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PREFACE 

These notes were written for use as a supplement to a three-week PL/I 
course taught by the author from October 20, 1975 to November 7, 1975 at 
the Applied Mathematics Division of Argonne National Laboratory. The course 
was intended to attract scientists and engineers from other Laboratory 
divisions who conten̂ jlated using PL/I in their future programming. No 
special enphasis was placed on features useful in business applications. 

In the preparation of these notes (and of the classes themselves), use 
was made of the fact that the scientists for whom they were intended could 
be assumed to have had prior experience in programming with high level 
languages (probably FORTRAN). This assumption is reflected in the absence 
of frequent demonstrations of the practical application of language elements 
to the solution of conplete and realistic problems. The notes (and the 
course) thus do not address the problem of teaching the non-programmer how 
to program in PLjT; rather, they supply the practicing programmer with the 
information needed to begin using PL/I to solve problems he is already 
accustomed to solving in other languages. 

That is not to say that the experienced FORTRAN programmer will neces
sarily find the road to conversion to be free of holes and bumps. Certain 
traps are lurking. Specifically, certain techniques and concepts of 
FORTRAN, if translated in the obvious way to PL/I, result in incorrect 
programs. Special enphasis has been devoted to this problem. It is apparent, 
for instance, in the discussions of the differences between fixed-point data 
(in PL/I) and integer data (in FORTRAN); the differences between the respec
tive roles of defining (in PL/I) and equivalencing (in FORTRAN); and the 
proper, and very different, ways to pass and use variable dimension informa
tion in the two languages. 

These notes were written over the short period of five weeks. Because 
of that rush, they are inevitably less polished than they could have been. 
This is hopefully compensated by the very careful attention given to the 
ordering of topics for effective learning. The chosen order of introduction 
of topics, which was worked out over a three-week period before writing 
commenced, is intended to help the students avoid mental overload even niien 
classes (corresponding to chapters) are taught on successive days. 

The very frequent references to passages in IBM manuals (which are 
keyed indirectly through the reference list following Chapter 15) are an 
essential factor in keeping these notes as short as they are. For instance, 
detailed syntax of statements is usually omitted from the notes, as are 
certain tajjles of information easily found in the manuals. The notes 
enphasize concepts more than details. Unfortunately, the utility of the 
references will be diminished in the future unless the page numbers can be 
successfully updated to reflect such revisions as may have been incorporated 
in the manuals by then. 



The author has pointed out some differences between the "current 
language and the proposed ANSI Standard for PL/I. The reader must be 
cautioned, however, that not all of the differences have been documentea. 
(For instance. Chapter 1 does not mention the dropping of the I-to-N ruie 
for default arithmetic attributes, which is certainly veiy unportantj 
The absence of a complete comparison is due to the fact that lists o± 
known differences were not constantly reviewed during the preparation ot 
these notes; differences were cited when they just happened to come to mina. 

Structured programming advocates may be disappointed by the almost 
total absence of orientation toward structured coding and development prac
tices. The GO TO statement iŝ  taught. The reason is that this course is 
about the PL/I language and its concepts; it is not a course in programming 
methodology. Structured programming is a separate topic and can be (and in 
the author's opinion should be) taught independently of any particular 
language. The author has not, however, entirely ignored the question of 
program correctness. His contribution has been to emphasize language purity 
and to enhance transportability by carefully distinguishing between the 
formal language definition and implementation-defined features. Illegal 
language is never demonstrated. No concessions are made to convenience. 

Finally, the author wishes to acknowledge the help of Matt Prastein 
and April Heiberger in preparing Chapters 1 and 6 for text editing in TSO; 
of the following secretaries in the Applied Mathematics Division for their 
many weeks spent typing the copy: 

Marge Visser 
April Heiberger 
Judy Beumer 
Grace Krause 

Nancy Piazza; 

of Linda Clark and Sue Katilavas for handling all aspects of the class notes 

lylT" ^ ^ " I ' D " .̂ ,?P''̂ '' ̂ "^ ^°'" ̂ ^^"8 ^° chapters and printing all of 
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ABSTRACT 

Presented here are notes for a course in PL/I. They 
might serve as a guide to others who are developing a course, 
and indeed as class notes for that course. They might be 
useful as a textbook independent of any course; as such a 
textbook, however, they are not self-contained because of the 
built-in assumption that they will supplement lectures and be 
accompanied by manuals. 

Very nearly the full language is taught here, with the 
emphasis on concepts rather than Practical details. The un
orthodox order in which concepts are introduced is ^^^ deliber
ate invention of the author. One effect of this ^^ the complete 
avoidance of any discussion of I/O until ^°^fhly the midpoint of 
the course. The hoped-for consequence for students is an 
enhanced perception and understanding of the many concepts and 
their logical relationships. 

The dawning of the age of transportability for PL/I pro
grams gives the user a reason, for the first time to avoid 
convenient but illegal language. In their attention to this 
issue, these notes should help the "ser appreciate the value of 
sound coding practices and their negligible incremental cost at 
the most important time -when he is first starting out. 
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0. Introduction to PL/I course. 

0.1. Welcome! 

Welcome to the PL/I course! 

It is hoped that over the next three weeks you will realize your 
goal of learning to write effective programs in PL/I. 

Why so many class sessions? PL/I is a "massive" language. Even 
if much of the bewildering detail is stripped away, leaving the 
major concepts, there is a lot to be taught and a lot to be learned. 
We have, in fact, left out many of the subtleties and a lot of the 
detail (rules, conventions, restrictions, interactions, etc.). No 
one can remember all that, anyway. That's what we have reference 
manuals for. 

Although they are in̂ jroving, reference manuals are still not very-
good for teaching the broad concepts of a programming language! 
That's why we have developed this course. In its planning we have 
devoted particular enphasis to the choice of a logical order for 
the introduction of successive concepts. We believe this is the 
recipe for successful learning. A consequence of this is the 
deferring of any discussion of I/O until about the midpoint of the 
course; since we don't wish to "jump the gun," examples and homework 
problems are necessarily and unrealistically I/O-free until then. 
But even when we finally get to I/O, we don't take an overdose. 
Progressively more advanced aspects of I/O are assigned to Lessons 7, 
8, 9, 11, and 14. 

Still, this is an ambitious undertaking. A college semester is being 
crammed into three weeks! To receive full value from this course, 
you will need to attend every lesson. Beyond that, you will need to 
read the class notes and selected passages in the manuals, and you 
are strongly urged to attempt the homework problems. 

0.2. Goals of the course. 

Sophisticated engineering applications in programming today are 
characterized by the combination of properties and features they are 
required to exhibit. For instance, a single, coherent application 
program may need to combine scientific calculations, non-numerical 
calculations (such as logical calculations or text manipulations), 
large-scale auxiliary data management, and internal resource manage
ment. And certain kinds of programs, particularly those modeling 
physical systems, can benefit from more "natural" ways of representing 
information, such as by time-varying "structural" or hierarchical 
relationships between items of data. Because PL/I can satisfy all 
these needs in a smooth and consistent way, the primary goal of the 
PL/I course is to teach nearly all the major concepts of the language. 
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(The only significant one omitted is "teleprocessing," "^l^H 
not available in our system anyway and which is not in 
standard.) 

Experience has shown that PL/I programmers who have an incomplete 
knowledge of the language are likely to use inappropriate, i.e., 
less than natural, language features to accoiH)lish a particular 
task. The result of this is frequently inefficiency in the oDject 
program and, as a consequence, dissatisfaction with the language. 

For many years people believed that PL/I was the sole province of 
IBM. PL/I code interchange with non-IBM installations was out of 
the question. Well, in 1975 PL/I has come a long way. A proposed 
international ANSI-ECMA standard for PL/I is on "final approach" 
and likely to be accepted in 1976. Honeywell, Univac, and Burroughs 
have viable PL/I compilers which have been aimed at the proposed 
standard (a moving target) during their development. Even Control 
Data, which abandoned its early efforts in PL/I years ago, appears 
to be reviving its interest in the language (perhaps they thought 
it wouldn't catch on--and guessed wrong). 

Thus, a second goal of the course is to prepare you for the day in 
the not too distant future when you may be writing programs that 
have portability requirements extending to other PL/I systems and 
other hardware. This is done in two ways. First, we will point 
out some significant differences between the IBM implementations of 
PL/I and the proposed standard. Second, we will make a clear dis
tinction between official language and current implementation. 
Unfortunately, many programmers believe FL/i i£ whatever our compilers 
let them do; that is, they write technically illegal language which 
happens to give them a convenient and useful effect on our system 
They may feel justified in doing this because they have no intention 
of exporting their programs to other installations with different 
conjjilers. The hidden danger, though, is that they may have to 
export their programs to themselves someday. There is no guarantee 
that we will always have IBM equipment! We have already experienced 
some ST the problems that can be encountered with illegal iLguaee 
because IM has changed the implementation of certain laneuaee 
features within their own progression of con̂ jilers over the vear.= 
(They have also changed--ijnproved--the language itself sevprai t?,; = 
unfortunately tliis has made trouble everf^\onesf p r o g S r s ' 
One more round of "incompatible changes" must be exnecteH ̂ h ^K 
introduction of the ANSI standard, after which we^o.^ln^^ ^ 
of relative stability of the lang^ge ) So o / t h f ? ^ "*!"• ̂  ^^^ 
preferable to learn how to do it legally f?om ^h^h.?'""^ "^^l ^' ̂ ^ 
possible problems later, we will e n ^ h a s l z e Z S g e l ^ ^ ^ S ' ""°'^ 
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0.3. Topics to be covered. 

The following is a broad outline for the fifteen lessons (class sessions). 

1. Variables, attributes, and declarations: 
arithmetic data types, arithmetic expressions, precision rules. 

2. String data types; string and logical expressions. 
3. Aggregates. 
4. Block structure and scope of names. 
5. Storage classes and block invocations. 
6. (a) Control constructs, 

(b) Conditions. 
7. Introduction to I/O; stream I/O. 
8. Introduction to record I/O; consecutive datasets. 
9. Indexed and regional datasets. 
10. (a) Builtin functions and pseudo-variables, 

(b) Interlanguage communication. 
11. List processing and locate mode I/O. 
12. (a) Miscellaneous features, 

(b) Preprocessor. 
13. (a) Advanced JCL and compiler options, 

(b) Program development and debugging. 
14. Multitasking and asynchronous I/O (optional). 
15. Checker/TSO demonstration. 

0.4. Class notes. 

You are reading Chapter 0 of the class notes. A set of fairly extensive 
notes will be handed out in each class. The notes will make it generally 
unnecessary to take notes in class, and they will make it easy to review 
the material later. The notes, however, are not a substitute for the 
lectures. The lectures will provide more motivation than the notes and 
different exanples, though perhaps less detail. Some blank space is 
provided for you to take extra notes, doodle, etc. 

0.5. Manuals and outside reading. 

Five manuals are being distributed with this introduction for your use 
during and after the course. There are frequent references in the 
class notes to passages in the manuals. Each manual is codified by an 
abbreviation in the reference, as follows: 

LRM - Language Reference Manual 
CPG - Checkout Compiler Programmer's Guide 
OPG - Optimizing Conpiler Programmer's Guide 
CTUG - Checkout Conpiler TSO User's Guide 
OTUG - Optimizing Compiler TSO User's Guide 

The number that follows a manual code, as in LRM 57, is not a page 
number but rather an entry number in a reference list which is being 
supplied separately. The entries in the reference list give page 
numbers and text to identify the beginning and end of each passage. 
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Manual references are made for two reasons: m a few cases, to 
point you to well documented details that it would be silly to copy 
in the class notes; more often, to point you to material you can 
use for review, and for a different perspective, after it is covered 
in the notes. You are urged to read all the references though time 
may not permit you to read the longer passages during the course. 

Unfortunately, you will find that the passages do not always correspond 
in scope to the material treated in the notes; they will frequently 
reference related topics that we won't cover until later, and they may 
mention details that we don't cover at all. Be alert for terms we 
haven't covered; try to skip, on the first reading, anything that looks 
foreign. 

If you do pursue most of the references, you will acquire a great deal 
of familiarity with the manuals and with their organization. You won't 
be afraid later to look something up, because you will have a pretty 
good idea of where to look. Actually, that is another goal of the 
course. 

It would be a good idea for you to browse through the tables of 
contents of the manuals now. You will notice a great deal of duplica
tion in the two programmer's guides, and in the two TSO user's guides. 

There is also a Messages Manual available for each coitpiler, though 
these aren't essential to own. And if, somehow, this course leaves 
you gasping for more, go out and get the Execution Logic Manuals for 
each conpiler. 

There are a few reasons why we don't generally recommend books on PL/1 
We haven't evaluated many. Those we have seen have been disappointinelv 
incomplete, erroneous, or obsolete more often than not Several books 
are in preparation by authors known personally by the instructor- it •!«: 
expected that these will be commendable. , n. xs 

0.6. Homework. 

Each set of notes has several homework problems based on the materi;,i 
taught m that class. The purposes of the homework ^vTi-nliT 
test your understanding of the mterial, to g i v ™ 11?,!^^°^ >'°" ̂ ° 
with the language concepts, and to lead you through a discnS'2''^ 
some revealing insights that will, hopefully, influence ^ 
design and coding style. For this re^on you are stronp(v"f ̂ T"""™ 
attenpt the homework problems in a timely manner ^""e^y "^ged to 
required to turn in completed homework; however 'if vn„^ "?* ^^ 
instructor will go over your work, make conments,'and°retum1^ to 
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0.7. Running programs. 

You are not generally asked to run programs as part of the homework; 
for about half the course you are not even asked to write whole 
programs. However, once you have learned enough to write a program, 
you may find it instructive to run it. Follow these guidelines. 

Use the Checkout Conpiler in batch. It will be preferable for you to 
punch your program and data on cards, for now. 

Source programs can be free form. You can start a statement in any 
column within the source margins (see below). You can put as many 
blanks as you want between language keywords, identifiers, constants, 
and special symbols. A semicolon marks the end of a statement, which 
may continue over as many cards as necessary. A comment, which is 
any text surrounded by /* and */, can be written wherever arbitrary 
blanks are permitted, as described above. 

Standard (default) source margins are coltnnns 2 and 72. Leave column 1 
blank, and do not write source text beyond column 72. 

Use the following JCL if your program consists of a single "external 
procedure," i.e., a main program that doesn't need to be link-edited 
with any subroutines. 

// job card -- express limits are adequate 
account card 

// EXEC PLCCG (Note: not PLCCLG) 
//SYSCIN DD * (Note: not SYSIN) 

source program (column 1 blank) 

/* 
//GO.SYSIN DD 

data 
Can be omitted 
if no data. 

External procedures aren't mentioned until Lesson 4. 

If your program has several external procedures, i.e., a main program 
and subroutines to be link-edited together, use the following JCL. 
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// job card 
account card , , -, 

// EXEC PLCCLG (different cataloged procedure) 
//SYSCIN DD * 

m a m program 

*PROCESS; This starts in column 1! 

subroutine 

*PROCESS; 

subroutine 

/* 
//GO.SYSIN DD * 

data Optional 

/* 

After the course. 

Let us hear from you! We want to know how you are doing. The 
consultant can provide help with particular problems. 

For FOKTRAN-type computations, PL/I can be about as efficient at 
run time as FORTRAN. Certain features, because of their power and 
generality, are inevitably and inherently less efficient, but then 
many have no direct counterparts in FORTRAN. If you are unsatisfied 
with the perfomance of your programs, the consultant might be able 
to help you find some single adjustments to make to tune it There 
are a variety of optimization features you have to ask for explicitly 
The compilers themselves can be made more efficient if future use 
warrants it. 

If you encounter bugs m the compiler, report them to the con<.nli-.̂ -n 
IBM wants to find them and fix them, because it strongly s Z o ^ i . 
PL/I. Anyway, chances are we have a later version of the ^ • P 
around which we are checking before releasing it WP r=,„ compiler 
how to STEPLIB to it. B t. we can tell you 



0-7 

Finally, after half a year or a year of experience, you may find it 
useful to reread the notes. You will be in a better position to 
appreciate and utilize some of the advanced features of the language. 
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1. Variables, attributes, and declarations; arithmetic data types, 
arithmetic expressions, precision rules. 

1.1. Variables 

A variable has a name, which is an identifier. It is located 
somewhere in storage, and it has a JCâ ue. 

Basically, identifiers may be up to 31 characters long. Examples 
are: 

TIME_OF_FLIGHT 
CHANNEL* 
COEFFICIENT OF_EXPANSION 
X21 

Eules for identifiers are given at LPr" 1 . A language keyword (such 
as DO) may be used as an identifier; language keywords are not 
"reserved." 

Much more will be said about variables later. We will look again at 
variable names in lesson 1 and at their locations in Lesson 5. 

1.2. Attributes 

In addition to a name, a location, and a value, every variable has 
some attributes, which are characteristics that tell the system 
exactly how the bits stored in its location represent its value. 

See LRM 2 and LRM 3. 

1.3. Declarations 

Names and attributes are associated with variables by the process of 
declaration. The DECLARE statement may be used to "declare" one or 
more variables. Simple forms of the DECLARE statement useful for 
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present purposes are as fol lows: 

DECLARE Id cuttxibwtui,; 
DECLARE Id-^ oWU-biitM;i, 

.. . , 

DECLARE ( ^ d j , . . .,,tdj^) dWu-batHi,; 

In the above, id is the name of the variable and CUXAAJSUXU is a list 
of attribute keywords. The first form declares a single variable. 
The second declares several, with potentially different attributes, 
in one DECLARE statement. '''he third declares several with a common 
set of attributes. DECLARE may be abbreviated DCl, as in the 
following examples: 

DCL X FLOAT BINARY; 
DCL Y FIXED DECIMAL, 

Z FLOAT BINARY; 
DCL (U,V,W) COMPLEX FLOAT BINARY; 

The definitive rules for the DECLARE statement, which go far beyond 
what we need now, are at LFM 1. 

I.t. Types of declarations 

liE£iicit: By use of DECLARE statement. 
Contextual: Certain uses of identifiers, in the absence of an 
explicit declaration, result in a contextual declaration of a 
variable with that name and attributes deduced from context. The 
contexts for which this is possible are those that require particular 
attributes and cannot tolerate other alternatives. Arithmetic 
attributes are never deduced from context; there are many alternative 
arithmetic attributes, any of which can be used in any arithmetic 
context. ' 
lm£ii£it: An identifier which is neither explicitly declarer! nor 
;^^^i,i"/ context resulting in a contextual declaration is implicitly 
attrihuter The r"^ °' ' variable, which is given certain^efault 
attributes. The language specifies a set of defaults which are, in 
the 'fle? 1 ^ '.K^"''"^*^'^ attributes. The programmer can change 
Lesson J " '" ''""-" ^^^^ement, which^ is considered in 

that"" ^iirnot"' n ; / * " "̂''"'̂  *"'' "=^= "^"^ ^"-"^ '"^ concepts that we will not consider until ipsson «; try tc ianore them for now. 
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1.5. Arithmetic data types 

As in FORTRAN, there are many arithmetic data types and corresponding 
attributes (many more, in fact). All arithmetic variables have four 
characteristics, chosen from four sets of alternatives. The sets are 
as follows: 

Mode: The choices are REAL and COMPLEX. Note that, in FL/I, REAL 
only means not COMPLEX; it does not mean floating-point, as it does 
in FORTRAN. 
Scale: The choices are FLOAT and FIXED. FIXED "leans the decimal 
point is assumed to be in a fixed position relative to the internal 
representatition of the variable's value. However, that position 
need not je the right-hand edge; it can be, in which case you have 
roughly tHe equivalent of FORTRAN'S INTEGER, but it may be specified 
to be elsewhere. FLOAT means the assumed position of the decimal 
point is not in a fixed place; it •'loats from place to place with the 
gross magnitude of the variable's value (floating-point hardware is 
used) . 
Ease: The choices are BINARY and DECIMAL. Any reference to digits 
refers to either bits, if binary, or decimal digits, if decimal. 
Er^oision: This is a number specifying the number of digits to be 
used for the internal representation of the variable's value. For 
fixed-point variables it specifies the exact number of dioits that 
participate in operations on the variable according to the rules of 
the language. For floating-point variables it specifies the minimum 
number of digits that participate in operations on the variable 
according to the rules of the language. For fixed-point variables 
(only), precision includes, in addition to the number of digits, 
another number called the scale Jactor. This essentially denotes how 
many of the digits are to the riaht of the assumed decimal point. A 
scale factor of 0 means the value of the variable is always an 
integer and that the smallest difference in two different values that 
the variable can have is 1. J positive scale factor means the 
decimal point is assumed to be so many digits left of the least 
significant digit position. For instance, a scale factor of 1 means 
the value of the variable always has one fractional digit; the 
"resolution" of such a variable is thus one-half, if the base is 
binary, or one-tenth, if decimal. A positive scale factor may even 
exceed the number of digits specified for the variable, in which case 
all of the digit positions between the high-order one (leftmost) and 
the assumed position of the decimal point, which is even farther to 
the left, are assumed always to contain zeroes. A negative scale 
factor means the decimal point is assumed to be so many digits to the 
right of the least significant digit position, with the intervening 
digits assumed always to contain zeroes. Thus, with a scale factor 
of -1, th^ resolution is two, for binary base, or ten, for decimal; 
the value represented is always an integer. A better way of thinking 
about the scale factor is as follows. Suppose the precision is 
(P»9) r i.f̂ ., the number of digits is p and the scale factor is g. 
Then first consider those p digits to represent a p-digit integer, 
say 0. The value of the variable is then actually 0-b""! , where b is 
either 2 cr 1i, according to the base. 
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Beware of the following differences from F O P T P A N : 
(a) In FORTRAN, REAL means floating-point and not complex. In 

PL/I it only means not complex; the variable may be either 
fixed-point or floating-point. 

(b) In FORTRAN, C O W I E X means floating-point and in the 
complex, as opposed to real, domain. In PL/I it does not 
imply floating-point. 

(c) In FORTRAN, INTEGER means fixed-point integer in the real 
domain. In PL/I you can have fixed-point integers in the 
complex domain. 

References will be given later. 

1.6. Attributes and declarations for arithmetic data. 

By example: 

DCL X REAL FIXED BINARY(15 ,0) ; 
The value of X is a real binary integer. The number of digits 
is 15;j^the scale factor, 0. The range of the variable is -2 
to +2 - 1 , with a resolution of 1. 

DCL X REAL FIXED BINARY(1'=); 
Same as above. If omitted, the scale factor is assumed to be 0. 

DCL Y COMPLEX FIXED BINARY(15); 
Y has both a real and an imaginary part, each with the 
properties of X, above. 

DCL Z FIXED DECIMAL (5,2) PEAL; 
The value of Z is a real decimal number with two fractional 
decimal digits and three 15 the integral part. -he range of the 
variable is - (10=-1) . 10 S i .e., -993.99, to *,10^-1) 10'^ 
i.e., t999.99, with a resolution of in'^^ ( u D 10 . 

DCL 0 FIXED DECIMAL(2,5) REAL; 
U has a range of -(10 -1).lo"^ to + (10^-1) . 10'= i . . nnnQO 
to t.00099, with a resolution of lO'^ ' ^^•' "•O^''^^ 

DCL T REAL DECIMAL FIXED(2,-5); 
T has a range of -(10-11-10= to +(10^-n in= < n,x,>» 
+9900000, with a resolution of 10=' ' ° ' ̂ •"•' "^^^OOOn to 

DCL R REAL FLOAT BINARY (21): 
The value of R is a real number represented i r, f\^,--
The range of the representable values ilnot " Jl°"^"'3-P°int. 
declaration; it is a property o^ the i l J . l ^ Pr°Perty of this 
underlying hardware. ?or '̂ IB. Ifn/^^i'^^uff"°"' ^•^•- ^^^ 
approximately -2"2 to t2"2 »h»^r , .- "^"^"^^ '̂'is i = 
over this range. The absolute lll^^l It t l l ' ' \ . l l T l " " " ° " " 
number that can be represented i^^.^^ smallest non-zero 
precision specification'of 21 digits (Eito'""*"'' I ' '̂̂ ^ 
significant 21 bits (and maybe more) of t^' f ^ *''̂ * ^^^ ""^^ 
where the decimal point is i« ret!t. ! ^ "^^"^ ^ " retained; 
the information contained in the exnnnL!''.*^?^^ ^^ carried in 
realization of the value exponent field in the hardware 
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DCL Rl REAL FLOAT BINARY (31); 
Rl cannot be less precise than R since the 31 most significant 
bits (and maybe more) are retained. 

DCL S REAL FLOAT DECIHAL(6); 
The value of S is also a real number represented in 
floating-point. On IBM 3fi0/370, the range, expressed in decimal 
terms, is approximately -10^^ ,(.0 *^0^^. The absolute value of 
the smallest non-zero number that car be represented is 
approximately IQ-'^. At least the 6 most significant decimal 
digits are retained. 

DCL C COMOLEX DECIMAL FLOAT(fi); 
The value of C is a complex number represented in 
floating-point. The real and imaginary parts each have the 
properties of S, above. 

1.7. Hardware implementation of arithmetic data 

The intent of PL/I is to free the programmer from the need to 
consider the hardware representations of data. Ideally, precisions 
should be chosen based on the requirements of the problem. The 
precisions specified will then have the same implications on the 
behavior of the data on all implementations (providing no maximum 
precisions are violated). Often, however, the programmer is 
interested in economy (storage or time) with respect to one 
implementation, and precisions are chosen based on knowledge of the 
amount of storage which that implies for that hardware. Such 
programs are still portable, of course, hut the efficiency 
considerations may not match the "other" hardware very well. 

For machine equivalents between FORTRAN and EL/I arithmetic data 
types, see LRM 7. For a summary of storage requirements, see LPH 20. 

1.8. Language defaults for arithmetic attributes 

If a variable is not declared explicitly or contextually, it acquires 
the following attributes implicitly. 

First letter of Identifier SMSJJl* iiilifeiJiSS 
I-N ~ REAL FIXED BINIRYIIS) 
Other REAL FICAT DECIMAL (6) 

If some, but not all four, of the arithmetic attributes (mode, scale, 
base, precision) are explicitly declared, the remainder are chosen 
from complicated defaults. The only one that may s^fel^ be omitted 
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is mode: REAL is always assumed. 

Default precisions are defined by the implementation, rot the 
language; they may differ amongst implementations. 

For all the qory details, see LRM 8 - I RM 12. 

1.9. Implementition maximum precisions 

See LRM 12. 

1.10. Use of arithmetic data 

New arithmetic values are "generated" by: 
(a) Reference to arithmetic constants. 
(b) Input operations. 
(c) Arithmetic operations on other arithmetic values. 
(d) Certain operations on other things. 

They are propagated by assignment. 
They may be used in diverse ways, some of which are: 

(a) Arithmetic operations. 
(b) Comparison operations (Lesson 2) . 
(c) Output operations (Lessons 7-9) . 
(d) Subscripting (Lesson 3) . 

1.11. Arithmetic constants 

Arithmetic constants 

Precision 

('f.oT ~ 
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3.1lt159 (6,5) 
-.008 (3,3) 

REAL FIXED BINARY constants are similar, except that one uses only 
the binary digits and follows them with a B. Examples: 

Constant Precision 
IP (1,0) 

101.11B (5,2) 
-.0101B (t,") 

REAL FLOAT DECIMAL constants are written as PEAL FIXED DECIMAL 
constants followed by an E and an optionally signed exponent. The 
number if digits of precision is the number of digits written. 
Examples: 

Constant Prec i s ion 
1E0 ~ (1) 

1 . 6 « 8 E + 2it («) 
- . 0 0 3 1 E - 3 7 («) 

REAL FLOAT BINARY constants are similar, except that only the binary 
digits are used to the left of the exponent and the exponent is 
followed by a B. The exponent is written with decimal digits but is 
interpreted as a power of 2. Examples: 

Constant Precision 
1E0B ~ (1) 

1110.00nE-3B (8) 
-.10001E+06B (5) 

There are no complex constants in PL/I, but there are imaginary 
constants. An imaginary constant is any real constant followed by 
an I. Examples: 

II 
-.Olf^IBI 
3.U8E+51I 
-11.01E-22BI 



1-f 

Constant complex values can be written as expressions, as in the 

following: 

3+«I 
-.25F0*.75E0I 

A review of this material can be found at LRM 13. This reference, 
as well IS LRM 12, covers default and maximum precisions. 

Be aware of several differences from FORTRAN: 
(a) A constant such as "^ denotes a binary integer in FORTRAN 

and a decimal integer in PL/I. However, it is not 
necessary to write this constant as 101P in Pl/I if the 
compiler can tell that a bijia_r2 integer is needed (which 
it almost always can); it will substitute the eguivalent 
binary integer. 

(b) A decimal point is sufficient to denote floating-point in 
FOPTPAN. 5.0 is a fixed-point constant in PL/I; it has a 
scale factor of 1 (remember, fixed-point data can have 
fractional parts). Again, if the compiler can tell that a 
floating-point constant is required, it will substitute 
the equivalent floating-point constant. 

(c) To get a double-precision floating-point constant you 
merely write the required number of digits; there is no D 
exponent character as in "ORTDSfi. if you have wri+ten a 
single-precision floating-point constant where 
double-precision is required, the compiler substitutes a 
double-precision constant obtained by supplying low-order 
zeroes. Thus, the nearest eguivalent to FORTRAN'S C.1D0 
is 0.100000EO (on our implementation). (-he fact that you 
only need 7 digits, and not 16, the maximum for double-
precision, is a consequence of our iiplementation and not 
the language rules.) 

Do not become paranoid over this! If you initially do what seems 
natural, you will most often be right. Some knowledge of, and 
experience with, the precision and conversion rules, as well as our 
compilers, will prepare you for the few cases where what seems 
natural is not right. 

1.12. Scalar arithmetic assignments 

Assignment of an arithmetic value to an arithmetic variable may 

atlribut^fsf-f^?^ t' T ' ^^'"^ *° '̂̂  "eguivalent" one having the 

is deter™?n»^ I "^^*- "^^ conversion occurs automatically and 
is determined by conversion rules.. 
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Forms of the assignment statement are: 
\>(VuM.bte. = zxpiuiZon; 
va/viabtt j,..., vajiaibtt = zxpieAiion; 

The letter form denotes mul^i^le assignment of the value of the 
expression (which is only evaluated once) to each of the variables 
(which may have different attributes) . See LRM 11. 

Conversion rules for arithmetic assignments 

In converting REAL to COMPLEX, a zero imaginary part is supplied. 
Going the other way, the imaginary part is just dropped. 

Other conversions are more or less obvious: they try to preserve 
the value being assigned, if possible. If change of base is 
reguired, low-order accuracy may be lost in gcing from decimal to 
binary because some decimal fractions with finite representations do 
not have finite binary representations. In general, with change of 
base, one decimal digit corresponds to about 3.32 binary digits 
(bits). The consequences of insufficient precision in the target 
depend on whether the target is floating-point or fixed-point. If 
it is floating-point, low-order accuracy may be lost. Examples of 
this situation are: 

FLOAT DECIMAL(16) to FLOAT DECIHRL (6) . 
FLOAT DECIMAL(16) to FLOAT BINARY(21). 
FIXED DECIMAL (8, x) to FLOAT DECIMAL (6) 

for any scale factor x. 
FIXED BINARY(31) to FLOAT DECTMAL(6). 

That is, as long as the target is floating-pcint, the consequences 
of insufficient precision in the target are not influenced by base 
or scale conversion. If the target is fixed-point, there are two 
possible consequences (which also are not influenced by base or 
scale conversion). Loss of low-order accuracy is possible due to 
the limited resolution implied by the scale factor of the target. 
For instance, in assigning to an integer, i.e., a fixed-point 
variable with a scale factor of 0, any fractional part is lost; this 
is common in FLOAT to FIXED (integer) ccnversions. A worse 
situation occurs when the target does not have enough high-order 
digit positions to accommodate all the non-zero high-order digits of 
the value being assigned. Exactly what happens in this case will be 
covered later (Lesson 6). This situation could easily occur in 
FLOAT to FIXED conversions, regardless of the precisions involved, 
because of the very large values that can be represented in 
floating-point. 

The assignment of a constant to a variable is one case in which the 
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compiler "converts" constants at compile time. 

1.14. Arithmetic operations 

As in FORTRAN, they are prefix and infix addition (*) and 
Subtraction (-) , multiElicaiion (*) , division (/) , and 
exponentiation (**). 

few differences from FORTRAN: 
(a) Prefix + and - have the highest priority (equal to that of 

**) instead of the lowest (egual, in FORTRAN, to that of 
infix + and -) . 

Example Interpretation in: 
FnR;;;PRw PL/I 

A=-B*C A=- (B*C) A=(-E)*C 
A = -B-C A=(-P)-C A=(-B)-C 

(b) A prefix operator may follow another operator, e.g., the 
following are allowed in PL/I but not F O P T P A N : 

A+-B A**-P 
A/-B — P 

(c) In exponentiation of a complex value, the exponent (seconf' 
operand) may be complex. In FOPTRR»I it must be not only 
not complex but also an integer. 

(d) Division of fixed-point integers (i.e., values with a scale 
factor of 0) does not necessarily yield an integer, as it 
does in FORTRAN. (See below.) This often causes people 
trouble. 

1.15. Conversion rules for arithmetic operations 

The two operands of an infix operator (except expcnentiationt must 
have the same mode, scale, and base. If „cde, base, or scale 
differs, conversion occurs as follows: 

(a) If the modes of the operands differ, the REAL operand is 

rh, T ^ r ! ! *° ^?''!"'^ "'' ̂ -^PPlyi^q a zero imaginary part. 
«T M I P V ^ ^ r ^ differ, the DECIMAL operand is converted to 
BINARY_ (Its precision being increased by a factor of 3 32 
approximately, because it will have to repr«°nt bits 
instead Of decimal digits). Caution: i f E is -IXED 
BINARY in .1*B. th. F I X E D DECIMAL constant .1 will be 

witTa value nf°'"'^ '"""' '° ^ " ^ ^ ^ "•"'"^ - " = t - ' with a value of one-sixteenth, not cne-tenth, since its 
P^:^^=\°".r^ll te ,5,u,. A value Closer ?o one-tenth is 
obtained if you write .in or lOO etc 

"" FLclT\.v?ni%\'^^"^^' ^^^ "XED'oper;nd is converted to 
FLOAT having the same number of digits. 

By the above rules we will have obtained operands that (may) diff. 
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in precision only. The result will have the same mode, base, and 
scale, aid a precision defined by the precision rules for arithmetic 
operatiois (see below). 

For exponentiation, see LRM 15. 

The use of a constant as an arithmetic operand is another case in 
which the compiler "converts" constants at compile time. 

1.16. Precision rules for arithmetic operations 

These r les are concerned with the precision of the result of 
addition. subtraction, multiplication, or division, when the 
operands have the same mode, base, and scale. 

FLOAT scale is easy: the precision of the result is the larger of 
those of the operands (for all the operations). Promotion of the 
"shorter" operand from single to double precision, or double to 
extended, is done by supplying low-order zeroes. 

The formulas for the fixed-point precision rules seem complicated, 
but they derive from simple principles. Basically, the goal is to 
retain as much precision as possible, both high-order and low-order, 
without excess precision. 

In what follows, let the operands have precisions (pi, q1) and 
(p2,q2) respectively, and denote the precision of the result by 
(p,q) . For all sets of indices, let r=p-q (the number of diqits to 
the left of the decimal point) . 

Addition and subtraction: If you were to write a pair of operands 
one above the other, with decimal points aligned, you would see that 
no precision is lost if the number of fractional digits of the 
result iH the greater of the numbers of fractional digits of the 
operands (i.e., g = max(g1,g2) ) and if the number of integral diqits 
of the result is one more than the greater of the numbers of 
integral digits of the operands (the additional digit allows for a 
carry) (i.e., r=1+max (rl,r2)). 
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E x a m p l e : x x . x x x x 
± XXX.XX 
xxxx.xxxx 

Substituting for the r's, we get p=l+max (pi-qj ,p2-q2)+max(qi ,q2) . 
If this formula yields a value of p in excess of the 
maximum permitted by the implementation, for the given 
base, that maximum is used instead. 

Multiplication: Playing the same game, you see that the 
number of fractional digits of the result needs to be the 
sum of the numbers of fractional digits of the operands, 
and likewise for the integral digits. Example: 

XX.xxxx 
* XXX.XX 

XXXXX.XXXXXX 

However, when you consider what happens in complex multi
plication, you will see that one more digit is needed on 
the high-order end. Thus, q=qi+q2f r=l+ri+r2. Therefore, 
p=l+Pl+P2, subject to the limitation on the implementation 
maximum number of digits. 

Division: This is the weird one. Clearly, the fractional 
part of the quotient could go on forever. So, to retain 
as much precision as possible the result must have the 
maximum number of digits. As many as necessary for the 
worst case are used for the integral digits with the rest 
assigned to the fractional digits (thus determining the 
scale factor). The worst case occurs with a maximum 
dividend and minimum non-zero divisor, yielding r=ri+q2. 
The final result is p=N (the maximum for the given base) 
and q=N-((pi-qi)+q2). Notice the consequences of this. 
A/2 in PL/I may have a fractional part, unlike FORTRAN. 
(It will if A is FIXED BINARY(15), for example.) Further
more, the fractional part will be exactly represented so 
that A/2*2 will equal A and not A-1 (as it does in FORTRAN 
when A is odd). Clearly, you can see that the PL/I rule 
gives a more accurate result than the FORTRAN rule. 

Note that the precision rule for division introduces a 
weak implementation dependence into the actual numerical 
results that may be obtained, in fixed-point division, 
although most realistic programs will not be affected by 
It. •' 

The resultant precision of exponentiation is given at 
LRM 15. 
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For additional information, see LRM 16, OTHER 1, and 
OTHER 2. 

1.17. Arithmetic builtin functions 

PL/I has a large set of builtin functions which are akin, 
generally, to the FORTRAN "intrinsic functions." The 
general treatment of builtin functions is in Lesson 10; 
however, those applicable to arithmetic and mathematics 
are initially covered now. 

The arithmetic builtin functions perform certain basic 
operations or conversions on arithmetic values. They are 
"generic" in the sense that a wide variety of attributes 
are permitted for the arguments. The attributes of the 
result are, in many cases, derived from the attributes of 
the arguments. 

Detailed information can be found at LRM 19 and relevant 
portions of LRM 18. The functions are listed below, with 
brief indications of their use. See also LRIl 29. 

ABS 

MAX 
MIN 
REAL 
IMAG 

MOD 
SIGN 
COriPLEX 
CONJG 
FLOOR 

CEIL 

TRUNC 

ROUND 

BINARY, 
DECIMAL, 
FIXED, 
FLOAT 

Absolute value of real quantity; modulus of 
complex quantity. 
Maximum of several real quantities. 
Minimum of several real quantities. 
Real part of complex quantity. 
Imaginary part of a complex quantity (the 
result is real). 
Remainder on division of real quantities. 
Sign of a real quantity (as +1,0, or -1). 
a+bi for real quantities a and b. 
Complex conjugate of a complex quantity. 
Largest integer less than or equal to a real 
quantity (result has same scale as argument). 
Smallest integer greater than or equal to a 
real quantity. 
Truncation of a real quantity to an integer. 
Truncation is towards zero, so TRUNC=FLOOR 
for positive arguments and TRUNC=CEIL for 
negative ones. 
A real value rounded in the specified digit 
position (not useful for floating-point). 

Conversion to the indicated base or scale 
with an optionally specified precision. 
If not specified, the conversion rules 
determine the precision. Other attributes 
remain unchanged. 
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PRECISION 

ADD, 
MULTIPLY, 
DIVIDE 

Conversion to the given precision. Other 
attributes remain unchanged. 

Operations carried out in the given precision 
instead of that determined by the precision 
rules. See LRM 28. 

Note that the DIVIDE builtin function can be used to over
come the (weak) dependency of fixed-point division on the 
implementation maximum precision. 

1.18. Arithmetic pseudo-variables 

Some builtin functions can be used, with suitably restricted 
arguments, on the left-hand side of an assignment statement. 
In that form they are known as pseudo-variables. The 
restrictions on the argument (or arguments, in some cases) 
guarantee that some portion of the storage belonging to a 
variable is being addressed. 

Three of the arithmetic builtin functions can also be used 
as pseudo-variables: 

REAL For assignment to the real part (only) of a 
complex variable, e.g., REAL(B)=1E0; 

IMAG As for REAL, but the imaginary part, e.g., 
IMAG(8)=5E-01; 

COMPLEX For assignment of the real part of a complex 
value to one real variable and the imaginary 
part to another real variable, e.g., 
COMPLEX(X,Y)=g. 
Note: the proposed ANSI standard does not 
include the COMPLEX pseudo-variable. 

1.19. Guidelines on choice of arithmetic attributes 

Use FLOAT when a variable has a very wide range of values, 
and "enough" precision. There are no significant differ
ences between FLOAT BINARY and FLOAT DECIMAL in our 
implementation since both are implemented with the 360/70 
"float hexadecimal" hardware. 

There is both binary and decimal fixed-point hardware, 
but binary is generally more "efficient" and is to be 
preferred. Certain uses of arithmetic values, such as 
for subscripting, require binary base (conversion is per
formed. If necessary). Operations involving powers of ten 
may indicate the use of decimal base. 
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1.20. Mathematical builtin functions 

The following mathematical builtin functions, some of 
which have counterparts among the intrinsic functions 
of FORTRAN, are available in PL/I: 

ACOS 
AS IN 
ATAN 
AT AND 
ATANH 
COS 
COSD 
COSH 

ERF 
ERFC 
EXP 
LOG 
L0G2 
LOGIC 
SIN 
SIND 

SINH 
SORT 
TAN 
TAND 
TANH 

All operate on floating-point arguments (conversion is 
performed, if necessary) and yield floating-point results. 
These functions are generic in the sense that either base 
or mode is allowed for the argument, the result having 
the same base and mode; likewise, any precision is 
allowed. (Certain of these require REAL arguments; 
example: ERF.) 

Caution: As of September 19, 1975, the following mathe
matical builtin functions are not in the proposed ANSI 
standard for PL/I: ACOS, ASIN, ATANH, COSH, ERF, ERFC, 
SINH, and TANH. There has been some effort to restore 
them. If they are not restored, they will be available 
in a particular implementation, as an extension, only if 
the vendor sees fit to provide them. 

See LRil 17 and relevant parts of LRIl 18. 

1.21. Unanswered questions 

We have already posed the question "What happens when a 
fixed-point assignment target has insufficient precision 
to receive the high-order non-zero digits of a value being 
assigned?" Other questions to be answered in Lesson 6 
are: 

What happens when you try to compute a fixed-point value 
that is too "big" for the hardware? 

Similarly, for a floating-point value. 

Similarly, for a too-"small" floating-point value. 

What happens when the argument of a mathematical builtin 
function is "bad"? Example: a real (not complex) -1 for 
SQRT. 
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1.22. Homework problems 

(#1A) What are the attributes (including precision) of 
the following arithmetic constants? 

629 
3 4 7 8 . 
. I B 

6 E - 1 
0 . 0 5 E 0 
l l . E O B 

(#1B) What are the ranges and resolutions of variables 
having the following attributes? 

REAL FIXED DECIMAL (3) 
REAL FIXED DECIMAL (3,2) 
REAL FIXED DECIMAL (3,4) 
REAL FIXED DECIMAL (3,-1) 
REAL FIXED BINARY (4) 
REAL FIXED BINARY (4,3) 
REAL FIXED BINARY (4,7) 
REAL FIXED BINARY (4,-2) 

(#1C) In the following, what are the attributes of the 
constants, as written, and to what attributes 
will they be converted according to the conversion 
rules? What are the values of the converted 
constants? 

N+1 (N is FIXED BINARY(15)) 
X+1 (X is FLOAT BINARY(21)) 
.5*X 
.5*N 

1.1*N 
5E-1*Y (Y is FLOAT DECIMAL(6)) 
5E-1*B (B is FLOAT DECIMAL(16)) 

(#1D) What arithmetic builtin functions could you use in 
a modification of J/2*2, for J FIXED BINARY(15), 
that would give the same results as FORTRAN (i.e., 
how can you force the division to behave like 
FORTRAN'S integer division)? Write the modified 
expression. Note that there are several possi
bilities. 
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2. String data types; string and logical expressions. 

2.1. Character string values. 

Character string values are elementary values like arithmetic values 
(i.e., they can be the operands or results of certain operations). 
A character string value is a sequence of characters. In addition 
to its identity (the sequence itself), a character string value has 
another property: the length of a character string value is the 
number of characters in the sequence. ABC is a character string 
value of length 3. 

2.2. Bit string values. 

Like character string values except that the sequence is a sequence 
of 0 or 1 bits. 1010 is a bit string value of length 4. 

2.3. String variables. 

Character (bit) string variables are variables that can acquire 
character (bit) string values. 

When string variables are declared, with the CHARACTER (abbreviation: 
CHAR) or BIT attribute, the length of the string values to be stored 
in the variables must be specified. Exanjiles: 

DCL C CHAR (20); 
DCL J OIAR (5); 
DCL Q BIT (1); 
DCL F BIT (33); 

The maximum length of a string value in our implementations is 32767. 

Another attribute applicable to string variables will be given later. 

2.4. Use of character string data. 

New character string values are "generated" by: 

(a) Reference to character string constants. 
(b) Input operations. 
(c) String operations on other character string values. 
(d) Certain operations on other things. 
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They are propagated by assignment. 
They may be used in diverse ways, some of which are: 

(a) String operations. 
(b) Comparison operations. 
(c) Output operations. (Lessons 7-9) 

2.5. Character string constants. 

The string value is enclosed in single quotes. If a single quote 
is to be a character in the sequence constituting the string value, 
it must be written twice. Examples: 

Constant Character string value 
'ABC' ABC 
'b' b (b is a blank) 
'IT"S' IT'S 
"'A'" 'A' 

A long constant which is the repetition of a shorter constant may 
be written with a repetition factor, as in the following examples: 

Constant Character string value 
(3)'XY' XYXYXY 
(8)'b' bbbbbbbb 
(/n I'll I ' l l 

2.6. Fixed-length scalar character string assignments. 

The kinds of string variables described above are termed fixed-length 
string variables, because their values always have exactly the length 
specified. In assignment of a character string value to a fixed-
length character string variable, using the assignment statement, the 
character string value being assigned is either truncated on the right, 
or extended on the right with blanks, if necessary, to make it conform 
to the length of the target. Example: 

DCL C CHAR (6); 
C = 'ABCD'; The value of C after assignment is the 

6-character sequence ABCDbb. 
C = 'ABCDEFG'; Here, it is ABCDEF. 

To review, see LRM 21. 
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2.7. Use of bit string data. 

New bit string values are "generated" by: 

(a) Reference to bit string constants. 
(b) Input operations. 
(c) String operations on other bit string values. 
(d) Logical operations on other bit string values. 
(e) Conparison operations. 
(f) Certain operations on other things. 

They are propagated by assignment. 
They may be used in diverse ways, some of which are: 

(a) String operations. 
(b) Logical operations. 
(c) Comparison operations. 
(d) Output operations. (Lessons 7-9) 

2.8. Bit string constants. 

The string value, written with O's and I's, is enclosed in quotes 
and followed by a B. Repetition factors are allowed. Examples: 

Constant Bit string value 
'I'B 1 
'OOllO'B 00110 
(2)'111'B mill 

2.9. Fixed-length scalar bit string assignments. 

By analogy with fixed-length character string assignments, a bit 
string value being assigned is either truncated or extended on 
the right, if necessary, to make it conform to the length of the 
target. Extension is with 0-bits. Example: 

DCL B BIT (5); 
B = (2)'I'B; The value of B after assignment is 

the 5-bit sequence 11000. 
B = (2)'1100'B; Here, it is 11001. 

To review, see LRM 22 and LRM 23. 
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2.10. Conversions between bit string and character string. 

This conversion is required, for example, when assignment of a bit 
string value is made to a character string variable, or when 
assigning a character string value to a bit string variable. 

Bit-to-character conversion results in a string of the same 
length with 0-bits becoming the character 0 and 1-bits becoming 
the character 1. 

Character-to-bit conversion proceeds as above, but in reverse. 
Only the characters 0 and 1 are permitted in the character string 
value being converted. In Lesson 6 we will see what happens when 
this rule is violated, and what the program can do about it. 

2.11. Conversions between string and arithmetic data. 

If conversion from string to arithmetic is required, it proceeds 
as follows: 

Bit string values are interpreted as unsigned binary integers. 

Character string values must represent valid arithmetic constants 
(possibly surrounded by blanks). The arithmetic constant represented 
by the character string value will have a self-denoting mode, base, 
scale, and precision. In a context where the target arithmetic 
attributes are independent (such as in assignment), the conversion 
occurs (interpretively) according to the rules of arithmetic conver
sions for the specific source arithmetic type represented by the 
character string value. However, in a context where any arithmetic 
attributes would be permissible (such as the operand of an arithmetic 
operation), the arithmetic constant represented in the character 
string value is first converted to DECIMAL FIXED (1S,0), interpretively; 
that intermediate target may require further conversion, depending on 
the operation and its other operand. 

When arithmetic values are to be converted to string, the context may 
or may not determine whether character strings or bit strings result 
(some contexts permit either). In this case conversion is to bit 
string if the base is binary and character string if it is decimal. 

Conversion from arithmetic to bit string proceeds by obtaining first 
a binary integer from the arithmetic value (ignoring both the sign 
and any fractional part). The precision of the binary integer depends 
on the precision of the source. That integer is then considered to 
be a bit string value. 
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Conversion from arithmetic to character string proceeds by obtaining 
an equivalent decimal value (with the same mode and scale and the 
derived precision). The decimal value is then expressed in the form 
of a decimal arithmetic constant of the mode, scale, and derived 
precision, with leading zeroes replaced by blanks. This constant is 
then embedded in a character string of a length determined from the 
precision. 

These rules, especially those for arithmetic to character string, are 
very complicated (see LRM 16 for all the details). A common case is 
conversion of a fixed-point value with zero scale factor (i.e., a 
binary or decimal integer value) to character. If the decimal precision 
of the arithmetic value is (p,0), the resulting character string will 
have a length of p+3. The arithmetic value will be assembled as the 
equivalent decimal constant in the low-order (rightmost) p digits 
(with leading zeroes replaced by blanks). The next character to their 
left will either be a minus sign or a blank, and the remaining charac
ters will be blanks. 

The important thing to realize is that there are defined conversions 
between all types of arithmetic and string data. (This generality can 
be a convenience or the cause of unexpected results.) Both types are 
often lumped together under a category called problem data because 
these are the only kinds of data that can be manipulated, or operated 
upon, in expressions; sometimes it seems the name is due to the problems 
the conversion rules cause. 

2.12. String operations. 

There is only one, concatenation. The infix operator is [[ (two 
vertical bars). Concatenation may be applied to either bit strings 
or character strings, yielding a result of the same string type. 
(If one operand is bit string, and the other character string, the 
bit string is converted to character string.) 

Concatenation juxtaposes the two string values, yielding a string 
value whose length is the sum of the lengths of the operands. Examples: 

DCL 
DCL 
A = 
B = 
C ' 
D = 
DCL 

A CHAR (3), 
C BIT (6), 
'ABC'; 
'DEFG'; 
'OllOll'B; 
'OO'B; 
AB CHAR (7), 

B CHAR (4); 
D BIT (2) ; 

CD BIT (8) 
AB = A I I B; The value of AB after the assignment is the 

7-character string ABCDEFG. 
CD = D II C; The value of CD is the 8-bit string 00011011. 

See LRM 26. 
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2.13. Logical operations. 

The logical operations and (5), or (|), and not H operate on bit 
string values'̂ and produE^-a bit itring result. Strings of any length 
may be used, and the operation proceeds bit-wise on the operands. If 
the operandi of § or j are of unequal length, the shorter is extended 
on the right to the length of the longer, with 0-bits. Examples. 

Value of first operand Operation Value of second operand Value of result 
011001 § 111100 011000 

111100 111101 

nil 1000 
nil nil 

010 

011001 1 
10 § 
10 I 
101 -1 

Note: -1 is a prefix operator. See LRM 27. 

2.14. Conparison operations 

The comparison operations =,-) = , <, >, <=, >=,-i<,-i> may be applied 
to any pair of operands of "compatible" data type. If both operands 
are arithmetic, the conparison is algebraic (only = and -i= are allowed 
for complex operands). If both operands are string, the shorter is 
extended on the right to the length of the longer, if necessary, using 
0-bits if they are bit strings and blanks if they are character strings; 
the comparison then proceeds left to right in the strings using the 
character collating sequence of the hardware for character strings and 
the obvious conparison rules for bit strings. If the operands are not 
immediately compatible, conversion occurs according to the rules given 
at LRM 24 and LRM 25. 

The result of a comparison operation (for any type of operand) is a 
one-bit string whose value is the single bit 1 if the comparison is 
true and 0 if it is false. (See LRM 24.) This definition permits 
comparison operations to be intermixed with other logical operations 
in an assignment statement. The most common use of comparison opera
tions, however, is in the IF statement, as we shall see in Lesson 6. 
In that case, the one-bit bit string may not actually be generated in 
storage but may be represented in the state of the "condition code" 
of the hardware as it executes comparison instructions and conditional 
branches. 

We have now seen all of the operations that may be used in operational 
expressions, i.e., computational expressions involving problem data. 
As in FORTRAN, any of the operations and any data types may be inter
mixed in any expression. For a discussion of the priority, or prece
dence, of operations in such mixtures, see LRM 30 and LRM 31. 
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One difference from FORTRAN should be noted: the "not" operator (i) 
in PL/I has a different position in the hierarchy than its counter
part (.NOT.). In PL/I it has the highest precedence (equal to that 
of ** and prefix + and -) placing it, in particular, above the com
parison operators. In FORTRAN it is below the comparison operators. 
The PL/I equivalent of .NOT. A .LT. B is not -?A<B, which means 
(-lA) < B, but -i(A<B). Of course, this may be written instead as 
A-i< B or A >= B (in FORTRAN it could have been written as A .GE. B). 

2.15. Varying-length string variables. 

An additional attribute, VARYING (abbreviation: VAR), may be specified 
in declarations of character string and bit string variables. String 
variables which have been declared with the VARYING attribute are 
called varying-length string variables because the string values they 
may acquire are not restricted to have always the length specified in 
their declaration. They may acquire any string values of the declared 
length or less (hence, the declared length of a varying-length string 
variable is called its maximum length). 

2.16. Varying-length scalar character and bit string assignments. 

On assignment of a string value to a varying-length string variable, 
padding (with blanks or 0-bits) does not occur (as it does in fixed-
length string assignments) if the string value being assigned is of 
shorter length than that declared for the target variable; the target 
variable receives the string value unpadded, and that is the value 
that will be used on any subsequent reference to the variable. Note, 
however, that if a string value longer than the declared (i.e., 
maximum) length of the target variable is assigned, truncation to 
that length occurs on the right, as in fixed-length string assignments. 
Examples: 

DCL A CHAR (5), B CHAR (8) VAR; 
A = 'STR5A'; 
B = A; The value of B is now the 5-character string STR5A. 
B = B I I 'ND'; Now it is the 7-character string STR5AND. 
B = B I I A; Now it is the 8-character string STR5ANDS. 

2.17. The null string value and null string constant. 

Remember that string values are sequences of characters or bits. 
The sequence of length 0 is allowed; it is called the null string 
(note that the null character string value and the null bit string 
value have different data types). 
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The character string constant representing the null character string 
value is written a s " . The bit string constant representing the null 
bit string value is written as"B. Examples: 

DCL A CHAR (5), B CHAR (8) VAR; 
B ="; B now has the null character string value. 
A = B; The value of A is the 5-character string -bbbbb. ! * £ L . ^ 
B = A i I " I I A; B's value is now the 8-character string bbbbbbtib. 

It is important to note that VARYING is a property of string variables 
and not string values (i.e., not expressions). A string expression 
involving string variables, some of which may be VARYING, has, for any 
particular evaluation, a value which has a particular length. VARYING 
addresses the fact that variables may take on values of different 
lengths at different times. 

Whereas fixed-length string variables with declared length n require n 
bytes (or bits) of storage, varying-length string variables with 
declared (maximum) length n require n bytes (or bits) plus two more 
bytes. Storage is always reserved for the maximum length of the 
variable's value, and the additional halfword is used to record the 
length of the variable's current value. There is no legal way in 
PL/I to get access to bytes reserved for the value of a varying-length 
string variable, but not actually part of (i.e., needed for) its 
current value (there are lots of illegal ways!). It is entirely 
imaginable that some other inplementation of PL/I may use an entirely 
different representation for varying-length string variables. 

For additional information, see LRM 32 - LRM 36 (ignoring parts of 
LRM 36 involving things we haven't covered yet). 

2.18. String-handling builtin functions. 

One large group of builtin functions is concerned with string handling. 
Certain of these extend, in an essential way, the rather meager capa
bilities afforded by assignment and concatenation. Others could be 
programmed by the user (using loops and other things we haven't seen), 
so their existence is properly viewed as a matter of convenience and 
efficiency (the latter because of the tight in-line code usually 
generated by the conpiler). 

Full details are given at LRM 37 and LRM 18, but essential features 
are described here. 
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The LENGTH builtin function returns the length of the value of the 
string-valued expression which is its argument. When its argument 
is a fixed-length string variable, the result is the variable's 
declared length. In the case of a varying-length string variable, 
LENGTH returns the length of its current value. Examples: 

DCL U CHAR (10) VAR, B BIT (6) VAR; 
DCL I FIXED BINARY; 
U = 'ABCDE'; 
I = LENGTH(U); Value of I is 5. 
I = LENGTH(U II ' . ' ) ; Value is 6. 
B = 'lOl'B; 
I = LENGTH(B); Value is 3. 
B = "B; 
I = LENGTH(B); Value is 0. 

The SUBSTR builtin function is one of the most essential. It allows 
you to select a contiguous portion ("substring") of a larger string. 
One form of SUBSTR is 

SmSTRiitfu.ng-i.KpK, oAUh-txpn.-], aJuXh-e.xp'i-2) • j , . , 
Let itAj.ng-e.xpi have a value of length n. Let the values of OJuth-vcpfL-l 
and cUiUh-zxpl-2 be i and j respectively. Then the result is the 
string of length j starting at the i-th character (or bit) of itAj-ng-vcpi. 
(The first character or bit of a string value has position 1.) Con
straints on i and j are as follows: 

i must be >= 1 and <= n+1. 
j must be >= 0 and <= n. 
i+j must be <= n+1, in addition. 

These constraints guarantee that the substring lies within the bounds 
of the string itself (the case i = n+1, j = 0 is a degenerate, limiting 
case). It is illegal to reference outside the bounds of a string using 
SUBSTR. 

Note the following identities: 

SUBSTR(x, 1, LENGTH(x)) = x for any x. 
SUBSTR(x, I, 0) = the null string for any x and any ̂  

between 1 and LENGTH(x) + 1. 
SUBSTR(x, 1, 1) is the first character (or bit) of any x 

whose length is not 0. 
SUBSTR(x, LENGTH(x), 1) is the last character (or bit) 

of any such x. 

http://itAj.ng-e.xpi
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Exanples: 

DCL U CHAR (10) VAR, T CHAR (4) VAR; 
U = 'ABCDEF'; ^ ̂  . „ 
T = SUBSTRpJ, LENGTH(U), 1); Value of T is F. 
T = SUBSTR(U, 1, 4); Value of T is ABCD. 
T = SUBSTR(U II T, LENGTH(T) - 1, LENGTH(U) - 1); 
The above statement has the same effect as: 
T = SUBSTR('ABCDEFABCD', 3, 5); which assigns the 5-character 

string CDEFA to T. 

Another form of SUBSTR is 
SUBSTR(i-t^ing-expA., oAAMi-txpA.) • 

The substring starts at the position given by the second argument 
but in this case extends to the end of the string. Therefore, 

SUBSTR(x, p) = SUBSTR(x, p, LENGTH(x) - p + 1) . 
Thus, while SUBSTR(x, 1, 1) picks off the first character (or bit) 
of a string, SUBSTR(x, 2) returns everything after that. 

The remaining functions are: 

INDEX Find the location of a pattern in a string. 
VERIFY Find the location of the first character (or bit) 

in a string which is not among a set of "acceptable" 
characters (or bits). 

TRANSLATE Map the characters (or bits) of a string as 
specified. Useful in terminal-oriented programs 
to translate input from lower to upper case. 

REPEAT Concatenate a string with itself a given number 
of times. 

HIGH Return a string of the specified length consisting 
of repetitions of the highest character in the 
collating sequence. 

