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NOMENCLATURE 

Flow area per channel 

Kinematic wave velocity, Eq. 30 

Two-phase friction-factor coefficient 

(frn = Crnfs) 

D Hydraulic diameter 

Friction factor in inlet section 

frn Two-phase friction factor 

fs Single -phase friction factor at saturation 

g Gravity 

i Enthalpy 

i 1 Subcooled inlet enthalpy 

j Mixture volumetric flux , Eq. 30 

k Orifice coefficient 

Length of heated channel 

p Pressure 

Sy stern pres sure 

Q Char acte ri stic function 

q~ Wall heat flux 

s Perturbation parameter , S = a t J-1 w 

t Time 

v Velocity 

Vapor drift velocity (= vg - j) 

Vapor quality 

z Axial coordinate 

Vapor void fraction 

Mass generation for vapor phase 

Density difference 

Total pres sure drop of channel 

Latent heat 

tlis Maximum possible subcooling 

6X Perturbation of X 

€ Perturbation magnitude (<<vn) 

f.. Heated length 

S Heated perimeter 

p Density 

Reaction (phase-change) frequency 

w Angular frequency 

Time delay in heated-liquid region 

Time delay in mixture region 

Subscripts 

e Exit 

f Liquid 

g Vapor 

Inlet 

rn Mixture 

s Saturation 





STUDY ON FLOW INSTABILITIES 
IN TWO-PHASE MIXTURES 

by 

M. Ishii 

ABSTRACT 

Thermally induced flow instabilities can result in oper
ational and safety problems to various components of interest 
to power , heat-transfer, and process systems. The appearance 
of these instabilities may not only degrade the performance of 
the systems, but can also result in premature burnout and con
trol problems which can be destructive. 

The various mechanisms that can induce these flow in
stabilities in two-phase flow systems are reviewed and their 
relative importance discussed. In view of its practical impor
tance, the density-wave instabilities have been analyzed in de
tail based on the one-dimensional two-phase flow formulation. 

The dynamic response of the system to the inlet flow 
perturbations has been derived from the model; thus the char
acteristic equation that predicts the onset of instabilities has 
been obtained. The effects of various system parameters , such 
as the heat flux , subcooling , pressure , inlet velocity , inlet ori
ficing , and exit orificing on the stability boundary have been ana
lyzed. In addition to numerical solutions, some simple stability 
criteria under particular conditions have been obtained. Both 
results have been compared with various experimental data , and 
a satisfactory agreement has been demonstrated. 

I. INTRODUCTION 

A . Relevance of the Problem 

Two-phase flow instabilities can introduce operational and safety prob
lems to systems and components of interest to power- generating utilities, 
chemical-process industries , and aerospace industries. Examples of such 
systems and components include nuclear reactors , liquid rocket engines, heat 
exchangers, cryogenic equipment, boilers , evaporators, and various chemical

process units. 
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The existence of thermohydraulic instabilities in two-phase mixtures 
has been known for some time, and the appearance of these instabilities at 
either subcritical or s upercritical pressures is undesirable . They may not 
only degrade the performance of the system, but can also result in premature 
burnout and control proble ms that can become destructive . 

Therefore , it is d e sir able to accomplish following objectives : 

l. Derive from the appropriate mathematical model both stability 
maps and stability criteria that can be used to predict the onset of these two
phase flow instabilities. 

2. Obtain correct and important similarity groups that can reduce 
the number of governing parameters . 

3. Present the results in a parametric plane that is useful to re
searchers and designers. 

4. Obtain from the analysis simple stability criteria that can be used 
for design purposes. 

5. Corroborate the predicted results with experimental data. 

B. Mechanism of Two-phase Flow Instabilities 

Two-phase flow instabilities can be divided into two main categories: 
static instabilities and dynamic {or oscillatory) instabilities . 

The static instabilities are related to discontinuous changes in steady 
state operational conditions . In other words , a steady-state flow becomes 
unstable under certain conditions, and it translates to another quite different 
operational condition . The causes of the static flow instabilities can be inter
facial instabilities , some relation between flow and pressure drop , or changes 
in heat-transfer mechanisms. The most commonly observed static instabilities 
are : 

1. Flow- regime transitions . 

2. Flow excursion. 

3. Dryout and quenching. 

The flow-regime transitions 1 - 3 can be caused by the various mecha
nisms mentioned previously. Bubbly to slug flow, slug to churn flow , churn 
to annular flow , annular to drop-annular flow, and countercurrent to concurrent 
flow transitions are important examples of the flow-regime changes mainly due 
to inte rfacial instabilities. The last two flow-regime transitions are of par
ticular interest to various chemical-engineering fields , and are known as the 
droplet- entrainm e nt inception a nd flooding, respectively. 



Excursive instabilities were first analyzed successfully by Ledinegg 
in 19 38. 4 Under certain conditions, the curve of steady- state system pres sure 
drop versus flow has a negative slope; hence, since the flow rate is not a 
single-valued function of the pressure drop, a flow excursion may occur. In 
his analysis, Ledinegg assumed that the heat flux was uniform, but later other 
investigator s 5 

•
6 extended this criterion to more general cases. It is also known 

that the flow-excursion instability can induce cyclic oscillations called 
pressure-drop oscillations. 7 • 8 

Dryout and quenching can be considered as flow-regime transitions 
due to changes in heat-transfer mechanisms. When a hot surface is no longer 
in direct contact with the liquid phase, the heat transfer is very much reduced 
from that of the nucleate boiling or liquid-film evaporation. Dryout1 •

2
•9 in 

heat-genera,ting systems such as nuclear reactors is accompanied by a sudden 
rise of wall temperature, which can be destructive . Quenching or rewetting 
of a hot dry surface is essential to emergency core-cooling systems in light
water nuclear reactors in order to protect the cladding surface. 10

-
15 When 

the temperature of the heating surface exceeds the so-called Leidenfrost 
temperature, 16 the vapor generated by the change of phase forms a continuous 
film between the liquid and the solid. Unless the hot-wall temperature is re
duced, rewetting cannot occur . Therefore the dryout and rewetting front are 
the flow-regime transition points that are governed by heat-transfer 
mechanisms. 

The oscillatory-type instabilities are rather complicated dynamic 
phenomena, which may be divided into four different mechanisms: 

1. Instabilities due to kinematic-wave (density-wave) propagation. 

2. Instabilities due to pressure-wave propagation. 

3 . Instabilities due to thermodynamic nonequilibrium. 

4 . Instabilities due to flow-regime change. 

The most common oscillations 17
-

27 encountered in heated channels are 
low-frequency, i.e., density-wave, oscillations . There is considerable evi
dence that some relationship exists between the residence time of the particle 
and the period of the oscillations . Therefore, several analyses have been 
formulated and carried out by considering the propagation of density waves 
and the attendant time -lag effects. Inlet flow perturbations in a heated channel 
result in delayed mixture-density changes throughout the channel. These dis
turbances in the mixture density affect the local mixture velocity and the total 
pres sure drop in a channel. Under certain conditions, the inlet flow perturba
tions and the internal pressure-drop perturbations satisfy a self-exciting 
relation such that sustained oscillations with considerable amplitudes appear 
in the system. This instability is caused by finite time necessary ( 1) for the 
enthalpy wave to propagate in the subcooled-liquid region and (2) for the density 
or the void-fraction wave to propagate in the mixture region. These finite 

9 
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propagation times induce the time-lag effects and phase shift in the channel
pressure-drop response, leading to the oscillatory instabilities. 

It was found both experimentally25 and analytically28
•
29 that there could 

be several modes of the density-wave instabilitie s. The most commonly en
countered mode is the lowest-order instability (lowest frequency); however, 
higher -order instabilities or compound instabilities , which produce heat 
effects , are possible. In view of its great importance in practical applications, 
the density-wave instability will be discus sed in more detail in the subsequent 
sections. The essence of the stability analysis based on the drift-flux formu
lation is also given there. 

