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NUMERICAL ALGORITHMS TO DETERMINE
THE STRUCTURAL BEHAVIOR OF

A CYLINDRICAL INVOLUTE FUEL PLATE
UNDER STEADY-STATE LOADING

by

D. B. Taylor* and A. H. Marchertas

ABSTRACT

Differential equations are derived describing the struc-
tural characteristics of a thin, cylindrical involute shell. The
shell considered is of homogeneous construction and uniform
in thickness, and is subject to a steady-state loading consisting
of transverse pressure and internal thermal gradients. These
are assumed tovary throughout the entire surface of the shell--
in case of the temperature, also across the shell thickness.
Boundary conditions are as follows: free involute ends of the
shell; axial sides which are pinned, fixed, or what has been
referred to as "rotated." In their final form, a total of three
partial differential equations are deduced in terms of tangen-
tial, axial, and transverse displacements. These equations are
not solved, but possible methods of numerical solutions are
discussed.

I. INTRODUCTION

The work contained in this report was initiated in connection with
the safety of the Argonne Advanced Research Reactor (AARR). The latest
version of the AARR reactor core consisted of two concentric fuel elements,
each comprising a multitude of involute plates, as shown in Fig. 1. The
cross section of the individual plates is illustrated in Fig. 2. The design
of the structure required that the fuel plates sustain safely all possible
variations of pressure and temperature during reactor operation.

The loads could be of numerous types: internal nonuniform expan-
sion due to reactivity variation of the fuel along the plate and pressure
variation within the cooling channel, just to mention two. These and other
variables are interdependent and of transient nature during reactor opera-
tion. It should be evident that not all of the variables could be included in
the study of mathematical models at once; it is more efficient to progress
in steps by examining each relevant variable on its own merits.

*Now at Edinburgh Regional Computing Centre, Edinburgh, Scotland.
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Fig. 1. Core Assembly of AARR Fig. 2. Fuel and Burnable-poison Distribution
in the As-built Element for AARR

Since the involute plates or shells have not as yet been extensively
studied, it became necessary to deal with this problem from the beginning.
First, the involute plate of homogeneous construction was assumed; loading
was taken to be applied statically and to change only along the length of the
involute. This one-variable treatment of the plate is described in Ref. 1.
The present analysis, which may be called the second step of the treatment,
considers the same plate but with load variation both along the involute and
the axial direction. Thus, the corresponding response of the plate is a two-
variable affair. Other complications to the actual fuel-plate problem, such
as nonhomogeneity of the plate, transient input conditions, and buckling con-
siderations, have not been considered.

Termination of the AARR project brought an end to the overall treat-
ment of the fuel plate; even the numerical solution of the herein-derived
differential equations for the two-variable involute plate could not be com-
pleted. The deduction of the differential equations adapted to the involute
plate and appropriate boundary conditions, which had been obtained for that

purpose, are outlined in this report. Possible methods for numerical evalua-
tion are also suggested,



II. ANALYTIC DEVELOPMENT

A. The Problem Defined

The object is to analyze the two-variable deformation and strength
susceptibility of a thin involute plate (or shell) which is subjected to internal
temperature variations and transverse pressure changes. The shell is
assumed to be homogeneous and uniform in thickness. All loads are of a
steady-state nature.

A cross section of the involute configuration, with its geometrical
relationships, is illustrated in Fig. 3. The inside boundary of the plate, also
being the geometric evolute, is of cir-
cular shape; the concentric outside
boundary of the involute is also
circular.

Ends of the involute shells are
free, while their sides are intermit-
tently welded to the concentric solid
cylinders (details not shown in Fig. 1).
This boundary condition at the sides
of the shell cannot be mathematically
represented without expending a lot of
time and effort, if at all. An alterna-
tive is to seek solutions of problems
with greatly simplified boundary con-
ditions and then to bracket the actual
results. *Thus, the sides of the shell
are assumed to be pinned, completely
fixed, or allowed to rotate with respect
to the center of the core. The last boundary condition is one in which the
shells are fixed to the cylinders in the usual sense, but the cylinders them-
selves are free to rotate with respect to the center of the core. The answer
to the actual problem would then be bracketed by the solutions of the above
boundary conditions. Consequently, as far as this report is concerned, solu-
tion of the involute-shell problem with the above three boundary conditions
at the sides will be sought.

INNER BOUNDARY

OUTER BOUNDARY

Fig. 3. Geometrical Definitions

B. The Method Used

Thin shell theories which have been usefully applied in the field of
design are those based on the assumptions proposed by Kirchhoff.? These
assumptions extend the beam theory to that of plates and shells, thus
complementing the plate theory with physical meaning. Although the theories
found in recent technical literature are based on the identical assumptions,
most of them show variations in their final expressions. The wide variety



of results in shell equations is due to the variations of different approxima-
tions in deriving the strain-displacement relations. Most of these variations,
however, as noted by ]’:(oiter,3 are of such an order (~h/p, where h is shell
thickness and p the radius of curvature) as not to affect materially the final
numerical solution. As shown by Koiter, the additional terms can be added
or subtracted from the equations at will, thus providing a means for possible
simplification of the solution.

It had also been shown by Novozhilov* that the original Kirchhoff
assumptions introduce errors of the order h/p. Consequently, since
Kirchhoff's assumptions are used as the basis of the thin-shell theory, the
ratio h/p can be neglected when compared with unity in the derivation of
strain-displacement relations. This, naturally, simplifies the solution to
a great extent.

It has also been illustrated that the omission of terms of the order
of h/p, as compared to unity, may be justified even in cases where p = 0.
An example of such a case is the involute shell extending from p = 0 to
some practical finite value. A one-variable illustration of such an example
is given in Ref. 1, where five independent "theories" were considered:
three of them had neglected h/p in their derivations; the remaining two had
not. All of them had been adapted to the one-variable, cylindrical involute
shell and were solved explicitly for the dependent variables. A typical
numerical example failed to show any differences between the five solutions
which could be directly attributed to omission or retention of h/p. It was,
therefore, suggested that the simplest theory (which neglects h/p) should be
considered for further and more involved flexural analyses of the fuel plate.

The same viewpoint is applied here to the two-variable problem of
the cylindrical involute plate: deformations are assumed to be small and the
terms h/p, when compared to unity, are neglected. A relatively simple and
consistent presentation of the thin-shell theory is given by Koiter, Novozhilov,
and some others. Since Novozhilov's material is collected in one book,* his
reference will be used alone, for purposes of convenience.

