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NUMERICAL ALGORITHMS TO DETERMINE 
THE STRUCTURAL BEHAVIOR OF 

A CYLINDRICAL INVOLUTE FUEL PLATE 
UNDER STEADY-STATE LOADING 

by 

D. B. Taylor* and A . H. Marchertas 

ABSTRACT 

Differential equations are derived describing the struc­
tural characteristics of a thin, cylmdrical involute shell. The 
shell considered is of homogeneous construction and uniform 
in thickness, and is subject to a steady-state loading consisting 
of transverse pressure and internal thermal gradients . These 
are assumed to vary throughout the entire surface of the shell-­
in case of the temperature, also across the shell thickness. 
Boundary conditions are as follows : free involute ends of the 
shell; axial sides which are pinned, fixed, or what has been 
referred to as "rotated. 11 In their final form, a total of three 
partial differential equations are deduced in terms of tangen­
tial, axial, and transverse displacements . These quations are 
not solved, but possible methods of numerical solutions are 
discussed. 

I. INTRODUCTION 

The work contained in this report was initiated in connection with 
the safety of the Argonne Advanced Research Reactor (AARR). The latest 
version of the AARR reactor core consisted of two concentric fuel elements, 
each comprising a multitude of involute plates, as shown in Fig. 1. The 
cross section of the individual plates 1s illustrated in Fig . 2. The design 
of the structure required that the fuel plates sustain safely all possible 
variations of pressure and temperature during reactor operation . 

The loads could be of numerous types: internal nonuniform expan­
sion due to reactivity variation of the fuel along the plate and pressure 
variation within the cooling channel, just to mention two. These and other 
variables are interdependent and of transient nature during reactor opera­
tion. It should be evident that not all of the variables could be included in 
the study of mathematical models at once; it is more efficient to progress 
in steps by examining each relevant variable on its own merits. 

*Now nt Edinburgh Regional Computing Centre, Edinburgh, Scotland. 
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Fig . 1. Core Assembly of AARR Fig. 2. Fuel and Burnable-poison Distribution 
in the As -built Element for AARR 

Since the involute plates or shells have not as yet been extensively 
studied, it became necessary to deal with this problem from the beginning. 
First, the involute plate of homogeneous construction was assumed; loading 
was taken to be applied statically and to change only along the length of the 
involute. This one-variable treatment of the plate is described in Ref. 1. 
The present analysis, which may be called the second step of the treatment, 
considers the same plate but with load variation both along the involute and 
the axial direction. Thus, the corresponding response of the plate is a two ­
variable affair. Other complications to the actual fuel-plate problem, such 
as nonhomogeneity of the plate, transient input conditions, and buckling con ­
siderations, have not been considered. 

Termination of the AARR project brought an end to the overall treat ­
ment of the fuel plate; even the numerical solution of the herein-derived 
differential equations for the two-variable involute plate could not be com­
pleted. The deduction of the differential equations adapted to the involute 
plate and appropriate boundary conditions, which had been obtained for that 
purpose, are outlined in this report. Possible methods for numerical evalua­
tion are also suggested. 



ll. ANALYTIC DEVELOPMENT 

A. The Problem Defined 

The object is to analyze the two-variable deformation and strength 
susceptibility of a thin involute plate (or shell) which is subjected to internal 
temperature variations and transverse pressure changes. The shell is 
assumed to be homogeneous and uniform in thickness. All loads are of a 
steady- state nature. 

A cross section of the involute configuration, with its geometrical 
relationships, is illustrated in Fig. 3. The inside boundary of the plate, also 

being the geometric evolute, ts of cir­
cular shape; the concentric outside 
boundary of the involute is also 
circular. 

Ends of the involute shells are 
free, while their sides are intermit­
tently welded to the concentric solid 
cylinders (details not shown in Fig. 1 ). 
This boundary condition at the sides 

, .._ of the shell cannot be mathematically 
represented without expending a lot of 
time and effort, tf at all. An alterna­

Fig. 3. Geometrical Definitions 

tive is to seek solutions of problems 
with greatly stmplified boundary con­
djtions and then to bracket the actual 
results. 'Thus, the sides of the shell 
are assumed to be pinned, completely 
fixed, or allowed to rotate with respect 

to the center of the core. The last boundary condition is one in which the 
shells are fixed to the cylinders in the usual sense, but the cylinders them­
selves are free to rotate with respect to the center of the core. The answer 
to the actual problem would then be bracketed by the solutions of the above 
boundary conditions. Consequently, as far as this report is concerned, solu­
tion of the involute-shell problem with the above three boundary conditions 
at the sides will be sought. 

B. The Method Used 

Thin shell theories which have been usefully applied in the field of 
design are those based on the assumptions proposed by Kirchhoff.l These 
assumptions extend the beam theory to that of plates and shells, thus 
complementing the plate theory with physical meaning. Although the theories 
found in recent technical literature are based on the identical assumptions, 
most of them show variations in their final expressions. The wide variety 
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of results in shell equations is due to the variations of different approxima­
tions in deriving the strain-displacement relations. Most of these variations, 
however, as noted by Koiter, 3 are of such an order (-hjp, where h is shell 
thickness and p the radius of curvature) as not to affect materially the final 
numerical solution. As shown by Koiter, the additional terms can be added 
or subtracted from the equations at will, thus providing a means for possible 

simplification of the solution . 

It had also been shown by Novozhilov4 that the original Kirchhoff 
assumptions introduce errors of the order h/ p. Consequently, since 
Kirchhoff's assumptions are used as the basis of the thin-shell theory, the 
ratio h/ p can be neglected when compared with unity in the derivation of 
strain-displacement relations . This, naturally, simplifies the solution to 

a great extent. 

It has also been illustrated that the omission of terms of the order 
of hj p, as compared to unity, may be justified even in cases where p "" 0 . 
An example of such a case is the involute shell extending from p = 0 to 
some practical finite value . A one-variable illustration of such an example 
is given in Ref. 1, where five independent "theories" were considered: 
three of them had neglected h/ p in their derivations; the remaining two had 
not. All of them had been adapted to the one-variable, cylindrical involute 
shell and were solved explicitly for the dependent variables . A typical 
numerical example failed to show any differences between the five solutions 
which could be directly attributed to omission or retention of h/ p . It was, 
therefore, suggested that the simplest theory (which neglects h/ p) should be 
considered for further and more involved flexural analyses of the fuel plate. 

The same viewpoint is applied here to the two-variable problem of 
the cylindrical involute plate: deformations are assumed to be small and the 
terms h/ p, when compared to unity, are neglected. A relatively simple and 
consistent presentation of the thin-shell theory is given byKoiter, Novozhilov, 
and some others . Since Novozhilov's material is collected in one book/ his 
reference will be used alone, for purposes of convenience . 