Although high-frequency oscillations , which are associated with the 
propagation of pressure waves, have been observed in some experiments ,

30 

they may be of less importance for practical applications than the low
frequency oscillations. The period of the oscillations is of the same order of 
magnitude as the residence time of the acoustic waves . These high-frequency 
oscillations have been also encountered in subcooled boiling ;31 however , they 
are much more common in combustion processes. The high-frequency insta
bilities are called 11 screaming" in the field of rocket-engine-combustion ln
stabilitie s and have been studied quite extensively. 32 

The instabilities observed by Jeglic and Grace33 in experiments con
ducted with water at low pressures flowing through a smooth pipe wer e ap
parently due to thermodynamic nonequilibrium. Under these conditions and 
because of poor nucleation , the liquid can become highly superheated. How
ever, once a bubble is nucleated, it grows explosively (because of the high 
liquid superheat), ejecting the liquid from the duct while interrupting the inlet 
flow. After the liquid is ejected from the duct , the pres sure decreases , new 
liquid enters and becomes superheated, and the process repeats itself. 

Chugging instabilities can occur for liquid metals at low pressures 
associated with the reentry of liquid into voided channels. 34

•35 In this case the 
instabilities are caused by a large ratio of liquid to vapor density and the rapid 
evaporation from thin liquid films at the lower end of the fuel pins . When the 
liquid enters the voided channel, the high evaporation leads to a higher v apor 
velocity and eventual pressurization. Thus the level of the liquid at the bottom 
is pushed down , reducing the evaporation rate and the vapor velocity. This 
will depressuri ze the channel , the liquid reenters from the bottom again , and 
the process repeats. 

Geysering instabilities occur mainly in a vertical channel of a natural
circulation loop36 or in a closed-end tube . The main cause of the instabilities 
is the reduced total pressure drop for two-phase flow due to smaller hydro
static head . As soon as sufficient vapor is generated in the channel such that 
the pressur e drop is smalle r than the liquid head , an expulsion of the mixture 
and the reentry of liquid follow. 



The disturbances created by flow-regime changes can also produce 
oscillatory behavior. Wallis and Heasley37 analyzed the slug flow in a long, 
large -diameter riser and concluded that cyclic variation of vapor content 
could produce periodic fluctuations of loop flow rate. 

So-called thermal oscillations8 are associated with the instability of 
the liquid film and accompanied by large fluctuations in wall temperatures in 
a constant-heat-flux system. As the heat-transfer coefficient of the two-phase 
regime oscillates between the wet- and dry-wall conditions, the wall superheat 
fluctuates accordingly to accommodate the constant heat generation in the wall. 
In general, the thermal oscillations are triggered by other hydrodynamic In

stabilities, such as the density-wave oscillations. 

Further references on various instabilities appear in a review by 
Boure et al. 38 

11 
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II. STATE OF THE ART OF DENSITY-WAVE-INSTABILITY ANALYSIS 

Numerous experiments are concerned with density-wave instabili
ties.17-27 It was found that the period of the oscillations is closely related to 
the residence time of the kinematic wave (density wave), so that the product of 
the frequency and the residence time remains approximately constant. From 
the above observation, this type of instability is called a "density-wave insta
bility." This density refers to the mixture density, and the wave propagation 
of concern is that of the void fraction and not that of the compressible pres
sure wave. In a two-phase flow system the mixture density can change, even 
though each constituent phase is inc om pre ssible, because the mixture density 
is also a function of the void concentration. 

It was also observed experimentally that the density-wave instabilities 
are strongly related to the response characteristics of the total channel pres
sure drop and are therefore not caused by local phenomena. Consequently , 
several important parametric observations have been made on the effects of 
the inlet and exit flow restrictions, single- and two -phase frictional pres sure 
drop , heat flux, subcooling , inlet flow, and system pressure. In general , any 
increase in the frictional pres sure drop in the liquid region has a stabilizing 
effect, whereas the increase in two-phase region has a destabilizing effect. 
When the channel geometry is fixed, an increase in the inlet velocity has a 
significant stabilizing effect in terms of the heat flux. On the other hand , in
creased heat flux always results in a smaller stability margin or flow insta
bilities . Furthermore, an increase in the system pressure is a stabilizing 
effect in terms of the quality , since at higher pressure the density change due 
to phase change is less significant. 

The effect of parallel channels is generally stabilizing compared with 
that of an identical single channel. 39 This may be due to the dumping effect of 
one channel with respect to others unless they are oscillating completely in 
phase. In other words, the parallel channels have a tendency to equalize the 
pressure drop or the pressure gradient (if they are interconnected) by adjust
ing the ratio of the mass flows or by interchannel mixing . 

Numerous analytical studies have been directed at obtaining a better 
understanding of thermally induced flow oscillations , determining their mech
anism, and deriving stability criteria. Although most of the investigations 
have been done in the last decade, we cannot omit two early studies . 33

•
40 

The initial analysis concerned with the transient operation of boiler 
channels was done in 19 53 by Teletov and Serov ,40 who were able to obtain 
transfer functions for a distributed parameter system that gave the response 
of the fluid enthalpy and density to perturbations of the heat fl~x. The deriva
tion of this transfer function was based on a simple but important transforma
tion which is discussed in subsequent sections . Their analysis was limited 
however , to a homogeneous flow (in which the effect of the relative velocity be_ 
tween phases is neglected) and a thermodynamic-equilibrium condition. 



The excellent studies by Crocco and Cheng, which are summarized in 
their book, 32 are not directly related to the two-phase flow oscillations. They 
were concerned with instabilities in rocket-engine combustion; however, their 
analysis has offered valuable information on the instability mechanisms of 
heated channels due to time-lag effects. Furthermore, by comparing theo-

. retical results with experimental data, Crocco and Cheng demonstrated the 
applicability and reliability of the linearized (small-disturbance) theory to 
analyses and studies of combustion instabilities. 

Besides these early studies by Teletov and Serov40 and by Crocco and 
Cheng,32 numerous analytical investigations have been conducted in this field. 

In general, two approaches have been followed. The first is based on 
phenomenological models obtained from the assumed similarity with a simple 
mechanical system or an electrical circuit having excitations. The second 
approach is to formulate the problem from the conservation laws for the 
mixture. 

Because of simplicity, many of the early studies belong to the first 
group; however, the applicability of their results is severely restricted by the 
nature of the model. Needless to say, one must supply several experimental 
coefficients or correlation functions into these formulations, since, strictly 
speaking, the assumed methods are not based on conservation laws. 

Shortcomings of such analyses are evidenced by the fact that the val
ues of the coefficients or the functions change with operating conditions and 
design configurations. We may point out two reasons for this deficiency: 

l. Inaccuracy of the assumed models. 

2 . The lack of knowledge of similarity groups which characterize 
phenomena. 

This latter aspect constitutes one of the most important problems in 
the general analyses of two-phase flow systems. We shall close our discussion 
of the phenomenological approach without referring to individual models, be
cause the models seem to be of limited value. Furthermore, the phenomeno
logical approach can be looked upon as a transitional method of analysis that 
leads to the second approach based on the conservation laws. 

In general, a theoretical approach must be based on the conservation 
equations, appropriate constitutive equations, and imposed boundary conditions, 
together with correct physical approximations. In particular, if the system 
has complicated characteristics such as existence of interfaces, boiling heat 
transfer, change of two-phase flow regimes, turbulent flow, and time-dependent 
variables, the formulation of the model should be manageable, and, at the same 
time, the model should state the basic physical nature of the phenomenon. From 
this point of view, two models (a homogeneous -flow and a slip-flow model) have 

13 
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been used in various analyses . The first model neglects the relative velocity 
between the two phases , whereas the slip-flow model takes this important 
characteristic of two-phase flow systems into account. 

