rod) t h e r e i s an i nc r ea s ing demand f o r three-d imens ional 
ca l cu la t ions i n t r i a n g u l a r - p r i s m a t i c geometry t o be c a r r i e d out on a rou t ine 
b a s i s . I t i s accord ing ly proposed to incorpora te the Z co-ord ina te in to 
McRIG t o s impl i fy the t a s k of spec i fy ing the geometry in such problems which 
are a t p resen t t a c k l e d us ing MONK. 

5 VAEIAJfCE REDUCTION METHODS FOR PENETRATION CALCULATIONS 

5.1 The use of a calculated importance function 

For use in shield design applications acceleration techniques employing 
spli t t ing and Russian roulet te have the advantages of being relat ively simple 
to apply, of being sufficiently powerful for deep penetration problems, and of 
being useful in a wide range of applications. The method was implemented in 
a simole form in the RZ geometry programme McNID [16], in which spl i t t ing and 
roulette are applied at spat ial surfaces with a fixed spl i t t ing power of two. 
This approach has the disadvantages that no allowance is made for the energy 
dependence of the importance function and that considerable i n i t i a l experiment
ation is often required to find the best position for the spl i t t ing surfaces. 
A considerably improved method was used by Bendall in the prototype one-
dimensional code McBEND [4] in which sp l i t t ing and Russian roulette may occur 
at collision points and at points distributed uniformly along a part icle 
track. At each point the degree of sp l i t t ing is determined by reference to 
an importance function which may depend on position, energy, and direction. 
I t was demonstrated that the use of an approximate importance function obtained 
from an adjoint removal-diffusion calculation was very effective in acceler
ating the calculation of a specific pay-off. 

The extension of this method to higher dim^sions was not immediately 
possible owing to the lack of a sufficiently fast two-dimensional removal-
diffusion programme. This obstacle has now been removed by the development 
of a method of adjusted diffusion coefficients (ADC) [7] which eliminates 
the lengthy calculation of f i r s t collision sources, and also by the intro
duction of Improved methods for the solution of the diffusion equations [17]. 
I t is now proposed to investigate the further extension to three dimensions 
by using the diffusion programme SNAP [I8] in adjoint mode to calculate 
importance functions. 

5.2 A self-ad.iusting acceleration method 

A method has been established for circumventing the difficulty of 
calculating importance functions in the rather different, but not uncommon, 
class of problem in which uniform accuracy i s required over a wide range of 
energies and posi t ions . This is frequently the case, for example, m a 
gamma-ray heating calculation in a reactor core, and i t was the type of output 
needed from the one-dimensional reference calculations to which diffusion 
solutions were f i t t ed in the production of adjusted coefficients for the ADC 
method mentioned above. The technique, which has been tested in the prototype 
XY geometry code McBOX, is to arrange for the programme continually to adjust 
importance values on the basis of the histories so far generated, with the aim 
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of assisting the penetration of particles to all parts of phase space m 
roughly equal numbers. The source module of McBOX samples from a distribution 
S'(x,y,E), and if the true source function is S(x,y,E) it assigns a weight 
T = S(x,y,E)/S'(x,y,E) to the particle. For the purposes of the splitting and 
Russian'roulette process the phase space of points (x,y,E) is divided into a 
number of regions, each of which has an importance value denoted by I. It is 
convenient to regard W = 1/I as the "region weight". Particles have a track
ing weight U which is initially 1 and which is separate from the source weight 
T so that the total weight used in flux estimation is the product of T and U. 
Splitting or roulette may occur when a particle enters a new region by cross
ing a spatial boundary, by suffering an energy loss which transfers it to 
another region, or when it is first generated as a source particle. The 
expected number of particles produced is equal to U/V, the ratio of the old 
particle weight to the weight of the new region. The actual number of particles 
is selected by random sampling from the integers on either side of this ratio, 
and the weights of the particles (if any) are divided by this integer. This 
method ensures that the expected values of the particle weights are equal to 
the region weights themselves, but the weights within any region are of course 
distributed somewhat because only integral numbers of particles can be 
produced by splitting and roulette. 

The quantity which the programme calculates for use as a region weight 
is the "current" entering the region. This is a quantity which would be 
observed with a true source S'(x,y,E) and no splitting. When splitting is in 
operation the current from a given number of source particles is estimated 
by (£.U)/V where V is the region volume and the summation is taken over all 
particles entering the region. Thus, when the weight adjustments have 
settled down we have 

W = (Z.u)A 

and since the particle weights have a mean value W this implies that the 
number of particles entering any region is proportional to its volume. This 
is the quantitative interpretation which has been given to the requirement 
for particles to be distributed evenly throughout phase space. While this 
criterion probably gives an approximation to the optimum conditions for most 
problems of this type, it cannot of course always guarantee equal variances 
in all regions. For example, the errors still usually increase with distance 
from the source since the tracks tend to be more highly correlated at larger 
distances. It is also not always possible to apply the splitting method 
without modification. It has been found necessary, for example, to limit the 
number of particles produced by splitting to a maximum of 10 in order to 
avoid inefficiency in problems in which there is the possibility of transfers 
between regions of very widely differing weights. 

Subject to these qualifications the method has proved to be useful, 
especially in easing the task of the user in this type of problem. It is, 
of course, essential for efficiency that the weights should be substantially 
determined within some reasonable fraction of the total running time. This 
has been achieved in the applications so far tested in which, for example, the 
weights had settled down to reasonable -values within four minutes of a 
30 minute run for neutron penetration through 80 cm of iron. 
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6 THE HANDLING OF DATA FOR PENETRATION CALCULATIONS 

6.1 Neutron data 

The choice of a scheme for handling interaction data must be made in the 
face of conflicting demands. 

(i) The methods and data must be simple enough to ensure speed of 
execution and economy of storage. 

(ii) The treatment must be sufficiently detailed to give the required 
accuracy in a wide range of problems. 

The scheme which is used in the Monte Carlo shielding codes at Winfrith is the 
DICE system [19] which consists of two parts: 

(i) a programme MOULD which processes data from the UK Nuclear Data 
Library into a form suitable for use during Monte Carlo tracking 
and writes it onto a tape; 

(ii) a suite of routines which are loaded with the Monte Carlo programme 
and are called to calculate mean free paths and to determine the 
outcome of interactions. 

In this system energy is treated as a continuous variable but the cross sections 
(both total and partial) are assumed to be constant in each of a number of 
groups. These groups, which must be the same for all elements, can be chosen 
when the data tape is generated by the MOULD programme, which calculates the 
cross sections by averaging the UKNDL values over each group. Angular 
distributions are also converted by MOULD into a more convenient form which 
consists of equiprob^bTe ranges within each of which the probability is 
assumed to be constant. 32 equiprobable ranges have normally been used. 
Energy distributions for scattered neutrons are t»ken from the UKNDL without 
alteration except that continuous probability distributions are again expressed 
in terms of equiprobable ranges (64 in number). 

As a compromise between the conflicting requirements noted above, the 
cross sections have normally been represented in 300 DICE groups covering the 
range 0.025 eV to 15 MeV with equal lethargy intervals. This group size is 
sufficiently narrow not to require the group averaging process to take account 
of broad variations in the shape of the flux spectnmi. On the other hand, 
the groups are too wide to follow cross section changes in the vicinity of 
narrow resonances, and it is therefore necessary to consider the effect of 
using average values in such regions and to e: amine the averaging process used. 
The programme MOULD calculates the group averaged microscopic cross sections 
for each element using as its weighting factor the reciprocal of the total 
cross section for the element. Thus, for a pure element the weighting factor 
approximates to the asymptotic infinite medium flux shape (E"J Z^)" , since 
the energy E and the mean logarithmic energy decrement | are almost constant 
over such a narrow group. In this case the error will therefore depend on how 
far the spectrum differs from this asymptotic shape. In the case of a mixture 
of elements an error is introduced since the averaging is done before the 
macroscopic cross section is calculated and it does not therefore take account 
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of the environment of the element. 