C. Derivation of the Differential Equations Describing Deformation 

1 . Shell Geometry 

The plates occupy an annular region of finite length. A cross 
section with the centerline of one plate is shown in Fig . 3 . Coordinates y 
and s are defined by distance across the surface of the plate, y in the 
axial direction and s along an in volute. The arc length s may be expressed 
in terms of 9, the generating parameter of the involute, which in the uncle­
formed state has radius of curvature p = a9; thus, 



( 1) 

Hence, the radius of curvature is given by 

p (2) 

The involute may also be described in terms of r, the distance 
of a point on the involute from the center of the generating circle, and cp. 
which is defined in Fig. 3. Geometrical analysis yields 

(3) 

2. Basic Assumptions and Notation 

The thin-shell approximation as proposed by Novozhilov4 and 
discussed in S ec. B will be used in the following form: 

(a) In the determination of the deformations of the fibers of a 
shell parallel to its middle surface and also in the computation of the strain 
e nergy of the deformed shell, the deformation due to shearing stresses 
normal to the shell and the strain normal to the shell may be ignored. 

(b) The normal stresses acting on planes parallel to the middle 
surface of the shell may be ignored in comparison with other stresses. 

The equations written here are obt ·ned from those given in 
Ref. 4. The stress and strain notation and the coordinate orientation is 
that used by Timoshenko,s* with (y,s) replacing (x,y). 

3. Forces and Moments on a Surface Element 

Figure 4 shows a surface element separated by four cuts per­
pendicular to the middl e surface along the curves s = sp• s = sp + lls, 
y = Yp• andy = Yp +fly. Also shown is a layer of the shell of thickness dz 
at even distance z from the middle surface . 

S ix stresses act on the edges of the layer: crs and cry are normal 
stresses, a sy and a ys are the shear stresses acting parallel to the middle 

* Note: The notation of Novozhilov (subscript N where necessary) is related to that used hete as follows: 
a 1 = s, a2 = y , ZN = -z. Al = A2 = 1 , W = lji. R1 = P: R2 = "': N1 = -0 5; N2 = -Oy: T1 = N5; 

T2 = Ny• T12 = Nsy• T21 = Nys• M1 = - M5 • Mz = - My, M12 = -M,y. !l,lzl = Mys· 
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surface, and a sz and ayz are the shear stresses acting normal to the middle 
surface. The stresses a~, a Y' etc., act in the opposite direction too S• a Y' 

etc., where o~ = o 5 + (bas/ bs)t>s, etc . 

uc' s 

A y s 

Fig. 4. The Saesses on a Layer Parallel to the Middle Surface 

The resultant membrane and shear forces per unit length are 
obtained by integration over the plate thickness: 

Ns 
fhjz 

= -h/ z o s 
dz; Ny 

jh/ z 
= -h/2 ay(t-~)dz 

= Jhjz asy dz; Nsy 
-h/ z 

Nys 
fh/Z 

= -h/ zays(t-*)dz 
(4) 

= ih/ z Osz 
jhjz 

Os dz; Oy = ayz(t-~)dz 
-h/ z hji p 



The resultant bending and twisting moments about the y and s 
axes also must be considered: 

Ms = J hj z o sz dz; 

-hj z 
(5) 

=f hj z o syz 

-h/ z f
hj z 

dz; Mys = - oysz(l -~) dz 
-h/z p 

The orientation of these resultant forces and moments are shown in Fig. 5, 
in which N$ Ns +(CN 5 /?.ls)lls , etc. 

Fig. 5. Resultant Forces and Moments 
on an Element 

When products of displace­
ments and their derivatives a re 
neglected, cons ide ration of the 
equilibrium of a n element of the 
shell leads to the e quations 

?.lOs ?.lOy Ns 
+--+-p +p 0; 

()s ()y 

?.lNs Nys 
--+ 

()s y 

N 5 y ?.lNy 
--+--

()s y 

s 

Os 

p 

0; 

0; 

0· 

?.lMy ?.lMsy O O· 
--oy+--s-- y 

M 5 y- p(Nsy-Nys) = O. 

(6) 

Substitution from Eqs. (4) and 
(5) into the last of Eqs . (6) gives 

f h/ z 
Msy- p(Nsy-Nys) = -h/ z (z-p)(osy - Oys)dz = 0 . (7) 

It follows that the assumption that displacements are small is sufficient to 
establish that o sy = Oys• i.e., the stress tensor for a layer is symmetric. 

J 1 
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Now let u, v, and w be the displacements of the surface in the 
s, y, and z directions . The Lame coefficients for the chosen s,y coordinate 
system are both 1. Novozhilov gives a derivation of the relationship between 
the strains and shear deformation on a shallow layer parallel to the mid dle 
surface, such as in Fig . 4, in terms of five parameters of the middle surface. 

His resul ts are as follows : 

€ s(z) 
p 

-- (es-ZKs), 
p - z 

ey(z) €y- ZKy; 

'!'(z) _ P [w-2(1-~)zT} p - z 2p 
(8) 

where es and ey are strams on the middle surface, and ' is the change in 
shear on this surface. Corresponding functions of z relate to a surface at 
distance z from the middle surface . The parameters Ks and Ky are related 
to the changes in curvature in the s and y directions (K~ and Ky) by 

Ky = Ky · (9) 

The parameter T is the twist about either axis . Novozhilov derives the 
following relationships between these parameters and the deformations of 
the middle surface · 

bu w bv 
Es bS - p ey = by; 

bzw b u 
Ks = bsl + bs(p} Ky 

Accordingly, 

K' s 
bzw ua w 
-- - - + -bsZ pl pZ • 

bv bu 
bS + by; 

4. Evaluation of Strain Energy 

(1 0) 

( 1 1) 

We now write down the stress-strain relationships for a heated 
isotropic shell. The deformations will be given on a surface parallel to the 
middle surface of the shell and at distance z from the middle surface . The 
temperature of the shell , T , is function of s, y, and z . The relationships 
are 



1 \) 
E a s(z) - E oy(z) +aT; 

( 12) 

2(1+ \)) 
'l'(z) = -E-Oys (z), 

where v is the Pois son ratio, E is Young's modulus, and a is the coefficient 
of linear thermal expansion, which are assumed to be independent of tern ­
perature (see, for example, Langhaar, Miller, and Boresi6 ). These equations 
can be solved for the stresses: 

os (z) = ~[es(z)+vey(z)-(1+v)aT];} 
( 1 - \) ) 

oy(z) = ~[ey(z)+ves(z)- (1 +v) aT]. 
( 1 - \) ) 

Now the strain energy of the shell is given (Ref. 6) by 

( 13) 

( 14) 

This e nergy integral ignores normal stress and shear strains in accordance 
with part (a) of the initial hypothesis. When Eqs. (8) are introduced mto 
E9. (14) and the integration with respect to z is carried out, then, if 
hj p is ignored in comparison with unity, 

[ l hjz fh jz J _ 1E~vff ( es + ey ) Tdz-(Ks+Ky) zTdz dsdy . 