Besides this classification into homogeneous- and slip-flow models • 
generally two distinct methods have been applied to obtain a solution of the 
problem. In the first, the system of partial differential equations is linearized 
by assuming small disturbances about a steady state . The response of the sys
tem to various perturbations , as well as stability criteria , is then obtained by 
using standard techniques . The second method is based on a numerical solu
tion whereby the set of partial differential equations is solved by numerical 
methods . 

As previously mentioned, Teletov and Serov40 were the first to formu
late the dynamic problem of two-phase flow systems, although the analyses of 
similar dynamic problems of instabilities in rocket-engine combustion had 
already been studied in detail by Summerfield ,41 Tsien ,4 z and Crocco and 
Cheng,n among others . The study of Teletov and Serov40 is limited to low
frequency oscillations and deals with the transient responses of enthalpy and 
density to a heat-flux disturbance . It also takes into account the effect of the 
wall heat capacity. By considering only low-frequency oscillations , Teletov 
and Serov were apparently the first to realize that the density could be con
sidered as a function of enthalpy only and not of both enthalpy and pres sure. 
Note , however, that, Teletov and Serov did not integrate the momentum equa
tion; consequently, the characteristic equation was not derived. Furthermore , 
their analysis was limited to homogeneous flow and thermodynamic equilibrium. 

The importance of Serov' s first analysis 40 rests on: 

1. Decoupling the momentum equation from the energy and continuity 
equations. 

2. Deriving the transfer function for a distributed parameter system. 

3. Finding a simple transformation that relates the divergence of the 

velocity to the heat flux: 

qwll s 
l:lp 1 

= 0 - p gPf l:lifg Ac , 

where v is a velocity of the mixture and 0 is a reaction frequency of the m 

( 1) 

phase change , which can be expressed by the densities of each phase Pg and 
Pf• the density difference l:lp , the latent heat Mfg• and the heat input q~s / Ac. 

An analysis similar to that by Serov but including the response of the 
43 d .. d d . th pressure was given by Terano. The system was 1v1 e 1nto ree parts: 

liquid , mixture , and superheated vapor region. However, he used a simple 
capacitance model for the pressure response to reduce the generality of the 
solution for the same reasons discus sed in connection with the phenomena_ 

logical models. 



Wallis and Heasley37 used a model similar to that of Serov. Using 
Lagrangian coordinates , they integrated the energy and continuity equations 
for a disturbed inlet flow. However, in contrast to the analysis of Serov, they 
neglected the effect of a variable heat-transfer coefficient. They obtained the 
characteristic equation from the momentum balance and used the Nyquist cri
terion to discuss the stability. They also used Pm = Pm(im) and rederived 
Eq. 1. As in the analysis of Serov, their analysis is limited to the thermo
dynamic equilibrium, homogeneous flow , and low-frequency oscillations. 

About 10 yr after his original paper, Serov44
•
45 integrated the momentum 

equation and obtained the characteristic equation for a distributed parameter 
system. His analysis takes into account the variation of inlet flow and heat
transfer coefficient, but neglects the displacement of the boiling boundary. 
The characteristic equation derived is a fifth-order exponential polynomial 
with two time delays. It has been solved for the stabi lity boundaries in a s im
plified form by the D-partition method. Some qualitative success was shown 
in the C plane (inlet orifice). 

Boure46
•
47 used a model similar to that of Serov. Consequently , his 

analysis is applicable to thermodynamic equilibrium , homogeneous flow , and 
low-frequency oscillations . Boure, like Serov , assumed that Pm = Pm(im), 
expressed the continuity equation in terms of Lagrange's differential equation , 
and independently rederived Eq. 1. Boure also integrated the momentum equa
tion and thus obtained a characteristic equation for a distributed parameter 
system. The characteristic equation given in Ref. 46 is a fifth-order exponen
tial polynomial with two time delays . The coefficients of polynomials differ 
from those of Serov44

•45 because the analysis47 accounts for the variation of 
inlet flo w and the displacement of a boiling boundary (which Serov neglected) , 
but neglects the wall heat capacity (which Serov included). Satisfactory agree
ment with experimental data is reported in Ref. 4 8 , where the comparison is 
shown in the dimensionless subcooling and inlet velocity plane . A parametric 
study is also given in Ref. 48. 

The method of Boure48 was used by Zuber49 to analyze flow instabilities 
in the near- and super -critical thermodynamic region. However , Zuber's anal
ysis differs in two aspects from that in Ref. 48: ( 1) The constitutive equations 
are different , and (2) the resulting characteristic equations are different. Under 
some conditions he was able to obtain a simple algebraic criterion that was 
useful as a design criterion for the friction-dominated flow at high pressure. 

So far we have discus sed the analyses based on the homogeneous -flow 
model and a condition of thermodynamic equilibrium. Such conditions can be 
attained with high flow rates at high reduced pressures . How ever , at lower 
pressures the effects of relative velocity and of thermodynamic nonequilibri um 
become in).portant and may not be neglected. 

As is mentioned in Refs. 50 and 51, the traditional "slip" -flow models 
were not formulated in terms of the center of mass of the m ixture; therefore 
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these models use several different expressions for the mixture density or for 
the slip ratio. In the formulation of a dynamical model, properly averaged two
phase flow equations based on the conservation law should be used. 

52
'
53 

Besides this basic shortcoming of traditional formulations, almost all 
"slip" -flow models have been solved directly by computers. 54

-
57 Meyer and 

Rose 54 were early users of this method of applying a momentum integral and a 
finite-difference method. The works by Jones 55 and by Carver, 19 among others , 
are notable in their detailed treatments of various effects. These direct 
methods require expensive computer time and great care in the programming 
in order to avoid numerical instabilities. We may quote Carver (Ref. 19 , p. 4 ) 
in this connection: "Such approaches require considerable expensive computer 
time, the expense increasing with the degree of sophistication. Again they de
pend heavily on void, pressure drop, and heat transfer correlations used, and 
under certain conditions the validity of these is questionable . " 

In the analysis, the set of simultaneous partial differential equations 
was solved step by step in the time domain with one parameter disturbed, but 
all others were held fixed. This approach, in addition to being expensive for 
parametric studies, does not provide an insight into the physical aspects of 
the problem . Consequently, it is not very helpful in advancing the understanding 
of the phenomenon. However, these computer codes can be useful as a design 
tool for complex systems such as nuclear reactors. Furthermore, with com
puters a nonlinear analysis is also possible . This has an advantage over a 
linear theory when ultimate nonlinear responses in an unstable region or re
sponses to large changes in steady-state operational conditions are required. 

Zuber 50 formulated the problem in terms of the drift-flux model in 
order to take into account the effect of slip; then he used a small-perturbation 
analysis to obtain a characteristic equation. This characteristic equation was 
solved in the stability plane, i.e., nondimensional subcooling number N sub 
versus phase- change number Npch· 28 The model has been extended to non
uniformly heated systems29 and a parametric study concerning the system 
pressure, heat flux, inlet subcooling , mass flow, inlet and exit flow restrictions , 
and various friction factor models has been carried out. A very simple alge
braic stability criterion was also developed. 29 This simple criterion has 
proved to be almost as good as the exact solution, except for very small inlet 
subcooling . The model28

•
50 has also been extended to the case of thermal 

nonequilibrium by Saha. 26 The above various stability criteria based on the 
drift model were compared to the experimental data from a Freon-113 loop.26

•
27 

The agreement of the equilibrium theory28
'
29 with the experimental data was 

shown to be satisfactory. It was also found that subcooled boiling has an im
portant stabilizing effect at small inlet subcooling . This has been predicted 

"l "b . d 1 26 
by the nonequ1 1 r1um mo e . 