6.2 Tests of neutron data 

These effects are currently being examined, principally in the context 
of benchmark experiments [20] performed in the ASPIS shielding facility at 
Winfrith in which the source is a conventional fission plate. The standard 
scheme with 300 DICE groups has been used in calculations for an experiment in 
which spectra were measured in a thick iron shield. As can be seen in 
Figure 1, the calculated fluxes below a few hundred KeV are higher than the 
spectrum obtained from proton-recoil counter measurements by up to a factor 
two. In order to find out whether these differences can be attributed to the 
cross section representation in this region of narrov; resonances and minima 
some tests have been made in which very much finer DICE groups were used. 
For these tests the MOULD programme was rerun to process the same basic data 
into about 1000 groups above 10 KeV. Figure 2 shows in a small but typical 
energy range how the standard group scheme fails to follow the cross section 
variation, and that while even the 1000 group scheme is not completely 
adequate it is sufficient to provide a test of the effect of a finer represent
ation. A one-dimensional case with a plane fission source was used and the 
flux at up to 70 cm from the source was calculated in fairly broad groups 
(similar to those used in the ASPIS calculation). The I'cBOX programme was run 
for long enough (l5 minutes CPU on an IBM 370/165) to give standard deviations 
of about 1C^ for the group fluxes. No statistically significant differences 
were found between the results obtained with the standard scheme and the fine 
group scheme. With the broad group scoring it was not possible to observe the 
differences of fine structure which were undoubtedly present, but the result 
shows that a finer cross section representation does not significantly alter 
the general flux level. It is concluded that the observed differences from 
the measured spectra are not due to the cross section representation, and 
that in problems similar to this the normal DICE group scheme is adequate for 
predicting at least those response functions which do not show a rapid varia
tion with energy. 

6.3 Data sensitivity calculations 

Tests of this kind involving the comparison of independent Monte Carlo 
runs are often difficult becaui^e the differences are masked by statistical 
errors. The problem arises also in calculating the sensitivity of results to 
small changes in the basic data itself. A way of overcoming this difficulty 
IS to use the same set of histories for both cases and to take account of data 
changes by means of weighting factors [21] . Consideration is being given to the 
use of this method for the data sensitivity calculations which are required in 
shield design problems with complicated geometries in order to identify the 
major sources of error and to make error estimates. For the method to be 
useful it is necessary to be able to look at the effects of a large number of 
different data changes, and this is best done by writing details of the basic 
set of histories onto a magnetic tape which can then be processed as many times 
as necessary. 

6.4 Gamma-ray data 

Data handling is very much simpler for gamma-ray tracking than it is in the 
case of neutrons. The GAMBLE system [22] was written as a gamma-ray counterpart 



of the DICE system, and was designed so as to be in te rchangeable with i t . I t 
has been found necessary to cons ide r only t h r e e r e a c t i o n s : Compton s c a t t e r i n g , 
pa i r p roduct ion ( i n which the photons are assumed t o be produced a t the 
co l l i s i on p o i n t ) , and p h o t o e l e c t r i c a b s o r p t i o n . The j u s t i f i c a t i o n f o r 
omitting Bremsstrahlung e f f e c t s i s based on the work of Dutton [23] who 
showed t h e i r c o n t r i b u t i o n t o be n e g l i g i b l e in r e a c t o r s h i e l d design ca l cu 
l a t i o n s , when the p r i n c i p a l sources a r e u sua l l y below 6 MeV. The GAMBLE 
system uses a ve r s ion of t he r o u t i n e HEITLER [24] t o der ive cross sec t ions 
for any element from da ta in t h e UK Data L i b r a r y . During programme execution 
the cross s e c t i o n s a r e s t o r e d p o i n t - w i s e , and l i n e a r i n t e r p o l a t i o n i s employed. 

7 THE ALBEDO METHOD FOR STREAiaNG CALClTiATIONS 

The e f f i c i e n c y of r e a c t o r sh ie ld ing i s always reduced to some extent by 
the presence of e s s e n t i a l passages and void-spaces conta ining gases or o ther 
low dens i ty m a t e r i a l s . The coolant passages through the s h i e l d of a ga s -
cooled r e a c t o r provide an obvious example, bu t the problem i s not confined to 
th i s system s ince access spaces and s t r u c t u r a l c learance gaps must a l so be 
present in t h e sh ie lds of water -cooled r e a c t o r s and of sodium-cooled f a s t 
r e a c t o r s . In the scheme desc r ibed in Sect ion 2 the codes provided for 
streaming c a l c u l a t i o n s in the survey option a r e based on the kernel -a lbedo 
method. This technique i s , however, r e s t r i c t e l to the simpler .(geometries and 
i t i s t h e r e f o r e necessary t o provide a Monte Carlo option for t he co r rec t 
treatment of more complicated sys tems. For' t h i s purpose, methods have been 
developed by M i l l e r [25] and have been evaluated by means of a code, EANCYN, 
for c y l i n d r i c a l ducts and a more ,»;eneral geometry code ^AMSORD. 

7.1 The form of t he albedo 

The genera l form of the albedo (representin^T the p r o b a b i l i t y of r e f l ec t i on 
of r a d i a t i o n from a su r face ) may be expressed as 

/ 5 ( ! r , E -* E, n -* Or) 
0 

where r , E and A are the position, energy and direction of the incident 
-0 0 - 0 

radiation and r, E and A are the corresponding quantities for the emergent 
radiation. For both neutron and gamma-ray data the following general simpli
fications have been made: 

(i) Reflected particles are assumed to emerge at the point of 
incidence, ie r = r . 

(ii) The angular distribution of the emergent radiation is assumed to 

be independent of both the energy and the direction of the incident 

radiation. 

(iii) The energy distribution of the emergent radiation is assumed to be 
independent of the direction of the incident radiation. 

The remaining functional dependences are then expressed in the following 
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p a r t i c u l a r forms: 

( i ) Energy i s r ep resen ted group-wise . 

( i i ) The angular terms depend on a po-;er of the c o s i n e . 

Thus, the albedo for a given vrall m a t e r i a l may be w r i t t e n as 

-n(g ) 1-m(g) 
^ ( g ^ - » g) A(n)yu^ B(n) / -

where g represents a group number and /^ is the cosine of the an,f;le to the 
surface normal. For neutrons the /S term has been obtained from diffusion 
calculations while the values of A and n or B and m have been derived by 
fitting the expressions to the results of Monte Carlo calculations. For 
gamma-rays the functions have been derived from published compilations of 
differential albedos. 

This degree of simplification has been used not only to ensure rapid 
sampling from the reflected distribution but, more importantly, to reduce the 
task of calculating albedo data for the wide range of wall materials encoun
tered in practical problems. In future developments it is anticipated that 
the azimuthal dependence can be introduced into the albedo used with the Monte 
Carlo method without an appreciable loss of speed or an unacceptable amount of 
work to calculate the additional data. However, it would not be possible for 
all the simplifications to be removed, nor does this appear to be necessary 
on the evidence of the successful applications of the simplified albedo. Two 
examples of such applications are illustrated in Figures 3 to 6. Figure 3 
shows the one-, two-, and three-legged 3 ft. square concrete-walled ducts 
studied extensively at 0RJ3. [26]. The source from the Tower Shielding Reactor 
is a collimated neutron beam incident at 45 on a side wall. In Figure 4 the 
results of RANSORD calculations are compared with measurements of the thermal 
flux due to incident thermal neutrons. Figure 5 illustrates a three-legged 
duct of rectangular cross section assembled into the thermal column of the 
GLEEP reactor at Harwell. A Monte Carlo calculation for this duct was 
performed with the cylindrical geometry RANCYN code by representing the duct 
cross section by a circular cross section of the same area. The predictions 
of the response of a BF chamber are compared with the measurements and with 
the predictions of the Kernel-albedo code MULTISORD in Figure 6. 