C. Derivation of the Differential Equations Describing Deformation

1. Shell Geometry

The plates occupy an annular region of finite length. A cross
section with the centerline of one plate is shown in Fig. 3. Coordinates y
and s are defined by distance across the surface of the plate, y in the
axial direction and s along an involute. The arc length s may be expressed
in terms of 8, the generating parameter of the involute, which in the unde-
formed state has radius of curvature p = a@; thus,



8 = foeagdgz%aez‘ (1)

Hence, the radius of curvature is given by
p = (2a8)"2. (2)
The involute may also be described in terms of r, the distance
of a point on the involute from the center of the generating circle, and ¢,

which is defined in Fig. 3. Geometrical analysis yields

= a(8®+1 )l/z

L ]
I

" (3)
8 - cos~![(B%+1) 1/z]

©
n

2., Basic Assumptions and Notation

The thin-shell approximation as proposed by Novozhilov* and
discussed in Sec. B will be used in the following form:

(a) In the determination of the deformations of the fibers of a
shell parallel to its middle surface and also in the computation of the strain
energy of the deformed shell, the deformation due to shearing stresses
normal to the shell and the strain normal to the shell may be ignored.

(b) The normal stresses acting on planes parallel to the middle
surface of the shell may be ignored in comparison with other stresses,

The equations written here are obtained from those given in
Ref. 4, The stress and strain notation and the coordinate orientation is

that used by Timoshenko,5* with (y,s) replacing (x,y).

3. Forces and Moments on a Surface Element

Figure 4 shows a surface element separated by four cuts per-
pendicular to the middle surface along the curves s = s, s = s; + As,
Yy = Ypr and y = yp + Ay- Also shown is a layer of the shell of thickness dz
at even distance z from the middle surface.

Six stresses act on the edges of the layer: og and oy are normal
stresses, 0gy and oyg are the shear stresses acting parallel to the middle

*Note: The notation of Novozhilov (subscript N where necessary) is related to that used here as follows:
a;=s,a9=Y,2N =-2, A1 =A2= 1, w=y, Ry = P; Rp ==; N1 = -Q Ng = -Qyi T1 = Ng;
Tg =Ny, T12 = Ngy, To1 = Ny, My = =M, Mg = -My, M12 = -Mgy, Mg = Mys.
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surface, and g g, and Oyg are the shear stresses acting normal to the mi dle

surface. The stresses og, c;,, etc., act in the opposite direction to 0, Oy,
etc., whereol = og + (bo‘s/bs)As, etc.

A

-

dz
Il
I8

fei ]

z

Fig. 4. The Stresses on a Layer Parallel to the Middle Surface

The resultant membrane and shear forces per unit length are
obtained by integration over the plate thickness:

h/2 h/2 ) A
Ng =/_h/zcs dz; Ny =/_h/zcy(1 -E)dz

N

h/2 h/2 )
Ny =/ oy dz; Nyg :f cys(l-;)dz . (4)
-h/2 h/2

h/z h/2 K,
Qg = Osz dz; Qy = ayz(l -—)dz
-h/z - P

h/#

4



The resultant bending

axes also must be considered:

h/z
Mg =f ogsz dz; My =

h/2

h/z
Msy 'f Ogyz dz; Mys

_ -h/z

-h/2

-[:;:cysz(l -%)dz

"

and twisting moments about the y and s

h/2

z
oyz(l -—-)dz
‘/( 9)

(5)

The orientation of these resultant forces and moments are shown in Fig. 5,

in which N§ = Ng +(dNg/ds)As, etc.

Oy

\J N

Fig. 5. Resultant Forces and Moments
on an Element

When products of displace-
ments and their derivatives are
neglected, consideration of the
equilibrium of an element of the
shell leads to the equations

2Qs 2Qy Ns =
— +—+—+p = 0;
os dy p P

ON N
_s.'.__Ls_& = 0;
ds vy P

szy ®Ny o
+—— = 0;

bs s Dy (6)
M >M

) 2 - ye i3 QS = 0;

s dy
M M

y Y o -
5 2 Qy = 0;

Substitution from Eqs. (4) and
(5) into the last of Eqgs. (6) gives

Mgy - p(Nsy-Nys) = [[}2 (z-0)osy-oys) dz = 0. ()

It follows that the assumption that displacements are small is sufficient to
establish that ogy = Oy, i.e., the stress tensor for a layer is symmetric.
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Now let u, v, and w be the displacements of the surface in the
s, y, and z directions. The Lamé coefficients for the chosen s,y coordinate
system are both 1. Novozhilov gives a derivation of the relationship between
the strains and shear deformation on a shallow layer parallel to the middle
surface, such as in Fig. 4, in terms of five parameters of the middle surface,
His results are as follows:

P

Sple) = o= fes - 2ngli

ey(z) = ey - Zhy;

il o D 2Nz

¥(z) = p_z[w-z(l-zp) T], (8)

where ¢s and ¢y are strains on the middle surface, and § is the change in
shear on this surface. Corresponding functions of z relate to a surface at
distance z from the middle surface. The parameters ng and ny are related
to the changes in curvature in the s and y directions (v§ and ny) by

€s
n's=ns--p—; K§:ny. (9)

The parameter T is the twist about either axis. Novozhilov derives the
following relationships between these parameters and the deformations of
the middle surface:

_ du W _ Y _ dv , du
€s = 3s = ;. Gy = b_y' * = 'b—s"' O_y' (10)
Y e 2 2
us=—+—(—); y=°_“’,. 1= 2%  doa (11)
dsz  ds\p dy? dsdy p dy
Accordingly,
v W ua  w
g = === T o=,

4. Evaluation of Strain Energy

, . We now write down the stress-strain relationships for a heated
1s9trop1c shell. The deformations will be given on a surface parallel to the
middle surface of the shell and at distance z from the middle surface. The

temperature of the shell, T, is functioh of s, y, and z. The relationships
are



eg(z) = lEcs(z) = %cy(z) + aT;

eylz) = IEcy(z) -% og(z) +aT; (12)
¥(e) = 2o ),

where v is the Poisson ratio, E is Young's modulus, and o is the coefficient
of linear thermal expansion, which are assumed to be independent of tem-
perature (see, for example, Langhaar, Miller, and Boresi®). These equations
can be solved for the stresses:

E
ogs(z) = m [es(z)+vcy(z)- (1+v) aT];
. (13)
ay(z) = m[ey(z)+v¢5(z)- (1+v) aT] .
Now the strain energy of the shell is given (Ref. 6) by
E E
U = [[f{m [szs(z)+ c;(z)+ vcy(z)es(z)] + :‘}(l_+v) tz(z)
= IEG-I\).[Gs(z)+ ¢y(z)]} (l -%) dzdsdy, (14)

This energy integral ignores normal stress and shear strains in accordance
with part (a) of the initial hypothesis. When Egs. (8) are introduced into
Eq. (14) and the integration with respect to z is carried out, then, if

h/p is ignored in comparison with unity,

2
.= Z_(F_L\,z)f/[(cs+cy)l - 21 -v)(cscy-%)] dsdy

3
- _24:5;*1-“1)//[(“ +uy ) - 2(1 'V)("'s"y~‘l’z)] dbdy

h/2 h/z
- Eo //[(cs+ cy)f Tdz - (u5+uy)/ zT dz] dsdy.
1 -v
-h/2 -h/2

(15)

13
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5. Evaluation of Resultant Forces and Moments Using Virtual Work

The relationship between the forces and moments and the strains
on the middle surface may now be obtained. The variational change in the
strain energy may be expressed in the form

h/2
s f// 4 [y(a)sey() tos(eles(z) +osy()oy(a)](t -2) dadyds. (16)
-h/l

This is the work done by incremental strains. Introduction of Egs. (8) yields

h/z s :
= z -2 -— slz -2zbKug
5U —j/f-h/z{ay( )eey 6n.y)(1 = >+o (z)(6eg - zbn

+ ays(z)[ws -z8Tg+ (1 -g)(wy- Zé‘ry)]} dzdyds. (17)

If Eqs. (4) and (5) are used to eliminate the integral with
respect to z,

86U = /f (Nsbes+Nybey - Mybuy - Mgbus + Sy + 2Hé7) dsdy,  (18)

where

CGEE S G S S .. AT (19)
= 2\EygiT sy). = Nys + o = Ngy.