-hjz -h/z (1S) 

13 
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5. Evaluation of Resultant Forces and Moments Using Virtual Work 

The relationship between the forces and moments and the strains 
on the middle surface may now be obtained . The variational change in the 
strain energy may be expressed in the for m 

This is the work done by incremental strain s . Introduction of Eqs . (8) yields 

(1 7) 

If Eqs. (4) and (5) are used to eliminate the integral with 
respect to z, 

where 

ou 

Msy 
H = i(Mys -Msy); S = Nys + -- = Nsy · 

p 

(18) 

(19) 

The variables N 5 , Ny, My, Ms, S, and Hare sufficient to 
describe the equilibrium of the shell. It will be seen that any boundary 
condition on the shell can also be expressed in terms of these variables , 

When the coefficients in Eq. (18) are compared with those 
obtained when the variational increas e is computed by direct differentiation 
of Eq . (15 ), the following relationships are found . 

Eh 
-( --Z) (ts +vty) 
I - v 

__ a_ T E fh/z 
1 

- \) - hj z 

Eh 

(I - vz) 
E fh/z 

(ty+vts)-~ T 
- " -h/ z 

dz ; 

dz; (20) 
(Contd.) 



H 12(1+v),., 

Since 

the error introduced by putting 

My s = -Msy = H 

is small if h/ p is small. 

(Contd .) 
(20) 

(21) 

Equations for the displacements u, v, and w may now be obtained. 
Substitution from Eqs . (10) and (11) into Eq. (20) and use of Eqs. (19) and (21) 
yield 

12D(bu _ ~+v bv ) _ T *; 
h2 bs p by 

12D [v (bu _ ~) + bv ] _ T *; 
h2 bs p by 

6D(1 -v)(bv + bu) ; 
hz bs by 

(22) 
(Contd.) 

IS 
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where 

T* 

T** 

l
h/z 

~ Tdz; 
1 - v I h l 

Ea lhlz 
- - zT dz; 
1 - v I - h l 

(C on t d. ) 
(22) 

6. Derivation of the Differential Equations for the Displacements 

By eliminating shear loads Q s and Q y from E qs. (6), the num be r 
of differential equations can be r educed to three : 

bNsy bNy 
-- + 0; 

bs by 

(23) 
bN s bNy 5 1 bMs 1 bMys 
-- + -- - - -- + - -- = 0; 
bs by p bs p by 

where the last of Eqs. (6) has been neglected. Equations (22) and (23) com­
prise 11 equations with 11 unknowns. Three equations for u, v, and w can 
be obtained by substitution of Eqs. (22)into Eqs. (23), giving 

h -hjz by 
a (1 +v)jh/z bT dz; l 

(2 4) 
(Contd.) 



+ l~z [ bJw + (2- v} bJw + ~(~) + 2(1 - v) ~(~),l 
P bs3 bs by2 bsZ P byz P J 

h/z 
= a(l+v) f bT(1 _! ) dz; 

h - hj z bs p 

(Contd . } 
(24} 

bu w bv --- + v­
bs p by 

a(l+v) f h/z hzp 
-h-- (T + pz<IT) dz - Till p 

-h/ z 

7. Direct Evaluation of the Displacement Equations !rom the 
Energy Integral 

An alternative derivation of these equations can be obtained by 
substituting from Eqs. (10) and (II} into (15} , and using variational methods . 
The substitution yields 

u [( bv) (bu w ·) I (bv bu)
2
]} 2(1 - v} - - - - - - - + - dsdy 

by bs p 4 bs by 

bzw] 2 -

by2 {[b
2w b (u)~ (b2w) 2(1- v) - + - - -

bsZ bs p byZ 

( 
b

2
w 1 bu)

2

}) - - - +-- dsdy 
bsby p by 

Eo- 1){( bu w bv ) jhj z [b
2
w b (u) b

2w]f } - -- - -- + - T dz - - + - - + - zT dz dsdy 
I - v bs p by -h 1 bsz bs P byz 

t 2 (25} 

To this must be added the work done by the external force p, namely 
JJ wp dsdy, to obtain the total energy V of the system Now equilibnum 
occurs when V has a minimum, that is, when the variational denvatives 
of V with respect to u, v, and w vanish. The evaluation of suchaderivative 
is achieved as follows (see Appendix A} : 

17 
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If 

[ l Jf ( bu bu bzu bzu , bzu) dsdy, 
V u = F s, y, u, bs' by' bsz' bsby byz 

then 6 V /a u = 0 implies that 

(26) 

When V = V[u, v, w]. the variational derivatives with respect to v and ware 
similarly defined. The e quations oV/ov = 0, oV/ ou = 0, and o V/ ow = 0 
lead to Eqs. {24). In this manner, Eqs. {24) are obtained without reference 
to the average stresses and moments. 

D . Boundary Conditions 

A plate of the plan shown in Fig. 6 will be considered. 

·r 
r-------~·~·5~------. 

Fig . 6 

y• Y Pl an of the Plate in (sy) -space 

- , 

I. Conditions on the Ends of the Plate 

The plate will be left free on y = 0 and y = Y. The forces 
a nd mome nts actin g on the edge y = 0 are Ny. Nys. Oy. My, a nd Mys· 
These are shown in Fig. 7. 

Fig. 7 

Load Condition on y = 0 



Conditions which represent a free edge will now be derived. 
The force Ny alone is able to produce extension in the y direction, so that 

if the edge is free, Ny = 0 . 

__v' Similarly, My alone can produce 

• 

' rotation about the x axis, so that 
My = 0. The moment Mys can 
be represented by forces in the 

!:li!. 
'" 

Fig. 8. Resolution of Mys on y = 

z or s direction. If we refer to 
Fig. 8, the couples acting on 
adjacent edge increments with 
centers C 1 and Cz of equal length 
As may be replaced by forces. 
To a first approximation, the 
distance between C 1 and Cz is 
As. Thus, if Mys is the couple, 
per unit length, acting at C 1, then 
(Mys + (tlMys/t>s)As) acts at Cz. 
These couples are now repre ­
sented by pairs of forces of 
equal strength having parallel 
lines of action and acting in 
opposition. Forces of magnitude 

Mys/As act norma l to the tangent at C 1, and forces of magnitudeMys/As t 
tlMys/tls act normal to the tangent at Cz. 