7.2 Variance reduction techniques 

In most streaming problems some form of acceleration is required if the 
Monte Carlo method is to be of practical use, and various techniques have been 
examined. 

(i) The first methods investigated involved biassed sampling from the 
angular distribution for reflected radiation. Three types of 
biassing were examined: 

(a) The azimuthal an-'le was sampled from a distribrtion with 
a linear bias which increased the probability cf 
reflection in the forward direction by a factor N rela-

c 



tive to the backward direction. 

(b) A polar angle biassing in the form of an inverse power of 
-Np 

the cosine of the polar angle (^ ) was used to 
increase the probability of sampling at glancing angles. 

(c) Correlated sampling of the azimuthal and polar angles 
was used, with stronger biassing being applied near the 
start of the leg than near its exit. 

It was found that the optimum choice of biassing functions 
increased the efficiency of a three-legged duct calculation by a 
factor 60. Polar angle biassing was most effective, and 
surprisingly correlation of the azimuthal and polar angle 
sampling did not improve efficiency. 

(ii) The method of splitting and Russian roulette applied at each 
point of reflection was examined. The importance function used 
was independent of energy and was an exponential function of 

the distance along each leg of the duct (e ). The function was 
adjusted in trial runs in order to give an approximately uniform 
flow of particles along the duct. In a three-legged problem with 
a mouth source the use of splitting improved the efficiency by a 
factor of 500, 

(iii) With the high intergroup transfer probabilities in the albedos 
it is usually a problem to obtain accurate results in the high 
energy groups. There is a straightforward way of avoiding this 
difficulty if the emergent angular distribution in the albedo is 
independent of energy since in this case the same set of particle 
tracks may be used for all groups and the group dependence from 
the other terms in the albedo can be taken into account by 
carrying a separate particle weight for each group. This "group 
correlation" approach has been extended to albedos in which the 
angular distribution does vary with energy, when these variations 
are allowed for by means of additional weighting factors. 

Table I summarises the relative efficiencies of RAl'SORD calculations for 
the three-legged ORfIL duct using the various angle biassing and splitting 
options. It can be seen that for this case it was splitting which was the 
most powerful technique, and this enabled the thermal neutron calculation 
described above to be completed in 3 minutes on an IBM 360/75 machine. The 
group correlation technique was used in the calculation for the GLEEP 
rectangular duct, in which the Monte Carlo results in Figure 6 were obtained 
in 1 minute. The increase in efficiency was estimated here as a factor 3. 
Thus, although the major improvement in efficiency achieved with this method 
occurs at high energies, the calculation of low energy fluxes is also 
accelerated significantly. 
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8 SUMMARY 

The special features required of Monte Carlo codes to be used by shield 
designers have been identified as a flexible mode of construction, efficient 
operation, and ease of application. In the scheme described in this paper 
the flexibility is provided by the WRS modular coding system, which 
facilitates the assembly of Monte Carlo codes and their linking with the 
approximate methods required for many practical applications, and allows 
alterations or additions to be made without the need for major reprogramming. 
The requirements for speed and for economy of storage have influenced not only 
the variance reduction methods but also the choice of simplified treatments 
of geometry, neutron cross section data, and albedo data. The need to 
facilitate the task of the programme users has led to the development of 
automatic variance reduction facilities. It has also set a limit on the 
degree to which cross-section data can be simplified, to ensure that the user 
is not left with a choice of parameters such as the number of groups or the 
cross section averaging procedures, which may be problem dependent. 

The aim of providing Monte Carlo methods which can be used efficiently 
by engineers for routine shield design calculations on commercial reactors 
presents considerable problems. It is believed, hovrever, that the techniques 
described in this paper represent significant progress towards this goal. 
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TABLE I 

Relative Efficiencies of the RANSORD Acceleration Techniques 
for a Three-Legged 3 ft x 3 ft Concrete Duct Geometry 
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Importance 
Splitting 

yes 

yes 

no 

no 

nc 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

no 

Reflected angle biass 

Polar angle 
N value 

0 

1.6 

1.0 

1.5 

0 

1.5 

0 

0 

1.6 

1.6 

1.7 

1.7 

0 

1.6 

1.5 

0 

Azimuthal angle 
N value 
0 

1 

100 

1 

5 
1000 

5 

10 

100 

1000 

100 

10 

100 

2 

1 

1 

1 

ing 

Correlation 

no 

yes 

no 

no 

no 

yes 

no 

no 

no 

no 

yes 

yes 

no 

, no 

no 

no 

Relative 
Efficiency 

500 

160 

65 

65 

25 

18 

17 

17 

11 

6 

4 

4 

4 

3 

2 

1 
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Fig. 1. Comparison of measured and predicted neutron spectra in a mild steel shield in ASPIS. 
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DISCUSSION 

Gelbard: There was a question raised initially in this talk as to whether 
general geometry routines were substantially more expensive to use than speci
alized geometry routines. Does anyone have any information on this subject? 

Whitesides: Since one of the most extensively used general geometry rou
tines (aside from routines of combinatorial type) was written at Oak Ridge, 
our experience might be of some interest. We find that general geometry rou
tines generally run four to five times longer than specialized routines. That 
is quite a penalty to pay to use a generalized geometry routine. I believe 
that Mal Kalos is better qualified to comment on the combinatorial routines, 
but we find them quite a bit faster than the generalized routines for the rela
tively simple problems in which we have used them. 

Gelbcxrd: Did you say that the combinatorial routines were quite a bit 
faster than the general geometry routines that you have been using? 

Whitesides: For the problems that we have run, that seems to be the case. 

Gelbcxrd: I would think of them as general routines, not specialized rou
tines . 

Kalos: The combinatorial geometry code has the property (as such codes 
should) that when it is required to treat a slab, it does so very well. It 
does not investigate to see whether a slab is, perhaps, a general n-th degree 
polynomial, or whatever. It treats slabs in a rather good way, though not per
haps as well as possible for infinite slabs in all cases. It is possible to 
have your cake and eat it too. It is possible to make reasonable compromises 
and I am glad to hear we have done a reasonable job in combinatorial geometry. 

Whitesides: I was speaking of combinatorial geometry, as opposed to the 
GEDM subroutines of the 05R which most people ar^ using. GEOM solves a general 
equation for every surface, and you may not have to do this, as Mal Kalos says, 
in combinatorial geometry. You solve only what you need to solve. 

Gelbcxrd: At Argonne we don't have any information on this subject at this 
point. But we ought to very soon because our original VIM code has a very 
specialized geometry for ZPPR lattices and we are now supplementing this with 
the combinatorial geometry capability. We will be interested to see what sort 
of comparisons we get. 

Borgwaldt: We have a general geometry routine, I think like that in 05R. 
But we identify simple surfaces, like planes orthogonal to the x-y and z axes, 
and cylinders parallel to the z axis. Since they are identified separately, 
we get fast execution speeds for such surfaces, and normally only a very small 
number of general planes or general second-order surfaces are really used. 

Coveyou: I was wondering about that factor of 4. That is the execution 
time for the geometry itself? What is a typical figure for the increase in 
running time for the problem? 