The variables Ng, Ny, My, Mg, S, and H are sufficient to
describe the equilibrium of the shell. It will be seen that any boundary
condition on the shell can also be expressed in terms of these variables.

When the coefficients in Eq. (18) are compared with those
obtained when the variational increase is computed by direct differentiation
of Eq. (15), the following relationships are found:

h/z
Eh
Ng = — (eg tvey) - Fe T dz;
(1-v2) l1-v b2
.h/z
Ny = Eh (eytvns) - il o
(1-y2) 1=y -n/2 (Gt



Eh (Contd.)

=S =_Z(l-v)'; (20)

- N

h/z
= Eh’ Eo
Mg = zZa _vz)("-s"’\”‘y) . zT dz;

h/2z
h/z
Eh’ Eo
My = =« — 44— + - :
y Z0 -39 (ny+vng) e i zT dz;
Eh’
B =G B
Since
1fh/‘ - En’ Y
Mgy + M = 2 Oyg G2 Al =——s—=——= g
ys ys 2
p -h/z 8(1+v)
the error introduced by putting
Mys = -MSY = H (21)

is small if h/p is small.

Equations for the displacements u, v, and w may now be obtained.
Substitution from Eqs. (10) and (11) into Eq. (20) and use of Eqs. (19) and (21)
yield

12Dfou w_ dv )
= —_———ty — ] - T‘;
Ns h? (bs P vbv)
12D du w dv
T em— s g ]| T‘;
NY h? [\'<bs p>+by:l

2 2
MS = < b_W+_° L +\,.°_"v. = T**;
dsz  ds\p dy?

»®w  dfu dw
R, O N B ) | PE - S

N =6D(l-v!(lﬂ+b_u)_ r (22)
sy h2 ds dy/’ (Contd.)
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D(1 -v)<§1+1 0u> (Contd.)

0 = (22)

N = Nsy+ 5sdy  p DY v

ys

Dw 10\1)

MYS = -I\/ISy = D( \))(bsby 0 by

where

h/2
T* = 13—[ T dz;
S -h/z

h/z
T . f 2T dz;
S -h/z

Eh®
T 12(1 -v2)

6. Derivation of the Differential Equations for the Displacements

By eliminating shear loads Qs and Qy from Egs. (6), the number
of differential equations can be reduced to three:

dNgy 2 ONy
ds dy

ONg ®Nys 1 3Ms ®My s
+

1
—_— + -
ds vy p s p dy

=0 (23)

2 2 2
sz_szys+bMy+szy N—+p:0
Baz dsdy oy dsdy p '

where the last of Eqs. (6) has been neglected. Equations (22) and (23) com-
prise 1l equations with 11 unknowns. Three equations for u, v, and w can
be obtained by substitution of Egs. (22)into Eqs. (23), giving

_bz_v+(l-v)&+(l+\a) d'u v dw l+\)) /Zonz

y2 Z2 0 32 2 dsdy p dy -h/2 dy

Blu (1-v)du, (L+y) D 2 (=) (24)
3s2 2 py? 2 dsdy d . (Contd.)



D'w - Dw Lz u’ _ ¥ fu (Contd.)
A R O REEC) I =

a(l+v)fh/z 1-- -
p :

v,
ds p dy
2[ad 4 3 3
-Hfs_w+&+z°_w+(2_v, ® )2
dst Dyt ds2dy? s dy? ds3\p

2
or(l+v)f (T+PleT)dz—lhT)p
-h/2 )

7. Direct Evaluation of the Displacement Equations from the
Energy Integral

An alternative derivation of these equations can be obtained by
substituting from Eqs. (10) and (11) into (15), and using variational methods.

The substitution yields
1fdv ., du)?
Z(bs * W) ]} dady

{55 - [E)E-2)-
A2 e {2606

h/2 2
__E_a (ﬂ-l’+°_v) T dz - O—W+ u zT dz » dsdy.
I=v ds p Oy -hf2 ds? P

To this must be added the work done by the external force p, namely

ff wp dsdy, to obtain the total energy V of the system. Now equilibrium
occurs when V has a minimum, that is, when the variational derivatives

of V with respect to u, v, and w vanish. The evaluation of suchaderivative

is achieved as follows (see Appendix A):
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If
du du d*u du bzu>
- ey s e e —— NG RN
V[u] = [/F(s.y.u. 5s’ By’ 3’ 080 By y

then 6V/6u = 0 implies that

dF [ ®F d[¥F 7, [ dF 7, v? OF

du T3 Tb‘jb uy |~ By &) st o] > b(oZu_)
ds dy ds2 sy,

2
s e (26)
oy b(gﬁ)
dy?
When V = V[u, Ny w], the variational derivatives with respect to v and w are
similarly defined. The equations §V/6v = 0, 6V/6u = 0, and 6V/6w = 0

lead to Egs. (24). In this manner, Eqs. (24) are obtained without reference
to the average stresses and moments.

D. Boundary Conditions

A plate of the plan shown in Fig. 6 will be considered.

525

Fig. 6

Plan of the Plate in (sy)-space

1. Conditions on the Ends of the Plate

The plate will be left free ony = 0 andy = Y. The forces

and moments acting on the edge y = 0 are Ny, Nys, Qy, My, and Mys~
These are shown in Fig. 7.

Fig. 7
Load Condition on y = 0




Conditions which represent a free edge will now be derived.
The force Ny alone is able to produce extension in the y direction, so that

Fig. 8. Resolution of Mys ony=0

if the edge is free, Ny = @,
Similarly, My alone can produce
rotation about the x axis, so that
My = 0. The moment Myg can
be represented by forces in the
z or s direction. If we refer to
Fig. 8, the couples acting on
adjacent edge increments with
centers C; and C; of equal length
As may be replaced by forces.
To a first approximation, the
distance between C, and C; is
As. Thus, if Mys is the couple,
per unit length, acting at C,, then
(Mys + (dMys/ds)As) acts at C,.
These couples are now repre-
sented by pairs of forces of
equal strength having parallel
lines of action and acting in
opposition. Forces of magnitude

Mys/As act normal to the tangent at C,, and forces of magnitude Mys/As+

bMys/bs act normal to the tangent at C,.