The forces are now resolved at P, between the incr ments. The 
force per unit length in the z direction is (tlMys/ s) cos fl. Thus. if no forces 
act on the edge of the pl ate (II being small), Oy,.- Mys/1ls = 0. The force 
at P in the negative s direction is 

(
2Mys bMys) . . 2Mys 
----;;$ + bS s ln a = c;-;- (27) 

so that the force per unit l ength is Mys/ P; hence, on a free edge, Nys + 
Mys/ P = 0. Collecting all the conditions on a free edge at y = 0, 

tlMys 
Ny = My = Oy- --s-

Mys 
Nys + -­

p 

The same conditions will hold on y = Y. 

2. Conditions on the Sides of the Plate 

0. 

Several types of boundary conditions will be considered on 
s 0 and s = S. 

(28) 

19 
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(1) On fixed edges, 

u v = w 0. 
(29) 

(2) On pinned edges, 

u v = w = Ms = 0 . 
(30) 

(3) A rotated edge may occur, i.e., the outer cylinder onto 
which the plate is fixed may be free to rotate about its axis . If the plate 

is fixed to the cylinder, then 

v 
bw 
bs 

0. 

The edge of the plate is not free to move radially so that (see Fig. 3) by 

geometric reas oning 

u cos (9- cp) - w sin (8 - cp) = 0 . 

Using Eq . (3) this can be simplified to give 

u-w9\s=0 

on s = S . In equilibrium the force component in the tangential direction 
will vanish, so that by similar reas oning 

Collecting these conditions, on s = S , we find 

(31) 

The conditions in Eqs . (28) through (31) are readily expressed in terms 
of u, v, and w alone using Eq . (22) . It emerges that conditions on s = 0 can 
be obtained by setting S = 0 in the above . 

3 . Variational D erivation 

It is instructive to derive the boundary conditions from varia­
tional considerations . Equilibrium occurs when the energy integral has an 
extremum , that is , when its first variation vanishes. For arbitrary incre­
ment functions h(s,y) , k(s,y), and t(s,y) of u, v, and w, the components of oV 



must individually vanish. Equation (A3) of Appendix A is now applied to a 
region R*, which is bounded by r*, made up only of lines parallel to the s 
andy axes. The first variation of Vis thus given by 

+ (( Ewt dsdy +f [( bMy + 2 bMsy) t- My bt] ds 
JJ R* r* by bs by 

f [( bMs bMsv ) bt J - ---2----=..L. t+Ms- dy, 
r* bs by bs 

(31) 

where Ev = 0, Eu = 0, or Ew = 0 give Eqs. (24). If 6V vanishes, then not 
only must the integrals over R * vanish for all h, k, and .{,, but also the con­
tinuous integrals on r*. The values of h, k, and t, and the normal derivative 
oft might vanish, giving clamped boundaries, or the natural boundary con­
ditions might hold: 

(l) On s constant: 

(i) Ns 
Ms 

(ii) Nsy = 0 

(32} 

(ili) 
bM 5 _ 

2 
bMsy 

bs bY 
0 

(iv) M 5 = 0 

(2) On y constant: 

(i) Nys 
Mys 

0 +-- = 
p 

(ii) Ny = 0 

- (33} 
Mys 

Nys + -p- = 0 

(iii) 
bMy + 

2 
bM5 y = 

0 
bY bs Q - bMys = 0 

y s 

(iv) ~ly = 0 

21 
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That these are precisely the free edge conditions can be seen by using 

Eqs. (6) and (23). 

E. Methods of Solution 

Three methods of solution will be discussed. First, a general 
finite - difference approach, then a Rayleigh-Ritz approach, and, finally, 
a discrete-element approach. 

l. A Finite - difference Scheme 

A finite-difference solution of the problem may be obtained by 
solving difference equations derived by replacing the derivatives in Eqs. (24) 
by central differences and the integrals by a quadrature formula. The 
boundary conditions must likewise be connected to linear constraints on 
values of u, v, and w at points of a finite -difference grid. The solution is 
obtained by solving a system of linear equations which has a band matrix. 
This approach has been used successfully for three - dimensional and 
plate problems. 7 • 8 

In Appendix B, details which allow finite-difference equations 
to be derived directly from the energy integral are given. If we use the 
definitions given in Appendix B, the energy integral in Eqs. (25) with the 
addition of the term J J wp dsdy can be approximated by the finite sum 

(34) 

where T{j• T{-*, and Pij are the values of T*, T**, and p at mesh points. 
The aij are dehned in Appendix B. 

The equations 

0; 0 (35) 

will yield difference equations for an unsupported shell. The constraints 
representing fixed or tied boundaries must be imposed in the manner dis­
cussed in Appendix B. The derived diff renee equation may then be solved 
by over relaxation, direct, or other methods. 



This approach does not take advantage of the smoothness of the 
expected solutions. The matrix involved is not readily inverted. Iterative 
procedures are known to be very slow . Furthermore, error analyses which 
give bounds for errors are not available. 

2. A Rayleigh-Ritz Approach 

Details of this technique are given by Courant and Hilbert. 9 In 
the present context, u, v, and ware expressed as weighted sums of functions, 
each of which satisfies the boundary conditions. The weights which min imize 
the energy of the system are r equired. Equations relating these values can 
be obtained by differentiating the energy integral with r espect to each 
weighting factor. 

The functions used to r epresent u, v, and w could be general 
double Fourier series, but a reducti on of the numb e r of terms necessary 
can be achieved if products of beam functions are used. These functions 
are listed in Table I, which is reproduced from the work of Goldenveiser. 

TABLE I. IM<Ies. of Vibration of Beams 

Boonc»ry 
Conditions Corr esponding Analytic ' tor lor Supported U:presslons Ogenvaloes of tht Paramtttr t !.j~d>. 