Whitesides: I am not sure I know ... 
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Kalos: In a lot of problems, in our experience, tracking through the 
geometry takes a very large fraction of the running time — at least half, per
haps more. 

Whitesides: Yes, that is right. 

Gelbard: What is it in RECAP? Is it about 40%? I think that you men
tioned that earlier. 

Gast: Yes, that is correct. 

Gelbard: So, one-half is not unusual for a wide range of codes. 

Kalos: I would like to add one comment about the use of complex geometry 
routines. In particular, in combinatorial geometry, the running time, the 
speed with which you treat a complex geometry, can well depend on how you set 
the problem up. For example, you may have a particularly complex domain which 
is not encountered very often and which may require a great deal of computa
tion. If you use the simple device of putting it in a box, then you never 
have to deal with the surfaces in this domain unless you first encounter the 
box. The geometry computations will, then, speed up considerably. I don't 
know how to give general prescriptions for the average user, but a word to the 
wise will go a long way. 

Gelbcxrd: The other suggestion that has been mentioned is that simple 
surfaces be identified specifically in general geometry. 

Coveyou: When I designed this sort of routine originally it was based on 
a block and zone concept, so that you in fact never did use the more complex 
parts of the routine unless they were needed. Has that feature been dropped? 

Whitesides: No it has not been dropped, obviously. But the problem is, 
as Kalos correctly pointed out, that the efficiency of the routine in a speci
fic case depends on the care and time you invest in writing out the geometry 
description. In general, most people find that it is easier to let the machine 
solve the geometry problem than to try to treat the geometry carefully them
selves . 

Gelbard: I would like to rush the discussion today, because I want to 
stick strictly to schedule and would like to cover some other questions. The 
biasing that you discussed initially was one where the machine adjusted the 
biasing so that you got equal density particles in equal volume of phase 
space? 

Grimstone: Yes. 

Gelbard: Have you had any opportunity to notice what effect this has on 
the error estimates? Have you had any trouble with error estimates with this 
sort of biasing. 

Grimstone: No, we have not really looked at this in any great detail. 

Kalos: I want to ask first of all a technical question about this adap
tive procedure. When you use this method, do you start with some sort of guess 



as to what would be a good set of weights, or do you start with flat weights 
and go on from there? 

GHmstcxne: We can do both; but I think in most applications we have, in 
fact, started with flat weights. 

Kalos: So that means that your information grows, diffuses out slowly 
from the source, and it also means that you have to execute some sort of 
cycle, stopping, taking a tally of what has happened, and improving and going 
on. About how many such bootstraps seem to be necessary in a penetration 
problem where you have an attenuation of, say, 10^? 

Grimstone: Generally we make weight readjustments after every particle 
history, and do this throughout the entire calculation. 

Kalos: Then the procedure is biased, your answers are biased. 

Gelbard: You recall that he said that the arrangement settled after 5 
minutes of computation, that although one continues to adjust the weights in 
principle, in practice it is claimed that the adjustment process settles after 
5 minutes. 

Kalos: So that, in practice, he is claiming that, very likely, the bias 
is small. I don't deny that. 

Gelbard: This does depend on the settling time. 

Grimstone: Presumably the bias would be smaller if we were to discard 
that first 5 minutes of history, which we don't, in fact, do at the moment. 

Kalos: If you did that, then it would be unbiased. 

Grimstone: Or almost unbiased ... . 

Kalos: No it would be unbiased, completely unbiased if you discarded the 
settling period and did not readjust weights afterwards. 

Grimstone: If we continued to refine the weights somewhat then it would 
be somewhat biased, but probably not to a serious extent. 

Kalos: I regard the fact that you are able to bootstrap from zero infor
mation to a reasonably satisfactory scheme as a significant triumph. In the 
very early days we tried manually to do things like this and our experience 
seemed discouraging. I am very encouraged and hope that we can do some experi
ments along similar lines. We have had some ideas about bootstrapping which 
are not quite the same as yours, but they rely on one's ability to do this 
kind of thing, and I think that your success means that we will have success. 

Coveyou: Have you performed the experiment of doing this kind of calcu
lation twice, and comparing the weights you get to see if they vary very much 
from one run to another. 

Grimstone: Yes, I have tried to see how rapidly the weights appear to 
be converging. The weights that we use are, in fact, very closely related to. 
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and very similar in properties to the flux estimates themselves, and there
fore behave in roughly the same way. 

Coveyou: I wonder whether such a procedure has, shall we say, metastable 
states. Would you get a set of weights on one run, and yet another set of 
weights and another set of answers if you were to rerun the whole problem 
again, with a different set of starting weights and random numbers? I am won
dering if it is sufficient to rely on the fact that the weights seem to have 
settled down. 

Grimstone: Well when I say they settle down what I mean by that is that 
they might only have reached, say, within a factor of 2 of their final values. 
I am not putting any very stringent convergence criteria on the weights. 

Gelbcxrd: I want to direct a brief question to Whitesides. In Grimstone's 
study of the effect of cross sections, it was found that the cross sections 
for iron in a big hunk of iron did not have to be represented very accurately. 
I recall Monte Carlo studies of this sort at Oak Ridge, and I seem to remember 
that they came to other conclusions. Is that not true? 

Whitesides: That is correct. It just depends upon what sort of problem 
you are looking at. If you are looking at a deep penetration problem through 
iron, and you have many neutrons in the vicinity of the windows, they are going 
to stream through. One thing that I have personally been concerned about for 
some time (and this applies to criticality problems where you have heavy metal 
reflectors) is that it is very, very difficult, I believe, to define a multi-
group set that is going to work. You are simply going to run into streaming 
through windows when you least expect it, and when this streaming might cause 
you the most difficulty. 

Gelbard: The problem that was described here, was it not also a problem 
of penetration through a large chunk of iron? 

Grimstcme: That is right, yes. 

Gelbcxrd: So it is not really clear why the conclusions are so different. 
The Oak Ridge conclusion has been that you need an accurate cross section 
representation. 

Whitesides: Obviously you can get a set that would give you the right 
answer. 

Gelbard: But the windows all disappeared in the smooth set that Grim
stone used. 

Whitesides: That is so. 

Gelbard: If you can close these windows with impunity, then the cross-
section problem becomes very much easier. The Sj, method then becomes a much 
more important competitor. We don't have time to discuss this, but I think 
it is really important to people in our business to think of the role of 
other computational methods. If windows don't matter too much, Sjj becomes a 
tool which is much more valuable. 
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ABSTRACT 

In the Monte Carlo simulation of pulse source experiments, the 
neutron energy spectrum, spatial distribution and total density may 
be required for a long time after the pulse. If the assemblies are 
very small, as often occurs in the cases of interest, sophisticated 
Monte Carlo techniques must be applied which force neutrons to 
remain in the system during the time interval investigated. In the 
MCT code a splitting technique has been applied to neutrons exceed
ing assigned target times, and we have found that this technique 
compares very favorably with more usual ones, such as the expected 
leakage probability, giving large gains in computational time and 
variance. As an example, satisfactory asymptotic thermal spectra 
with a neutron attenuation of 10" were quickly obtained. 

INTRODUCTION 

Time-dependent neutron transport calculations by the Monte Carlo method 
are of considerable interest in studying the approach to equilibrium of a neu
tron pulse in a moderating assembly. In these problems the neutron energy 
spectrum, total neutron density, and spatial neutron distribution are to be 
calculated at different time intervals after the neutron pulse. Results of 
special interest are those for very small samples, due to the fact that beyond 
a critical buckling no discrete decay constant exists. To investigate the 
process of thermalization in these small samples the Monte Carlo code tech
nique, knofcm as "expected leakage probability", is usually applied, forcing 
the neutron emerging from a collision to remain in the assembly. In our Monte 
Carlo code a splitting technique has been adopted which, in the cases examined 
so far, compares very favorably with respect to the expected leakage proba
bility. By this technique a neutron is split when assigned target times are 
exceeded, so that it is possible to follow particles for a long time after the 
pulse without large fluctuations of the weights scored per history provided 
the number of particles born from splitting at each target time is properly 
chosen, for example on the basis of a previous analog Monte Carlo calculation. 
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THE MCT CODE 

The purpose of the MCT code is the simulation of the time-dependent neu
tron transport of pulsed-source experiments in finite or infinite assemblies. 