The forces are now resolved at P, between the increments. The
force per unit length in the z directionis (cMys/bs) cos B. Thus, if no forces
act on the edge of the plate (B being small), Qy, - bMys/bs = 0. The force
at P in the negative s direction is

2M oM 2M M
Al L PR Oy (S Al DG i 27
( e + s ) sin B e . (27)

so that the force per unit length is Mys/p; hence, on a free edge, Nys -
Mys/p = 0. Collecting all the conditions on a free edge at y = 0,

M M
¥a _ ¥s
Ta st

Ny = My = Qy - = 0. (28)

The same conditions will hold ony = Y.

2. Conditions on the Sides of the Plate

Several types of boundary conditions will be considered on
s = 0and s = S.
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(1) On fixed edges,

u:v:w:b—wzo (29)
ds
(2) On pinned edges,
u=v=w=Mg=0 (30)

(3) A rotated edge may occur, i.e., the outer cylinder onto
which the plate is fixed may be free to rotate about its axis. If the plate
is fixed to the cylinder, then

The edge of the plate is not free to move radially so that (see Fig. 3) by
geometric reasoning

u cos (B-¢) - wsin (8 -p) = 0.
Using Eq. (3) this can be simplified to give
A We|s =0

ons = S. In equilibrium the force component in the tangential direction
will vanish, so that by similar reasoning

Qg - Ngb|s = 0.
Collecting these conditions, on s = S, we find

dW
V='Fs-=u-w9|S:Qs-N59|s=0. (31)

The conditions in Eqs. (28) through (31) are readily expressed in terms
of u, v, and w alone using Eq. (22). It emerges that conditions on s = 0 can

be obtained by setting S = 0 in the above.

3. Variational Derivation

It is instructive to derive the boundary conditions from varia-
tional considerations. Equilibrium occurs when the energy integral has an
extremum, that is, when its first variafion vanishes. For arbitrary incre-
ment functions h(s,y), k(s,y), and 4(s,y) of u, v, and w, the components of §V




must individually vanish. Equation (A3) of Appendix A is now applied to a
region R*, which is bounded by I'*, made up only of lines parallel to the s
and y axes. The first variation of V is thus given by

M M
8V =ff Eyh dsdy +[ [(Nys +—E)hds . (Ns-——’l)hdy]
R* r* P P
+ E k dsdy + Nyk ds - N,k dy
,/]R,.. % /r*( y sy )
M. dM, o
+ Egt dsdy + —’i+z——l)L-M—d
[/;(* vietud /;*[( vy vs Yoy | ®°

Mg M
- —L. 2= )y im, B |ay, (31)
r* Os by 0s

where Ey, = 0, E; = 0, or Ey, = 0 give Eqs. (24). If §V vanishes, then not
only must the integrals over R* vanish for all h, k, and £, but also the con-
tinuous integrals on I'*. The values of h, k, and 4, and the normal derivative
of £ might vanish, giving clamped boundaries, or the natural boundary con-
ditions might hold:

(1) On s = constant:

M 3
(i) Ns = -
P Mg = Ng = 0
(ii) Ngy = 0 Now = 0
22 i (32)
M M
i) — -2—X =0 Mgy
ds 3% e 2
(iv) Mg =0 )
(2) On y = constant:
M
(i) Nyg+ ;’szo My = Ny =0
ok M
(ii) Ny =0 Noa 4ds =
i (33)
M M
1) —L g 2—=F o0
(iii) = 5 : M, .
s
(iv) My = 0
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That these are precisely the free edge conditions can be seen by using
Eqs. (6) and (23).

E. Methods of Solution

Three methods of solution will be discussed. First, a general
finite-difference approach, then a Rayleigh-Ritz approach, and, finally,
a discrete-element approach.

1. A Finite-difference Scheme

A finite-difference solution of the problem may be obtained by
solving difference equations derived by replacing the derivatives in Eqgs. (24)
by central differences and the integrals by a quadrature formula. The
boundary conditions must likewise be connected to linear constraints on
values of u, v, and w at points of a finite-difference grid. The solution is
obtained by solving a system of linear equations which has a band matrix.
This approach has been used successfully for three-dimensional and
plate problems.”®

In Appendix B, details which allow finite-difference equations
to be derived directly from the energy integral are given. If we use the
definitions given in Appendix B, the energy integral in Egs. (25) with the
addition of the term [[wp dsdy can be approximated by the finite sum

N M
= (S Com el Bl g 2 _ wii\ 1, o)
WW‘(M()QZ&M[ mﬂu“gﬂwﬂ'Z“Wﬂwmﬁﬂn";y;mwﬁwmﬂ}

D/(|,z ~ (%) 2 ¥ bt | ) Byus;\2
832 sl -2 s 201
) 1
. _Eo oA ek R "LAJ
1= v{(Aqu p—i+ Oy T” A 3 J+A ( )+ Ay 1_1] TJ * WiiPij|

(34)

where Tg‘-, T}i"*,' and pjj are the values of T*, T**, and P at mesh points.
The ajj are defined in Appendix B.

The equations

OVNM _ . OVNM _ 0, JYNM _ o
ou oV Totwgy 3

will yield difference equations for an unsupported shell. The constraints
representing fixed or tied boundaries must be imposed in the manner dis-
cussed in Appendix B. The derived difference equation may then be solved
by overrelaxation, direct, or other methods.



This approach does not take advantage of the smoothness of the
expected solutions. The matrix involved is not readily inverted. Iterative
procedures are known to be very slow. Furthermore, error analyses which
give bounds for errors are not available.

2. A Rayleigh-Ritz Approach

Details of this technique are given by Courant and Hilbert.? In
the present context, u, v, and w are expressed as weighted sums of functions,
each of which satisfies the boundary conditions. The weights which minimize
the energy of the system are required. Equations relating these values can
be obtained by differentiating the energy integral with respect to each
weighting factor.

The functions used to represent u, v, and w could be general
double Fourier series, but a reduction of the number of terms necessary
can be achieved if products of beam functions are used. These functions
are listed in Table I, which is reproduced from the work of Goldenveiser.'®

TABLE |. Modes of Vibration of Beams

Boundary
Conditions g
—————  Corresponding Analytic
Tov for Supported Expressions Eigenvalues of the Parameter k % 'f &
No. x=0 «x=2 Beams for the Function ¢ K %] K k4 kp,..(n> 4 0
‘o2
90 -0 . n 2n in an nn 2[u.<01]
1 g giw i | ——— | sin kx z 3 1 T 7 3 ] o Iu;Uhll'll'
sin kx - sh kx

.