No. ' • 0 x • L Beams lor the Function o ~1 •z kJ .. kn ... tn 41 l 0 

• • 0 o·O ll<=::t sin k.s: n In 3• •• n• z[ujtorjl 
, •• 0 ···o t T T T T • • 2ujUk>jUr 

•• 0 
sin b -shb 

•• 7300 i 7.1153lt 10.9956 ~ 1~uni ln • I 'II [u;torJ1 '. 0 fl:==::=l ••• 0 ••• 0 -sin kl - sh kl Ieos kx- ch kxl -~-r 

cos ki- ch kl 

e• • 0 e• • o sin kx + sh lo: 

•noot 78S3l} 109956} 141l1l} Zn q" [u1ro•J2 e• • o , •• 0 = 
- ~~: : ~~ ~ Ieos kx • ch kxl 

-~-1 

slnb- shkx 
l87S1 i '·"'·" i 18S48t 10.99>>} ln · In [ujrorJ2 • (ulwjl • • 0 e· ·o t:== , .• 0 o• • 0 

- ~~~ ~:~~ :~Ieos h- chUI 
-~-~ 

•• 0 • • 0 
sin b-

551~ ::shh l.9266i ~-l 101102 i 133520} 4n +-1 n -2ujto~u;ro1 
e• • o "'. 0 

t=== -,-, • [ u;wj2 
• • 0 a• • 0 

sin k~ • 
5!~ :! sh b 3.9266t 7-t 10lllllt nmo} 4n q l"' -2ujiOOUiiOI 

••• 0 a• • 0 tc== -,-, • [ u;lll]l 

~: The last column or the table gh1es the values of the Integrals OYer the squares of the !unctions IRI)Ielgn's lormul.JI. In thtst relfttoos 
u1tzl • i»jWH Primes denote dllferentlatlon with reSDf(t to z. 

10 

The boundary conditions fo r fixed edges on s = 0 and s = S can 
be satisfied exactly by using one beam function to represent the s - dependent 
parts of each product. The y -dependent parts, however, are not p r operly 
repres e nted by case 3 of Table I, which gives the beam function fo r a beam 
with f ree ends. Some combination of the fi r st three beam functions would 
be necessary. This technique also can be used to r epresent the s-dependence 
when the edges on s = 0 and s = S are pinned. 
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This approach and a variant of it (i.e., a single Fourier series 
is used to reduce the problem to one of solving a set of ordering differential 
equations 11

) have been u sed successfully for plat e and shell problems. The 
approach has the disadvantage that a completely different formulation is 
necessary for different types of boundary conditi ons. 

3 . A Finite-element Approach 

A method which divides the plate into rectangular regions and 
represents t he deformations by bicubic o r even biquintic polynomials has 
ce rtain numerical advantages. The linear equations, which are eventually 
solved, have a positive definite matrix, and the method is adaptable with 
r espect to boundary conditions and choice of mesh lines. 

lines s 
If the plate, region R, is divided by (M - 1) lines y 

Si, then element Rij of the plate is defined 
Yj and (N-1 ) 

Rij := {(s,y)/ (36) 

where So = Yo= 0, YM = Y, and S M = S . If bicubic approximations are 
used , then for (s,y)ERij 

3 3 

u(s,y) II 
r =o t=o 

3 3 

v(s,y) I I sijsryt· 
(37) rt • 

r = o t=o 

3 3 

w(s,y) I I y~jtsryt 
r =o t=o 

Following Birkoff and De Boor , 12 the sixteen coefficients ij can 
Cl'r t 

be obt · d [ 1 f btl l:>u 1:>
2u alne rom va ues o u, -, -, and-- at the corners of R · · Similar 

i . .. l:>s by l:>sl:>y lJ· 
remarks apply to SrJt and y~Jt. Further details appear in Appendix C. It 

emerges that twelve values of u, v, and wand their first and cross de r iva ­
tives at ea ch intersection of the lines y = yj and s = si allow calculation 

of all the coeffi c ients Cl'~jt • S~t• and y~jt • where r = 0(1 )3; t = 0(1 )3; 
1 = l(l)N· and j = 1(1)M Wh d r· d · · · . • . . · en so e me , the p1ecew1se b1 c ubi app r oxi-
matlOn has c ontmuous f1rst derivatives' and cross derivatives. 

First, second, third, and some higher derivatives of u, v, and w 
can be approximated in each Rij by differentiating Eqs. (37) . These values 
can be inserted in an energ y integral, and the integration may be car ried out 



explicitly over each Rij· A minimum of the sum of these integrals is re­
quired. This sum can be expressed in terms of the 48(N +I )(M +I) values 
of u, v, w, and their derivatives at grid points. Differentiation of the sum 
with respect to each of these values will yield an equation relating values 
of u, v, w, and their derivatives at nine points (in the interior) . II the energy 
integral is a quadratic expression , then the equations derived are linear . 

Constraints on the boundaries will redu c e the number of values 
of u, v, w, and their derivatives which can be considered independent . The 
constraint replaces the unobtainable derivative of the sum of integrals; the 
dependence modifies the other relations (see Appendix B) . 

Nevertheless, this approach has the disadvantage that the equa­
tions to be solved can be obtained only after considerable symbol manipula­
tion (see Appendix C). In the authors' opinion, anticipated gains in speed of 
numerical solution and adaptability make it the best of the three approaches 
discussed. For example, the energy integral could be modified to represent 
the plate near s = 0 better by changing the calculation only for elements 
adjacent to s = 0 . 

Ill . FINAL REMARKS 

Considerable effort has been expended in consideration of the proper 
procedure to be used in the evaluation of numerical results of the two­
variable cylindrical involute shell. Due to the specific nature of the problem , 
the uncertainty of the actual boundary conditions at the s1des of the plates , 
the finite - element numerical procedure has been recommended . It is unfor­
tunate, however, that due to the untimely termination of the AARR proJect 
this study could not be finished . Of interest would have been not only the 
final results of the involute plate, but also the effectiveness of the proposed 
numerical method. 

For the purpose of those who might pursue this investigation further, 
a point of interest may be mentioned . It appears that at least two other 