III. DRIFT- FLUX FORMULATION APPLIED TO 
DENSITY- WAVE INSTABILITY 

A. Thermodynamic Process 

To understand the mechanism of the thermally induced flow oscillations 
and to formulate the mathematical model that describes the real physical sys
tem, we must examine the thermodynamic processes and the flow characteris
tics of the system. The typical components of the system of interest are shown 
in Fig. 1. They consist basically of four different regions: 

Upstream unheated region (A) 
Heated liquid region (B) 

}single-phase 

Heated mixture region (C) } T h 
. wo- ase 

Downstream unheated reg1on (D) p 

SINGLE PHASE REGION 

A B 

DOWN COMER --

q "(z) 
w 

MIXTURE REGION 

c 

i. ---------.jl 
(HEATED REGION) 

D 

---+RISER 
I 

Fig. 1. System Used for Analysis of Density-wave Instability 

The system of interest extends to the components where the thermally 
induced flow instabilities can be affected in a systematic manner. If the sys
tem consists of a single heated channel without any bypass (see Fig. 2), a large 
number of the components in the loop should be considered. This is because 
any disturbance propagating in the loop has a definite functional relation in 
terms of time and space lag to the heated section and, therefore, can influence 
the stability of the system. On the other hand, if the heated section consists of 
multiple channels which coverage to one channel at the riser and downcomer 
with sufficiently large volume capacitance (see Fig. 3), it is sufficient to con
sider the system between two volume reservoirs. In this case, the systematic 
form of disturbance propagation is effectively insulated from the remaining 
portion of the system, i.e., from the pump and the turbine, etc. 

DOWN COMER qw"(z) 

...-® ~4 I ! L L l i 
RISER TURBINE Fig. 2 

Single Heated-channel System 
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DOWN COMER 

I 
I 

o I 
~ --- ---~--------

(BY PATH) 

Fig. 3 

Multiple Heated-channel System 

The case of the single-heated-channel system is , therefore , far more 
complicated than the case of a multichannel system and requires information 
on the dynamic responses of the pump, turbine, etc . However, in view of prac
tical applications, such as nuclear reactors and conventional power plants with 
boiling, it is sufficient to consider the second case . 

For generality, we imagine two volume capacitances that can insulate 
any systematic propagation of disturbances . Then the system between these 
capacitances will be analyzed. This system may or may not include such ac
cessories as the downcomer, riser, pump, and turbine , depending on the posi
tions of the volume reservoirs. The system will be subdivided into the four 
previously mentioned approximate regions, namely, upstream unheated (A) , 
heated liquid (B), heated mixture {C), and downstream unheated (D) regions . 
The thermodynamic process starts with the subcooled fluid of enthalpy i 1 , 

entering the heated duct B with the velocity Vfi. As the energy is being trans
ferred from the heated wall to the fluid, the temperature and the enthalpy i£ 
will increase. Due to the developments of the thermal boundary layer or the 
superheat capacitance of the liquid , the boiling boundary may not coincide with 
the point where the bulk-liquid enthalpy reaches the saturation value ifs · In 
our analysis, we shall assume thermal equilibrium between the phases, which 
is a reasonable assumption at high pressures . Thus we take the boundary be
tween B and C at z = A., where if = ifs · 

In region C, the phase change takes place, and the mixture enthalpy im 
and void fraction a increase toward the end of C as more heat is added to the 
fluid . For a number of systems of practical interest , particularly for systems 
at high reduced pressures, it is reasonable to assume that this process takes 
place at an approximately constant pres sure , since the pres sure drop is rela
tively small compared with the absolute pressure of the system. 

The processes in both A and D , i . e., the unheated regions , can be con
sidered as isenthalpic . Furthermore , the complete liquid phase occupies the 
upstream unheated region A. Thus, the assumption of incompressibility is 
appropriate. On the other hand, in the downstream unheated region D, the 
mixture of vapor and liquid enters either into the steam separator or into the 
volume capacitance directly . From the previous discussion , either of the sys
tem components can be considered as the end of the system of interest. There
fore, from this point any systematic wave propagation will be neglected. 
Furthermore, we assume that the pressure-drop effect on the mixture proper
ties in region D is negligibly small; thus we treat the mixture in D as isochoric. 



The assumption that the effect of pressure variation on the thermody
namic properties of each phase can be neglected is implied by the assumption 

that the density is a function of enthalpy only and not of both enthalpy and pres
sure. This condition will be valid if the two-phase Eckert number is smaller 
than unity. From this limitation we can see that the assumption holds only if 
the rate of propagation of disturbance is much slower than the velocity of the 
pres sure wave~ otherwise these two waves interact with each other. Thus, 
under this assumption, only low-frequency oscillation can be analyzed. 

B. Transport Process 

The transport processes of mass, momentum, and energy are best 
understood from the field equations with appropriate constitutive relations. 52

•
53 

In our analysis the drift-flux formulation will be used, and some further sim
plifications of this one-dimensional model will be made . Now, let us examine 
the transport process in the four different regions separately. 

In the upstream unheated region A, the liquid flows incompressibly and 
isenthalpically~ hence, only the momentum transport is important. The kine
matics of the fluid (velocity field) can be obtained directly from the continuity 
equation. From a knowledge of the velocity field, we can obtain the accelera
tion, gravity, frictional, valve, and orifice pres sure drops. 

Since in the liquid heated region ,B the fluid is still considered to be 
incompressible, the velocity field can be immediately obtained from the mass
conservation law. The boundary between B and C will be calculated from the 
energy equation under thermal-equilibrium conditions and by neglecting any 
dissipation effect on the liquid enthalpy in comparison with the heat input. The 
pressure drops can be calculated by the same method as used in A. 

In the heated-mixture region C, the transport processes are compli
cated. Following the discussion of the thermodynamic process, we assume 
that the density is a function only of the enthalpy and not of both the enthalpy 
and pres sure. This important assumption, first used by Teletov and Serov ,40 

permits us to decouple the momentum equation from the continuity and energy 
equations. Thus, again we can proceed with the integration of the latter two 
equations and obtain the kinematics of the fluid independent of the dynamic 
condi~ions imposed by the momentum equation. By knowing the density and 
velocity of the mixture, we can calculate the various pressure drops. For 
simplicity and because of the lack of knowledge on the constitutive equation, 
we also assume that the capillary body force is negligible. 

From the previous discussion, we assume that the mixture in the down
stream unheated region D is isochoric and is enthalpic . This does not imply 
constant density, since the mixture entering region D may have different den
sities depending on the upstream disturbances. The kinematics of the fluid 
can be obtained from the mass-conservation law, whereas the pressure drop 
will be calculated in a way similar to that used in the boiling region. Further
more, the pressure drop at the orifice or valve will be calculated by using the 
orifice coefficients. 
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C . Time Lag and Space Lag 

It is useful to consider the process from the Eulerian and Lagrangian 
points of view . If we follow a fluid particle entering section A at time 'To and 
study the change of its properties from the mass center of that particle in the 
time coordinate, our observation is from the Lagrangian or particle-coordinate 
point of view (see Fig. 4). The center of mass enters in regions B , C, and D 
at times T 1 , Tz, and T 3 , respectively, and leaves region D at T 4 . The transition 
from B to C, i.e., the inception of bulk boiling, occurs when the liquid enthalpy 
increases due to the heat input and reaches the saturation liquid enthalpy . In 
region C, the enthalpy of the mixture continually increases due to the evapo
ration . The residence time of the particle in region B is denoted by 'T 12 • and 
the total residence time in the heated section by T 13 . In a similar manner, we 
can also define Tol and T 34 . Since each residence time expresses the time nec
essary to bring about specific changes in the position or properties, it will be 
called the time lag . Except when the inlet enthalpy is disturbed, the time lag 
To 1 has no significant physical meaning other than that it represents the resi 
dence time, since the disturbances of the velocity , pressure , etc. , propagate 
with infinite velocities. On the other hand , the time la g s T 12 , T 13 , and T 34 are 
significantly related to the propagation of disturbances and hence are important 
for the stability analysis. 
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It is of interest also to consider the spatial or Eulerian description of 

the process (see Fig . 5). In this case the time lags are replaced by the space 
lags and hence indicate the boundaries of the various operational re gions . 
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Among the indicated four space lags, that corresponding to the time lag Tn 
and denoted by A is particularly important, since it defines the boundary be
tween the liquid and the mixture regions, and it is only obtainable by solving 
the conservation equations. Other space lags are given by the geometrical 
description of the system. 