The geometries that the code can handle were chosen in order to ensure 
both the possibility of comparison with typical experimental assemblies and 
the speed of calculation: at present, single spheres, cylinders, and paral
lelepipeds containing a homogeneous mixture can be treated, together with the 
infinite medium. It is also possible to treat in a single run several assem
blies of the same type and different sizes, each internal to the other, a 
neutron being considered internal to all assemblies from which it has not yet 
escaped. 

The code assumes that an assigned neutron point source pulses at the time 
t = 0, emitting a monoenergetie burst of neutrons of energy E >̂  Ê jj, where Ê h 
is the thermal energy upper bound (the source point location is not important 
if only the equilibrium distribution is to be investigated). 

For the calculations source neutrons are followed, all information 
required being collected at fixed target times. A history is stopped when 
either the last target time is reached, or the neutron escapes from the sys
tem, or the statistical weight falls under a given cut-off value. 

Two processes, the slowing-down and the thermalization and diffusion, are 
considered. During the slowing-down process, i.e. for neutron energy greater 
than Ef-h) nuclei are assumed to be at rest in the laboratory system, and only 
elastic scattering with constant cross section, isotropic in the center-of-
mass system, is considered. During the thermalization and diffusion process, 
the thermal motion of the nuclei is taken into account. For the thermal col
lision simulation the code utilizes a very refined point description of the 
differential scattering cross sections a(E •* E') and a(E -t E', cos 6), where r 
is the scattering angle in the laboratory systey. From the scattering matrix 
[oij]. with Oij = a(Ei ->• EJ ) , a table is set up of N equiprobable energy inter
vals with bounds (Eĵ , Eĵ +ĵ ) for each E^ defined by 

-\+l 

o(Ei) 
a(E^ ^ E) dE = 1/N , k = 0, 1, 

where (Eo,Efi) is the total post-collision energy range and o(Ei) the total 
cross section for the energy E^. For the incoming energy E, Eĵ  < E <̂  ^i+1', 
two random accesses to the tables and successive linear interpolations provide 
the post-collision energy E'. 

Similar tables are set up for the angular distributions of the energy 
transitions (E^ ->• Ej). Here in addition, thanks to the "detailed balance" 
relation 

E e"̂''''' o(E * E', cos 6) = E' e"^ ^"^ o(E' ->• E, cos 9) , 
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the equality 

o(Eĵ  ->• EJ , cos e) a(E:j •* Ej_, cos 9) 

o(Ei + Ej) a(Ej * El) 

shows that it is sufficient to set up tables only for the transitions 
(Ei •* Ej) with E^ >̂  Ej . 

Absorption in the thermal zone is taken into account by a 1/v-type cross 
section. 

The code is completely dimension-flexible. All variable-length quanti
ties are stored in a single one-dimensional array whose length can be changed 
by simply substituting a "DIMENSION" declaration in a dummy subroutine. 

Besides the analog simulation, three techniques can be used in the code 
to treat small geometries and time intervals sufficiently large: 

(a) The usual "expected leakage probability" method (see for instance 
Ref. 1), which forces the neutron to stay within the assembly and compensates 
the biassing of the game by an appropriate weight. When using this technique, 
only one assembly may be treated in a run. 

(b) The "expected value" calculation of the contributions to scores at 
the target times of interest: if a neutron emerges from a collision with 
parameters (x, v, S, t, w) (x position, v speed, Jt direction, t time, w sta
tistical weight), the probability p for the particle to exceed the 1-t?! target 
time t±, tl > t, without undergoing a collision is given by e~̂ '̂ (t̂ "ti), where 
I is the total macroscopic cross section, if the point 5' = i + v^(t± - t) is 
still inside the assembly. In this case scores are carried out for a particle 
with parameters (5', v, H, t , wp). The original neutron then suffers a new 
collision or escapes without further contributing to the scores. 

(c) The "splitting technique": to each of some assigned time steps t^, 
1 = 1 , . . ., m (which may coincide with some target times), a splitting fac
tor ni is associated. When a neutron enters and emerges from a collision, 
with parameters (x, v, S, t, w) and (t, v', ti', t, w'), respectively, a check 
is made to see whether in the last free-flight it has exceeded any of the t±. 
If so, the particle is split into n^ daughter particles, t^ being the largest 
time step exceeded. The parameters of the i-th particle, j = 1, . . . n^, are 
(x, v', nr, t, wVn^), where Sj is such that i!j' • S = 3' • S, i.e., a new azi
muth is chosen for each particle in order to improve exploration of the geome
try. Parameters about nĵ  - I particles are stored in a bank and the remaining 
one goes on with the flight, producing possibly new daughter particles until 
it is removed from the assembly; then the last particle stored is picked out 
from the bank and followed as a new one. 

RESULTS AND CONCLUSIONS 

To test the code, many calculations were performed for several moderators 
and for assemblies of different sizes. Results are quoted here for a 9 I2-cm 
radius sphere of heavy water at 300''K. The differential cross sections were 
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calculated with the Haywood model [2], and used to set up tables of equiproba
ble intervals for 100 energy and 10 cosine points for the energy and angle, 
respectively. Source neutron energy and thermal threshold were fixed to 10 eV 
and 1 eV; the particles started at the center of the sphere. 

The neutron densities at various target times, calculated by applying the 
splitting technique, are quoted in Fig. 1. The decay constant turned out to 
be 1.51 X 10** sec"^. The asymptotic average speed was found to be 2.13 » 10^ 
cm/sec. The neutron attenuation per source particle in the time interval 
examined is of the order of 10"^, and the computing time needed to run the 
30,000 histories was about 10' for an IBM-360/75 computer. 

In Figs. 2 and 3, asymptotic spectra are shown at the time t = 500 ys, 
calculated by the expected leakage probability and the splitting technique, 
respectively. Besides the obvious gain in shape due to richer statistics, one 
must keep in mind that the latter was obtained with a computational time of 
about one-third that of the former. 

Extensions of the code are planned to include the treatment of several, 
even multiplying materials. 
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DISCUSSION 

Ccxveyou: Do you choose an individual target nucleus for the neutron to 
collide with, or does it just essentially collide with an average nucleus? 

Simonini: With an average nucleus. In the thermal region, not in the 
fast region. In fact the neutron collides with an average molecule. 

Coveyou: In the experiment you discussed, what were the experimental 
errors? And how large was the variance in your computed result? 

Simonini: The experimental error was quite small; I don't have the errors 
in the Monte Carlo calculation so I cannot say what they were. 

Coveyou: So you don't really know there was a discrepancy at all. 

Simonini: Strictly speaking, that is right; but we have made many calcu
lations with different starting random numbers and gotten the same discrepancy 
repeatedly. 

Cashwell: If I understand correctly, you do not force a particle to stay 
in your small system at all. 

Simcmini: That depends on the technique that I use. 

Coveyou: You use a splitting technique 

Simonini: The splitting and escape probability techniques can be combined, 
but results obtained with the two methods were shown separately in my paper. 

Coveyou: I wonder where the time savings come from in your code? Because 
when you split, obviously, you have got to keep a certain number of particles 
around. You have to calculate distances to boundaries, don't you? 