derivations of cylindrical - shell equations, similar to Eqs . (24), were made 
by Timoshenko 5 and Wang . 14 The differences between all the deduced equa ­
tions reside s in only three terms . It would be interesting to know the effect 
of these slightly different terms on the numerical solution 

The inclusion of other factors , such as the inhomogeneity of the fuel 
plate, time-dependent loading conditions, and the possibility of buckling 
could be considered in subsequent stages of some future analysis . These 
factors, when incorporated into the analysis , would yield an even more 
realisti c prediction of the actual behavior of the fuel plate . 
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APPENDIX A 

Variational Methods (see Gelfand and Fomin
15

) 

If V(u) is a functional on a region R with boundary r: 

(A.l) 

then by integrating by parts and use of Green's theorem, the first variation 

of V[u) is obtained as follows: 

6V=j"((Fh+F ~+F ~+Fu b'h+Fu b'h+Fu b'h)dsdy 
JR u Us bs Uy by ss s' sy bsby yy by' 

= j" r [F - ~ (F ) - ~(F u ) +X (F u ) + _' (F u ) + ___: (F u ) J h dsdy 
JR u bs Us by y bs' ss bsby sy by' yy 

+ ( [F h + ~ (F ) h - F ~ + ~ ~ (F ) h - _: F bh J ds 
) f Uy by Uyy Uyy by l bs Usy l Usy 5 

(A.2) 

The function h is an arbitrary (sufficiently smooth) increment function and 
the c r oss derivative is represented in antisymmetric form . 

If we now introduce coordinates t tangential to r and n, drawn out­
ward, normal to r, such that the n-axis makes an angle C with the s-axis, 
then Eq. (A.2) can be written in the form 

6V = JJR E dsdy + ~ (cos' 'FUss+ sin
2 
'F uyy +sin ' cos ' Fu5 y) t,: dt 

(A.3) 

where E replaces the longer expression in Eq. (A.2). The derivatives bh/ bt 
have been eliminated in Eq. (A.3) by integrating by parts and the fact that 
Ir dG = 0 for any G, since r is closed. 



APPENDIX B 

Derivation of Difference Equations by a Variational Approach 

Let R be a rectangular region with boundary r in the (s,y) -plane 
defined as follows: 

R := {(s, y)/ 0 s; s s; 5, 0 s; y s; Y} . (B.l) 

Let RNM be a r ectangul ar array of points defined as follows : 

RNM = {(i,j)j l i and l j are integers and - l s; 1 s; N + 1, - l s; j S: M +I } . 

(B.Z) 

If h = S/N and k = Y/ M, then the mappings = ih, y = jk maps RNM 
into the (s,y)-plane. If R;.JM is that part of RNM which maps onto R, then 

R~M := {(i,j) ERNMI 0 s; i s; N, 0 s; j s; M} . 

The extremal values of i and j in RNM map onto r. If u is a function 
defined on R, then we m ay de fine it on R~M : 

u : = u(ih, jk). 

(B.3) 

(B 4 ) 

We shall extend the definition to the whole (i , j)-plane by requiring that 
u i j = 0 for (i,j) ~ RNM· The definition of values at points in RNM and 
no't in R~M will be discussed later . Let the following difference operators 
by defined for factors defined on RNM · 

Uitl/Z,j - ui-1/ Z,j 
(B.5) Clsu .- h 

~(llsUiti/ Z,j t ClsUi- !/Z,j ) 
Uit! ,j - ui-l,j 

(B.b) t. 5 u . - Zh 

Ui,jtl/l - Ui,j - 1/ l 
llyu (B.?) 

k 

l Ui , jtl - Ui,j-1 
Clyu . - 2(llyui,j+I/ Z + llui ,j -1/ Z ) Zk 

(B.B) 

Since these operators yield functions defined in the (i,j) plane, they may 
be again applied. W e shall write 

27 



28 

Similarly, 

{I~ = llylly · 

Consider now the problem discussed in Appendix A, i.e., that of 

Whl.ch m1"n 1"mizes an integral V of a function F of defining a function u 
s, y, u, and first and second derivatives of u. 

We shall consider u defined on the region R. 

tlu tlu tl u tl u u u d d f ( 2 2 ,..2 ) 
V := R F s,y,u, t>s " tly' ~· tlstly' tly2 s y. 

(B .9) 

We now define VNM• an approximation to V, in which the integration is 
approximated by trapezoidal quadrature and the derivatives by ce ntral 

differences: 

(B. lO) 

where 

cri,j 1 for I s i < N, l s j < M 

i for i 0 or N, I s j < M 

for j 0 or M, l s i < N 

tfor (0,0), (O,M), (N,M), (N,O) 

and 

(B.ll) 

The summation in Eq. (B.lO) is over integral values of i and j. The differ­
ence operators in Eq. (B.ll) do not require evaluation of ui,j at points at 
which i and j are not integers, but all the other points of RNM are involved . 
The approximation to V, VMN is thus a function of (Nt3) X (Mt3)valuesofui,j· 
IfF is a Lipschitz continuous function of s, y, u, and its derivatives, then errors 
arising from the replacement ofF by 'F\,j are of the same order as those 
arising in the quadrature , both leading to errors O(h2 t k2) in VNM· 

If every value Ui,j is free to change, the minimum of VNM is deter­
mined by (Nt3) X (Mt3) equations: 

0 · (i,j) E RNM· (B.IZ) 



In theo:y, this system of equations can be solved for the ~j · If, however, 
Ui,j = Ui,j• a constant value, then Eq . (B.lZ) has no meaning and the equation 
Ui,j = ui,j is available instead . More generally, if a constraint of the form 

{ } ~ pc ~ pq 
up,q = fp,q( us ,t ) for (s,t) E RN~' RNM c RNM (B.l3) 

"OVNM 
is imposed, then is replaced in the system of equations by (B .l3 ) 

bupq 
and, for 

( 
hpq "OVNM 

s,t) E RNM' ~ 0, 
s,t 

is replaced by 

The constraints of special interest are those of the fo rm 

when 

A. ·U· . + B · . (Ui+l, j - Ui-•,j) = C · . 
""1.,J l,J l,J Zh l,J 

= 0 or N, and 

c~ . 
1, J 

when j = 0 or M. 

(B . l4) 

(B . IS) 

These correspond to relationships on r between u and bu/ bn, the derivative 
of u normal to r . This correspondence indicates that it is desirable to 
define, implicitly, the values of ~ .j for integers i,j, which are in RNM but 
not in R~M · Accordingly , 

u,,j- U-l ,j = bu (0 "k )· 
2h bs ,J ' 

UN+•.j - UN-l,j 