In a dynamic analysis, the fluctuations of space lag A are important, 
since they can be considered as the source of a fluid undergoing a phase change. 
Changing the position of this source causes the mixture enthalpy, density , and 
pressure drop to fluctuate; thus we have a generation and propagation of waves 
created at A due to the fluctuation of A. 

D. Governing Equations for the Upstream Unheated Region (A) 

Following the above discussion , we assume that the liquid density is a 
functiononlyof the system pressure Ps, which can be considered to be uniform 
throughout the system. Thus we have Pf = pf(Ps). Without loss of generality 
we can assume that region A consists of a constant-area duct and a pressure
drop device such as an orifice. In this case, from the continuity equation we 
have vfo = (Ac/A0 )vfi , where Ac and A 0 denote the flow area for the heated 
section and upstream unheated region A . 

The equation of motion for the duct is 

Assuming that the position of the orifice or valve is at the entrance to the 
heated region, we have 

(2) 

(3) 

The friction factor fo can be obtained from the Reynolds number and the rough
ness parameters of the duct. Therefore, f0 = f0 (NRe• e0 ). In addition to the 
above equations, we impose the isenthalpic condition; thus, 

= 0 . (4) 

E. Governing Equations for the Heated Liquid Region (B) 

By neglecting the velocity and enthalpy covariant terms, axial conduc
tion, normal stress, pressure, and the dissipation effects on the enthalpy, we 
obtain the following three conservation equations : 

(5) 
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and 

q"s w 

PfAc' 
(6) 

(7) 

The constitutive equation of state is given by Pf = pf(P s). These above equa
tions specify the four variables P , p£' vf' and if in the heated liquid region B . 
The friction factor fs should be given by the constitutive relation, f 8 = 
fs (NRes, e). These four equations can be solved if the heat flux q~ is a known 
function of independent variables z and t. Although the wall has some heat 
capacity, which can influence the heat input to the fluid , we assume that it is 
small compared to the heat capacity of the fluid . This enables us to neglect 
the entire wall effect on the heat transfer if the heat source generates a steady 
flux . Thus we take 

q~ = q~(z). (8) 

Assuming that Ps , s/Ac, e , and D are known and constant , we have six depen
dent variables- -pf, vf, if, q~ , P , and f --whereas the equations describing the 
system are three field equations (Eqs . 5-7) and three constitutive equations. 
Thus the total number of unknowns is the same as the number of equations . 
Consequently, the formulation is mathematically cons is tent . 

F . Governing Equations for the Heated Mixture Region (C) 

To take into account the relative motions of each phase , it is useful to 
formulate the problem in terms of mixture field equations with a vapor
continuity equation (drift -flux formulation). If the velocity and enthalpy co
variant terms, axial conduction, normal stress , capillary force, pressure, and 
dissipation effects on the enthalpy are neglected , the drift -flux formulation re
duces to the following forms : 

The continuity equation of the mixture : 

= 0. (9) 

The continuity equation for the vapor : 

( 10) 
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The energy equation for the mixture: 

(
oim oim) _ q;,~ ~~O'PgPf .. ) 

Pm ot + vm oz - A - oz p V gJtHfg . 
c m 

The momentum equation for the mixture: 

(11) 

( 12) 

In addition to the above four field equations, we should specify the con
stitutive relations. Following the discussion of the thermodynamic process, 
we assume thermal equilibrium between two phases. Furthermore, the fluid 
properties of both vapor and liquid phases can be assumed to be a function only 
of the system pressure Ps, which is uniform throughout the system. This im
plies that enthalpy and density of each phase are constant once Ps is specified . 
Hence , the thermal and calorical equation of state can be described as 

} ( 13) 

if = if(P s), ig = ig(Ps); 

im(Ps, 0') 
O'pgig + (1 - Q' )Pfif 

im = = 
Prn 

( 14) 

In addition to the above relations, we need: 

a. The constitutive relation for the relative motion, 58 which specifies 
the vapor drift velocity V gj. 

b. The rheological constitutive equation, which supplies fm. 

c. The boundary condition for heat flux, which gives q~ = q~(z). 

If we assume that Ps, ~/Ac, D, and g are known, the dependent vari

ables are Pm• vm, Q', P, fm, Pg• rg, Pf• Vgj• im, q~, igs• and ifs · The equa
tions describing the system are the four field equations and the nine constitutive 
equations . Thus, the total number of unknowns is the same as the number of 
equations . 

Note that velocities of each phase, vg and Vf, do not appear in this for
mulation explicitly. However, they are related to the mixture velocity and the 
vapor drift velocity by definitions. 
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G. Governing Equations for the Downstream Unheated Region (D) 

In this region the mixture is treated as an isochoric fluid . Further
more , without losing generality we can assume that region D consists of a 
constant -area duct and a pres sure -drop device such as an orifice. The thermal 
equation of state is given by 

DPme 

DT 
= 0 , ( 15) 

so that the continuity equation becomes Vme = (Ac / Ae)vm(,t, t). Here Ae is 
the flow area of the duct in region D . 

The equation of motion for the duct 1s given by 

dP 
dz 

+v ovme) 
me oz 

o ( Pf - Pme PfPg z) + - --V . 
oz Pme - p P gJ . g me 

(16) 

For the orifice , assuming that it is on the exit of the heated region , we have 

( 1 7) 

The friction factor fme can be given by the function similar to the one used in 
region C, and the vapor drift velocity should be supplied by a constitutive 
equation . 

In addition to the above equation , we have an isenthalpic condition, so 
that 

D~e 
Dt 

= 0 . 

H. Method of Solution 

( 18 ) 

The dynamic problem of our system of interest has been formulated by 
cons ide ring four different regions, i.e ., the upstream unheated heated liquid, 
heated mixture, and downstream unheated regions · To obtain solutions for the 
system, boundary and/or initial conditions should be given. Several methods 
can be used to obtain the transient response and the stability criteria of the 
system. For example, linear and nonlinear theories are available and could 
be used to obtain the solution. Furthermore, we have a cho ice of the distur
bance to impose on the system. As we can see from our formulation, the 



governing differential equations are nonlinear; thus, it will be expected that 
for unstable operation the nonlinearity becomes important for large departures 
from the equilibrium state. Due to the presently limited knowledge about non
linear partial differential equations, the general solution for our system by 
analytical means is almost inaccessible. 

However, in most practical cases, the information on the stability 
boundary is much more important than the ultimate unstable dynamical re
sponse beyond the stability boundary. According to the Liapunov theorem, 59 

the stability of the linearized system corresponds to the stability of the non
linear system that operates under quasi-equilibrium conditions. By taking 
advantage of this theorem, we can use the linear theory. In our analysis , the 
disturbance will be given in the form of an inlet-velocity perturbation. Con
sequently, we impose the following boundary and initial conditions on the den
sity, pres sure , enthalpy, and velocity. By taking the origin of the z coordinate 
at the boundary between A and B , the inlet of the heated region, we have 

Pf = P f(P s) at z = 0 , t ~ 0; 

p = Ps = canst. at z = 0 , t ~ 0; 

if = il = con st. at z = 0 , t ~ 0 ; ( 1 9) 

vf = vfi(t) = v:fi + ov(t) at z = 0, t ~ 0; 

if = is(Ps) at z = A (t) . 

Hence, the density Pf and the saturation liquid enthalpy ifs, which are functions 
of only Ps , can be treated as constants. The steady- state inlet velocity is de
noted by Yfi ' and the perturbation of the velocity is given by ov(t) . In our analy
sis, we use a frequency-response method; therefore , the perturbation ov(t) can 
be given by an exponential function: 

(20) 

S = a+ jw 

Thus, S is a complex number; the real part gives the amplification coefficient 
of the particular oscillation mode , and the imaginary part represents the angu
lar frequency w. For the linear-perturbation analysis , we assume that e:/vfi is 
much smaller than unity ; therefore, e: is infinitesimal compared with finite Vfi . 
In the following analysis, we shall retain the first- order terms in e: and neglect 
second- and higher-order terms. 