Simonini: Not for this particular technique, only for the expected 

leakage probability method. 

Cashwell: Obviously you have picked up a gain, but I don't exactly see 

why. 

Simonini: In the case of the escape probability technique some time is 
wasted in computation of exponentials. I don't know how much of the difference 
that accounts for, but the time was much less than the time for the escape 
probability technique. 

Bor^aldt: I might say that I am a little bit astonished that so many 
people rely upon splitting and Russian Roulette as techniques for reducing 
variance. Our experience with the combination of these two techniques has not 
been too good, because with splitting you have a population explosion and with 
Russian Roulette you normally get higher variance. We use Russian R°"l"t^ 
only to get rid of neutrons so that our running time will not be too high. 
But I should point out that, for time-dependent problems, there are two other 
techniques that can be used in place of the extrapolated leakage probability 
method. One technique involves introducing an artificial anisotropy, an 
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angular biasing that keeps the neutrons inside the sphere or the pulsed body. 
Another technique is one which we have called the modified extrapolated leak
age probability method. This second technique has been described in a paper 
given by me at the Idaho Falls conference in 1971, and we have found that this 
technique is really very efficient. If one looks at it very closely one sees 
that it is, from a mathematical point of view, a combined track length trunca
tion and angular biasing technique that has the effect that, on the one hand, 
all the particles are kept strictly within the body in which you want to have 
them for your time-dependent problem. On the other hand, if a particle makes 
a collision near a boundary it is preferentially scattered backwards into the 
body, and this is done with a minimum of computation. It is only that instead 
of computing one exponential you have to compute two exponential terms. This 
method has been introduced into our code and I think that it has been success
ful. 

Coveyou: I thought it was well known that Russian Roulette always in
creases the variance per history, and I think it is true, also that splitting 
always decreases the variance. I know that this fact seems to be ignored most 
of the time. People tend to say that they are reducing the variance either by 
splitting or Russian Roulette. That is not what happens. The Russian Roulette 
may result in a gain in efficiency, but only by decreasing the average running 
time per history. The variance per history just has to be increased by Russian 
Roulette and I think, although I am not quite so certain of this, that split
ting always decreases the variance per history. But the point is that it pro
duces more particles so that it takes you longer to finish your calculations. 

Ccxshwell: You want to decrease the number of particles when you use 
Russian Roulette. 

Coveyou: You want to do this to decrease the running time. 

Ccxshwell: You could use the method that Bending talks about. When you 
get close to the boundary your preferential direction is back towards the cen
ter of a sphere, if you have a sphere. Generally it would be back towards the 
center of the body. 

Borgwaldt (in summary): Perhaps I could briefly sketch how our method 
works. I might add that our system really is simpler. Consider, first, the 
ordinary extrapolated leakage probability (ELP) method. After each collision 
one chooses the next flight path and forces a neutron collision on that part 
of the path which lies within the body. What we do is slightly different. 
For simplicity let us assume the scattering is isotropic in the lab system. 
If this is not true our method becomes slightly more complicated, but it is 
still pretty simple. If the scattering is isotropic then, after each colli
sion we select two possible flight paths in opposite directions. Both these 
directions are equally probable. Now we compute the conditional probability 
that a collision will occur on either of the two flight paths, assuming it 
occurs on one of them. We select one of the two paths from this conditional 
probability and force a collision, along that path, and within the body. If 
the last collision has occurred near the boundary, then the next collision 
will tend to be pushed back towards the Interior of the body. And so we get 
a preferential scattering in the backward direction. This doesn't take that 
much computation, but it gives you twice as much information on the leakage 
probability information which you can use to estimate leakage. Further, it 



works. It does not give you as large a scatter of neutron weights as you get 
in the normal ELP method, which sometimes forces a high density of collisions 
near a boundary. This artificially high density is associated with very low 
neutron weights. With our method the weights are more likely to remain normal. 

Hoogenboom: 1 don't understand why it does not take much computer time. 
It seems that you have to examine the whole system, from the collision point 
first in one direction and then the other. 

Borgwaldt: Well I must add that in practice there are, of course, some 
refinements. This technique is only used in designated outer regions. One 
can recognize quite easily that all such techniques make no sense when you are 
far from a boundary. In general, one might say that the amount of computation 
which you need is twice the amount needed for Rief's extrapolated leakage 
probability technique because you have to compute two exponentials. On the 
other hand, if you look at the paper I mentioned, published in the Proceedings 
of Ccmferenae on New Developments in Reactor Mathematics and Applications, 
CONF-710302 (1971), Vol. 2, p. 857, you can see that the behavior of the error 
in the ELP technique becomes catastrophic when you go to extremes, when you 
want to follow the decay of neutrons over several decades. Whereas, in our 
case, you lose computation time when you are not looking for large decay, but 
you gain considerably when you follow neutrons over several decades of inten
sity. 

Gelbard: You cut off the thermal group at 1 eV? 

Simonini: Yes. 

Gelbard: So you also have the problem that I referred to, in another 
connection, earlier. There must be some binding effects epithermally, above 
1 eV. Do you treat those? 

Simonini: Above the thermal band we assume a constant cross section and 
isotropic scattering. The code is designed to'investigate only the thermal 
properties of materials like heavy water and light water, nothing else. 

Gelbard: When you actually compute a period, do you fit an exponential 

to the time behavior? 

Simonini: Yes, of course. 

Gelbard: There is another sort of procedure that has been used a great 
deal for computing, not periods, but decay lengths. I think it would be appli
cable here also. Rather than fitting the decay curve you can """P"'^ ^"/^^°JP^ 
tion rate over the energy spectrum which, by neutron balance, gi'^s you a period. 
I think the problem of fitting an exponential to a stochastic -"^-f ̂^^^^ .P^°^" 
biy a pain in the neck, whereas the other method directly 8^^^^.^°" ^.f'f^^„, 
by balance and is probably somewhat easier. Before we leave this topic I want 
to ask you whether the discrepancies you mentioned have been observed by other 
people. 

Simonini: I don't know. 
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GENERAL DISCUSSION 

Gelbard: Coming back to the shielding calculation for a moment, I would 
like to ask Elliot Whitesides what he thinks is the proper role of Monte Carlo 
methods. At Oak Ridge you also use Sj, in shielded calculations. What do you 
use Sn for, and what do you Monte Carlo for? 

Whitesides: I guess I have been fortunate to see what I think is a switch 
in the roles of the two methods. I guess that I believe now that Monte Carlo 
is better applied to criticality problems, and that the discrete ordinates 
method is better applied to shielding problems. At Oak Ridge we use our dis
crete ordinates code for just about all of our shielding problems, with the 
single exception of problems that are so geometrically complex that we cannot 
describe them properly in an S^ calculation. For such cases we have a code 
called Domino which we use in coupled calculations. We use techniques that 
were developed by Tom Hoffman in his dissertation, 1 guess following along the 
lines suggested by Lichtenstein in his dissertation. In our coupled Monte 
Carlo and discrete ordinates calculations we couple the forward and adjoint 
calculations, and we think it is proper to use Monte Carlo in shielding design 
problems solely in situations that cannot be described geometrically with the 
discrete ordinates methods. 

Gelbcxrd: You use Monte Carlo for streaming in ducts, and for treating 
little complicated details of the shield? Is that what you are referring to? 

Whitesides: That is right. In fact for the FFTF or the fast breeder 
reactor program we will do part of the problem with DOT, couple into MORSE, 
and then go back to DOT so that we single out isolated regions for the Monte 
Carlo treatment. 

Gelbard: Generally, then, you find that complicated cross-section effects 

are not very serious as far as you are concerned. 