IflW Same for lowest character. 
CHAR Convert to character string. 
BIT Convert to bit string. 
BOOL Used to obtain any of the 16 boolean functions of 

two bit strings (e.g., "inplies," "exclusive or," 
etc.). 

STRING See Lesson 10. 
UNSPEC See Lesson 10. 

In the proposed ANSI standard, the function of REPEAT is taken over 
by a new builtin function, COPY. Other new functions are: 

BEFORE Return the portion of a string before the first 
occurrence of a specified pattern. 

AFTER Same, but the portion after its occurrence. 
DECAT Sort of generalized BEFORE and AFTER. 
REVERSE Return the reverse of a string. 
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2.19. String-handling pseudo-variables. 

SUBSTR, UNSPEC, and STRING can be used as pseudo-variables. UNSPEC 
and STRING will be described in Lesson 10. 

SUSSTRiitnlng-voAlable., cuuXh-e.xpi-1, cuuXh-zxpfi-2), when used as a 
target in assignment, allows a string value (the right-hand side of 
the assignment statement) to be assigned to the substring of itnlng-
voAlable. beginning at the position given by the value of (VuXh-e.xp>L-l 
and extending for a number of characters (or bits) given by the 
value of aAAXh-e.xpfi-2. The designated substring must be within the 
bounds of the itnlng-voAAJibU (and if that is a varying-length string 
variable, within the bounds implied by its current length). The 
SUBSTR pseudo-variable may also be used in the two-argument form. 
Exanples: 

DCL S CHAR (10) VAR; 
S = 'ABCDEF'• 
SUBSTR(S, 3,'2) = 'XY'; Value of S is now the 6-character 

string ABXYEF. 
SUBSTR(S, 5) = 'Z'; Now it is ABXYZb. Why? 

Note that the SUBSTR pseudo-variable cannot change the length of its 
first argument, even when that is a varying-length string variable. 

2.20. Pictured data. 

Pictured data is a special form of character string data. There are 
two varieties, character pictured data and numeric pictured data. 
Which of these two is specified depends on details and contents of 
the PICTURE attribute used to declare pictured data. See LRM 38. 

2.21. Character pictured data. 

Character pictured data is specified when the picture specification 
given with the PICTURE attribute contains at least one A or X and 
no other picture characters except A, X, and 9. All of this is 
explained by an example, which will also serve to show the use and 
meaning of character pictured data. 

DCL CP PICTURE 'AXXX9'; 

In this declaration of the variable CP, the PICTURE attribute is 
used. The keyword PICTURE (abbreviated PIC) is always followed by 
a picture specification, which looks like a character string constant. 
The picture specification here is 'AXXX9'. It uses the picture 
characters A, X, and 9. 
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This declaration says: 

(a) CP is stored as a fixed-length character string 
of length 5. 

(b) It may be used in the same ways as any character 
string variable. Its value is indeed a 5-character 
string. 

(c) The picture character A says that the first 
character of the value of CP will always be an 
alphabetic character. 

(d) The picture character 9 says that the last 
character of the value of CP will always be a 
numeric character or a blank. 

(e) The three picture characters X say that the 
middle three characters of the value of CP will 
be any characters (no restrictions). 

(f) Whenever a value is assigned to CP, it is con
verted, if necessary, to a character string of 
length 5. The individual characters are then 
checked for conformance to the picture as 
specified above. It is an error to violate the 
conformance requirements. 

See LRM 39 - LRM 42. 

2.22. Numeric pictured data. 

Numeric pictured data is specified when the picture specification 
given with the PICTURE attribute does not contain the picture 
characters A or X. There are an incredible number of picture 
characters that may be specified, and we will not go into them 
here. The important things to note for numeric pictured data are 
as follows: 

(a) The data is stored as a fixed-length character 
string whose length is a function of the picture 
specification (same as character pictured data 
so far). 

(b) When a reference is made to a numeric pictured 
variable in a context where a character string 
value is required, the character string value 
(exactly as stored) is used. 

(c) The character string value stored will always 
be capable of being interpreted as a numeric 
(i.e., arithmetic) value, the interpretation 
(i.e., the mapping from character representation 
to arithmetic value) being carried out according 
to the picture specification. 

(d) When a reference is made to a numeric pictured 
variable in a context where an arithmetic value 
IS required, the arithmetic value is obtained 
from the stored character string value by a 
conversion that proceeds, as implied above, 
according to the picture specification. 
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(e) In addition to directing the mapping from 
character form to arithmetic form, the picture 
specification always implies certain arithmetic 
attributes. These attributes are the attributes 
used for the arithmetic value obtained by the 
above conversion. The attributes implied by 
the picture specification include scale and 
precision; the base is always decimal. 

(f) What guarantees that the character string value 
stored will always be capable of being inter
preted as a numeric value is the following: 
on assignment of a value to a numeric pictured 
variable, the value (whether arithmetic or 
string) is converted, if necessary, to an 
arithmetic value having the attributes implied 
by the picture specification. The arithmetic 
value is then converted to character form and 
"edited" (mapped) according to the picture 
specification (the mapping it inplies is thus 
bidirectional). 

As you can see, the picture specification is used in quite a few ways. 

One simple example will illustrate the above rules. The numeric 
picture specification '9999', as in DCL NP PIC '9999', means 
the following: 

(a) NP is stored as a fixed-length string of length 4. 
(b) The arithmetic attributes implied by PIC '9999' are 

REAL FIXED DECIMAL (4, 0). 
(c) On assignment of any value to NP, the value is 

converted to REAL FIXED DECIMAL (4, 0) if it 
does not already have those attributes. It is 
an error if this conversion cannot occur. That 
would be the case, for instance, if the character 
string value ABC were being assigned. 

(d) The REAL FIXED DECIMAL (4, 0) value is then 
converted to a 4-character string and "edited" 
as follows: The character representing the 
least significant digit will be aligned on the 
right-hand edge. Any leading blanks are changed 
to the character 0. (The picture character 9 
allows, during this editing process, only the 
decimal numeric characters 0 through 9, and not 
a blank.) If the arithmetic value is negative, 
the minus sign will not appear in the edited 
character representation (other numeric picture 
characters can be used for that). For example, 
if the arithmetic value is 12, it is stored in 
NP as 0012. Note that the usual conversion rules 
for REAL FIXED DECIMAL (4, 0) to CHARACTER 
would yield a string of length 7 containing, in 
this case, tibbbbl2. 
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(e) If NP is referenced in character context, the 
value used is the 4-character string 0012. 

(f) If NP is referenced in arithmetic context, 
its stored character value is converted to, 
and interpreted as, REAL FIXED DECIMAL (4, 0) 
having value 12. 

Some of the numeric picture characters specify the insertion of 
particular characters, like commas, periods, dollar signs, etc., 
into the character form during the editing that occurs on assign
ment to a numeric pictured variable. These characters are part 
of the character value used in character context, but they are 
"edited out," or ignored, when the arithmetic value is obtained 
for use in arithmetic context. 

Relevant references are LRM 43 - LRM 46 and LRM 16. 

2.23. Guidelines on choice of string attributes. 

Use bit strings for logical (i.e., boolean-valued) data. This 
includes program switches, binary state ("true" or "false", "on" 
or "off) variables, etc. A length of one is most common. Bit 
strings of greater length can conveniently represent finite ordered 
sets of boolean objects. 

Use character strings to spruce up your output (page headers, all 
sorts of explanatory or descriptive fields, etc.). Of course, 
character strings (usually varying-length) are most useful in non-
numeric applications such as text processors, compilers, symbolic 
formula rnianipiulators, etc. 

Because of the editing behavior of numeric pictured data, that is 
most useful in commercial applications. Simple forms, such as the 
editing of leading blanks into leading zeroes shown earlier, are 
useful elsewhere. 

2.24. Unanswered questions. 

In Lesson 6 we will answer these questions: 

What happens when an illegal conversion is attempted (i.e., 
character to arithmetic, where the character value is not the 
imiage of an arithmetic constant; character to bit, where the 
characters are other than O's and l's)T 
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What happens when a character string value being assigned 
to a character pictured item does not conform to the 
picture specification? 

What happens when the arguments of SUBSTR define a sub
string outside the bounds of the string? 

2.25. Homiework problemis. 

(#2A) What values are assigned to B in the two assignments 
to B, below? 

DCL B BIT (1); 
DCL S CHAR (5) VAR; 
S = '6'; 
B = LENGTH(S) = 0;\Note that the second = 
B = S = "; J is a comparison operator. 

What can you conclude about the "proper" (i.e., "safe") 
way to determine whether or not the value of a varying-
length string variable is the null string? 

(#2B) What is the value of each of the following? 
INDEX('ABCDE', 'CD') 
INDEX('ABCDE', 'CF') 
VER1FY('CD', 'ABCDE') 
VERIFY('CF', 'ABCDE') 
TRANSLATE('ABCDE', '24', 'BD') 
REPEAT ('h', 5) 

Read about these builtin functions at LRM 18. 

(#2C) Assume you have entered a section of code in which a 
variable S has already been declared as CHAR (100) VAR 
and has already been given a value. Write a section 
of program that will "squeeze out" all the blanks in 
S, leaving the result in S. Declare as many additional 
variables as necessary. You will need to code a loop. 
Code your loop in the following way: 

DO WHILE {z.xpi-1 ? exp^-2); 

body 0(5 loop 

END; 

where "?" is a comparison operator, such as =, n = , >, etc. 
On arriving at the DO statement, the indicated comparison 
is perfoimed. If the comparison holds, or is true, the 
bo<V of the loop is executed; on arriving at the END state
ment, control is sent back to the DO statement where the 
process repeats by doing the comparison again. When the 
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comparison is false, or doesn't hold, the body of the 
loop is skipped and control passes to the statement 
after the END statement. If you think you need IF or 
GO TO statements, look them up; however, by employing 
the proper builtin functions, you should need only 
DECLARE statements, assignment statements, and the DO 
loop construction shown above. 
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3. Aggregates 

3.1. Element variables and aggregate variables. 

All of the variables we have seen so far have been element variables, 
i.e., scalar variables. An aggregate is a collection (aggregation) 
of related element variables. An aggregate variable has identity as 
a whole; in addition, one may focus on the constituent elements. 

There are two kinds of aggregate variables in PL/I: arrays and structures. 

3.2. Arrays. 

Arrays are multidimensional ordered collections of elements all having 
the same attributes. The collection as a whole has a name. The whole 
miay be referred to by that name or an element miay be designated by 
giving its order in each dimension. For this purpose, a list of subscript 
expressions enclosed in parentheses is written after the variable name 
just as in FORTRAN. For example, if A is a two-dimensional array having 
5 elements in the first dimension (numibered, say, 1 through 5) and 3 in 
the second (nimibered 1 through 3), then we miay refer to the whole 5x3 
array by the name A; the element at the intersection of the 4th "row" 
and 2nd "column" is designated A(4,2). 

There are no restrictions on siibscript expressions in PL/I. They may be 
of arbitrary complexity. The value of a subscript expression is con
verted, if necessary, to a binary integer of default precision. 

In PL/I, it is illegal to reference outside the bounds of an array. For 
example, a reference to A(4,4) is illegal. What happens when this is 
attempted is deferred to Lesson 6. 

3.3. The dimension attribute and declarations of arrays. 

The dimension attribute is used in a declaration to specify an array. 
The attribute must immediately follow the variable name, i.e., it must 
precede other attributes. By "other attributes" is meant the data type 
attributes specifying the common data type of the elements. 

The dimension attribute is written as 
{boandli,, • • • .boiindiri) 

where each boundi is either bound or boand:faoand. In the first form, 
bound is taken as the ipper bound of the dimension, with 1 being assumed 
for the lower bound. In the second form, the two bound's are respectively 
the lower and upper bounds for the dimension. For now, a boimd must be 
specified as a decimal integer constant. 
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Examples; 
DCL A (5) FIXED BIN (20); u • »%, 

A is a one-dimensional array of elements having the 
attributes FIXED BIN (20). The lower and upper bounds 
of the first (and only) dimension are 1 and 5. 

DCL B (-1:1, 3, 0:2) BIT (2); . 
B is a three-dimensional array of 2-bit bit strings. 
The lower and upper bounds of the three dimensions 
are, respectively, -1 and 1, 1 and 3, and 0 and 2 
for a total of 27 elements. 

Caution: The current implementation limiits the bounds and the values 
of subscript expressions to the range -32768 to 32767. This miay be a 
serious restriction to some. 

There is generally no need to be concerned with how arrays are miapped 
in storage. However, in our implementation, two-dimensional arrays 
are stored "by row," i.e., in general the right-most subscript is the 
one that varies most rapidly as we proceed to successive elements in 
storage. (This is just the opposite of FORTRAN.) 

In our implementation, the maximum number of dimensions is 15. 

For review, see LRM 47 and LRM 48 (skipping parts of the latter that 
don't look familiar). 

3.4. Array assignments. 

One array can be assigned to another. An assignment statement is an 
array assignment if the target variable is an array. The right-hand 
side need not be merely an array variable; as we will see shortly, it 
miay be an expression. 

In array assignment, the dimensions and bounds of the array value on 
the right miust exactly match those of the target variable. The assign
ment is carried out by iterating over the range of subscript values 
(in some cases the compiler miay generate a loop, in others it may 
generate a "bulk move," but the effect is the same in either case). 

3.5. Arrays as operands in expressions. 

The right-hand side of an array assignment statement may be an array 
expression. Essentially, any of the operands may be arrays (having 
the same dimensions and bounds as the target variable). The array 
assignment is interpreted as an iteration over the (common) bounds of 
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all the arrays. Scalar operands are also permitted, the value of 
a scalar operand being used in each inplied iteration. (In fact, 
the entire right-hand side miay be a scalar expression, in which 
case its value is assigned to all elements of the array target.) 

See LRM 52. 

Examples: 
DCL A (3) FLOAT, 

B (3) FLOAT; 
A(l) = 1; A(2) = 0; A(3) = 1; 
B(l) = 3; B(2) = 4; B(3) = 5; 
DCL C (3) FLOAT; 
C = A + B; The elements of C have values 4, 4, and 6. 
C = 0; All the elements of C have value 0. 
C = B + 1; The elements of C have values 4, 5, and 6. 
C = C * A ; C is now 4, 0, 6. Observe that corresponding 

elements are multiplied, i.e., miatrix miultiplication 
is not used. 

C = C/C(l); C is now 1, 0, 6. This statement is equivalent to: 
C(l) = C(l)/C(l); Sets C(l) to 1. 
C(2) = C(2)/C(l); Divides by 1! 
C(3) = C(3)/C(l); Ditto! 

The ANSI standard will miake this behave as 
TEMP = C(l); 
C(l) = C(1)/TEMP; 
C(2) = C(2)/TEMP; 
C(3) = C (3)/TEMP; 

By the way, the declarations of A and B miay be written in either of 

the following ways: 
DCL (A (3), B (3)) FLOAT; 

and DCL (A, B) (3) FLOAT; 
(See LRM 49.) 

Array expressions can appear in contexts other than assignment state
ments In a subroutine call, an actual argument may be an array 
expression, as we will see in Lesson 5. Certain builtm functions 
take only array arguments (Lesson 10). 

The builtin functions and pseudo-variables shown so far can be given 
array arguments; they return simiilarly structured array results, the 
operation being performed on an element-by-element basis. Their use 
in miore complicated array expressions and assignments is consistent 
with this. For instance, if A and B are congruent arrays, A = SIN(B) 
assigns the sine of each element of B to the corresponding element ot 
A and B = SIN(A)**2 + C0S(A)*'*2 is an expensive way of assigning 1 
to each element of B (the individual elements of A are sined and 
squared, then added to the squares of their cosines). Similarly, if 
Z is an array of COMPLEX elements, IMAG(Z) = 0 sets all of their 
imiaginary parts to 0. See LRM 50. 
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3.6. Array cross sections. 

A special notation can be used to denote a generalized "slice" through 
an array. The cross section notation A(*,I) means the Ith column of A. 
This is a one-dimensional array with bounds equal to those of A in the 
first dimension. Another example: B(*,2,*) means the plane coincident 
with the 2nd column of B. This is a two-dimensional array with bounds 
in the first dimension equal to those of B in the first dimension and 
bounds in the second equal to those of B in the third. 

Note that A(*,...,*) denotes the array itself. Whenever a reference to 
an entire array is written, it is usually good documentary practice to 
write it as an identity cross section, i.e., the whole array. This 
practice will be followed subsequently in these notes. 

The following statement assigns the Ith row of A to the Jth colummi of B: 
B(*,J) = A(I,*); 

For this statement to be legal, the bounds of A in its second dimension 
miust be identical to the bounds of B in its first. 

Since arrays are stored by row in PL/I, A(I,*) occupies contiguous 
storage locations. A(I,*) is said to be a connected reference. B('*,J), 
on the other hand, does not occupy contiguous storage locations. It is 
said to be an unconnected reference. Only connected references are 
permdtted in certain contexts, as we shall see later. See LRM 51. 

3.7. Structures. 

A structure, like an array, is a collection of related data items vrfiidi 
is assigned a name. Unlike an array, each constituent item also has a 
name, and the constituent items may all have different attributes. 

In fact, a structure is, in general, a hierarchical collection of "things." 
The things may be thought of as organized in a "tree." The elements at 
the ends of the "branches" have names and data type attributes. Other 
"nodes" in the tree represent intermediate levels of the hierarchy; they 
have names, but not data types. 

Consider the following pictorial representation of a structure: 
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LENGTH WIDTH HEIGHT 

BUILDING ROCM SIZE WEIGHT COLOR 

IDENTIFICATION LOCATION 

SAMPLE 

IS SECURE 

The base elements of this structure, and typical attributes they 
miay have, are as follows: 

IDENTIFICATION 
BUILDING 
ROOM 
LENGTH 
WIDTH 
HEIGHT 
WEIGHT 
COLOR 
IS SECURE 

CHAR (50) VAR 
CHAR (3) 
CHAR (4) 
FLOAT DECIMAL (3) 
FLOAT DECIMAL (3) 
FLOAT DECIMAL (3) 
FLOAT DECIMAL (5) 
CHAR (10) VAR 
BIT (1) 

This entire collection miay be referred to with the name SAMPLE; 
SAMPLE is called a major structure name. Subsets of the collec
tion formiing subtrees may also be referred to by their names, viz. 
LOCATION, SIZE, and PROPERTIES. These are names of minor structures. 
Minor structures are indeed structures, but they are not independent; 
they belong to a miajor structure. 

Suppose we have another structure, called EXPERIMENT. An experiment 
can have a location (i.e., a building and a room), too, so we might 
like to have a substructure (miinor structure) of EXPERIMENT called 
LOCATION having, in turn, the same constituents as the LOCATION m 
SAMPLE. How do we distinguish between references to SAMPLE'S 
LOCATION and EXPERIMENT'S LOCATION, if we should need to? By 
writing a qualified name. The name SAMPLE.LOCATION refers to the 
LOCATION in SAMPLE, while EXPERIMENT.LOCATION refers to that m 
EXPERIMENT. Simdlarly, SAMPLE.LOCATION.ROOM and EXPERIMENT.LOCATION.ROOM 
distinguish between the two element variables called ROOM. 

One need not always write all levels of structure qualification m a 
qualified name. The only requirement is to avoid amibiguity. Thus, 
SAMPLE.ROOM and EXPERIMENT.ROOM are sufficient, but ROOM alone is not. 
If the above two uses of ROOM were the only ones appearing in a program, 
the compiler would tell you that ROOM (unqualified) is ambiguous. 
However, if you declared a scalar variable ROCM as well, then ROOM 
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unambiguously denotes that and there will be no message from the 

compiler. 

It is good practice to write out qualified namies in full, even when 

not necessary. 

3.8. Structure declarations. 

A declaration of SAMPLE might look like: 
DCL 1 SAMPLE, 

2 IDENTIFICATION CHAR (50) VAR, 
2 LOCATION, 
3 BUILDING CHAR (3), 
3 ROOM CHAR (4), 

2 PROPERTIES, 
3 SIZE 
4 LENGTH FLOAT DEC (3), 
4 WIDTH FLOAT DEC (3), 
4 HEIGHT FLOAT DEC (3), 

3 WEIGHT FLOAT DEC (5), 
3 COLOR CHAR (10) VAR, 

2 IS SECURE BIT (1); 
The numbers in Trent of the names are called level numbers. The 
indentation is purely documentary; what is subordinate to what else 
is uniquely determined by the sequence of level numibers. 

Factoring of attributes can be used here. A part of this declaration 
could have been written 

3 SIZE, 
4 (LENGTH, WIDTH, HEIGHT) 

FLOAT DEC (3), 
as described at LRM 49. 

For a review of structures so far, see LRM 53. 

3.9. The LIKE attribute. 

A convenience feature that saves writing when similar structures are 
declared is the LIKE attribute. In the declaration of EXPERIMENT, 
one need not write out the details of the minor structure LOCATION. 
If It is just like the one in SAMPLE, one could write 

DCL 1 EXPERIMENT, 

2 LOCATION LIKE SAMPLE.LOCATION, 

• » 
The structuring and attributes are copied from the declaration of SAMPLE. 
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Although LIKE is a great convenience, it does have many restrictions. 
And certain attributes are not copied. Its use is not generally^ 
recommended, primarily because it tends to obscure facts. (That's 
the same reason for fully qualifying all names.) 

LIKE is further described at LRM 54 and LRM 55. 

3.10. Structure miapping. 

Structure base elements are mapped consecutively in storage. However, 
since consecutive elements miay have differing alignment requirements 
(due to having different attributes), a smiall amount of padding, which 
is unused space, miay be allocated between consecutive base elements. 
The padding is not accessible to the program, and its existence does 
not cause a structure reference to be an unconnected reference. 

Since alignment requirements are a property of the hardware (i.e., the 
inplementation), the amount of padding may vary from one implementation 
to another. But so does the amount of storage allocated to element 
variables, as we have seen. The only time this is likely to be of 
concern to the programmer is when he is trying to figure out record 
lengths for certain kinds of I/O (Lessons 8-9). A compiler option, 
AG, which is "on" by default in our batch compilers and "off" m our 
conversational ones, can be used to show how each aggregate is mapped. 
The listing is part of the compilation listing. See CPG 1 and CPG 2, 
CTUG 1, OPG 1 and OPG 2, and OTUG 1. 

The algorithm our compilers use for structure miapping is described at 

LRM 56. 

3.11. ALIGNED and UNALIGNED attributes. 

Reference has been miade above to alignment of data. It is possible 
to tell the compiler not to worry about alignment requirements during 
miapping or allocation of data. When so told, it assigns most things 
to the next available byte boundary (bit boundary in the case of bit 
strings). The main purpose of this is to achieve greater data packing 
in aggregates; it may also be of use in certain I/O situations. To 
avoid machine errors in addressing data which is not known to be on a 
"natural" boundary, the compiler generates extra code to move it to or 
from a properly aligned boundary. This can increase program size and 
execution time, so the feature shouldn't be used indiscriminately. 
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Two mutually exclus ive a t t r i b u t e s , ALIGNED and UNALIGNED, s e l e c t 
these op t ions . These a t t r i b u t e s may be s p e c i f i e d fo r any v a r i a b l e . 
They apply to every v a r i a b l e , and, when not s p e c i f i e d , language 
d e f a u l t s a r e taken. Al l of the v a r i a b l e s we have t a l k e d about so 
far a re subjec t to t h i s d e f a u l t , though we have had no reason to 
concern ourselves with i t y e t . 

Bas ica l ly , the defaul t i s UNALIGNED for s t r i n g da ta and ALIGNED for 
everything e l s e . Alignment of c h a r a c t e r s t r i n g v a r i a b l e s i s a moot 
p o i n t ; they begin on the next a v a i l a b l e byte boundary i n e i t h e r case 
( f ixed-length s t r i n g s do, a t l e a s t ) . UNALIGNED b i t s t r i n g s begin on 
the next ava i l ab le b i t boundary, while ALIGNED b i t s t r i n g s begin on 
the next ava i l ab l e byte boundary. Because of t h i s , a r r ays of, s ay , 
BIT (1) va r i ab les w i l l occupy only one-eighth of the s to r age under 
the defaul t (UNALIGNED) as they would were ALIGNED s p e c i f i e d , bu t 
addressing elements of the a r ray w i l l be much slower ( in g e n e r a l , 
most unaligned b i t references or opera t ions a re performed by l i b r a r y 
r o u t i n e s , while a l igned references and opera t ions a re done by i n - l i n e 
code). 

The alignment a t t r i b u t e s miay be spec i f i ed a t any l e v e l i n a s t r u c t u r e 
dec l a ra t ion . They apply t o a l l of the c o n s t i t u e n t element v a r i a b l e s 
subordinate t o t h a t l eve l except those which are subord ina te t o an 
intermediate l eve l which a l so s p e c i f i e s a l ignment , in which case the 
l a t t e r spec i f i ca t ion i s used. For example, i n 

DCL 1 STRUCTURE ALIGNED, 
2 A UNALIGNED, 

3 B ALIGNED, 
3 C, 

2 D, 
3 E UNALIGNED, 
3 F; 

the base elements are B, C, E, and F. B and E a re c l e a r l y ALIGNED 
and UNALIGNED, r e spec t ive ly . C i s UNALIGNED ( i n h e r i t e d from A) . F 
i s ALIGNED ( inhe r i t ed from D, which i n h e r i t e d ALIGNED from STRUCTURE). 

For reference , see LRM 57 and LRM 58. 

3.12. S t ruc ture assignments. 

One s t r u c t u r e may be assigned to another . The h i e r a r c h i c a l s t r u c t u r i n g 
of the two s t ruc tu r e s miust match a t a l l l e v e l s . ( I t i s not s u f f i c i e n t 
t o have j u s t the same number and types of base e lements . ) However, 
the names of matching l eve l s of the h ie ra rchy need not match, nor need 
the a t t r i b u t e s of corresponding base elements match. The assignment 
statement i s "expanded" i n t o a sequence of s c a l a r assignment statements. 
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Example: 
DCL 1 SI, 

2 A FIXED BIN, 
7 R 
3'c FLOAT DEC, 
3 D CHAR (5), 

2 E BIT (1), 
1 S2 
2 V FLOAT BIN, 
2 W, 
3 X CHAR (8), 
3 Y BIT (20), 

2 Z FIXED DEC; 
SI = S2; This is equivalent to 

Sl.A = S2.V; 
Sl.B.C = S2.W.X; 
Sl.B.D = S2.W.Y; 
Sl.E = S2.Z; 

In each of these scalar assignments, 
different conversions will occur. 

DCL 1 S3, 

2 A FIXED BIN, 
2 C FLOAT DEC, 
2 D CHAR (5), 
2 E BIT (1) ; 

SI = S3; This is illegal. 
DCL 1 S4, 

2 M FLOAT BIN, 
2 N CHAR (6) VAR; 

Sl.B = S4; This structure assignment is equivalent to 
Sl.B.C = S4.M; 
Sl.B.D = S4.N; 

In other words, a substructure (miinor structure) 
is a structure in its own right. 

3.13. Structures as operands in expressions. 

By analogy with array expressions, structure expressions are expressions 
whose operands are congruent structures (congruent in the sense of 
structure assignments). Using the declarations of the previous section, 
one could write SI = SI - S2, for instance. This is equivalent to 

Sl.A = Sl.A - S2.V; 
Sl.B.C = Sl.B.C - S2.W.X; 
Sl.B.D = Sl.B.D - S2.W.Y; 
Sl.E = Sl.E - S2.Z; 

Also, S4 = 0 is equivalent to 
S4.M = 0; 
S4.N = 0; 

and S4 = 3 * S2.W is equivalent to 
S4.M = 3 * S2.W.X; 
S4.N = 3 * S2.W.Y; 
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Structure expressions may also be actual arguments in subroutine 
calls (Lesson 5). The builtin functions described so far cannot, 
however, take structure arguments. 

See LRM 59. 

3.14. Structures of arrays and arrays of structures. 

The two kinds of aggregation can be compounded, 
is an example of a structure of arrays, i.e., a 
some arrays at the deepest level. 

DCL 1 Tl, 
2 A (10) FLOAT, 
? R 
3'c (-1:3) CHAR (6) VAR, 
3D (2,4) BIT (7) ALIGNED; 

The following 
structure with 

A structure of arrays such as 
DCL 1 T2, 

2 B (3), 
2 C (4) ; 

i s miapped i n s torage as fo l lows; 

T2 

^ ' T2.B >| 

I T2.C ^ 

i. 

T2.E(1) 
T2.B(2) 
T2.B(3) 
T2.C(1) 
T2.C(2) 
T2.C(3) 
T2.C(4) 

An example of an array of structures is: 
DCL 1 T3 (4), 

2 U, 
2 V; 

An array of structures can be thought of as a structure with the 
dimiension attribute or (what is, of course, the same thing) an 
array whose components are not element variables but structures. 
T3 is miapped, and its components named, as shown below. 

T3 

/ • T3(l) 

\ T3(2) 

^ T3(3) 

V T3(4) 

( 
\ 

\ 

I 

T3(1).U 
T3(1).V 
T3(2).U 
T3(2).V 
T3(3).U 
T3(3).V 
T3(4).U 
T3(4).V 
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A reference to T3.U (i.e., T3(*).U) is allowed. This designates 
the one-dimensional array whose four elements are T3(l).U, T3(2).U, 
T3(3).U, and T3(4).U. Note that this is another example of uncon
nected storage. There are, however, some apparently poorly docu
mented restrictions on the use of cross sections of arrays of 
structures. 

Since T3.U is an array, as described above, you miight ask whether 
it is possiETe to write T3.U(1), T3.U(2), T3.U(3), T3.U(4) instead 
of T3(1).U, etc. The answer is yes, and they mean the same thing. 
This seemis to be an ill-advised flexibility because it tends to 
obscure the real structure of T3 (again: when things "ain't what 
they seem," it's bad). 

Compounding of aggregation can be carried to ridiculous, seldom 
needed, extremes, as in 

DCL 1 T5 (5) , 
2 A (3), 
3 B, 
3 C, 
3 D (3). 

2 E, 
3 F 
3 G' (8) ; 

for which T5(3) .A(l) .D(2) is a legal reference, and the same as 
T5.A.D(3,1,2). 

See LRM 60 and LRM 61. 

3.15. BY NAME assignment. 

Another type of structure assignment, BY NAME assignment, is obtained 
by adding the BY NAME option to an assignment statement, as in 
vaniablz = zxpieM-con, BY NAME; The structure operands in a BY NAME 
assignment statement need not be congruent, as in a regular structure 
assignment. Basically, the statement is expanded into a sequence 
(ultimately) of scalar assignment statements, with the expansion 
proceeding deeper and deeper in the structure only as long as all 
structure operands have itemis with the same names at the level being 
considered. For example: 

DCL 1 A, DCL 1 M, DCL 1 U, 
2 B, 2 1, 2 E, 
3 C, 3 K, 3 F, 
3D, 3 J, 4 G, 

2 E, 2 F, : 2 T, 
3 F, 3 G, 3 J, 
4 G, 3 H, ^ 2 B, 
4 H, 2 B, ^ 3 C, 

2 1, 3 Q, 3 Z; 
3 J, 3 C, 
3 K; 2 E, 

3 G: 
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A = M * U, BY NAME; is expanded as follows: 
A.B = M.B * U.B, BY NAME; (1) 
A.E = M.E * U.E, BY NAME; (2) 
(1) is further expanded to 
A.B.C = M.B.C * U.B.C; (3) 
(2) is further expanded into nothing, since while both A.E and U.E 
have a component called F, M.E does not. Thus, the original state
ment is equivalent to (3). 

See LRM 62 and those parts of LRM 63 that look famiiliar. 

3.16. Equivalencing of data. 

PL/I provides facilities comparable to FORTRAN'S EQUIVALENCE state
ment for equivalencing data. Before proceeding to specifics, we 
should take a good look at some very important fundamental differences 
in the concept between the two languages. 

The FORTRAN EQUIVALENCE statement is provided to allow storage to be 
shared amiongst several variables. In standard FORTRAN the user is 
not supposed to rely on two equivalenced variables always having the 
same values by virtue of occupying the same storage. Some optimizing 
compilers, in fact, miay omiit store instructions in certain circum
stances, actually destroying value-equivalence between storage-
equivalenced variables. Because it need not guarantee value-equivalence, 
FORTRAN permits equivalenced variables to have different data types. 

The PL/I DEFINED attribute allows several variables to share the same 
storage. In this case, the language guarantees value-equivalence, 
i.e., the equivalenced variables become fully interchangeable. 
Because of this, PL/I does not_ permit variables having different data 
types to be equivalenced. This is an important point to understand 
because it makes the PL/I analogs of several common FORTRAN construc
tions illegal. Other facilities are provided in PL/I for looking at 
storage m different ways--legally, less conveniently, and by rules 
that are inevitably implementation-dependent (Lesson 10). 

Because PL/I guarantees value-equivalence as well as storage-equivalence, 
the use of the DEFINED attribute can inhibit certain optimizations that 
nught otherwise occur. 

There are three different types of defining (i.e., equivalencing) in 
PL/I, depending on what else is written with the DEFINED attribute. 
Each serves a unique puipose. You will see that defining is actually 
much miore powerful than FORTRAN equivalencing 
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3.17. Simple defining. 

Simple defining mierely allows storage belonging to one variable to 
be referred to by another name. However, several flexibilities are 
permitted. Sinple defining is illustrated by several examples. 

DCL A FLOAT BIN (21); 
DCL B FLOAT BIN (21) DEFINED (A); 
B is "defined on" A. Note that the data type 
attributes of A are repeated in the declaration 
of B. A and B are variables with the same 
location and value (recall Lesson 1) but 
different names. 

DCL C(0:9) FIXED DEC (5); 
DCL D FIXED DEC (5) DEFINED (C(I+3*J)); 
The defined variable is D. The base variable, 
i.e., the variable on which it is defined, is 
an element of the array C. Both defined 
variable and base variable are thus scalars. 
The element of C to which D corresponds is 
determiined dynamdcally; on each reference to 
D, I+3*J is evaluated to determine the proper 
element of C. 

DCL E (10,10) FLOAT; 
DCL F (10,10) FLOAT DEFINED (E); 
This needs no comment. Note, however, that the 
dimension attribute for F may not have been 
^̂ r̂itten as (100), because defined arrays must 
have the same dimiensionality as their base 
array. One of the other kinds of defining 
permits "remapping" of arrays. 

DCL G (2:6, 3:8) FLOAT DEFINED (E); 
Though the dimensionality of defined and base 
item miust be identical, the extent of a dimen
sion of the defined variable miay be less than 
the extent of the corresponding dimension of the 
base array (it cannot be greater). A reference 
to GU,i) is identical to a reference to B(,l,j). 
A reference to G(l,5) is illegal, even though E 
has a (1,5) element, because G doesn't. Note 
that G is an unconnected array, although E is 
connected. 
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DCL H (10) FLOAT DEFINED (E(*,I)); 
The base array is the Ith columm of E, which 
is an array of one dimension with bounds 
(1:10). H has identical structuring and is, 
in fact, synonymous with the Ith column of E. 
A reference to H(-c) is the same as a reference 
to E(-c,I). 

3.18. ISUB defining. 

I SUB defining allows an array (the base array), or part of an array, 
to be addressed through another array (the defined array). The 
dimensions miay differ because, in fact, an arbitrary mapping from 
elements of the defined array to elements of the base array is 
specified. ISUB defining is also best explained with examples. 

DCL A (4) CHAR (1); 
DCL B (3) CHAR (1) DEFINED (A(1SUB+1)); 
In the subscript list for the base array, the "ISUB" 
is a funny kind of variable; it stands for the value 
of the 1st subscript expression in any reference to 
the defined array. That is, B(K) is the same as 
A(K+1). Pictorially, 

A(l) A(2) 
B(l) 

A(3J 
B(2) 

A(4J 
B(3) 

DCL C (2,3) BIT (3) UNALIGNED; 
DCL D (6) BIT (3) UNAL 

DEF (C((lSUB+2)/3,MOD(lSUB-l,3)+l)) ; 
Note the abbreviations. D is mi^ped into C as shown below. 

C ( l , l ) 
D(l) 
C(2 , l ) 
D(41 

C( l ,2 ) 
D(2) 
C(2,2) 
D(5) 

C( l , 3 ) 
D(3) 
C(2,3) 
D(6) 

DCL E (10,10) FLOAT; 
DCL F (2,2) FLOAT DEF E(I+1SUB-1,I+2SUB-1) ; 
Note that the parentheses surrounding the base variable may 
be omitted. F is a 2 x 2 submiatrix of E, whose upper left-
hand element (F(l,l)) is coincident with E(I,I). I must 
have a value between 1 and 9 for a reference to F(*,*), 
i.e., the whole array F, to be legal. 
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DCL G (6) BIT (1) ALIGNED; 
DCL H (2,3) BIT (1) ALIGNED 

DEF G(10-3*1SUB-2SUB); 

G(l) 
H(2,3) 

G(2) 
H(2.2) 

«(3) 
H(2,l) 

C(4J 
H(l,3) 

t^lb) 
H(l,2) 

G(b) 
H(l , l ) 

DCL I (2,3) BIT (1) ALIGNED DEF (G(ISUB)); 
Note that although I has two dimensions, the subscript 
list for the base variable does not use 2SUB. Thus, 
1(1,1), 1(1,2), and 1(1,3) are all synonymous with 
G(l), and 1(2,1), 1(2,2), I(2,3Fire all synonymous 
with G(2). Is I connected? Actually, because isub-
defined variables can have non-linear subscripting 
functions, the concept is inapplicable. Since they 
cannot always be determined to be connected, they 
may not be used where unconnected variables are pro
hibited (as we shall see later). 

3.19. String overlay defining. 

String overlay defining allows strings, or aggregates of strings, 
to be overlayed on other element or aggregate string variables ot 
the same string type (i.e., character or bit). If the base 
variable is an aggregate, it must be connected and unaligned. 
This guarantees that consecutive elements of the base variable 
will be mapped consecutively. Therefore, the defined variable, 
which will also have contiguous elements because it, too, miay not 
be aligned, need not have the same structuring as the base variable. 
Examples follow. 

DCL A CHAR (10); 
DCL B (10) CHAR (1) DEFINED (A); 
The ith element of B, which is a CHAR (1) item, is 
synonymous with the ith character of A, i.e., 
B(i.) = SUBSTR (A ,^,1). 

DCL C CHAR (10); 
DCL D (5) CHAR (2) DEF C; 
D(-t) is equivalent to SUBSTR(C,2*x.-1,2). 
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DCL 1 S, 
2 A BIT (1), 
2 B, 
3 C BIT (2), 
3 D BIT (2); 

DCL 1 T DEF S, 
2 U, 
3 V BIT (2), 
3 W BIT (2), 

2 X BIT (1); 

DCL E CHAR (8); 
DCL F CHAR (6) DEF (E) POSITION (3); 
The POSITI()N attribute miay be used in string 
overlay defining to denote the offset of the 
first character (or bit) of the defined item 
from the first character (or bit) of the base 
item. If it is omiitted, POSITION (1) is 
assumed (no offset). F is the last six 
characters of E. 

DCL F CHAR (6) DEF (E) POS (I+l) ; 
The POSITION attribute (note the abbreviation) 
may contain an expression. I must have a 
value between 0 and 2; otherwise a reference 
to F would yield an equivalent reference to E 
outside of its bounds, i.e., F is the same as 
SUBSTR(E,I+l,6). 

3.20. Determination of type of defining. 

If isub variables are used, isub defining is in effect. If the 
POSITION attribute is used, string overlay defining is in effect. 
Otherwise, either simple defining or string overlay defining is 
in effect, depending on whether or not the attributes of the 
defined item miatch those of the base item (if they don't, they 
miust satisfy the constraints for string overlay defining, of 
course). These rules are summarized at LRM 64 and LRM 65. 
?™̂ !̂̂ 3̂ "̂  ̂ " general is summarized and completely described at 
LRM 66 and LRM 67, respectively. 
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3.21. Homework problemis. 

(#3A) Consider the following declarations, which miay legally 
appear together. 

DCL 1 A, 
2 B, 
3 C, 
3 A, 

2 D, 
3 C, 
4 A, 

3 E, 
2 A; 

DCL 1 D, 
2 C, 
2 F, 
3 G, 
4 A; 

To what does each of the following references refer? 
Which are amibiguous? For those that are amibiguous, 
which itemis could they refer to, and how would you 
write unamibiguous references to those items? 

A 
A.C 
A.C.A 
A.A 
D 
D.C 
D.A (tricky) 

Try to state a rule for detennining whether a reference 
is ambiguous or not (difficult). 

(#3B) Consider the declarations 
DCL I S (3) , 

2 U, 
2 V; 

DCL 1 T, 
2 W (3), 
2 X (3); 

Is S.U = T.W legal? If so, what does it mean? If not, 
why not? Answer the same questions for the assignment 
S = T. 
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(#3C) Consider the declarations 
DCL 1 A, 

2 B, 
2 C, 
3 D, 
3 E, 
4 F, 
5 G; 

DCL 1 M, 
2 C, 
3 N, 
4D, 

3 E, 
4 P, 
5 G, 

2 X; 
Determine the expansion of 

A = M, BY NAME; 

(#3D) Let A be a 10 X 10 array. Write a single assignment 
statement that will assign 0 to all the elements of 
A. Write a single assignment statement that will 
assign 1 to the diagonal elements (only) of A. 
Hint: figure out how to use isub defining to 
declare a one-dimensional array synonymous with the 
diagonal of A. Show the declaration. 

(#3E) Let U be a 3 X 3 array. Show how you can use isub 
defining to declare an array V which is synonymous 
with the transpose of U. 

(#3F) Let A have the attributes CHAR (10). Show how you 
can reverse the value of A (leaving the result in A) 
using only assignment statements. You will need to 
declare some auxiliary variables using isub defining 
and string overlay defining. Note that the base 
variable in a DEFINED attribute may not be declared 
with the DEFINED attribute, i.e., you can't define 
X on Y and Y on Z. 
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4. Block structure and scope of names. 

4.1. External procedures. 

A PL/I external procedure is a segment of a program that 
may be separately compiled. It is entirely analogous to a 
FORTRAN "program unit." A FORTRAN program consists of one 
program unit which is a "main program" and possibly other 
program units which are "subprograms." In the same way, 
a PL/I program consists of one external procedure which is 
a "main procedure" and possibly other external procedures. 
In FORTRAN, subprograms (other than BLOCK DATA subprograms) 
represent common sequences of code that need to be executed 
logically at several different points in the overall program. 
By packaging them separately, they need only be written 
once. Control can be transferred to them from each point 
at which they are needed. The external procedures of a 
PL/I program, other than the main procedure, serve the same 
purpose. 

As in their FORTRAN analogs, external procedures can either 
be executed for their effect or for their returned value. 
This use corresponds to the two kinds of executable FORTRAN 
subprogram, subroutine subprogram and function subprogram. 
As in FORTRAN, when they are executed for their effect they 
are invoked by a CALL statement, and when they are executed 
for their returned value they are invoked by a "function 
reference" in an expression. The dynamic aspects of PL/I 
procedures will be covered in Lesson 5. 

A PL/I external procedure starts with a PROCEDURE statement 
and ends with an END statement. In between comes the body 
of the procedure, i.e., executable and declarative state
ments. The minimum content of a PROCEDURE statement is an 
entry label (i.e., a procedure name), a colon, the keyword 
PROCEDURE (abbreviation: PROC), and, of course, a semicolon. 
Example: 

MYPROG: PROC; 

Lots of other things can be hung onto a PROCEDURE statement. 
If the procedure is to be invoked with some arguments, a 
parameter list must immediately follow the PROCEDURE keyword. 
(We will save arguments and parameters for Lesson 5.) 
Several other options may follow it (or the PROCEDURE keyword, 
if there is no parameter list) . The RETURNS option indicates 
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that the procedure will return a value and must be invoked 
as a function reference; thus, a PROCEDURE statement with 
the RETURNS option is the equivalent of a FORTRAN FUNCTION 
statement. If the RETURNS option is omitted, the procedure 
will not return a value back to the point of invocation and 
must therefore be invoked by a CALL statement. Thus, a 
PROCEDURE statement without the RETURNS option is akin to a 
FORTRAN SUBROUTINE statement. 

Another option is the OPTIONS option. This is the keyword 
OPTIONS followed by a parenthesized list of keywords for 
options. The function of the OPTIONS option is to provide 
a language-defined (i.e., standardizable) way of supplying 
implementation-defined options to your particular system. 
(Thus, exactly what can appear inside the parentheses , and 
the meaning of what appears there, is implementation-defined, 
not language-defined.) One of the options that can be used 
in our system is MAIN. It designates that the external 
procedure is a main procedure. Example: 

MYPROG: PROC OPTIONS(MAIN); 

Note that a FORTRAN main program does not start with any 
particular kind of statement; the absence of a FUNCTION or 
SUBROUTINE statment as the first statement implies the 
program unit is a main program. In PL/I, one and only one 
of the external procedures of a program can have, and must 
have, OPTIONS(MAIN). 

Other items that can appear on a PROCEDURE statement will 
be introduced at relevant places. 

We will catch up with references for the above material a 
little later. 

4.2. Internal procedures. 

^^ internal procedure is a procedure nested inside another 
procedure. Internal procedures may be nested inside external 
procedures or other internal procedures. A procedure nested 
inside another procedure (the "containing procedure") has 
Its matching PROCEDURE and END statements, and the body of 
code between them, contained within the body of code 
delimited by the containing procedure's matching PROCEDURE 
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and END statements. Example: 

MAIN: PROC OPTIONS(MAIN); 

SUBR: PROC; 

END; /* OF PROCEDURE 'SUBR'*/ 

END /* OF PROCEDURE 'MAIN'*/ 

Like an external procedure, an internal procedure is used 
to package common code that needs to be executed at many 
places (within the containing procedure). Like an external 
procedure, it may be invoked for its effect, with a CALL 
statement, or invoked for its returned value, via a function 
reference in an expression. (The one shown above, because 
it does not use the RETURNS option, presumably is invoked by 
CALL.) An internal procedure may not be a main procedure. 

Internal procedures can be used in simple ways analogous to 
FORTRAN "arithmetic statement functions." However, they 
are far more general and their generality has no counterpart 
in FORTRAN. Differences between internal procedures and 
arithmetic statement functions may be sununarized (at least 
partly) as follows: 

(a) Internal procedures may be invoked by a CALL statement 
or a function reference. An ASF is only invoked by a 
function reference. 

(b) In either case, they may or may not take arguments. 
An ASF (like all FORTRAN functions) must take at least 
one argiiment. 

(c) They may embody arbitrary code, using arbitrary logic. 
An ASF is restricted to a single expression. 

(d) They may invoke themselves recursively. 
(e) They need not be placed, in their containing procedure, 

ahead of executable statements or after declarations. 

An overview of procedures (going a little beyond the above 
material) is at LRM 68 and LRM 69. 
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4.3. Scope of a declaration. 

We saw in Lesson 1 that a declaration associates a name and 
some attributes with a variable. We will soon see that 
declarations can associate names and attributes with certain 
kinds of constants, too, called named constants. So we will 
just be general and say that declarations associate names 
and attributes with objects. And when we say "declare a 
name..." we mean "declare an object named...". 

A DECLARE statement, i.e., an explicit declaration, is said 
to belong to the procedure in whose body it appears (or "to 
which it is internal"). Note that if a procedure named 
INNER is nested inside a procedure named OUTER, and a DECLARE 
statement is written between the PROCEDURE and END statements 
of INNER, then the declaration belongs to INNER and not to 
OUTER. That is, an explicit declaration belongs to the 
"nearest" containing procedure. 

The scope of such a declaration is the procedure to which 
it belongs, including any contained (i.e., nested or internal) 
procedures, excluding any nested procedures (no matter how 
deeply nested) containing another explicit declaration for an 
object with the same name. The object declared is known 
(by its name) in the scope of its declaration, that is, any 
reference to the name in that scope is a reference to the 
object. As we will see soon, a reference to the same name 
in the scope of a different explicit declaration may or may 
not be a reference to the same object. 

See LRM 7 0. 

Contextual or implicit declarations (recall Lesson 1) , 
i.e., those resulting from uses of names not explicitly 
declared, belong to the containing external procedure. In 
other words, the scope of a contextual or implicit declara-
tion is the whole external procedure in which the name is 
used, excluding any internal procedure (and its descendants) 
where the name is explicitly declared. See LRM 71 and 
LRM 7 2. 

Although we will not be considering arguments and parameters 
of a procedure in detail until the next lesson, there are 
some things to be noted with respect to the scope of a 
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parameter declaration. (A parameter in PL/I is what is 
called a "dummy argument" in FORTRAN. The names appearing 
in the parameter list of a PROCEDURE statement are the names 
of parameters.) 

A parameter name may or may not appear in a DECLARE state
ment in the procedure of which it is parameter (that is, 
it is not required to appear in a DECLARE statement). If 
it does appear in a DECLARE statement there, it is explicitly 
declared with the given attributes. If it does not, it is 
as if it had appeared there in a DECLARE statement with no 
attributes. This is sufficient to establish an explicit 
declaration, with all of the attributes taken from the 
applicable defaults. Thus, parameters can never be contex-
tually declared, that is, they never acquire attributes 
based on the context of their use. See LRM 7 3 and LRM 74. 

4.4. INTERNAL and EXTERNAL attributes; scope of a name. 

There is another pair of alternative attributes which may 
be given to any variable. Like the ALIGNED and UNALIGNED 
attributes, they apply to every variable and if they are 
not given to it explicitly one or the other will be acquired 
by default. These are the INTERNAL attribute and EXTERNAL 
attribute, collectively called scope attributes. Their 
abbreviations are INT and EXT. Unlike the alignment 
attributes, the scope attributes apply to named constants 
as well as variables. 

An object declared with the INTERNAL attribute (explicitly 
or by default) is associated with its name in the scope of 
the declaration and nowhere else. Thus, two different 
declarations of the same internal name, in different scopes, 
establish different objects which happen to be known by the 
same name. 

The effect of the EXTERNAL attribute is as follows. All 
declarations of a given name (say E) having the EXTERNAL 
attribute, i.e., of an external name, are linked together 
so that they refer to the same object, rather than to 
different objects. It is then required that all such 
declarations (of E in this case) specify identical attributes. 
The linking occurs at link-edit time. 
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The scope of a name (say N) can now be defined, as follows. 
If a declaration for N includes INTERNAL, the scope of the 
name is the scope of the declaration. The scope of an 
EXTERNAL name N is the union of the scopes of its declara
tions (all of which must be identical). See LRM 75 and 
LRM 76. 

Consider the following example. The nesting of procedures 
and the occurrences of declarations is shown first. We 
then show nested areas representing the nested procedures, 
using different shadings to show the different scopes of 
declarations. Off to the side we show the distinct vari
ables, each one shaded to show the scope of its name. 

EXTPRCl: PROC; 
DCL N FLOAT EXT; 
INTPRCl: PROC; 

DCL N FLOAT INT; 
INTPRC2: PROC; 

DCL N FLOAT EXT; 
END; 
INTPRC3: PROC; 
END; 
INTPRC4: PROC; 

DCL N FLOAT INT; 
END; 

END; 
INTPRC5: PROC; 
END; 

END; 

EXTPRC2: PROC; 
DCL N FLOAT INT; 
INTPRC6: PROC; 
DCL N FLOAT EXT; 

END; 
END; 
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EXTPRC2 

INtPRCe 

Internal 
N declared 
in EXTPRC2 
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Note that there are six declarations (in EXTPRCl, INTPRCl, 
INTPRC2, INTPRC4, EXTPRC2, and INTPRC6). Hence there are 
six distinct scopes of declarations, each shaded differently. 
The scope of the declaration in EXTPRCl includes INTPRC5. 
The scope of the declaration in INTPRCl includes INTPRC3. 

Three of the six declarations (in EXTPRCl, INTPRC2, and 
INTPRC6) use the EXTERNAL attribute. Hence their declara
tions are linked, i.e., they all declare the same variable, 
the scope of whose name is the union of the scopes of the 
three declarations. The other three declarations all use 
INTERNAL. They thus declare three different variables, the 
scope of whose names are the scopes of their respective 
declarations. 

Language defaults for the scope attribute call essentially 
for INTERNAL for all variables. As we shall see soon, the 
default scope attribute for certain named constants is 
EXTERNAL while that for others is INTERNAL. 

Note that if a structure is EXTERNAL, the structuring and 
attributes of its components must be the same in all of 
its declarations, but the names of its components may differ. 
Within the scopes of different declarations, references to 
corresponding components of the structure are references to 
the same storage, even though the names may differ. The 
scope attribute may not be applied to the names of components 
of a structure; their names are always of INTERNAL scope, 
even when the major structure is EXTERNAL. See LRM 77. 

Also note that parameters may not be declared EXTERNAL. 
Defined variables (recall Lesson 3) may not be declared 
EXTERNAL, even if the base variable is external. Names of 
parameters and defined variables can only have internal 
scope . 

4.5. Use of external variables. 

External variables permit communication via "global variables" 
amongst several separately compiled procedures. The same 
communication can always be achieved by passing arguments, 
but external variables are cleaner in many situations. For 
instance, one procedure may initiate a chain of calls say 
ten levels deep. it may need to pass a particular argument 
all the way through this chain to the procedure at its end. 
tven 11 the intermediate procedures had no use for the data 
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item, they would at least have to pass it on to the next 
procedure. They thus all have to be aware of its exist
ence; all the declarations would have to be just right, 
and so on. By using external variables, only the first 
and last procedures in the chain would have to be aware of 
the data's existence, and declare it. 

It should be noted that each external structure declaration 
behaves like a complete FORTRAN "named common" specification. 
Even external scalars behave like "named common" blocks—with 
just one item in them. 

4.6. Procedure names; entry constants. 

Let us now look at procedure names in more detail. We have 
not yet acknowledged the fact that they constitute the first 
use of names that we have seen other than for variables. 

P: PROC OPTIONS (MAIN); 
Q: PROC; 
END; 
CALL Q; 

END; 

Let us look first at the procedure name Q. It appears as 
a label on a PROCEDURE statement, and as the name of a 
procedure to be called on a CALL statement. Q is said to be 
the name of an entry constant. The value of this constant 
is the procedure which it names (or, more precisely, the 
particular entry point into it, since there may be others). 

So that we may talk about that constant, we gave it a name, 
Q (just as the FIXED DECIMAL(1) constant with value "one" 
is denoted by 1). The appearance of Q in 

Q: PROC; 
is a reference of the constant which serves to establish 
its value. The appearance of Q in 

CALL Q; 
is a reference of the constant which does something with 
its value, i.e., it invokes the procedure which is the con
stant's value. 



4-10 

4.7. Declaration of entry constants. 

We have talked about entry values (values which represent 
entry points) and entry constants (objects whose permanent 
value is an entry value). Indeed, we will see later that 
there are entry variables (objects whose changeable value is 
an entry value). Thus, "entry" is a legitimate data type. 
In fact, the attribute used for declaring entry variables 
is the ENTRY attribute, but more about that later. Unlike, 
say, character strings, we cannot manufacture new values 
of type "entry" by operating on old ones. Thus, the number 
of different entry values that can exist at any moment during 
the execution of a program is exactly the number of different 
entry points of procedures that there are in it—each one 
named by an entry constant. Recall that we earlier called 
data that can be operated upon in expressions "problem data." 
In contrast to that, entry values constitute the first of 
many types of program control data that we will see. 

We have seen how declarations associate a name with an object 
(and also associate some attributes with it). We have at 
hand a kind of constant that has a name, which is an identi
fier like a variable name. In fact, the association of that 
name with the constant named is also an act of declaration. 
In this regard, Q: PROC; constitutes an explicit declaration 
of an entry constant named Q. The scope of the declaration 
is the procedure containing the declaration, i.e., P"̂  
Attributes furnished by this declaration are ENTRY (the data 
type of the value) and INTERNAL (the scope of the name)—the 
latter because the procedure Q is an internal procedure. By 
the same logic, P: PROC OPTIONS (MAIN); explicitly declares 
P to be an EXTERNAL ENTRY constant, EXTERNAL because P is 
an external procedure. 

Carrying this discussion a little further, we may ask how 
we may know that CALL P; appearing in some other external 
procedure (say 8) refers to this external procedure P. For 
that to be the case, P must be known, in 8, to be an external 
entry constant. How is that achieved? Answer: by the 
declaration, in 8, DCL P ENTRY EXTERNAL;. Note that this 
establishes P as an external entry constant; looking ahead, 
we may have external entry variables, but you have to do 
something extra to declare them. The scope of this declara
tion is the procedure 8 (and, of course, descendants in which 
the name is not redeclared). The scope of the name is the 
union of the scopes of all its declarations, including the 
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one resulting from its use as a label on a PROCEDURE state
ment. All these declarations associate the name with the 
same object, an entry constant. 

4.8. Begin blocks. 

Procedures are one kind of block. Anther kind is the begin 
block. A begin block is delimited by a matching BEGIN state
ment and END statement, as in 

BEGIN; 

body of begin block 

END; 

A begin block is sort of an unnamed procedure that takes no 
arguments and doesn't return a value. Its body is thus 
executed for its effect. If it is "like a procedure" then 
presumably it gets executed by being invoked. If it doesn't 
have a name, by what do we call it to invoke it? The answer 
is we don't need to call it, because we don't do anything 
special to invoke it. It is "invoked" (let us just say 
executed) when control reaches it in the normal way, for 
example, after executing the preceding statement. Thus, 
the BEGIN statement is executable, unlike a PROCEDURE state
ment (if control should reach a PROCEDURE statement from 
above, i.e., after executing the preceding statement, the 
procedure is not invoked; control skips to the first execut
able statement after the procedure). 

Why then have begin blocks? Wouldn't the effect be exactly 
the same if we deleted a BEGIN statement and its matching 
END statement? 

One reason for begin blocks is that they delimit scopes just 
like procedure blocks do. In fact, everywhere we have used 
the word "procedure" in terms of the concept of scope of a 
declaration, we should have used "block." Note that begin 
blocks may be nested inside begin blocks or procedure blocks, 
and internal procedure blocks may be nested inside begin 
blocks as well as other procedure blocks. At the outermost 
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level we still have external procedure blocks; there are 
no "external begin blocks." We will see another signifi
cant use of begin blocks in Lesson 5. 

See LRM 7 8 and LRM 79. 

4.9. The DEFAULT statement. 

In Lesson 1 we said that the programmer can change the stand
ard system defaults used to furnish attributes in implicit 
declarations or to complete partial declarations. The 
DEFAULT statement provides this facility. We will illustrate 
It by examples. (The abbreviation for DEFAULT is DFT.) 

DFT RANGE (*) FIXED BINARY; 
RANGE (*) says this DEFAULT Statement applies to all 
variables. If they have no data type attributes they get 
FIXED BINARY (irrespective of the first letter of their 
name). If they already have a scale or a base attribute, 
but not both, the other is FIXED or BINARY as needed. 
This default is inapplicable to any variable that already 
has both scale and base attributes. 

DFT RANGE (B:D) BINARY VARYING; 
This specification is only applicable to variables whose 
names begin with B, C, or D. The attributes shown may 
seem to be in conflict with each other. They are just 
a list from which is taken, in order, any attributes that 
don't conflict with what the variable already has. If 
BINARY is taken, VARYING won't be. If the variable 
already has CHARACTER, BINARY won't be taken but VARYING 
will be. 

DFT RANGE (XYB) VALUE (BIT(8)); 
This specification only applies to variables whose names 
begin with XYa. If the variable has BIT but no length 
specification, the length specification acquired is the 
value 8. Though we didn't say so in Lesson 2, one can 
write DCL XY8AB BIT;. The system default for string 
length is 1. 

The order in which DEFAULT statements are processed is 
significant. If a variable belonging to a particular block 
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needs more attributes to complete its description, the 
DEFAULT statements of that block are examined, in top to 
bottom order, first. If its description is still incomplete, 
the block, if any, that contains that block has its DEFAULT 
statements examined, and so on out to the external procedure 
block. Thus, we may say that DEFAULT statements have a 
scope of applicability related to the block structure, i.e., 
the nesting properties of blocks. 

Considerably more can be done with DEFAULT statements. See 
LRM 8 0 through LRM 8 2. 

In the ANSI standard, the syntax and capabilities of the 
DEFAULT statement are almost totally changed—for the better. 
The applicability of DEFAULT statements may depend on the 
attributes a name already has or doesn't have. Additional 
attributes, such as DIMENSION, NONVARYING, STRUCTURE, 
CONSTANT, etc., are also provided for use in defining the 
universe of applicability of a given DEFAULT statement. 
It is also possible to default attributes of NONE, which 
will make it necessary to explicitly declare all required 
attributes, thus eliminating the danger of misspelling a 
name. And there are other useful and exotic things that 
can be done with it. 