The schematic procedure for the analytical solution is given in Fig . 6. 
This diagram indicates the dramatic effects of decoupling the momentum equa
tion from the continuity and energy equations . The kinematics of the fluid , i.e ., 
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the velocity field and the density variation, can be solved independently of the 
dynamics of the system. Recalling sing le-phase potential- flow theory, we find 
an analogy in attacking the two problems. As will be clarified in what follows, 
the only difference is that, in the potential- flow analysis, the divergence of the 
velocity of the center of mass is zero, wher e as in a two-phase boiling system, 
the divergence of the center of volume equals the volume source due to 
evaporation. 

Bounda r y C:>nditions 

A 

Ki nema tics 

Hea t Flux Profile 

Fr iction F'ac t:>r ~lode l 

B c 

Fig. 6. Schematic Procedure for olution 

D 



IV. KINEMATICS OF FLUID IN THE HEATED SECTION 

A. Liquid Region 

From the continuity equation with constant density, 

( 21) 

The velocity in region B is therefore a function of time only. 

Knowing the velocity field, the energy equation becomes 

(22) 

This is a first- order partial differential equation whose solution can be obtained 
by the method of characteristics. For simplicity let us take a case with a con
stant q~. This implies that the system is uniformly heated along the channel. 
The detailed calculation with a nonuniform heat flux appears in Ref. 29. 

Now Eq. 22 can be transformed to the Lagrange form: 

dz 
dt = vf(t) = ( 2 3) 

with the initial and boundary conditions 

at t = T1 and z = 0, if = i,, } 
at t = Tz and z = A (t), if = ifs(Ps). 

(24) 

By use of the small-perturbation analysis the steady- state and the first- order 
solutions are given by 

(2 5) 

where 

(26) 

and 

A (t) = A + 6A St 
1 _ ( -STiz) = v + L'e exp 

TIZ fi w S (2 7) 
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B. Mixture Region 

The set of governing equations for heated mixture region C has been 
given in the previous section. We recall the condition of constant properties 
for the liquid and vapor phases in the mixture region; this condition is valid 
for the relatively high-pres sure system assuming thermal equilibrium. Fur
thermore, for simplicity, we assume that the vapor drift velocity can be 
treated as a constant. This is supported by experimental data 58 and is valid 
f c>r several flow regimes, i.e., bubbly, slug , churn turbulent , etc . Under these 
conditions, the mixture and the vapor continuity equations can be transformed 
to the volumetric flux equation and the density propagation equation; thus, 

and 

where 

and 

oj 
Oz = 

t:.ppm 
-fg--

PgPf ' 

J = vm + O'f::.p Vg · 
Pm J 

On the other hand, the thermal-equilibrium condition gives 

q~s 

f g = Act:.ifg' 

{28) 

{2 9) 

{30 ) 

( 31) 

which relates the vapor generation r g to the heat input and the latent heat. The 
detailed analysis of the thermal-nonequilibrium case is given in Ref. 26. 

The characteristic frequency 0 of the phase change is defined by 

0 - ( 32) 

T hen we have 

oj -az = o. ( 33) 



and the solution for the total volumetric flux is given by 

j(z, t) = Vfi(t) + O(z - A). ( 34) 

When the above equation is substituted into Eq. 30, the kinematic wave velocity 
becomes 

The solution for the mixture density becomes 

( 36) 

and 

(37) 

Similarly, the solution for the mixture velocity can be obtained from Eq. 30 : 

{38) 
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V . DYNAMICS OF THE SYSTEM 

In the previous section , we have solved for the kinematics of the fluid. 
If the velocity field and the density variation are known, the pres s ure drop can 
be calculated by integrating the momentum equation. By considering the heated 
section with the inlet and exit flow restrictions , the total channel pres sure drop 

becomes 

( 39} 

Therefore, the inertia , gravity , and friction terms in the inlet and exit unheated 
regions are dropped for simplicity, though calculating these terms is straight
forward without any difficulties . 

The steady- state part of the solution is given by 

liP ex 

(40 } 

w here 

H e r e w e made a simplifying assumption that Pm- Pg:::.. Pm in the drift
pr essur e -drop t e rm. Th e two integrals appearing in Eq. 40 can be easily 
carrie d out by knowing the constitutive equation for V gj and fm. The most 

s imple two - phas e friction - factor model is 

( 41} 



where Cm = 2 can be a good approximation for high-pressure systems and 
gives a slightly higher pressure drop than the Martinelli-Nelson correlation. 
The effects of various other two-phase friction-factor correlations have been 
discussed in detail in Ref. 29. 

On the other hand, the first-order solution is given as a form of a func
tional relation between the perturbation of the system pressure drop and of the 
incoming fluid velocity ov. Thus, by carrying out the integration in Eq. 39 we 
obtain 

ot~Pex(s, t) = Q(s)ov(s, t). (42) 

Here the exact form of the function Q( s) is determined by the integration of 
Eq. 39 and appears in Ref. 29. To examine the stability of the system, we 
must specify the generalized input force and the output displacement. Although 
in our analysis we assumed the initial flow perturbation ov and obtained the 
response of l:lPex to it, the physical process occurring in the system is exactly 
the opposite. 

In other words , the input force imposed on the system is the pres sure
drop perturbation ot~Pex• and it induces the change in the flow field. Hence , 
ov is the generalized displacement. Here 1/Q(s) is called the system transfer 
function, and the dynamic response can be represented by the transformation. 

ov ( 43) 

where Q( s) is the characteristic function. According to control theory, the 
asymptotic stability of the system can be determined by nature of the roots of 
the characteristic equation 

Q(s) = 0. ( 44) 

With Eq. 44, the formulation is now essentially complete , since the 
initial problem of determining the dynamic stability of the physical system is 
reduced to the mathematical problem of the complex functional analysis . More 
specifically, our problem becomes : to examine the nature of the roots in the 
complex plane for the characteristic equation given by Eq. 44. 

Here it can be mentioned briefly that , if the characteristic equation has 
all its roots in the left half of the S plane, every component of small disturbance 
tends to zero as t-+ 00 • Thus, this is the necessary condition for asymptotic 
stability. Furthermore, if the characteristic equation has a root with a positive 
real part, the disturbance grows with time and hence the system is unstable . 

On the other hand, when the excursive instability is considered, it is 
useful to transform Eq. 42 into 
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6tlP ex 

6v 
= Q( s ) . ( 45) 

In the limit S-+ 0 the perturbation becomes constant. Hence the excursive 

stability condition can be given by 

6t~P ex 
g.~ 6 v > 0. (46) 

Since e, the magnitude of the velocity perturbation, is an arbitrarily small 
constant, Inequality 46 reduces to the criteria obtained by Leginegg, 4 

namely, 

ol'lPex 
ov > o. 

It follows that 

lim Q(s) > 0 
S-+o 

(47) 

(48) 

is the condition for the excursive stability . In view of Eq. 44, this corresponds 
to a singularity in the dynamic stability analysis . Therefore , the examination 
of the characteristic equation 44 and of the nature of its roots in the complex 
S-plane is sufficient for both the dynamic and excursive stability analyses. We 
note here that the excursive stability criterion based on the above discussion 
has been obtained in Ref. 29. 