Whitesides: Right. We have a fairly extensive sensitivity program under 
way in which we look at the effects of the cross-section representation in 
multigroup forms, and we rely on this sort of information to help us come up 
with multigroup cross-section sets that we will find to be adequate for our 
problems. 

Gelbard: I recall that, at Bettis also, all the shielding work was done 
with Sn. There was no use of Monte Carlo at all. So we are gradually putting 
ourselves out of the shielding business. What, then, should we be doing. 
Should we, for example, be concentrating on the analysis of criticals? Some 
difficulties involved in the Monte Carlo analysis of criticals have already 
been pointed out. 

Borgwaldt: Perhaps I could comment on this question. We developed our 
code, originally, with the idea that most people would use option 1, the source 
iteration option. We still think this option would be particularly useful for 
computing the flux and power density near the core-blanket interface, where the 
treatment of resonance cross section becomes really rather important and dif
ficult. I must admit that we have not had much of a response. The other op
tion, the census time option, is used to a large extent by experimental physi
cists who do the analysis of time-dependent leakage spectra in order to extract 
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information on Inelastic scattering cross sections. This is the same type of 
experiment that has also been performed at the Livermore Laboratory. Other 
people have been using Monte Carlo to analyze transmission experiments. They 
have to do calculations for shadow cones, to treat shadows in the stream of 
neutrons from the source into the detector. Monte Carlo has also been used to 
analyze the time jitter which is introduced in the lithium glass detector by 
covering it with a foil of polyethelene. This type of application is really 
required by one group of users. We cannot create any excitement in the other 
group so far. 

Gelbard: I have the feeling that we should have been more successful in 
getting Monte Carlo used for methods testing. At Bettis, shortly before I 
left, I was involved in some work which I might mention as an example of the 
sort of methods testing I have in mind. We were studying the transient absorp
tion rate near the boundary between a water region and a fuel region. The 
resonance flux is not self-shielded as it goes from the water into the fuel 
region, so you get a sharp transient in the absorption rate. To study this 
phenomenon you can write a code in which you assume that the resonance mate
rial does not moderate at all. The only materials that moderate, let us say, 
are hydrogen and oxygen. Assume that their cross sections are constant in the 
resolved resonance range. Now all the scattering cross sections are constant 
and isotropic, so it is easy to write an adjoint code. And if you work in 
lethargy, as has been pointed out here, you have no difficulty with the adjoint 
method, you don't get divergent integrals. You only have to adjoint isotropic 
scattering in the center-of-mass. With such an adjoint code you can get a 
point plot of the activation rate as you approach the boundary. It is per
fectly possible to do this, and it can be done very cheaply with such a com
pletely artificial adjoint code. You then compare this activation plot with 
what you would get for the same problem by whatever analytical approximations 
you would want to make. There are many other cases like this, I think, where 
(if you have the people available) you can write a code especially to treat a 
simplified problem. You can then test any proposed approximate computational 
technique on the same simplified problem. 

Cashwell: May I say a few words about this problem. Apparently at Los 
Alamos we see a little of the reverse happening, in that Monte Carlo is being 
used much more than ever before. Now, obviously a lot of our problems have 
very difficult geometries and, of course, that is an overriding reason for 
using Monte Carlo. In addition, some people, who don't necessarily need com
plicated geometries, are not willing to compromise on the treatment of the 
cross section. A lot of our work is motivated by concern over the validity of 
multigroup methods. I know that some Livermore codes use as many as 2000 
groups, so it seems that they share this concern. So I think we see an in
crease in the use of Monte Carlo, and this is a little bit counter to what is 
going on in the reactor business. 

Gelbcxrd: It can have something to do with the amount of money available. 
I think that there is a sharp line between applications in which you are study
ing weapons, and civilian applications, and there seems to be a very large step 
jump in what you can afford to do when you get into any sort of military work. 

Ccxshwell: I would say that machine time in the weapons business is not 
the main factor at Los Alamos. We have machine time. At Livermore they have 
even more machine time. 
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Whitesides: 1 feel I should take issue with what I understood you to 
say about the success of Monte Carlo codes in criticality work. I guess when 
we do a head-on comparison with other methods, for the same geometry and the 
same cross sections, Monte Carlo does as well as any other method. The diffi
culty only comes about in trying to use what we consider to be more refined 
data and more precise data in Monte Carlo, when we use ENDF data directly. 
In fact we do quite extensive comparisons, back and forth, between our dis
crete ordinates methods and our Monte Carlo, to check the accuracy of the dis
crete ordinates calculations. We get good results, and for most criticality 
type problems I would not run DOT. 

Gelbard: The problem that keeps coming up, apparently in the fast reactor 
field, is not something that I had noticed before in the thermal reactor field. 
Fast reactor people always seem to insist that they want to calculate minute 
perturbations and that is not the kind of application that I have seen in ther
mal reactor work. It has something to do, I think, with the shocking fact 
that, if all the sodium boils out of a fast reactor, the reactor hardly even 
knows it. That seems to have something to do with it. If you were to empty 
all the water out of a thermal reactor you'd have a big blob of nothing. 

Whitesides: That is true and as I mentioned the other day, we have been 
doing perturbation-type calculations on fast systems. I did get some data 
which I did not have with me the other day. Our computer time on the IBM-
360/91 is less than 10 min. to calculate an error in kgff of 1/2% for an FFTF-
type engineering mockup. 

Gelbard: But you also said that you were not looking at the most extreme 
cases where we have some concern as to whether the complete correlation method 
is even feasible. 

Whitesides: Let me separate the two problems. I am saying that we cal
culate keff to within 1/2% in 10 minutes. And, at the same time, we calculate 
the change in kgff due to some configuration rf:hange. What we have been look
ing at is a 4 by 4 element or plate or drawer, whatever you want to call it, 
in the system. In the experiment just one of these is moved out, but we have, 
in some of our calculations , been moving drawers out in some kind of uniform 
fashion around that single element, so as to enhance the perturbation. The 
sort of Ak's that we have been looking for are in the neighborhood of SI to 
$6 in reactivity, and beta for this particular system is 0.003. 

Gelbard: You have been computing three-tenths of a percent change in 
reactivity for the system, and you do this by enhancing the perturbation, by 
taking more drawers out than you actually would in the experiment. 

Whitesides: That is the sort of thing we have been looking at. 

Gelbard: In other words, what you are doing is not analyzing the true 
experimental situation, but trying to analyze something that is a little 
easier. This sort of approach seems to lie halfway between analyzing experi-
ments and using Monte Carlo to test methods. 

Whitesides: If you are really talking about changes in a small, a very 
small region, you might not ever be able to analyze such perturbations by 
Monte Carlo, just simply because you cannot sample adequately. 
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Gelbard: I suspect that Bernnat is going to point out that the adjoint 
method, which he has described, is really designed for just this sort of case, 
and we have not really tried it. 

Be'm-nat: The use of the adjoint method is only one part of the method. 

Gelbcxrd: The Green's function 

Bemnat: Right. If I have a large region in which a perturbation takes 
place, naturally I will try to treat this with a forward calculation. But I 
also want to point out that, when I compare Monte Carlo reactivity calculations 
with experiments, I never know how accurate the experiments are. When one is 
dealing with reactivities of $6 or more, what measurements technique can one 
rely on? How accurate are the different experimental methods in such situa
tions? Pulse measurements are not very exact in this range. They involve 
some uncertainties in Bgff> etc; and rod drop measurements or inverse kinetic 
measurements are often biased because of the location of the detector, or the 
point at which the system is pulsed. 