4.10. Unanswered questions. 

How do we declare entry variables? How may they be used 
(other than in assignments)? (We know how entry constants 
are used.) See Lesson 5. 

What are the requirements for argument/parameter matching? 
Also in Lesson 5. 

4.11. Homework problems. 

(#4A) Multiple declarations are not allowed. (For a 
definition of multiple declaration, see LRM 83.) 
If there are multiple declarations in any of the 
following, identify them. 
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(a) P: PROC; 
DCL X FIXED BIN; 
Q: PROC; 

DCL X FLOAT BIN; 
END; 

END; 
(b) P: PROC; 

DCL X FIXED BIN; 
Q: PROC; 

DCL X FLOAT BIN EXT; 
END; 

END; 
(c) P: PROC; 

DCL X FIXED BIN EXT; 
Q: PROC; 

DCL X FLOAT BIN EXT; 
END; 

END; 
(d) Same as (a), but with the addition of DFT RANGE 

(*) EXT; just after the PROCEDURE statement for P. 
(e) Same as (d), but with the DEFAULT statement 

added just after the PROCEDURE statement for Q. 
(f) S: PROC; 

T: PROC; 
T: PROC; 
END; 

END; 
END; 

(g) S: PROC; 
T: PROC; 
END; 
T: PROC; 
END; 

END; 

(#4B) Suppose two different external procedures. El and E2, 
needed to call a third external procedure, E3. They 
would each, of course, contain a declaration such as 

DCL E3 ENTRY EXT; 
What do you think would happen if you forgot to write 
E3 and link-edit it in with El and E2? If you have 
linkage editor experience, describe what you think 
the linkage editor would have to say. Also see if you 
can give an answer purely in PL/I terms (hint: What 
kind of object is E3? What is its value?). 
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(#4C) Write a DEFAULT statement that will cause all vari
ables not explicitly declared with a scale attribute, 
and all variables declared with FLOAT but no pre
cision attribute, to default to double precision 
floating-point. Make sure that double precision will 
be used, even for variables explicitly declared with 
one of the base attributes. In the case where neither 
base attribute is explicitly declared, make BINARY 
the default. What is the effect of your DEFAULT 
statement on the following? 

DCL J; 
DCL X; 
DCL U BINARY; 
DCL V DECIMAL; 
DCL F FLOAT; 
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Storage class and block invocations. 

5.1. Storage allocation and initialization. 

Storage allocation means the process of acquiring storage 
for a variable. There are several ways this may be carried 
out in PL/I, depending on choices made by the programmer. 
The choices range from having the compiler "assign" storage 
essentially at compile time (like in FORTRAN) to taking on 
full responsibility for saying when, during execution, 
storage should be acquired for a variable (and when it 
should be released). The latter extreme is an example of 
dynamic storage allocation. See LRM 84. 

So far we have not been concerned with the process of storage 
allocation. It is sufficient to have thought in FORTRAN 
terms up to now. 

Initialization is the process of assigning initial values to 
variables. IiT FORTRAN this is carried out with the DATA 
statement and BLOCK DATA subprograms. There are facilities 
for initialization in PL/I which are a little more general. 
To handle the requirements for initialization when storage 
is allocated dynamically, initialization occurs when (and 
each time) storage is allocated. 

5.2. Storage class attributes. 

The storage allocation technique to be used for a specific 
variable is selected by declaring one of four alternative 
storage class attributes for it. Storage class is a property 
of all (or essentially all) variables. With its study we 
will complete the analysis of properties (data type, aggre
gate type, alignment, scope, storage class) that all vari
ables have. 

The four storage class attributes are STATIC, AUTOMATIC 
(abbreviation: AUTO), CONTROLLED (abbreviation: CTL), and 
BASED. The last three designate different types of dynamic 
storage allocation. BASED will not be considered until 
Lesson 11. Static, automatic, and controlled storage are 
described separately below. 
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5.3. INITIAL attribute. 

First we will consider the common aspects of initialization, 
since it will be appropriate to consider certain aspects of 
it which differ with the storage class as the individual 
storage classes are studied. 

Initial values are specified by the INITIAL attribute. The 
attribute may be used for scalars, arrays, and structure base 
elements. Its abbreviation is INIT. 

For a scalar or structure base element, the form is 
INIT (initial-value). initial-value may be any constant, and 
in some cases it may be a variable reference or function 
reference or even an arbitrary expression (if it is an 
expression it must be surrounded by parentheses) . 

Examples: 
DCL N FIXED BIN (31) INIT (0); 
DCL X FLOAT INIT (1); 
DCL 1 STRUC, 

2 PARTI CHAR (3) INIT ('ABC'), 
2 PART2, 
3 PART2A BIT (2) INIT ('Ol'B), 
3 PART3B CHAR (4) VAR INIT (''); 

DCL Y FIXED DEC (7,2) INIT (X); 
DCL 8 PIC '9999' INIT ((N**2-14)); 

For an array one form is 
INIT {initial-value , ..., initial-value) 

i.e., a list of initial values, one for each array element. 
The order corresponds to successive elements of the array 
"by row," i.e., with the right-most subscript varying most 
rapidly. For example, to initialize a 3x2 array A to 

1 0 
-3 3 
8 -1 

we would write 
DCL A (3,2) INIT (1,0,-3,3,8,-1); 

The number of initial values given may be less than the 
number of elements in the array (in which case elements at 
the end remain unitialized), but it may never be greater 
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(excess values are ignored). To denote that a particular 
element is not to be initialized, an asterisk may be used 
instead of an initial value. For instance, if we did not 
need to, or care to, initialize the second row of A we could 
have written 

DCL A (3,2) INIT (1,0,*,*,8,-1); 

A sequence of similar initial values may be "factored out" 
and preceded by a parenthesized iteration factor, which 
denotes how many times the following item or list of items 
is to be iterated. Examples: 

DCL A (10) INIT (3,(9)0); 
A(l) is initialized to 3 and the remaining elements 

are initialized to 0. 
DCL B (3,3) INIT ( (3) (0 ,1, 2)) ; 

Each row of B is initialized to 0,1,2. 
DCL C (3,3) INIT ((3) (0, (2)1)) ; 

Each row of C is initialized to 0,1,1. 
DCL D (10) INIT (0,(8)*,0); 

The first and last values of D are initialized 
to 0; the middle eight values are uninitialized. 

The INITIAL attribute may be specified in a DEFAULT statement. 
Note that standard system defaults do not cause initialization 
of any variables. It is illegal to use a variable in a con
text where its value is required before it is assigned a 
value (either by initialization, by assignment, or by an 
input operation). Under the Optimizing compiler, reference 
to an uninitialized variable will access garbage, and unpre
dictable errors may result. The Checkout compiler, however, 
is able to detect and report use of uninitialized variables 
(which is a very common error) . 

See LRM 85 and LRI4 86. 

Note that if A and B are similar arrays, it is not legal to 
write, say, 

DCL A (3,2) INIT (B); 
even though it may seem intuitively clear. Any references 
in the INITIAL attribute must be references to element vari
ables (scalars), and expressions must be element expressions 
(those that evaluate to scalar quantities). 
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5.4. Adjustable extents. 

All of the array bounds and string lengths we have shown 
so far have been expressed as unsigned decimal integer con
stants. Syntactically, they may, in general, be expressions 
(element expressions) , but this is permitted only with certain 
storage classes, as we will see below. An array bound or 
string length which is not constant is called an adjustable 
extent. In Lesson 11 we will see another type of variable 
which can have an adjustable extent. 

5.5. Static variables. 

Variables declared with the STATIC storage class attribute 
are fully mapped and logically allocated a place in storage 
at compile time. In fact, this storage is just a part of 
the "load module" containing the program itself. Initial 
values are assembled right into this storage. 

When a program is loaded, static storage—already initialized, 
if required—is brought in with it. Static variables retain 
their assigned locations throughout execution. 

In order to permit full mapping and initialization at compile 
time, static variables cannot have adjustable extents, and 
initial values and iteration factors in any INITIAL attribute 
must all be constants. See LRM 87. 

Example: 
P: PROC; 

DCL #CALLS FIXED BIN STATIC INIT (0); 
#CALLS = #CALLS + 1; 

END; 
In this example, the static internal variable #CALLS is used 
to record the number of times P is invoked. Because #CALLS 
has internal scope (by default), it is not accessible to 
the program outside of the procedure P. However, it con
tinues to occupy its storage location, and its value, even 
when control leaves P. It still has the same location and 
value when control re-enters P at a later time. Thus, static 
variables may be used to maintain a "history" across procedure 
calls. 
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5.6. Automatic variables. 

Variables declared with the AUTOMATIC storage class attribute 
are allocated, and initialized, whenever control enters the 
block that declares them. The storage is freed when that 
block terminates. 

This is one of the types of dynamic storage allocation. 
Since storage for an automatic variable is not allocated and 
initialized until a certain point during execution, it may 
have adjustable extents as well as expressions in the INITIAL 
attribute. 

Example: 
P: PROC; 

DCL (L,M,N) FIXED BIN; 
L = 3; 
M = 8; 
N = 6; 
BEGIN; 

DCL C CHAR (L) AUTO; 
DCL B BIT (L+1) VARYING AUTO; 
DCL A (M,N) BIT (L**2) AUTO; 
DCL X (N) INIT {(N)0) AUTO; 
DCL Y (L,M) 

INIT ((L)(1,(M-1)0)) AUTO; 
END; 

END; 
When the begin block is entered, C is established as a char
acter string variable of length 3 (the value of L). B is 
established as a varying-length bit string of maximum length 
4. A is established as an 8x6 array of bit strings of 
length 9. X is a 6-element array all of whose elements are 
initialized to 0. (Note that if we had written 

DCL X (N) INIT (0) AUTO; 
only the first element would have been initialized.) Y is 
a 3x8 array whose first column is initialized to 1 and whose 
remaining elements are initialized to 0. 

Note that the determination of adjustable extents and initial 
values is determined exactly at block entry time, before any 
statements are executed in the block. Also, even though the 
variables used in extent expressions may have new values 
assigned to them in the block, the bounds and string lengths 
won't change. 
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Note that, since storage for automatic variables is freed 
when their containing block terminates, they may not be 
used to retain a history across block invocations. The next 
time their declaring block is entered they will be assigned 
fresh storage, which may be in a different location. See 
LRM 88. 

Automatic storage is primarily used for local (i.e., internal) 
variables with adjustable extents. It is also essential in 
recursive procedures, as we shall see later in this lesson, 
and re-entrant procedures (Lesson 14) . 

Initialization of automatic variables is carried out by 
generated code. If they have adjustable extents, storage 
allocation is also carried out by generated code. However, 
if they have fixed extents they come essentially for free: 
since the compiler knows their extents, it assigns them 
consecutive locations in one contiguous area which is not 
allocated until the declaring block is entered. The alloca
tions are "free" since each block will need such an area any
way, for housekeeping, even if it has no automatic variables. 

5.7. Controlled variables. 

Variables declared with the CONTROLLED storage class attribute 
are allocated, and initialized, upon execution of an ALLOCATE 
statement naming them, and they are released upon execution 
of a FREE statement naming them. The allocation and freeing 
need not occur in the same block. 

Controlled variables can have several simultaneous generations 
of storage. If a controlled variable being allocated already 
has an allocation (called a generation), that former alloca
tion is placed on a stack. All subsequent references to the 
variable are references to the newly allocated generation of 
It, until a FREE statement is executed. At that time the 
"current" generation is released and the one on top of the 
stack replaces it. 

Example: 



5-7 

DCL X CTL; 
ALLOCATE X; 
X = 1; 
ALLOCATE X; Stacks previous X (having value 1). 
X = 2; 
Y = X; Stores the value 2. 
FREE X; Unstacks previous X. 
Y = X; Stores the value 1. 
FREE X; There are now no allocations of X. 

It is an error to refer to a controlled variable for which 
no allocations exist. 

Controlled variables are the thing to use, obviously, whenever 
you need a real "pushdown" stack, or LIFO (last-in-first-out) 
stack. 

Since the controlled storage class is one of the dynamic 
storage classes, controlled variables can have adjustable 
extents and variable initializations. An ALLOCATE statement 
for a controlled variable may well appear in a block different 
from the one containing its declaration. There may also 
appear in that block declarations of variables having the 
same names as ones used, for instance, in extent expressions 
in the declaration of the controlled variable. Upon alloca
tion, the variables accessed during the evaluation of extent 
expressions are the ones "known" in the block containing the 
controlled declaration; the values used, however, are their 
current values, i.e., not necessarily the ones in effect when 
the declaring block was entered. A homework problem will 
illustrate this. 

In reading LRM 89, you will see that it is possible to over
ride extent expressions, etc., given in the declaration, by 
using different ones in the ALLOCATE statement (for this 
purpose you have to write out the attributes in the ALLOCATE 
statement). When extents are given in the ALLOCATE statement 
they may be omitted (replaced by asterisks) in the declaration. 
Use of the features described in this paragraph is not recom
mended because they are not carried over to the ANSI standard. 

5.8. Combinations of storage class and scope attributes. 

Static variables may have either internal or external scope. 
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Automatic variables can have only internal scope. Since 
automatic variables only "exist" while the declaring block 
is active, it is not meaningful to link the scopes of 
different declarations so that they refer to the same auto
matic variable. Of course, automatic variables may be refer
enced in blocks contained within the declaring block (because 
the scope of the declaration contains the nested block). 
There is no way for the declaring block not to be active 
when such a reference is made. 

Controlled variables can have either internal or external 
scope. With controlled external, the whole stack of alloca
tions is "shared" amongst the scopes of the various external 
declarations of the variable. 

In Lesson 4 we stated that external variables can conveniently 
be used for communication amongst several external procedures. 
Now consider that external variables can have either static 
or controlled storage class, but not automatic. Since static 
variables can not have adjustable extents, if a variable com
municated amongst external procedures by giving it external 
scope (as opposed to passing it as an argument) needs to have 
extents determined during execution, it will obviously have 
to be controlled. Note that there may be no need for the 
general stacking capability in this case, i.e., only one 
generation of the controlled variable is ever allocated. 
This, in addition to LIFO stacks, is an "appropriate" use of 
controlled variables. 

If the storage class attribute is omitted from a declaration, 
standard defaults will supply AUTO for internal variables and 
STATIC for external ones. Since INTERNAL is the standard 
default when the scope attribute is omitted, most variables 
will probably end up being automatic. Since additional execu
tion time is incurred for certain uses of automatic variables, 
it may well be worthwhile to say DFT RANGE (*) STATIC; to 
change the default. 

For a review, see LRM 90 ignoring (for now) all discussion 
of the BASED attribute. 

5.9. Parameters. 

Names appearing in a parameter list in a procedure statement 
are names of formal parameters ("dummy arguments" in FORTRAN). 



5-9 

The process of invoking a procedure makes the formal param
eters synonymous with the actual arguments in a CALL state
ment or function reference. By synonymous is meant that 
they designate the same storage and the same value, as with 
defined variables (Lesson 3). Hence, an assignment to a 
formal parameter may be instantly perceived as a change in 
the value of the actual argument, assuming it is a variable. 
And there are no restrictions on that variable (the actual 
argument) like those of FORTRAN; specifically, the variable 
may be another argument, as in 

CALL F(A,A,B); 
or it may be an external variable to which the invoked 
procedure has direct access. The price of this flexibility 
is inhibited optimization. For instance, suppose in F an 
assignment is made to the first formal parameter. The com
piler must be aware that the second parameter, which is a 
different variable in F, can have its value changed by that 
assignment. 

Note that formal parameters do not denote local variables 
which are assigned the value of the actual argument on entry 
and which are assigned back to the argument on return, as in 
FORTRAN (for scalar arguments). This has consequences that 
will be seen when we consider multiple entry points, later. 

There is also no restriction against assigning to a formal 
parameter whose actual argument is a constant. In this case 
the constant is protected because the calling procedure makes 
a copy of it just before the call and passes the copy instead. 

Parameters generally cannot be declared with a storage class 
attribute. They don't have storage of their own; they share 
the storage of the actual argument. In this sense, "parameter" 
may be considered an alternative to the other storage classes. 
An exception is discussed immediately below. 

When a controlled variable is passed as an argument, either 
the current generation of the variable or the whole stack of 
generations may be considered passed, depending on whether 
the formal parameter does not, or does, have the CONTROLLED 
attribute, respectively. This is the one exception to the 
above prohibition of storage class for parameters. It is an 
error to pass a non-controlled variable to a controlled 
parameter. Note that controlled parameters are not permitted 
in the ANSI standard. 
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5.10. Review and extension of DEFINED attribute. 

Before proceeding with the study of parameters we shall look 
again at defined variables, first introduced in Lesson 3. 

The first point to be made is occasioned by the comment 
above that parameters don't have storage class. Neither 
do defined variables. They share the storage of their base 
variable. DEFINED, like "parameter," may be thought of as 
an alternative to storage class. 

The second point to be made is that defined variables, like 
variables of any of the dynamic storage classes, can have 
adjustable extents. The extent expressions, like those for 
automatic variables, are evaluated on entry to the declaring 
block. Consider the following example: 

J = 3; Note: In the ANSI standard, 
K = 5; declarations of defined and 
L = 7; auto variables may not refer-
BEGIN; ence other defined or auto 

DCL A {J,K,L) FLOAT; variables declared in the 
DCL B (K,J) FLOAT same block. Hence, the 

DEF A(2SUB,1SUB,I); declaration of B is in error. 
• It is corrected by enclosing 

END; ^t in another begin block. 
In the begin block, A is a 3x5x7 array. B is a 5x3 array 
made coincident with the transpose of the I-th plane of A. 
While the values of K and J are determined for purposes of 
ascertaining B's extents once, on entry to the begin block, 
the extents not subsequently tracking any changes in the 
values of K and J, I is not evaluated at block entry but 
rather on every reference to B. See LRTI 91. 

5.11. Argument/parameter matching requirements. 

As you might expect by now, arguments and parameters must 
have the same data type, i.e., it is illegal to pass a 
floating-point argument to a fixed-point parameter, illegal 
to pass a CHAR (4) argument to a BIT (32) parameter, and 
so forth. You should expect this because of the matching 
requirements we have seen for defined variables and 
external variables. In all cases, the reason is to guarantee 
identical semantics for all implementations of PL/l; it just 
cannot be done when one is allowed to relax these rules. 
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Suppose a parameter is declared FIXED BIN (15) . If one wants 
to pass the constant "one" to this parameter, can one write 
"1" for the actual argument? After all, "1" as written is 
FIXED DEC (1). The answer is yes, i£. If you tell the 
compiler what kind of value the invoked procedure expects. 
If you don't, it will just pass a FIXED DEC (1) constant 
and errors surely will result. 

Actually, it is neces 
information about the 
calling procedure, on 
an external procedure 
this purpose. The re 
allowed) for internal 
compiler can look ins 
it is compiling the c 
out what attributes a 

sary to provide the compiler with 
invoked procedure's parameters, in the 
ly when the procedure being called is 

An entry declaration is used for 
ason it is not necessary (in fact, not 
procedures is because in this case the 
ide the procedure to be invoked while 
ailing procedure, and it can thus find 
re required. 

One essential freedom permitted in these otherwise stringent 
matching requirements in that array bounds and string lengths 
of parameters need not be specified as unsigned decimal integer 
constants. (They may be, however, and then they must agree 
exactly with the array bounds or string lengths of their 
actual arguments.) These extents can be expressed as 
asterisks, which means that the extent of the formal parameter 
is inherited from the actual argument. This permits arrays 
with different bounds (but the same number of dimensions) , 
or strings with different lengths, to be passed as arguments, 
at different times, to the same formal parameter. 

For example: 
DCL SI CHAR (5) INIT 
DCL S2 CHAR (3) INIT 
CALL INTPROOSl) ; 
CALL INTPR0C(S2); 
INTPROC: PROC (S); 

DCL S CHAR (*); 
I = LENGTH(S); 

END; 
The first time INTPROC is 
like a CHAR (5) variable; 
On the second invocation, 
and 3 is assigned to I. 

('AAAAA'); 
('BBS'); 

called, its parameter, S, behaves 
in particular, 5 is assigned to I. 
S behaves like a CHAR (3) variable 

Suppose we pass arrays with different extents to an array 
parameter with asterisk extents. How are we to ascertain 
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the bounds of the parameter (i.e., those of the actual argu
ment), if we should need to (for instance, to iterate over 
all elements of the array)? Certain builtin functions, in 
the category called "array-handling builtin functions," serve 
this need. 

If A is an array, HBOUND(A,i) is the upper bound ("high 
bound") of A in the i-th dimension. i may, in general, be 
an expression, but it is usually a constant like 1 or 2. 
Similarly, LBOUND(A,i) is the lower bound of A in the i-th 
dimension. DIM(A,i) is equal to HBOUND(A,i)-LBOUND(A,i) 
+ 1, i.e., it is the number of elements in the i-th dimension 
of A. 

Example: 
P: PROC (A); 

DCL A (*,*) FLOAT; 
DCL B (LB0UND(A,2): HB0UND(A,2)) 

FLOAT DEF A(I,*); 

END; 
A is a two-dimensional array with bounds in both dimensions 
inherited from the actual argument. B is defined on the I-th 
row of A; in its one and only dimension, it has bounds equal 
to those of the second dimension of A. 

Note that "asterisk extents" are a type of adjustable extent. 
It is the only type permitted in parameter declarations, 
i.e., it is illegal to write 

P: PROC (A,I,J); 
DCL A (I,J) ; 

The FORTRAN programmer converting to PL/I must make a con
scious effort not to think about array parameters in terms 
of the address of the first element. Array parameters can 
only be associated with array arguments; they must have the 
same number of dimensions and the same bounds in each dimen
sion. It is never necessary to pass the bounds separately. 
It is just as illegal to refer outside the bounds of a 
parameter array as it is to reference outside the bounds of 
any array. 

5.12. Entry declarations. 

In Lesson 4 we saw that the ENTRY attribute can be used in 
a declaration to declare a name as that of an external 
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procedure (i.e., an external entry constant). The declara
tion may also describe the attributes of the formal parameters 
of the external procedure. 

Example: 
DCL F ENTRY (FIXED BIN (15)) EXT; 

This says that F is an external entry constant, and that the 
procedure F has one parameter, which in F is declared as 
FIXED BIN (15). Having written the above declaration, you 
can now write CALL F(l); without fear of having the wrong 
data type for the actual argument. The compiler has the 
information it needs to substitute a FIXED BIN (15) constant 
with value "one." 

The conversion of argument type to parameter type occurs when
ever it is necessary. For instance, in 

DCL J FLOAT BIN (10); 
CALL F(J); 

J is converted from FLOAT BIN (10) to FIXED BIN (15). The 
result is placed in a "temporary," sometimes called a "dummy" 
in PL/I, and it is the temporary which is passed as an argu
ment. In this case, assignment of a value to the parameter 
of F will not cause the value of J to change, because the 
parameter is not associated with J but rather with an auxili
ary variable containing the converted value of J. The compiler 
tells you whenever it creates a "dummy" for an argument in 
order to get the matching required. 

As you read LRM 92 and LRM 93, you will see that the descrip
tions for individual parameters may be omitted (replaced by 
asterisks), in which case it is assumed that the argument as 
passed is correct for the parameter (it is an error if it 
isn't). Indeed, the whole list of parameter descriptions, 
and their enclosing parentheses, may be omitted (with the 
same assumptions). However, it is good practice to declare 
the parameter attributes of external procedures always, and 
the ANSI version requires this. 

External entry constants must be declared in an entry 
declaration, even if there are no parameters to describe. 
You might well ask why. If a name appears in a CALL state
ment, as in CALL SUBR, or in function reference context, as 
in A=B+SIZE(C), why is not that name assumed to be an external 
entry, as in FORTRAN, when no array declaration (in the 
latter case) or internal procedure (in either case) (in 
FORTRAN this would be an arithmetic statement function) were 
observed by the compiler? The answer is: to permit growth 
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of the language in the area of builtin procedures. (In 
Lesson 12 we will see that there are some implementation-
defined builtin procedures that are subroutines, i.e., to be 
invoked by CALL statements.) What would happen if SIZE (as 
in the above example) were to be added to the language as a 
builtin function tomorrow? If SIZE could be an external entry 
without declaration, then the meaning of the program would 
change after SIZE is added as a builtin function. (Though 
it has not been emphasized, builtin functions generally do 
not have to be declared. Exceptions to this rule are treated 
in Lesson 10.) By declaring SIZE as an external entry, you 
are protected even if SIZE is added as a builtin function 
tomorrow. 

5.13. The CONNECTED attribute. 

The CONNECTED attribute may be specified for aggregate 
parameters. In general, the compiler may not assume that 
a parameter v/hich is an aggregate is connected. For example, 
since arrays are stored by row in PL/I, passing a column, 
such as A(*,I) to a one-dimensional array results in the 
parameter being associated with unconnected storage. Even 
if the parameter is a structure, it can refer to unconnected 
storage: A case in point is the passing of an element of an 
array of structures. The CONNECTED attribute tells the com
piler that the associated aggregate argument actually is in 
connected storage. Besides leading to certain efficiencies, 
this information confirms a condition which is a prerequisite 
for certain kinds of I/O involving aggregate parameters 
(Lessons 8-9) and for string overlay defining (Lesson 3) on 
a parameter base. 

When the CONNECTED attribute is specified in a parameter 
description in an ENTRY attribute, for instance 

DCL P ENTRY ((*) FLOAT CONNECTED); 
which says that P expects a one-dimensional connected array 
of FLOAT elements, a copy of the argument is made in 
connected temporary storage if the argument, as supplied, 
is not connected. See LRM 94. 

CONNECTED is not a part of the ANSI standard. If you use 
the features cited above as requiring connected references, 
it is assumed that the connected condition is met; other
wise, the program is in error. 
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5.14. Function references and the RETURN statement. 

When a procedure is invoked as a subroutine reference, it 
may return to the point of invocation either by executing 
a RETURN statement that does not include an expression for 
the returned value, or by executing (i.e., reaching) the END 
statement of the procedure. 

When a procedure is invoked as a function reference, the 
latter mechanism is not available to it. It must execute a 
RETURN statement that includes an expression giving the 
returned value, as in 

RETURN (B**2-4*A*C); 
Note that the mechanism for specifying a returned value is 
rather different from FORTRAN. Instead of assigning to a 
variable which has the name of the function, then executing 
a RETURN statement later, we carry out both functions in a 
single statement. 

Returned values have data types. Both the calling and the 
invoked procedure must agree on the data type of the returned 
value. The rule is that the data type is inferred from the 
first letter of the procedure's name (more precisely, the 
name of the entry point), in the same way as for undeclared 
variables and using the same defaults, unless specified 
otherwise. There are two places where other attributes may 
be specified. 

The first place is on the PROCEDURE statement, in the RETURNS 
option. 

P: PROC (X) RETURNS (CHAR (40)); 
specifies, for example, that P returns a value of type 
CHAR (40). If you happen to write RETURl'J ('NONE') the given 
value will be converted from CHAR (4) to CHAR (40), in the 
invoked procedure, to conform to the CHAR (40) that you 
have said must be returned. 

The second place is in an entry declaration (for an external 
entry) on the calling side. The difference between 

DCL P ENTRY (FIXED) EXT: 
and 

DCL P ENTRY (FIXED) RETURNS (CHAR (40)) EXT; 
when P is invoked in function reference context, as in 

S = T II P(5) ; 
is that in the former case the attributes assumed for the 
value returned depend on the first letter of the name (and 
will be FLOAT DEC (6) in this case), whereas in the latter 
case they are known to be CHAR (40). 
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In the ANSI version, the RETURNS option and RETURNS attri
bute can be used if and only if the procedure is invoked in 
function reference context, and they must be used then. 

In the current language a returned value must be a scalar. 
Furthermore, if it is a string it must have a non-adjustable 
length (or maximum length, in the case of varying-length 
strings). In the ANSI language, a returned value may be 
an array or a structure and it can be specified to have 
adjustable extents (using the asterisk notation only) . 

See LRM 95. 

5.15. Recursive procedures. 

Recursive procedures are allowed. They must be identified 
as recursive by the RECURSIVE option on the PROCEDURE state
ment. The familiar example of FACTORIAL is given below. 
(It uses an IF statement, which we will encounter in 
Lesson 6.) 

FACTORIAL: PROC (N) RETURNS (FIXED BIN (31)) RECURSIVE; 
DCL N FIXED BIN (31); 
IF N > 1 THEN RETURN (FACTORIAL(N-1)); 
ELSE RETURN (1); 

END; 

If a recursive procedure needs any local variables, it is 
essential that the automatic storage class be used for them. 
The essential feature of a recursive procedure is that 
several invocations of it are active simultaneously. If 
STATIC is used for local variables, all invocations would 
share the one "generation" of the static variable. With 
AUTO, each active invocation has its own "generation" of 
the local variable. 

5.16. Multiple entry points and the ENTRY statement. 

Like FORTRAN, PL/I provides for multiple entry points into 
a procedure. The ENTRY statement is used to designate a 
secondary entry point. The ENTRY statement looks basically 
lust li)ce a PROCEDURE statement except that the ENTRY key
word replaces the PROCEDURE keyword and certain options are 
not allowed. 
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The different entry points of a procedure can have different 
parameter lists. It is incorrect to refer, in the body of 
a procedure, to a parcimeter appearing in some parameter list 
but not the one at the entry point through which entry was 
made. Ex amp1e: 

P: PROC (A,B,C); 

Q: ENTRY (B,C,D); 
DCL (A,B,C,D)...; 
body of procedure 

END; 
If entry is made at P, references to A, B, and C are legal; 
references to D are illegal. If entry is made at Q, refer
ences to B, C, and D are legal; references to A are illegal. 
Note that this is in contrast to the FORTRAN technique of 
establishing various values in parameters of the procedure 
by entering once through an "initialization" entry point with 
a long parameter list, and then making subsequent "high-speed" 
entries through a different entry point having a much shorter 
parameter list, with subsequent references to the earlier 
parameters. 

The different entry points may return values with different 
attributes. When a RETURN statement is executed, a "switch" 
is tested by the compiled code to determine which entry point 
was used; the code may need to branch on the outcome of this 
test to different sections of code that convert the returned 
value to the appropriate attributes. Example: 

P: PROC (X) RETURNS (FIXED); 
Q: ENTRY (X) RETURNS (FLOAT); 

RETURN (X/3+Y); 
END; 

The value of the expression X/3+Y, which has certain 
attributes, will be converted to FIXED or FLOAT depending 
on whether entry was made at P or at Q. 

See LRM 96. 

5.17. Generic procedures. 

Recall in Lesson 1 we said that the mathematical builtin 
functions were "generic" in the sense that they could 
accept, under one name, arguments with a wide range of 
different attributes. 
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It is possible to give the appearance of calling a user-
defined procedure with different types of arguments (maybe 
even different numbers of arguments) in the different calls. 
The name called is not itself an entry constant, that is, 
a label on some procedure. It will be replaced by an entry 
constant selected from a list, based on the numbers and 
types of the arguments. The GENERIC attribute is used for 
this. 

Example: 
DCL E GENERIC 

(El WHEN (*) , 
E2 WHEN (*,*)); 

DCL El ENTRY (FIXED) EXT; 
DCL E2 ENTRY (FIXED, FLOAT) EXT; 
A reference to E with one argument, as in CALL E(A+B); 

resolves to El, i.e., the statement is the same as 
CALL El(A+B). A reference to E with two arguments, 
as in CALL E(A,B); resolves to E2,i.e., the state
ment is the same as CALL E2(A,B). 

DCL F GENERIC 
(Fl WHEN (FIXED BIN) , 
F2 WHEN (FLOAT BIN), 
F2 WHEN (FLOAT DEC)); 

DCL Fl ENTRY (FIXED BIN (15)) EXT; 
DCL F2 ENTRY (FLOAT DEC (6)) EXT; 
CALL F(N+1) resolves to Fl (if N is FIXED BIN). 
CALL F(X+1) resolves to F2 if X is either FLOAT BIN 

or FLOAT DEC; conversion of the argument from FLOAT 
BIN to FLOAT DEC occurs in the former case. 

Note that generic selection is carried out statically, i.e. 
the resolution occurs at compile time. See LRM 97. 

5.18. Review of procedure invocations. 

For a complete review of the dynamic aspects of procedures, 
see LRM 98 (which covers some material we will see later) 
and LRM 99. 
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5.19. Homework problems. 

(#5A) Assume S is a square array of CHAR (1) elements with 
N rows and columns (N > 1). Write a declaration for 
S that initializes the elements on the perimeter of 
the array to '*' and those in the interior to ')zi'. 

(#5B) What value is assigned to I? 
DCL (I,N) FIXED BIN; 
N = 3; 
BEGIN; 

DCL A (N) FLOAT AUTO; 
N = 7; 
I = HB0UND(A,1); 

END; 
Would the result be the same if the first two state
ments after BEGIN were interchanged? 

(#5C) What values are assigned to I? 
DCL (I,N) FIXED BIN; 
DCL A (N) FLOAT CTL; 
N = 3; 
BEGIN; 

DCL N FIXED BIN; 
N = 4; 
ALLOCATE A; 
I = HB0UND(A,1); 
N = 5; 
I = HB0UND(A,1); 

END; 
N = 6; 
I = HB0UND(A,1); 
ALLOCATE A; 
I = HB0UND(A,1); 
N = 7; 
FREE A; 
I = HB0UND(A,1); 

(#5D) Write a procedure, to be called as a subroutine, 
which accepts a square array of any size and sets all 
the diagonal elements to 0. You won't need to code 
any loops. 

(#5E) Suppose you are designing a procedure to carry out 
some transformation on an array. Suppose this trans-
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formation requires "workspace" which is a function of 
the size of the array. Discuss how you would solve 
this problem in FORTRAN (if you have FORTRAN experi
ence) and in PL/I. 

(#5F) Write a procedure, to be called as a subroutine, which 
accepts a square array of any size and assigns to that 
array its own transpose. Do it without coding any 
loops. 

(#5G) Can you guess why the expression for the returned 
value in a RETURN statement must be surrounded by 
parentheses? That is, why is RETURN (A+B) required? 
Why not just RETURN A+B? Hint: Suppose the outer 
parentheses could be omitted in RETURN ((A+B)=l). 
What problems would be encountered? 
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(a) Control constructs 
(b) Conditions 

IF S t a t e m e n t 

The IF s t a t e m e n t may be use^ t o a c h i e v e c o n d i t i o n a l e x e c u t i o n of a 
s t a t e m e n t o r g roup of s t a t e m e n t s . 

There a r e two f o r m s : 
(1) I f txpKUilon ""HF" tn.ue.-p(Vvt; 
(2) IF e.KpKeMA.on. THFH tMut-pcuvt; 

ELSE {tOlit-pOAt; 

tAue.-paAt and {lOZit-pcuit a r e e i t h e r s i n g l e s t a t e m e n t s or g roups of 
s t a t e m e n t s , a s we s h a l l s e e be low. They may be o t h e r IF s t a t e m e n t s , 
b e g i n b l o c k s , e t c . 

exp4Mi-ton i s e v a l u a t e d and c o n v e r t e d , i f n e c e s s a r y , t o a b i t s t r i n g 
v a l u e . I f a n j b i t i n t h e b i t s t r i n g i s a 1, the tKu.e.-pa'U. i s 
e x e c u t e d , a f t e r which c o n t r o l goes t o t h e nex t s t a t e m e n t ( case 1) or 
t h e s t a t e m e n t a f t e r t h e datiz-poMX ( c a s e 2 ) . I f no b i t i s a 1, t h e 
ttue.-pa>U. i s no t e x e c u t e d . In c a s e 1, c o n t r o l a r r i v e s a t t h e n e x t 
s t a t e m e n t w i t h o u t e x e c u t i n g t h e tAae.-pcuU. I n c a s e 2, the iatie.-pivtt 
i s e x e c u t e d , t h e n c o n t r o l goes t o t h e s t a t e m e n t a f t e r t h a t . 

The most common form f o r cxpfieM-lon i s a c o m p a r i s o n o p e r a t i o n , which 
y i e l d s a BIT( I ) r e s u l t . Example : 

IF A < B THEN A = A + 1; 
O f t e n , e.xpfLeM-Lon i s a l o g i c a l e x p r e s s i o n r e p r e s e n t i n g l o g i c a l 
o p e r a t i o n s on b i t s t r i n g s ( u s u a l l y o b t a i n e d from compar i sons ) . 
Example: 

IF I < 1C I J = I TPEN CALL FOUL; 
ELSE RETOPN ( J + 2 ) ; 

Another u s e f u l form i s i l l u s t r a t e d i n 
IF L THEN . . . ; 

where I i s a b i t s t r i n g v a r i a b l e (BIT(1) p r o b a b l y ) g i v e n a v a l u e i n a 
p r e v i o u s a s s i g n m e n t . 

I n Lesson 2 we saw b i t s t r i n g e x p r e s s i o n s i n t he c o n t e x t of 
a s s i g n m e n t s t a t e m e n t s . Al though t h e same k i n d s of e x p r e s s i o n s a r e 
employed i n an IF s t a t e m e n t , t h e code g e n e r a t e d may be q u i t e 
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different since here it has as its goal a conditional branch. An 
optimizing compiler may not in fact need to evaluate the whole 
expression in order to determine the end result. However, that is 
not something you should count on, because the language definition 
does not insist that the code stop evaluating an expression as soon 
as the result is known; it merely permits it. Hence, the statement 

IF I <= HB0UND(X,1) S X(I) = Y THEP ...; 
is at best risky; the proper way to code this is 

IF I <= HB0UND(X,1) THEN 
IF X (I) = Y THEN. . . ; 

I t should be noted t h a t t he e x p r e s s i o n in t h e IF c l a u s e must be an 
element e x p r e s s i o n ( i . e . , a s c a l a r - v a l u e d e x p r e s s i o n ) . Tha t means 
t h a t i f A and B a r e congruen t a r r a y s , i t i s no t p o s s i b l e to w r i t e IF 
s = B THEN . . . ; (Reca l l t he d i s c u s s i o n of a g g r e g a t e e x p r e s s i o n s from 
Lesson 3.) The r e s u l t of A = B i s a c o n g r u e n t a r r a y of BIT (1) 
e l emen t s , each e lement hav ing t h e b i t v a l u e 1 or 0 depend ing on 
whether or not the c o r r e s p o n d i n g e l e m e n t s of A and B a r e e q u a l . ) 
C e r t a i n b u i l t i n f u n c t i o n s , which we s h a l l s ee i n Lesson 10, can be 
employed to a ch i eve what i s p r o b a b l y d e s i r e d h e r e . 

'Jhen IF s t a t e m e n t s a r e n e s t e d , an ELSE c l a u s e i s assumed t o be long t o 
t he n e a r e s t "unmatched" THEN c l a u s e . That i s , in 

IF B THEN 
IF C ^HEN acXlon-]; 
ELSE acJU.on-2; 

a.cM.on-i i s executed when R i s " t r u e " and C i s " f a l s e " . ( N e i t h e r 
a c t i o n i s execu ted i f B i s " f a l s e " . ) I f i t i s i n t e n d e d t h a t t h e ELSE 
c l a u s e match the o t h e r THEN c l a u s e in t h i s e x a m p l e , one s o l u t i o n i s 
t o match t h e i n n e r THEN c l a u s e wi th a n u l l s t a t e m e n t , which i s j u s t a 
semicolon . (You w o u l d n ' t b e l i e v e how f a s t t h e g e n e r a t e d code for a 
n u l l s t a t e m e n t i s ! ) Example: 

IF B THEN 
IF C THEN acXuin-]; 
ELSE; 

ELSE acXion-i; 
Now a.ctlon-2 i s e x e c u t e d i f B i s " f a l s e " . i f B i s " t r u e " and C i s 
" f a l s e " , no th ing i s e x e c u t e d . 

See LRH 100 and LRU 1 0 1 . 

6 .2 . N o n - i t e r a t i v e DO g r o u p s . 

t h a n ' a ' ' ^ f n a l " ' ^^f^'^ °^ iaJ^^-p<VU. of an IF s t a t e m e n t must he more 
tnan a s i n g l e s t a t e m e n t , a n o n - i t e r a t i v e DO a rouE may be employed, as 
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m 
IF A > B THEN DO; 

TEMP = A; 
A = B; 
B = TEMP; 

END; 
The list of statements bracketed by DO...END becomes a single 
syntactical unit that may be used wherever a single statement is 
allowed. 

The problem solved earlier with the null statement may equally well 
have been solved with a non-iterative DO group as follows: 

IF B THEN DO; 
IF C THEN action-U 

END; 
ELSE ac-tain-2; 

The d i f ference between a n o n - i t e r a t i v e DO group and a begin block 
(which could a l so have been used to achieve the desired statement 
grouping) i s tha t a DO group does not a l t e r the "block s t r u c t u r e , " 
i . e . , does not in t roduce a nested block ins ide which dec l a r a t i ons may 
have t h e i r own loca l scope. The l imi ted purpose i t se rves i s 
implemented much more e f f i c i e n t l y than would be the case with a begin 
block, even one devoid of l o c a l dec l a r a t i ons and other th ings t h a t 
r equ i r e s p e c i a l housekeeping ac t i ons during execut ion . 

See LRM 102. 

6.3. I t e r a t i v e DO groups. 

There a re two kinds of DO groups t h a t provide for r e p e t i t i v e 
execution of a group of s t a t ements , t he WHILE-only DO group and the 
con t ro l l ed (or indexed) DO group. 

6.4, KHILE-only DO groups. 

This form of 00 group i s as fol lows: 
DO WHILE le.xp>iuilon]; 

body of group 
END; 

The body of the group (a s tatement l i s t ) i s executed as long as the 
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<LXo>i<!J,Uon e v a l u a t e s to " t r u e " . The txptuUon i s e v a l u a t e d a t t h e 
tog of t h e loop , so t h a t i f i t i s i n i t i a l l y " f a l s e " t h e body of t h e 
loop i s not execu ted a t a l l . The i.xpKU6^on i s c o n v e r t e d , i f 
n e c e s s a r y , t o a b i t s t r i n g v a l u e and i n t e r p r e t e d to mean t r u e or 
t a l s e e x a c t l y as i n IF s t a t e m e n t s . That i s , i f anjr b i t h a s t h e b i t 
va lue 1, i t means t r u e ; o t h e r w i s e , i t means f a l s e . 

Examples: 
DO WHILE (A < B 5 -.DONE) 

END; 
DO WHILEC I'B) ; 

END; 

The second DO group w i l l be e x e c u t e d f o r e v e r . P r e s u m a b l y , p r o v i s i o n 
i s made to b reak t h e loop by e x e c u t i n g a RETURN s t a t e m e n t somewhere 
i n s i d e t h e loop which w i l l immed ia t e ly r e t u r n c o n t r o l from the 
c o n t a i n i n g procedure t o i t s p o i n t of i n v o c a t i o n . 

See LRM 103. 

6.5. Controlled (indexed) DO groups. 

In its simplest form this is analogous to the FORTRAN DO loop. For 
example, 

DO I = 1 TO K; 

END; 
says that the body of the loop is repeated K times with I having the 
values 1,...,K. Note that if K is 0 or negative, the body of the 
loop is not executed at all since the test is performed at the top of 
the loop. "̂  

! J - ^---l."^^. ^^^^^ *° *^^ ^^°'"' for™ t° permit increments other 
than 1 The increment may be negative, in which case the loop 
terminates when the control variable (I in the example) exceeds the 
tinal value in the neaative direction; a simple, useful example is 
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DO I = K TO 1 BY - 1; 

END; 

The i n i t i a l and f i n a l v a l u e s , and t h e i n c r e m e n t , may be s p e c i f i e d by 
a r b i t r a r y e l e m e n t e x p r e s s i o n s ; t h e y need n o t be r e s t r i c t e d t o 
c o n s t a n t s o r v a r i a b l e s . The e x p r e s s i o n s a r e e v a l u a t e d once and t h e 
s a v e d v a l u e s a r e u s e d i n t h e t e s t each t i m e t h r o u g h the l o o p . 

Another u s e f u l form i s t o employ t h e BY c l a u s e b u t n o t t h e TO c l a u s e . 
T h i s d e s i g n a t e s an i n f i n i t e l o o p which must be broken by a RETURN 
s t a t e m e n t or a b r anch t o a p o i n t o u t s i d e t h e loop (as i n DO 
WHILEC I ' B ) ; ) . 

To any of t h e above forms may be added a WHILE c l j u s e (which h a s t h e same 
meaning a s i n a BHILE-only DO group) . The w h i l e - t e s t i s per formed 
a f t e r t h e compar i son of t h e c o n t r o l v a r i a b l e w i t h t h e f i n a l v a l u e , 
and of c o u r s e on ly i f t he f i n a l v a l u e h a s not been exceeded . I f t h e 
w h i l e - t e s t f a i l s , t h e loop i s t e r m i n a t e d . Example: 

DO I = 1 TO HB0UND(X,1) WHILE (X( I )=Y) ; 
END; 

This loop, which has an empty body, terminates either when I exceeds 
the upper bound of X (with all elements of X equal to Y) or when an 
element of X not egual to Y is found. By the way, the control 
variable may be used below the loop, after its termination; it has 
the value it had when the loop terminated (e.g., in this case either 
' HBOUND (X,1)+1 or the smallest value i between 1 and HB0U1ID(X,1) such 
that X ( X ) is not equal to Y) . 

The different forms shown above for what can come after the 
assignment symbol in the DO statement are all referred to as forms of 
a single UO s£ecificati.on. In general, any number of separate DO 
specifications may be written. When one is "exhausted," the next one 
is begun. For example: 

DO I = 1 TO J-1, J+1 TO K; 

END; 
Here we have two specifications, each of the form a to b. The effect 
of the above is to execute the body of the loop for all values of I 
from 1 to K, except for the single value J. 

One final form for a DO specification is permitted. It is the form 
without a TO clause or a BY clause ( or a WHILE clause). This says 
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execute the body exactly once, namely with the control variable 
taking on the initial value. This form is of use when several such 
DO specifications are written. For example, 

DO I = 1,10,2; 

END; 
The body of the loop is executed exactly three times, with I taking 
on the three values shown during successive iterations. Do not 
confuse this with the FORTRAN DO loop! 

Note that the control variable can be any kind of element variable; 
it is not restricted to being an "integer variable" (and 
unsubscripted) as in FORTRAN. 

See LRM 104. 

An addi t ional form 
DO voAlablt = ImXiaJi-vcLiat REPEAT [^xpfl^^lilon\; 

i s provided in the ANSI language. ejcpxu&lon i s evaluated each time 
through the loop, a f te r the f i r s t , and assigned to va r i ab le . 
Termination would be control led by a fHILE c lause (not shown) . An 
example i s DO I = A(1) REPEAT (A (I)) WHILE (I -.= 0) ; 

6.6. GO TO statement and statement l a b e l s . 

A statement label i s an i d e n t i f i e r prefixed to a statement (other 
than a PROCEDURE or ENTRY statement) with a co lon , a s in 

LAE3: A = B-2; 
A .-.tatement label may be used in a GO Tn s t a t e a ^ n t to effect an 
unconditional branch, as in GO TO LAB3; Statemint l abe l s and GO TO 
statements should be avoided in preference to the other control 
K»°!^f^''"r^ ^ " ' ' ^ *' '?^' ' -^""disciplined use r e s u l t s in programs tha t are 
harder to understand, harder to prove c o r r e c t , and harder to modify. 

6.7. label values; the LABEL a t t r i b u t e . 

explainina \ h ^ t " ^ " " ^ 1 ^ t i n t ed at a data type ca l led "en t ry" , 
const«ni^^. /^K . P ' ^°«^«« l abe l s were en t ry c o n s t a n t s , i . e . , 
constants of that data type. We will explore tha t more fully below. 
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We have at hand another kind of program control (as opposed to 
problem, or computational) data type: "label". A statement label is 
actually a label constant. (Like an entry constant, a label constant 
is a kind of "named constant.") Label values originate with label 
constants and may be propagated by assignment to label variables. 
Label variables are variables declared with the LABEL data type 
attribute. This information is essentially repeated in the next 
paragraph in the form used in Lessons 1 and 2 to introduce various 
computational data types. 

New label values are "generated" by: 
(a) Reference to a label constant. 

They may be propagated by assignment. 
They may be used in the following ways: 

(a) I n GO TO s t a t e m e n t s . 
(b) In c o m p a r i s o n o p e r a t i o n s . 
(c) I n remote f o r m a t i t e m s (Lesson 7) . 

The a p p e a r a n c e of a s t a t e m e n t l a b e l c o n s t i t u t e s an e x p l i c i t 
d e c l a r a t i o n of t h e name a s a l a b e l c o n s t a n t , wi th scope r u l e s t h a t 
shou ld be f a m i l i a r by now. C o n s i d e r t h r e e e x a m p l e s : 

P: PROC; 

BEGIN; 

GO TO L I ; 

END; 

L I : . . . 

END; 
H e r e , t h e scope of t h e name LI i s a l l of P , i n c l u d i n g t h e beg in b l o c k 
(assuming LI i s not r e d e c l a r e d t h e r e i n ) . The GO TO t r a n s f e r s c o n t r o l 

o u t s i d e t h e b e g i n b lock t o t h e s t a t e m e n t l a b e l e d LI (what h a p p e n s i n 
d e t a i l i s d e s c r i b e d l a t e r ) . 
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P: PROC; 

L2: . . . 

BEGIN; 

GO TO L2; 

L 2 : . . . 

END; 

GO TO L2; 

END; 
Here, t h e r e a r e two d i f f e r e n t l a b e l c o n s t a n t s d e n o t i n g d i f f e r e n t 
s t a t e m e n t s . The scope of t h e f i r s t i s a l l of P e x c e p t t h e begin 
b l o c k . The scope of t h e second i s t h e begin b l o c k . The f i r s t GO TO 
i s w i th in t h e scope of t h e second and t r a n s f e r s t o t h e s t a t e m e n t 
l a b e l e d by i t . The second i s w i t h i n t h e scope of t he f i r s t and 
t r a n s f e r s c o n t r o l t o t h e s t a t e m e n t l a b e l e d by i t . 

P: PROC; 

BEGIN; 

LB: . . . 

END; 

GO TO L3; 

END; 

^ ta tem^nt i°' ^l?" ^ \ ^ ^ ^ C o n s t a n t L3 i s t h e beg in b l o c k . The GO TO 
?he o r o n r , •" ' " ' ^ ' " ^^^^ ='=°P^' =^ ^^^ "^""^ ^^ ^^ Unknown t h e r e . The program i s in e r r o r . 

va r iab le , "^ ! ' ! ; " ; !* ^ " ^ " ^ *''^^- ^ ' ^ ^ h i n g t h a t h a s been s a i d about 
v a r i a b l e s i n g e n e r a l a p p l i e s t o l a b e l v a r i a b l e s , t o o . They have 
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alignment, scope, storage class; you can have arrays of label 
variables; they may be base elements of structures; they can be 
initialized. In comparison operations, only = and -•= are allowed for 
label data. (This is true of all types of program control data, 
i.e., algebraic comparisons are not defined for them.) The control 
variable of a controlled DO group may be a label variable, but the TO 
and BY clauses may not be used (because no algebraic comparisons are 
defined). An example where this is useful is: 

DCL L LABEL; Declares a label variable. 
DO L = L1,L2,L3; These are label constants. 

GO TO L; Goes to either LI or L2 or L3. 
LI: ... 

GO TO COMMON; 
L2: ... 

GO TO COMMON; 
L3: ... 

COMMON: ... 

This code executed all three times. 
END; 

Label values may be arguments, and obviously parameters can be label 
variables. Procedures can return values of type "label", so that 
what follows GO TO may be a function reference. 

Care must be exercised to ensure that a label variable, when used in 
a GO TO statement, does not designate a statement in an iL§£tive 
block. It is illegal to transfer control into an inactive block. 
For example, the GO TO statement in the following, if executed, would 
be illegal: 

DCL L LABEL; 
BEGIN; 

LI: ... 

L = LI ; 

END; The begin block becomes inactive here. 

GO TO L; The value of L, i.e., the statement labeled by II, is in 
an active block. 
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statement labeled. Consider the following. 
DCL L LABEL STATIC; 
DO I = 1 TO 2; 

BEGIN; 

IF I = 1 THEN L = LI; 
ELSE GO TO L ; 

LI: 

END; 
END; 

The begin block is invoked twice. The first time through, the label 
constant LI is assigned to the label variable L. The value of the 
label variable L now represents the statement labeled by LI and the 
first invocation of the begin block. The second time through a new 
value is not assigned to L. Its former value is used in the GO TO 
statement. Because that designates a statement in an inactive block, 
it is illegal. This may not seem intuitively necessary, but 
hopefully the reason why will become clear shortly. (We will later 
recall this example as "Example 7".) 

Consider the following: 
P: PHOC; 

BEGIN; 

GO TO L; 

END; 

de^i in . t in^ ^^t^ / ^" * ' " ' '^" ^^ s ta tement r ep resen t s a labe l value 
invo^,t^o„^ , t statement labeled by L toge ther with the current 
llZtT .^^\^ \ ' " ' ° " " ^ ""^ ^° ^= executed, two things actuaUy 
UD to hnf L ^ ^5 ' ' ° ' ' ^^^°"^ ^'^°"' *^^ cur ren t one (the begin block) 
t h e ^ : , ' ' " \ " ° ' ^ including, the one contained in the l abe l value ( i . e . , 
of re e n t 2 ^ ^ " ^ ° ^ ^ ^ ' ° " °^ ^' ^ " te rminated . There i s no p o s s i b i l i t y 
ot re entering the terminated blocks without re- invoking them. Note 
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that if the begin block had instead been a procedure invoked from a 
function reference, control does not go back to the expression 
containing the function reference (as it would on a normal return); 
evaluation of that expression is discontinued, and control is 
transferred to the labeled statement instead. 

The significance of block invocations and particularly their 
termination by such a "GO TO out of block" (referred to as a "GOOB") 
relates to the fact that storage for automatic variables is released 
as the blocks are terminated. when we arrive back at the target 
block, the automatic variables "in effect" will be the ones "in 
effect" when control first descended out of that block into another 
one (as by a procedure call or execution of a BEGIN statement). 
Actually, in the last few sentences we should have been saying "block 
invocation" instead of "block" as the following example involving 
recursion should point out (the distinction is only apparent when 
recursion is involved, i.e., when a block can have several 
simultaneously active invocations) . 

P: PBOC RECURSIVE; 
DCL N STATIC INIT (0) ; 
DCL A (N + 1) FLOAT AUTO; 
DCL L LABEL STATIC; 
N = N + 1; 
IF N = 2 THEN L = LX; 
IF N = It THEN GO TO L; 
ELSE CALL P; 

LX: I = HBODND(A, 1) ; 
Y = A(I) ; 
RETUPN; 

END; 

Let's trace through what happens. Initially P is invoked from 
outside. On entry, N has initial value 0. An automatic array A with 
one element is allocated. H is increased to 1. Since N does not 
equal 2, LX is not assigned to L. Since N does not egual 4, we skip 
the GO TO. P is then called recursively. 

As P is entered the second time, N (which, significantly, is a static 
variable) has the value 1 . A new generation of A is allocated with 
upper bound 2. Throughout this second invocation of P, it is this 
generation of A which is addressed when A is referred to. Next, w is 
increased to 2. As a result, LX is assigned to the static label 
variable L. The value assigned represents the statement labeled LX 
and this current (i.e., second) invocation of P. since N does not 
egual t, the GO TO is again skipped and P is called recursively. 
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We g o t h r o u g h y e t a n o t h e r i n v o c a t i o n o f P , e v e n t u a l l y ( t h e f o u r t h ) , 
w h e r e u p o n when we a r r i v e a t t h e s t a t e m e n t I F N = « . . . t h i n g s l o o k 
l i k e t h e f o l l o w i n g . Each l a r g e box r e p r e s e n t s a n i n v o c a t i o n o f P. 
F o x e s i n s i d e t h e s e r e p r e s e n t g e n e r a t i o n s o f a u t o m a t i c v a r i a b l e s 
b e l o n g i n g t o t h e r e s p e c t i v e i n v o c a t i o n s . The s m a l l b o x e s a t t h e 
b o t t o m r e p r e s e n t t h e s t a t i c v a r i a b l e s . 

CALL P ; -^ P : 

ELSE CALL P; 
LX : 

Ailjl 

P : 

ELSE CALL P; 
LX: 

| A ( 1 ) A ( 2 ) | 

P : 

ELSE CALL P ; 
LX: 

| A ( 1 ) | A ( 2 ) | A T T ) | 

H 

ELSE CALI P ; 
LX: 

JA (1)|A(2)|A(3)|A"(lt')| 

The s t a t e m e n t GO TO L, which i s e x e c u t e d 
f o u r t h i n v o c a t i o n s of P t o be d i s c a r d e d , 
of t h e va lue of L i n d i c a t e s t h e second in 
t r a n s f e r r e d t o LX. The c u r r e n t envi ronmen 
i n v o c a t i o n of P , no l o n g e r t h a t of t h e fo 
va lue 2 and Y i s a s s i g n e d t h e v a l u e of A 
r e t u r n s c o n t r o l t o the p o i n t of t h e second 
CALL s t a t e m e n t in t h e f i r s t . The nex t s 
t he one l a b e l e d by LX (as a r e s u l t of nor 
because of any GO TO) . I i s a s s i g n e d t h e 
t h e va lue of A{1). C o n t r o l then r e t u r n s 
po in t of c a l l of P. 

n e x t , c a u s e s t h e t h i r d and 
s i n c e t h e e n v i r o n m e n t p a r t 
v o c a t i o n of P . C o n t r o l i s 
t i s now t h a t of t h e second 
u r t h , so I i s a s s i g n e d the 
(2) . The RETURN s t a t e m e n t 
i n v o c a t i o n of P , i . e . , the 

t a t e m e n t e x e c u t e d t h e r e i s 
mal s t a t e m e n t s e g u e n c e , not 

v a l u e 1 and Y i s a s s i g n e d 
to t he o u t s i d e , o r i g i n a l . 

Though the above example i s c o n t r i v e d and n o t r e a l i s t i c , i t dc 
i l l u s t r a t e the meaning of the env i ronment p a r t of a l a b e l v a l u e . 

f h o . ^ T / i ^^?P^^ ? • '^^^ •^^^=°" e x e c u t i o n of t h e GO TO s t a t e m e n t 
r „ ? r e n t ' ' ^^^'"^''^ "-^ because i t would r e q u i r e us t o r e t r i e v e , or make 
t K ^ ^ ' f envi ronment c o n t a i n i n g p o s s i b l y some a u t o m a t i c v a r i a b l e s 
t n a t have long s i n c e been r e l e a s e d . When t h e y ' r e 5 y ' r e gone , t h e y ' r e gone! 

be i n i t i a l i z e d " 'lU ' ° " " . " ' ^^^ ^'^^^ ^^^''^ ^^''^^ v a r i a b l e s cannot i n i t i a l i z e d . This i s because s t a t i c v a r i a b l e s a r e i n i t i a l i z e d a t 

a T e n v L o n ' e ^ t ^ ' d o ' n . t ' ' " ' T ' " ' ' " ' """^^"^^ " ^ ^ = ^ " ^ ^" i n d i c a t i o n o 
106 vou w i n ' = r ! K ^ ^ ' ^ * " "*^^ ^ " " *^"'^- *= y ° " " « d t h a t and LR 
Z ' . J ° '"•^^. ""^^ ^^^^ s t a t e m e n t l a b e l s c a n be s u b s c r i o t e d wit c o n s t a n t s , a s in 

I . ( « , 7 ) : Y = 0 

s u b s c r i p t e d 

3f 
RH 

with 
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In the current implementation, this does not represent a subscripted 
label constant; it denotes an alternate form of initialization of an 
element of an array of label variables (in this case, the (4,7) 
element of the array L ) . The element being initialized may of course 
have its value changed subsequently by assignment, so that in this 
example L(t,7) may denote a different statement later! The ANSI 
language treats L as an array of label constants, which is different. 

See LFM 10£ 

Entry variables. 

V.e have seen in Lesson t how the ENTRY attribute can be used in a 
declaration of an external entry constant, and, in Lesson ?, how 
parameter descriptions and returned value descriptions can also be 
given in such a declaration. We will now consider entry values in 
general, and entry variables. "Entry" is a legitimate data type, 
like "label". 

New entry values are "generated" by: 
(a) Reference to an entry constant. 

They are propagated by assignment. 
They may be used in the following ways: 

(a) In a CALL statement or function reference, to denote the 
procedure to be invoked. 

(b) In comparison operations. 