VI. SIMILARITY GROUPS GOVERNING THE DYNAMICS OF THE SYSTEM 

In the following analysis, we shall nondimensionalize the characteristic 
equation for the uniformly heated system. We chaos e the length scale as t , 
the heated channel length, and the time scale as 1/0, the reaction (phase
change) time in the mixture region given by Eq. 32. Based on the above ref
erence scales, we obtain following nondimensional parameters: 

Geometrical groups: 

Froude number: 

Reynolds number: 

Subcooling number: 

Phase-change number: =- = 

Drift number: 

Density ratio: Np = p g/ P f; 

M1z t:.p 

t:.ifg p g' 

q;,gt t:.p 

Acvfit:.ifg P gP/ 

Perturbation parameter: S* = a/0 + jw / 0 = a* + jw*. 

(49) 

The above groups are independent of each other and are the basic pa
rameters governing the dynamics of the system . For a smooth pipe, the single 
phase-friction factor fs can be correlated to the Reynolds number NRes. The 
two-phase friction factor fm is given by Cmfs, where Cm is supposed to be a 
constant. The geometrical parameters, the Froude number, and the Reynolds 
number have their standard significances. On the other hand, the subcooling , 
phase-change,drift, and density numbers are associated with the two-phase 
flow systems. 

The subcooling number takes into account the time-lag effects in the 
liquid region due to the subcooling of the fluid entering the heated duct. Thus 
it is one of the important parameters for the stability analysis. 

The phase-change number corresponds to Damkoehler 1 s Group I in 
chemical kinetics, 60 and it scales the change of phase due to the heat transfer 
to the system. Since Npch is the inverse of the nondimensional inlet velocity, 
it can be seen that Npch is one of the decisive parameters for the kinematical 
similarity. Both Nsub and Npch are significant not only for stability analyses, 
but also for the description of the steady- state operational conditions. 
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The drift number takes account of the drift effects due to the relative 
motion of the fluids and thus plays a role in two-phase flow similar to that of 
Damkoehler's Group II in diffusion processes. 60 Since the vapor drift veloc
ity V gj depends on the flow regime, 58 this g roup charact e riz e s .th e flow pattern . 
We note here that two-phase drift processes are not due to the molecular 
random motions, but to the macroscopic geometrical orientation of each phase . 

The drift number is important for the kinematical similarity of mix
ture. If Nd >> Npch• then the change of the density and velocity are controlled 
by the drift, i.e., redistribution of phases . 

The density number explicitly appears only in the drift stress term of 
the characteristic equation . Depending on the constitutive equation for Cm, 
this group Np may also appear in the two-phase frictional-pressure-drop 
terms, in which case Cm is a function of Np. The density number actually 
scales the dynamic effect of the system pressure Ps in contrast to the kine
matical effects of P s, which are taken into account for by the term 6p / p g in 
Nsub and Npch· This is quite important in connection with the above state 
ments on the drift and frictional pressure-drop t e rms . 

For example, if the condition NpN~ << 1 is satisfied, then the pressure 
drop due to drift stress is small . Furthermore, if we can assume that , for a 
wide range of system pressures oCmf oNp""" 0, then the influence of the sys 
tem pressure can be effectively taken into account by the groups Nsub and 
Npch · In this case, Np can be eliminated. 

Following the above similarity analysis , the characteristic equation 
can be rewritten in general as 

(50 ) 

Equation 50 shows the complete parametric dependence of the characteristic 
equation. Under usual circumstances D* cannot be considered as an opera 
tional parameter, but rather as a desi g n parameter . Thus , once the system 
is g iv en, the dynamic behavior can be represented in ei ght-dimensional space 
with S* as a parameter . 



VII. STABILITY ANALYSIS 

The characteristic equation governing the dynamic response of the 
system can be expressed by the combination of the rational functions and the 
exponential functions in terms df the perturbation parameter S*. The asymp
totic stability of the system can be determined by the nature of the charac
teristic equation given by Eq. 50. 

The stability theorem applicable to our characteristic equation can be 
classified in two groups, the stability test criterion and the stability boundary 
criterion. In the following, we shall discuss the above groups separately . 

A. Graphical Method Based on Encirclement Theorem 

The stability criterion from the encirclement theorem was first de
veloped for the linear system with no time delays by Mikhailov61 and by 
Leonhard, 62 and slightly modified by Nyquist63 for the closed-loop control 
system. The theorem is well known and not restricted to the rational al ge
braic functions. The extension of the criterion to the time-delay system was 
studied by Sokolov, Miasnikov, and Satche among others . A detailed review 
of these works has been done by Popov64 or by Porter . 59 Briefly , the criterion 
was obtained from the application of conformal mapping and the residue theo
rem. Basically, the stability test criterion states that the system is unstable 
if the characteristic equation has any roots in the right-hand half-plane of S*. 
The number of zeros can be found by mapping S* on the contour C , which 
covers the right-hand half-plane into the Q* plane, and then counting the 
clockwise encirclement of the origin of Q* plane. 

The above criterion is extensively based on graphical means, and a 
plotting of the Nyquist or Mikhailov diagram is required. The algebraic cri
teria of stability for the linear-time-delay system were developed by 
Pontriagin; 65 however, the application of the criteria to the practical problem 
usually becomes quite complicated. Therefore, it is not recommended here . 

B. Stability- boundary Criterion (D-partition Method) 

The criterion discussed in the foregoing section is best suited for the 
examination of the stability when all operational parameters are known con
stants. On the other hand, if a parametric study for the system is required , 
the D-partition method is preferable . It was first studied by Neimark,66 and 
a detailed discussion on the application for the time-delay system appears m 
Refs . 59 and 64. By taking the characteristic function Q* , we have 

(51) 

where N' s are the nondimensional groups appearing in the argument of Q* in 

Eq. 50. 
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Now consider harmonic oscillations. We setS* = jw*, where j = J-1. 
By separating the real and the imaginary parts, we obtain 

and 

(53) 

Equations 52 and 53 give the harmonic-frequency surfaces in an m-dimensional 
space; i . e . , N 1 , • •. , Nm are coordinates , with w* as an auxiliary parameter . 

Since the complex roots are always conjugate for a function with real 

coefficients, it is sufficient to consider the domain 0 < w* <CD with two singular 
surfaces: 

tim Q* = 0 and 
w*--o 

tim Q* = 0 . 
w*-+CD 

(54) 

Now the m-dimensional space is divided into regions bounded by the harmonic
frequency surfaces and two singular surfaces. 

The theorem states that the number of roots lying in the right half of 
the S* plane for each region divided by the surfaces do not change within a 
subdivision . Therefore, the stability of each region can be decided by testing 
the stability for any point in that re g ion . For this purpose , the criterion de
rived in the previous section is useful. We note here that , since the charac
teristic equation is a rathe r c omplicated function of the similarity parameters 
and S*, it is necessary to use a computer to obtain these boundaries . Such a 
computer code has been developed for the thermal equilibrium as well as non 
equilibrium cases. 26 •29 

C. Stability Plane 

The parametric study of the stability of the system can be performed 
by using the D-partition method discussed above. The governing parameters 

obtained from dimensional analysis are ki , ke, D*, NFr • NRes' Nsub• Npch• 
Nd, and Np, whereas the harmonic frequency w* is an auxiliary variable at the 
stability boundaries . As has been shown in a previous section, the neutral 
stability surfaces in a multidimensional space are given by settingS* = jw* 
in th e characteristic equation . However , to present these stability boundaries 
in a two-dimensional plane, we must select two representative parameters 
for th e coordinates of such a stability plane . Since , for constant system pres 
sure and inl e t velocity with fixed geometry, the parameters ki , ke, D*, NFr• 
NR Nd and Np are fixed, the subcooling and phase-chang e numbers are es, , . . 
b e st suited for the coord1nate of such a plane . For example, 1t was found that 
the ope rational domain in the stability plane was bounded by the physical 



restrictions on the subcooling and the heat flux. From the condition that the 
subcooling is a positive entry and has an upper bound given by Ms, cor res
ponding to the operational limit on subcooling or the freezing point, we have 

(55) 

On the other hand, from the condition that boiling takes place in the channel 
and that superheating the vapor does not occur, we obtain 

In addition to the stability boundaries, some important operational char
acteristics can be represented in simple form on the stability plane. For ex
ample, the constant exit-quality line is given by 

= N h X 6p pc - ep' 
g 

whereas the length of the nonboiling region is given by 

The basic characteristics of this stability plane are shown in Fig. 7. 