Gelbard: That is true, but the point of view that I was taking was that 
you would like the Monte Carlo to be exact, in the sense that the Monte Carlo 
error is given reliably by a stated error estimate. If this is true, then 
the Monte Carlo answer is at least one fixed point in your analysis. If it is 
not true, then in addition to a whole bunch of discrepant experimental results, 
you now have one more number, a discrepant Monte Carlo result; and instead of 
adding some sort of firm information you have simply put in another unknown. 
I would like to be able to say, without hedging, that for a given set of cross 
sections the eigenvalue lies in a certain band, with a known probability. 

Coveyou: I think that I agree with T'hat you said. I have always looked 
at the Monte Carlo calculation as an experiment in a universe which we have 
tried to make as close to the real physical universe as possible, though we 
don't know whether it is close enough or not. And in these experiments we 
should be able to compute our experimental errors very precisely. There is a 
point I would like to make, and this is sort of a philosophical point, with 
regard to many of these questions that we have raised. There seems to be some 
worrisome, but probably not terribly important, questions about how you esti
mate k, and so on. It has struck me that, because most of us have done fixed-
source calculations, we have gotten used to the fact that, in essence, in the 
background, the systems that we are working with obey some kind of ergodic law. 
In other words, we think of our system as a member of an ensemble of systems 
in a certain physical situation. What we really want to do is find the average 
value of some quantity over the systems of this ensemble. Instead we pick one 
of these systems and examine its time behavior. Now, in the fixed source case 
most of the ergodic theorems happen to be true, and therefore we do not have 
any great difficulty. However, in the case of multiplying systems, the ergodic 
hypothesis in almost any form that you can imagine, is just not true at all. 
The point here is that if we have a just-critical reactor, and we follow it 
long enough, the estimate we are going to get for k is zero. If the reactor 
is just critical it is easy to prove that a time will come when all the neu
trons disappear. 

Gelbard: That all depends on how close your model is to an analog model. 
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Coveyou: No, that is not the point. The point here is that these are 
very rare events. But I think that this is the basis for our difficulties for 
biases and other worrisome problems. The estimators we tend to choose are 
probably those that are appropriate for what I might call ergodic systems. 

Gelbard: I think a more serious problem than the bias, in practice, 
really is the problem of statistical fluctuation. 

Coveyou: That too. 

Gelbard: This is a terrible problem in thermal reactors. 

Coveyou: In fact it is probably also true that the correlations you find 
by what is essentially a time analysis of a single reactor are related, in an 
extremely complicated fashion, to the correlations you would find in the origi
nal ensemble of possible systems. And again the ergodic hypothesis comes in. 
The point is we have to make some kind of a hypothesis. We have to prove some 
kind of ergodic theorems. Either they have not been proved, or we are not 
aware of them and don't know how to use them. 

Gast: May I make one comment here. I think that if the Monte Carlo 
process is sufficiently nonanalog, then there is no reason to get the zero 
multiplication factor or the zero flux after a certain number of Iterations. 
For example, since source neutrons are always borne in fuel, you could use 
some fairly elaborate track-length-type estimator on the first flight. You 
could always revert to this first-flight track-length estimator if you get no 
fissions using some simpler estimation process. By such a procedure you could 
always bypass any termination of the fission chain. 

Gelbard: In other words, if you use a track length estimator to generate 
offspring you will never get zero offspring. 

Gast: Well in any case that to me is sojt of an academic point. It is 
a very troublesome point when you try to prove convergence mathematically, so 
it is something that you do have to consider. 

Borgwaldt: I would also agree that this seems to me to be an academic 
point because if we look at a Boltzmann equation in its normal formulation, we 
know that there is an eigenvalue. I would say that it is not our task to 
imitate a reactor, but to find solutions to the Boltzmann equation. We should 
do everything along the lines that Gast mentioned to avoid this situation which 
can occur in a theoretical reactor, but which would never be a reality because 
of cosmic radiation and all sorts of processes which will produce neutrons. 

Coveyou: I cannot resist this. There have been two comments to the 
effect that the subject I introduced was an academic subject. At this meeting, 
and at three or four other meetings, a certain plausible method has been intro
duced for making estimates, and each time I have tried to show that the proposed 
method produces biased estimates. It is precisely the fact that these ques
tions are considered to be academic that results in the reappearance of such 
methods. I don't say that this particular method is completely faulty; but 
what I do say is that the authors in both cases were thoroughly convinced that 
the method was unbiased, when in fact it was biased. I don't think that these 
discussions are entirely academic. 
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Gast: An unbiased estimator, by definition, has the following property. 
If one repeats the whole Monte Carlo calculation over and over again with dif
ferent starting random numbers, and then averages all the different Monte 
Carlo results, the overall mean approaches some "true value" stochastically. 
I consider the question as to whether an estimator in an eigenvalue problem 
is biased or not, I consider this also an academic question. To me the very 
crucial question is that of fair game or consistant estimate. 

Coveyou: I have yet to see a computational procedure which I was con
vinced actually satisfied your fair game property. I do not mean to imply 
that such procedures do not exist. I don't mean to imply that yours is not a 
fair game. I do mean to imply that I am not convinced that it is. I also 
mean to imply that I regard this property of being a fair game as being a far 
more academic property than the property of unbiaseness. Actually, if an 
estimate is biased, you are making a systematic error. If you claim an esti
mate is unbiased, when in fact it is biased, then every time that estimator 
is used there will be an error in it. The estimate will be in error by a cer
tain fixed amount, namely the amount of the bias. I don't see anything aca
demic about that. 

Gelbard: Incidentally, I always thought that a fair game meant a method 
which is unbiased if you carry out an infinite number of generations. Is that 
what you mean? 

Gast: Yes, as the number of generations goes to infinity one will 
approach the true answer. But I want to point out that an eigenfunction strat
egy can never be unbiased. Suppose you start with a given source guess, and 
keep repeating the problem back from the beginning with new random number 
sequences. Say you go through 100 iterations and start averaging the results. 
At the end of the 100 iterations you will still be sensing the source guess; 
but you can make the game a fair game. You can arrange the process in such a 
way that it will converge in the limit as the number of iterations goes to in
finity. Now the only thing that is really crucial is to have an estimate of 
uncertainty at whatever point you stop the computation. To me the question as 
to whether a method is unbiased is academic because we have basically only one 
problem that we are considering. We have one final accumulated result and we 
desire a confidence interval large enough to cover the true value. 

Gelbcxrd: You are saying that it is important to have reliable error esti
mate and that if you do not have a fair game there is no way to get such an 
estimate? 

Borgwaldt: My feeling, which I have often expressed, at Karlsruhe, is 
that if I make an estimate of any quantity by Monte Carlo, or by any other 
method, I commit some errors. These errors may consist of three contributions. 
One is an error in the input data, which we must eliminate. The other error is 
an error of numerical kind. In Monte Carlo this is a statistical error. In 
other methods it is some sort of truncation error due, perhaps, to the fact 
that I have used an Sn approximation of Insufficiently high order, or a space 
grid which is not sufficiently fine. Then there may be an error due to a fun
damental weakness in the method which I use. This would be a bias in a Monte 
Carlo calculation; and what we have to do is to minimize the total error. Our 
problem so far, I think, is to minimize the statistical error. Because if one 
has a reasonably sound eigenfunction strategy there is certainlv a bia^ bnt-
it is obviously lower than the 0.5% or the 0.2% statistical error which we 
can get in a k „„ calculation. 
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Gelbard: Just one comment. My coauthor pointed out to me a very in
teresting fact. We talk frequently about the bias in eigenvalue. Very few 
people have given any consideration to the corresponding bias in the eigen
vector. If the bias in the eigenvalue is 0.1%, what is the bias in the eigen
vector? I don't know. I think that it is worth pointing out that we should 
not think only about the eigenvalue. 
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