An e n t r y v a r i a b l e i s d e c l a r e d by add ing t h e VARIABLE a t t r i b u t e t o t h e 
t y p e s of e n t r y d e c l a r a t i o n s a l r e a d y d e m o n s t r a t e d ( w i t h o u t t h i s 
a t t r i b u t e t h e d e c l a r a t i o n i s t h a t of an e n t r y c o n s t a n t ) . Example: 

DCL E ENTRY (CHAR(*)) RETURNS (BIT(1)) 
VARIABLE EXT; 

E i s an e n t r y v a r i a b l e whose name h a s e x t e r n a l s c o p e . Any e n t r y 
v a l u e which i t may have must d e s i g n a t e a p r o c e d u r e t h a t a c c e p t s a 
f i x e d - l e n g t h c h a r a c t e r argument of any l e n g t h and r e t u r n s a o n e - b i t 
b i t s t r i n g . Ent ry v a r i a b l e s may have any of t h e p r o p e r t i e s ( s t o r a g e 
c l a s s , e t c . ) a t t r i b u t e d t o v a r i a b l e s i n g e n e r a l . 

E n t r y v a l u e s , l i k e l a b e l v a l u e s , c o n s i s t of two p a r t s : an e n t r y 
p o i n t ( r e p r e s e n t e d by i t s a d d r e s s ) , and an e n v i r o n m e n t . The 
e n v i r o n m e n t i s an i n d i c a t i o n of t h e a c t i v a t i o n ( i n v o c a t i o n ) of t h e 
b lock c o n t a i n i n g t h e e n t r y c o n s t a n t whose r e f e r e n c e gave r i s e t o t h e 
e n t r y v a l u e ; t h i s a p p l i e s , of c o u r s e , o n l y t o i n t e r n a l e n t r y 
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constants, since external entry constants have no containing block, 
i.e., no environment. 

Consider the following: 
F: PROC(J) ; 

DCL A (J) AUTO; 

Q: PBOC; 

Y = A(I); 

EMD; 

CALL Q; 

END; 
No recursion is involved. When the internal procedure Q is invoked, 
the entry constant Q is referenced. That entry constant Q inherits 
the environment of its containing block, P. Thus, a reference inside 
Q to A (I) is a reference to an element of the automatic array A 
belonging to the one invocation of P in guestion (which is obviously 
the one that was "current" when Q was referenced in the CALL 
statement). 

Observe m the following example the role of the environment of an 
entry value when recursion is involved. 

P: PROC (J) RECURSIVE; 
DCL A (J) AUTO; 
DCL N FIXED BIN STATIC INIT (0) ; 
DCL E ENTRY VARIABLE STATIC; 
N = N + 1; 
IF N = 2 THEN E = Q; 
IF N = a THEN CALL E; 
ELSE CALL Q; 
IF N < 5 THEN CALL P (N) ; 
RETURN; 
Q: PROC; 

Y = A(I); 

END; 
END; 

a^e'^cti^f ^ . " " ^ ^*^^" recursively until five invocations of it 
are active. Then N will egual 5 and the chain of calls will start 
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returning. Each invocation of P has a generation of an automatic 
array with a different bound. In the second invocation of P (N=2), 
the static entry variable E is assigned the value of the internal 
entry constant Q. The environment which is part of this value is 
that of the second invocation of P. In all five invocations of P, Q 
is called; it references an element of A and returns to the point of 
call. In all invocations of P except the fourth, Q is called by 
referring directly to the entry constant Q, and the environment of Q 
used in the reference to A inside Q is thus the current invocation of 
Q's containing block, P. However, in the fourth invocation of P, Q 
is called by referencing the entry variable E. Because the 
environment part of the entry value denotes the second invocation of 
P, the reference to A inside Q is a reference to the generation of A 
allocated at the time of the second invocation of P. 

See LRM 107. 

There are somewhat messy rules for determining when (except in 
obvious cases) a reference to an entry constant or an entry variable 
denotes the procedure itself and when it denotes the value returned 
by invoking the procedure. See LRM 109 and LRM 110. The ANSI 
standard uses different, but much simpler, rules for this 
determination. 

For a complete review of the ENTRY attribute, see LRM 111. 

Program termination. 

A program ends by executing a RETURN statement in the main procedure 
or by reaching the END statement of the main procedure. It may also 
end by executing a STOP statement in any procedure. The latter 
mechanism is considered to be an abnormal termination of the program; 
in our system it causes a step condition code, which may be tested in 
JCL, of 1000 to be set. Information going beyond the above is in two 
places: LRM 112 and LRM 113. 

Exceptional conditions. 

In several of the earlier lessons we left for later consideration an 
examination of what happens when an exceptional condition occurs. 
An exceptional condition is a possible, though not usually likely 
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(in the sense of being frequent) , unusual outcome cf some operation 
or requested action. PL/I does not require the programmer to test 
constantly for unusual outcomes of operations. It provides you a 
way of being informed, in the program, when one occurs in such a way 
that you are not bothered when it doesn't. See LRM 114. 

6.11. "Occurrence" of a condition. 

PL/I defines and names a whole set of possible conditions, i.e., 
unusual outcomes of operations. It also defines what constitutes an 
occurrence of each condition. The list of conditions is given in 
LRM 115, and individual conditions are described in LRr 116. 
Certain of the conditions will be saved for later. A brief 
definition of what constitutes an occurrence of those considered 
here follows. 

Computational conditions 
FIXEDOVEEFLOW (abbrev. FOFL) . This occurs when a fixed - point 

operation produces a result that cannot be expressed in the 
maximum number of digits of the implementation. For example, 
note that the precision rule for addition (Lesson 1) of two 
FIXED BINARY (31,0) values would specify FIXED BINARY (32,0) 
for the result, were it not for the implementation maximum 
number of digits of 31, for binary base. The substitution of 
31 for 32 is a hint that FOFL can occur on addition of two 
FIXED BINARY (31,0) numbers; indeed, it will occur when P'" is 
added to 2^" (for example). The result, 2 " , requires a 
non-zero digit in the 32nd position from the right end 
Observe that FOFL cannot occur on the addition of two FIXED 
BINARY (15,0) values because the result precision, (16,C), is 
weii within the implementation maximum precision 

OVERFLOW (abbrev. OFL) . This occurs when a floating-point operation 
produces a result with a magnitude in excess of what the 
hardware can represent. 

^^'nrn^J^'""'^''- "^"- "^^ "^'^"^ '"'̂ " ^ floating-point operation 
to represent!' *""' ' magnitude too small 'for the hardware 

ZERODIVIDE (abbrev. ZDIV). This occurs on an attempt to divide by 

'"'•fixed-point"t"''". '" "'""P' ^= ""̂ ^̂  *° ^^^i"" a value to a 
hign-order dia?t' variable that does not have enough 
digits orthe'i^„rK'i^^rf_:^? -commodate non-zero high-order 

CONV 
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Srocjram checkout condi.tions 
SUBSCEIPTRANGE (abbrev. SUBRG). This occurs when a reference is 

made to an element of an array outside the bounds of any of its 
dimensions. 

STRINGRANGE (abbrev. STRG). This occurs whenever a reference to the 
SUBSTR builtin function or pseudo-variable describes a 
substring which does not lie entirely within the bounds of the 
string value which is its first argument. See Lesson 2. 

STRINGSIZE (abbrev. STRZ). This occurs whenever a string value 
having a length in excess of the length (or maximum length) of 
a string variable is about to be assigned to that variable. 

System action conditions 
FINISH. This condition occurs as the result of any action that 

would terminate the program. Examples are: execution of STOP 
statement; execution of RETURN or END statement of main 
procedure. Others will follow. 

ERROR. ERROR occurs in many circumstances. One category of 
circumstances is detection of an illegal argument to a 
mathematical builtin function (e.g., the real value -1 to 
SQRT). Another is any error that an implementation may care to 
detect for which no specific condition is provided. Others 
will follow. 

Enablement/disablement of conditions. 

Not all occurrences of conditions need be detected and reported. 
For certain conditions, the programmer may choose to ignore an 
occurrence. In such a case it is important to note that the 
condition has occurred (because that may have conseguences on the 
meaning of the program's execution as defined by PL/I) even if the 
programmer elects not to be notified. 

Occurrences of certain conditions are detected by the hardware; 
others, by compiled code. 

Whether the occurrence of a condition is detected or not depends on 
whether the condition is enabled or disabled at the point in the 
program where it occurs. This property of a condition is called its 
status. 

Certain conditions are enabled by default. Others are disabled by 
default. A programmer may specify a particular status for a 
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c o n d i t i o n t o hold d u r i n g the e x e c u t i o n of a s t a t e m e n t or of a whole 
b lock , t hus o v e r r i d i n g the d e f a u l t . The re a r e a few c o n d i t i o n s 
w h o s e ' d e f a u l t s t a t u s may not be o v e r r i d d e n . 

(SIZE) 

)\n explicit status may be specified by a condition £refi.x. "xamples 
follow. 

SIZE is enabled during the execution 
of this statement. 
SIZE is disabled for this one. 
HFL is enabled, UFL disabled. 
Same as above. 
This statement has a label, too. (It 
must follow any condition prefixes.) 

3*J; 

= C; (NOSIZF) : 
(OFL,NOUFL) : X = Y*Z; 
(OFL) : (NOUFL) : X = Y*Z; 
(OFL) : L: Y = 2**X; 

When a c o n d i t i o n p r e f i x i s a t t a c h e d t o a BEGIN or PPOCEDURE 
s t a t e m e n t , i t a p p l i e s to a l l s t a t e m e n t s in t h e b lock e x c e p t t h o s e t o 
which a complementary c o n d i t i o n p r e f i x i s a t t a c h e d . I t a p o l i e s t o 
( i . e . , i s i n h e r i t e d by) any n e s t e d b l o c k s . 

Note t h a t s t a t u s of a c o n d i t i o n i s a s t a t i c p r o p e r t y of a s+atement 
t h a t can be de te rmined ( l i k e scope of a d e c l a r a t i o n ) by t he 
compi l e r . The s t a t u s of a c o n d i t i o n i n an e x t e r n a l p r o c e d u r e Q 
c a l l e d by procedure P, for example , has n o t h i n g t o do with i t s 
s t a t u s in P. 

The fo l lowing t a b l e i n d i c a t e s t h e d e f a u l t s t a t u s for t h e c o n d i t i o n s 
cons ide red sc f a r , and whether they can be d i s a b l e d . 

Condition 
FOFL 
OFL 
OFL 
ZDIV 
SIZE 
CONV 
SUBRG 
STRG 
STRZ 
FINISH 
ERROR 

2§fault status 
Enabled 
Enabled 
Enabled 
Enabled 
Disabled 
Enabled 
Disabled 
Disabled 
Disabled 
Enabled 
Enabled 

£ a n i t b e d i s a b l e d ? 
Yes 
Yes 
Yes 
Yes 

Y e s 

No 
No 

See LRM 117 t h r o u g h L3M 1 2 0 . 
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Establishment of conditions. 

What happens when a condition occurs depends first cf all on whether 
it is enabled or disabled. 

When any of the above conditions occurs while disabled, the result 
of the operation that caused the condition to occur is und§fi!l§l, 
with two exceptions. The exceptions are as follows. When UFL is 
disabled, the result of an operation that causes it to occur is 
taken to be zero. When STRZ is disabled, the source string is 
truncated on the right to make it fit the target variable, as we saw 
in Lesson 2. 

When we say that the result is undefined, we mean that the language 
does not define a result. The result is entirely determined by the 
implementation; it may be useless (garbage) or useful, tut it is not 
guaranteed to be the same in another implementation. Note that 
simple, useful random number generators are frequently designed 
around the occurrence of a disabled FOFL condition. 

When a condition occurs while enabled, the condition is said to be 
raised. The programmer can specify an action to be taken when a 
condition is raised or he can rely on system default actions (called 
standard sjstejn action) . 

The programmer specifies an action to be taken when a condition is 
raised by establishing an on unit for the condition. This is 
accomplished by executing an ON statement prior to the raising of 
the condition. 

An ON statement has the typical form 
ON condition on-unit; 

condition is the keyword naming the condition. on-awct is either a 
single statement or a begin block. Examples: 

ON FOFL GO TO L; 
ON UFL N = N + 1; 
ON SIZE BEGIN; 

S = 'OOPS'; 
GO TO DONE; 

END; 



6-20 

Once an on unit has been established for a condition, in a block, 
i e , once an ON statement for that condition has been executed in 
the'hlock, subsequent raising of the condition in that block, or any 
block invoked from it in which another on unit for the same 
condition has not been established, causes the on unit to be 
executed. "Subseguent" is in the sense of later in time. 

Another way of describing which on unit gets control when a 
condition is raised is as follows. If an on unit for the condition 
has been established in the current block, it is executed. If none 
has been established there, the block that invoked the current block 
is examined for an established on unit. The search for an on unit 
proceeds in this way all the way out to the main procedure. 

Suppose that a procedure P has an established on unit; P calls Q; 
and Q establishes an on unit for the same condition. The on unit 
established by P is "stacked". If the condition occurs subsequently 
in Q, the on unit established in Q is executed. Once Q returns to 
P, however, the on unit in Q is no longer in effect. Tf the 
condition subseguently occurs in P, P's established en unit gets 
control. 

If another ON statement is executed in the same block in which an on 
unit (for the same condition) is already in effect, the on unit 
specified in the new ON statement supplants that specified earlier, 
i.e., it becomes the established on unit in the block. That is, the 
new on unit is not stacked. 

The on unit itself may be thought of as a parameterless internal 
procedure. When a condition is raised, the current operation is 
Identified as the point of interrupt, and it is just as if the 
internal procedure represented by the on unit were invoked, the 
point of invocation being the point of interrupt. The on unit may 
or may not reach its normal end. If it does, control returns to the 
point of interrupt and the program (usually) continues from there. 
This IS called normal return of the on unit. The ether choice is to 
execute a GO TO out of block, transferring control from the on unit 
to some labeled statement outside the on unit. As in all GOOB's, 
there IS no possibility of going back to the point of invocation of 
the block (i.e., the point of interrupt). 

The view of on units as internal procedures "invoked" from the point 
ot interrupt is completed by noting that the environment part of the 
?n.^LJ %''^T^^"''^"5 "̂̂ '̂ a procedure is that denoting the 
invocation of the block containing the CN statement when it was 
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executed. Thus, references to automatic variables of the block 
containing the ON statement, from within the on unit, are ref'erences 
to the generations corresponding to the invocation cf the containing 
block which executed the ON statement. 

In some cases the interrupted operation dees not continue from the 
point of interrupt on normal return from the on unit. The 
exceptions are as follows: 
STRINGRANGE: The SOBSTR reference is amended te yield a valid 

substring, then the program continues. 
CONVERSION: It is assumed the on unit has made an attempt to 

correct the condition using facilities described in Lesson 10. 
If the attempt has been made, the ccnversicn operation is 
retried (this could raise CONV again if the attempt was not 
successful). If no attempt has been made, ERROR is raised. 

SOBSCRIPTRANGE: EEEOR is raised. 
ERROR: FINISH is raised. Note that when ERROR is raised, there is 

no way the program can be made to continue from the point of 
interrupt. 

FINISH: The program terminates. 

Of the remaining cases, only two (UNDERFLOW and STPINGSIZE) continue 
from the point of interrupt with a defined result. The other four 
(FIXEDOVERFLOW, OVERFLOW, ZERODIVIDE, and SIZE) continue with an 
undefined result. 

.14. Standard system action. 

When the search for an established on unit doesn't turn up any, 
standard system action is taken. Standard system action is as 
follows: 
STRG: Issue a message, then continue with amended SUBSTR reference 

as described for normal return from a STRG on unit. 
STRZ and UFL: Issue a message and continue with the defined result. 
CONV, FOFL, OFL, SIZE, SUBRG, and ZDIV: Issue a message and raise 

ERROR. 
ERROR: Issue a message and raise FINISH. 
FINISH: Terminate the program. 

Suppose you are writing an external procedure as part of a program 
which is a team effort. How do you arrange for standard system 
action to be taken (if that is what you want) when a condition is 
raised in your procedure, not knowing whether some ether block above 
yours in the chain of active blocks has established an on unit for 
it? You may establish a "system action on unit" by executing an ON 
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statement with the keyword SYSTFM in place of an on unit. Example: 
ON FOFL SYSTEM; 

6. 15. The REVERT statement. 

Another problem you may have in designing an external procedure as 
part of a team effort is the following. You may have established an 
on unit in order to intercede when a condition is raised in a 
certain part of your procedure. Having passed the point at which 
you are no longer interested in interceding, how do you "cancel" the 
established on unit so that subseguent action, if the condition 
should occur later in your procedure, will be governed entirely by 
any on units that may be established in the blocks above yours on 
the chain of active blocks? By executing a REVERT statement for the 
condition. Fxample: ~ ~ 

FEVERT ZERODIVIDE; 
The effect of this is to cancel, or nullify, any ZEIV on unit 
previously established in the current block. There will th<=n be no 
ZDIV on unit established in the current block, i.e., the situation 
IS the same as it was just after the block was entered and before 
any ON ZDIV...; statement was executed. 

It is legal to revert a condition which hasn't been established in 
the current block. This has no effect. See LRM 121. 

6.16. The SIGNAL statement. 

You can cause a simulated 

6. IT. Programmer-named conditions 

co°ndUio„'L"a: "entiu:r^°it °"" - " ^ ^ ^ - " ^ * Programmer-named 
an expUeit decoration ;f^K ^^ (demonstrated below) constitutes 
internal scop= ^he name m L t " ^ ^ ^^ ^ condition name having 

P-- .he name may also be given external scope (so that 
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the same name in different external procedures denotes the same 
programmer-named condition, as opposed to different programmer-named 
conditions that happen to have the same name) by declaring it with 
the CONDITION attribute and EXTEPNAL (see LHM 123). Note that there 
are condition names, but not condition constants, values, or 
variables. 

The only way to raise a programmer-named condition is to signal it. 

A programmer-named condition, name, is used in the following way in 
CN, SIGNAL, and REVEPT statements 

ON CONDITION (name ) • • •! 
SIGNAL CONDITION (name.); 
REVERT CONDITION (name); 

i.e., the programmer-named condition masquerades as the CONDITION 
condition. We can then talk about enablement status, standard 
system action, etc., for programmer-named conditions by describing 
these properties for the CONDITION condition. Specifically, the 
CONDITION condition is enabled by default and cannot be disabled. 
Standard system action is to issue a message and continue. 

6.18. Review 

See LRM 124, skipping anything we haven't covered yet, and IPM 125. 

In the ANSI standard there are a few highly technical differences in 
some actions on normal return from en units and in some standard 
system actions. In addition, attempt to continue with an undefined 
result is in violation of the standard. A brief handout is 
available from the instructor for those who are interested. 

6.19. Effect of optimization on conditions. 

If you had the job of hand-optimizing a program, ycu would discover 
ways to common expressions, move invariant expressions out of loops, 
etc. The final program, hopefully, will produce the same answer as 
the original one, at least when you do not rely on the raising of 
conditions and the entering of on units to implement your logic. 
Clearly, moving expressions around might change the order and number 
of interrupts and thus condition raisings. The same is true when 
you request the compiler to optimize your program. 
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S more subtle problem occurs with certain kinds of optimizations. 
The compiler might find it advantageous to keep a variable in a 
register inside a loop. Even if you assign to that variable in the 
loop, the compiler might not generate code to store the contents of 
the register into tne assigned storage location for the variable (it 
would do so only at the conclusion of the loop, if the value of the 
variable is needed subseguently) . Thus, if an on unit is entered as 
the result of a condi + ion raised in the loop, and the on unit 
references such a register-held variable, it would not retrieve the 
current value of the variable. 

Two options, which may appear on a BEGIN or PROCEDURE statement, can 
be used to tell the compiler whether your program can be safely 
optimized in the way described above. The options affect the code 
generated in the block, and are inherited by contained blocks on 
which they are not respecified. ORDER (which is the default if 
neither is stated) says that the compiler is not allowed to perform 
the optimizations described above because the order in which 
variables are assigned and referenced must be observed, even across 
on unit boundaries. REORDER essentially says that such on units 
will not te executed, or, if they are, they won't reference 
variables that may not have had their most recent value stored. 
This permits greater optimization. See LRM 126 through LRM 12fi. 

ORDER and REORDER are not available in the ANSI standard. The 
standard essentially permits implementations to behave as the 
current one does under PEORDEP, i.e., it always permits maximum 
optimization. At the same tine it places restrictions on which 
variables can be referenced in on units. These restrictions are 
necessary to guarantee the same behavior cf the program in all 
standard implementations, even though the extents to which they 
carry out certain optimizations may differ. 

Do not let all of the above scare you! You will probably discover 
that you will have very little need for on units for computational 
conditions in most realistic programs. 

The amount of optimization attempted by the ccmciler is also 

co°m':iete ' ''' ° " " " ' ""^^^^^^ °p'i°"- ^^^ OPG a'aJd O^UC 2 A 
IZli If f̂ s'̂ '̂ ssion of efficiency considerations, with regard to all 
areas of the language, is in LRM 129. 

6.20. Unanswered questions. 
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In an ERROR on unit, how can one obtain information about what 
caused ERROR to be raised? 

In any on unit, how can one determine whether the condition occurred 
naturally or by being signaled? 

These guestions will be answered in Lesson 10. Other conditions 
will be considered in appropriate lessons. 

6.21. Homework problems. 

(#6A) When is 
IF cxp>i.iAiton THEN tAuc-poAt; 
ELSE ialic-poiivt; 

not the same as 
IF -< [nxpiejtilon] THEN iatii-poAt; 
ELSE tAue.-pcuU; ? 

Hint: Explain what may happen when, for instance, ejcpXiMlon 
is a BIT(IO) variable. 

(#6B) Suppose you have an array of 109 elements (hounds 1 to 100) 
that is to be filled with unique values in the order in which 
they are presented. A variable records the index (i.e., 
subscript value) of the last position filled. Write a 
procedure to accept a value, as an argument, and insert it in 
the next position in the array if it is not already in the 
array. The procedure is to be invoked by a CALL statement. 
Concern yourself with the following: 

(a) After the array has been completely filled, another 
procedure will probably retrieve its entries. Make 
sure both procedures have access tc the necessary 
variables. Be careful with initial values. 

(b) Unless special precautions are taken, your program 
will be in error if more than 100 unique values are 
presented to the procedure. What will happen if no 
special precautions are taken? Discuss several 
ways of detecting the situation and of preventing 
errors. Also discuss several methods of informing 
the calling procedure about the occurrence of the 
situation, and discuss their implications en its 
design. Hint: consider the following methods: 

(i) A returned value to indicate success or 
failure, 

(ii) An additional parameter through which 
success or failure is conveyed out. 
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( i i i ) Use of appropr ia te PL/I cond i t i ons , 
(iv) Use of a programmer-named condi t ion . 

(#6C) Simulate by hand the execution of the following code to 
determine the value assigned to I . If you survive the tedium 
and get the answer 2501, you understand entry v a r i a b l e s , 
label va r iab les , and t h e i r behavior in r ecurs ive 
environments. 

I = P(1) ; 
P: PROC (X) RETURNS (FIXED FIN) RECURSIVE; 

DCL X FIXED BIN; 
DCL A FIXED BIN AUTO; 
DCL (N,S) FIXED BIN STATIC INIT (0) ; 
DCL L LABEL STATIC; 
DCL Q ENTRY (FIXED BIN) 

RETURNS (FIXED BIN) VARIABLE STATIC; 
A,S = X+S; 
N = N + 1; 
IF N = 2 THEN L = LX; 

^ IF N = 4 THEN Q = OX; 
IF N = 5 THEN S = S + 0 (A) ; 
ELSE S = S + OX(A) ; 
IF N = 6 THEN GO TO L; 
S = P(A); 

LX: RETURN (A + S) ; 
QX: PROC (Y) RETURNS (FIXED BIN) ; 

DCL Y FIXED BIN; 
RETURN (Y + A) ; 

END; 
END; 

(#6D) Precisely what happens when a FIXED EECIMAl (8,0) variable 
with value 12345678 is added to a FIXED DECIMfL (8,8) 
variable with value zero in our implementation? 

'*'" va?ilhl'e^°'"r'°'' °""" ' " " ^ ^ division of two fixed-point variables? Can you explain your answer? 

" " ' "'" ON I'rl t^l'.ir'^^- ^ - ^'^ P " " i - 1 P-P°-s, between 
and 

ON UFL 

'*'" deie'lop^d'L sTtTr.J"'' ""^'^ ' P^°9ram which you have eveioped to satisfy the ANSI standard and which you will be 



6-27 

shipping to other installations that have different machines 
and different ANSI standard compil&rs. Though ycu may have 
enabled the SIZE condition during testing, why is it 
generally not necessary or useful to leave it enabled in the 
export version once you are satisfied that SIZE cannot occur? 
Why is it, however, desireable to leave OFL, UFL, and FOFL 
enabled, even though you are satisfied that they are not 
occurring? 

(#6H) What action is taken if ZDIV is raised in each of the eight 
places marked "*" in the following program? 

P: PPOC OPTIONS (MAIN) ; 

ON ZDIV X 

* 
BEGIN; 

1; 

ON ZDIV X = 2; 
* 

ON ZDIV X = 3; 
* 

ON ZDIV SYSTEM; 
* 

REVERT ZDIV; 
* 

END; 
* 

END; 

(#61) What can happen in the following program segment? 

CN ERROR BEGIN; 
T = SQRT(Y) ; 
GO TO RESUME; 

END; 
X = some value, possibly negative; 
Y = some value, also possibly negative; 
T = SQRT(X); 
BESUME: 

How does this improve when the program is changed, as 
follows? 
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ON ERROR BEGIN; 
ON ERROR SYSTEM; 
T = SQRT (Y) : 
GO TO RESUME; 

END; 
etc. 

(#6J) What P L / I f a c i l i t i e s s e r v e t h e f u n c t i o n c f t h e FORTRAN 
" c o m p u t e d GO TO"? The " a s s i g n e d GO T Q " ? 

(#6K) O c c a s i o n a l l y , o n e w a n t s t o t a k e some a c t i o n when a c o n d i t i o n , 
s u c h a s ERROR, o c c u r s , t h e n l e t t h e n e x t h i g h e r l e v e l b l o c k 
t h a t h a s an e s t a b l i s h e d on u n i t f o r t h e c o n d i t i o n t a k e i t s 
a c t i o n , and s o o n . A t e c h n i q u e f r e q u e n t l y t r i e d i s 

ON ERROR BEGIN; 
t a k e some a c t i o n 
REVERT EPFOP; 
SIGNAL EWRCR; 

END; 
Why d o e s t h i s n o t a c h i e v e t h e d e s i r e d r e s u l t , a n d w h a t d o e s 
i t r e a l l y d o ? How c a n t h e d e s i r e d r e s u l t t e a c h i e v e d ? 
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7. Introduction to I/O; stream I/O. 

7.1. Datasets vs. files. 

In PL/I, I/O is performed by doing certain things to abstract objects 
called "files." Files can be associated with datasets so that the 
operations on files have useful effects on the associated datasets. 
Several different files can be simultaneously associated with the 
same dataset. A particular file can be associated with different 
datasets at different times. See LRM 130. 

7.2. File constants, values, amd variables. 

A file value is an object referred to above as a file. We are now 
embarking on a discussion of our third program-control data type: file. 

New file values are "generated" by: 
(a) Reference to a file constant. 

They are propagated by assignment. 
They may be used in the following ways: 

(a) In 1/0 statements. 
(b) In ON, REVERT, and SIGNAL statements dealing with certain 

conditions pertinent to I/O. 
(c) In comparison operations. 

Recall that DECLARE statements can be used to declare names as entry 
constants or entry variables, and that entry constants were also 
capable of being contextually declared by their appearance as a label 
prefix on a PR(X:EDURE or ENTRY statement. Similarly, DECLARE state
ments can be used to declare names as file constants or file variables, 
and file constants may be contextually declared by their appearance in 
1/0 statements or I/O condition names. The data type attribute, not 
surprisingly, is FILE. File constants, like entry and label constants, 
are "named constants." Examples: 

DCL F FILE; F is a file constant. The default scope is external. 
DCL G FILE INTERNAL; G is an internal file constant. 
DCL H FILE VARIABLE EXT; H is an external file variable. 

7.3. File description attributes. 

There is a very large set of attributes that describe certain properties 
of files. These file description attributes (FDA's), as they are called, 
may be declared for file constants but not file variables. If a file 
constant is assigned to a file variable, any FDA's declared for the file 
constant are inherited by the file variable in the sense that they are 
properties of the current file value assigned to it. If, later, a 
different file constant is assigned to the file variable, the file 
variable will reflect possibly different properties represented by the 
FDA's which were declared for this second file constant. More on this later. 
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7.4. Opening a file. 

In order to do I/O on a dataset, it is first necessary to associate 
the dataset with a file. One way of accomplishing this is by 
executing an OPEN statement. (This is called explicit opening.) 
The typical fcrm is 

OPEN FILE iiUe.] TITLE (ddnamt); 
Here, {,llz is a file constant, or a file variable, or a function 
reference returning a file value; in any case it denotes a file 
value originally obtained by reference to some file constant. Note 
that it is as much an error to reference, in an OPEN statement, a 
file variable which has not been assigned a value as it is to reference 
any variable that has not been assigned a value, ddnamt is a character-
string valued expression whose value (truncated to 8 characters, if 
necessary) is taken to be the "ddname" of the dataset. The actual 
dataset denoted is the one associated with that "ddname" in the JCL. 

The TITLE option may be omitted from the OPEN statement, in which case 
the ddname used is the first 8 characters of the identifier naming the 
file constant from whose reference the value of i-ite. was derived. 
Examples: 

OPEN FILE (X) TITLE ('ABC'); 
The ddname is ABC. 

DCL DEF FILE; 
OPEN FILE (DEF); 

The ddname is DEF. 
DCL U FILE VARIABLE; 
U = DEF; 
OPEN FILE (U); 

The ddname is DEF. 

If a file is already "open," an attempt to explicitly open it again is 
treated as a "no-op." E.g., 

DCL H FILE VARL/VBLE; 
DCL FF FILE; 
H = FF; 
OPEN FILE (FF) ; 
OPEN FILE (H) TITLE ('XYZ'); 

The last OPEN statement has no effect, since the file denoted equally 
well by the file constant FF or the file variable H is already "open." 

Several files can be opened in one OPEN statement. Example: 
OPEN FILE (Fl), 

FILE (F2) TITLE ('IIUH'), 
FILE (F3); 
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The second way a dataset can be associated with a file is by implicit 
opening. Inqjlicit opening occurs when a file which is not open is 
referenced in an I/O transmission statement. The ddname of the dataset 
to be associated with the file is derived in exactly the same way as for 
explicit opening when the TITLE option is omitted. 

7.5. The UNDEFINEDFILE condition. 

If an attenpt to open a file fails, the UNDEFINEDFILE condition 
(abbreviation: UNDF) occurs for that file. An on unit for UNDF may be 
established for that file by executing an ON statement as in 

ON UNDF iiile.) on-unLt; 
Because the UNDF condition is a qualified condition (like the CONDITION 
condition), separate UNDF on units may be established for each file in 
a program. 

An attempt to open a file may fail for several reasons, including: no 
DD statement in the JCL for the ddname used; conflicting DCB attributes; 
etc. In Lesson 10 we will see how one may tell why an attempted opening 
was unsuccessful. 

The UNDF condition, like the ERROR condition, is enabled by default and 
cannot be disabled. Standard system action, which applies when the 
condition is raised and no on unit has been established, is to issue a 
message and raise ERROR. If, on the other hand, an on unit is entered 
and the on unit returns normally, subsequent action depends on whether 
the attempted opening was explicit or implicit. In the former case, 
execution continues from the point of interrupt. In the latter case, 
execution continues if the file was (somehow) successfully opened in 
the on unit, e.g., by trying a different ddname); otherwise, the ERROR 
condition is raised. 

See the description of UNDF in LRM 116. 

7.6. Closing a file. 

The association between a dataset and a file is broken by executing a 
CLOSE statement for the file: 

CLOSE FILE iillz); 
Several files can be closed simultaneously: 

CLOSE FILE (A), 
FILE (B), 
FILE (C); 

Closing an already closed file, like opening an already opened file, 
has no effect. 
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Files left open when a program terminates are closed by a PL/I _ 
termination routine. Any output data left in a buffer is transmitted 
to the dataset before the file is closed. After a file has been 
closed, either the same dataset or a different dataset may be associated 
with it by subsequently executing another OPEN statement for the file. 
See LRM 131. 

7.7. Overview of transmission statements. 

The I/O statements that cause data transmission that we will examine 
in this lesson are GET (input) and PUT (output). In the next two lessons 
we will study READ (input), and three output statements: WRITE, REiVRITE 
and DELETE. In Lesson 11 we will add LOCATE (output). In Lesson 9, and 
again in Lesson 14, we will look at the UNLOCK statement. 

7.8. Overview of file description attributes. 

As stated earlier, FDA's may be used in a declaration of a file constant. 
It is not necessary, however, to declare any FDA's for a file constant, 
even though a set of properties for the file must have been provided by 
the time it is opened. 

We will be looking at the many different FDA's gradually. Suffice it to 
say that some are alternatives to others; i.e., a conflict arises if two 
mutually exclusive alternatives are provided. 

If the file properties described by FDA's are not complete when a file 
is opened, additicnal properties are supplied during the opening process. 
This proceeds as follows. 

If the opening is explicit, additional FDA's may be written as options 
on the OPEN statement. These must not conflict with any declared for 
the file in a DECLARE statement. Examples: 

OPEN FILE (F) INPUT; 
OPEN FILE (G) OUTPUT TITLE ('SYSPUNCH') 

FILE (H) INPUI TITLE ('SYSIN'); 

If the opening is implicit, additional FDA's are deduced from the 
statement causing the opening. For example, INPUT will be deduced 
from GET and OUTPUT from PUT. 

If the "merging" of FDA's that occurs during explicit or implicit 
openings produces any conflicts, the UNDEFINEDFILE condition is raised, 
it the merging still leaves the set of file properties incomplete, 
others may be supplied by implication (i.e., those that a file has may 
imply others that it must also have) and finally by default. 
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When a file is closed, any FDA's supplied during the opening process 
are divorced from the file. It continues to have only those with 
which it was declared (which may be none). If the file is again 
opened, it may acquire a different complete set of properties. 

File properties are used, among other things, to determine which 
operations may legally be carried out for a file. For instance, it 
is illegal to WRITE to an INPUT file. An attempt to do so will raise 
the ERROR condition. 

The different FDA's are briefly described, and the defaults listed, 
in LRM 132. Other, detailed, descriptions are scattered throughout 
LRM 133. The opening and closing of files may be reviewed at LRM 134; 
that reference also shows the FDA's deduced on implicit opening and 
those that may be implied. The OPEN statement is further detailed at 
LRM 135. Finally, the whole subject of datasets vs. files is also 
treated in OPG S and CPG 4, with emphasis on device and dataset 
characteris tics. 

7.9. Stream vs. record I/O. 

Two alternative FDA's which describe properties of all files are 
STREAM and RECORD. 

The dataset associated with a stream file is viewed as a continuous 
stream of characters, rather than as a sequence of records. Its 
processing is inherently sequential. Stream output, which is 
accoiiplished with the PUT statement, consists of the issuing of a 
stream of characters to be written to the dataset. Stream input, which 
is accomplished with the GET statement, consists of the acceptance of 
a stream of characters read from the dataset. Although all datasets 
are actually organized as records, stream transmission may be oblivious 
to record boundaries; it may, however, also be made cognizant of them. 

The dataset associated with a record file on the other hand, is viewed 
as a sequence or set of discrete records. Each transmission statement 
transmits exactly one record. The data in a record need not be in 
character form; it can be in any of the forms capable of being 
represented internally in PL/I. 

For the remainder of this lesson, we will be concerned with stream I/O 
only. Hence, we assume that the STREAM FDA applies to any file we 
are talking about. The STREAM attribute may be acquired: 

(a) By declaration of the file constant with STREAM. 
(b) By specification of the STREAM option on an OPEN statement. 
(c) By deduction on implicit opening of a file by a GET or PUT 

statement. 
(d) By implication from the PRINT attribute on an explicit opening, 
(e) ]^ default on explicit opening. 
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See LRM 136. 

7.10. File description attributes applicable to stream files. 

The other FDA's applicable to stream files are INPUT, OUTPUT, PRINT, 
and ENVIRONMENT (abbreviation: ENV). 

INPUT and OUTPUT are two alternatives that any file (whether stream 
or record) may have. A third alternative, applicable only to record 
files, will be given in Lesson 8. The meaning of INPUT and OUTPUT 
should be obvious. Only GET statements may be used for stream input 
files, and only PUT statements for stream output files. See LRM 137. 

PRINT is an additive attribute that may be specified only for stream 
output files. It says that the output dataset is ultimately to be 
printed. See LRM 138. 

The ENV attribute is much lite the OPTIONS option (Lesson 4) in that 
it encloses a list of implementation-defined options. It is important 
to note that the contents and meaning of environment options is not 
specified by the language, but by each implementation. The basic 
function of environment options is to provide the implementation with 
extra information it may require, such as the physical organization of 
records in a dataset. See LRM 139. 

ENV is the only FDA that may not appear on an OPEN statement (except 
in the ANSI version). We will have very little to say about the 
individual environment options, although they are important, so you 
should read LRM 140, OPG 6 and CPG 5. The FJW attribute will be in 
conflict with other FDA's if it contains options in conflict with 
other FDA's. See LRM 141 for a table of conflicts. 

The PRINT attribute, being additive, is never deduced, implied, or 
^^S"^^®''- *̂ "^^ ^^ specified (either in a DECLARE statement or 
OPEN statement). 

If an implicit opening occurs and neither INPUT nor OUTPUT was declared 
tor the file, GET implies INPUT and PUT implies OUTPUT. If explicit 
opening occurs without specifying either, the default used is INPUT. 
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7.11. Further OPEN statement options for stream files. 

The LINESIZE option can be used on an OPEN statement for any stream 
output file to establish a record length for the dataset. (This 
information can also be conveyed in the ENVIRONMENT attribute or in 
JCL; and there is a standard default value if none of these sources 
supplies the information.) 

The PAGESIZE option can be used on an OPEN statement for any print 
file (i.e., stream output file which has the PRINT attribute). It 
can be used to establish the maximum number of lines to appear on 
each page when it is printed. 

7.12. Overview of stream transmission statements. 

The PUT statement specifies one or more expressions of computational 
data type whose values are to be converted to character representations 
which are then inserted in the output dataset. Generally, successive 
characters go into successive positions of the current output line 
(record). When an output line is filled, characters continue on the 
next line. Successive PUT statements do not̂  automatically start new 
lines; the characters transmitted continue where the last PUT state
ment left off, which may be in the middle of a line. Facilities are 
also provided for starting a new line or, in the case of a print file, 
a new page. 

The GET statement specifies one or more variables of computational data 
type to be assigned values from an input dataiset. The values are 
assumed to be represented in character form on the dataset and are 
converted to the appropriate internal form. This process consumes a 
number of characters from the dataset starting at the place where the last 
GET statement left off (whidi may be in the middle of a line). If a 
line is exhausted, remaining characters come from the next line. 
Successive GET statements do not automatically start new lines. 
Facilities are provided, however, for skipping to the start of the 
next line. 

7.13. Data lists. 

The part of a PUT statement that specifies the expressions vdiose values 
are to be disposed of, and the part of a GET statement that specifies 
the variables whose values are to be acquired, is called a data list 
("I/O list" in FORTRAN). It is surrounded by parentheses. The_list_ 
is a list of data list items separated by commas. A data list item is 
one of the following: 

(a) An expression. This may be just a constant or variable. 
(b) A repetitive specification. This is a parenthesized list of 

data list items ending with what looks like a controlled DO 
statement without the semicolon. 
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Examples of data lists, including their surrounding parentheses, follow. 

(X) 

(A+B, 'THIS', 'THAT' II V, 1) 
(U, (V(I), W(I) DO I = 1 TO N)) 

Notice the syntax of the repetitive specification 
in the above example. If N has the value 3, say, 
the effect of the data list is the same as would 
be obtained by the following one. 

(U, V(l), W(1),V(2), W(2).V(3), W(3)) 
(((A(I,J) DO I = 1 TO N) DO J = 1 TO M)) 
((A(I), (B(I,J) DO J = 1 BY 2 TO 5) . C(I) DO I = 1, N)) 

The above is equivalent to: 
(A(l), B(i,i), B(l,3), B(l,5), C(l). 
A(N), B(N,1), B(N,3), B(N,5), C(N)) 

If a data list item is a structure, it is equivalent to a sequence of 
scalar items, namely, those which are (in order) the base elements of 
the structure. If a data list item is an array, it is equivalent to 
a sequence of scalar items, namely, all the array elements in the order 
having the rightmost subscript varying most rapidly. Thus, the item 

A(*,*) 
is equivalent to the item 

((A(I,J) DO J = LB0UND(A,2) TO HB0UND(A,2)) 
DO I = LB0UND(A,1) TO HB0UND(A,1)) 

The elementary data items in data l i s t s in GET statements cannot be 
arbitrary expressions; they can only be variables (although they may, 
of course, be subscripted by expressions) because the context is one 
of assigning a value to them. See LRM 142. 

7.14. Modes of stream transmission. 

Tliere are three modes of stream transmission: l i s t -d i rec ted , data-
directed, and edit-directed. as determined by the form of the GET 
or PUT statement. The different modes may be intermixed on the same 
f i le . 

7.15. List-directed transmission. 

,̂" i"'̂''̂ ^̂ ®'̂ '̂̂ '̂  transmission, which is the simplest, the keyword 
a I T^r"^^ the parenthesized data list. Together they constitute 
a Li^ioption. If the option immediately follows the keyword GET or 
PUT,7tH^Ti^ord LIST may be omitted. List-directed transmission 
provides sinple, "free-form" stream I/O. Examples will be given later. 
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On input, character representations of values in the input stream 
must be separated by one or more blanks, or by a comma and any 
number of surrounding blanks. Each input stream item must be written 
as a valid computational constant, i.e., arithmetic constant, 
character string constant, or bit string constant. The "attributes" 
of the input stream item, deduced from the form in which it is 
written in the same way that attributes are deduced for a constant 
written in the program, need not match the attributes of the corre
sponding variable in the data list; conversion between the source 
and target attributes occurs as necessary. The CONVERSION condition 
can occur in this process (a homework problem will deal with this). 

It is possible to omit values from a list-directed input stream. 
Consecutive commas, or commas separated only by blanks, indicate 
that iw value is to be assigned to the variable in the input data 
list with which a value in that position would be matched; the 
variable thus retains its current value. Finally, a semicolon may 
be used in the input stream to indicate that all the remaining 
variables in the data list are to be skipped over. All these features 
are demonstrated in the following example. 

DCL N FIXED BIN; 
DCL X FLOAT BIN (21), 

A (3) CHAR (10) VAR, 
B (30) FIXED BIN (15); 

GET FILE(F) LIST (X,A,N, (B(I) DO I = 1 TO N BY 2)) ; 
Input stream: 
6.4 'VALl' , , " 
15 
6 1E2,, 5.1; 

The first input stream item, 6.4, is associated with X. The value, 
expressed as FIXED DECIMAL (2,1), is converted to FLOAT BIN (21) 
for assignment to X. The next input stream item is a character 
string constant and is associated with A(l); A(l) thus acquires 
the 4-character character string value VALl. The next input stream 
item is missing, so A(2) retains its current value. The next one 
results in A(3) being assigned the value of the null character 
string. The next one results in N being assigned the value l5; 
during that assignment, the value is converted from FIXED DECIMAL 
(2,0) to FIXED BINARY of default precision. The repetitive 
specification appearing next in the data list would cause successive 
input stream items to be assigned to B(l), B(3), B(5), ... , B(15) . 
The contents of the input stream result in the following assignments 
(only), however: 

6 to B(l) 
100 to B (3) 
5 to B(7). 
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On output, the values of the data list items, which may be arbitrary 
expressions, are converted to character form according to the conver
sion rules. Thus, the converted character form will reflect the 
attributes of the variables or expressions from whose values they 
were obtained. Note that the conversion rules for binary arithmetic 
data to character string call for an intermediate conversion to 
decimal, so that the value "three" of a FIXED BINARY variable, for 
instance, will be printed as 3 instead of IIB. 

Placement of the character representations of the values in the 
output file depends on whether that file is a print file or not. 
If it is not, they are separated by one blank. If it is, successive 
values are aligned on predefined "tab" columns. (The tab columns 
can be changed as described in OPG 7 and CPG 6. In the ANSI language, 
a TAB option is provided on the OPEN statement, which will simplify 
the specification of user-defined tab positions for print files.) 

Also, for non-print files the values of character string variables 
or expressions in the data list are surrounded by quotes in the 
external representation. (If the data being written out with list-
directed output were to be read back in later with list-directed 
input, these quotes will be needed to identify the input stream item 
as a character string constant.) For print files they are not 
surrounded by quotes (remember what the PRINT attribute says: the 
file is to be printed, i.e., not read back in). 

See LRM 143 and LRM 144. 

7.16. Data-directed transmission. 

Data-directed transmission also permits simple, free-form stream 
transmission. The essential difference from list-directed transmission 
is that values on the external medium are accompanied by the names of 
the variables m the program from which they were obtained or to 
which they are to be assigned. Because of this, the elementary data 
list Items in a data-directed PUT statement must be variables (possibly 
suoscripted by expressions); they cannot be arbitrary expressions. The 
keyword DATA precedes the parenthesized data list, forming the DATA 
option. '' 

,°?t^"^f ri'"f ^ ^ ? '̂ "̂̂  ̂" ^^ i"P"t stream has its name associated 
with It (the form being essentially that of a scalar assignment 
statement without a semicolon, and written with constant subscripts 
and lull structure qualification), the items in the input stream need 
th^ nSS®" f - ^ ^ ™ ^ °''<̂ ®̂  ̂ s the items in the data list. In fact, 
the order of items m the data list is totally irrelevant. Not all 
Itr^l ''̂ '""''̂ " appearing in the data list need appear in the input 
stream, but names appearing in the input stream must appear in the 
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data list. Transmission for a single data-directed GET statement 
is stopped only when a semicolon is encountered in the input stream. 
A data-directed input data list item may not be subscripted or a 
repetitive specification; when array elements are to be received 
from the input stream, it is sufficient to have the whole array as 
a data list item. 

Exaiqjle (using the variables declared in the previous example for 
list-directed input): 

GET FILE (F) DATA (B, A, X, N); 
Input stream causing the same assignments as in the 
previous example: 
X=6.4 A(1) = 'VAL1' A(3) = " N=15 
B(l)=6 B(3)=1E2 B(7)=5.1; 

Note that items in the input stream are separated by a comma and/or 
one or more blanks. 

On output, repetitive specifications, subscripted variables, etc., 
are allowed. The values are accompanied by their variable names 
with subscript expressions evaluated to a constant value. Items 
are separated as in list-directed output. A semicolon is written 
following the last item. 

In a data-directed transmission statement, the data list following 
the keyword DATA may be entirely omitted. This is equivalent to_ 
specifying a data list containing all variables known at that point 
in the program which are legal in a data-directed data list. 

See LRM 145 and LRM 146. 

7.17. Edit-directed transmission. 

Edit-directed transmission gives the programmer full control over 
the format of data on the external medium. Edit-directed transmission 
statements include not only data lists but foiroat lists as well. 
During their execution, the two lists are matched so that the value 
being written out (or read in) is assembled (or decoded, respectively) 
according to the format item in the format list. Values on the 
external medium are not selt-delimiting with blanks or commas as in 
list-directed or data-directed transmission; the format item for a 
particular value specifies the number of characters to be used on the 
external medium as well as the format of the contents of that field. 

In edit-directed GET or PUT statements the parenthesized data list 
is preceded by the keyword EDIT. The format list is also parenthesized 
and immediately follows the data list (i.e., no keyword is used). 
All of this constitutes the EDIT option. 
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7.18. Format lists. 

A format list is a list of format items separated by commas. Each 
format item is one of the following: 

(a) A data format item, control format item, or remote format 
item (described below). 

(b) One of those preceded by either an unsigned decimal integer 
constant or a parenthesized expression, representing an 
iteration factor. 

(c) A parenthesized format list preceded by an iteration factor. 
An iteration factor effectively replicates the elementary format item 
or list of items that follows it. 

Data format items describe the format of a field on the external 
medium corresponding to an item from the data list. Control format 
items do not correspond to items in the data list and thus do not 
describe the format of a value; they indicate control actions such 
as skipping to a new line or page, as well as others. Remote format 
items are described later. 

Matching of items between data lists and format lists proceeds as 
follows. The process is "driven" by the data list. Once the next 
scalar item is obtained from the data list (remember that a structure 
Item is equivalent to a list of its scalar base items, in order, and 
an array item is equivalent to a list of its subscripted elements in 
row-major order), control advances in the format list until a data 
format item is encountered, and it is that data format item which is 
paired with the scalar data list item. Any actions specified by 
control fonnat items encountered while looking for the next data 
format item are taken. An iteration factor is evaluated when it is 
encountered and causes repetition of the following item or list the 
indicated number of times (which may be zero). When the data list 
is exhausted, any remaining format items (even if the next one is a 
control format item) are ignored. However, if the format list is 
exhausted first, it is rescanned from the beginning (note: from the 
beginning of the whole list). 

It should be remarked that pairs of data lists and their corresponding 
format lists may be repeated in an edit-directed transmission state
ment. When one data list is exhausted, the second is begun; the 
second format list is used for subsequent matching, even if the first 
one was not exliausted. If a fomat list is exhausted before its 
corresponding data list, that format list is rescanned from the 

See LRM 147 and LRM 148. 
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7. IS. Data format items. 

Detailed descriptions of the six data format items would take many 
pages and will not be attempted here. The flavor of three of them 
will be given. More infonnation is in LRM 149 and LRM 150. 

F format item. On output, the value is converted to FIXED DECIMAL 
(the data list item may have attributes of any computational data 
type). The format item specifies a total field width, an optional 
number of fractional positions (taken as 0 if not specified), and 
an optional scale factor. Examples: 

F(5) might produce bbl23, bbbbO, or -1003. 
F(6,3) might produce bl.OOO, -3.012, or 10.640. 

On input, the contents of the field width specified must be a 
decimal integer constant, positioned anywhere in the field. If a 
decimal point is used, it overrides the fractional-part field 
width in the format item; if it isn't, it is assumed to appear in 
the position specified by the format item. 

E format item. On output, the value is converted to the foim of 
a decimal floating-point constant having the specified total field 
width and number of fractional digits. On input, the field must 
contain a valid decimal floating-point or fixed-point constant. 

A format item. On output, the value is converted to character and 
disposed of in the field width specified. The field width may be 
omitted, in which case the field width is the length of the character 
value. On input, the field width specified (it cannot be omitted) 
is assumed to contain a character string value (all characters are 
legal). 

The remaining data format items are B (bit), C (complex), and P (picture), 

Field widths, etc., may be given by the values of expressions; they 
need not be constants. 

Note that there is no correspondence of data types required for data 
items and their matching fonnat items. Conversions are perfomed as 
necessary. E.g., suppose a data item were a CHAR (50) VAR variable, 
and suppose the fonnat item were F(5). On output, the character 
string value will be converted to fixed decimal, which may cause the 
CONVERSION condition to occur. (Dn input, the 5-character field must 
contain a decimal fixed-point constant. If it doesn't, the CONVERSION 
condition will occur. If it does, its value will be converted to 
CHAR (8) for assignment to the target variable. 
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7.20. Control fonnat items. 

X format item. X(n) causes the next n positions to be filled with 
blanks, on output, or skipped, on input. 

SKIP format item. SKIP(n) causes the current line to be terminated 
and the next n-1 lines to be skipped. SKIP is equivalent to SKIP(l), 
SKIP(O) is allowed only for print files; it suppresses spacing and 
causes the next line to be overprinted on the current one. This is 
useful for underscoring. 

COLUMN fonnat item. Abbreviation is COL. 
COL(n) causes the cursor to be repositioned forward to the given 
position in the line. Intervening positions are filled with blanks 
on output and are skipped on input. If the current line is already 
past the designated column, SKIP(l) is assumed; i.e. , the next line 
is positioned to the designated column. 

PAGE format item. Used for print files only. Succeeding output 
will continue on the next page. 

LINE format item. For print files only. Succeeding output will 
continue on the designated line. If the current page is already 
past that line, a new page is begun. 

See LRM 151. 

7.21. Remote format item. 

The remote format item has the form RilabeJ) where IcLbeJL is a l a b e l -
valued expression. iVHen one i s encountered, the FORMAT sta tement 
whose statement l abe l i s the value of IcibeZ i s scanned. A FORMAT 
statement merely contains a format l i s t ; i t can be used t o provide 
several d i f fe ren t e d i t - d i r e c t e d t ransmiss ion s ta tements wi th the 
same format l i s t . Example: 

GET FILE (IN) EDIT (N,X) (R(LAB)); 
POT FILE (OOT) EDIT (N+2,X-1) (R(LAB)); 
LAB: FORMAT (F(8) ,X(1) , E ( 1 5 , 5 ) ) ; 

A FORMAT statement i s not executable in the normal s e n s e . In the 
ANSI standard, the l abe l on a FORMAT s ta tement i s of a new da ta t y p e , 

tormat and there are fonnat v a r i a b l e s and a FORMAT a t t r i b u t e , 
i . e . , there i s a c l e a r d i s t i n c t i o n between format values and l ab e l 
values and they serve d i f f e r e n t f unc t i ons . The cu r r en t language i s 
a l i t t l e cloudy in t h i s a r e a . See LRM 152. 
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7.22. Other stream transmission statement options. 

Any stream transmission statement may contain a SKIP option. The 
syntax and meaning are the same as for the SKIP format item. The 
skipping takes place before the data list is processed, i.e., first. 

A PUT statement for a print file may contain a PAGE option or LINE 
option, or both. The syntax and meaning are as for the same format 
items, and the action is taken before data transmission. 

A statement with one of the above options may omit the LIST, DATA, 
or EDIT option. For example, PUT FILE (SYSPRINT) PAGE; causes a 
new page to be positioned on the file SYSPRINT without data transmission. 

The COPY option in a GET statement says that the input stream read 
is to be copied, exactly as read, to the stream output file specified 
in the COPY option. 

The FILE option, which designates the stream input or output file, 
may be replaced by a STRING option. In a GET statement, the STRING 
option provides a character string expression which serves as the 
source of input stream data instead of a file. In a PUT statement, 
it specifies a character string variable that serves as a sink of 
output stream data instead of a file. The STRING option extends the 
facilities of stream I/O to operations on strings (for instance, 
formatting) performed in core as string manipulations (see LRM 153) . 

Now review LRM 154 through LRM 157. Certain options of PUT statements 
intended for debugging and implemented only by the Checkout compiler 
(and which are not part of the ANSI standard) are described in Lesson 
13. More review: LRM 159. 

7.23. Standard files. 

The language recognizes SYSPRINT as a standard print file and SYSIN 
as a standard stream input file. A GET or PUT statement not containing 
either a FILE option or a STRING option is equivalent to one containing 
FILE (SYSIN) or FILE (SYSPRINT). Thus: 

GET (A,B,C); is an easy way to get input. 
GET DATA; allows any variables known to be "assigned" 

a value from SYSIN. 
PUT DATA; is an easy way to print all known computational 

variables and their values on SYSPRINT. 
PUT (A,B,C); is a carefree way to provide output. 
PUT SKIP; conditions SYSPRINT to start receiving future 

output on a new line. 
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See LRM 158, OPG 8, and CPG 7. 

7.24. Conditions applicable to stream I/O. 

The UNDEFINEDFILE condition, which is applicable to all I/O, has 
already been mentioned; so has CONVERSION, which can occur during 
stream input or output (as well as the situations mentioned in 
Lesson 6). Another condition from Lesson 6, the SIZE condition, 
occurs in edit-directed output if the field width specified in an 
E or F format item is not large enough to contain non-zero high-
order significant digits or a leading minus sign. 

Four new conditions are applicable. The TRANSMIT condition (which 
is a qualified condition, like UNDEFINEDFILE, i.e., it is qualified 
by a file value) occurs if a real, live I/O error occurs on any 
input or output statement. Its default status is enabled and it 
cannot be disabled. Standard system action is to issue a message 
and raise ERROR. If normal return from a TRANSMIT on unit occurs, 
execution continues from the point of interrupt, but the effect of 
the I/O operation that raised TRANSMIT is unpredictable. 

The ENDFILE condition (also qualified) occurs on any input operation 
when no more data is available. In the case of a GET statement, it 
occurs if the physical end of file is reached before data transmission 
or between two data transmissions associated with data fonnat items. 
If the physical end of file is encountered during the processing of 
a data format item or X fonnat item, ERROR is raised instead. The 
default status of ENDFILE is enabled; it cannot be disabled. Standard 
system action is to issue a message and raise ERROR; thus, even if you 
don't like on units, you pretty much need an ENDFILE on unit. On 
nonnal return from an ENDFILE on unit, execution continues with the 
statement following the input statement. 

The ENDPAGE condition (also qualified) occurs when an attempt is made 
to transmit data to a line on a page of a print file having a line 
number in excess of the value of PAGESIZE (as specified in an OPEN 
statement or defaulted). Status is as for the above conditions. 
Standard system action is to start a new page; this useful action 
occurs without any specific request! Note, however, that if an ENDPAGE 
on unit is entered, any further output that it does to the same file 
will continue to appear on the same page, on lines with even higher 
line nunbers Ihis is useful for printing page footings. After printing 
d tooting, it It desires, the on unit could execute POT FILE(...) PAGE; 
tn n̂ t̂ ,- next page. It may execute, then, further POT statements 
llnllu " ''̂ ^̂  heading (column headings, etc.). When nonnal return 
in?erm^t°?."^i^ Dfrr^'"^"^ "^'^^ • execution continues from the point of 
mternjpt in the POT statement that raised the condition. Note that 
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execution of a LINE or SKIP fonnat item or statement option can 
cause ENDPAGE to be raised; on nonnal return, the action specified 
by LINE or SKIP is ignored. 

The final condition, NAME (also qualified), occurs on data-directed 
input if a name in the input stream does not appear in the data list 
or, if no data list is provided, is not known in the current block. 
It also occurs in various cases of ill-formed input. Default status 
is as for the above. Standard system action is to ignore the incorrect 
input stream item, issue a message, and continue. On normal return, 
the GET statement continues with the next input stream item. 

See LRM 116 for further details on the above. 

Stream I/O to a terminal. 

The Optimizing and Checkout compilers modify certain aspects of stream 
I/O when a file is associated with a terminal instead of a dataset, 
the goal being better human engineering. 

Nonnally, successive POT statements merely place successive values 
into a line buffer; data transmission does not actually occur unless a 
line is completed. In TSO, each POT statement transmits its data to 
a terminal immediately so that you may see all output generated 
logically before you are required to supply input. Nevertheless,^ 
successive POT statements without intervening GET statements continue 
to write in the same line. 

SKIP(O) is implemented by backspacing! This is only useful on an 
IBM 2741 terminal. 

When a GET statement is executed, the carriage is returned and you are 
pronpted with a colon and another carriage return! However, if the 
last POT statement directed to the terminal transmitted a colon as the 
last character, that is taken to be a prompt issued by the program and 
the prompting action described above is not taken. End-of-line is 
taken as a delimiter between items, unlike the usual behavior, so that 
you may type one item per line without blanks. If a data list isn't 
exhausted at end-of-line, you are prompted for more with a plus sign 
followed by a colon. Finally, if end-of-line is encountered inside a 
data format item, i.e., before the whole field width is exhausted, 
sufficient trailing blanks are assumed to match the field width. 

These features and others are described in CTUG 2 and 3 and OTUG 3 and 4. 
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7.26. Comparison to FORTRAN. 

Edit-directed I/O corresponds to FORTRAN "formatted I/O' (but not 
the "direct access" kind). The format list may accompany the GET 
statement or it may be remote (which is more like FORTRAN). Each 
transmission statement does not automatically start a new line, as 
in FORTRAN. For a print file, you do not provide a carriage control 
character as the first character of data for each line; that is taken 
care of automatically by PAGE, SKIP, or LINE options or format items 
and if data just overflows a line. (For a non-print file, however, 
SKIP merely causes the output line to be finished. The system does 
not provide carriage control characters, and if you intend to print 
a dataset created via a non-print file, and you tell ASP via the 
RECFM DCB operand that the dataset has carriage control characters, 
you will have to generate them in the output data. Use PRINT for 
datasets to be printed! If not declared, SYSPRINT i£ a PRINT file.) 

Items in an edit-directed output data list can be expressions, vihile 
in FORTRAN formatted I/O they cannot be. 