Max. SUbcooling 

Subcooled 
Liquid 

0 // // 
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(57) 
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VIII. SIMPLE ALGEBRAIC CRITERIA 

The exact neutral-stability boundarie s of Eqs. 52 and 53 can also be 
given in the form 

( 59 ) 

Consequently, we obtain parametric equations Rej w* = 0 and Im/ w* = 0 for 
the neutral- stability surfaces . Here Re and Im are complicated trigonometric 
polynomial functions in w*; however, by using the asymptotic condition w* << 1, 
we can simplify them to a great extent. Since the first eros saver of the real 
axis in the Mikhailov diagram happens w i th relatively small w*, the exponen
tial terms have usually more significance than the polynomial parts for the 
determination of the first eros saver. Thus, by considering the asymptotic 
case ofw* << 1, we can neglect the higher-order terms ofw* . 

By canceling w* between the simplified form of Re and Im, we obtain 
an approximate algebraic criterion29 given by 

( 
fsCm ) 

2 ki + ZD* + ke 

Nsub < (f C ) . 1 s m 
1 + 2 2D* + 2ke 

(60 ) 

Here we have neglected the effects of the relative velocity and g ravity . The 
algebraic criterion including these effects and a more detailed derivation are 
given in Ref. 29. The above stabi lity criterion is applicable in the range of 

0 < w*Nsub < n. (61 ) 

However, for a system with a sufficiently large excursive stability margin , 
we have 

w*Nsub S n . (62 ) 

In view of the asymptotic condition w* < 1, the limit of the criterion, Eq . 60, 
becomes 

(63 ) 



IX. RESULTS OF THE STABILITY ANALYSIS 

In this section, we shall study the effects of various operational vari
ables on the boundary of the stability of the system by using the results from 
the computer runs. Typical stability maps obtained from the calculations 
are given in Figs . 8-15. 

It has been found that more than one neutral frequency curve exists 
and w* appears quasi-periodically. However, the most important curve is the 

' first neutral-stability curve, since it is the stability boundary. 

A. Effects of N sub (Sub cooling) 

In view of Figs. 8-15, it can be seen that there is a characterized 

(Nsub)c such that increasing Nsub is stabilizing when Nsub > (Nsub)c and de
stabilizing when Nsub < (Nsub)c. 

For the range of Nsub > (Nsub)c, the stability-boundary curve is al
most a straight line nearly parallel to the constant exit-quality line . This 
result and the form of the simple criterion given by Eq . 60 suggest that this 

criterion can be applied for Nsub > (Nsub)c. 
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The large change of the stability- boundary curve at the neighborhood of 
(Nsub)c can be explained by the fact that the frequency w* increases as Nsub 
decreases along the curve; thus the higher-order polynomial term in the char
acteristic equation becomes important as w* approaches 1 . From this argu
ment, it can be said that (Nsub)c happens at w* ~ 1 . Thus from Eq. 62 we have 

(64) 

In terms of the subcooling at a given NJ?Ch• we conclude that the In

crease of Nsub is stabilizing for Nsub > (Nsub)c and destabilizing for 

Nsub < (Nsub)c-

B. Effects of Npch (Heat Flux) 

From Figs. 8-15 as well as from the simple criterion (Eq. 62), it can 
be seen that increasing Npch is always destabilizing. Thus increasing heat 
flux at constant inlet velocity shifts the system to the unstable direction. 

C . Effects of System Pressure 

As explained in Sec. VI, the dynamic effects of the system pres sure 
are characterized by the density number Np . In the characteristic equation , 
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it appears only in the drift term and possibly in the friction-factor coeffi

cients Cm· Thus it has been concluded that the extent of the system pressure 
effects in the stability plane is quite limited . This result is further backed up 
by the computer run for three different pressure levels, which is shown in 
Fig. 8, where the stability boundaries obtained on the Nsub-Npch plane for 
different pressure levels cannot be differentiated. From this we conclude that 
the important part of the system-pressure influences on the stability boundaries 
are taken into account by the subcooling number Nsub and phase-change 

number Npch · 

D. Effects ofNRe (Inlet Velocity) 
s 

The effects of the inlet velocity are examined by plotting the stability 
maps for different NRes in Fig. 9. The results show that the most significant 
influence of the inlet velocity is accounted for by the phase-change number 
Npch · Thus, increasing the velocity is stabilizing. In terms of the critical 
heat flux, i.e., the maximum heat flux for the system to be stable, we can say 
that the critical phase-change number is almost inversely proportional to the 

inlet velocity . 

E. Effects of Relative Velocity 

By changing the drift number Nd, we have examined the effects of 
relative velocity. The result, shown in Fig. 10, agrees with the analytical 
conclusion that the relative velocity has a stabilizing effect. 

F. Effects of the Inlet Restriction ki 

Figure 11 shows the drastic influence of ki on the stability boundary . 

As has been concluded analytically, increasing ki is a strong stabilizing factor . 

G. Effects of the Exit Restriction ke 

Figure 12 shows the important influence of ke on the stability of the 
system. The effect of increasing ke is shown to be strongly destabilizing , as 
has been expected. 

H. Effects of Static Friction Factor 

The effect of the static magnitude of the friction factor is examined by 
changing the value of the friction-factor coefficient Cm . As can be seen from 
Fig . 13, the increase in two-phase frictional pressure drop is destabilizing. 
The quantitative effect of Cm on the stability boundary lar ely depends on the 

values of ki and ke . Thus, it can be said that the friction factor becomes more 
important as the values of ki and ke decrease. 



I. Effects of Dynamic Friction Factor 

The dynamic effects of the two-phase frictional pressure drop have 
been examined for three different models . The results are shown in Figs. 13-
15. By comparing these three stability maps, we can see some differences 
among them; however, if proper values are taken for Cm and n', the differ
ences are limited. Thus we may conclude that, for a system with sufficiently 
large ki and/ or ke, the difference in the friction-factor model is not important 
for operations at high system pressure. However, it also should be noted that 
introducing the complicated dynamic friction factor into the characteristic 
equation may generate a numerical instability due to the complication in the 
transfer function for the frictional pressure drop. 

/ 
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X. COMPARISON WITH THE EXPERIMENTAL DATA AND DISCUSSIONS 

The analyses developed in previous chapters have been compared to 
the experimental data of Refs. 19 , 21, 26, and 2 7 . The geometry of the three in
dependent experiments includes both c ircular and annular tubes at different 
diameters. The working fluids were water 19

•
21 and Freon-113. 26

•
27 The experi

mental data in Refs. 19 and 21 were well- suited to examine the thermal
equilibrium model, 28 •29 since the data were for a high-pressure water system. 
On the other hand, the data of Refs. 26 and 2 7 are expected to show some ef
fects of the thermal nonequilibrium. Therefore, the later data were also com

pared to the nonequilibrium model. 26 

The theory is compared to the experimental data in Figs. 16-21. The 
quantitative agreements of the stability boundary as well as of the frequency of 
the oscillation are excellent. As predicted by the theory , the effect of the sys
tem pressure is absorbed by the nondimensional groups , namely, Npch and 
Nsub· Therefore the data for three different pressures are scattered around 
one single stability boundary , as seen in Fig . 20. However, the exit quality 
corresponding to a particular value of Npch increases with increasing pressure. 
The equilibrium theory and the simple stability criterion of Eq. 60 are in good 
agreement with the experimental data, except for low subcooling numbers . For 
Freon-113, the nonequilibrium effects are pronounced , and the nonequilibrium 
theory of Saha26 well predicts this trend (see Fig . 20) . Further discussions on 
the comparison of the theories to experimental data are given in Refs. 26 , 27 , 
and 29. 
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