90 90 1 1 1 n wel?
2 5.0 ge0 /1  gnit-shie any 1eRy lwsp ubry S5 [uo]

- )
k=il (cos kx = ch kx

sin kx + sh kx .
P greg 1 L 1 1 2n+1ln 2
}oglo e T sink-nk, anmj 1se} wwsep worp M5 [yo]
= S—=———= {00s kX + Ch kx)
cosk - chk
sin kx = sh kx .
A e 1L chid sl amal sel wwsl 211 [ue]? - [we]
00 ¢g"=0 _sink ShKE o kx - ch kx) 1 ] ] 1 F
CosKE+ ch kE
8 0 0°0 sin kt 1 1 1 1 dnsln 2000
- 92661 1 wael B0} 7
B pip  gep F—— #nm-Loak 166 TS} 02AR] e SN
e
0°0 0 sin ki 1 1 L 1 miely AE®
§ gep peg F—— shpigak a6} 06857 02ARE BB T - [w?

Note: The last column of the table gives the values of the integrals over the squares of the functions (Rayleigh's formulal. In these relations
ujlz) - 9j/k). Primes denote differentiation with respect to z.

The boundary conditions for fixed edges ons = 0 and s = S can
be satisfied exactly by using one beam function to represent the s-dependent
parts of each product. The y-dependent parts, however, are not properly
represented by case 3 of Table I, which gives the beam function for a beam
with free ends. Some combination of the first three beam functions would
be necessary. This technique also can be used to represent the s-dependence
when the edges ons = 0 and s = S are pinned.
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3

This approach and a variant of it (i.e., a single Fourier series
is used to reduce the problem to one of solving a set of ordering differential
equations'') have been used successfully for plate and shell problems. The
approach has the disadvantage that a completely different formulation is
necessary for different types of boundary conditions.

3. A Finite-element Approach

A method which divides the plate into rectangular regions and
represents the deformations by bicubic or even biquintic polynomials has
certain numerical advantages. The linear equations, which are eventually
solved, have a positive definite matrix, and the method is adaptable with
respect to boundary conditions and choice of mesh lines.

If the plate, region R, is divided by (M-1) lines y = Y; and (N-1)
lines s = Sj, then element Rij of the plate is defined

Rij = sy)/  Sii=s=s;, Yj=y= Yl (36)

where Sy = Y, = 0, Y = Y, and SM = S. If bicubic approximations are
used, then for (s,y)éRij

S 3
u(s,y) = ) ) obisTyh

3 3 5 d

v(s,y) = ) tz BresTyh: ( (37)
r=ot=o
3 3 .

wis.iy) = 2 ) vis™yt

Following Birkoff and DeBoor,'? the sixteen coefficients ai'jt can
be obtained from values of u, _b_u .b_u and o
ds  dy Bs dy
Further details appear in Appendix C. It

at the corners of Rjj. Similar
remarks apply to g1} and Y;Jt'
emerges that twelve values of u, v, and w and their first and cross deriva-
tives at each 1ntersect1f).n of.t‘he lines y = Yj and s = S; allow calculation
t:)f_all the coeffi'cients U;Jt’ 5;Jt, and erJt' where r = 0(1)3; t = 0(1)3;

3 .I(I)N; and j = 1(1)M. When so defined, the piecewise bicubic approxi-
mation has continuous first derivatives' and cross derivatives.

FiArst, second, third, and some higher derivatives of u, v, and w
can be approximated in each Rij by differentiating Eqs. (37). These values
can be inserted in an energy integral, and the integration may be carried out
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explicitly over each Rjj. A minimum of the sum of these integrals is re-
quired. This sum can be expressed in terms of the 48(N+1)(M+1) values
of u, v, w, and their derivatives at grid points. Differentiation of the sum
with respect to each of these values will yield an equation relating values
of u, v, w, and their derivatives at nine points (in the interior). If the energy
integral is a quadratic expression, then the equations derived are linear.

Constraints on the boundaries will reduce the number of values
of u, v, w, and their derivatives which can be considered independent. The
constraint replaces the unobtainable derivative of the sum of integrals; the
dependence modifies the other relations (see Appendix B).

Nevertheless, this approach has the disadvantage that the equa-
tions to be solved can be obtained only after considerable symbol manipula-
tion (see Appendix C). In the authors' opinion, anticipated gains in speed of
numerical solution and adaptability make it the best of the three approaches
discussed. For example, the energy integral could be modified to represent
the plate near s = 0 better by changing the calculation only for elements
adjacent tos = 0.

III. FINAL REMARKS

Considerable effort has been expended in consideration of the proper
procedure to be used in the evaluation of numerical results of the two-
variable cylindrical involute shell. Due to the specific nature of the problem,
the uncertainty of the actual boundary conditions at the sides of the plates,
the finite-element numerical procedure has begn recommended. It is unfor-
tunate, however, that due to the untimely termination of the AARR project
this study could not be finished. Of interest would have been not only the
final results of the involute plate, but also the effectiveness of the proposed
numerical method.

For the purpose of those who might pursue this investigation further,
a point of interest may be mentioned. It appears that at least two other
derivations of cylindrical-shell equations, similar to Egs. (24), were made
by Timoshenko® and Wang.'* The differences between all the deduced equa-
tions resides in only three terms. It would be interesting to know the effect
of these slightly different terms on the numerical solution.

The inclusion of other factors, such as the inhomogeneity of the fuel
plate, time-dependent loading conditions, and the possibility of buckling
could be considered in subsequent stages of some future analysis. These
factors, when incorporated into the analysis, would yield an even more
realistic prediction of the actual behavior of the fuel plate.
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APPENDIX A
Variational Methods (see Gelfand and Fomin'®)

If V[u] is a functional on a region R with boundary I':

V[u] = f/R F(s,y,u,us,uy,uss,Usy Uyy) dsdy, (A.1)

then by integrating by parts and use of Green's theorem, the first variation
of V[u] is obtained as follows:

2: Zh
dh dh | »’h »*h > )d a
= - —+F —+F —+ F — )dsdy
5V _/L(F““Fus st Fuy oy TUss 5% T Usy Dsdy | MY o

d d o »? o e
= — e — * ——|(F. + ——(F ) s
f_/;{ [F“ DS(F“S) by (F“Y) B DSZ(F“SS) bsby( “sv) A v

> dh ! o( ) 1 dh
+ Eo Bt —(F h-F 283 - 2 h-=F — | ds
_/;[ e by( “YY) Uyy dy 2 ds\ Usy, 2 Usy »s

>
+
|lor

= ) B} 1 t dh
'/I‘_[F“sh+ b_s(F“ss)h Fuge o 2 by(F“sy)h 2 lr“‘sy by] 51 (A.2)

The function h is an arbitrary (sufficiently smooth) increment function and
the cross derivative is represented in antisymmetric form.

If we now introduce coordinates t tangential to I' and n, drawn out-

ward, normal to ', such that the n-axis makes an angle ( with the s-axis,
then Eq. (A.2) can be written in the form

) - 3h
5V = ff E dsdy +f(cosz C,Fuss+'5m2 CFuw+Sm g cos( F“sy) 5 dt
R T
: 1 % G pind
-/{g[cos ¢ sin C(F“W-F“ss) + E(cos ¢ - sin® () F“sy]
'

gacos C[SQ;(FUss) i3 .:.'E?;(F“sy)] T C[':;(F“y» % %'g}(?“sy)]}h * (A.3)

where E replaces the longer expression in Eq. (A.2). The derivatives bh/bt
have been eliminated in Eq. (A.3) by integrating by parts and the fact that
fl" dG = 0 for any G, since I is closed.