The repetitive data list item is like FORTRAN'S "implied DO," but a 
little more general. 

Formatted I/O in FORTRAN is driven by the fonnat list, while edit-
directed I/O in PL/I is driven by the data list. 

If the fonnat list is exhausted before the data list, it is rescanned 
from the beginning in PL/I, even if it contains a nested (and iterated) 
fonnat list (what is called a "group format specification" in FORTRAN). 

There is nothing to correspond to FORTRAN'S H fonnat item or literal 
fonnat item; data can only come from the data list. 

A given data format item can be matched with any type of data item, 
while a specific correspondence of types is required in FORTRAN. 

Leading or trailing blanks in F or E-format input fields are ignored 
rather than treated as zeroes. Embedded blanks will cause the 
CONVERSION condition to occur. 

There is no equivalent to FORTRAN'S format arrays and object-time 
formats. However, much of the flexibility that it provides is avail
able in the fact that iteration factors and field widths can be 
expressions whose values are obtained by reference to input variables. 



7-19 

List-directed I/O is roughly equivalent to the same feature of 
FORTRAN, though the contents of list-directed input data streams 
are different. 

Data-directed I/O is roughly equivalent to "NAMELIST I/O" in FORTRAN, 
though the details are different. 

7.27. Unanswered questions. 

The question "How do we correct a conversion condition?" first asked 
in Lesson 6 is relevant here, too. It is answered in Lesson 10. 

We will learn in Lesson 10 not only how we can tell what raised ERROR, 
but if we find it was caused by standard system action for one of the 
I/O conditions that can do that when no on unit is established, how 
we can determine what file is involved. 

We will also see how we can tell what garbage caused the NAME condition 
to occur, and which of the many possibilities was the cause of an 
UNDEFINEDFILE condition. 

7.28. Homework problems. 

(#7A) Suppose F is declared as FILE. What file description 
attributes will it have if it is opened implicitly by 
a POT statement? Suppose the POT statement says 

POT FILE (F) LINE (10) LIST ('BEGINNING'); 
Why is this illegal? 

(#7B) A 613 ABEND occurs if you try to open a particular 
SYSOOT dataset when it is already open. The error 
messages that are written out when the ERROR condi
tion is raised are written on file SYSPRINT (one of 
the standard files). If the file is not already 
open, it is opened by this action. Suppose the DD 
statement for SYSPRINT says SYSOOT=A (as it does in 
our cataloged procedures). Recall that an explicit 
OPEN for an already opened file is ignored in PL/I. 
Suppose an error message has already been produced 
on SYSPRINT. What happens if your program subsequently 
executes 

OPEN FILE (F) TITLE ('SYSPRINT') OOTPOT; 
(The same can happen if the error message is produced 
after F is opened.) 
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(#7C) What happens if an attempted opening of file SYSPRINT 
raises UNDEFINEDFILE and there is no UNDF on unit for 
SYSPRINI? An intelligent recovery from this situation 
will be described in Lesson 12. 

(#7D) Write some code that will associate file F with the 
dataset identified by the DD statement with ddname 
DDOl. If the OPEN fails, assume no DD statement was 
provided and try DD02. Continue on to DD99 until you 
succeed on one or fail on all. (Though not the main 
point of this problem, you should see how a numeric 
pictured variable can be useful in generating those 
ddnames.) 

(#7E) Show some code which initializes the elements of an 
array of file variables to different file constants. 
Assume the program will access all the files "in 
parallel" instead of one after another, so that they 
must all be open simultaneously. Open them in a DO 
group. Be prepared to write a message for each one 
whose open fails, giving its index. Establish the 
on units in the same DO group. If you were to 
establish the on units in a separate DO group, 
executed before the one that opens the files, would 
you have to do anything different to make sure the 
proper index is printed out when a particular file 
can't be opened? 

(#7F) Is it possible to write a utility program in PL/I 
which is capable of manipulating any number of data-
sets simultaneously? Assume the processing required 
is methodical enough to access the files through an 
array (allocated dynamically with adjustable extents 
once the program determines how many files it will 
have to deal with). 

(#7G) If the input stream 
3 5 lOB 35J WORD 'AGAIN' '16S' '5.1' 

were read by the statement 
GET (N, S, M, X, T, U, V, J); 

with the variables declared as follows: 
N FIXED BIN 
S CHAR (20) VAR 
M FIXED DEC 
X FLOAT DEC 
T CHAR (20) 
U CHAR (3) 
V FIXED DEC 
J FIXED DEC 
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for which input stream items would the CONVERSION 
condition occur? (Assume it is corrected whenever 
it occurs, so that the whole list is processed.) 
In which cases is the raising of the condition 
dependent on the attributes of the variable in the 
data list, and in which cases not? 

(#7H) If you have FORTRAN experience, compare the PL/I 
and FORTRAN format items. 

(#71) Write a portion of a program that reads two input 
values which are taken to be the row and column 
dimensions of an array, allocates an array of that 
size (use an automatic variable), then reads in 
values for the array elements under format control. 
Demonstrate several alternatives: 

(a) A DO group containing a GET statement 
that reads a single value into the next 
element of the array. 

(b) A single GET statement (for the array 
elements) that uses a repetitive 
specification. 

(c) As in (b), but without a repetitive 
specification. This is only possible 
if the values are presented in row-
major order. 

(#7J) There is no REWIND statement in PL/I. How would 
you accomplish that function? 

(#7K) There is no BACKSPACE statement. Suppose you had 
to read a line of input twice, under different 
fonnat controls. How would you do that? 

(#7L) Suppose you want to print the elements of an array 
using F(8,3) format. What happens if an element 
has the value 10000? Or -1000? Suppose you want 
the field to be filled with eight asterisks when 
the value won't fit, as in FORTRAN. Show a way of 
doing this which involves the statement 

POT FILE (OOT) EDIT ((TEST(A(I)) DO I = 1 TO 100)) 
(100 A(8)); 

TEST is a function procedure. Your job is to show 
what is in TEST. 
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(#7M) S is declared as a varying length character string 
variable. If either of the following statements is 
legal, what does it mean? If not, why not? 

POT EDIT (S) (A); 
GET EDIT (S) (A); 

(#7N) What is the difference between the following three 
statements, in terms of their effects? 
X is an array. 

POT EDIT (X) (E(20,8), SKIP); 
POT EDIT (X) (SKIP, E(20,8)) 
POT EDIT (X) (E(20,8)) SKIP; 

What would be the difference if X were a scalar 
variable and the POT statement were executed inside 
a loop? 

(#70) Read a list of values into an array using list-directed 
input. You do not know in advance how many values you 
will get. The input file contains only the array 
values. Be prepared to receive up to 1000 values, and 
set a variable to indicate how many were read into the 
array. Print a message if more than 1000 values are 
received. 

(#7P) In the above problem you may be left with an incomplete 
array, i.e., one some of whose elements are unused. 
What could you do subsequently to take advantage of 
array assignments, array expressions, etc., which 
operate on all the elements of an array? 

(#7Q) Suppose you are using an ENDPAGE on unit to print a 
page footing at the bottom of every page of output on 
a print file. How do you get the footing printed at 
the bottom of the last page, which may be incomplete? 

(#7R) Demonstrate the use of an ENDPAGE on unit for the 
production of page headings. 
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Introduction to record I/O; consecutive datasets. 

.1. Record I/O. 

In record I/O, transmission of data occurs in units of discrete records, 
which correspond to logical records in a dataset. Each record transmission 
statement transmits exactly one record into or out of a variable, called 
a record variable. (Some record transmission statements don't cause any 
data transmission and don't use record variables, but they still do some
thing to a record in a dataset.) 

Transmission consists of the mass transfer of so many contiguous bytes 
of storage between the record on the external medium and the record 
variable in core. It should be obvious that the record variable must 
represent connected storage (Lesson 3). Beyond that, record variables 
may be just about anything — scalars, arrays, or structures. The data 
in the record is a byte-for-byte image of the data in core, regardless 
of the data type. Transmission occurs without conversion of any kind. 
Record variables can contain program control data, but values read from 
such records may not be valid, particularly if the reading occurs in a 
different execution of the program from its writing. 

Record files are used for various purposes. Because data transmission 
takes place without conversion between internal machine form and external 
character form, record files (and the datasets associated with them) are 
particularly appropriate for Intermediate storage, i.e., data created by 
the program for reading back in later (may be much later). By the same 
token, record files (and their datasets) are not suited for human con
sumption except in the special case that the record variables are 
character string variables. 

A record file is one which has the RECORD file description attribute (FDA) 
instead of STREAM. See LRM 136 and LRM 160. 

8.2. Records and keys. 

All datasets are composed of a set of records. Even datasets associated 
with stream files are composed of a sequence of records, but that is not 
always of much consequence. 

The records of some types of datasets are accompanied by identification 
fields called recorded keys. A recorded key contains a character string 
value, called a key, which Identifies the record with which it is 
associated. A recorded key may be physically separate from the record 
or embedded within it. A dataset containing keyed records is called a 
keyed dataset. 



When a program wishes to designate a particular record in a dataset, it 
does so by computing and presenting a key value. Key values in the 
program are called source keys. Their meaning Is defined by the imple
mentation. Usually they correspond to the values in recorded keys, but 
this Is not always necessary. 

.3. Language vs. implementation: history of record I/O. 

The language features for record I/O seem, more than any other parts of 
the language, to have been strongly influenced by the kinds of datasets 
and processing techniques available in IBM's OS operating system. Perhaps 
what happened went something like this: The language designers used the 
capabilities of IBM hardware and the OS operating system to set goals 
and target capabilities. From a huge array of possibilities they distilled 
out some coimnon features and called this language. The common features 
constituted a minimal set of capabilities but could be combined in diverse 
ways to provide many variations in behavior. Some of these variations 
corresponded to the hardware capabilities they had in mind while others 
didn't. 

other manufacturers have selected combinations that corresponded to their 
hardware and operating system capabilities. Certain combinations of 
language features that IBM has found a use for may not have a use in another 
system. Even within the IBM implementations, the introduction of the VS 
operating system has led to the assigning of meaning to certain combina
tions of features that were previously meaningless. 

Our study of record I/O will thus proceed as follows. We will look first 
at some of the individual language features and what they mean. We will 
then turn our attention to one of the kinds of datasets IBM supports and 
will discuss the kinds of processing that may be done with it and the 
language features used to accomplish it. In Lesson 9 we will study 
additional language features and apply them to other kinds of IBM datasets 
and processing techniques. 

3.4. Types of access. 

PL/I provides two kinds of access to datasets associated with record files, 

sequential and direct. Direct access, denoted by the DIRECT FDA, means 

tnat records will be accessed in an arbitrary sequence. Each record to 

be processed must be Identified by a source key. Sequential access, 

denoted by the SEQUENTIAL (abbreviation: SEQL) FDA, means that records 

will be accessed in some kind of sequential order. What is meant by 

sequential order is up to the implementation: it may be the physical 

order of records in a dataset or the order defined by ascending or descend

ing key values. (Though we haven't said so explicitly, keyed records may 

ave a logical order defined by their keys which is not identical to their 
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physical order in the dataset.) An implementation may provide a choice 
between physical sequence and key sequence. When key sequence is being 
used, the program may use source keys. 

All record files will have either the SEQL or the DIRECT attribute. See 
LRM 161. As for other FDA's, these may be specified explicitly or they 
may be acquired at open time by deduction, implication, or default. 

8.5. The KEYED attribute. 

Certain options of transmission statements provide for the communication 
of key values. For certain types of operations their use is mandatory; 
in other cases they are not used. If they are to be used, the file must 
have the KEYED FDA. Such a file is called a keyed file. It is not required that 
keyed files and keyed datasets be associated only with each other; they may also 
be associated with their non-keyed alternatives. We will see how a keyed file can 
be used with a non-keyed dataset, and how a non-keyed file can be used 
with a keyed dataset, when we look in Lesson 9 at certain types of processing 
provided for in IBM implementations. 

Keyed files may be accessed sequentially or by direct access. Sequential 
files may be accessed using keys or not, hence a sequential file may be 
keyed or non-keyed. The arbitrary order in which direct files are accessed 
requires the use of keys, hence direct files may not be non-keyed. Thus, 
the DIRECT attribute implies the KEYED attribute. See LRM 162. The three 
valid combinations are SEQL, KEYED SEQL, and KEYED DIRECT. 

Record transmission statements. 

In this lesson we will study three record transmission statements. 

The READ statement obtains an existing record from a file. 

The REWRITE statement replaces an existing record with new, or updated, data. 

The WRITE statement adds a new record to a file. 

In Lesson 9 we will study the DELETE statement, which deletes an existing 
record from a file. In Lesson 11 we will study an alternative to the WRITE 
statement that can be used in certain cases. 
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8.7. Common options of record transmission statements. 

All record transmission statements contain the FILE option which, as in 
stream I/O, designates the file. 

The READ statement uses the INTO option to name the variable Into which a 
record is to be read. A general requirement Is that the amount of storage 
occupied by the variable, i.e., its size taking into account any array 
extents, etc., must be equal to the length of the record read. Note, 
however, that if you read into a scalar varying-length string the current 
length of the string variable Is set by the reading of the record, as 
on assignment. If you intend to read into different variables having 
different sizes, then the dataset must have V or U format records (not F 
format records) — independent of any blocking. See LRM 165. An alterna
tive to the INTO option will be discussed in Lesson 11. 

The REWRITE and WRITE statements use the FROM option to name the variable 
from which a record is to be written. The same requirements for matching 
the size of the record and record variable exist. That is, if different 
variables, having different sizes, are to be written, the dataset will 
have to have V or U format records. When a scalar varying-length string 
is written, the length of the record is determined by the string's current 
length. See LRM 166. 

It Is frequently useful to use a structure (Lesson 3) for a record variable. 
This serves to group related data Items having potentially different 
attributes (the structure base elements) together as fields within one 
record. 

Data movement direction attributes. 

In Lesson 7 we saw the INPUT and OUTPUT FDA's. A third alternative, UPDATE, 
can be used with record files. It indicates that records may be both read 
from and written to the file. These attributes hold significance for the 
types of record transmission statements that can be used with files having 
those attributes as follows. 

Ri';AD 
REWRITE 
DELETE 
WRITE 

INPUT 

/ 
OUTPUT 

/ 

UPDATE 
,/ 
/ 
/ 
J 

See LKM 137. At this point you should review the various different ways 
fUA s may be acquired. See LRM 132, LRM 134, and LRM 141. 
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.9. Minor attributes and options. 

The BUFFERED or UNBUFFERED (BUF or UNBUF) attributes may be used in certain 
cases. See their description at LRM 167. For the I/O we will be dealing 
with in Lessons 8 and 9 we need not be concerned with this; it is sufficient 
to let it default. These attributes are not in the ANSI standard. In 
Lesson 11 we will consider a certain type of sequential I/O that requires 
the BUFFERED attribute (in the current language). In Lesson 14 we will 
look at another type of I/O that requires the UNBUFFERED attribute, but 
that type of I/O isn't in the ANSI standard. 

The BACKWARDS attribute may be used for sequential input record files asso
ciated with datasets on magnetic tape. It specifies that the file is to 
be read in the reverse sequential order of its records. This permits greater 
efficiency when making multiple passes over a tape dataset. This attribute 
is also not in the ANSI standard. See LRM 168. 

The IGNORE option of the READ statement may be used instead of the INTO 
option when the statement addresses a sequential file (either input or 
update). IGNORE(n) causes n records to be skipped, i.e., read but not 
assigned to any record variable. See LRM 169. 

i.lO. ENVIRONMENT attribute for record files. 

A vast number of different options can be specified in the ENV FDA for 
record files. Full details are given in LRM 163. Although this implementa
tion-defined material is very important, and you should read it sometime, 
we will discuss here only certain essential ENV options applicable to our 
implementation. 

1.11. Dataset organizations. 

In Lesson 7 we pointed out that the function of the ENVIRONMENT FDA is to 
provide a system with implementation-dependent information it may need to 
relate your standard PL/I I/O statements to the facilities available in 
the system. Some of this information is optional; for instance, a good 
number of the ENV options are essentially JCL DCB parameters moved into the 
program Itself. Others may be mandatory. 

Earlier we said that an implementation has certain "native" I/O capabilities 
around which particular combinations of transmission statements and options 
are centered. In the IBM systems, you must designate one of the native 
types of record I/O processing using particular ENV options. The alternatives 
we will consider in this course are called consecutive, indexed, and regional 
dataset organizations. The ENV options, and their basic meaning, are as 
follows. 
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CONSECUTIVE. Consecutive datasets are non-keyed. Records are stored con
secutively In the dataset. The "order" implied by sequential access is 
physical order. 

INDEXED. Indexed datasets are keyed datasets. Records are stored, with 
their keys, in an order which Is usually not material. The "order" 
Implied by sequential access is logical order by increasing key value. 
This may not be the physical order of records In the dataset. 

REGIONAL. Regional datasets come In three subvarieties, as we shall see 
in Lesson 9. One is non-keyed and two are keyed datasets. Sequential order 
Is a peculiar mixture of both physical and logical. 

To reiterate a point made earlier, combinations of FDA's, the transmission 
statements and their options have validity only with respect to particular 
dataset organizations. Combinations valid for some organizations may be 
invalid for others. Valid combinations are summarized at LRM 141. 

Indexed and regional organizations will be the subject of the next lesson. 
The remainder of this one will be devoted to consecutive organization. 

.12. Consecutive datasets. 

The CONSECUTIVE option of the ENVIRONMENT attribute is used to identify a 
dataset as being organized consecutively. If the ENV attribute is not declared 
for a file, or If it is but doesn't contain any of the dataset organization 
options, then consecutive organization is assumed. Though we did not say 
so In Lesson 7, consecutive organization applies also to datasets asso
ciated with stream files; it is the only organization applicable to them. 

Consecutive datasets can only be accessed through sequential files. The 
KEYED attribute Is not used because there is no use for the various state
ment options that have to do with keys since there are no keys in the 
dataset. Do^^not, however, confuse the meanings of consecutive and sequential. 

Consecutive is an IBM implementation concept to describe a particular type 
of organization and representation of records in a dataset in IBM systems. 
sequential is a standardized PL/1 concept to describe the fact that records 

will be accessed in some kind of order. Sequential access applies to data-
sets with other organizations as well, but consecutive organization demands 
sequential access. 

The kinds of processing permitted on consecutive datasets are as follows, 
xou may create one by writing its records sequentially; these are placed 
re j ^ , '^^^' physically in the order in which they are written. You may 
a the records of an existing one sequentially, obtaining them in their 

physical order (hence, in the order In which they were written). Or, you 



8-7 

may read the records sequentially, making changes to some and replacing 
them in the dataset (in the same place from which they came) before going 
on to read further records. See LRM 170. 

8.13. Creating a consecutive dataset. 

The applicable FDA's are SEQL OUTPUT. The WRITE statement with the FROM 
option is used. If the file hasn't been opened explicitly, execution of 
the first WRITE statement causes Implicit opening with the attributes 
RECORD and OUTPUT being deduced; if an access attribute wasn't declared, 
SEQL is assumed by default. See LRM 132 and LRM 134. An example follows. 

DCL F FILE, S CHAR (80); 
OPEN FILE (F) SEQL OUTPUT; 
DO WHILE (more to write); 

WRITE FILE (F) FROM (S); 

END; 
CLOSE FILE (F); 

In the above example, the dataset written is identified in the JCL by 
the DD statement with ddname F (we didn't use the TITLE option on the OPEN 
statement). The DD statement might look like 

//F DD DISP=(NEW,CATLG),DSN=whatever, 
// UNIT=whatever,SPACE=whatever, 
// DCB=(RECFM=f,LRECL=r,BLKSIZE=b) 

The DCB parameters f, r, and b could be just about anything. If f is F (or 
FB or FBS), r must be 80 (since the program, as shown, writes records of 
length 80) and b must be 80 (or a multiple if f is FB or FBS). If f is V 
(or VB or VBS), r must be at least 84 and b must be equal to or greater than 
r. If f is U, b must be at least 80 (r is not used). You can intermix 
records of other lengths (written from other record variables) if and only 
if f is not F, FB, or FBS, and r and b are large enough. 

Most DCB parameters can be provided via the EOT attribute in the program, 
which, if done, takes precedence to JCL. A useful feature is that the 
LRECL and/or BLKSIZE may be computed by the program and specified using 
variables, e.g., 

DCL F FILE ENV(FB RECSIZE(R) BLKSIZE(B)); 
DCL (R, B) FIXED BIN (31) STATIC; 
R = some value; 
B = 5*R; 
OPEN FILE (F) SEQL OUTPUT; 
BEGIN; 

DCL S CHAR (R) AUTO; 
etc. 
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Generally, we will not go into so much detail with JCL considerations. The 
programmer's guides have extensive sections on JCL with examples. For 
creation of a consecutive dataset, see CPG 8 and OPG 9. 

It should be pointed out that when a DISP of OLD Is used with an existing 
dataset. It is "recreated", i.e., totally overwritten. If DISP=MOD is 
used, the records written will be appended to the end of the dataset, after 
any existing records. 

.14. Retrieving a consecutive dataset. 

A consecutive dataset may be read by opening a sequential input file and 
reading successive records with the READ statement using the INTO option. 
If at any point you can anticipate that you are not interested in the 
contents of the following n records, you may skip over them by substituting 
the IGNORE option for the INTO option. 

.15. Altering a consecutive dataset. 

By opening a file associated with a consecutive dataset for sequential 
update (i.e., using FDA's SEQL and UPDATE) you can read the records se
quentially and, for any that you choose, alter their contents and write them 
back out (in place). That is, you use the READ statement with INTO option 
and then, after altering the record by assignments to the record variable, 
you use the REWRITE statement with the FROM option. If you do not wish to 
alter a record, just skip the REWRITE statement. Note that processing is 
strictly sequential: you cannot rewrite the n-th record after reading 
the n+lst record, and you obviously cannot rewrite a record before reading 
It. See LRM 171. Since an existing record is being replaced, its length 
must not be changed. 

Note that when a member of a partitioned dataset (as denoted entirely by 
the DSN JCL parameter) is written (or created), using SEQL OUTPUT, unused 
space at the end of the dataset is used; the newly written member will then 
replace any existing member with the same name. (The space occupied by 
the replaced member Is not accessible and not available for re-use unless 
the dataset is "compressed" with a utility.) However, a member of a PDS 
may be rewritten in place, using SEQL UPDATE. It Is possible to do an 
update in place because there is no way of changing the size of a record 
or of adding extra records (the WRITE statement is illegal for a sequential 
update file). ^ 

JCL details for accessing (reading or altering) consecutive datasets are 
given in CPG 9 and OPG 10. Complete examples appear in CPG 10 and OPG 11 
inowever, they use certain I/O facilities we won't see until Lesson 11). 
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8.16. The TOTAL option. 

Normally, record I/O is accomplished by a call to a library routine. Under 
certain conditions, however, in-line code may be generated leading to 
substantial efficiencies. This is possible only for sequential output or 
input of consecutive datasets, and then only when certain other conditions 
are met. You have to specifically request in-line code because the compiler 
cannot always detect, for a given READ or WRITE statement, whether or not 
the conditions will be met when it is executed. By using the ENV option 
TOTAL you are promising to meet the conditions. See LRM 172 and LRM 173. 

8.17. Conditions applicable to record I/O (consecutive datasets). 

UNDEFINEDFILE, being applicable to all I/O, is applicable here. Likewise 
TRANSMIT. ENDFILE is applicable to sequential input or update files (as 
well as stream input files) and is raised when a READ statement attempts to 
read a record beyond the last one in the dataset. Note that normal return 
from an on unit entered from a READ statement results in the next statement 
being executed without anything having been read into the record variable. 

One new condition, the RECORD condition (a qualified condition) is applica
ble. This occurs whenever the size of a record does not match the size of 
the record variable. The condition cannot occur in most situations with 
varying-length scalar string record variables. The status is enabled, 
and it cannot be disabled. Standard system action is to issue a message 
and raise ERROR. Normal return from an on unit continues execution with 
the next statement; in this case, the effect on the record (on output) or 
the record variable (on input) is not defined by the language. What happens 
in our implementation is described in LRM 116. 

8.18. Comparision to FORTRAN. 

Sequential input and output to consecutive datasets is comparable to FORTRAN 
unformatted input and output. FORTRAN has no equivalent to sequential 
update. 

8.19. Homework problems. 

(#8A) Suppose you employ a WHILE-only DO group to read a sequential input 
file and process its records. How many different coding techniques 
for breaking the loop when ENDFILE occurs can you demonstrate? Which 
do you like best? Least? 
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(#8B) Suppose you have a "data base" for an experiment containing data on 
the number of occurrences of various responses to different stimuli. 
Suppose records are organized in "groups" with each group consisting 
of two kinds of records. ? 

(a) One header record containing a stimulus type, a stimulus sub
type, and a count, n, of the number of possible response types 
(n may be zero). The record is described by the record 
variable declared below. 

DCL 1 HEADER, ^ 

2 STIMULUS_TYPE CHAR (20) , 
2 STIMULUS_SUBTYPE CHAR (10), 
2 //RESPONSES FIXED BIN (15); ' 

(b) Following the header record, a detail record for each of the possible 
responses (there may be none of these) containing a response type 
and a count of occurrences (historical data). Each detail record -
Is described by the record variable declared below. 

DCL 1 DETAIL, 
2 RESPONSE_TYPE CHAR (50), 
2 //OCCURRENCES FIXED BIN (15); 

Groups, and detail records within groups, are in no particular order. ' 
Multiple subtypes for a given stimulus type are possible, and different 
stimulus types might have the same subtype. 

You have just performed an experiment characterized by a certain 
stimulus type, and you have observed a particular type of response. 
You consider the stimulus subtype to be Irrelevant in this experi
ment. You would like to update your records to show one more 
occurrence for the particular response and stimulus without regard 
to the stimulus subtype. 

Write a program to update the existing data base in the desired way. 
Make It as "efficient" as you can. Use a sequential update file. 

Suppose either the stimulus type or combination of stimulus type 
and response type are not to be found in the data base. What are 
you going to do about that? What happens to your data base if the 
system crashes in the middle of a run? Is it hard to recover from 
that? (You bet!) 

(#8C) Discuss an alternative design to the program you wrote for //8B which can 
accommodate new stimulus or response types and which is not subject 
to severe recovery problems if the system crashes in the middle of a 
run. What is the "cost" of this extra flexibility and protection? 
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9. Indexed and regional datasets. 

9 1 One of the alternatives to consecutive dataset organization is indexed 
organization, specified by the INDEXED option of the ENVIRONMENT attribute. 

Indexed datasets are keyed datasets. The records and their recorded keys 
are maintained in logical order by ascending key values; their physical order 
is not material, as far as the program is concerned, because there is no way 
it can be known. The sequential order defined for indexed datasets is key-
sequence order. 

Whereas the records in a consecutive dataset can only be accessed sequen
tially, those in an indexed dataset can be accessed sequentially (in key 
sequence) or in arbitrary order; that is, either a sequential or a direct 
file may be used with an Indexed dataset. An index is maintained in the 
dataset, by the operating system, to aid in the location of a record having 
a particular recorded key value. See LRM 164, LRM 174, CPG 11, and OPG 12. 

9.2. Statement options dealing with keys. 

When a WRITE statement needs to Identify the particular record to be writ
ten, it uses the KEYFROM option. The option contains a character-string 
valued expression whose value is used as the source key (i.e., the pro-_ 
gram's designation of the record's key value). Example: 

WRITE FILE (F) FROM (V) KEYFROM (K || P); 
This causes the contents of the record variable V to be written in the data 
set associated with the file F at a place Identified by t̂ ê value of K U P . 
Usually the value of this source key becomes the value of the ̂ ^^^^^ k^' 
however, we will see later that the associated dataset need not be a keyed 
dataset! in which case the source key is used for something else. KEYFROM me 
"take the source key from the expression... 

There are two ways keys enter the P^--//" ^-^..r^r^ircrker^a^ul. 
identify the record to be read by giving a parcicuiai. 
using, the KEY option. Example: 

READ FILE (G) INTO (S) KEY ('REC' || K ; expression 'REC' 
This causes the record identified by the value "^'^e expression K 
I I K (the source key value) to be read f-m the d ta e - - - d ^ ^ 
with file G into the record variable S. KtY means LU 

variable to which the key value is assigned. Example. 
READ FILE (H) INTO (R) KEYTO (KEYVAR); 

This causes the next sequential record to ''l/ll\^XeTlalTalle 
ahle R from file H; Its key value is assigned to the key yariao 
^ A As with the WRITE statement, these source key values "B-̂ l̂ly 
^Ilt^^ondtf recorded key values, but here too the dataset need not be 
keyed and the source key may have a different meaning. KEYTO means 
"assign the key to...". 
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When the sequential order defined for a d a t a s e t i s key sequence the mea 1 
of the IGNORE option, which can be used — as we saw in Lesson 8 in i ^ 
of the INTO option, I s "read the given number of r eco rds In key sequence Td 
Ignore them." 

A REWRITE statement that rep laces an e x i s t i n g record may or may not need 
to identify the record to be rep laced . If i t does , i t uses the KEY option 
In the same way as for the READ s ta tement . 

See LRM 175 and LRM 176, and review LRM 169. 

9 .3 . ENVIRONMENT options for Indexed d a t a s e t s . 

t h e " : h l v ' e ' t o ' o ' ^ l t b ™ ' Tl°"' app l i cab l e to Indexed d a t a s e t s . Some of 
l t ^ r M » ^ ? / . specifying the l eng th of the recorded key f ie ld or 

d ' ih i : :n°d"th:r'inf'̂  Tr' "̂'' '^''"^"^'° "̂  °̂  '̂^ -̂ "̂<̂ ^̂  
not cover JCL for indexed H T " " "'^° ^^ specified in JCL. We will 
given later do : go d Job ln\\'i:- " ' P-g"-er's guides (references 
options particulLlv L 1̂  KI "^^^ ^°'^ "°"> ^^^ ̂ RM 177. Other ENV 
out LR^ Pĝ ^̂ '̂̂ "̂ "̂ " applicable to Indexed datasets are scattered through-

9-4. Creating an Indexed dataset. 

withlh^lr k:y:\̂ : ::::ndlnr::"'' sequentially. The records are presented 

Applicable FDI'S a r^mED s^roUllr^Th"'"' WRITE.. .FROM. . .KEYFROM. 

recorded key values. See LRM 178? CPG i2, and'opc'u ' " ' " " '''"'°' ''' 

9.5. Retrieving an indexed dataset. 

-en:i:gtrs:;et:)"o1 ln"':r\1tr::ro"d::! '^ ^^-^ sequentially (in 

ke; va!uerar:ryorcan'use'the"''"""''u^' ^°" ''°^'' ^^" '° ^-°- "^at the 
i-e-. you can open the file fn^ techniques as for consecutive datasets. 
READ... IGNORE. This Is an JZ "^""^""^1 Input and use READ...INTO or 
-̂!̂ SZed_dataset. ^S-gJagEle^ a non-keved file being a...nciated with 

If you want to know th W 
and use READ...INTO...KEYTO "^1^"' °''̂ ;̂  '^^ ^^^^ ^°^ ^^^^'^ sequential input 
values You can also use READ iCNn^^^'' ^^^ ^^^"^^ '̂ '̂=°"̂  'he source key 
ahead m the key sequence to^';;'™?^ / " ° ' ' " ''̂ "̂̂  ^"^ ^an do is skip 

a record having a particular key, by using 
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READ... INTO...KEY. Having positioned ahead to the desired record, you can 
then continue reading sequentially with READ...INTO...KEYTO. 

To read records in arbitrary order, use the KEYED DIRECT INPUT FDA's and 
READ...INTO...KEY statements. The key values can be presented in any order. 

Normally, the source key value specified in a KEY option of the READ state
ment translates directly into a recorded key value. The translation has 
interestingly different properties when the GENKEY option of the ENV attribute 
is used; read about that at LRM 179. 

.6. Altering an indexed dataset. 

There are several ways you can update an indexed dataset. Sequential up
dating is like the kind of updating we showed for consecutive datasets. You 
first read a record (using any of the forms of READ statement described 
above), alter the record variable, then write the updated data back out by 
executing a REWRITE...FROM statement. The KEY option is not used because 
the record being replaced is the last one read. Applicable FDA's are 
SEQL UPDATE or KEYED SEQL UPDATE. 

You can update records in random order if the file is opened for keyed 
direct update. In this case a record need not be read before it is re
written, so you must use the KEY option on the REWRITE statement to desig
nate the record to be rewritten. However, the designated record must exist. 
If in fact the one you designate for rewriting was not the last one read, 
the REWRITE causes an implicit READ just to check that the record exists. 

An existing indexed dataset opened for keyed direct update can also have new 
records added to it. Use WRITE... FROM...KEYFROM. Keys can be presented in 
any order, but they must designate non-existent records (conformance is 
checked!). Be sure you see the difference between REWRITE and WRITE for a 
direct update file. 

Another way in which an existing indexed dataset can be altered is described 
immediately below. 

.7. The DELETE statement and dummy records. 

We come now to the first use of the DELETE statement. 

Execution of a DELETE statement causes the specified existing record to be 
marked as deleted. Subsequently, it is as if the record had never been in 
the dataset in the first place. 
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The statement is permitted for direct update files. The KEY option 1 
to Identify the existing record to be deleted. Example: ^ "̂ "̂̂  

DELETE FILE (F) KEY (K | | SUBSTR (S, 2)); 
The record identified by the key whose value is given by K I I SUBSTR(S ?̂  
is deleted from file F. '' > ^) 

For indexed datasets, the DELETE statement is also permitted with -o 
update files. In this case the KEY option is not used " f w I b r ^ ' m L " ' 
records, only the last record read may be deleted. rewriting 

Note that no record variable is used. Data transfer in the usual sense 

CPG 13, "d OPG 14. invisible during a READ operation. See LRM 180, 

Now read LRM 181, CPG 14, and OPG 15. 

b"; thTs;s'tt!' zi:,:Tir:\ivr''%°''°" -̂'̂̂ ^̂'̂  <̂ '̂-"̂  -̂  —̂̂^ 
addition of records to an : r. ""̂  ̂ " passages previously cited. The 
organized, and"ffLiencv 1 ^ ' f " ' f ''"'"^" <=^"«" i^ ^° "ecome dls-
the roofO. It is a good'idL tr-re" '''"'"' ^'°"' '^"^ " ^ " " S° '''""̂ h 
See CPG 15 and OPG 16 \ t 7 reorganize" an Indexed dataset occasionally, 
datasets, see CPG 16 and OPG 17? """"P^"^ examples of the use of indexed 

Regional datasets. 

regional data:eris''thoughrof°lr^r"^" ^' regional or^aniz.tl.n A 
secutively starting with zern ! ^ ̂ ® divided into regions numbered con-
we shall see, the sequential o.H ''!^i°" ''̂ " ' ' ° " °"^ " ""re records. As 
aspects of physical sequence (II ''^""ed for regional datasets has certain 
aspects of key sequence (as fr.t% / consecutive datasets) and certain 
numbers the Programmer miroptmze'rol t t T ' ^ ' ^ ' ' specifying region 
placement of records in the H^f ^̂ ^̂ "̂  ̂ ave some control over) the 
region numbers and possibly l^lr^^t ^?"''" ^^^^ are used to communicate 
recorded keys). ^ """^^ ^^^° ^^V values (to correspond to the values in 

by the ENV optlons^'^GIONl^nf RE^TnM^T^o^^^"'^"^°"' '̂ "̂°'̂ d̂ respectively 
v-̂ y , K-r.L.lUNAL(2) . anH BFCTnuiAi / •o \ 

Regional(1) datasets are 

REGIONAL(2), and REGIONAL(3). 

non-keyed datasets. Each region contains exactly 
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one record, hence a region number is a relative record number. Source keys, 
when used, are interpreted as region numbers only. Access may be sequential 
or direct. Sequential access is in region number order, hence the physical 
sequence characteristics. Direct access operations go directly to the 
record identified by the region number given. Regional(1) datasets can con-
tair unblocked fixed-format records only. 

Regional(2) and regional(3) datasets are both keyed datasets. Records are 
always accompanied by (non-embedded) recorded keys. Sequential access is 
again in region number order, unaffected by recorded keys. Direct access 
operations start at the region number specified in the source key and scan 
from that point forward (wrapping around to the beginning of the dataset if 
the end Is reached) for the record identified by the value of a recorded key. 
The source key is used to specify both the region number at which the search 
is to begin and the recorded key value to be searched for. 

The main difference between reglonal(2) and regional(3) datasets is that 
regions in regional(2) datasets correspond to records, as in regional(1) 
datasets, whereas regions in regional(3) datasets correspond to tracks. 
Thus, regional(3) regions may contain more than one record. 

Regional datasets employ dummy records to mark records as having been de
leted (or never written in the first place). There is no choice as to 
whether dummy records can be detected by the program or not, as with indexed 
datasets. In some cases they are made available, in other cases they are 
not. as we shall see. 

The above material is reviewed at LRM 182, CPG 17, and OPG 18. 

Regional(1) datasets. 

Regional(1) datasets may be created sequentially or by direct access. 

In sequential creation, the file is opened for keyed sequential output. 
Records are presented using WRITE...FROM...KEYFROM. The source key value 
is a character representation of the region number. Records must be presented 
in order of increasing region number (hence the aspects of key sequence). 
However, some region numbers may be skipped over; the system implicitly 
writes a dummy record in each region skipped over. Also, when the dataset 
is closed the remainder of the space in its current extent is filled with 
dummy records so that all of the space (through that extent) is filled 
either with real or dummy records. 

In direct creation, the file is opened for keyed direct output. At that 
time the first extent of the dataset is preformatted by filling it with 
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dummy records (this can take quite a while). Records are presented as 
above, but the region numbers may be given in any order. A region number 
may even repeat; the record previously written in the region will be over
written. At the conclusion of the creation process the first extent 
of the dataset will contain the records written and those dummy records not 
overwritten with real records. 

After creation, the records of an existing regional(l) dataset can be re
trieved sequentially or directly. Sequential access, using either SEOL 
INPUI and READ... INTO or KEYED SEQL INPUT and READ... INTO. . .KEYTO, is in 
region number order. All records are retrieved, whether dummy or'not 
The value returned to the key variable named in the KEYTO option is the 
character representation of the region number. A combination permitted 
for indexed datasets, READ. ..INTO...KEY, which is used during sequential 
Input operations to skip ahead in the sequence, is not permitted for re
gional datasets. 

Direct access uses KEYED DIRECT INPUT and READ...INTO...KEY. Records may 
be retrieved in any order, and dummy records are made available. 

The basic facilities for altering a regional(l) dataset are as follows. 

SEQL UPDATE 

REWRITE...FROM Replace it after changing. 

KEYED SEQL UPDATR 

Same as above with addition of KEYTO option to the READ statement. 

KEYED DIRECT UPDATE 
READ...INTO...KEY r^^ 
REWRITE...FROM KEY ^et any record, real or dummy. 
WRITE...FROM ^YFROv f P^ace an̂ r record, real or dummy. 
DELETE.. KEY ^"^ ^"^'^^ ̂ ^ REWRITE. 

Change any record to dummy. 

Note that the DELETE st 
whereas with indexed datasetf if" ""^^allowed with direct update files. 
files. aatasets it was also allowed with sequential update 

or delete"aTn!Sstent ^(T' T'""^'' " " retrieved, why you can rewrite 
existing record - ^ho kno^sTlhe"'"??' ^"' "^^ y°" " " "^^'e over an 
native I/O facilities o f T ! application of language features to 
weren't permitted for regionalU)" T " " ^^ ^"°°ther if these things 
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See LRM 183, CPG 18, and OPG 19. 

Regional(2) and regional(3) datasets. 

These are processed using exactly the same FDA's, statements, and state
ment options as for regional(1) datasets. The differences are as follows. 

Dummy records are not retrieved during read operations. REWRITE can only 
replace existing (non-dummy records), and DELETE can only delete existing 
records. 

The source key value used in a KEY or KEYFROM option has two parts: a 
region number and a string corresponding to a recorded key. READ, REWRITE, 
and DELETE operations "search" for the designated record by starting at 
the track implied by the region number and actually looking for the given 
recorded key. (The number of tracks spanned in the search, before giving 
up, is governed by a JCL parameter.) WRITE operations start at the track 
designated and look for a dummy record to replace in the same manner. 
Note that duplicate recorded keys can exist in the dataset. Also note 
that a record retrieved or written may actually belong to a different 
region than the one at which the search started, yet no feedback is given 
concerning the actual region. 

In a regional(3) dataset, a dummy record created by a DELETE statement, 
though not made available to a READ operation, is unfortunately not avail
able for re-use by a WRITE statement. Only dummy records left over from 
the dataset's creation are available for the addition of new records. 
All dummy records in regional(2) datasets represent space available for 
new records. 

In sequential output operations it is only the region number part of the 
source key value that is checked for ascending sequence. There are no 
requirements on the part of the source key value to be used for the re
corded key. 

In sequential input (or update) operations, records are retrieved in their 
physical sequence. If the file is keyed and the KEYTO option is being 
used to receive the key of the record read, the value assigned to the key 
variable is the recorded key value only. These will not necessarily be in 
any particular order. 

See LRM 184 and LRM 185, CPG 19 and CPG 20, and OPG 20 and OPG 21. The 
programmer's guide references contain examples. JCL considerations are 
given at CPG 21 and CPG 22, and OPG 22 and OPG 23. 
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9.11. The EXCLUSIVE attribute and locked records. 

You probably know that the difference between the JCL disposition paramet 
OLD and SHR Is that the first is used to prevent the scheduling of anothe"^ 
job that needs to use the dataset to which it applies, the idea being that 
you Intend to write into the dataset and it would be meaningless for anothe 
job to access the dataset while you are writing into It, whereas the seconr 
says that you don't intend to write in it and hence another job that also 
needs It, but not for writing, can be scheduled concurrently. By use of 
appropriate PL/I facilities to "synchronize" access, you actually can per
mit two jobs that update a given dataset to be safely scheduled toT^her-
that is, you can use DISP=SHR in both sets of JCL. This is accomplished' 
as follows. The facilities apply only to direct update files; they are to 
be used in the way described in both programs. 

Use the MgnsiXEjm When a READ statement is executed on an exclusive 
file the record involved (not the whole dataset) is "locked" so that 
another program cannot access it. If another program tries to, it will 
ust wait for the record to be unlocked. The record is unlock;d automat-
a :m'e: ̂"ddre"'̂  READ statement is followed up by a REWRITE or DELETE 

nitivelv ^f "^^,^"8 the same record, or when the file is closed. Alter
natively, If you decide after reading the record that you don't want to 

" ™ ^ C K " ; I L T ( F T C \ " ) V " " " " ' ' ^^^'^"""^ an^UNLOCK stateme^^, as In 
NOLOCK^; f? suppress the automatic locking that occurs on a READ, add the" 
features'arr ^ f ' ^ ^ statement. See LRM 191 through LRM 193. These 
features are not in the ANSI standard. We will see them again in Lesson 14. 

9.12. Conditions applicable to indexed and regional I/O. 

S i ° L ^ u r r n ^ : r a n " l l l L ° ke^f " f " T '^ ' - - ' ' ^ ' - ^ ^ ^ KEYFROM option. Some nfth! ̂ "''^^" '̂ ey value is presented in a KEY or 
Requested record havlL H ° T " '^"'^ °^ occurrence are as follows. 

Keyed sequentia1:X"l":ur:re:rr^"'' -^^^• 

Other^:::^:re"d Lll^e^'inl^ " ^ f ^ - ° " -
status is enabled; K^YcInn ,'b TuZT, '""Hi f ^ '"^ °^'^"'^ 
issue a message and raise ERROR "^^^^^^^^ Standard system action is to 
execution continues with tbf f' "°™^^ "t""^" f"̂ "" a KEY on unit, 
raised KEY. ^^ statement following the one whose execution 

9.13. Review 

To review all the remrH T/r, . 
LRM 190. Ignore all discuss!nn^T^^^"" statements, read LRM 186 through 
•nent Ignore the SET option! ™ ^ °P"°"- ^°^ ^^e READ state-
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9.14. Comparison to FORTRAN. 

The ability to read or write a given record identified by its relative 
record number, provided for regional(1) datasets, is roughly comparable to 
FORTRAN "direct-access" reads and writes. In FORTRAN, however, the records 
can be processed as unformatted data transfers or under format control; 
the latter option is not directly reflected in the PL/I capabilities. 

FORTRAN has no processing capability comparable to that provided in PL/I 
for indexed, regional(2), or regional(3) datasets. 

9.15. Unanswered ques t ions. 

In Lesson 10 we will see how the different causes of the KEY condition may 
be distinguished. 

9.16. Homework problems. 

(#9A) Why do you think the REWRITE statement uses the KEY option instead 
of the KEYFROM option? 

(#9B) State the distinction between the REWRITE statement and the WRITE 
statement. (We saw that the distinction was blurred in the case 
of regional(1) datasets.) 

(#9C) State the rule relating READ statements and REWRITE statements for 
sequential update files. 

(#9D) Is the following sequence permitted for sequential update files? 
If so, what does it mean? 

READ...INTO 
READ...IGNORE 
REWRITE...FROM. 

(#9E) Suppose no records have been added to an indexed dataset since its 
creation. Considering what the index is used for, how much I/O is 
involved in finding a record having a given recorded key, by direct 
access? Specifically, is it a fixed amount or does it depend on the 
size of the dataset? Answer the same question for regional(2) or 
regional(3) datasets (assume unique recorded keys). What can the 
system designer (programmer and data base designer) do to minimize 
the search time for regional(2) or regional(3) datasets? Can you 
see any realistic applications for these kinds of regional datasets? 
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(#9F) If you had a da tase t cons i s t i ng of f i x e d - l e n g t h unblocked reco d 
that in fact contained the c h a r a c t e r r e p r e s e n t a t i o n s of problem d 
(perhaps several per r e c o r d ) , what PL/I language fea tures could 
combine in order to s e l e c t these r eco rds in a r b i t r a r y order (b ^"i* 
a t lve record number) and yet s t i l l decode them under format control' 

(#9G) 

(//9H) 

Which condit ion, ENDFILE or KEY, do you th ink i s r a i sed by a 
READ...INTO...KEY statement on a keyed s e q u e n t i a l f i l e when In nn 
s i t ion lng ahead in key sequence to the record with the designated 
key, the end of f i l e i s encountered? aisnacea 

Recall problem //8B (s t imulus- response d a t a - b a s e ) . What advantages 
might Indexed organizat ion y i e ld? Discuss how you would use i t 
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10. (a) Builtin functions and pseudo-variables, 
(b) Interlanguage communication. 

10.1. Review of builtin functions and pseudo-variables. 

In the first three lessons we discussed a good many builtin functions, 
Euid some pseudo-variables, without saying too much about them. 

Builtin functions are functions that can be invoked for their returned 
value and which are provided by the language; that is, one need not 
code procedures to compute the desired function. An implementation 
may supplement those defined by the language. The function is supported 
either by in-line code or by a library routine. Builtin functions are 
provided for purposes of convenience to the programmer, or for common 
computational needs or because the compiler can generate better code, or 
sometimes because the function involved simply can't be expressed by the 
programmer using other language features. All of the builtin functions 
that we have seen so far take arguments; we will soon see others that 
don't. 

Pseudo-variables are similar in that references to them look just like 
function references. However, they don't denote a value. Instead, they 
denote a variable or a portion of a variable and in fact their use is as 
an cissignment target. The pseudo-variables generally have counterparts 
as builtin functions. For example, SUBSTR is both a pseudo-variable and 
a builtin function. A reference to SUBSTR means a substring of the 
string which is the first argument. When it is used as a builtin func
tion reference, the first argument may be an arbitrary expression, 
because the result of the reference to SUBSTR needs only to have a value 
that can be used in the context of the expression in which the SUBSTR 
reference is embedded. When it is used as a pseudo-variable reference, 
the first argument can only be a string variable, because the result of 
the reference to SUBSTR in this case needs to denote some "storage" to 
which a value may be assigned. 

10.2. Names of builtin functions and pseudo-variables. 

In all our examples so far we have used builtin functions and pseudo-
variables just by using their names in appropriately constructed syntac
tical function references. It has been tacitly assumed that the names 
do not appear in declarations of other objects. If they do, then any 
use of the name within its scope denotes the object declared, and not 
the builtin function or pseudo-variable. This means that you can use 
SIN as the name of a variable, for instance, and you can use LOG as the 
name of a procedure (internal or external) assuming these names were 
properly declared. However, within the scopes of their declarations, 
these names are not available to mean the builtin functions. 
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10.3. The BUILTIN attribute. 

The name of a builtin function which has been usurped for some other 
purpose may be restored to its original meaning, inside a nested 
block, by declaring it with the BUILTIN attribute. No other attributes 
except INTERNAL, can be used with it. Example: ' 

P: PROC; 
DCL INDEX FIXED BIN; 
INDEX = 0; 
BEGIN; 

DCL INDEX BUILTIN; 
I = I N D E X ( S , ' / * ' ) ; 

END; 
END; 

S L ^ " " ' * reference to INDEX (INDEX = 0;) i s a reference to a FIXED 

ffZ ] ^ p f K ^ - i . " ' % ' ^ " " ' * ' ' "^^ '^ ^ ^ ' '««i" block, is a reference to the INDEX buil tm function. 

or^vlriahl'^^'n "° ^"?li^^*i°"^ f°^ data type, e t c . ITiere are no values 
L B S N «; Z ' ^ " ^ ' ' ^ ' ' ^ ° . ^ ^ " "bu i l t in . " I t i s incorrect to declare 
Ŝ e Lm J94 ''^^"*^^^^'" "'^^'^ IS n°t the name of a bui l t in function. 

vilue havLrmavhe ' ° "^^"^ °^ ^ ' '^^^^i" ^""^ t i "" ^ ^ kind of "entiy" 
blurs t W i ^ t W t ' ?^"^^ properties. The current language, however, 
b u n u f L L S"N"SQR? ' ^ " ^ e t ' 1 " ^ ' """^f °' the^mathematic^l 
in the contevt nJ , ' ^ ' , ' ^^'^'^ ""̂ ^ ^e used as entry constants 
^n^the context of an argunent being associated with an ent^^ parameter, 

CALL F(SIN); 
CALL F(COS); 
F: PROC (Q); 

DCL Q ENTRY (FLOAT BIN (21)) 

Y . n r ^ ™ ^ ^ ^^^^^'^ BIN (21)); Q(X) 
END; 

See LRM 195. Tl,is limited fac i l i ty is not available in the ANSI standard. 

10.4. Parameterless built in functions and pseudo-variables. 

declare a kdltin^fiT^rt?^^^^'^ ^°^ ^^ reasons demonstrated above, to 
as follows. A refe^nre T ^ ^ c ? ^ ^^'^ ^ BUILTIN? Ilae reason is 
tion for the na^eloR? c . ^ ' * / ' ^^'^^^^' ^^ the absence of a declara-
^ reference t o ^ eS^^TTrX"'''''^^ ^^ ™>'*^"2 '^'^- ^^ ^^°^ ^' 
(as we saw in Lesson 41 T t ^ constant because they must be declared 
an undeclared identifier rtL^f^°^ ^^ ^ reference to an array because 
default. "ent i t ier cannot require the dimension a t t r ibute by 
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As we shall soon see, certain builtin functions and pseudo-variables 
do not take any arguments. A reference to one of them, when written 
without an argument list, would look like a reference to a simple 
variable, and we have seen that they acquire the attributes of an 
arithmetic variable by default. There is a potential conflict, then, 
when a name of a parameterless builtin function, such as TIME, is 
written by itself. In the absence of an explicit declaration for 
TIME, shall TIME by itself denote the TIME builtin function, or shall 
it be a FLOAT DECIMAL (6) variable? It must be the latter; a homework 
problem will help you understand vfliy. 

However, if we want TIME to mean the builtin function rather than a 
variable declared implicitly (with default attributes), then we may 
do one of two things. We may explicitly declare TIME as builtin, or 
we may write the builtin function reference as TIME(), i.e., with an 
argument list, albeit an empty one. The argument list puts us back 
in the situation of SQRT(X) which, we argued, cannot be anything but 
a builtin function reference. 

An enpty argument list may also be written after the name of a parameter
less entry to be invoked, as in 

FUNCTION: PROC RETURNS (CHAR(l)); 
RETURN (SUBSTR(S, I, 1)); 

END; 
T = FUNCTION 0; 

In the ANSI language you will be required to write an empty argument 
list to get FUNCTION invoked, although in the current language you are 
not. (Review the discussion in Section 6.8.). It is very good docu
mentary practice, in any event, to write an argument list (if only an 
empty one) with every function reference. 

10.5. Additional specific builtin functions and pseudo-variables. 

In Lesson 1 we examined all of the arithmetic builtin functions and 
mathematical builtin functions. In Lesson 2 we had most of the string-
handling builtin functions. In Lesson 3 we had some of the array-
handling builtin functions. 

Remaining string-handling bulltin-functions: 
STRING This effectively concatenates the elements of its aggregate 

argument, which must be an array or structure containing 
string elements. The result is a scalar value. It is as if 
a scalar string variable were string-overlay defined (Lesson 
3) on the argument. The STRING builtin function may also be 
used as a pseudo-variable. There are minor differences in 
the ANSI standard. 
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UNSPEC This effectively allows the storage occupied by i t s argument 
to be viewed as a b i t s t r ing. Since the storage required 
for a variable of a given data type is implementation-defined 
so is the length of the b i t s t r ing . UNSPEC is also a pseudo-' 
variable. Examples: 

DCL I FIXED BIN (31), 
X FLOAT BIN (21), 
U BIT (32); 

U = UNSPEC(I); The 32 b i t s occupied by I (in our 
implementation) are moved into U. 

U = UNSPEC(X); Ditto for X, i . e . , i t is interpreted 
as a b i t s tr ing of length 32. 

UNSPEC(X) = '0101110...OllO'B; 
Store the b i t pattern in X. 

UNSPEC(I) = UNSPEC(X); 
This moves the contents of X into I 
without conversion. The value of the 
floating point variable X can then be 
manipulated as if i t s internal representa
tion were an integer (by manipulating I 
instead). 

UNSPE(: gives you a legal, though inevitably implementation-
dependent, way of locking at the storage occupied by any 
variable through other a t t r ibutes . 

? f r ^ T , ^ ^^^^y-handling buil t in functions: 

P™D stT w " T ^""^^"^ '"'^ ^^^""^ ^"^ 5™ °f i t s elements. AW c ' returns the product. 
th^^An^r^.*'' ^'"' 'f ^^g™ent is an array of b i t strings and 
s c a i n - t ' ° ? ' ' l °g^ f 1 "or." The i-th b i t in the resulting 
a le tnVof ^ a f r a y I ' l ^"'^ °" '^ '' ^ ^ ^ ' ^ ^'' °^ - > ' 
Same as ANY except the operation is logical "and " ANY and 

? r e " g e n : ? I l ^ S % . \ - - - 3 X . essential ly . a . i . Also 

Details of the above may be found at LRM 18. 

SVthl'iSS-ail^^^ ' "^^ '''''' - -̂  "- -̂ '̂  to 
LRM 18. Aii-7;T^ggr^~^^S^J^iltin functions. See LRM 196 and 
pseudo-variables as wen? P " f ̂^erless builtin functions (some are 
interrupt in whose ou ,n.Lr ^""^ ^ ° " certain information about the 
referenced. ^ (or descendant block thereof) they are 

ANY 

ALL 

POLY 
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ONCODE Returns an in^jlementation-defined integer value specifying 
the cause of the interrupt. See LRM 197. Can be used, 
for instance, to determine whether a condition occurred 
naturally or was signaled or to distinguish between many 
different reasons for the occurrence of a condition. 

ONLCX: Returns, as a character string value, the name of the 
procedure in which the interrupt occurred (more precisely, 
the name of the entry point at which it was entered). 

ONFILE For an I/O condition, the name of the file. Though an on 
unit can be established separately for each file, making 
this determination unnecessary, should standard system 
action in the absence of such an on unit take you into an 
ERROR on unit, you would need ONFILE to determine the file 
on which the condition occurred. 

DATAFIELD The contents of the bad field that caused the NAME condition 
to occur (Lesson 7). Called ONFIELD in ANSI language. 

ONCOUNT See description in LRM 18 and LRM 198; also OPG 25. 
ONKEY The value of a bad key causing the KEY condition. 
ONSOURCE The contents of the bad character string value whose attempted 

conversion to something else failed, causing the CONVERSION 
condition. Can be used as a pseudo-variable in a CONV on unit 
to replace that bad string for purposes of recoveiy; the 
replacement value is used when the conversion is reattempted 
on nonnal return from the on unit (see Lessons 2 and 6). 

ONCHAR Denotes the single character (one of those in the string 
represented by ONSOURCE) which caused the conversion to fail. 
May be used as a pseudo-variable to replace the single 
character in a recovery attempt. 

Stream I/O builtin functions: 
COUNT The number of data items transmitted during the last GET or 

PUT operation on the specified file. 
LINENO The current line number of the specified print file. 

One of the storage control builtin functions (others will be discussed 
in Lesson iTJi 
7U.L0CATI0N The number of generations in the stack for the given controlled 

variable (see Lesson 5). 

Miscellaneous builtin functions: 
DATE Parameterless; returns the current date as an implementation-

defined character string value (YYMMDD in our system). 
TIME Similarly, the current time (HHMMSSnT; TTT is milliseconds) . 
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Others in ANSI (which have not been Previously mentioned): 
COLLATE Returns a character string value containing the character 
COLMib Ketu^^ ̂ ^ i^lementation's collating sequence. 
DOT Dot product of two vectors. 
PAGENO Like LINENO; returns the current page number of the 

specified print file. T V Ann 
SUBTRACT An arithmetic builtin function, liKe AJJU. 
VALID Tests whether a given computational value conforms to a 

given picture specification. Returns a BIT (1) result 
without raising the CONVERSION condition. 

Good news! The mathematical builtin functions which we remarked in 
Lesson 1 had been deleted in the ANSI standard are now back m ! 

10.6. Overview of interlanguage communication facilities. 

A natural question to ask is whether or not FORTRAN and PL/I routines 
can be intermixed. Can a routine written in one language invoke one 
written in the other? Clearly, if this were possible one could receive 
that much more value from his accumulation of FORTRAN subprograms, for 
instance. Or one might extend the usefulness of existing FORTRAN 
programs by having them interface with PL/I procedures to do update 
operations on datasets, say. 

All of this is possible--but only because certain facilities are 
specifically provided to meet these needs. These facilities deal with 
the impediments to free communication between languages. Some of these 
impediments are described below. 

The primary problem is that different languages generally have different 
fun-time environments. This is true in IBM systems but not, apparently, 
in Univac systems. The differences in environment involve, among other 
things: 

(a) the handling of hardware interrupts, such as overflow; 
(b) the addressing of arguments and parameters (arguments 

and parameters may be addressed on different sides of 
an interlanguage boundary); 

(c) the mapping of aggregates, such as arrays; 
(d) defined actions on program termination. 

TlielLC (interlanguage communication) facilities of the Checkout and 
L^timizmg compilers permit useful communication between PL/I, FORTRAN, 
SOTD^M'^?/^"^'*^'''" ™"tines. In this course we will study only 
FORTRAN-PL/I communication. The details of PL/I-Assembler communication 
are well covered m OPG 24 and CPG 23. 
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When communicating with FORTRAN, the main program may be of either 
C , ^ ™ M ^ ' ^®^® ^^® "° special requirements for the contents of the 
FUKIKAN routines; existing ones may be used with PL/I without recom
piling. All of the services required are performed by the PL/I 
system m accord with specifications made in the PL/I routines. 
See LRM 199. 

10.7. FORTRAN calling PL/I. 

An external PL/I procedure to be called by FORTRAN must use the OPTIONS 
option of the PROCEDURE statement to announce this fact. Example-

PLISUB: PROC(X,Y) RETURNS (FLOAT) 
OPTIONS (FORTRAN); 

OPTIONS (FORTRAN) may also be specified on an ENTRY statement of an 
external procedure. In fact, a procedure may have several different 
entry points, some to be entered from a FORTRAN routine and others from 
PL/i. Any given entry point cannot, unfortunately, be invoked equally 
well by both. H / 

If any of the parameters of a PL/I procedure called by FORTRAN are 
arrays, their bounds must be declared in the PL/I procedure as constants 
(unfortunately). Recall from Lesson 5 that the only form of "adjustable 
extent" permitted in parameter declarations is an "asterisk extent," 
denoting that the bounds are inherited from the actual argument 
Unfortunately, FORTRAN doesn't make that information available. Since 
PL/I won't allow expressions in declarations of parameters, the following 
FORTRAN-style" construction is not allowed: 

P: PROC (X,N) OPTIONS (FORTRAN); 
DCL X(N) FLOAT; 

Because arrays of more than one dimension are mapped differently in PL/I 
and FORTRAN (row-major order in PL/I and column-major in FORTRAN) one 
of the services provided by the OPTIONS(FORTRAN) specification is the 
remapping of an array (of more than one dimension) on entry and on return. 
That is, on entry to the PL/I procedure storage is acquired dynamically, 
the FORTRAN array is copied into it (in transposed order), and the copy 
is then used in the PL/I procedure. On return from the procedure the 
transposed copy of the array (which may have been the target of some 
assignments) is copied back into the actual FORTRAN array in the proper 
order, and the dynamic storage is released. Thus, the fact that arrays 
are mapped differently in our implementations of these two languages 
need not be a concern. 