2h ~~ (S ,jk); 

~; (ih,O); 

ui ,M+ • - ui,M-1 
2k 

bu . 
by (1h, Y). 

(B.l6) 
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If it is desired to implement boundary conditions involving higher derivative s, 
then the formal definition must make use of them in a similar fashion. 

The discussion will not be confined to functions F which are quadratic 
in u and its derivatives . Let the translation operators Es and Ey be defined 

as 

and 

E~UJ.,j : = ui,jtp 
(B . l7) 

for all p such that 2p is an integer . The difference operators used in 
Eq . (B . 11) can be written in the following form: 

z - 1 -/':_ = - (E - 2 + E I) · -y kz y y , 

(B .18) 

IfF is a quadratic expression, then these operators or products of them may 
appear . We fi r st prove three general theorems . 

Theorem I 

If ui , j a~d xi,j are defined for all {i , j) such that 2i and 2j are integers 
and vamsh ~uts1de R N M• and if operators lls and lly are defined i n terms of 
the translat10n op e rators defined in Eq . (B . l7) as follows : 

lls = _h1 (Esi/z - E-I/ Z)· 6 = .!.(EI/ Z- E -II Z) 
s 'Y hY Y • 

and if V NM is a linear fun c tion of the u · .. l, J" 

VNM = I I X · -(6P6q U · · ) 
i =o{lt z)N j =o (ll z)M l.J s Y l.J ' 

(B . 19) 

(B.20) 



where 

then for (r,t) E RNM• and any integral values of p and q, 

Proof. 

The coefficient of ur ,t in an expression of the form 

(B.21) 

is readily seen to be 

Now Eq. (B.20) is a sum of terms such as V' . The differentiation picks 
the coefficient of ur,t • so 

bV ( E- 1
/

2
- E11 2 )p (E- 1/z- E 1/z)q NM s s Y Y 

bur' t = h k xr ' t 

which proves the theorem. 

Theorem II 

If the conditions of Theorem I hold and VNM is a sum of quadrati c 
expressions of the form 

(B . 22) 

then 

(B.23) 

for (r , t) E R NM and integral values of p, q, m and n . 
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Proof. 

Differentiation of each product yields the sum of two expressions 

to which the method of proof used for Theorem I applies. 

Theorem Ill 

Let u· . and x· . be defined as in Theorem I ; then consider VNM 
1.) 1,) 

defined as follows: 

where 

Then 

Proof. 

We note that 

6 = .!.(El/ z+E-1/z) t:. s 2 s s s 

and 

'(El/ Z+E-1/ Z), u· . 2 " S 1.)' 

(B.24) 

(B.25) 

so that the method of proof of Theorem I can be used without change . 

The following is a sample of the special cases of Eq. (B.25), which 
are of interest when F is a quadratic function of U and its derivatives . 
(The arbitrary function X(s,y) takes values Xr tat (r,t) . The symbol xis 
used to denote otr tXr t· The usage of Olr t is given in Eq . (B . 1 0) . For . . . 
convenience, the subscripts are dropped on u , and V is used to denote 
VNM/ hk.) 



F 

F 

F 

F 

F 

F 
bU 

X-· 
bY 

bs · bu 

F 
bzu 

X - : 
bsz 

F 
bzu 

= X--· 
bsby " 

X bU bU. bY 
bs by· bu 

X bU bzu: bY 
bs bsz bu 

X bU bzu. bY 
bs bsby · bu 

x(bzU)z: bY = 
bsz bu 

z 
x( bzu) . bY 

bsby · bu 

bY 
bu 

bY 
bu 

(if x is constant). 

-tisx; 

t.;x; 

6sti,x; 

(B .26) 

(B .27) 

(B.28) 

(B . 29) 

(if x is constant); 

(B .30) 

(if x is constant); (B .31) 

(if x is constant); 

(B . 32) 

(if x is constant); (B .33) 

(if x is constant); 

(B .34) 

(B .35) 
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APPENDIX C 

Solution of Ellipti c P .D .E. s Using a Finite-element Approach 

Let R be the re gi on 0,; s,; S, 0,; y,; Y, a nd let it be divided into 

N X MrectanglesRi·bythelinesy = Yj• j = I , 2 , ... , M-1 ands = Si• 
i = ! , 2, ... , N-1 . ~ectangle Rij is bounded by y = Yj-1• Y = Yj• s Si-1' 
and s = Si for I ,; i ,; N and I ,; j ,; M. (We define So = Yo = 0. SN = S , 

and YM = Y) . 

Let u be a piecewise bicubi c approximation in R t o U, the solution 
of an elliptic e quation with suitable boundary conditions on the boundary 

of R . We define u as follows: 

u(s,y) (C.!) 

for (s,y) E Ri,j· F o r convenience, we w rite 

(C.2) 

The piecewise bicubic approximation in Eq . (C.!) is continuous. It 
has a continuous first derivative (and c ross derivative) if the coefficients 

1J d . d b . . h 1 f bu bu d bzu . O'rt are eterm1ne y requ1nng tat va ues o u, bs, by' an bsby g1ven 

by approximation (C . I) on adjacent re c tangles should agree at their common 
corner points. On y = Yj• for I ,; j,; M-1, between Ri,j and Ri ,j+l• u is 
defined by a cubic in s in b oth Ri,j and Ri,j+J · But b oth cubics satisfy the 
same four conditions. At points (Si,Yj) and (Si-l•Yj) they yield the same 

values of u and ~:. Since four coefficients are involved, the cubic expres-

. ·d · 1 d d bu · s1ons are 1 entlca an u an bs are conhnuous across y = Yj . Similarly, 

bu h · b. f by as a un1que cu 1c orm on y = Y j. Analogous arguments yield con-

tinuity of u and its first derivatives across s = Si . It follows from Eq . (C. I) 
that 

3 3 1 " " ij L- L- O'rt; 
r =o t =o 

3 3 

I I ( - !)r a~t; 
r =o t =o 

(C .3) 
(Contd.) 



3 z 
'\' '\' (t+ 1) ij . 
L L '11 · O'r,t+J' etc . ; 
r=O t=O J 

We now define 16 X M X N elements p~q' p = 1(1)4, q 

follows: 

I I 

l: l: c1J rlJ · 
4 r=o t=o q q,r,t• 

ij - ± ± (- d cij fij ; 
PJ,q 4 r=o t=o q q,r,t 

where 

1 · 

(Contd . ) 
(C .3) 

1(1)4 as 

(C .4) 

(C .S) 
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and 

fij 
I,r, t 

u(S Y · t) · fij = ~us (Si-r • YJ· -th } i-r• J- • z,r,t u 

b · b2u 
u (S y )· fiJ bs by (Sl· -r• YJ· -t). = "y 1· -r · J"-t• 4rt u • • 

(C . 6) 

We may now insert Eqs . (C .3 ) into Eqs . (C.4) and obtain (dropping super­

scripts ij) 

3 3 

Pp,l 2: 2: dp,r,tar,t; 
r=o t=o 

z 3 

Pp,z 2: 2: (r + 1) dp,r , tar+ 1,t; 