APPENDIX B

Derivation of Difference Equations by a Variational Approach

Let R be a rectangular region with boundary T in the (s,y)-plane
defined as follows:

RS {(s,y)/ 0O=a=8, 0sy=Y) (B.1)
Let Ry be a rectangular array of points defined as follows:

RnMm := {(i,j)/  2i and 2j are integers and -1 £ i< N+!, -1 <j< M+l}
(B.2)

Ifh = S/N and k 2 Y/M, then the mapping s = ih, y = jk maps Ryp
into the (s,y)-plane. If R; p is that part of Ry, which maps onto R, then

Ram = {(1,j) €ERnm/ 0sisN, 0sjs M) (B.3)

The extremal values of i and j in RI‘\IM map onto'. If u is a function
defined on R, then we may define it on R’NM;

u := u(ih, jk). (B.4)
We shall extend the definition to the whole (i,j)-plane by requiring that

uj j = 0 for (i,j) § RNM. The definition of values at points in Ry and
not in thlM will be discussed later. Let the following difference operators

by defined for factors defined on RnM: .
Agu := M (B.5)
Agu &= —;—(Asuiﬂ/z,j . AS“i-z/z,j) = ul]—z-hu;l——l (B.6)
Byn 2= —————ui'j“/zk- A, (B.7)
Byu := %(Ayui,j“/z + A 542 ) = u'—l}:b—l (B.8)

Since these operators yield functions defined in the (i,j) plane, they may
be again applied. We shall write

Yit1,j - 2ui,j + Ui-12,]

hZ

Azsui,j = bgbguy j =

27
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Similarly,

2
8% = byby.

Consider now the problem discus sed in Appendix A, i.e., that of
defining a function u which minimizes an integral V of a function F of
s, ¥y, u, and first and second derivatives of u.

We shall consider u defined on the region R.
2 2 2
v ;:/ F<s,y,u, G bt Ao -°—“->dsdy. (B.9)
R

We now define V), an approximation to V, in which the integration is
approximated by trapezoidal quadrature and the derivatives by central
differences:

VNM := hk g %ai,j;i,j’ (B.10)
1=0 j=0
where
@i = 1 for Ii=ii <N, l<j<M
=ifori=0orN, lsj<M
for j = OloM, 1 =i<N
= §for (0,0), (0,M), (N,M), (N,0)
and

Fi; = F(ih ik v Bevy jo Byu,j, adug 5 w5, AsKyui’j). (B.11)
The summation in Eq. (B.10) is over integral values of i and j. The differ-
ence operators in Eq. (B.11) do not require evaluation of uj j at points at
which i and j are not integers, but all the other points of Ry are involved.
The approximation to V, Vi is thus a function of (N+3)X (M + 3) values of uj j.
If Fis a Lipschitz continuous function of s, y, u, and its derivatives, then errors
arising from the replacement of F by ?i,j are of the same order as those
arising in the quadrature, both leading to errors 0(h®+ k%) in VM-

If every value uj,j is free to cha'nge, the minimum of VNM is deter-
mined by (N+3) X (M+3) equations:

dVNM
o)

e 0; (i,j) € RyM- (B:12)
i,j



In theory, this system of equations can be solved for the u;;. If, however,
T ﬁi,j' a constant value, then Eq. (B.12) has no meaning and the equation
uj,j = Ei,j is available instead. More generally, if a constraint of the form

Up,q = fp,q({“s,t}) for (s,t) € Rgﬂw Rg&d S RnMm (B.13)
is imposed, then is replaced in the system of equations by (B.13)
Paq
and, for
= OVNM
Pq -
(s,t) € R, et

is replaced by

dV dV of
NM " NM ®p,q
dug,t Oup,q dug t

= 0. (B.14)

The constraints of special interest are those of the form

(Yit1,j - Yi-1,j)
ARt By =G

j 2h i,j
when i = 0 or N, and (B.15)
' (uinj'H > uivj"’) - !
A;,j“i,j * Bi,j 2k 3 Ci.j

when j = 0 or M.

These correspond to relationships on I' between u and du/dn, the derivative
of u normal to I'. This correspondence indicates that it is desirable to
define, i‘.x‘nplicitly, the values of i for integers i,j, which are in Ryy)g but
not in R'NM' Accordingly,

ulyJ u—l)J du « )
o - D—(O,Jk).
UN#tL, T UN=Ly o o
— zm " b (Skk
(B.16)
W, T W= Bu g, .
—Cm U

Ui M+1 ~ Y M-
2k

_du
= by(h.Y).J
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If it is desired to implement boundary conditions involving higher d.erivatives,
then the formal definition must make use of them in a similar fashion.

The discussion will not be confined to functions F which are quac'lratic
in u and its derivatives. Let the translation operators Eg and Ey be defined

as
Egui,j = ui+p’j
and
= - B.17
E$“1,J = ui.J+p ( )

for all p such that 2p is an integer. The difference operators used in
Eq. (B.11) can be written in the following form:

N

T T
Ay = Zh(Es EN):
2, E-L-(E -EZY);
by =2 \By ;
2 = __ - =1Y. > .
Af = —(Eg 2+E )% (B.18)
I =—(E,-2+E}');
by g2 ¥ y
== 1 i =
Asby = m{(ES-ES')(Ey-Eyl). )

If F is a quadratic expression, then these operators or products of them may
appear. We first prove three general theorems.

Theorem I

If u; ; and x; ; are defined for all (i,j) such that 2i and 2j are integers
and vanish outside Ry, and if operators Ag and are defined in terms of
the translation operators defined in Eq. (B.17) as follows:

= = o] -
By = E(EIS/Z_ESI/Z); by = }_I(E;,/z_ EjY?), (B.19)

and if Vs is a linear function of the e

VNM = ~(A§Ag ui,j)’ (B.20)

i:o(l/zz)N j:o(x/zz)M i



where

-1/2\P
=S El/l 3 /2
As = (_h ete.;
then for (r,t) € Rz, and any integral values of p and q,

VM
bur .t

= (-1)P*9(aPa9x; ).

Proof.

The coefficient of U, t in an expression of the form

v = H(ESERy, ;) (B.21)

o T T
i=o(1/2)N j=o(1/2)M "
is readily seen to be

EPE x, ;.

Now Eq. (B.20) is a sum of terms such as V'. The differentiation picks
the coefficient of uy ¢, so

WM ( E;V2- EV2 )P (E;,l/z A E;'/z. )q )
O\lr't 5 h k r,t

= (-1)P*9 (aBagx, ¢),

which proves the theorem. .

Theorem II

If the conditions of Theorem I hold and V) is a sum of quadratic
expressions of the form

v = 2 2 x (ABAJu; 5)(AT A%y ), (B.22)
hibd i=o(1/2)N j=o(12)M il e 6.
then
OVNM + :
—_— = +
ey (-1)P"9 8BAd[x, 80w, ¢] + (-1)™HPA AR x, ¢ABAJu, ] (B.23)

for (r,t) € Ry and integral values of p, g, m and n.
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Proof.