However, the remapping of arrays can be "expensive" if they are large 
(extra storage requirements for the remapped copy) or if it occurs 
frequently (extra execution time for the copying). If these factors 
are important, the PL/I programmer has several options at his disposal 
to refine or control the services provided automatically. 
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First of all, if an array parameter is not changed by assignment in 
the PL/I procedure, the transposed copy need not be written back into 
the original FORTRAN array on return from PL/I. To suppress that, 
use the NOMAPOUT option of the OPTIONS option. ExaJiple: 

P- PROC (X,Y,Z) OFIIONS (FORTRAN NCMAPOUT(X,Z)) ; 
Alternatively, an array which is not assumed to have a value on input 
i.e., whose elements are not fetched in the PL/I procedure before 
being assigned values by it, does not have to have the remapped copy 
initialized with the elements of the FORTRAN array on entry. 
Specify this with the N(M\PIN option, e.g., 

P: PROC (X,Y,Z) OPTIONS (FOKl'RAN 
NCMAPOUT(X,Z) 
NQMAPIN(Y)); 

The programmer may also suppress entirely the creation of a copy 
(which saves space as well as time) if he is willing to reverse the 
order of subscript expressions in subscripted array references in the 
PL/I procedure. To do that, use the NOMAP option (syntax same as for 
previous options). Actually, the need to reverse the order of the 
subscript expressions can be avoided by the use of ISUB-defining 
(Lesson 3). 

See LRM 200 - LRM 204. 

10.8 PL/I calling FORTRAN. 

As with all external entry constants, the name of the FORTRAN routine 
must be declared as EXTERNAL ENTRY in the PL/I procedure (Lesson 4). 
To indicate that it is a FORTRAN, and not a PL/I, routine, the OPTIONS 
attribute is also used. Example: 

DCL C(M> ENTRY (FLOAT(*), FIXED BIN (31)) 
RETURNS (FLOAT) 
OPTIONS (FORTRAN) 
EXT; 

The OPTIONS attribute is much like the OPTIONS option. It can include 
the NOMAP, NCMAPIN, and NOMAPOUT options to control the automatic 
remapping of multidimensional arrays. The individual arguments to 
which these options apply are indicated in the way demonstrated below. 

DCL FORTSUB ENTRY ((*,*) FLOAT, (*,*) FLOAT ""^tratea oeiow. 

{*,*) FLOAT, (*,*) FLOAT) 
OPTIONS (FORTRAN 

N0MAPIN(ARG1) 
N0mP0UT(ARG4) 
N0MAP(ARG3)) 

EXT; 
With the above declaration, in a call such as 

CALL FORTSUB (A (*,*), B(*,*), C(* *) D(* *)V 
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invoking FORTSUB. The copies of B and D will be initialized to the 
transposes of B and D during this process, but A's will not be 
^"'•^^^^n^cl^^, ̂^ presumed to be an "output" argument); and on return 
trom FORTSUB the elements of the transposed copies of A and B will be 
assigned back to A and B, respectively, before the dynamic storage 
tor all the copies is released (D is assumed to be an "input" argument 
i.e., one whose elements are not changed by FORTSUB). 

An additional option can be used in the OPTIONS attribute. The INTER 
OEtion says that PL/I is to handle those interrupts not handled bTlhe 
other system (ones which would normally cause abnormal tennination). 
lZ\^^%T'^^ i^S, INITER specifies that PL/I will handle all interrupts. 
By Tiandle an interrupt" is meant the following: the chaETof active 
blocks will be searched for an established on unit. If one is found, 
it IS invoked; it may return nonnally to the point of interrupt or it 
may teminate by a GO TO out of block, as usual. If no established on 
unit IS found, standard system action is taken, as usual. 

See LRM 205 - LRM 207. 

10.9. Creation and destruction of other-language environments. 

When a call to an other-language routine is first made, the current 
run-time environment is set aside and the other-language environment 
IS created. When the other-language routine returns to its caller, 
the original environment is restored. However, the other-language 
environment is not discarded quite yet; it is just set aside. This 
IS done m anticipation of another call to the other-language routine 
(such a call may be inside a loop, for instance). If such a repeat 
call is made, the other-language environment is found to exist already 
so It only needs to be retrieved instead of created from scratch 
(which IS much cheaper). An other-language environment is not discarded 
entirely until the routine which invoked the other-language routine 
returns^to itŝ  caller. This is accomplished by a clever manipulation 
of the "save area" chain by the interlanguage communication modules of 
the PL/I library. It is illustrated below. 
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PL/1 

c a l l #3 

PL/I environment 
created here. 

return #1 call #4 

PL/I environment PL/I environment 
not destroyed. retrieved here 

(not created 
from scratch). 

FORTRAN 

, 1 ^ -• 

call #2 i 

return #3 

PL/1 environment 
discarded here. 

return #2 

PL/I environment 
not destroyed. 

j 

FORTRAN 

call #1 .return #4 

No PL/I routines 
beyond here. 
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??Lfnf'^T^^-f * ^ destruction of a language's environment is that 
is ?er^?n!^te/ ̂ J^ "" that environment are closed when the environment 
IS tenninated. Several things can be done to retain an other-language 
i Z [ v r " ' ' ° ' " longer time than the preceding diagram shows T e ' 
acHvIpi/r"'"^/^''^'"^^ boundaries. If, in the preceding diagram, an 
comint "No P^f'J^r^ exists somewhere in the chain of calls where Ihe 
norcrLtS l / l ^?V^'^^'.^^^°'"^ ̂ ^^^" i=' then the PL/I environment is 
a?"retu^ # ! ' . > " " ' ^i' '^ "^^^^^ retrieved) and it is not discarded 
of / P I / f ^ ' / ^^ ""^ discarded until the original or first caller 
ot a FL/I procedure returns to its caller. 

^ o S a m ^^'^fe,'" ^̂ '"""Strated by the following. Asstme the main 
l l t f ^ I ? ^ i ^^^^^ "^^^ ^ 'l™^ PL/I procedure which merely 
i T T . r l l / / ^l^]^''i ^ " establishes the PL/I environment; it is 
not discarded until the caller of the PL/I procedure, i.e., the FORTRAN 

Zlt.l?^"^' ""^1^'^^° ''I "^"^^ ^"'^i* i'̂  this c^e is'the operating 
system). Thus, the chain of calls subsequently initiated by the FORTRAN 
main program may cross language boundaries any number of times, at any 
depth, without destruction of the PL/I environment. 

See LRM 208. Read LRM 209 to review. LRM 210 contains a discussion 
otcommunicating via common storage ("named COMMON" in FORTRAN, STATIC 
nXlERNAL m PL/I). 

10.10. JCL considerations. 

It is recommended that you use PL/I cataloged procedures to link edit 
load, and execute mixed PL/I-FORTRAN programs. (These are discussed in 
Lesson 13 J You will need to make the FORTRAN library available to the 
linkage editor or loader whenever a PL/I procedure contains OPTIONS (FORTRAN) 

"POSTLIB =^^SYS ̂ '̂ ''"'̂ îf''®'̂  i^ ^y "=e °^ the symbolic parameter POSTLIB: 
Also, you will need to supply a DD statement for FT06F001 in the GO step 
even if the FORTRAN routines never write to unit 6, since one of the 
actions performed during creation of the FORTRAN environment is the 
opening of FT06F001. See OPG 25 and CPG 24. 

10.11. Homework problems. 

C#1QA) Explain what each of the following means 
B = SUBSTR(UNSPEC(X), 4, 2) 
B = UNSPEC(SUBSTR(S, 4, 2)) 

Are the following allowed? If so 
SUBSTR(UNSPEC(X), 4, 2) = B 

UNSPEC(SUBSTR(S, 4, 2)) = B 

what do they mean? 
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If you are having trouble deciding whether these are allowed, 
consider which of the following are allowed and which aren't. 
F G and H are user-defined functions. 

' SUBSTR(F(X), 4, 2) = B 
SUBSTR(S, G(A), 2) = B 
SUBSTR(S, 4, H(A)) = B 
UNSPEC (F(C)) = B; 

(#10B) In the notes we said an undeclared identifier cannot acquire 
the dimension attribute by default. Let's explore this further. 

Under what conditions are identifiers declared contextually? 
(Review LRM 71.) 

If A, B, and SIN are not explicitly declared in a program, are 
they contextually declared by their appearances in the following 
statement? If so, as what? 

A = B(l) + SIN(l); 
Is there any error here, i.e., will the compiler balk? 

Suppose the program contained a DEFAULT statement which specifies 
the dimension attribute as a default: 

DFT RANGE (*) (2) ; 
IVhen are defaults applied (in particular, before or after 
acquisition of attributes by context)? (Review LRM 72.) 
To which of A, B, and SIN would this default apply? Is the 
program now legal? 

Leave the DEFAULT statement in and consider the following 
What is the effect of the addition of the declaration 

DCL (A, B) ; 
to the program? Note that A and B are explicitly declared, 
but with no attributes. Do they acquire any attributes by 
context? By default? Is the program now legal? 

What happens if we also add the following' 
DCL SIN; 

Consider the program in any of its intermediate stages as it 
was developed above. If it was legal at a given stage, would 
Its meaning have changed if B were all of a sudden added to 
the language as the name of a builtin function? Is there any 
way a program can have its meaning changed by the addition of 
a builtin function? Comment on what might happen in FORTRAN 
It a new intrinsic function were added 
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(#10C) Comment on why TIME is not known as a builtin function in 
A = TIME; (no declarations) 

but i^ in 
A = TIMEQ; 

or 

(#10D) 

DCL TIME BUILTIN; 
A = TIME; 

During an atten̂ jt to add a keyed record to an indexed dataset 
using a direct update file and a WRITE...FROM...KEYFROM state
ment, the KEY condition may occur either because there is no 
space for the new record or because a record containing the 
specified key already exists. How can these cases be distinguished' 

'''""' '̂ ^"^ coS'SSV" ^"'"''''' ^"^"^* '̂"'°'''-'--
What happens when each of the following character string 
values undergoes oonversion to numeric? What is the final 
numeric result? 

12X3 
1X4Y 
12EF3 (tricky) 

What happens in the following? 
CDEFGH (very tricky) 

(Hint: how many digits can appear in an exponent field of a 
floating-point constant, in our inplementation?) 

(#10F) In Lesson 6 we remarked that 
IF A = B THEN ...; 

is illegal if A and B are arrays, because the comparison 
operator applied to arrays yields an array of BIT (1) results 
and the IF statement requires a scalar expression. Show how 
the ALL builtin function can be used to achieve the desired 
meaning m the IF statement. 

? 
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11. List processing and locate-mode I/O. 

11.1. Pointers. 

In this lesson we will encounter three new types of program-control data. 
The first of these is "pointer." 

A pointer value is an address of some variable. A pointer value must not 
be thought of as an integer; it cannot be used in the ways integers can be 
used. For instance, you cannot do arithmetic with it and you cannot write 
a pointer value out with stream output. 

''^^^ POINTER attribute is used to declare a pointer variable (usually called 
simply a pointer), i.e., a variable, the data type of whose possible values 
is pointer." The abbreviation of POINTER is PTR. Like other variables, 
pointers may be internal or external, of any storage class, aligned or un
aligned, parameters, defined on other pointers, arrays, structure base ele
ments. Initialized, etc. 

The ADDR builtin function. 

One way that pointer values may be "generated" is by reference to the 
ADDR builtin function (one of the storage-handling builtin functions). 
The argument of ADDR may be any variable reference (but it must denote a 
variable in connected storage). The result of the builtin function refer
ence is a pointer value which is the address of the argument. 
Examples: 

P: PROC (X) RECURSIVE; 
DCL X FIXED BIN (15); 
DCL Y FLOAT DEC (6) CTL; 
DCL Z CHAR (20) VAR AUTO; 
DCL A (15) CHAR (1) STATIC; 
DCL 1 S STATIC, 

2 T, 
2 U, 
3 V FIXED DEC (5,-2), 
3 W FLOAT BIN (100); 

ADDR(X) is the address of the actual argument associated with X In 
the current invocation of P. 

ADDR(Y) is the address of the current generation of the controlled 
variable Y, i.e., the one on top of the stack for Y. 

ADDR(Z) is the address of the generation of Z allocated on entry 
to the current invocation of A. 

ADDR(A) is the address of the whole array A. 
ADDR(A(3)) is the address of the third element of the array A. 
ADDR(A(I)) is the address of the I-th element of the array A. 
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ADDR(S) is the address of the structure S. 
ADDR(S U) is the address of the substructure U within S. 
ADDR(S.U.W) is the address of the structure base element S.U.W. 
ADDR(5) is illegal because the argument is not a variable. 

We will presently see the unique function pointer values serve. For the 
time being, note that they may be assigned to pointer variables and they 

may be compared for equality (as with all program-control data, only the 

comparison operators = and -•= are allowed). 

11.3. The BASED storage class and based variables. 

In Lesson 5 we saw three of the four storage classes, namely those des
cribed by the storage class attributes AUTOMATIC, STATIC, and CONTROLLED. 
We will now describe the remaining storage class, denoted by the BASED 
attribute. A variable having this storage class is called a based variable. 

The unique significance of based variables lies entirely in the meaning of 
a reference to one and in how they are allocated. 

To begin with, let's look at references to based variables ("based refer
ences"). Suppose we have a based variable B: 

DCL B FIXED BINARY (31) BASED; 
We may think of B as not having any storage of its own, i.e., not having 
a unique, assigned location. A reference to B nevertheless denotes a 
reference to a FIXED BINARY (31) ALIGNED variable residing somewhere. 
We are responsible for saying where. We do that by providing, with the 
written reference to B, a pointer-valued expression whose value is taken 
to be the address of B for that reference. The syntax, in general, is: 

pointer-expression -* based-variable 
A simple example is P -> B where P is a pointer variable. NOTE: The 
symbol "->•" appearing in these notes is represented in a PL/I program by 
a minus sign immediately followed by a "greater than" sign, i.e., "->". 

Let's examine this closely. We read it as "the B pointed to by P " It 
is a variable reference like any other: it denotes a location having a 
value understood in the context of certain attributes (FIXED BINARY (31) 
ALIGNED in this case). It may be used anywhere a variable reference is 
permitted, as in the following examples: 

P ^ B = P-»B + 1; 

IF P -* B > 0 THEN CALL F(C, P ->• B) • 
GET LIST (P -• B); ' 
DO P + B = 1 TO 10; 
A(P -• B) - C(P -• B) / 3; 

whlch'if the ! d r ^ " J' *""' ''""" "^""'^'i ^ ^ " P has been assigned a value 

t l T / l T V i t T l l l l : „ ^ ™ . f ™ _̂ 3̂ > ^'^-^^ variable. \he refer-ence P •* R T= 7 ^ i i , '"'^'^^ '•^^> ALIGNED ence P •> B is not legal unless this is so. Examples 
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DCL (E, F, G,) FIXED BIN (31); 
DCL AR (10) FIXED BIN (31); 
DCL 1 S, 

2 T FLOAT DEC (6); 
2 U FIXED BIN (31); 
Before P is assigned a value, a reference to P ->• B is illegal. 
P = ADDR(E); 

P -• B now denotes E, i.e., it is a reference to the storage "occu
pied by" E. 

P = ADDR(F); 
P -*• B now refers to the storage occupied by F. 
P = ADDR(AR(I)); 
P -̂ B now refers to the storage occupied by AR(I), i.e., by AR(i) if 

I had the value i when the address of AR(I) was taken. 
P = ADDR(S.U); 
P -»• B now refers to the storage occupied by S.U. 
P = ADDR(S.T); 
A reference to P ->• B is now illegal; we will examine why later. 

You can see from these examples that the location referenced in a based 
reference is determined by the current value of the pointer expression 
written with the reference. Actually, in all of the examples that ex
pression was merely a scalar pointer variable; we will see more general 
forms shortly. The thing to note is that the same pointer expression may 
have different values at different times, and thus a given based reference 
may denote different locations at different times. Example: 

DO P = ADDR(E), ADDR(AR(I)), ADDR(F); 
P->-B = P-»-B + l; 

END; 

This loop causes 1 to be added successively to the three FIXED BINARY (31) 
ALIGNED variables E, AR(I), and F. 

Of course, two different based references involving the same based variable 
may have different pointer expressions. Suppose P and Q were both pointer 
variables. Then P ̂ - B and Q ->• B denote FIXED BINARY (31) ALIGNED variables 
having potentially different locations. They would denote the same thing 
only if the values of P and Q were equal. Example: 

P = ADDR(E); 
Q = ADDR(F); 
p-i.B = P->B + Q-*-B; 

The effect of this is to add F to E. 

All of the pointer expressions shown so far have been simple scalar vari
ables. Slightly more complicated instances of variables used in based 
references are as follows: 

DCL P PTR STATIC; 
DCL Q PTR BASED; 
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DCL B ••• BASED; 

P ->• Q + B is read "the B pointed to by the Q pointed to by P. B is lo
cated by a pointer variable, as in the previous examples; however, 
that pointer variable, Q, is Itself based and is located by P. 

DCL R(10) PTR; 

R(I) •* B denotes the B pointed to by the I-th element of the pointer 

array R. 
DCL 1 PTRS, 

2 FIRST PTR, 
2 LAST PTR; 

PTRS.FIRST -* B denotes the B pointed to by PTRS.FIRST. 

Function procedures can return pointer values, i.e., you can write 

DCL SUB ENTRY (FIXED) RETURNS (PTR) EXT; 
SUB: PROC (I) RETURNS (PTR); 

RETURN (P); 

RETURN (ADDR(E)); 
etc. 

An example of a pointer expression which is not a pointer variable (pos
sibly subscripted or structure-qualified) is a function reference: 

SUB(J*K-2) ->• B^ 

Such a function reference may be a builtin function reference which returns 
a pointer value: 

ADDR(E) •* B. 
We conclude by saying that a pointer expression is either a pointer vari
able or a function reference; there are no "operators" that yield a pointer 
value as result. 

This discussion of based variables has served to show the uses of pointer 
values: they are used to "locate" based variables—that's all! 

The process of locating a based variable is called pointer qualification. 
All of our examples have been examples of explicit pointer qualification 
(in which the pointer expression used to locate the based variable is 
written explicitly as part of the based reference, using the pointer qual
ification symbol ^ ) . In another form. Implicit pointer qualification. 
the qualifying pointer expression is written as part of the BASED attribute 
and is omitted from the based reference, as in: 

DCL B FIXED BINARY (31) BASED (P) • 
P = ADDR(E); 
B = B + 1; 

P = ADDR(F); 
B = B + 1; 
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This causes 1 to be added first to E, then to F. The Implicit pointer 
qualification can be overridden on a particular based reference as in 

B = Q ->• B + 1; 

There is not much going for implicit pointer qualification. It is just a 
convenience feature that saves writing in certain cases. An unqualified 
based reference such as B fails to convey to the reader that the location 
of B is determined dynamically and is given by the value of an expression 
appearing elsewhere in the program. We thus recommend that explicit pointer 
qualification always be used. 

We must emphasize that a based variable, B, declared with data type attri
butes attr, can only be used to access storage belonging to a variable 
having the attributes attr. Thus, execution of the statement labeled L in 

DCL VI attrl; 
DCL V2 attrS BASED; 
DCL P PTR; 
P = ADDR(Vl); 
L: some reference to P -»• V2; 

is in error unless attrl and attr2 are the same, (attrl and attr2 need not 
be explicitly declared, as shown; they may, of course, be attributes acquired 
contextually or implicitly in the general case.) One slight exception to 
the requirement for matching of attributes is given later. 

As a consequence of the above rule, 
DCL VI FLOAT DEC (6); 
DCL V2 BIT (32) ALIGNED BASED; 
DCL P PTR; 
P = ADDR(Vl); 
DCL B32 BIT (32); 
L: B32 = P * V2; 

is illegal (execution of the statement labeled L is in error, even though a 
FLOAT DEC (6) variable occupies 32 bits in our implementation). It is just 
as illegal to look at storage through "different" attributes than the ones 
implied upon its allocation, using based variables, as it is with defined 
variables (see Lesson 3). The purpose of this is to guarantee that a legal 
program has the same meaning in all implementations. 

Now what does a based reference such as P -̂  B(I), where B is a based array, 
mean? This is read "the I-th element of the array B pointed to by P." That 
is, the value of P must be the address of an array having the same attributes 
as B (Including the dimension attribute). Note that it is the address of the 
whole array and not the address of the I-th element. Example: 

DCL B (10) FIXED BIN (31) BASED; 
DCL C FIXED BIN (31) BASED; 
DCL P PTR; 
DCL V (10) FIXED BIN (31); 
P = ADDR(V); 
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P ^ B is a reference to the whole array V. 
P ->• B(I) is a reference to V(I). 
P ^ C is illegal, because P does not point to a scalar FIXED BINARY (31) 

variable; it points to an array. 
P = ADDR(V(J)); ^ ̂  ^ , 
P •> C is now legal. It is a reference to V(J) - or, more precisely, 

VCJ'), where j was the value of J when the address of V(J) was taken. 
C has the same data type (and structuring) attributes as an element 
of V (that is, as what P point to), namely, scalar FIXED BINARY (31). 

P ->• B is illegal because P doesn't point to an array; it points to a 
scalar. 

P -̂  B(I) is illegal for the same reason. 

By the same token, P ->• S.T means "the T component of the structure S pointed 
to by P." P must have as value the address of a variable having the attri
butes (including structuring) of S. Example: 

DCL 1 S BASED, 
2 T FLOAT, 
2 U, 
3 V FIXED BIN (15), 
3 W CHAR (3); 

DCL 1 X LIKE S STATIC; 
DCL 1 Y LIKE S.U BASED; 
DCL P PTR; 
P = ADDR(X); 
P ->• S is a reference to X. 
P ->• S.U is a reference to X.U. 
P •* S.U.V is a reference to X.U.V. 
P -̂  Y is illegal, because the attributes of Y are not the same as what 

P points to, i.e., are not the same as those of X. 
P = ADDR(X.U); 
P ->• Y is now legal, since Y has the same attributes as what P points to, 

i.e., as X.U, namely, a structure consisting of a FIXED BIN (15) 
item followed by a CHAR(3) item, both one level removed from the 
parental level. 

Of what use is any of this? So far we have seen how variables that already 
exist, i.e., that have had storage allocated to them presumably as the result 
of a static, automatic, or controlled allocation, may be accessed through a 
similarly-structured based variable, which does not have any storage of its 
own (i.e., which serves only as a sort of template that can be moved around). 
But this doesn't provide much more facility than other techniques for looking 
at the same storage through different variables (e.g., through parameters or 
defined variables, neither of which has any storage of its own). 

The main use for based storage is a technique called "list processing" which 
utilizes certain things we haven't described yet (next section). But the 
lT3 ^^.,^^^ described so far form the basis of many "system program
ming applications when combined with something like "UNSPEC"-ing an absolute 
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integer value into a pointer variable to gain access to an absolute memory 
location not belonging" to a variable allocated during the execution of the 
fL/l program. That such applications are made Implementation-dependent by 
the use of UNSPEC is not objectionable because, after all, the "system" 
which IS the object of its processing is what defines the "implementation," 
in a sense. You do not require a program that accesses IBM OS control blocks, 
tor instance, to run on a Univac system. 

Any of the "illegal" uses of pointer qualification demonstrated above repre
sent violations of the ANSI standard. As with any such language violation, 
the meaning of the program in not defined by the language rules and an im
plementation may do what it wants. Three possible ways an implementation may 
react to a language violation are as follows: 

(a) Generate code which assumes no violation has occurred. This ap
proach leads to the most efficient program when, in fact, no vio
lation of language rules occurs. When one does, however, the 
result is often unpredictable. Sometimes it may be predictable 
and useful, and many technically Illegal (and potentially unex-
portable) programs are written on this basis. In any event, the 
result is not documented officially: you either hear about it 
from someone else, discover it by accident, discover it by looking 
at generated code, or assume something incorrect about the langu
age itself which turns out to be a property of the implementation 
and not the language. 

(b) Permit the violation and document the consequences. This is often 
done when those consequences are useful and consistent within an 
implementation, and when they don't change the meaning of a program 
which doesn't rely on them. This is called an "implementation 
extension." 

(c) Check for the violation and report an error. This differs from (b) 
in two respects: extra code is specifically generated (or executed) 
to detect violations; and when a violation is detected, no way is 
provided to extract a useful result from it. For Instance, an im
plementation may raise the ERROR condition in such an instance. 
Recall from Lesson 6 that there Is no way to return to the point of 
interrupt after ERROR is raised. 

With respect to illegal uses of pointers, the Optimizing compiler takes approach 
(a) and the Checkout compiler takes approach (c). 

It is time to catch up with references: read LRM 211 - LRM 215 and the entry 
for ADDR in LRM 18. 

Allocating based storage. 

A based variable can be used in another way: to allocate some storage dynam
ically. For example: 
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DCL B (10) FIXED BIN (31) BASED; 
DCL P PTR; 
ALLOCATE B SET (P); 

The ALLOCATE statement causes a generation of storage sufficient to hold a 
variable having the attributes of the based variable to be allocated, and it 
causes the address of that generation of storage to be assigned to the indicated 
pointer variable. Note that if the BASED attribute in the declaration of the 
based variable contains a reference to a pointer variable, the SET option of the 
ALLOCATE statement may be omitted; the address of the new generation is assigned 
to that pointer variable. Example: 

DCL X ... BASED (P); 
ALLOCATE X; 

Here, the address of the storage allocated dynamically is assigned to P. 

We saw in Lesson 5 how the ALLOCATE statement is used to allocate a new gen
eration of storage for a controlled variable. No address is returned. The 
previous generation is "stacked," and subsequent references to the controlled 
variable refer to its most recent generation. A FREE statement returns the 
storage belonging to the current generation and "unstacks" the previous one, 
making it current. 

When the ALLOCATE statement is used to allocate storage for a based variable, 
you are handed the address of the new generation. You use that subsequently 
to locate the storage for that generation. You may allocate multiple gener
ations. Providing you save their addresses in different pointer variables 
you will be able to access all of them (compare to controlled variables, where 
you can only access the most recent generation). Example: 

DCL B ... BASED; 
DCL (P,Q) PTR; 
ALLOCATE B SET (P), B SET (Q); 
P -̂  B = 1; 
Q ^ B = 2; 

p-t-B = P->-B/Q->-B; 

Note that if you are not careful you can easily lose track of storage allocated 
dynamically through a based variable. For example 

ALLOCATE B SET (P); 

ALLOCATE B SET (P); 
It is assumed that the value of P is not copied into any other pointer vari
able between these two statements. Then, the second allocation assigns a new 
value to P. You subsequently have no way of accessing the first allocation 
of B - or of recovering its storage. It is lost forever.' 
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The FREE statement is used to release storage acquired dynamically for a 
based variable (we saw it used in Lesson 5 for controlled variables). You 
have to qualify the generation of the based variable being freed, using either 
explicit or implicit pointer qualification. Example: 

FREE P ->• B; 
Clearly, you can free generations of based variables in any order; they are 
not required to be freed in the order of allocation, or the reverse of that, etc. 

Once a generation of storage has been allocated for a based variable, that 
storage bears no intimate relationship to that based variable. Any based 
variable having the same attributes (including structuring) may be used to 
access it (in conjunction with the appropriate pointer value). In this re
gard, the generation of storage is indistinguishable from that belonging to a 
non-based variable which happens to be accessed through a based variable and 
a pointer value obtained by taking the ADDR of the non-based variable as was 
demonstrated earlier in this lesson. Note, however, that the only kind of 
storage that can be freed by a FREE statement naming a based variable is 
storage that was allocated by an ALLOCATE statement for a similar based variable. 

In Lesson 5 we Said that initialization implied by the INITIAL attribute takes 
place upon allocation. This is, of course, true also for based variables. 

We have now seen two ways that new pointer values are generated: by reference 
to the ADDR builtin function and by allocation of a based variable. 

See LRM 216, LRM 217, and relevant parts of LRM 90. 

11.5. Adjustable extents for based variables. 

Based variables can have adjustable extents, that is, array bounds and string 
lengths given by the values of expressions appearing in their declarations. 
However, in the current language you must use another option in conjunction 
with these, and the items containing adjustable extents can furthermore only 
exist as members of a based structure. The additional option is called the 
REFER option. An example follows: 

DCL N FIXED BINARY (15); 
DCL 1 S BASED, 

2 L FIXED BIN (15), 
2 A (N REFER (S.L)) FLOAT; 

A is a one-dimensional array of FLOAT elements and is a member of the struc
ture S. On allocation of S, the upper bound of A is taken to be the value of 
N. That determines how much storage is allocated. That value is then auto
matically assigned to S.L in the newly allocated generation of S. On any 
subsequent reference to this generation of S, the element S.L is consulted 
to find the upper bound of S.A (if that is needed for anything). Clearly, 
you can freely assign values to S.L after allocation of S, but on any refer
ence to S.A (or an element thereof) the value of S.L must be what it was when 
S was allocated. In particular, S.L must have Its original value when S is 
freed. 
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For different allocations of S, N may have a different value. Thus, the 
different generations of S would contain arrays with different upper bounds. 
Each generation of S would contain the upper bound (in S.L) of its own com
ponent A. We call such structures self-defining data. 

A based structure declaration may contain any number of adjustable extents 
and REFER options. There are a few rules that guarantee that a structure can 
be "mapped" when a reference is made to it. For example, each refer object 
(the structure base element named in a REFER option) must precede the com
ponent whose declaration contains it. See LRM 218 through LRM 220. 

The REFER option exists in the same form in the ANSI standard. In addition, 
any extent may be given by an expression without the REFER option, and such 
an extent need not belong to a structure member. The expression is evaluated 
upon allocation and whenever necessary to "map" the variable to which it 
applies, subsequently; in the latter case it must give the same value as it 
did on allocation. Example: 

DCL N FIXED BIN; 
DCL A (N) FLOAT BASED; 
DCL (P,Q) PTR; 
N = some value (value 1); 
ALLOCATE A SET (P); 
N = some other value (value 2); 
ALLOCATE A SET (Q); 

On any reference to the generation of A located by P, N must have "value 1" 
and on any reference to Q -*• A it must have "value 2." 

11.6. List processing. 

The value of allocating multiple generations of a based variable is limited 
by your ability to store all the pointer values used to locate them. For 
instance, if you use an array of 100 elements to store pointer values, you 
can't keep track of more than 100 simultaneous generations, even though you 
could allocate more. 

The truly outstanding value of based variables and pointers is that the gen
erations of the based variables themselves can contain the pointer values 
used to access "related" generations. This is the essence of list processing. 
It is a way of organizing, allocating, manipulating, and referencing an 
unbounded amount of data related in some useful way (bounded only by the 
total amount of memory available). The relationships between data items (or 
organization Imposed on them) characterize certain logical properties of the 
data and define how you may access them. 

Such a collection of data items is called a list structure. To repeat: it 
is a collection of multiple generations of based variables in which each gen
eration is an aggregate which contains both problem-dependent data and pointer 
variables used to reach related generations. Initial entry into such a 
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collection is by means of a pointer value (or maybe several) held external 
to the collection itself. 

A list structure may take many forms. Some examples are pictorialized belc 
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Binary tree 
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In these diagrams we have used [̂ -̂ 1 to designate a unique pointer value which 
doesn't point to anything. Such a pointer value is returned by the NULL 
builtin function. See LRM 18. Even though NULL( ) is a function reference, 
it is permitted as an initial value for a static pointer variable, e.g., 

DCL P PTR STATIC INIT (NULL( )); 

The following example shows a procedure OBSERVE that maintains a list of the 
unique character string values that are presented to it along with a count 
Of the number of times each has been observed. The list is initially empty. 
The pointer variable HEAD gives access to the list. At all times entries in 
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the list are maintained in "sorted" order, so that we don't generally have 
to scan the whole list to determine that an entry Is not present. Study it 
carefully and convince yourself that the algorithm works in all these cases: 

(a) An entry is being added to an empty list. 
(b) An entry is being added before the first entry. 
(c) An entry is being added after the last entry. 
(d) An entry is being inserted between two existing entries. 

The special requirements of these cases are as follows (check that they are 
met) : 

(a) HEAD has to be made to point to the new entry. The new entry's 
NEXT component must be set to the null pointer value. 

(b) HEAD has to be made to point to the new entry. The new entry's 
NEXT component must be made to point to the previously first entry. 

(c) The last entry's NEXT component must be made to point to the new 
entry. The new entry's NEXT component must be set to the null 
pointer value. 

(d) The "previous" entry's NEXT component must be made to point to the 
new entry. The new entry's NEXT component must be made to point 
to the entry that was after the "previous" entry, i.e., to the 
"next" entry. 

OBSERVE: PROC (S); 
DCL S CHAR (10); 

DCL HEAD PTR STATIC EXT INIT (NULL( )); 
DCL 1 ENTRY BASED, 

2 NEXT PTR, 
2 T CHAR (10), 
2 COUNT FIXED BIN (15); 

DCL NEXT_FIELD PTR BASED; 
/* NEXT_FIELD IS A TEMPLATE GIVING ACCESS EITHER TO HEAD OR TO SOME 

ENTRY.NEXT */ 
DCL (P,Q,R) PTR STATIC; 
DCL (NOT_FOUND, SEARCHING) BIT (1); 

NOT_FOUND, SEARCHING = 'I'B; 
P = ADDR(HEAD); 

/* IF P STILL HAS THIS VALUE LATER, P -> NEXT_FIELD ACCESSES HEAD */ 
Q = HEAD; 

/* IF LIST IS EMPTY, Q HAS VALUE NULL ( ); OTHERWISE, IT POINTS TO 
FIRST ENTRY */ 

DO WHILE (NOT_FOUND & SEARCHING & Q "1 - NULL ( )); 
IF Q -»- ENTRY. T < S THEN DO; /*KEEf GO ING"*/ 

P = ADDR(Q ^ ENTRY.NEXT); 
I* REFERENCE TO P ̂  NEXT_FIELD 

LATER REFERENCES AN ENTRY.NEXT */ 
Q = Q -• ENTRY.NEXT; 

END; 
ELSE IF Q ->• ENTRY.T = S THEN /*FOUND IT*/ 

NOT_FOUND = 'O'B; 
ELSE SEARCHING = 'O'B; /*WENT BEYOND*/ 

END; 
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IF NOT FOUND THEN DO; 
R r Q; /*MAY HAVE VALUE NULL( ) */ 
ALLOCATE ENTRY SET (Q); 
Q * ENTRY.NEXT = R; /*CHAIN NEW TO RIGHT*/ 

Q ->• ENTRY.T = S; 
0 •* ENTRY.COUNT = 0; 

P •* NEXT_FIELD = Q; /*CHAIN LEFT TO NEW*/ 

END; 

Q + ENTRY.COUNT = Q ^ ENTRY.COUNT -I- 1; 

END; 

List structures may be employed in engineering applications to "model" so
phisticated physical systems, such as physical or chemical structures. The 
relationships between data items linked by pointers represent information in 
an abstract sense. Exploitation of this can lead to newer, more natural ways 
of processing information. See LRM 221 through LRM 222. 

11.7. Areas. 

One normally has no control over where in storage a based variable is allo
cated. Generations of based variables could be scattered all over storage. 
For certain operations you would like to draw a box around a particular list 
structure and then treat the whole list structure (i.e., the contents of the 
box) as a single object. It is possible to do essentially that, by restricting 
certain based allocations to a particular area of storage and treating that 
area as a whole object. 

For this purpose we introduce another program-control data type, "area." An 
area variable is declared with the AREA attribute, which includes an area size 
(which has an implementation-defined meaning; in our implementation, it is 
the number of bytes reserved for the area). Example: 

DCL A AREA (5000); 
This declares an area variable of size 5000 bytes (plus 16 more for control 
information). The "value" of an area variable is its contents, including 
the control information. 

Area variables may have any storage class, and Internal or external scope; 
they may be parameters, elements of arrays, elements of structures, etc. 
Because they can be of any storage class, they can even be based. 

The area size specification is the third and final type of "extent." (The 
other two were array bounds and string lengths.) Static area variables can 
have only constant extents (as is true of extents of any static variables). 
Area variables of the three dynamic storage classes can have their sizes 
given by expressions (for based areas in the current language, the REFER option 
must be used and the area must be a component of a structure). Area parameters 
may have an "asterisk extent" indicating inheritance of the extent from the 
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actual area argument (which may be different In different invocations). 

The main purpose of an area variable is to mark off an area of storage in
side which based allocations may be made. Generations of based variables 
in areas can also be freed. (We will see how to do these things later.) 
The system manages the space within an area; space which is freed can be 
allocated to something else. An area variable is automatically initialized 
to the "empty" state on allocation. 

Areas may be passed as arguments and returned as function values. They may 
be assigned to other area variables. They may serve as record variables in 
record transmission statements. Movement of an area value (by assignment, 
record I/O, etc.) consists of the mass movement of its contents and control 
information, preserving intact any list structures that happen to exist within 
it. More on this later. See LRM 223 and LRM 224. 

11.8. The EMPTY builtin function. 

The contents of an area variable may be reset to the initial, "empty" state 
by assigning the value of the EMPTY builtin function to it. This has the 
effect of freeing all the based generations Inside the area at once. See 
LRM 225 and the entry for EMPTY in LRM 18. 

11.9. Area assignment and the AREA condition. 

There is a certain point in each area beyond which no generations of based 
variables exist; beyond that point is free space. Up to that point is "used" 
space. Note that the used space may contain holes representing freed gener
ations (this space, like the free space at the end, is available for subse
quent allocations in the area). 

When an area value (i.e., the value of an area variable or a function ref
erence that returns an area value) is assigned to an area variable, only the 
used portion is copied to the target. The control information which is also 
moved identifies the portion of the area which is used. If the size of the 
target area is insufficient to contain the used portion of the area value 
being assigned, the AREA condition occurs. 

Default status for the AREA condition is enabled; it cannot be disabled. In 
the absence of an established on unit, standard system action is to issue a 
message and raise the ERROR condition. 

The AREA condition is one of the few for which a useful action is defined on 
normal return from an on unit. The target area reference is re-evaluated and 
the assignment is re-attempted. In other words, in an AREA on unit you may 
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free the target area and allocate a larger one, change the value of a sub

script used In the target area reference, or change the value of the pointer 

used to locate a based area target. See LRM 226 and the entry for AREA in 

LRM 116. 

11.10. Allocation in an area. 

To allocate a based variable inside an area, use the IN option of the 

ALLOCATE statement. 
ALLOCATE B IN (A) SET (P); 

Here, A is an area variable. The IN option is also used in the FREE state
ment to denote freeing in an area: 

FREE P ^ B IN (A); 

If an attempt at allocation in an area fails (because of insufficient free 
space) the AREA condition occurs. On normal return from an AREA on unit 
entered for this reason, the allocation is reattempted after re-evaluating 
the area named in the IN option (which presumably has been changed in the 
on unit). 

Question: If a list structure is built up in an area, the values of the 
pointer variables Involved will be absolute addresses of locations inside 
that area; what purpose, then, can area assignment serve? Even though the 
based variable generations are copied in such an assignment, none of the 
pointer values is changed. 

To overcome this problem we Introduce another type of program-control data 
item. 

11.11. Offsets. 

An "offset" value is an address relative to the start of the storage allo
cated to a particular area variable. An offset variable is a variable 
which can hold such a value. An example of a declaration of an offset 
variable is: 

DCL OFST OFFSET (A); 
where A is an area variable. 

Offset variables may be used essentially interchangeably with pointer vari
ables. Offset and pointer values may be converted into each other. Both 
kinds of variables are called, because of their use and their interchange-
ability, locator variables. 

When an offset variable is used to locate a based variable, either in expli
cit or Implicit locator qualification (generalizing now on the earlier term 
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"pointer qualification"), the offset value is implicitly converted to a 
pointer value by adding to it the address of the area named in its declaration. 

When a based allocation is made in an area, and the SET option names an off
set variable, the value assigned to the offset variable is the offset of the 
allocated generation relative to the area. (Actually, attention may focus 
on several different areas here: the one named in the IN option and the one 
named in the declaration of the offset variable. Furthermore, either of these 
may be omitted and still implied by various things. See LRM 227. However, 
to keep things simple assume both areas are the same.) 

By using the facilities described here, list structures built up within areas 
can be made totally relocatable, i.e.. they won't contain any absolute ad
dresses—only relative ones. Thus, the list structures retain their validity 
when area values are assigned, and when they are written out and later read 
back in (even if they are read in to a different location). Thus, whole list 
structures may be stored and retrieved very efficiently as records in record 
datasets. 

See LRM 228 through LRM 231. 

11.12. Explicit offset/pointer conversion. 

Besides the implicit offset to pointer conversion discussed already, that 
conversion may be forced explicitly using the POINTER builtin function. 
Suppose a based variable is allocated in area A and offset variable 0 is set 
to its offset in A. Suppose the area A is assigned to B. B now contains a 
generation of the based variable (call it Q) at the same offset as the one 
In A. 0 may be used to locate either the one in A or the one in B. If 0 
was declared as 

DCL 0 OFFSET (A); 
then 0 -»• Q locates the one in A because 0 undergoes implicit conversion to 
pointer relative to the area (A) with which it was declared. To locate the 
Q In B we may write 

P0INTER(0, B) -* Q 
or we may assign 0 to, say, M, declared as 

DCL M OFFSET (B); 
and then write 

M -<• Q . 

The OFFSET builtin function converts a pointer value to an offset relative 
to the given area. The pointer value must be an address within the area. 

See the relevant parts of LRM 18. 

1-1.13, Locate-mode I/O. 
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The kind of record I/O demonstrated in Lessons 8 and 9 is called move-mode I/O 
because data may be transferred, or moved, between buffers and variables in 
the program. (Buffers are used for blocked records and in other circumstances.) 
It is possible by using based variables to gain access to data right in the 
buffers. The technique is called locate-mode I/O because data is located di
rectly in the buffers and not moved between them and program variables. This 
constitutes a use of based variables entirely distinct from list processing or 
system programming. 

11.14. READ statement with the SET option. 

The INTO option of a READ statement may be replaced by the SET option in the 
case of a sequential, keyed or non-keyed, input or update file. The SET option 
contains a reference to a pointer variable, e.g., 

READ FILE (F) SET (P); 
The next record (or the desired record, in the case of a keyed file—i.e., 
when the KEY option is used) is read and left in the buffer (in the case of 
blocked records it was probably already there); its address is returned in 
the pointer variable. That pointer variable may be used to locate a based 
variable, the effect of which is to access the record right there in the buffer. 

In the current language the file must have the BUFFERED attribute. This 
attribute is not in the ANSI standard, and locate-mode I/O can be done with
out it. 

Once the next READ statement for the same file is executed, or if the file 
is closed, the pointer value obtained on the previous read may not be used 
to locate a based variable. This is because the contents of the buffer may 
have been changed by the subsequent read, or the buffer may have disappeared 
because of the file closing, 

READ...SET and READ... INTO may be intermixed on the same file (as well as 
READ...IGNORE), 

How do we know what based variable to use to look at a record in a buffer? 
The READ...SET, although it does generate a pointer value, is unlike the 
ALLOCATE statement and the ADDR builtin function because no attributes are 
implied for the storage whose address is being returned. If, in fact, 
different kinds of records can exist in the dataset, and if different based 
variables would be appropriate for the different records, then the program 
must anticipate what kind of record comes next and use the right based 
variable. It is illegal to use the "wrong" one because you might address 
storage outside the buffer, or get the wrong attributes for storage inside 
the buffer. The "right" based variable, of course, is one which has the 
same attributes and structuring as the variable from which the record was 
previously written. 
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One additional freedom is permitted to ease the burden of logically antic
ipating what kind of record comes next. The attributes of the based vari
able through which you access the record in the buffer only need to describe 
a head or initial portion of the record. I.e., if a record is really 
described by a structure such as 

DCL 1 SI BASED, 
2 CODE attr, 
2 . . . 

• > 
then it is legal to refer to that storage through a based variable declared 
as 

DCL 1 S2 BASED, 
2 CODE attr; 

In other words, the earlier rule that the attributes of the based variable 
must exactly match those of the generation of storage being accessed was 
too strong; they only need to match as far as they go. This permits the 
beginning of the record to be accessed through S2.C0DE. Depending on what 
is found there, you may then use the same pointer value with some other 
appropriate based variable to access the whole record. 

In other words, the structure mapping rules are guaranteed by the language 
to map a structure that matches the beginning of another structure exactly 
the same as the beginning of that other structure. 

See LRM 232 and LRM 233. 

Note that a REWRITE statement without the FROM option which follows a READ 
statement with the SET option is very efficient indeed; this is effectively 
a no-op. The whole buffer is eventually written back out to the dataset 
(as the result of executing one or more REWRITE statements for records in 
the buffer), but only after the whole buffer has been processed (i.e., when 
a subsequent read designates a record not in the buffer, or when the file 
is closed). 

11.15. The LOCATE statement. 

Locate-mode output Is performed by executing a LOCATE statement Instead of 
a WRITE statement. It applies to sequential output files which have the 
BUFFERED attribute. 

A statement such as 
LOCATE B FILE (F) SET (P); 

causes a generation of storage for the based variable B to be allocated in 
the next available slot in the buffer for file F. The address of that 
generation is returned in P. P may subsequently be used to address the 
record in the buffer by locating B, 
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Notice we said B is allocated in the buffer. That means that adjustable 
extents are evaluated at that time and any initializations specified by 
the declaration of B are carried out then. 

The generation of the based variable allocated in the buffer remains ac
cessible until the next execution of either a LOCATE statement or a WRITE 
statement for the same file, or until the file is closed. At that time 
(but not before) the buffer is eligible for transmission to the dataset. 

See LRM 234 through LRM 236. 

11.16. Review. 

New pointer values are "generated" by: 
(a) Reference to the ADDR builtin function. 
(b) Reference to the NULL builtin function. 
(c) By allocation of a based variable not in an area. 
(d) Locate-mode input (READ... SET) . 
(e) Locate-mode output (LOCATE). 
(f) Conversion from an offset value. 
(g) Record input operations (the value may not be valid). 

They are propagated by assignment. 
They may be used in the following ways: 

(a) To locate a generation of a based variable. 
(b) In equality comparison operations. 
(c) In record output operations. 

New offset values are "generated" by: 
(a) Allocation of a based variable in an area. 
(b) Conversion from a pointer value. 
(c) Record input operations (the value is valid) 

They are propagated by assignement. 
They may be used as follows: 

(a) To locate a generation of a based variable (after conversion to 
pointer) . 

(b) and (c): Same as for pointer. 

New area values are "generated" by: 

(a) Reference to the EMPTY builtin function. 

(b) Updating an area variable by allocating or freeing a based 
variable in it 

(c) Record input operations. 
They are propagated by assignment. 
They may be used as follows: 

(a) To localize a based allocation. 
(b) In record output operations. 
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11.17. Homework problems. 

(#11A) What simpler expression has the same value as ADDR(P ->• B)' 
As ADDR(X) ->• B? 

(#11B) In the statement labeled L, is the reference to the based variable 
B a reference to E or to F? 

DCL P PTR; 
DCL (E.F) ...; 
DCL B ... BASED (P); 
P = ADDR(E); 
BEGIN; 
DCL P PTR; 
P = ADDR(F); 
L: B = B + 1; 

END; 

(#110) What problems or errors do you see here? Assume appropriate 
declarations. 

(a) DO I = 1 TO 10; 
ALLOCATE X SET (P); 
P ^ X = A(I); 

END; 
DO I = 10 TO 1 BY -1; 

B(ll - I) = P -̂  X; 
FREE P •* X; 

END; 

(b) DCL S FLOAT STATIC, 
T FLOAT BASED; 

P = ADDR(S); 
ALLOCATE T SET (Q); 
Q ->• T = 20: 
p-j-T = 35*Q->-T; 
FREE Q -»• T, P ->• T; 

(#11D) What does the compiled code have to do on any reference to P ->• S.U 
with S declared as follows? 

DCL 1 S BASED, 
2 N FIXED BIN, 
2 T (K REFER (S.N)) FLOAT, 
2 U CHAR (1); 

Why is the following not permitted? 
DCL 1 S BASED, 

2 T (K REFER (S.N)) FLOAT, 
2 N FIXED BIN, 
2 U CHAR (1); 
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(#11E) Contrast based and defined variables. 

(#11F) What do the following mean? 
GO TO P ->• L; 
CALL P ^ Q; 

(#11G) Recall the example of the procedure OBSERVE in Section 11.6. A 

typical realization of this procedure frequently omits the based 

variable NEXT FIELD and replaces two statements with others, as 

follows: 
P = ADDR(Q •* ENTRY.NEXT); 

by P - Q; 
and P -> NEXT_FIELD = Q 
by P -> ENTRY.NEXT = Q; 

Under the Optimizing compiler the modified program works and has 
the desired effect. In fact, it generates the same code as the 
one in Section 11.6. However, it is technically illegal, and won't 
get past the Checkout compiler. Why is it illegal? Hint: When 
control reaches the modified statement 

P -•• ENTRY.NEXT = Q; 
the first time, i.e., when the first entry is being added to the 
(currently empty) list, to what does P really point? I.e., what 
are the attributes of the generation of storage to which P points? 
Are these the same as those of the based variable located by P? 
Would the modified program work if NEXT were the second or third 
component of ENTRY instead of the first? What about the original 
program? 

(#HH) Suppose a call has just been made to OBSERVE. P and Q are left 
pointing into the list. When the next call is made to OBSERVE, 
they will be initialized to new values in preparation for a new 
traversal of the list. However, if the new character string value 
presented on that call collates higher than the one in the entry 
to which Q was left pointing, resetting P and Q turns out to be 
wasteful. Modify OBSERVE to do an initial test of Q -̂  ENTRY.T 
against S, and avoid resetting P and Q when that is unnecessary. 
Make sure this works the first time OBSERVE is entered (what will 
Q be pointing to then?). 

P and Q have already been declared STATIC anticipating this change. 
The original program did not require that. 

(#111) Write a procedure to traverse the list built by repeated calls to 
OBSERVE. At each entry, print ENTRY.T and ENTRY.COUNT. Free the 
entry before going on to the next one. 
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Code the loop using a WHILE-only DO group, i.e., DO WHILE (...); 
Then try to code the loop using the DO...REPEAT of the ANSIlan-
guage (see Section 6.5). The form will be something like 

DO Q = Initval REPEAT (nextval) WHILE (cond); 
What common, potential error is avoided by using this form? 

(#11J) Suppose you have a card-image dataset containing a source program. 
Sequence information exists in columns 73-80, but is has been 
corrupted. Write a program that updates the dataset by replacing 
the contents of the sequence field of successive cards by 00000010, 
00000020, etc. Use a sequential update file, READ...SET, and 
REWRITE without FROM. Comment on the amount of physical I/O per
formed. The based variable used to access a card in the buffer 
should be a structure. Consecutive sequence numbers can be gen
erated conveniently by using a numeric picture variable (see Lesson 2), 

(#11K) The technique demonstrated in Section 11.14 for decoding a record 
whose address has been supplied by a READ...SET can be avoided if 
the "record type code" for a record is kept in the previous record. 
Then, every access to a given record can be made by using the cor
rect based variable. (The program has to have some convention a-
bout the first record, however.) 

Let us focus on the creation of such a dataset, i.e., one in which 
each record contains information about the "type" of the next record 
in sequence. Suppose that a program which writes such a dataset 
cannot know the type of a record to be produced until it is finished 
producing the previous one. What feature of locate-mode output 
(LOCATE) permits the "type" of the next record to be put in the 
previous record after It is logically completed? 

(#11L) Consider the use of a based self-defining structure to represent 
character string data of fixed, but adjustable, length. Different 
generations of the based variable will contain character string 
values of different lengths. What advantage is gained by repre
senting the data this way. Instead of using a based varying-length 
string with a fixed maximum length? Show a suitable declaration of 
of such a structure. Write a procedure which accepts a pair of 
pointers to two generations of such a based variable, allocates a 
third whose character string part contains the concatenation of 
their character string parts, frees the two generations, and returns 
a pointer to the new generation. 
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12. (a) Miscellaneous features, 
(b) Preprocessor. 

This lesson deals almost exclusively with useful features of our 
implementation which have not been standardized by ANSI. 

12.1. DISPLAY statement. 

T*̂ ^ DISPLAY statement allows communication with the operator 
in the form 

DISPLAY [expr); 
the value of expr is converted (if necessary) to character 
and written on the operator's console. 

In our environment messages to the operator are not 
encouraged and really serve no useful purpose. However, 
they are copied to a job's SYSMSG output, which may be use
ful. It is probably a good idea, for instance, to open 
file SYSPRINT explicitly very early in the execution of a 
program just to know that it is definitely "available" for 
program output and system error messages. Before opening 
the file, an UNDEFINEDFILE on unit should be established 
for SYSPRINT. If this on unit should be entered it means 
there is no way the system will be able to deliver PL/I 
error messages to the user in the normal way. The on unit 
can explain that to the user, via SYSMSG, by executing some 
DISPLAY statements. (The operator probably won't even 
notice . . .) 

By using the REPLY option on the DISPLAY statement, the 
program will print a message to the operator, then wait 
for his reply. The reply, when issued, is assigned to the 
character string variable named in the REPLY option. You 
should not use this form here without submitting special 
instructions with your job; even then, you cannot count 
on the operator remaining free enough to notice your mess
age and reply to it in a timely fashion. You are charged 
for the WAIT time accrued while waiting for the reply. 

See LRIl 237. 



12-2 

12.2. FETCH and RELEASE statements. 

An external procedure link edited into a program occupies 
core storage for the duration of the program's execution, 
even if it is rarely (or, in the extreme case, never) 
invoked. Better use of core storage can often be made 
either by employing overlay structures in the load module 
(see OPG 26 and CPG 25) or by using FETCH and RELEASE 
statements. 

An external procedure named in a FETCH or RELEASE statement 
is not link edited in with the rest of the program (no 
external reference is generated). Rather, it is loaded 
into core on execution of a FETCH statement and deleted on 
execution of a RELEASE statement. Execution of a CALL state
ment naming the procedure causes it to be loaded before being 
invoked if it is not already in core. 

"Fetchable" external procedures must be declared with the 
attributes ENTRY EXTERNAL like any other external procedures. 
They are known as fetchable procedures by virtue of the 
appearance of their names in FETCH or RELEASE statements, 
or both. The entry names appearing in these statements must 
be entry constants; they cannot be entry variables. The 
facility is very limited and has many restrictions. See 
LRM 238 through LRM 241. JCL considerations will be dis
cussed in Lesson 13. 

12.3. PLIRETC builtin procedure. 

PLIRETC is the first of several builtin procedures defined 
by this implementation. A builtin procedure is like a 
builtin function except that it is invoked by a CALL state
ment. Its name is known to the compiler and generally 
doesn't have to be declared. See Lesson 10. 

The PLIRETC builtin procedure allows you to set a step 
return code which can be tested in JCL to determine whether 
a succeeding job step should be executed or bypassed. For 
instance, 

CALL PLIRETC(8); 
sets a step return code, or completion code, of 8. The user 
must restrict himself to codes between 1 and 999. If a job 
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terminates abnormally (see the discussion in Section 6 9) 
a return code of 1000 or 2000 will be added to the value 
set by the programmer. If the environment becomes hope
lessly destroyed, a code of 4000 or higher, signifying 
total disaster, will be returned. See CPG 3 and OPG 3 
also CPG 26 and OPG 27. if a job terminates normally and 
the programmer has not set a return code, 0 is returned. 

12.4. PLISRTx builtin procedures. 

This implementation also provides direct and dynamic access 
to the system SORT utility via four builtin procedures, 
PLISRTA through PLISRTD. These are completely described 
in CPG 2 7 and OPG 28. 

12.5. Other facilities. 

This implementation has builtin procedures for access to 
the system Checkpoint/Restart facilities, but these are not 
implemented in our system. 

Other facilities useful primarily in debugging will be des
cribed in Lesson 13. 

12.6. The preprocessor. 

IBM's PL/I has always had a preprocessor or compile-time 
facility that allows the programmer to write macros, arrange 
for text substitutions in his source program during compila
tion, compile certain parts of the program conditionally, 
etc. Perhaps due to some of the inadequacies of the pre
processor, the rest of the world has not considered it to 
be a part of PL/I. Other vendors have not implemented it, 
and it is not in the ANSI standard. 

The compile-time facility is not invoked unless certain 
compiler options, discussed in Lesson 13, are elected. We 
will assume in this lesson that the necessary options have 
been turned on. 
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The preprocessor can be used advantageously for simple 
purposes such as systematic changing of identifiers, p 
purposes sucn as sYsi-t=i"a'-J->- ̂ n̂ .̂.̂ .̂.̂  -- . t-
„,»fô i.7ation of a nroqram, and introduction of personal 

para-

me abbreviations, or for more advanced purposes, such as the 
wholesale mechanical generation or derivation of programs 
from minimal specifications. 

See LRM 242. 

12.7. The preprocessor scan. 

The preprocessor, when invoked, "works on" the source pro
gram before the compiler proper sees it. The output of the 
preprocessor is what gets compiled. 

The preprocessor scans the source program for preprocessor 
statements, which are executed when they are encountered 
and not transmitted to the output, and "active" identifiers, 
which are replaced in the output by some replacement text. 
Any part of the source program scanned in this process which 
is not a preprocessor statement or an active identifier is 
carried through intact to the output. 

Every preprocessor statement starts with a percent sign (%) 
and ends with a semicolon. Each preprocessor statement 
type has, furthermore, a particular syntax. In other words, 
once the preprocessor encounters a % in its scan, what fol
lows up to the next semicolon must be a syntactically valid 
preprocessor statement. Outside of preprocessor statements, 
however, anything goes. The text outside of preprocessor 
statements is "atomized" into identifiers, constants, com
ments, parentheses, commas, and "everything else," but that 
is all; in other words, these atoms need not (at this stage) 
be related by any higher level syntax. The sole purpose of 
this atomization is to be able to detect active identifiers 
and preprocessor statements without confusing them with 
parts of constants (e.g., the E in 5E-03 will never be taken 
for an active identifier) or with the contents of character 
string constants or comments. See LRM 243. 

12.8. %DECLARE statement. 

Initially, identifiers in the source program are inactive 
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and thus not subject to replacement. when the preprocessor 
are activated!' ̂  ig^CLARE statement, the named identifiers 

^nr^«^n^ identifier, declared in a %DECLARE statement, 
anon^r ^ preprocessor variable. When it appears subse
quently in source text outside of preprocessor statements 
„ = i,f ""t"^^^ ^ "-̂ ^ vH^r. The mechanism for assigning 
values to preprocessor variables will be shown shortly. 

Preprocessor variables make take on integer numeric or 
character string values only. The %DECLARE statement, in 
addition to activating an identifier as a preprocessor 
variable, assigns it some attributes used to describe the 
Kinds of values it may acquire. The two kinds of values are 
respectively declared by the FIXED and CHARACTER attributes 
No other attributes may be included. A FIXED preprocessor 
variable behaves like a FIXED DECIMAL (5,0) PL/I variable; 
a CHARACTER preprocessor variable behaves like a CHARACTER 
VARYING PL/I variable with no maximum length. %DECLARE 
statements can be used to declare certain other objects, 
too, as we will see later. See LRM 244. 

12.9. % assignment statement. 

The preprocessor assignment statement is used to assign a 
value to a preprocessor variable. The form is 

% variable = expression; 
The expression cannot have the full generality of PL/I 
expressions. Its operands can be only preprocessor vari
ables, preprocessor function references (see below), decimal 
integer constants, string constants, and certain builtin 
function references. The exponentiation operator is not 
allowed. The operands of arithmetic operators are con
verted, if necessary, to FIXED DECIMAL (5,0). All arith
metic is performed in this precision; note, therefore, 
that division behaves more like FORTRAN integer division 
than regular PL/I fixed-point division. 