r =o t=o 

3 z 
Pp,3 2: 2: (t+ 1) dp,r,tar,t+ l; 

r=o t =o 

z z 
Pp,4 2: 2: (r + l)(t+ 1) dp,r,tar+I,t+I• 

r =o t=o 

for p = 1, 2 , 3, 4, where 

dz,r,t 

[ 1 + (- 1 ? ][ 1 + ( -1 )t) 
4 

[ 1 - (- 1 y ][ 1 + (- 1 )t) 
4 

[ 1 + ( -1? ][ 1 - ( -l)t) 
4 

[1- (-W](1- (-l)t) 
4 

1 for r even, t even, 
0 in other c ases ; 

1 for r odd, t even , 
0 in other cases; 

1 for r even, t odd, 
0 in other ca ses ; 

1 for r odd, t odd, 
0 in other ca ses . 

(C. 7) 

Equations (C . 7) thus consist of four sets of four equations, each set being 
independent of the others. The solution c an be written as follows: 



Let D 

D 

Then 

!! J . -

2:z . -

~4 . -

be a 4 X 4 matrix defined by 

1 1 
-2 - 2 

0 1 0 2 

0 0 1 
2 

0 0 0 

1 
4 
1 

-4 

1 
4 

1 
4 

D 

D 

D 

D 

0 0 

0 

0 0 

0 0 -1 

0 

0 0 

0 

0 0 

0 0 

0 0 

-] -1 

(C .S) 

P4,1) 
PJ,Z . 

Pz,J 

p 1,4 
We may now evaluate the derivatives of the ~jt with respect to values of u , 
bu bu b2u · · . . . . . 
bs' by' and ~ at the corners of Rij · Let A1J be the matrix(~}]. eP. eP. 

. . usuy 
~!J), where these columns are defined in Eqs . (C .8) . For r = 0 , 1; t = 0, 1, 

( -lV ( -] )t <-tY(-l)t 

_ b_[Ai+r ,j+t] -(-tV 0 -(-lY(-l)t 
D 

()~j 0 - ( -] )t -(-IY(-1)t (C .9 ) 

0 0 (-l)r(-l)t (C ontd ) 
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0 0 0 0 (Contd .) 

( -1 )r ( -l)t 
(C .9 ) 

b [Ai+r,j+t ] D 

b(~~) .. 0 0 0 

l,J 0 0 - ( -1 v ( - 1 )t 

0 0 0 0 

b [Ai+r,j+t] 
0 0 0 0 

D 

b (bu) ( - l)r ( - l)t 
by .. 

- ( -1 v ( -1 )t 1, J 
0 0 

0 0 0 

b [Ai+r,jtt) 
0 0 0 

D 
( b2u ) 0 0 0 

b bs by · · 
( - l)r ( _1 )t ( -1 )t (-lY l,J 

The subscripts i,j on u and its derivatives denote the value at (Si ,Y). 

Now consider the quadratic expression 

F = Q'A(s ,y)!;! + !:!'(s,y)!;! + c(s,y), (C . 10) 

whe r e 

!:! is a vector of six elements, and A is a symmetric, positive definite 
6 X 6 matrix. Let I be defined as follows: 

I = JR F dsdy = j (.!:1.' A!;!+~·!;!+ c ) dsdy . (C . 11) 

The energy integ ral for a shell covering R has this form . The 
dis cussion will be restricted to matrices A and vectors ~ which have 
polynomial elements. This is not a strong restriction since app r oximations 
of this fo r m can be found in each e lement Rij . If !;! is approximated by ~· 

by use of the approximation in Eq . (C.1), then the integral! may be 
approximated by 

(C . 12) 



where 

(C . l3) 

these elements being functions of sandy obtained from Eq. (C.l), by 
differentiation when necessary . Thus we may write 

(C.l4) 

where P(s,y) is a 6 X 16 matrix of polynomial elements, and aij is a column 
vector of 16 elements obtained by concatenating~~, a 2 , ~3 , and ~ 4 

We now define 1. 1 
·, a four-element vector as 

-~ ' 

~ij = [uij• ( ~~) .. ' (~;) ... ( b~
2

~y) .. ] 
lJ l J lJ 

(C . l5) 

and l!ij• a sixteen-element vector, as 

I (~I , . I ~I ~ > 

1-ij = -ij• b-t,j•1i,j-J• "i-t,j-il · (C . l6) 

Hence, from Eqs . (C.4) to (C .8), 

(C . l 7) 

where all matrices are 16 X 16 and where D has ze r o elements except for 
i ts diagonal 4 X 4 matrices (the coefficients of. the p-columns in Eqs . (C .8 )) ; 
Mij is a matrix which generates the Ppq from corner values. From 
Eqs. (C.l2) through (C . l7), 

I = £ .~ 1 {[P(s,y)Bijl!ijJAP(s,y)Bij1ij+Q 1 P(s,y)Bijt,ij +c } dsdy 
l=t J=l Rij (C . l8) 

or 

I = I .I { _t;J.J·Bij'[l P 1 (s ,y)A(s,y)P(s,y) dsdy] Bij!:.ij 
1=1 J=l Rij 

+ [ ( 2' (s,y)P(s,y) dsdy ] Bijl!ij + ( c dsdy } 
) Rij ) Rij 

(C . l9) 

Since A is positive definite, the first term of the integrand in Eq. (C.l2) is 
pos i tive and zero only if!! = 0 . It follows that the integrand of this term 
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has the same property, so that in Eq . (C . l9) the matrix 

cij Bij'[~R ·. P'(s,y)A(s ,y )P(s,y) dsdy J Bij 
1) 

is positive definite. 

(C . 20) 

We now consider the derivatives of I with re~?ect to the ~omponents of 
~ij · Let cij be partitioned into 4 X 4 matrices (C~t) . Since C1J is symmetric, 

cij = cij'. Since cij is positive definite , a diagonal element of cij is greater 
th~~ the tium of the absolute values of the off-diagonal elements of the cor ­
responding row or column. This theorem, due to Gershgorin, is discussed by 

Varga. 13 

When Eq. (C.l9) is differentiated with respe~t ~ij and the derivatives 
equated to zero, the condition for a minimum of I , the following matrix 

equation emerges: 

(C . 21) 

Equations of this type are available for each point of the grid of lines 
s = Si, y = Y ·, so that Eq . (C.21) represents four equations of a system 
of 4(M+l)(N+d equations. Cursory examination indicates that for a row­
by-row ordering of the mesh points, the matrix of the system is symmetric. 

Now consider the first linear equation represented by Eq . (C .2 1) . 
The relevant coefficients lie in the first rows of the 4 X 4 matrices 

C~~ · The diagonal element is obtained by taking the sum of the first ele­

ments of the matrices C~~ + c~it,j, C~jj+t, and cit1•j+l But Gershgorin's 

theorem applied to cij, ci+t,j, ci,j+t, and ci+t,j+t shows that these elements 
are greater than the sum of the absolute values of a unique set of four of 
the other coefficients appearing. Similar remarks apply to the other 
three equations in Eq . (C.2l). Gershgorin's theorem, applied to the matrix 
of the 4(M+l )(N+ I) equations, thus indicates that this matrix has no 
eigenvalues on, or to the left of, the imaginary axis. Since the matrix 
is real and symmetric, it is positive definite. 
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