Differentiation of each product yields the sum of two expressions
to which the method of proof used for Theorem I applies.

Theorem III

Let uj j and xj j be defined as in Theorem I; then consider VM
defined as follows:

= d meRE c2p nhi (B.24)
= 2 Y x; i(B2RBAZCAZyy )(BSE,AZEAT Y ), :
YNM = TN j=o(1)M SAyASTEy g, ) As By B Ay Ui 5
where
- _ 1(pl/2 -1/2 o T
Asui,j = %(Asui+l/2,j+ASui-l/2,j) = Z(E +E )Asul,_]'
Then
VM ~ (-1)2+b zagbpzc,2d 3eif azeazhy ]
b\lrt—(-) AsysAyxr,tsysyr,t
+ (-1)e+ BEREa2Enh ), BaRbAZCAZdu, (). (B.25)
Proof.
We note that
Bs = HEVZ+E]V?) 4,
and

- L(gv2 =1/2
by = z(Ey +Ey ) by,
so that the method of proof of Theorem I can be used without change.

The following is a sample of the special cases of Eq. (B.25), which
are of interest when F is a quadratic function of U and its derivatives.
(The arbitraryfunction X(s,y) takes values xy t at (r,t). The symbol x is
used to denote ar tXy t. The usage of oy t is given in Eq. (B.10). For
convenience, the subscripts are dropped on u, and V is used to denote
VNM/hk.)



dU  dV o
F = Xb—s: o ~ARX; (B.26)
s U, BV
= 5. = ASx; (B.27)
o U T3
= Soby E = A yXi (B.28)
xnu‘_ov_z- = = : .
o A oy bg(xAgu) = -2xA%u  (if x is constant); (B.29)
dU dU dV -, = =t e T ' :
Fs--b—y-: - = -As(xAyu-AYxAsu) = -ZxAsAyu (if x is constant);
(B.30)
dU 2*U VY - -
7y —b—z: iy = 'AsxAzsu + A:xAsu = 0 (if x is constant); (B.31)
s
dU d*U  dV - g -
s dady’ = = -Bg(xBghyu) + Aghy(xAgu) = 0 (if x is constant);
(B.32)
AN
X(;%); %% = ZA:(xAzu) = ZxA;u (if x is constant); (B.33)
d? i dV
x(bsb“;): b—u = ZZsKy(szKyu) = zxK‘sZ;u (if x is constant);
- (B.34)

R ST A T - S e A TR T
= X<Fs_l)<-bsTy)' ¢ il 0% (xBgByu) + Bgby(xbgu) = 2x8g58,85u

(if x is constant). (B.35)
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APPENDIX C
Solution of Elliptic P.D.E.s Using a Finite-element Approach

Let R be the region 0 <s <85, 0<y= Y, and let it be divided into
N X M rectangles Rij by the lines y = Yj. j=1,2, ... M-1 and s =_Si,
i=1,2, .., N-1. Rectangle Rjjis bounded by y = Yj-pp ¥ = Y:, 8 = Bj.,

ands = S;jfor1 Si<Nandl<js<M. (We define Sy = Yg = 0, SN = S,
andYM = Y).

Let u be a piecewise bicubic approximation in R to U, the solution
of an elliptic equation with suitable boundary conditions on the boundary
of R. We define u as follows:

t
T
Si+Si_, Yj+Yj'l

3oy
uls,y) = %rt S;: - Si-1 Y"Yj-l
r=0 t=o 2 -

J
2

for (s,y) € Ri,j- For convenience, we write

S: =8 Yj = Yj-l
g = > . T[J = > . (CZ)

The piecewise bicubic approximation in Eq. (C.1) is continuous. It
has a continuous first derivative (and cross derivative) if the cozefficients
aijt are determined by requiring that values of u, %, g—‘;, and bbs :y
by approximation (C.1) on adjacent rectangles should agree at their common
corner points. Ony = Yj, for 1 <j < M-1, between Rj ; and Ri,j+l' u is
defined by a cubic in s in both R4 j and Rj j;,. But both cubics satisfy the
same four conditions. At points (Si,Yj) and (Si-l!Yj) they yield the same

given

du . s . :
values of u and ;—. Since four coefficients are involved, the cubic expres-

Os
sions are identical and u and g—‘sl are continuous across y = Yj. Similarly,
% has a unique cubic form ony = Yj~ Analogous arguments yield con-
tinuity of u and its first derivatives across s = S;. It follows from Eq. (C.1)

that

3 3 3%

_ 3,

U(SPYJ) = Z al'Jt'
r=o0 t=o0

3 3 =%
iy ¥y) = 3 (17 el [ (Contit)



3 3
u(sy¥j-) = 3 3 (- oy

u(8j-1,Yj-1) = Z Z (-1)F (1) o e

‘ +1)(t+1)
b—bs:_y(si'Yj) i Z (x ;)-n] r+l t+1? etc.

L (Contd.)
(c.3)

r=0 t=o0

]
E. r+1,t?
r=0 t=0 1
2. 3 5
r i
= z Z (-1) 3 o, ¢ eted
r=o t=o0

Y

We now define 16 X M X N elements p;jq, p=1(1)4,q = 1(1)4 as

follows:
0 l
1] - —
pl,q 4
¥ 1
Prlq = 3
2o 1
R
pl.q T4
- 1
7 S
p4,q T4

where
cij = 1;

.

r=

M- M-

|
T ™M

i 1) 1) W
f :
0 t=0 q.r,t »

< T IJ ij
X (-1)7 g i ¢

o t=o0 ¥ o

1
ij ¢j
otz:o( 1)t e 2

A DF (1) e fgrt,

|| s [

il = g ci,j = My < = &M (C.5)
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and

5 g du oA
i, ¢ = Wi Ytk Dlry = 55 (SionYj-t)

(c.6)
2
ij du R e = T
Bt = 5y Si-nYi-th frt = Tovy (ByexiEget)
We may now insert Egs. (C.3) into Eqgs. (C.4) and obtain (dropping super-
scripts ij)

B
Ppa = 2 2 d ,r,to%r,ti
ki r=o0 t=o0 P
2 3
Pp,2 = z Z (i) dp,r,tar-H,t;
r=o t=o
¥ (c.7)
5 -2
Pp,3 = Z Z (t+1) dp,r,tdr,t+1:
r=o0 t=o
2 5
Pp4 = 2 (r+1)(t+1) dp r tor+i,t+1s
r=o t=o J

for p = 1, 2, 3, 4, where

RGN

dy,r,t 2 = 1 for r even, t even,
0 in other cases;

DRI (1Y

da,r,t o = 1 for r odd, t even,
= 0 in other cases;
= Ty == 1)E
d3 r,t = (L4(z1) LEI 14 = 1 for r even, t odd,
= 0 in other cases;
= TN = =1\t
dgrt = BEIGH, ]‘El ) = 1 for r odd, t odd,

= 0 in other cases.