The expression, called a preprocessor expression, is evalu
ated and its value is assigned to the variable whenever 
the preprocessor scan encounters the % assignment statement. 
See LRM 245 and LRM 246. 
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« 4-̂  t-h=A- this is a preprocessor statement, hence no 
repLcement activi?y^s\riggered by the appearance of 
an active identifier in it. The identifier is used in 
the way dictated by the particular preprocessor statement. 

12.10. Rescanning and replacement. 

When an active identifier which is the name of a prepro
cessor variable is encountered outside of preprocessor 
statements during the preprocessor scan, it is removed from 
the source text and its current value replaces it in the 
output If the preprocessor variable has the FIXED attri
bute, its value is converted from FIXED DECIMAL (5,0) to 
CHAR (8) for this purpose. 

Before the replacement value is placed into the output it 
is, in general, first rescanned for other possible active 
identifiers. Replacement of them, and rescanning, 
continues until no further active identifiers remain in 
the value; it is then placed in the output text. The re
scanning of the replacement value of an active identifier 
can be suppressed, as explained below. 

Example: 
% DCL 
% A = 

% B = 
X 

after 
initial 

replacement 

X 

after 
rescanning 

A CHAR, 
'C+B'; 

9; 
A+E; 

C+B+E; 

C+ 

i FIXED: 
The value of A is now the 
3-character string C+B. 
The value of B is now 9. 
This text lies outside of pre
processor statements. The 
identifier A is active. It is 
removed and replaced by its 
replacement value, which is then 
rescanned. 
The replacement value, C+B, con
tains an active identifier, B. 
It is removed and replaced by 
its replacement value, which is 
converted to CHAR (8) for this 
purpose. 

,9+E; The final result is as shown. 

Had B been declared as CHAR instead of FIXED, and had its 
value been assigned by 

% B = ' 9 ' ; 
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then the final result would have been 
X = C+9+E; 

12.11. % DEACTIVATE statement. 

"^^^ % DEACTIVATE statement (abbreviated % DEACT) makes a 
preprocessor variable inactive. when its name is encoun
tered subsequently, no replacement activity occurs. The 
SerLSl^24r^^"' ^^' ''̂ '̂'̂ ' ''̂ '̂ "̂̂ ^ i^ ""̂ y ^^ reactivated. 

12.12. % ACTIVATE statement. 

When the preprocessor scan encounters a % ACTIVATE statement 
(abbreviated % ACT), the identifier is again activated for 
replacement. One of two options, RESCAN and NORESCAN, may 
be included. The RESCAN option (which is the default if 
both are omitted) specifies that the replacement value of 
the active identifier is to be rescanned for possible addi
tional replacement activity before being placed in the out
put. This is also the behavior described above for identi
fiers initially activated by the % DECLARE statement. The 
NORESCAN option says that the replacement value is to be 
placed in the output text without rescanning for further 
possible replacements. 

Example: 

yields 

The "expansion" of 
% 
% 
% 

% 

% 

DCL (A,B) CHAR; 
A = •C+B'; 
B = 'D'; 
X = A+E; 
DEACT A; 
X = A+E; 
ACT A NORESCAN; 
X = A+E; 

X = C+D+E; 
X = A+E; 
X = C+B+E; 

See LRM 248 through LRM 250. 
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12.13. % IF statement. 

The % IF statement has one of the forms 
% IF preprocessor-expr % THEN true-part; 

or 
% IF preprocessor-expr % THEN true-part; 
% ELSE false-part; 

The true-part and false-part must be single preprocessor 
statements or preprocessor DO groups (see below). 

The preprocessor-expr, which is just like an expression 
on the right-hand side of a % assignment statement, is 
evaluated and converted to a bit string. The bit string 
is interpreted as "true" or "false" in the same way as for 
normal PL/I IF statements (see Lesson 6.) The preprocessor 
scan resumes at the true-part , or the false-part , or the 
text after the true-part if the expression is false and 
there is no % ELSE clause. 

Examples: 
IF A=B+1 % THEN % A=A-1; 
IF B<C&C=D % THEN 
% IF WORD = 'STOP' % THEN % WORD = ' ' ; 
% ELSE % WORD = WORD I I NEXT; 

See LRM 251 and LRM 252. 

12.14. % DO statement. 

Preprocessor DO groups may be of the non-iterative kind, 
% DO; ...; % END; or the iterative kind. In the latter 
case only the controlled, or indexed, type of group with 
one specification is allowed. 

The non-iterative preprocessor DO group is particularly 
useful with % IF statements. The contents of the DO group 
may be a mixture of preprocessor statements and non-
preprocessor text. 

Example: 
% IF TYPE = 'TEST' % THEN % DO; 

PUT FILE (SYSPRINT) DATA (X,Y,Z); 
% END; 
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As a result of the above, the PUT statement is 
generated in the source program if the preprocessor 
variable TYPE has the value TEST 

% DCL (I,J) FIXED; 
% DO I = 1 TO 5; 
% J = 2*1 + 5; 
A(I) = B(J); 

% END; 
This generates: 
A( 1) = B( 
A( 2) = B( 
A( 3) = B( 
A( 4) = B( 
A( 5) = B( 

7) 
9) 

11) 
13) 
15) 

See LRM 253 and LRM 254. 

12.15. % GO TO statement. 

"^^^ preprocessor GO TO statement causes the preprocessor 
scan to be resumed from a different point in the source 
program. 

Any preprocessor statement may have a label. The label, 
and its following colon, are placed between the percent' 
sign and the statement keyword. E.g. , 

% LAB: A = B; 
% LABI: IF A < B % THEN % GO TO LAB; 

See LRM 2 55 and LRM 2 56. 

12.16. % null statement. 

The preprocessor null statement, which looks like 
%; 

can be used to match nested % ELSE clauses against the 
proper % IF, as in 

% IF ... % THEN 
% IF ... % THEN ...; 
% ELSE %; 

% ELSE ...; 
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It can also be used to insert a label anywhere to serve 
as the target of a preprocessor GO TO statement. Example: 

% DCL I FIXED; 
% I = 0; 
% L: ; 

% IF I < 10 % THEN ^ (X) TO L; 

See LRM 257 and LRM 258. 

12.17. Preprocessor procedures. 

The preprocessor features we have seen so far allow for 
simple calculations, simple replacement of identifiers, 
and conditional or unconditional redirection of the pre
processor scan. Preprocessor procedures permit more complex 
flow patterns to be set up during the preprocessor scan, 
and they allow functions of arguments to be computed during 
compilation. 

A preprocessor procedure is like a normal function procedure, 
but it can be invoked only at compile time. Both the 
PROCEDURE statement and matching END statement must be 
marked by leading percent signs. Statements in the body 
of the procedure are interpreted as preprocessor statements 
but their percent signs are omitted. Only the statements 
described above can be used in preprocessor procedures, 
plus the RETURN statement. Preprocessor procedures may 
not be nested. 

Declarations made inside a preprocessor procedure obey 
the normal scope rules for internal names, i.e., the items 
declared are not known outside the procedure. Variables 
declared in a preprocessor procedure behave as if they 
had static storage class; that is, they retain their 
former value across invocations of the procedure. A pre
processor procedure may also reference preprocessor vari
ables declared outside the procedure (their scope is the 
whole source program, except preprocessor procedures in 
which they are redeclared). 

A preprocessor procedure must return a value (which may 
be of type FIXED or type CHAR). Therefore: 
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The PROCEDURE statement must include 
RETURNS(FIXED) or RETURNS(CHAR) 

The procedure can only be invoked by a function 
reference. 

It must execute a RETURN statement containing 
an expression for the returned value 

The parameters of a preprocessor procedure are declared, 
to^no^ ^ K P^°^^'^"^e, in the normal way. It is interesting 
to note that the number of arguments supplied in an invoca
tion of a preprocessor procedure need not match the number 
Of Its parameters. Excess arguments are ignored; excess 
parameters are initialized to 0 or the null string depend
ing on their attributes (FIXED or CHAR, respectively)" 

A preprocessor procedure may be invoked either from a pre
processor statement (in which its name appears in a function 
reterence in a preprocessor expression) or from non-
preprocessor text. We will examine these cases separately. 

When a preprocessor procedure is invoked from a function 
reference m a preprocessor expression in a preprocessor 
statement, the association of arguments and parameters 
occurs in the normal way, and the returned value is used 
in the normal way in the preprocessor expression. The 
arguments in the function reference must all be preprocessor 
expressions. Dummy arguments are created, as usual, if con
version is required to match the data type of the argument 
to that of the parameter. 

Example: 
% DCL (A,B,C) FIXED; 
% P: PROC (X,Y) RETURNS (FIXED); 

DCL (X,Y) FIXED; 
IF X >= 0 THEN Y = B - 1; 
RETURN (Y*X - A); 

% END; 
A 
B 
C 
A 
A 

= 
= 
= 
= 
= 

3 ; 
8 ; 
1 0 ; 
B + 
B + 

P ( A + 1 , 
P ( A - 4 0 

C ) ; 
, C) ; 

On the first invocation of P, the parameters X and Y have 
the values 4 and 10. The IF statement references B, 
declared outside of P; it sets Y (and hence C) to B-1, 
i.e., 7. The RETURN statement also references a variable, 
A, declared outside of P. It returns the value 7*4-3, or' 
25. The % assignment statement that invoked P thus assigns 
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8 + 2 5 or 33, to A. A, B, and C now have values 33, 8, 
and 7 ' On the second invocation of P, X and Y have values 
-7 and 7. Y, and thus C, are not altered further by the 
IF statement. The value returned is 7*(-7)-(-7), or -42. 
The final values of A, B, and C are thus -34, 8, and 7. 

Somewhat different rules apply to the invocation of a 
preprocessor procedure when its name appears with an 
argument list as a function reference in non-preprocessor 
text. The general idea is that the returned value replaces 
the function reference. However, this replacement activity 
only occurs if the procedure name is active. Preprocessor 
procedure names are activated by their appearance, during 
the preprocessor scan, in a % DECLARE statement with the 
ENTRY attribute, or by their appearance in a % ACTIVATE 
statement. The concept of rescanning applies to replace
ment values of preprocessor procedure references just like 
it does to replacement values of preprocessor variables. 
The % DEACTIVATE statement is used to prevent the name of 
a preprocessor procedure from initiating replacement activity 
in non-preprocessor text; the procedure is not even invoked 
when it is inactive. 

Perhaps the greatest difference between the two environments 
in which preprocessor procedures can be invoked lies in the 
interpretation of the argument list. In non-preprocessor 
text, the rules for argument lists of preprocessor function 
references are as follows. The text between consecutive 
"unprotected" commas (or between one of these commas and 
the parenthesis at either end of the argument list, or 
between the parentheses when there are no commas) is consid
ered to be an argument. The literal sequence of characters 
comprising the argument is scanned for active identifiers 
(and active procedure references, tool); replacements are 
performed and rescanned if indicated; and when no further 
replacement activity can be performed the resulting sequence 
of characters is considered to be a character string valued 
argument, and that is what is associated with the parameter. 
In the case of a FIXED parameter, the character string value 
of the argument is converted. In any case, a dummy is made. 

By "unprotected comma" we mean a comma not inside character 
string delimiters, comment delimiters, or balanced parentheses. 
This rule is required in order to recognize another function 
reference in the argument list. I.e., in 

P(Q(A,B)) 
we have one argument for P, "Q(A,B)", not two, "Q(A" and "B)". 
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Although this may seem obvious, recall that very little 

processor scan!^'' °" non-preprocessor text during the pre-

See LRM 2 59 through LRJl 2 61. 

12.18. An example. 

stat?rinf+f ?^ ^S """̂ ^ ̂  *^^^^' ^" ^ PL/I program, as a 
static initialized array of structures, for example: 

DCL 1 TABLE (4) STATIC, 
2 HEIGHT FLOAT INIT (3, 1.5, 1.5, 0.5), 
2 RADIUS FLOAT INIT (.32, .15, 1 8) 
2 POLISHED BIT(l) 

INIT Cl'B, 'I'B, 'O'B, 'O'B), 
2 STYLE CHAR(l) 

INIT CA' , 'L' , 'E' , 'A') ; 
Each element of the array TABLE is a structure carrying 
^^of^???^^""*^^^ °^ ^ cylindrical object. For instance, 
iABLi;,(J) IS an entry describing a single object having 
height 1.5, radius 1, style 'E', and which is not polished. 

The problem of maintaining such a table quickly becomes 
tedious. Each time we wish to add a new entry we have to 
increase^^the upper bound in the first line and change four 
initial lists. When these have become long enough to be 

spread over several lines, it then becomes difficult to 
tell, at a glance, what all the properties of the i-th 
entry are. 

We will define some preprocessor variables and procedures 
that permit us to produce the table simply by writinq 

TABLE(3, .32, 'I'B, 'A') 
TABLE(1.5, .15, 'I'B, 'L') 
TABLE(1.5, 1, 'O'B, 'E') 
TABLE(0.5, .8, 'O'B, 'A') 
END_TABLE 

It is now obviously easy to make a new entry in the table, 
and the properties of an entry can be seen at a glance. 

The following declarations and definitions suffice. Five 
"global" preprocessor variables are declared and initial
ized. Procedures TABLE and END_TABLE are defined, plus 
another, APPEND, which is invoked from inside TABLE. Note 
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that END TABLE must be activated for NORESCAN so that its 
replacement valSiT'which contains the identifier TABLE, 
will not be rescanned. the purpose of the TABLE procedure 
is merely to append the values of its four parameters to 
four global variables which END_TABLE will use to "emit" 
the four lists of initial values. TABLE itself generates 
a null string for replacement value. 

DCL (HEIGHT_INIT, 
RADIUS_INIT, 
POLISHED_INIT, 
STYLE_INIT) CHAR; 

DCL #ENTRIES FIXED; 
#ENTRIES = 0; 
HEIGHT_INIT = '' 
RADIUS_INIT = '' 
POLISHED_INIT = 
STYLE_INIT = ''; 
TABLE: PROC (HEIGHT, RADIUS, POLISHED, STYLE) 

RETURNS (CHAR); 
DCL (HEIGHT, 

RADIUS, 
POLISHED, 
STYLE) CHAR; 

•ENTRIES = #ENTRIES + 1; 
HEIGHT_INIT = APPEND(HEIGHT_INIT, HEIGHT); 
RADIUS_INIT = APPEND(RADIUS_INIT, RADIUS); 
POLISHED_INIT = APPEND{POLISHED_INIT, POLISHED) 
STYLE_INIT = APPEND(STYLE_INIT, STYLE); 
RETURN (''); 

END; 
APPEND: PROC (INIT_LIST, ITEM) RETURNS (CHAR); 

DCL (INIT_LIST, ITEM) CHAR; 
IF #ENTRIES > 1 THEN 

INIT_LIST = INIT LIST || ','; 
RETURN (INIT_LIST \J ITEM); 

END; 
END_TABLE: PROC RETURNS (CHAR); 

RETURN ('DCL 1 TABLE (' 
#ENTRIES 

') STATIC,' 

'2 HEIGHT FLOAT INIT (' 

HEIGHT_INIT 

' ) , ' 

'2 RADIUS FLOAT INIT (' 

RADIUS INIT 
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'2 POLISHED BIT (1) INIT ( 

POLISHED_INIT 

• ) , ' 

'2 STYLE CHAR (1) INIT (' 

STYLE_INIT 

• ) ; • ) ; 
END; 
ACTIVATE TABLE NORESCAN, 

END TABLE NORESCAN; 

12.19. % INCLUDE statement. 

It is frequently extremely useful to be able to include 
text from a library into a source program. For instance, 
common declarations need not always be written out but may 
be included from a library. This is particularly valuable 
when the declarations are those of external variables and 
need, therefore, to be exactly the same in all external 
procedures containing them. 

For the syntax of the % INCLUDE statement, see LRM 262 
and LRM 2 63. JCL considerations will be taken up in 
Lesson 13. 

The facility provided by the % INCLUDE statement was 
recently added to the ANSI version of PL/I. 

12.20. Builtin functions available in the preprocessor. 

The LENGTH, SUBSTR, and INDEX builtin functions may be 
used inside preprocessor procedures and elsewhere in pre
processor expressions. They may be used in non-preprocessor 
text only if they are specifically declared BUILTIN in a 
% DECLARE statement (which also activates them). Example: 
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% DCL SUBSTR BUILTIN; 
% DCL S CHAR; 
% S = 'STRING'; 
X = SUBSTR(S, 3 ) ; 

% DEACT SUBSTR; 
X = SUBSTR(S, 3); 

% S = SUBSTR(S, 3); 
X = S; 

generates the following: 
X = RING; 
X = SUBSTR(STRING, : 
X = RING; 

See LRM 264. 

12.21. Homework problems. 

(#12A) What do you expect to happen here? 
% P: PROC (S) RETURNS (FIXED); 

DCL S FIXED; 
RETURN (S + 1) ; 

% END; 
% ACT P; 
P(X) 

(#12B) This widely circulated puzzle has an absurd 
answer. What do you have to write in place of 
the "?" so that the program will print out a single 
quote? In particular, how many single quotes? 

PROG: PROC OPTIONS (MAIN); 
% DCL S CHAR; 
% S = ? ; 
DCL C CHAR (100) VAR; 
GET STRING (S) LIST (C); 
PUT FILE (SYSPRINT) EDIT (C) (A); 

END; 

Actually, the key to getting the correct answer 
doesn't have much to do with the preprocessor. 

(#12C) What happens here? 
% DCL I FIXED; 
% I = 0; 
% L: ; 
A(I) = A(I) + 1; 

% IF I > 0 % THEN % 1 = 1 + 1; 
% GO TO L; 



12-17 

(#12D) How can preprocessor variables and procedures 
"stack" information at compile time? For what 
kinds of "language extensions," implemented with 
preprocessor facilities, might this capability be 
useful? 

(#12E) Suppose a preprocessor procedure, P, has one param
eter declared with the CHAR attribute. What is the 
value of that parameter, on entry to P, when P is 
invoked with the argument list shown 

P('ABC') 
(a) in a preprocessor statement? 
(b) in non-preprocessor text? 

(#12F) Write a "macro" (preprocessor procedure) called 
STRG, meant to be used in DECLARE statements as 
follows: 

DCL C STRG('ABCDEFGH'); 
generates 

DCL C CHAR (8) INIT ('ABCDEFGH'); 
and 

DCL D STRGCISN' 'T') ; 
generates 

DCL D CHAR (5) INIT ('ISN''T'); 
Note the string length (5) in the second expansion. 

(#12G) Write a macro, HEX, that translates HEX('12FC') 
into 'OOOlOOlOllllllOO'B, etc. 
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(a) Advanced JCL and compiler options. 
(b) Program development and debugging! 

In this lesson we will explore some of the non-language related 
features of our implementations of PL/I that enhance ?he useability 
slons to ^ h ^ f - '" a'^-^ition, we will consider some of the exten-
fn + L L K l^"5"^ge' present in our implementations, which aid 
m the debugging process. 

13.1. Organization of the Checkout compiler. 

The Checkout compiler is designed to meet the requirements 
of the program testing and debugging part of the program 
development cycle. it is not intended for the generation 
and running of production code. 

The compiler is organized as a translator and interpreter. 
The translator phase replaces the conventional compilation 
phase. Its goal is to produce intermediate output for the 
interpretation phase. The intermediate output is a coded 
representation of the source program that permits the inter
preter to "execute" the program without repeatedly scanning 
and parsing the source, applying defaults, etc. The trans
lation phase is generally faster than a traditional compil
ation because less work is performed; optimized machine 
code is not produced. The translator concentrates on 
reporting source program errors in helpful, high-level 
terms. it also repairs syntax errors very effectively. 

The interpreter phase, on the other hand, is much slower 
than execution of a program from machine code. This is 
justified because one generally makes very few passes of 
a program though the interpreter during the program's 
development; most of the program's useful life will be 
represented by optimized production runs. The interpreter 
does far more "consistency" checking than it would be 
profitable for generated machine code to do. It is capable 
of detecting errors that would go undectected in an opti
mized, production version of a program and which could lead 
to unpredictable program failures ranging from wrong results 
to an abend (abort). Furthermore, errors are detected and 
reported as soon as they occur; in an optimized machine 
code environment the observable effects of such errors are 
often far removed in time from their causes, making debug
ging hopelessly difficult. Finally, because the interpreter 
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has the complete coded form of the source program avail
able to it, it is able to report errors in very high level 
source program terms. As an example, the message for an 
out-of-bounds subscript value tells you the name of the 
array the number of the dimension involved; the value 
of the subscript itself; and, if the subscript value was 
supplied by a simple variable, the name of that variable. 
You are also told the statement number of the statement 
containing the error. 

The multiple functions of the Checkout compiler are 
reflected in the variety of ways it can be used. The most 
straightforward mode of use is employed when a single exter
nal procedure, a main procedure which doesn't need any 
subroutines, is to be translated and interpreted. (Note: 
builtin functions, whether supported by "library routines" 
or not, are not considered to be subroutines in this context. 
In this mode the translator produces its output directly 
in core (some of it may spill onto a temporary dataset) , 
and the translation phase is followed immediately, in the 
same job step, by the interpretation phase. Thus, neither 
the linkage editor nor the loader is used. See CPG 28. 
This mode of use is called "compile and go"; like the usual 
"compile, load and go" mode of other compilers, no "object 
module" survives after the run. 

It is also possible to translate an external procedure and 
save the output of translation for later execution by the 
interpreter phase. This mode of use is mandated by the 
need to link-edit (or load) separately translated external 
procedures together to resolve external references. It is 
also required when you need to link-edit in AMDLIB routines 
or FORTRAN routines. 

To support this mode of use, it is possible to request out
put from the translator. Normally, output from a compiler 
is in the form of an "object module" to be used as subse
quent input to the linkage editor or loader. In the case 
of the Checkout compiler, translator output consists of 
two separate parts: a normal object module and the inter
mediate text. The object module contains a minimum of 
information and is much smaller than usual. Called a 
"link-edit stub," it basically contains the information 
needed by the linkage editor to resolve external references, 
and It contains a little bit of' executable machine code. 
The intermediate text contains most of the information 
about the external procedure in coded form. It is used 
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thrn^ar+hi^n°"u^ ""^ ^"^^ interpreter; it is not passed 
through the linkage editor or loader. See CPG 29. 

The output described above is produced by the translator 
in response to the OBJECT compiler option. if you use 
tne appropriate cataloged procedures, such as PLCCP 
(described in the next section), this option is supplied 
automatically and you need not concern yourself with it 
(Another option, NORUN, is also supplied to tell the com
piler to stop after the translation phase rather than go 
°'^ i?^° interpretation.) The object module output (link-edit 
stub) IS captured" in the normal way by a SYSOBJ DD card 
detinmg a sequential dataset or a member of a partitioned 
dataset. The intermediate text output is captured by a 
SYSITEXT DD card defining a partitioned dataset (not a member 
thereof) . This dataset has no counterpart in other IBM com
pilers. The intermediate text for a given external procedure 
IS stored as a member whose member name is derived from the 
external procedure name and supplied automatically bv the 
compiler. 

The collection of object modules is next processed either 
by the linkage editor, to form a load module, or by the 
loader. After that, execution is initiated in the normal 
way. If the linkage editor has been used, the load module 
IS invoked in a separate job step. If the loader has been 
used, the loader initiates execution in the same job step 
in which it resolves external references. In either case, 
in the job step in which execution takes place the parti
tioned dataset containing the intermediate text modules 
created by the translator must be made available via a DD 
card for SYSITEXT. When execution begins, the executable 
machine code in the link-edit stub for the main procedure 
receives control. What it does is invoke the interpreter 
phase of the Checkout compiler. All of these things are 
quite transparent when you use the appropriate cataloged 
procedures. 

See CPG 30. 

13.2. Cataloged procedures for the Checkout compiler. 

Each Programmer's Guide contains a chapter on the IBM-supplied 
cataloged procedures for the compiler in question. Note that 
we do not use the IBM-supplied cataloged procedures here. 
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Rather, we use our own. These are tailored somewhat to our 
environment. In addition, we have arranged to offer a 
similarly named family of procedures for each compiler. 

The family prefix for the Checkout compiler is PLC. Members 
of the standard family available in the PLC series are 
PLCCLG, PLCCEG, PLCCP, PLCCEP, PLCC, PLCEP, PLCEG, and 
PLCLG. One member, PLCCD, is not available because it is 
not possible to obtain an "object deck" from the Checkout 
compiler. The PLC series includes two members not in the 
standard family: PLCCG and PLCG. All are briefly described 
below. 

Step names used in the cataloged procedures are as follows: 
PLC - Translate only. Compiler options OBJECT and 

NORUN are supplied automatically to cause the 
translator phase to produce output, then stop. 

EDT - Link-edit step. 
GO - (a) Execution of link-edited program. 

(b) Substitute the loader for the linkage editor, 
and go right into execution. 

(c) In procedure PLCCG, translation is immedi
ately followed by execution in the single 
step named GO. 

The steps present in each of the procedures are indicated 
in the following table. 

PLCCG 
PLCCLG 
PLCCEG 
PLCCP 
PLCCEP 
PLCC 
PLCEP 
PLCEG 
PLCLG 
PLCG 

Note: 

PLC 

; 
^ 
V 
v' 
/ 

EDT 

^ 

V 

s/ 
^ 

GO 

See no t e 
7 
V 

v' 
v-
V 

fnLff"^^'' f f £ ' '^°' ^" PL<=^^ combines the classical 
functions of the PLC and GO steps in one step. 
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PLCCG '^?^L°f r^^^ procedure is briefly described here. 
^ ^ \ Z f T . and interpret a self-contained program 

procelure^ ^ ^'"^'^ external procedure (a main 

PLCCLG: Translate, load, and interpret. This is used if 
??nvf^\^''^!^"^^P^°''^'^"^^^ ^^^ '̂ sî g translated and 
linked together by the loader. (Note: how several 
external procedures can be translated in a single PLC 

dicLtfna^+h^^ ^ffK-\ ™^^^ "^y ^^ °ther requirements 
o^o^^^, ̂  the use of the loader, even if only one external 
PLCrr wf?i^^ ^?^"^ translated. PLCCLG can be used where 

r,,r-nZ?. Z suffice, but resources will be wasted. 
PLCCEG: Translate, link edit, and interpret. The linkage 

editor provides certain services not provided by the 
loader however, it is difficult to imagine how these 
could be of use when the linkage editor output is not 
saved. ^ 

PLCCP: Translate only. The user must capture object module 
PLC^SYSIT^ PLC.SYSOBJ and intermediate text output via 

PLCCEP: Translate and link edit. The user must capture 
intermediate text output via PLC.SYSITEXT and load module 
output via EDT.SYSPVT. 

PLCC: Translate only, with object module and intermediate 
text output passed in temporary datasets to another job 
step. •' 

PLCEP: Link edit only. The user must supply input to the 
linkage editor (the result of a previous translation) via 
EDT.SYSIN and capture its load module output via EDT.SYSPVT 

PLCEG: Link edit result of previous translation, supplied 
via EDT.SYSIN,and interpret it. Again, it is doubtful 
that the special services offered by the linkage editor, 
but not the loader, are useful in this context. The user 
must supply the intermediate text resulting from the pre
vious translation via GO.SYSITEXT. 

PLCLG: Process the result of previous translation, supplied 
via GO.LDRIN, through the loader and interpret it. The 
user must supply the intermediate text resulting from the 
previous translation via GO.SYSITEXT. 

PLCG: Interpret a previously translated and link-edited 
program. The user supplies the load module library via 
GO.STEPLIB and uses the symbolic parameter PROGRAM to 
name the member to be executed. In addition, the inter
mediate text is supplied via GO.SYSITEXT. 

Typical uses of PLCCG and PLCCLG, which are the most likely 
to be needed, were shown in Lesson 0. Other information 
may be found in OTHER 3, and in other publications and 
courses of the Computer Center. 
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13.3. Source input conventions. 

The traditional ddname for source input to compilers is 
SYSIN. SYSIN may be used also for data input to your program; 
recall from Lesson 7 that SYSIN is one of the standard files. 
The dual functions of SYSIN pose problems for the "compile 
and go" mode of operation: how can both functions be accom
modated in a single job step? The Checkout compiler solves 
this problem by providing two different ddnames for the two 
functions. SYSCIN ("compiler input") is for source input to 
the translator, leaving SYSIN for data input to the program 
during interpretation. 

Actually, other solutions to the problem are available also. 
If you prefer, you may use the traditional SYSIN for source 
input (instead of the new SYSCIN) . If you happen to have 
data input also, you follow the source program by a control 
card containing 

*DATA; 
starting in column 1 and follow that by the data. Finally, 
you may supply both source and data, separate by a *DATA 
statement, in SYSCIN. The three choices are demonstrated 
below. 

// EXEC PLCCG 
//GO.SYSCIN DD * 

source 
/* 
//GO.SYSIN DD * 

data 
/* 

// EXEC PLCCG 
//GO.SYSIN DD 

source 
*DATA; 

data 
/* 

// EXEC PLCCG 
//GO.SYSCIN DD * 

source 
*DATA; 

data 
/* 

See CPG 31 and CPG 32. The latter reference also describes 
how the program can be executed with several different sets 
ot data all in one job step and without retranslating it. 

13.4 . T r a n s l a t i n g s e v e r a l e x t e r n a l proced ures at once. 

toaltZl \t ""^^ procedures are to be translated, linked 
o?^more prrr^^ executed, it is not necessary to execute one 
cata^oL^ cataloged procedures followed by a PLCCLG 
latiig^a sina?e Pwl "'"'̂  ""=^ cataloged procedure trans-
with a sina^l ^ external procedure. You can make do 
with a single invocation of PLCCLG. All of the external 
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procedures are translated in the single PLC step. They are 
t^^nTn^ ^" °̂''''°̂  ^"P"^ dataset by a control card con-tiaining 

•PROCESS; 
starting in column 1, as shown in Lesson 0. See CPG 33 
and CPG 34. 

When you use PLCCG, you may actually translate and interpret 
several different complete one-procedure programs in a single 
invocation of the compiler. As CPG 34 demonstrates, you can 
have separate data for each program by coding 

// EXEC PLCCG 
//GO.SYSCIN DD * 

source 1 
*DATA; 

data 1 
•PROCESS; 

source 2 
*DATA; 

data 2 
etc. 
/* 

or you can use the same data for all by coding 
// EXEC PLCCG 
//GO.SYSCIN DD * 

source 1 
*PROCESS; 

source 2 
etc. 
/* 
//GO.SYSIN DD * 

common data 
/* 

All sorts of intermediate combinations are possible. 

13.5. Checkout compiler options. 

See CPG 3 5 and CTUG 4 for a complete description of compiler 
options. Note, however, that in some cases our installation 
defaults differ from the IBM defaults. A list of our local 
defaults, reprinted from OTHER 3, is attached to these notes. 

Certain compiler options are effective during translation, 
while others apply during interpretation; some apply during 
both. Two symbolic parameters are provided in our cataloged 
procedures to pass options to the compiler: OPTIONS is to 
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be used for translate (PLC) steps and GOOPTS for interpret 
(GO) steps. (Both are defined in the single-step procedure 
PLCCG.) A simple example of their use in an EXEC statement 

follows: , > . 
// EXEC PLCCLG,0PTI0NS='F0R:-1AT' ,GOOPTS='ERRORS(20) ' 

Cataloged procedures with translate-only (PLC) steps supply 
OBJECT and NORUN for you; whatever you may specify via OPTIONS 
supplements these. 

Compiler options may also be specified on a *PROCESS statement 
as described in CPG 33. These modify the options specified 
in the symbolic parameters, or defaulted, for the following 
external procedure only. 

You may pass an argument to your main procedure. The param
eter must be declared as CHAR (100) VAR (see LRiM 265). The 
argument is supplied via the GOPARM symbolic parameters, as 
in 

// EXEC PLCCLG,GOPAR.M='3,UPDATE' 
If you have no argument to pass in, and indeed have no param
eter in the main procedure to receive one, you will neverthe
less have to suffer message 

IEN1207I AN ARGUMENT IS BEING PASSED TO MAIN PROCEDURE 
XXX, BUT THE PROCEDURE HAS NO PARAMETER LIST. 
ARGUMENT IGNORED. 

This occurs because our cataloged procedures make it look 
like a null string is being passed in as an argument when 
you do not use the symbolic parameter GOPARM. 

An argument to the main procedure may also be specified on 
a *DATA statement as described in CPG 32. 

13.6. Specific Checkout compiler options. 

We cannot hope to describe all the available options. How
ever, a few will be mentioned here and more will be covered 
later. When you have time, read about the complete set of 
options in the references previously cited. 

The Checkout compiler is constantly monitoring for references 
to unitialized variables. To detect them, it actually 
initializes variables which you don't initialize by using 
particular unlikely bit patterns (see LRM 266). In rare 
PHAPArT^D P^"^^"S "S^'^ for uninitialized FIXED BINARY or 
CHARACTER variables may actually represent values your 
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program can produce and deal with. in these cases you 
will need to disable the automatic checking by specifying 
G0OPTS=;NODIAGN0SE'. Don't, however, do this as a matte? 
of routine, since the service is one of the most valuable 
performed by the Checkout compiler. 

Our default for the ERRORS option, ERRORS(IO), tells the 
interpreter to report and then recover from the first ten 
errors that result in the raising of the ERROR condition. 
Its recovery action is tailored to the specific cause of 
error; in some cases it is taken after normal return from 
an established ERROR on unit, while in other cases it is 
taken m lieu of raising the condition. The repair of 
errors is surprisingly successful. More often than not, it 
permits the program to proceed to where other, unrelated, 
errors are discovered in the same run. 

The FORMAT option can be used to obtain a formatted source 
listing—one which is "properly" indented, having no more 
than one statement per line, etc., and generally easier to 
read. 

Our default for the SIZE option is SIZE(MAX). This tells 
the compiler to make use of all the storage available to 
it; thus, increasing the region request will automatically 
give the compiler more core storage to work with. It 
should be noted that the IBM PL/I compilers, unlike the 
FORTRAN compilers, are designed to work in surprisingly 
small amounts of storage. There is no lower limit below 
which the compiler will cease to work (however, interpreta
tion cannot proceed if insufficient storage is available 
for the allocation of all of your PL/I variables). Generally, 
if insufficient storage is available to keep everything in 
core, the compiler will "spill" onto a temporary dataset. 
The amount of spilling that occurs is a function of space 
available to the program, amount of PL/I storage allocated 
(during interpretation), size of the program, complexity of 
the program (mix of language features used), etc. If 
spilling becomes excessive the extra I/O can cause your job 
charges to increase very rapidly. The compiler monitors 
the activity on the spill file; it will report a "thrashing" 
condition if one should develop. It should be pointed 
out that the default region of 150K established in our 
cataloged procedures is probably too small except for very 
simple programs; 250K will usually result in a cheaper, 
faster job. 
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You do not have to worry about space for buffers for your 
open datasets when you specify SIZE(MAX). File openings 
are performed under the control of the interpreter, and it 
turns out the routines are smart enough to know how much OS 
space will be required for buffers; the space is made avail
able (by spilling, if necessary) before it is requested. 
However, certain requests for OS core storage may be made 
without the Checkout compiler's knowledge. This can happen 
in the following three cases: 

(a) You invoke the SORT utility dynamically. 
(b) You invoke an other-language routine which 

obtains storage by executing a GETMAIN. 
(c) You load a fetchable load module by executing 

a FETCH statement. 
In these cases you cannot permit the Checkout compiler to 
use all the storage available to it; you must reserve some. 
You can reserve, say, 30K of the region by coding 
GOOPTS='SIZE(-30K)'. 

13.7. Cataloged procedures for the Optimizing compiler. 

The Optimizing compiler produces an object module as output. 
It must be link-edited or loaded prior to execution, even 
if no subroutines are needed (certain housekeeping library 
routines are always needed). The cataloged procedures 
available for this compiler comprise a standard family of 
procedures whose prefix is PLO. Members of the PLO series, 
and the names of the steps they contain, are indicated 
below. 

PLOCD 
PLOCLG 
PLOCEG 
PLOCP 
PLOCEP 
PLOC 
PLOEP 
PLOEG 
PLOLG 

PLO 

V 
.' 
i 
v' 
V' 

•J 

EDT 

\/ 

V 

V 
y 

GO 

v/ 
V 

y 
/̂ 

The PLOCD cataloged procedure automatically supplies the 
compiler options DECK and NOLOAD to override the opposite 
defaults. The user is responsible for supplying inputs 
and capturing outputs in the ways described for the PLC 
series of procedures. There is, of course, no need for 
SYSITEXT. 
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will also ac^^^+'^'' ̂ ^^ Checkout compiler, the Optimizer 
Multiple extern 1 ' ^°r^^ ^"P^^ ^̂ "'̂  SYSCIN or from SYSIN. 
Pin =?^^ external procedures can be compiled in a single 
ments ^Th^ f̂ '̂ ""̂ ' ̂ ^ ^^fore, separated by *PROCESS state-
™ f ; o ^^ "° "^^ ^°^ '̂̂ ^ *°^TA statement with this 
compiler. See OPG 29 through OPG 31. 

13.8. Optimizing compiler options. 

For the Optimizing compiler, a clear distinction is made 
between compiler and execution options. Although the com
piler Itself IS not present during execution, certain 
options may be specified then to select certain services 
HD̂ Tr̂ Mc?̂  ̂ ^'^-time support or to "tune" the environment. 
OPTIONS, GOOPTS, and GOPARM are used exactly as they are 
in PLC procedures. Note, however, that we do not currently 
have a PLOG procedure. To execute a previously link-edited 
production program, you will need to code "bare" JCL, as in 
the following (which demonstrates how you communicate both 
execution-time options and an argument to the main procedure) 

// EXEC PGyi=member ,PARl'^='exec-options/main-arq' 
//STEPLIB DD DISP=SHR,DSN=pds.containing.member 
//SYSPRINT and other DD statements, as needed. 

Compiler and execution options are described in OPG 32 and 
OTUG 5. As with the Checker, we have established defaults 
that differ in some instances from the IBM defaults. Ours 
are tabulated at the end of these notes. 

13.9. Specific Optimizing compiler options. 

To obtain maximum optimization you need to specify 
0PTI0NS='0PT(2)•. This will increase the cost of compila
tion to a degree, but the gains achieved during execution 
will be worth it if the program is executed often and if 
other optimization options (REORDER, TOTAL, and CONNECTED) 
are specified in the program itself. 

Two execution options, ISASIZE and REPORT, are worth 
studying carefully. Dynamic PL/I storage is allocated in 
an area called the ISA (Initial Storage Area), which is 
obtained at program initialization time. The allocations 
performed within the ISA are reasonably efficient (in any 
event, better than performing a GETMAIN to obtain the 
storage from OS). If the ISA proves insufficient, addi-
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tional storage will be obtained, as needed, by GETMAIN; 
the program will continue to run (as long as the additional 
storage is available in the region), but performance will 
be degraded relative to a run performed with a larger ISA. 
The reason you can't generally specify ISASIZE(MAX) is that 
you must leave behind whatever storage will be needed for 
buffers and dynamically loaded library modules. The spectrum 
of requirements of different programs cannot optimally be 
accommodated by a single default. Ours, ISASIZE(8K), differs 
from the IBM default for subtle reasons. You can specify 
your own better guess. If you know that the space required 
for buffers, etc., is relatively constant, while the amount 
of PL/I storage required depends on the inputs in a particular 
run (as it well might in a list-processing application) , you 
can reserve a fixed amount of storage for OS and let the ISA 
track the region request by coding, for instance, 
GOOPTS='ISASIZE(-20K)'. 

In any event, you can ask the system to monitor its own 
storage management activities and report on them at the end 
of a run. For this purpose, you use the REPORT option, e.g. 
GOOPTS='REPORT'. You can specify both together, using 
abbreviations, as in GOOPTS='R,ISA(-20K)'. The storage 
management report, which tells you, among other things, an 
optimal ISASIZE, is produced on the file with ddname 
PLIDUMP. Thus, when you specify the REPORT option you must 
add to your GO step 

//GO.PLIDUMP DD SYSOUT=A 

A good discussion of these very important options and stor
age management considerations is in OPG 33. 

13.10. Source record formats, margins, and sequence fields. 

Both the Checker and Optimizer can accept source input in 
a variety of record formats and record lengths. 

Unless you use the MARGINS compiler option to specify 
otherwise, the default source margins for fixed-format 
(blocked or unblocked) records are 2 and 72, while for 
variable-format (blocked or unblocked) they are 10 and 100. 
tEOUENCE^^lnn^' .^^^ ^ ° " 'P^^^^y otherwise with the 
73 to 80 afVdZ 7 '°'"' ^""^ ^^--Pilers will assume columns 
73 to 80 of fixed-format records, or 1 to 8 of variable-
format records, have been reserved f^t I variable 

, <= ut̂ eii reserved for sequence information. 
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listTna-conZro^^^' ° ^ ' (V-format) is assumed to contain a 
optionK character (as described under the MARGINS 

These two defaults automatically match source records 
created by EDIT in TSO. There, as we will see in Lesson 15 
you have a choice of two dataset "types": PLI and PLIF? ' 
The former results in V-format blocked records with sequence 
dataset ;?th'^ ' '° 8, while the latter creates an F - f S t 
aataset with sequence information in 73 to 80. V-format 
records are generally more economical because trailing 
last ch^rL+°^ included to "complete" the record beyond the 
last character you type. Note that in either case, the 

EsfuSn^^n^^f^'' l^^^ r " ^^P^ ^°^^ i"^° the listing-control column and is not read as part of the source. 

The F-format records are also the standard "card-image" 
format for card decks. 

Each statement is numbered by the compiler so that it may 
be uniquely referenced in any error messages. You have 
your choice as to whether the statement numbers are to be 
assigned by the compiler from the sequence 1,2,... or are 
to be taken from the sequence field of the record on which 
the statement begins. The latter choice is the default 
(determined by the compiler options NUMBER and NOSTMT) 
when the compilation is performed in TSO, because there 
you do not get a source listing by default (the option 
determmg that is NOSOURCE) . when the compilation is per
formed in the batch system, the default options are STMT 
NONUMBER, and SOURCE. The compiler assigns consecutive 
statement numbers, which are shown on the source listing. 
Note that if the source dataset happens to contain sequence 
information in this case, as it would if it had been created 
by EDIT in TSO, the sequence information is also listed on 
the source listing. 

In the Checkout compiler, execution-time error messages 
are always accompanied by statement numbers. Under the 
Optimizing compiler, you have your choice as to whether 
statement numbers are to accompany the code offset in 
run-time error messages. The cost of having them do so 
is a table, kept in core during execution, and consulted 
on the occasion of producing any system message. if your 
program is compiled in the batch system, the defaults there 
(NOGOSTMT, NOGONaMBER, OFFSET) suppress the inclusion of 
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this table in the load module but print it out as part of 
the compilation listing. Error messages at run time will 
not contain a statement number, but you can look up the 
offset appearing in the message in the offset table in the 
listing to find the statement number. If your program is 
compiled in TSO, you do not get a listing of the offset 
table by default, so statement numbers (derived from the 
sequence information) are obtained from the in-core table 
and used in run-time error messages (the governing options 
are NOOFFSET, GONUMBER, NOGOSTMT). 

13.11. Using the preprocessor. 

To use the facilities of the preprocessor (Lesson 12) you 
must specify the MACRO compiler option. If the SOURCE 
option applies, the source listing produced represents the 
output of the preprocessor. To obtain, in addition, a 
listing of the input to the preprocessor, use the INSOURCE 
compiler option. If you wish to capture the output of the 
preprocessor on cards, use the MDECK option. Read about 
these in the references previously cited for compiler 
options. 

If you use the %INCLUDE statement to include source text 
from a library of source text members, the library (or 
libraries) will have to be named in DD statements in the 
compile (PLO) or translation (PLC, or, in the cataloged 
procedure PLCCG, GO) step. The ddname is either the one 
you use in the %INCLUDE statement or, if that includes only 
a member name and no ddname, SYSLIB. 

Included text need not have the same record format as the 
primary source. And if %INCLUDE is the only preprocessor 
statement used, you need not specify the 'vlACRO option-
specify the INCLUDE option instead (it is more efficient). 

See OPG 34 and CPG 36. 

13.12. Mixing PL/I and FORTRAN. 

vonTnk°"H'^.'Sr^f ̂ °:^ ^°' "̂'̂  "^^^ ^^P^^t here, that when 
FORT^N libr.r ^ and FORTRAN mixtures you must make the 
FORTRAN library available. Use the POSTLIB symbolic 
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parameter of Imk-edit (EDT) or loader (GO) steps for that 
purpose. Also, FT06F001 must be defined in the GO step, 
even if the FORTRAN program does not write on unit 6 
Review Sections 10.10 and 13.6 (for the need to use the 
^%,SS^^?" °^ t^® Checker with interlanguage communication) 

and CPG 24. A JCL sample follows. 
// EXEC FTHC 
//FTH.SYSIN DD * 

FORTRAN source 
/* 
// EXEC PLOCLG,P0STLIB='SYS1.FORTLIB' 
//PLO.SYSCIN DD * 

PL/I source 
/* 
//GO.FT06F001 DD SYSOUT=A 
// other DD statements, as needed 

13.13. JCL considerations for fetchable procedures. 

A "fetchable" procedure, i.e., an external procedure to 
be loaded dynamically before invocation, must be completely 
link-edited with any other external procedures it invokes 
and stored as a member of the load module library named in 
the STEPLIB DD statement of the execution step. 

Normally you do not have to worry about specifying an 
entry point to the linkage editor or loader; the standard 
entry point of PL/I load modules, PLISTART, is communicated 
automatically. However, you must intervene to specify a 
different entry point for a fetchable load module. The 
entry point name (and the member name under which it is 
stored) must both be the same as the external procedure 
name. 

Example: A main procedure called PROG includes the follow
ing statements. 

DCL (SUBRl, SUBR2) ENTRY EXT; 
IF TYPE = 1 THEN DO; 

FETCH SUBRl; 
CALL SUBRl; 
RELEASE SUBRl; 

END; 
ELSE DO; 

FETCH SUBR2; 
CALL SUBR2; 
RELEASE SUBR2; 

END; 
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Complete JCL (except for JOB and account cards) for creat
ing a production version of the program and executing it 
follows: 

// EXEC PLOCEP 
//PLO.SYSCIN DD * 

PROG source 
/* 
//EDT.SYSPVT DD DISP=(NEW,CATLG) ,DSN=load.lib(PROG) , 
// UNIT=unit,SPACE=space 

// EXEC PLOCEP 
//PLO.SYSCIN DD * 

SUBRl source 
/* 
//EDT.SYSPVT DD DISP=OLD,DSN=load.lib(SUBRl) 
//EDT.SYSIN DD * 

ENTRY SUBRl 
/* 

// EXEC PLOCEP 
//PLO.SYSCIN DD * 

SUBR2 source 
/* 
//EDT.SYSPVT DD DISP=OLD,DSN=load.lib(SUBR2) 
//EDT.SYSIN DD * 

ENTRY SUBR2 
/* 

// EXEC PGM=PROG 
//STEPLIB DD DISP=SHR,DSN=load.lib 
//SYSPRINT and other DD statements, as needed 

See OPG 3 5 and CPG 3 7 . 

13.14. DD statements for SYSPRINT. 

The following DD statement for SYSPRINT is contained in the 
GO step of all PL/I cataloged procedures-

//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1511) 
l^^L f T^^^^^y overrides the default linesize of 120 for 
print files and gives you 132 instead. when you use "bare" 
the SsPRTNT"''^'r ''""' °' optimized code, you should write 
l o L f f J statement as above. (We may add a PLOG cata
loged procedure, analogous to PLCG, in the future ) 
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13.15. General plan for program development. 

Checkoutcoln° ^";P^^ti^ i" °^^ recommendations that the 
develooment^nH f be used while a program is undergoing 
experienced in thf ^^^- ^1^^°"^^ its greatest utility is 
far stn^^h K ^ interactive mode (Lesson 15), it is by 
far still the best debugging tool we have in batch. 

debuaaeriv^h^^"^ proceeds, external procedures considered 
1 ?nv^^ .^^ be compiled under the Optimizing compiler and 

compiler !we";il/^°^" '1''' ^^'"^ ^̂ ^̂ ^̂ ^ ""^- ^^^ Checkout t-ompiier (we will demonstrate this later) . 

code^'^cert^in^^^f ^^ disclosed in production (optimized) 
desc;ibPd^^+ features of the Optimizing compiler (also 
Alternatti? ' '"̂ ^ ^^ helpful in identifying them. 
H=^v ^K u^'.°"^ °'' '""̂ ^ external procedures can be put 
back through the Checkout compiler. 

13.16. Special features for debugging. 

TTho^o^r^^^ ^ ^ ^ K " ^^^ several debugging features to offer. 
(These have not been standardized.) Both the Checker and 
Optimizer implement the CHECK condition, and the SNAP 
option of ON statements. The Checker (only) implements, 
in addition, the FLOW, SNAP, and ALL options of the PUT 
statement, and the CHECK and FLOW statements. And each 
compiler implements certain compiler options useful in 
debugging situations. A general reference for the Checker's 
special features is LRM 267; others will be given later 
Also review LRM 124. 

13.17. The CHECK condition. 

The CHECK condition occurs whenever a variable to which 
It applies is assigned a value, or a procedure or label to 
which It applies is reached. The condition is normally 
disabled. Like the I/O conditions and the CONDITION 
condition, it is a qualified condition, meaning that you 
state the individual items to which it applies. Standard 
system action for the CHECK condition is to write a comment 
on SYSPRINT showing the procedure or label reached, or the 
name of the variable and its new value. CHECK can be applied 
to all known names by leaving out the list of qualifyinq 
names. See LRM 268 and the entry for CHECK in LRM 116 
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13.18. The CHECK statement. 

The CHECK statement dynamically enables the CHECK condition 
for variables, etc., referenced subsequently. Its primary 
use is in an interactive environment, however it is also 
useful in batch. The simplest way to get a complete trace 
of assignments is to execute a CHECK statement as part of 
your initialization in the main procedure. The NOCHECK 
statement nullifies the effect of the CHECK statement. See 
LRM 2 69 through LRM 2 71. The Optimizer analyzes these 
statements for correct syntax, then ignores them. 

13.19. The SNAP option of the ON statement. 

An ON statement may include the SNAP option. The effect of 
this is to produce a traceback through active blocks, on 
SYSPRINT, whenever the action specified by the ON statement 
(whether that be standard system action or execution of an 
on unit) is taken. This feature, which i£ in the ANSI 
standard, is useful in determining the cause of the condi
tion. See LRI4 2 72 and LRM 273. 

13.20. Checkout compiler extensions of PUT statement. 

Under the Checkout compiler (only), program-control vari
ables can be transmitted by LIST- or DATA-directed output. 
The value transmitted is an implementation-defined high-level 
interpretation of the value. For example, the value printed 
for a label variable is the name of the label constant and 
information from which you can deduce the "environment" 
part of the label value; for a file variable, it is the 
name of the file constant which provided its value, a list 
of file description attributes, and an indication of 
whether the file is open or closed and a count of the number 
of records processed; etc. Any value which has not been 
initialized, or which is invalid or inaccessible, is indicated 
by a comment. 

In addition, other options are permitted on the PUT state
ment under the Checkout compiler. The SNAP option causes 
ooMon through active blocks to be printed. The FLOW 

O H N ^ and Finw'"'•..^'^^ ALL_option includes the effects 

?oUo^nris priAted-''''''°"' '°^ ' ' ' ^^^^^^ ^^-'^^ ^^^ 
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(a) The block identification. 
(b) The enablement/disablement status, in the 

block, of each PL/I condition. 
(c) The values, in the block, of all of the "ON" 

builtin functions (ONCODE, etc.) . 
The names and values of all variables declared 
m the block. 

(d) 

It may be seen from the above that an extremely useful 
high-level debugging printout of the status of just about 
everything can be printed on the occasion of any error by 
executing, early in your program, 

ON ERROR BEGIN; 
ON ERROR SYSTEM; 
PUT ALL; 

END; 

See LRM 274 and LRM 275. 

13.21. Flow information. 

There are two ways that "flow information," i.e., informa
tion about any action resulting in the interruption of 
sequential statement execution, such as a procedure invoca
tion or return, a branch resulting from a GO TO, IF, or DO 
statement, or the raising of a condition, can be obtained 
from the Checkout compiler. This information, also, can 
be useful in determining what is actually happening in a 
malfunctioning program. 

Data on the last several changes in the flow of control 
are kept in a "flow table." The size of this table is 
determined by an execution-time option, the FLOW option. 
Our default is 20 entries. The flow table is dumped onto 
SYSPRINT by executing a PUT FLOW or PUT ALL statement or, 
incidentally, whenever SNAP action is taken for a condition. 

Alternatively, by executing a FLOW statement you cause the 
flow data to be written on SYSPRINT as it is generated. 
The NOFLOW statement turns dynamic flow tracing off. See 
LRM 27 6 through LRM 278. 



13-20 

13.22. Checkout compiler options for special debugging situations. 

Each execution-time message from the Checkout compiler 
includes a count of the number of statements interpreted up 
to that point. Suppose the first error occurs after 10000 
statements have been interpreted, and suppose any output 
your program may have produced before that doesn t help you 
find the cause of error. Furthermore, it is assumed that 
any FLOW or SNAP output produced with the error message 
doesn't help. You would like to dynamically enable the 
CHECK condition by executing a CHECK statement, but you don't 
know where in the program to execute that. If you execute 
that too early, you will get too much CHECK output. 

What you do is execute the CHECK statement early and block 
its output until, say, 9900 statements have been executed. 
The blocking is accomplished by the BLOCK option: 

GOOPTS='BLOCK(9900)' 

Another situation that you can get a handle on by using 
appropriate execution options is an apparent infinite loop. 
You can break the loop after execution of a given number of 
statements or after a given number of lines are printed on 
SYSPRINT by using the STEP or STEPLINES execution options, 
respectively. When the appropriate limit is reached, the 
ERROR condition is raised. A small further allotment of 
statements or lines permits you to print out some debugging 
output. (The ERROR on unit shown in Section 13.2 0 is about 
the best you can do.) This may be usefully combined with a 
CHECK statement and the BLOCK execution option to produce 
a trace of assignments that occur in the statements executed 
just prior to interruption of the loop. 

An additional source of information on debugging techniques 
for batch use of the Checkout compiler is CPG 38. 

13.23. Mixing Optimizer and Checker compiled procedures. 

Once one external procedure from a large program has been 
debugged to your satisfaction, it may be compiled under the 
Optimizing compiler and link-edited with procedures compiled 
by the Checkout compiler. Execution still occurs under the 
control of the Checkout compiler, but whenever control 
reaches an Optimizer-compiled procedure the procedure is 
executed at full machine speed. 
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There are two precautions you must observe when you mix 

Tpointers"or off""r. ^'"" °' "''' " ^"^ 1°=^^°- variables (pointers or offsets) are communicated between Checker and 
mnarK^^"" procedures, then the Checker procedures involved 
must be compiled in conjunction with the COMPATIBLE compiler 
di'+l^nl/^ Ĵ̂ '̂̂ Ĵ tion (under the Checker) must also be con-
ditioned by the COMPATIBLE execution option. Secondly, the 
first input seen by the linkage editor or loader must have 
been Produced by the Checkout compiler (this is t^^sure 
that the Checker will have control over all storage allocation. 

You have a choice of two libraries that may be used to 
resolve the library external references in the Optimizer-
produced code. The normal Optimizer library is SYSl.PLIBASE 
and IS provided automatically in PLO series cataloged pro
cedures. This contains the full code to support library 
services. An alternative, SYSl.PLICMIX, is selected auto
matically by PLC series cataloged procedures. This brings 
in much smaller amounts of code whose function it is to 
bootstrap into the proper Checkout compiler interpreter 
routines, which perform the services. The first library 
results in a larger, faster program compared to the second. 
You can specify either library in either series of procedures 
by using the LIBRARY symbolic parameter. See CPG 39 and 
OPG 36. 

13.24. Debugging with the Optimizer. 

There are a few things you can do to find problems in pure-
Optimizer code. 

You can use the SUBSCRIPTRANGE, STRINGRANGE, SIZE, and 
CHECK conditions, and the SNAP option of the ON statement. 
Enablement of the above conditions causes extra code to be 
generated, degrading performance and increasing core require
ments . 

Flow information can also be obtained from the Optimizing 
compiler, providing the FLOW compiler option is used during 
execution. The table is dumped whenever SNAP action is 
taken for a condition. 

A similar option, the COUNT option, can be used to print a 
table of statement execution counts at the end of execution. 
Available in the Checker, too, this option is defaulted on 
for the Checker and off for the Optimizer. See OPG 33. — 
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As a final resort, a dump can be requested. For this pur
pose you call the PLIDUMP builtin procedure provided by our 
implementation. This gives you quite a bit of high-level 
(i.e., interpreted and formatted) information first, includ
ing the contents of buffers of opened files, followed (if 
the appropriate option has been specified to PLIDUMP) by a 
hexadecimal dump of storage. You will need to add 

//GO.PLIDUMP DD SYSOUT=A 
to your JCL. 

All of these debugging facilities are discussed in OPG 37. 

13.25. A library maintenance technique for program development. 

Let us present some JCL, then discuss it. 

// EXEC PLOCEP,EDTIF='(16,LT,PL0)',EDTOPTS=NCAL 
//PLO.SYSCIN DD * 
*PROCESS NAME('PROCl'); 
PROCl: PROC ... 

END; 
*PROCESS NAME('PR0C2'); 
PR0C2: PROC ... 

END; 
/* 
//EDT.SYSPVT DD DISP=0LD,DSN=auto.call.lib 

We assume a partitioned load-module dataset whose name 
replaces "auto.call.lib" above has been previously created. 
This dataset will contain one member for each external pro
cedure in a program under development; the member name is 
the same as the external procedure name. The members have 
been processed through the linkage editor, so each is a 
load module. However, no member is executable as it stands, 
because it has been link-edited with the NCAL linkage editor 
option, which leaves external references unresolved. The 
dataset will serve as an "automatic call library" in a later 
link-edit or loader step that will bring all the modules 
together into an executable load module 



13-23 

You run a job such as the one shown above either to compile 
some external procedures for the first time or to recompile 
some after making changes. In the job shown above, two 
procedures, PROCl and PR0C2, are compiled. Note that the 
PROCESS statement in front of the source for each procedure 
specifies the NAME compiler option. The string given with 
the NAiME option will become the member name under which the 
external procedure will be stored in the automatic call 
library. The symbolic parameter EDTIF is assigned the value 
(16,LT,PL0) so that the link-edit step will be executed 
regardless of the severity of errors discovered by the com
piler in any procedure (without this, a sufficiently severe 
error in one external procedure will prevent the link-editing 
of any of them, and they will all have to be recompiled). 

The goals of the above JCL are to make it unnecessary to 
recompile any external procedure that hasn't been changed 
when you recompile some that have; to maintain fully up-to-
date object code at all times; and to ease the burden of 
tailoring JCL. Assuming that you keep the *PROCESS statement 
for a procedure with the source itself, as the first card, 
then you never have to change any JCL. You merely grab 
whatever decks you wish to compile or recompile and put them 
in the "fixed" JCL between 

//PLO.SYSCIN DD * 
and 

/* 
Some people prefer to maintain the source for each external 
procedure as a member of a partitioned source module dataset. 
Assuming the source for each procedure starts with a *PROCESS 
statement, then the extent of your "variable' JCL for the 
above job would be the minimum necessary, namely: 

//PLO.SYSCIN DD DISP=SHR,DSN=source.lib(PROCl) 
// DD DISP=SHR,DSN=source.lib(PR0C2) 

Assuming you have named your main procedure DRIVER (for 
example), you can execute your program subsequently by 
collecting the pieces and resolving external references 
with the loader, using the following JCL: 

// EXEC PLOLG,PRELIB='auto.call.lib',EP=PLISTART 
//GO.LDRIN DD DISP=SHR,DSN=auto.call.lib(DRIVER) 
// other DD statements, as needed. 

Instead of resolving external references every time you 
execute the program, you may do that just once. One way 
of doing this is by adding the following JCL to the job 
which recompiles and updates your automatic call library. 
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It assumes you have an existing executable program library, 
a partitioned dataset containing one member. This dataset 
is scratched and reallocated each time the following JCL 
is run. 