Equations (C.7) thus consist of four sets of four equations, each set being
independent of the others. The solution can be written as follows:
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Let D be a 4 X 4 matrix defined by

I
0o + o0 -%
D = .
0w & =4
o o o %
Then
%, 0 p
2,0 p
2, = <D
Q0,2 P
@z 2
o0 Boty @l /@ Pz,1
a o3 0 - D 1 1 00 P1,2 L
ﬂ],z 0 0 1 0 p4,3
a3,z 0 0 =1 1 P3 4

C.8
305 8 10 ( : )

o
—
o
o ©o o
©
-
~

1 0 1

az :=
o,
o

= 51 = B

@3
2,3 2
@1 1 0 0 Ps
0‘3'1 1 1 0 .

a4 = =
@) 3 L .1 P2,3
o3 3 1=l =1 4 P14

We may now evaluate the derivatives of the airjt with respect to values of u,
b_“ E and ﬁ
s dy’ 0sdy
Q:J), where these columns are defined in Eqs. (C.8). Forr = 0,1;t = 0,1,

-
1,1
2,2
;
3,3
P4,4

o O o
Rl
w
~

at the corners of Rij' Let All be the matrix (Q%j- égjv §§j.

1(-1)F (1) (-)T(-1)f

D pairgrt) - pf 0 (1T 0 (DT )

) 0 0 (-1 -(-)F-1) -
0 o 0 (-1)F(-1)¢ (Contd.)
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0 0 0 0 (Co(ntd.;
9
5 E (-1)F 1 (-1)F (-1t (1)
__b__[A1+r,J+t] — D) g
) o ol CER
s 0 0 -(-1F (-1 (1)
0 0 0o O
_L[Ai“}'r,"l’}’t] = B 0 2 0 0 .

du t t =y 1 2
d(—= (-1)t (-nF(-1)t 1 (-1)
(DY>1,J 0 -(-1)F(-1)t o (-1)¥

0 0 0 0
0
o) [Ai+r,j+t] =T 0 ¢ 0
b( d2u 0 0 0 0
bsby i,j

(-1)F (-1)F (-1)F (-1)F 1

J

The subscripts i,j on u and its derivatives denote the value at (Si,Yj).

Now consider the quadratic expression

F = U'A(s,y)U + b'(s,y)U + c(s,y), (C.10)
where

o dU dU d*U d*U d*U

U = (U. B B pae Beby byz>’

b is a vector of six elements, and A is a symmetric, positive definite
6 X 6 matrix. Let I be defined as follows:

i fRF dsdy = f(p_'Ag+g'g+c) dsdy. (€.11)

The energy integral for a shell covering R has this form. The
discussion will be restricted to matrices A and vectors b which have
polynomial elements. This is not a strong restriction since approximations
of this form can be found in each element Rjj. If U is approximated by u,

by use of the approximation in Eq. (C.1), then the integral I may be
approximated by

N M

1-3 Zf (u'Au+b'u+c) dsdy, (c.12)
1=1 _]:l Rij



where

i b_“ Su bz_“ Rlu 13
= 7\ 08’ vy’ pg2’ OsOy’ oy2/) k:13)

these elements being functions of s and y obtained from Eq. (C.1), by
differentiation when necessary. Thus we may write

u = P(s,y)al], (C.14)

where P(s,y) is a 6 X 16 matrix of polynomial elements, and a_i-j is a column
vector of 16 elements obtained by concatenating a,, a,, aj, and a,.

We now define L;j, a four-element vector, as

i du du d%u
s el =) L (=) C.15
L"J [u” ( bs)ij (by)'- (Osby)ij] { )

1)

and Lij, a sixteen-element vector, as
= (B M, 3o M, o1 Ry, jot)- (C.16)
Hence, from Egs. (C.4) to (C.8),
atlt= B”lij - DMU_R_ij, (c.17)
where all matrices are 16 X 16 and where D has zero elements except for
its diagonal 4 X 4 matrices (the coefficients of the p-columns in Egs. (C.8));

MiJ is a matrix which generates the Ppq from corner values. From
Eqgs. (C.12) through (C.17),

N M ! W
L= z {[P(s y)BIJ)\IJ] AP(s, y)B”K +b'P(s,y)BULij+ c} dsdy

=k R (C.18)
or
. N M .
=) 21a:8Y P'(s,y)A(s,y)P(s,y) dsdy | BUA;;
1=1 j=1 J Rij
+[[ b'(s,y)P(s,y) dsdy] Bijﬁij +/ c dsdy} (c.19)
Rj; Ryj

Since A is positive definite, the first term of the integrand in Eq. (C.12) is
positive and zero only if u = 0. It follows that the integrand of this term
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has the same property, so that in Eq. (C.19) the matrix
cij .= Bij'[fR P'(s,y)A(s,y)P(s,y) dsdy] Bl (c.20)
ij

is positive definite.

We now consider the derivatives of I with respect to the components of
Ajj. Let Cij be partitioned into 4 X 4 matrices (C3,). since Cij is symmetric,

ClJ = C1J Since (1ijis positive definite, a diagonal element of cij is greater
than the sum of the absolute values of the off-diagonal elements of the cor-
responding row or column. This theorem, due to Gershgorin, is discussed by

Varga.’3

When Eq. (C.19) is differentiated with respect A h ij and the derivatives
equated to zero, the condition for a minimum of I, the following matrix
equation emerges:

1 _]+l

ik, gy (C +c2 ‘J)x +C%.3H'J.}hi+l,j'l + (Ciz+ )k1 =53

- +
& (CH e cltbiy ghiity ciftithy |, i+ (ciftd + I Rias, §

+1,j+1y ¢ i
& CzaJ )\1 1,j01 t (C J+1+C1 b ") Aija t ciit 1y A, 41
=E %[/ﬁ b'(s,y)P(s.y) dsdy] Bil. (c.21)
ij

Equations of this type are available for each point of the grid of lines

8 = S;, y = Yj, so that Eq. (C.21) represents four equations of a system

of 4(M+l)(N+1; equations. Cursory examination indicates that for a row-
by-row ordering of the mesh points, the matrix of the system is symmetric.

Now consider the first linear equation represented by Eq. (C.21).
The relevant coefficients lie in the first rows of the 4 X 4 matrices

Cpq The diagonal element is obtained by taking the sum of the first ele-
ments of the matrices CH 5 C1+l 3 c§;3+‘, and C};H'jﬂ. But Gershgorin's

theorem applied to cii, ¢itnj, c¢ijt, and CitLJit! ghows that these elements
are greater than the sum of the absolute values of a unique set of four of
the other coefficients appearing. Similar remarks apply to the other

three equations in Eq. (C.21). Gershgorin's theorem, applied to the matrix
of the 4(M+1)(N+1) equations, thus indicates that this matrix has no
eigenvalues on, or to the left of, the imaginary axis. Since the matrix

is real and symmetric, it is positive definite.
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