// EXEC PGM=IEFBR14 
//DDl DD DISP=(MOD,DELETE),DSN=exec.prog.lib, 
// UNIT=unit,SPACE=space 
// EXEC PLOEP,PRELIB='auto.call.lib' 
//EDT.INCLIB DD DISP=SHR,DSN=autO.call.lib 
//EDT.SYSPVT DD DISP=(NEW,CATLG) ,DSN=exec.prog.lib , 
// UNIT=unit,SPACE=space 
//EDT.SYSIN DD * 

INCLUDE INCLIB(DRIVER) 
ENTRY PLISTART 
NAME DRIVER 

/* 
Note that this JCL does not have any names in it that need 
to be changed depending on which external procedures have 
just been compiled. To execute your program, use the 
following "bare" JCL: 

// EXEC PGM=DRIVER 
//STEPLIB DD DISP=SHR,DSN=exec.prog.lib 
//SYSPRINT and other DD statements, as needed 

The above JCL can be easily adapted for use with the Check
out compiler, or for Checker/Optimizer mixtures. (In the 
latter case, the requirement that a Checker module be the 
first presented to the linkage editor can be met by keeping 
DRIVER, i.e., the main procedure, at the Checker level.) 

Finally, this JCL can also be adapted for use with a program 
containing fetchable procedures. Suppose in addition to the 
main program, DRIVER, you have two fetchable procedures, 
FPl and FP2. The only necessary modification is 

//EDT.SYSIN DD * 
INCLUDE INCLIB(DRIVER) 
ENTRY PLISTART 
NAME DRIVER 
INCLUDE INCLIB(FPl) 
ENTRY FPl 
NAME FPl 
INCLUDE INCLIB{FP2) 
ENTRY FP2 
NAME FP2 

/* 
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Although all three load modules are re-created each time 
any procedure is compiled, the advantages of this technique 
are: 

(a) The JCL shown above still doesn't depend on 
which procedures are compiled. 

(b) If a particular external procedure happens to 
be referenced by two or more of the fetchable 
procedures, it is contained only once in your 
automatic call library, yet it is automatically 
brought in to each fetchable load module that 
needs it. 
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CHECKOOT COMPILER AND EXECUTION OPTIONS 

[ ] are used to denote text that may be omitted. 

AGGREGATE I NOAGGREGATE 

ATTRIBUTES | NOATTRIBIIT ES 

BLOCK ( n ) 

CAPS I A S I S 
CHAR SET ([ K 8 | 6 0 ] [ E B C D I C | B C D ] ) 
COMPATIBLE!NOCOMPATIBLE 
COUNTINOCOONT 

DIAGNOSEINODIAGNOSE 
DUMPINODimP 
ERRORS (n ) 

ESDI M0E5D 

FLAG[ ( I | W | E | S ) ] 

FLO'.I ( n . m ) I NOFLOW 
F O R I A T j NOFORMAT 
HALTj NOHALT 
INSOURCE(NOINSOURCE 

I S A S T Z E ( [ x ] , [ y ] , [ z ] ) 

LTNECOUNT (n ) 
LMESSAGEj SHESSAGE 

P!ACRO|NOHACRO 
MARGINI ( ' c ' ) INOMARGINI 
flARGTNS (m, n [ , c ]) 

MDECKINOMDECK 
NAIF ( ' a a a a a ^ a a ' ) 
NESTj NONEST 
NUMBEaiNONUMBER 

OBJECT I NOOBJECT 
O P T I O N S I N O O P T I O N S 

RUN!NORUNf ( W | S | S ) ] 

SEQUENCE ( lD,n) | NOSEQrjENCE 

S I Z E ( [ - ] n | [ - ] n K | MAX) 
SMAN(NOSMAN 

SOURCEINOSOURCE 

ABBREVIATED NAME 

AG 1 NAG 

A|NA 

BL ( n ) 

-
CS ( [ 4 8 1 6 0 ] [ E B | B ] ) 
COMINCOM 
CTINCT 

DIAGjHDIAG 
DUINDU 

-

-
F[ ( I | W | E | S ) ] 

-
FORI NFOR 

-
I S j N I S 

-
L C ( n ) 
LMSGISMSG 

Ml NH 
HI ( ' c ' ) INMI 
MAR(in,n[ , c ] ) 

MDINHD 

DEFAULT 

AG i n b a t c h 

NAG i n TSO 
A i n b a t c h 
NA i n TSO 
BL(0) 
CAPS 
CS(60 EB) 
NCOM 
CT i n b a t c h 
NCI i n TSO 
DIAG 
NDU 
ERRORS(IO) i n b a t c h 
ERRORS (0) i n TSO 
ESD i n b a t c h 
NOESO i n TSO 
F ( I ) i n b a t c h 
F(W) i n TSO 
FLOW ( 2 0 , 2 0 ) 
NFOR 
NOHALT 
IS i n b a t c h 
NIS i n TSO 
I S A S I Z E ( 8 1 9 2 , 

8 1 9 2 , 2 0 ) 
LC(55) 
LHSG i n b a t c h 
SMSG i n TSO 
NM 
NMI 
MAR(2 ,72 ,1 ) f o r 

F - f o r m a t 
MAR(10 ,100 ,9 ) f o r 

V , n - f o r m a t 
NMD 

N ( " a a a a a a a a ' ) 

NUMINNUn 

OBJINOBJ 
0 P | NOP 

SEQ([n,n) INOSEQ 

SZ ([ - ] n | [ - ] n K | M A X ) 

S|NS 

NEST 
NNU"I i n b a t c h 
NUM i n TSO 
NOB J 
OP i n b a t c h 
NOP i n TSO 
NORUN (S) i n b a t c h 
NORUN (E) i n TSO 
S E Q ( 7 3 , 8 0 ) f o r 

F - f o r m a t 
SEQ(1 ,S ) f o r 

V , n - f o r m a t 
SZ (MAX) 
NOSMAN i n b a t c h 
SMAN i n TSO 
s i n b a t c h 
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NS i n TSO 
NST 
NSTL 
STMT i n b a t c h 
NOSTMT i n TSO 
STG i n b a t c h 
NSTG i n TSO 
NSYN(3) i n b a t c h 
NSYN(E) i n TSO 

TERMINAL[ ( o p t i o n s ) ]|SOTERMIHAL TERM[ ( o p t i o n s ) ] | NTERM NTERH i n b a t c h 

STEP(n[ , m ] ) INOSTEP 
STEPLINES (n) INOSTEPLIHES 
STMTINOSTMT 

STORAGEIHOSTORAGE 

SYNTAX I NOSYNT*X[ (W|E|S) ] 

ST(n[,m]) (HST 
STL(n) INSTL 

STGINSTG 

SYN|NSYN[ (W|E|S) ] 

VERIFY INOVERIFY 
XREFjNOXREF 

V| NV 
X|NX 

TERM in TSO 
V 
X in batch 
NX in TSO 



13-28 

OPTIMIZER COMPILER OPTIONS 

[ ] are used to denote text that may be omitted. 

COMPILER OPTION ABBREVIATED NAME DEFAULT 

AGGREGATE|NOAGGREGATE 

ATTRIBUTES|NOATTRIBUTES 

CHAR S F T ( [ 1(81 60 ] [ EBCDIC I BCD]) 
COMPILE! NOCCMPILE[ (K| E | S ) ] 
COUNT!NOCOUNT 
DECKINODECK 
DUMPINODUMP 
ESD!NOESD 

FLAG[ ( I | W ! E | S) ] 

FLOW[ ( n , m ) ] | NOFLOW 
GONUMBERINOGONUMBER 

GOSTMTI NOGOSTMT 
IMPRECISE!NOIMPRECISE 

INCLODEINOINCLUDE 
INSOURCE!NOINSOURCE 

LINECOONT ( n ) 
L I S T [ ( n . i n ) ] | N O L I S T 
LMESSAGEISPIESS AGE 

MACSOINOMACRO 
MAPI NOMAP 
MARGINI ('c') INOMARGINI 
MARGINS (Jl,n[ ,c]) 

MDECKINOCDECK 
NAME ('aaaaaaaa') 
NESTINONEST 
NUMBER INONUMBER 

OBJECT! NOOBJECT 
OFFSET!NOOFFSET 

AG 1 NAG 

A| NA 

C S ( [ a 8 | 6 0 ] [ E B | 
C | N C [ ( W j E I S ) ] 
CTINCT 
D| ND 
DU INDU 

B]) 

F[ ( I | W | E | S ) ] 

GN|NGN 

GSINGS 
IMP] NIMP 

I N C | N I N C 
I S I N I S 

L C ( n ) 

LMSG ISMSG 

Ml NH 

MI ( ' c ' ) INMI 
MAR ( m , n [ , c ]) 

MD|NMD 
N ( ' a a a a a a a a ' ) 

NUNINNUn 

O B J | N O B J 
OFINOF 

O P T I M I Z E ( T 1 M E | 0 | 2 ) INOOPTIMIZE OPT (TIM E ! 0 | 2 ) I NOPT 
OPTIONSINOOPTIONS OP|NOP 

SEQUENCE ( m , n ) | NOSEQUENCE SEQ(f f l ,n ) INSEQ 

AG i n b a t c h 
NAG i n TSO 
A i n b a t c h 
NA i n TSO 
CS(60 EB) 
NC(S) 
NCT 
ND 
NDO 
ESD i n b a t c h 
NOESD i n TSO 
F ( I ) i n b a t c h 
F(W) i n TSO 
NOFLOW 
NGN i n b a t c h 
GN i n TSO 
NGS 
IMP i n b a t c h 
NIMP i n TSO 
NINC 
IS i n b a t c h 
NIS i n TSO 
LC (5 5) 
NOLIST 
LMSG i n b a t c h 
SMSG i n TSO 
NM 
NOMAP 
NMI 
MAR(2 ,72 ,1 ) f o r 

F - f o r m a t 
M^H(10, 1 0 0 , 9 ) f o r 

V , n - f o r m a t 
NMD 

NEST 
NNDM i n b a t c h 
NOM i n TSO 
OBJ 
CF i n b a t c h 
NOF i n TSO 
NOPT 
OP i n b a t c h 
NOP i n TSO 
S E 0 ( 7 3 , 8 0 ) f o r 

F - f o r m a t 

SIZE(n!nK!MAX) 
SOURCE INOSOURCE 

SZ(n|nK|HAX) 
SINS 

SEQ(1 ,8) f o r 
V,D-format 

SZ (MAX) 
S i n b a t c h 
NS i n TSO 
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STHTIHOSTMT 

STOHAGEINOSTORAGE 

SYNTAX! NOSYNTAX[ (W|E|S) ] 
TERMINAL[ ( o p t i o n s ) ]|N0TERMIN4L 

XEEFINOXREF 

STGINSTG 

SYN|NSYN[ ( H | E | S ) ] 
TERH[ ( o p t i o n s ) ]|NTERM 

X | N X 

STMT i n b a t c h 
NOSTMT i n TSO 
STG i n b a t c h 
NSTG i n TSO 
NSYN(S) 
NTERM i n b a t c h 
TERM i n TSO 
X i n b a t c h 
NX i n TSO 
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OPTIMIZER EXECUTION OPTIONS 

[ ] a r e u s e d t o d e n o t e t e x t t h a t may be o m i t t e d . 

EXECUTION OPTION ABBREVIATED NAME DEFAULT 

COUNT!NOCOONT 
FLOK[ (n,m) ] ! NOFLOW 
ISASIZE ( [ x ] , [ y ] , [ z ] ) 
HEPORTINOREPORT 
STAEINOSTAE 
SPIEINOSPIE 

CT| NCT 

I S A ( [ x ] , [ y ] , [ z ] ) 
R| NR 

C o m p i l e - t i m e 
C o m p i l e - t i m e 
ISA ( 8 K , 8 K , 2 0 ) 
NR 
STAE 
SPIE 
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14. Multitasking and asynchronous I/O. 

Multitasking is perhaps the single most unique feature of PL/I, 
having no parallel in other popular high-level languages. The 
feature allows one to express algorithms for parallel computation 
(concurrent processing] in a natural way. However, the multitasking 
feature of the language, like the preprocessor, has deficiencies. 
Until a little over a year ago, ANSI was well along with an improved 
version of the multitasking feature. Then the committee began to 
have second thoughts. They eventually decided that new develop
ments in computer architecture and operating system capabilities 
were coming forth so rapidly that the standardization of multi
tasking, which is intimately related to operating system capabili
ties, was actually premature. As a result, multitasking was entirely 
withdrawn from the proposed standard; and, since asynchronous I/O 
uses some of the same language elements, that went too. These 
features will undoubtedly be standardized in the future. For the 
time being, you can expect IBM to continue to offer their version 
of multitasking as an extension to the standard. Univac is offering 
an amalgam of that and the earlier proposal from ANSI. 

14.1 Concept of flow of control. 

We may think of the execution of a "conventional" program, i.e., 
the kind we have been talking about all along, as being "tracked" 
by a cursor that points to the instruction or statement being 
currently executed. Normally this cursor moves forward, or down, 
in the program. When it encounters an IF statement it may skip 
ahead. On encountering the END statement of a DO group it may back 
up to the DO statement. For a GO TO statement, it jumps to some 
Other place. For a procedure call, it also jumps, and if control 
reaches the procedure's END statement or one of its RETURN statements, 
the cursor jumps back to the point just beyond the "point of invo
cation." Finally, whenever a condition is raised and an on unit 
entered, the cursor jumps in the same way it does for a procedure 
call, with the expectation of a return jump back to the "point of 
interrupt" when (and if) the on unit returns normally. 

A delay (some WAIT time) that occurs for I/O activity when the 
"cursor" is at an I/O transmission statement doesn't change the 
picture in any way. The program may be temporarily suspended, in 
the sense that its cursor is not progressing, but the point is that 
it still identifies some statement (and only one) as the current 
statement. 
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In describing the peregrinations of the cursor we are describing 
what is commonly referred to as the "flow of control." The essential 
feature of a conventional program which distinguishes it from a 
multitasking program is that its behavior is described by a single 
flow of control; in procedure and on unit invocations we have to 
"remember" the point of call or point of interrupt, so the cursor 
can be restored to that point on the appropriate action by the 
program, but that housekeeping doesn't alter the fact that there 
is a single flow of control. 

In a multitasking program there may be an arbitrary number of con
currently active "cursors" or "flows of control." That is, several 
different statements may all be identified as "current." The cursor 
for each one moves along in the program in the normal way — jumping 
around, etc. 

How, you say, can several statements be in a state of concurrent 
execution on a single computer? Well, on our system there is in 
fact only one processing element. It can be servicing only one 
flow of control at a time. Various things may cause the processing 
element to temporarily divorce itself from one flow of control and 
begin (or resume) servicing another. So the several statements 
are not being executed exactly at the same time. But for all prac
tical purposes, they logically are because there is a degree of 
unpredictability in the extent to which the one processing element 
will service one flow of control before something causes it to 
switch to another. In any event, other computer systems may have 
multiple processing elements all sharing common storage, so it is 
entirely conceivable that several statements of a multitasking pro
gram may be in states of physically simultaneous, and not just logi
cally concurrent, execution. 

Another feature of multitasking programs is that they start off 
with a single flow of control, looking for all the world like a 
conventional program. At some point, however, they do something 
internally to establish an additional flow of control. These addi
tional flows of control may continue for a while, then terminate, 
leaving others, including the original one, still progressing. A 
particular flow of control, from the moment of its birth until its 
death, is called a task. To rephrase what we have already said: 

(a) A conventional program has a single task. 
(b) A multitasking program starts out in the conventional way, 

but after a while it creates (starts, or "attaches") new 
tasks. These may create yet others, etc. 

(c) All of the tasks proceed concurrently, eventually dying. 
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Generally, individual tasks can and do proceed independently of 
each other. They may each execute different portions of the code 
in a program, or they may execute the same portion. This poses no 
problem because the code is not self-modifying (it is "read-only") 
and each task can be given its own separate work area. Tasks may 
also share data defined by the program, that is, several statements 
being executed concurrently in different tasks can access common 
data. When this, in fact, occurs in a program, that program will 
generally need to employ some means of synchronizing the accesses 
of the tasks to the common data. Synchronization is accomplished 
through the temporary "suspension" of one or more tasks, if necessary. 

14.2. Overview of PL/I multitasking facilities. 

PL/I provides language primitives for: 

(a) Creating tasks. 
(b) Synchronizing tasks. 
(c) Terminating tasks. 

14.3. When to use, and not use, multitasking. 

It is natural to conclude that the ability to code "parallel processes" 
by using multitasking may gain you the advantage of additional I/O 
overlap (several tasks can do I/O simultaneously, and another can 
be using the CPU). Actually, this overlap can be achieved in a con
ventional, non-multitasking program by using the asynchronous I/O 
facilities to be described later in this lesson. But, in any event, 
whether there is any advantage in going out of your way to achieve 
extra overlap depends on several factors. Two aspects to be con
sidered are possible system-wide gains in throughput that work to 
everyone's advantage and possible lower job charges (due to decreased 
WAIT time) that work to yours. 

In the case of a job that occupies all, or most of, core storage, the 
only thing of importance is to minimize the total residence time of 
the job since it effectively has control of the whole machine during 
the time it is resident. Clearly, if additional overlap allows it 
to complete sooner, everyone gains by the increased throughput. The 
person who runs the job should be, and in our system will be, rewarded 
through lower costs. 

For a job that occupies a small amount of core storage, overlap achieved 
by rt is not so important in terms of overall system throughput, since 
lots of core storage remains for the scheduling of other jobs which 
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can provide overlap on an inter-job basis. Because of this, it can 
be argued that a "small-core" job should be neither rewarded for 
extra overlap nor penalized for not achieving it. Unfortunately, 
our system tends to reward even small-core jobs for extra overlap. 
What is worse, it is just those jobs that are subject most to certain 
kinds of contention that can inhibit potential overlap, contributing 
to the variation in recorded WAIT time. 

Independently of the above, one must consider the difficulty of 
designing and debugging a multitasking program. Also, one must 
recognize that multitasking programs incur additional operating 
system overhead. (See LRM 279.) And finally, at least for sequen
tial I/O you can achieve the benefits of I/O-CPU overlap without 
going out of your way merely by employing buffered files (which are, 
in fact, the default). 

What, then, are the logical uses for multitasking? Basically, multi
tasking is used to express, in a natural way, algorithms exhibiting 
a high degree of parallelism. An example in system programming is 
the implementation of a time-sharing system supervisor: the parallel 
activities are the independent, simultaneous services requested by 
logged on users. An example in engineering or science fields might 
be the simultaneous search for a solution by different methods where 
the convergence of any method is unpredictable; another example might 
be the simulation of a physical system characterized by competing 
or cooperating, random or probabilistic, concurrent processes. 

14.4. Attaching a task. 

In PL/I, an additional independent flow of control is started by 
invoking a procedure with one of the multitasking options. For 
example: 

CALL SmR[arg-list) TASK; 
In this CALL statement, the TASK option is used to denote that the 
execution of the procedure SUBR should constitute a new task. The 
invoking procedure does not transfer control to SUBR in the normal 
way. Rather, it goes right on with the execution of the next state
ment; It does not wait for SUBR to return. SUBR is free to execute 
"in parallel" with the invoking procedure. The task represented 
by the execution of SUBR survives until the procedure SUBR returns. 
At that moment, the task (i.e., the flow of control) comes to an 
end. (As we will see later, there are also several other ways that 
tasks can end.) 
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The situation described can be diagrammed in the following way. 

CALL SUBR(...) TASK; ^ SUBR: PROC(...); 

END; 

Contrast this to the normal invocation of a proecdure. 

i 
CALL SUBR(...); — — — - ^ SUBR: PROC(...); 

V 
END; 

When SUBR is executed as a task, it is called a subtask of the task 
represented by the execution of the invoking procedure; that task, 
in turn, is called the parent task. The main procedure has no parent 
task. It is called the major task. 

Any task can start any number (in theory) of subtasks; these may 
start other subtasks, etc. A given procedure may have several con
current invocations (as tasks). This situation should be compared 
to recursion, in which the several concurrent invocations of a given 
procedure are all part of the same task: the one flow of control 
is in the most recent invocation. 

See LRM 280 and LRM 281. 

14.5. Scheduling of tasks; priorities. 

When several tasks are active simultaneously they compete for CPU 
service. Some of them may be waiting for the completion of I/O 
(or for other things) and are not demanding CPU service at the 
moment. They are said not to be "ready." Amongst the ready tasks, 
however, only one can be receiving service from the single CPU. 
The algorithm which determines which ready task receives CPU service 
is the scheduling policy of the operating system. Many different 
scheduling policies are imaginable, such as "least recently served," 
"round robin," etc. 
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In the case of OS, however, each task in the system has a priority, 
and it is always the highest priority ready task that receives control. 
Tasks of a multitasking PL/I program, like all other tasks in the 
system, have priorities. There are facilities in PL/I, which will 
be described shortly, to assign a priority to a new task, to determine 
the priority of a task, and to change the priority of a task. 

There are two ways that control can leave a task. The task may 
give up control voluntarily by becoming "not ready," as, for instance, 
by arriving at a point where it must wait for the completion of an 
I/O operation. Or it may involuntarily give up control, i.e., have 
control usurped from it, as the result of a higher priority task 
becoming ready. The one from which control is usurped remains ready, 
of course, and is not logically aware that control is usurped. The 
usurping of control is usually a probabilistic or non-deterministic 
happening; however, it may be occasioned by something the task itself 
does (such as raise the priority of another ready task above its own). 

When a task is created as shown in the previous section, its initial 
priority is set equal to that of its parent task. The PRIORITY 
option of the CALL statement, however, can be used to assign either 
a higher or lower initial priority to the new task. The effect of 

CALL SUBR(...) TASK PRIORITY [expr); 
is to attach SUBR as a task with a priority of n relative to that 
of the parent task, where n is the value of expr (converted, if 
necessary, to a binary integer). 

In PL/I, priorities are always relative (ultimately to that of the 
major task, which is set initially by the operating system). But 
this is always sufficient because, as far as your program is concerned, 
its use of priorities is for the logical purpose of controlling 
which of its ready tasks is to be selected for CPU service in pref
erence to the others. 

The maximum and minimum absolute priorities of tasks are determined 
by factors outside PL/I. Generally, you can expect ten or so priority 
levels below that of the major task to be reachable. It would be 
wise, however, to assume that no higher levels are reachable. 

How essential is the use of priorities for logical purposes in PL/I? 
It turns out that in the current language their use is essential, 
but only to "simulate" a primitive multitasking service which is 
not m PL/I but is essential. It is interesting to note that the 
revised multitasking language earlier proposed by ANSI had this 
other service ("locking" or "enqueueing") and eliminated the concept 
of priority. 

See LRM 282 and LRM 283. 
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14.6. Task values and variables. 

In this section we will describe how the priority of a task may 
be determined or changed. For this purpose we will need task vari
ables and the PRIORITY builtin function and pseudo-variable. 

A variable declared with the TASK attribute is known as a task 
variable. Task values (i.e., values of task variables), which are 
a new kind of program control data, have very limited use. They 
may, of course, be propagated by assignment. 

The value of a task variable may be thought of as a binary integer 
representing a priority. 

Task variables may or may not be associated with tasks. Initially, 
a task variable is not associated with any task; it is said to be 
an "inactive task variable." An inactive task variable is associated 
with a task by referencing the variable in the TASK option of the 
CALL statement which creates the task. Examples: 

CALL SUBRl TASK (Tl) PRIORITY (-1); 
CALL SUBR2 TASK (T2(I)) PRIORITY (1); 
CALL SUBR2 TASK (P -» T) PRIORITY (N); 
CALL SUBR3 TASK (S.T) PRIORITY (0); 

In these examples, four tasks are created. They are represented 
by the execution of procedures SUBRl, SUBR2 (for two of the tasks), 
and SUBR3. With each is associated a task variable (respectively, 
the element task variable Tl, the I-th element of the array T2 of 
task variables, the based element task variable T located by the 
value of the pointer variable P, and the task variable T which is 
a component of the structure S). 

Once a task variable is associated with a task, it is called an 
"active task variable." It remains active until the task with 
which it is associated tenninates. It is illegal to attempt to 
associate an active task variable with a task by referencing it in 
a TASK option. In other words, the following is illegal: 

CALL SUBRl TASK (T) PRIORITY (-1); 
CALL SUBR2 TASK (T) PRIORITY (-2); 

When a task variable is made active by associateing it with a task 
as shown above, it is given a value (as a priority value) representing 
the priority of the newly created task. The priority of the task 
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may be subsequently examined by use of the PRIORITY builtin function. 
For example, 

N = PRIORITY(T); 
assigns to N the priority of the task associated with the task 
variable T. In keeping with the spirit of relative priorities, 
this value is not the absolute priority of that task, but rather the 
value relative to the priority of the task in which the statement 
is executed. Hence the reference PRIORITY(T) may return different 
values depending on which task it is evaluated in. 

The priority of a task, after it is initially established, may be 
changed in either of two ways. One is by assigning a new task 
value to the associated task variable, as in 

CALL SUBRl TASK (T) PRIORITY (-1); 
CALL SUBR2 TASK (U) PRIORITY (N); 

T = U; 
The effect of this is to change the priority of the task associated 
with T to that of the task associated with U. 

The second way to change the priority of a task is by using the 
PRIORITY pseudo-variable. For instance, 

PRIORITY(T) = -1; 
This causes the priority of the task associated with T to be set 
to one less than the priority of the task executing this statement 
(observe the use of relative priorities again). 

A task can increase or decrease its own priority. One way of accom
plishing that is shown by the following example: 

DCL T TASK; 
CALL SUBR TASK (T) PRIORITY (-1); 

SUBR: PROC; 

PRIORITY(T) = 1; 

END; 
By the normal scope rules, the variable T declared outside of SUBR 
IS also known mside SUBR. It is associated with the task represented 
by the execution of SUBR by the CALL statement. The statement 

PRIORITY(T) = 1; 
increases the priority of the named task by one relative to the current 
task. But the named task is the current task in this case. 
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This method of changing a task's own priority would not be available 
to It if no task variable was named in the TASK option of the CALL 
statement that created the task. In particular, it is not available 
to the major task. Thus, the second method of changing a task's own 
priority is to use the PRIORITY pseudo-variable with an empty argu
ment list: 

PRIORITY( ) = 1; 

It should be remarked that priority values can be held by inactive 
task variables. Although in this case the priority value is not 
that of an actual task, it behaves as if it were. One (non-essential) 
use for this is the following. If the CALL statement that creates 
a task uses the TASK option containing a task variable, but no 
PRIORITY option, then the priority of the newly created task is 
set equal to that held in the (inactive) task variable. Thus, 

CALL SUBR TASK (T); 
is equivalent to 

CALL SUBR TASK (T) PRIORITY (PRIORITY(T)); 
Both of these statements would be in error if T had not previously 
been assigned a value (as a priority). 

See LRM 284 through LRM 287 and the entries for PRIORITY in LRM 18. 

14.7. Event variables and values. 

Suppose a parent task needs to know if one of its subtasks is still 
active, i.e., in existence. You might think it would suffice to 
set a BIT (1) variable to 'I'B just before creating the subtask, 
then arrange for the procedure whose execution represents that 
subtask to set the same variable to 'O'B just before it returns. 
The parent task could then test that variable at any time. The 
problem with this is that the subtask can terminate in other ways 
(which we haven't seen yet) besides executing a RETURN or END 
statement; it would not have a chance to set the bit variable to 
'O'B in these other cases. 

Event variables (those declared with the EVENT attribute) may be 
employed to keep track of the status of a task. (They may be used 
for a lot of other things, as we shall see.) 

Event variables have two parts to their value: a "completion" part 
represented as a BIT (1) value, and a "status" part represented 
as a binary integer. 

Event variables may or may not be associated with tasks. Initially, 
an event variable is not associated with a task (or certain other 
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things described later) and is said to be an "inactive event variable." 
An inactive event variable may be associated with a task by refer
encing the event variable in the EVENT option of the CALL statement 
that creates the task, as in the following. 

CALL SUBR TASK EVENT (E); 
This serves three purposes: 

(a) To make the event variable E active. It remains active 
until the associated task terminates. During this time 
it may not be associated with another task (or certain 
other things). 

(b) To set the completion part of E to the value 'O'B. It 
remains 'O'B until the task terminates, at which time 
it is set to 'I'B automatically. 

(c) To set the status part of E to the value 0. Further use 
of the status part is described later. 

The parent task, or any other task for that matter, can subsequently 
examine the value of the completion part of E to determine whether 
the subtask is still active. Access to the completion part of an 
event variable is gained by use of the COMPLETION builtin function. 
For example 

IF CCMPLETION(E) THEN ...; 

When an event value is assigned to an event variable, the effect is 
to assign the completion and status parts simultaneously. No inter
rupt can occur in this operation, and no task switch can occur until 
it is complete. But assignment to event variables (particularly 
to their completion parts) will be saved until later, because it 
is illegal to do anything to the completion part of an active event 
variable (except look at it). Assignment to an inactive event 
variable is not useful, as yet, because any value it may have is 
not used, and in fact is overwritten, when the event variable is 
made active. 

See LRM 288 through LRM 291 and the entry for the COMPLETION builtin 
function in LRM 18. 

14.8. The WAIT statement. 

Suppose now that a parent task, which has been executing in parallel 
with a subtask it has created, has reached a point in its logic 
where it absolutely must wait until the subtask reaches its end 
before going on. (Perhaps it needs a value which is set by the 
subtask just before it finishes.) One thing the parent task could 
do is spin" in a tight loop, repeatedly looking at the completion 



14-11 

part of the event variable associated with the subtask. This would 
be extremely unwise, however, given a suitable alternative. For 
it would waste CPU cycles. Worse than that, if the subtask does 
not have a higher priority than the parent task, the loop would be 
infinite since the subtask would never again get control and could 
not terminate. (It is assumed the spin loop in the parent task 
does no I/O or anything else to voluntarily relinquish control of 
the CPU.) 

To accomplish what is needed here, the parent task executes a WAIT 
statement naming the event variable. If, at that instant, the 
completion part of the event variable has the value 'I'B (indicating 
the associated subtask has already terminated), the parent task 
merely proceeds to the statement after the WAIT statement. On the 
other hand, if it has the value 'O'B (indicating the subtask is 
still executing), then the execution of the parent task is tempo
rarily suspended; i.e., that task is made "not ready." It remains 
suspended until the subtask tenninates (more precisely, until the 
event variable has been marked "complete" by the termination of 
the subtask), whereupon it again becomes "ready." This situation 
is not unlike what happens when a task waits for the completion 
of an I/O operation. During the period of waiting, other tasks 
(including, obviously, lower priority ones) may receive CPU service. 

The form of the WAIT statement used for the above is: 
WAIT (E); 

In general, a WAIT statement may wait on the completion of any 
number of events. A list may be specified, e.g., 

WAIT (El, E2, E3); 
This WAIT statement will cause the task that executes it to wait 
for the completion of the three events (i.e., subtask terminations, 
for now) with which the event variables El, E2, and E3 have been 
associated. 

In addition, any item in the list of event variables may be an 
aggregate of event variables. The meaning is the same as writing 
all the contained element event variables in the list. E.g., for an 
array E of four event variables, 

WAIT (E(*)); 
is the same as 

WAIT (E(l), E(2), E(3), E(4)); 

Finally, a task can wait on the completion of any number of the 
event variables specified in the list; it need not wait on the 
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completion of all of them. For example, 
WAITlIl, E2) (1); 

causes the current task to be suspended until at least one of El and 
E2 is marked complete. In general, an expression may be given for 
the wait count. 

See LRM 292 and LRM 293. 

14.9. Termination of tasks. 

Termination of a task is said to be normal if the procedure whose 
execution represents the task reaches a RETURN statement or its 
END statement. In this case, the status part of the associated 
event variable, which was set to 0 automatically when the task was 
created, is left with this value. There are several ways a task 
can terminate abnormally. Two we will consider here are the follow
ing: 

(a) It may execute an EXIT statement. See LRM 294. 
(b) The block which created it can terminate. 

This forces termination of the subtask. Example: 

BEGIN; 
CALL SUBRl TASK EVENT (El); 
CALL SUBR2 TASK EVENT (E2); 
WAIT (El, E2) (1); 

END; 

Two subtasks are started by the begin block which then 
waits for the completion of either one. As soon as one 
completes (normally, presumably), the WAIT statement is 
satisfied, so the parent task proceeds. This causes 
termination of the begin block. That will force the 
abnormal termination of the remaining subtask. 

When a task terminates abnormally, the status part of its associated 
event variable is set to 1 if it is still 0. See LRM 295. 

A parent task may detemine whether a subtask has terminated normally 
or abnormally by examining the status part of its associated event 
variable after termination. This is achieved by use of the STATUS 
LkM is" ^''^^°"- ^^ ^^^ ^ " t ^ fo'̂  the STATUS builtin function in 
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Although it is illegal to assign an event value to an active event 
variable (because, in particular, an attempt may not be made to 
affect its completion part in this or any other way), it iŝ  legal 
to assign a value to its status part only. This is accomplished by 
use of the STATUS pseudo-variable. (See entry in LRM 18.) A non
zero value assigned in this way will be left untouched if the task 
terminates abnormally. 

Note that execution of an EXIT statement in the major task is 
equivalent to execution of a STOP statement in any task. Review 
LRM 112 and LRM 113. 

14.10. Sharing data among tasks. 

In general, two tasks can communicate through any variables known to 
both of them. Which variables are known is determined in the usual 
way by the block structure and scope of names. The programmer, 
however, is responsible for synchronizing (by using event variables 
and the WAIT statement in ways to be shown later) simultaneous refer
ences, one of which may change the value of a variable, in two or 
more tasks. Further details are given at LRM 296. Considerations 
for the sharing of files between tasks are given at LRM 297. 

14.11. Inheritance of on units across tasks. 

In Lesson 6 we decribed the search process for an established on 
unit to handle the occurrence of a condition. The search proceeded 
from the current block out along the chain of active blocks to the 
main procedure (if necessary). The same process is used in multi
tasking situations, i.e., if an established on unit is not found 
in any of the active blocks of a subtask in which the condition 
occurs, the search continues in the active blocks of the parent 
task. (Note that those blocks must still be active, for otherwise 
the subtask would have been tenninated abnormally earlier.) 

If an on unit is found in one of the blocks of the parent task, it 
is invoked in the normal way. However, note that its execution is 
part of the flow of control through the subtask, not through the 
parent task. The parent task continues doing whatever it was doing 
when the condition occurred in the subtask. That parent task could 
even raise the same condition and execute the same on unit in parallel 
with the subtask! See LRM 298. 
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The situation described in the last paragraph is only one way in 
which the same section of code can be in simultaneous execution 
by different tasks. Other ways result from the following: 

(a) The same procedure is attached multiple times as a task. 
(b) An internal or external procedure is called in the normal 

way by two or more tasks concurrently. 
(c) A program, even one which does no multitasking, can be 

made resident in the operating system, so that if several 
users happen to execute it simultaneously they will share 
one copy of the code and all static data rather than having 
their own separate copy. As far as the operating system 
is concerned, the execution of that common code by each 
of those users is a separate task. This situation, in 
which a program has several concurrent executions as 
separate tasks without itself creating any subtasks, is 
called multiprogramming. 

Whenever part of the code of any external procedure can be executed 
by two or more tasks simultaneously, that external procedure must 
specify OPTIONS(REENTRANT) on its procedure statement. This will 
tell our compiler to use dynamic storage (behaving, in fact, like 
automatic storage) for any writeable workspace it needs for the 
procedure, so that each of its "executors" will have a separate 
copy. (It might otherwise use static storage — which is shared 
amongst all the executors.) The programmer, too, must observe the 
same requirement and use automatic storage for any local variables 
of a reentrant procedure. See LRM 299 and LRM 300. 

Before leaving this subject, we will give emphasis to a point not 
adequately made in the LRM. The establishment status of on units 
in a parent task is essentially "frozen" when it attaches a subtask, 
as far as the subtask is concerned. That is, if the search for an 
established on unit should go back as far as the blocks of the parent 
task, the effects of any ON or REVERT statements executed there 
after the creation of the subtask will not be observed by the sub-
task. They will, however, have their usual effect on the on units 
that may be entered by the occurrence of a condition in the parent 
task. For example, 

ON FOFL X = 1; 
CALL SUBR TASK; 
ON FOFL X = 2; 
LI: A statement that raises FOFL; 
SUBR: PROC; 

L2: A statement that raises FOFL; 
END; 

Execution of the statement labeled LI causes X to be assigned the 
value 2. Execution of L2 causes it to be assigned the value 1, even 
if the parent task has already executed its second ON statement. 
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Also, at this point it should be remarked that standard system action 
for the FINISH condition, which was said in Lesson 6 to terminate 
the program, actually only terminates the task in which it is raised. 
The termination is normal only if the raising of FINISH results 
from the execution of a procedure END or RETURN statement for the 
task. In particular, standard system action for ERROR, raised in 
a task, causes a message to be printed, FINISH to be raised, and 
that task (only) to be terminated (abnormally). Thus, another 
legitimate use of multitasking might be merely to isolate the effects 
of catastrophic errors and prevent termination of the whole program 
by one. 

14.12. EVENT option of DISPLAY statement. 

Recall, from Lesson 12, that execution of 
DISPLAY (expr) REPLY (variable); 

prints a message (the value of expr) to the operator, then causes 
the program to be suspended until his reply is received (and stored 
in variable). The wait is just like that for an I/O operation. 
By adding the EVENT option to the DISPLAY statement, the program, 
instead, goes on with the next statement without waiting for a reply. 
The event variable named must be inactive, i.e., not currently 
associated with a task or, we can now add, with an operator reply. 
Its use in a DISPLAY statement makes it active and initializes the 
completion part to 'O'B. It remains in this state until two things 
have happened: 

(a) The operator's reply has been received. 
(b) A WAIT statement referencing the event variable has been 

executed. Note that examination of the completion part 
by use of the COMPLETION builtin function will reveal a 
value of '0'B if it is performed before a WAIT statement 
references the event variable, even if the operator's 
reply has already been received. 

When both conditions are met, the event variable is set inactive 
and its completion part is set to 'I'B. Its status part is not 
used. See LRM 301. 

14.13. Asynchronous I/O. 

We have already remarked several times in passing that execution of 
I/O transmission statements may result in an implicit wait for the 
completion of the I/O operation, during which time the task executing 
the statement is in a "not ready" state. As with the DISPLAY state
ment, the EVENT option can be added to most transmission statements 
to allow the task executing the transmission statement to proceed to 
the following statement. The WAIT statement is used subsequently 
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when the task finally arrives at that point where it absolutely needs 
to be sure the I/O operation has completed before proceeding. 

Rules for the use and management of I/O event variables are similar 
to those for display events. Specifically: 

(a) The event variable referenced by the EVENT option of an 
asynchronous transmission statement must be inactive, i.e., 
not currently associated with a task, or an outstanding 
operator reply, or, we can now add, an asynchronous I/O 
operation. 

(b) Execution of the transmission statement causes the event 
variable to become active, sets its completion part to 
the value 'O'B and its status part to 0. 

(c) While the event variable is active, it is illegal to 
change the value of its completion part (as by assignment 
to the event variable) or to associate the event variable 
with a task, operator reply, or another asynchronous I/O 
operation. 

(d) The event variable remains active, and its completion 
part continues to have the value 'O'B, until two conditions 
are met: the I/O operation has physically ended, and the 
event variable has been referenced in a WAIT statement. 
As with display events, but unlike task events, execution 
of the WAIT statement (eventually) is a prerequisite to 
setting the completion part of the event variable to 'I'B. 

References will be given later. 

Asynchronous I/O can be used to overlap CPU use with I/O operations, 
to overlap I/O operations on different files, or even to overlap I/O 
operations on the same file. In certain cases of the latter use, 
the NCP ENVIRONMENT option (or JCL DCB parameter) must be employed 
to specify an upper bound on the number of I/O operations that can 
be outstanding simultaneously for a given file. See LRM 302 and 
LRM 303; further information is in the Programmer's Guides. 

Note that the performance of asynchronous I/O operations does not 
involve the creation of new tasks. (Neither does the execution of 
a DISPLAY...REPLY...EVENT statement.) The facility may be used in 
a conventional program. Thus, the WAIT statement and event variables 
have uses both in multitasking and in conventional programs. 
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Conditions in asynchronous I/O. 

We have seen that execution of an I/O transmission statement can 
raise a variety of conditions (ENDFILE, TRANSMIT, RECORD, etc.). 
If an asynchronous I/O statement causes one or more of these condi
tions to occur, the on units are not entered until the WAIT state
ment is executed. That is, their execution is made synchronous 
with respect to the flow of control through the task. If an on 
unit is to be entered, then the following occurs when the WAIT 
statement is finally executed: 

(a) The event variable remains active. 
(b) Its status part is set to 1. 
(c) Its completion part remains at 'O'B. 
(d) The on unit is entered. 
(e) If the on unit returns normally to the point of interrupt 

(the WAIT statement), a further on unit may be entered. 
(f) When all on units have been executed and have returned 

normally, the con̂ jletion part of the event variable is 
set to 'I'B and the event variable is made inactive. 

(g) The event variable is similarly marked complete and 
made inactive if an on unit tenninates abnormally, i.e., 
by a GO TO out of block. Any additional pending on 
units will not be entered. 

The EVENT option can be added to READ, WRITE, REWRITE, or DELETE 
statements in cases described at LRM 304. The file must have the 
UNBUFFERED attribute. Additional information is found in LRM 305 
through LRM 311 as well as the entries for the applicable I/O 
conditions in LRM 116. 

14.15. Review of exclusive files. 

In Lesson 9 we briefly introduced the EXCLUSIVE attribute, NOLOCK 
option of the READ statement, and the UNLOCK statement. These were 
shown to be of use in synchronizing two independent concurrent con
ventional programs which update a common data base. They may also 
be employed to synchronize multiple tasks of a single program which 
independently update a shared data base. Review the material and 
references from Lesson 9. 
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14.16. "Physical" events. 

We may characterize the task completion events, operator reply 
events, and asynchronous I/O completion events with which event 
variables may be associated, as described above, as "physical 
events. The event variables are marked complete automatically 
when the associated physical activity comes to an end. (In the 
case of display and I/O events, but not task completion events, 
a WAIT statement naming the event variable must also be executed 
before the variable can be marked complete.) Generally, the 
program is largely unable to influence directly the completion 
of one of these kinds of physical activities; the activity com
pletes in due course. (This is not literally true in the case 
of task events. We have seen how a task can be terminated abnor
mally, essentially at will, by having the block which created it 
terminate. And, of course, even the nonnal completion of a task 
is guided by program logic within the task. Generally, however, 
the task proceeds until normal completion while making unpredict
able progress, and therefore it is useful to think of its comple
tion as a physical event.) 

14.17. "Abstract," or programmed, events. 

The PL/I programmer may also define abstract or logical events 
that do not necessarily correspond to particular physical activity. 
Rather, they correspond to the program having reached a certain 
"state," which can have any meaning the programmer desires. The 
"completion" and "status" of these abstract events can be freely 
set by the programmer, and tasks can be made to wait for the com
pletion of an abstract event. 

So far we have seen no use for "inactive" event variables except 
that they are available for association with a physical event. 
As soon as they are associated with it, they become active and 
essentially must be left alone until the physical event runs its 
course. They are automatically marked "incomplete" at the start 
of the physical activity and "complete" at its end. During this 
time they may be the subject of a WAIT statement. 

Inactive event variables, we can say now, can be used to mark the 
completion of abstract events. The general technique is to set 
one's conpletion part to 'O'B at some point in time and to 'I'B 
at a later point in time. Once it has been assigned a value, any 
task can WAIT on the event variable. (There is never any restric
tion on which event variables may be waited upon except that their 
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conpletion parts must have been assigned a definite value before 
they are referenced in a WAIT statement.) The task is suspended 
if, at the time the WAIT statement is encountered, the referenced 
event variable has the conpletion value 'O'B, but it is not sus
pended if at that moment it has the value 'I'B. If it is suspended, 
it remains suspended until some other task assigns the value 'I'B 
to the event variable's completion part. Note, of course, that in 
general a WAIT statement may present a list of event variables and 
a number of them vdiich must be marked complete before the wait is 
satisfied. 

How does one assign a value to the completion part of an event 
variable? One way is to use the COMPLETION pseudo-variable, as in 

COMPLETION(E) = 'I'B; 
or 

C(M'LETION(E) = N > 0; 
(See the entry in LRM 18.) This leaves the status part of the 
event variable unchanged. Another way is to assign an event value 
(obtained by referencing another event variable or invoking a func
tion that returns an event value) to the event variable. This 
propagates the completion and status parts simultaneously, with no 
possibility of interrupt or a task switch until the whole assign
ment is complete. Examples will be presented later. See LRM 312. 

14.18. The DELAY statement. 

Another statement that may have a marginal use in multitasking 
situations is the DELAY statement. The form is 

DELAY (zxpi); 
The current task is suspended for a number of milliseconds given 
by the value of txpi. It is exactly as if an I/O operation that 
required the specified amount of WAIT time were being performed. 
The DELAY statement may usefully be employed in a loop in a high 
priority task to let a lower priority task gain control until the 
expiration of the delay, whereupon the higher priority task will 
usurp control from it. It may then examine the progress of the 
lower priority task (by accessing shared variables, for instance) 
and either go back through the loop and delay again, or do some
thing else. See LRM 313 and LRM 314. 

14.19. Examples of abstract events. 

The first exan̂ jle will be developed in stages. 
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We assume a program will "produce" and "consume" 100 (say) values. 
A value is available for consumption as soon as it is produced. A 
very simple conventional program can be built around a loop such as 

DO I = 1 TO 100; 
CALL PRODUCE(X); 
CALL CONSUME(X); 

END; . ^ 
However, we assume that the acts of producing and consuming a single 
value are each very laborious, involving a lot of I/O activity that 
could be overlapped (i.e., logically the consumer's I/O activity is 
independent of the producer's and can be overlapped with it). So 
one improvement using task events might be 

CALL PRODUCE(X); 
DO I = 1 TO 99; 
Y = X' 
CALL CONSUME(Y) TASK EVENT (EY); 
CALL PRODUCE(X) TASK EVENT (EX); 
WAIT (EX,EY); 

END; 
CALL CONSUME(X); 

Here, the 2nd value is being produced while the 1st is being consumed, 
and so on. 

The only real criticism of this multitasking solution is that subtasks 
are created 198 times (only two are active simultaneously, of course). 
There is a considerable overhead involved in creating a task which we 
would like to avoid. 

Our solution will be to have the main program (the major task) create 
two subtasks, just once, and wait for both of them to complete. One 
will be responsible for producing values, the other for consuming 
them. We will arrange for the consumer to wait until the producer 
has produced a value in some workspace belonging to the producer. 
When the producer has produced such a value, it will inform the con
sumer that it may proceed. We will make it the responsibility of the 
consumer, when it receives the signal to proceed, to move the value 
to its own workspace. The producer will wait for this action to be 
completed. The consumer will signal the producer when it has com
pleted the move. At that point, the producer will be free to produce 
another value while the consumer is busy consuming the last one. If 
the consumer happens to finish first, it will wait for another value 
to be made available (as signaled by the producer). If the producer 
happens to finish first, rt will wait for the consumer to catch up 
and signal that it has moved the new value to its workspace. 

Study the following solution carefully! 
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PRDG: PROC OPTIONS (MAIN); 
DCL (PRODUCE, CONSUME) ENTRY EXT; 
DCL (X, Y) ...; 
DCL (PRODUCED, MOVED, El, E2) EVENT; 
COMPLETION (PRODUCED), CCMPLETION(NDVED) = 'O'B; 
CALL PRODUCER TASK EVENT (El); 
CALL CONSUMER TASK EVENT (E2); 
WAIT (El, E2); 

PRODUCER: PROC; 
DCL I FIXED BIN; 
DO I = 1 TO 100; 

CALL PRODUCE(X); 
CCMPLEIION(PRODUCED) = 'I'B; 
WAIT (MOVED); 
CCMPLEIION(MOVED) = 'O'B; 

END; 
END; 

CONSUMER: PROC; 
DCL I FIXED BIN; 
DO I = 1 TO 100; 

WAIT (PRODUCED); 
COMPLETION(PRODUCED) = 'O'B; 
Y = X* 
CCMPLETION(MOVED) = 'I'B; 
CALL CONSUME(Y); 

END; 
END; 

END; /* PROG */ 

The kind of control flow achieved in this program is known as a 
classical "coroutine" structure. It is characterized by an orderly 
"handshaking" of two parallel processes. Notice the symmetry: the 
operations performed by one task on PRODUCED and MOVED are the same 
as those performed by the other task on MOVED and PRODUCED, respec
tively. Also notice that all the tasks can execute at the same 
priority. 

In the second example, we will assume that we have two tasks doing 
"mostly independent" things. Every once in awhile, however, each 
task needs to update some data shared between the two tasks. In 
other words, there is a region in each task, called a "critical 
region," in which all operations on the shared data are performed, 
having the following properties: If neither task is in its critical 
region, the first one to arrive at its critical region is permitted 
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unconditionally to enter it. If, however, a task arrives at its 
critical region while the other is already in its, the one just 
arriving must wait until the other leaves its critical region. 
Thus, we are guaranteed that both tasks will not be in their critical 
regions simultaneously. 

It might appear that this problem is solved by having both tasks 
execute code like the following: 

WAIT (NOT_IN_CRITICAL_ REGION); 
COMPLETION(NOT IN_CRITICAL_REGION) = 'O'B; 

critical region 

CCMPLETION(NOT_IN_CRITICAL_REGION) = 'I'B; 
Here, NOT_IN_CRITICAL_REGION is initially complete. Let us suppose 
task 1 arrives at this code well in advance of task 2, so that it is, 
say, in the middle of its critical region when task 2 arrives at its 
WAIT statement. The event variable will be found to be marked incom
plete. So task 2 will indeed wait until task 1 leaves its critical 
region and sets the event variable complete. But the danger here is 
that the two tasks may arrive at their WAIT statements nearly simul
taneously. They will both find the event variable marked complete 
and both will proceed. (For example, assume task 2 has a higher 
priority than task 1 but is not, at the moment, "ready," i.e., assume 
it is waiting for I/O. Task 1 is proceeding. It passes its WAIT 
statement but before it has a chance to set the event variable incom
plete, task 2 finishes its I/O, becomes ready, and usurps control 
from task 1 by virtue of its higher priority. It executes its WAIT 
statement and also proceeds. Being at a higher priority, task 2 con
tinues and sets the event variable incomplete, then enters its crit
ical region. Let's assume it does some I/O in there, so it relin
quishes control to task 1. Task 1, already past its WAIT statement, 
sets the already incomplete event variable incomplete and proceeds 
into its critical region. Both tasks are now in their critical 
regions, and that is what we wanted to avoid.) 

You might say "The probability that the adverse timing hypothesized 
above permits both tasks to enter their critical regions is incredibly 
and acceptably small; don't worry about it." But is the risk worth 
taking? The failure of the program's logic, in that one chance out of 
a million, could cause the destruction of a crucial data base! It is 
the essence of multitasking that programs be provably correct regard
less of the sequence of any actions that can be performed in parallel. 
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Our solution will be shown in pieces. We will need a special task, 
represented by the procedure GRANTOR, which will execute at a higher 
priority than any other task in the program. This is an absolute 
necessity. GRANTOR will spend most of its time waiting for a request 
to perform a service, so it will not consume much of the CPU resource 
and won't generally interfere with the lower priority tasks. The 
idea, however, is that when one of the two tasks asks GRANTOR to 
perform a service, GRANTOR must get control ijnmediately and in par
ticular not let the other task proceed. It must also not relinquish 
control until it is finished performing the service requested. This, 
too, is essential and is achieved by coding GRANTOR so that it does 
no I/O or anything else that can cause it to wait until it has 
finished its duty. 

The main program is shown first. It starts by initializing some 
event variables, lowering its own priority, then creating GRANTOR 
at a higher priority. GRANTOR will immediately take control. It 
will wait for a request. The main program will resume at that point 
and will then initiate the two tasks containing the critical regions. 
(These must never execute at a priority as high as GRANTOR'S.) When 
both of these tasks have finished, the main program tells GRANTOR to 
terminate normally (that is one of the services it can be asked to 
perform) then waits for it to do so. 

PROG: PROC OPTIONS (MAIN); 
DCL (GRANTOR, TASKl, TASK2) ENTRY EXT; 
DCL (G, Tl, T2) EVENT; 
DCL (TAKE, GIVE, QUIT, L0CK(2)) EVENT EXT; 
C(M'LEriON(TAKE), C»lPLETION(GrVE), CCMPLETION(QUIT) = 'O 'B; 
COMPLETION(LOCK(*)) = 'I'B; 
PRIORITY0 = -1 
CALL GRANTOR TASK PRIORITY (+1) EVENT (G); 
CALL TASKl TASK EVENT (Tl); 
CALL TASK2 TASK EVENT (T2); 
WAIT (Tl T2)• 
COMPLETION(QUIT) = 'I'B; /* TELL GRANTOR TO END */ 
WAIT (G); /* WAIT FOR IT TO DO SO */ 

END; 

The code in the vicinity of TASKl's critical region will look like 
TAKE = EVl; 
WAIT (LOCK(l)); 

critical region 

GIVE = EVl; 



14-24 

Here, EVl is a local event variable declared and initialized in 
TASKl as follows: 

DCL EVl EVENT; 
COMPLETION(EVl) = 'I'B; 
STATUS(EVl) = 1 ; 

LOCK is an array of event variables declared in TASKl, TASK2, and 
GRANTOR as in PROG: 

DCL LOCK (2) EVENT EXT; 
The code in the vicinity of TASK2's critical region will be similar, 
namely: 

TAKE = EV2; 
WAIT (LOCK(2)); 

critical region 

GIVE = EV2; 
In TASK2, EV2 is declared and initialized as follows: 

DCL EV2 EVENT; 
CCWPLEIION (EV2) = 'I'B; 
STATUS(EV2) = 2; 

Obviously, TASKl, TASK2, and GRANTOR all declare TAKE and GIVE as 
external event variables. (Remember, they were initialized by the 
main program.) 

As soon as either task assigns to TAKE, GRANTOR will proceed (because 
it is waiting for the completion of any one of several event variables, 
including TAKE, and it has a higher priority). Note that the task 
performing the assignment also succeeds in conmunicating the value 1 
or 2 (used to identify the requesting task) to GRANTOR via the status 
part of TAKE. The assignment statements TAKE = EVl and TAKE = EV2 
are not interruptible. When GRANTOR gets control, it will set the 
element of the LOCK array corresponding to the requesting task either 
to complete or to incomplete, depending on whether the other task is 
not, or is, already in its critical region. It will do some other 
housekeeping, then go dormant again waiting for another request. The 
task which made the request will either wait or not, depending on the 
value assigned to its element of LOCK. Even if the other task has 
become ready before the requesting task executes its WAIT statement 
(i.e., while GRANTOR has control), when it makes itŝ  request to 
GRANTOR for permission to enter its critical region, GRANTOR will 
observe that it has already granted that permission to the first task 
and will set the second task's element of LOCK to incomplete. 
Finally, when either task leaves its critical region, it "gives back" 
the permission it was granted by making another request to GRANTOR. 
Note that if the other task is waiting for permission to enter, 
GRANIOR must now set that task's element of LOCK complete. 

The code for GRANTOR is as follows: 
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GRANTOR: PROC; 
DCL (TAKE, GIVE, QUIT) EVENT EXT; 
DCL LOCK (2) EVENT EXT; 
DCL (WANTOR, GIVER, OTHER) FIXED BIN; 
DCL OWNED BIT (1) INIT ('O'B); 
DO WHILE Cl'B); /* LOOP TERMINATED BY RETURN */ 

WAIT (TAKE, GIVE, QUIT) (1); /* AWAIT A REQUEST */ 
IF COMPLETION(TAKE) THEN DO; /* WANTS TO ENTER */ 

WANTOR = STATUS(TAKE); /* WHO WANTS ? */ 
C(M'LETION(LOCK(WANTOR)) = -< OWNED; 

/* GRANT PERMISSION IFF RIGHT TO ENTER 
NOT ALREADY OIWED BY OTHER TASK */ 

OWNED = 'I'B; 
COMPLETION(TAKE) = 'O'B; /* RESET */ 

END; 
ELSE IF COMPLETION(GIVE) THEN DO; /* READY TO LEAVE */ 

GIVER = STATUS(GIVE); /* WHO WANTS TO LEAVE ? */ 
OTHER = 3 - GIVER; /* INDEX OF OTHER TASK */ 
IF -- COMPLETION (LOCK (OTHER)) THEN /* IT WANTS IN */ 

COMPLETION(LOCK(OTHER)) = 'I'B; 
/* LET IT IN, BUT LEAVE OWNED ON */ 

ELSE OWNED = 'O'B; 
COMPLETION(GIVE) = 'O'B; 

END; 
ELSE /* REQUEST TO QUIT */ RETURN; 

END; 
END; 

14.20. JCL considerations. 

Whenever you use a cataloged procedure that link edits or loads a 
multitasking program, you must use the TASKLIB symbolic parameter 
in the way shown below 

TASKLIB = 'SYSl.PLITASK' 
See OPG 38. 

In addition, the ISASIZE execution option may be used to specify, 
via its second and third operands, the size of the ISA acquired 
for each task other than the major task, and the maximum number of 
tasks (including the major task) that can be active simultaneously. 
The first operand of ISASIZE is used, as shown in Section 13.9, to 
specify the size of the major task's ISA. (Reread that section and 
the reference given there, OPG 33.) Note that ISASIZE is an execu
tion option of the Checkout conpiler as well as the Optimizer. No 
mention was made of ISASIZE in connection with the Checker, in 
Lesson 13, because in that compiler its first operand is ignored 
and the value specified for the SIZE operand is used instead. See 
CPG 40. 
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In our system, the default for ISASIZE in a multitasking program is 
ISASIZE(8K,8K,20). Typical use of TASKLIB and ISASIZE (together) 
is demonstrated in the following: 

// EXEC PLOCLG,TASKLIB='SYS1.PLITASK',GOOPTS='ISA(30K,10K,4)' 

14.21. Homework problems. 

(#14A) Describe the differences between multiple concurrent 
invocations of a given procedure as separate tasks 
and multiple concurrent invocations of a given pro
cedure by recursion. 

(#14B) List all the PL/I actions you can think of that will 
cause the current task to relinquish control to 
another ready task in your program. 

(#14C) How can you create a subtask at a priority higher 
than that of the major task without reaching a 
priority level higher than that assigned initially 
to the major task by the operating system? 

(#14D) Execution of the GO TO statement in the following 
example is illegal. Can you explain why? 

CALL SUBR TASK; 
L: ... 

SUBR: PROC; 

GO TO L; 

END; 

Under what conditions is execution of the GO TO 
statement in the following example legal? Illegal? 

ON FOFL GO TO L; 
CALL SUBR TASK; 
L: ... 
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(#14E) Give several reasons why a task must be (abnormally) 
tenninated when the block containing the CALL state
ment that created it terminates. 

(#14F) Recall that the event variable associated with an 
asynchronous I/O operation is marked con̂ jlete only 
as part of the execution of a WAIT statement refer
encing it, even if the I/O operation is physically 
con̂ jlete earlier. Thus, it would appear there is 
no way to "test" whether an I/O operation is complete 
or not without being forced to wait if it isn't. 
There is a tricky (though legal) way to test its 
completion periodically, however, without being 
forced to wait. Can you find it? Weak hint: You 
will need a second event variable. 

(#14G) (Very difficult) Generalize the "critical region" 
problem in the following way: 

(a) Permit any number of tasks to have 
critical regions, rather than just two. 

(b) Permit any task to have any number of 
critical regions, each identified in 
some convenient way. 

(c) Make sure that only one task at a time 
is permitted to enter a critical region 
of type "x". A given task may have 
several different critical regions of 
type "x", as well as critical regions 
of other types. While a task is in a 
critical region of type "x", another 
task may be in a critical region of a 
different type. 

Hints: Since no bound is set on the number of tasks 
or critical regions, you will need to use list processing 
techniques (based variables, pointers, etc.). Be sure 
that based storage is freed in the same task in which it 
is allocated. You will need a task with the "high 
priority, non-interruptible" properties of OWITOR. You 
will need to communicate more information to it with 
each request than you can conveniently represent in the 
status part of an event variable, so 
instead create the service task each time you need a 
service from it and communicate via arguments; it will 
end normally when it has provided the service. 
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The Checkout compiler in TSO. 

In Lesson 13, the use of the Checkout compiler in the batch system 
was outlined. In addition, special features of PL/I useful in 
debugging, particularly in a batch environment, were described. 
While the value of the Checkout compiler in batch cannot be 
belittled, neither can its unique capabilities in a conversational 
environment be overstressed. The Checkout compiler is "at home" 
in TSO, and in this lesson we hope to convey a sense of excitement 
about its truly outstanding potential in this environment for con
tributing to productivity in the development and debugging process. 

The notes for this lesson cover a brief orientation lecture which 
is meant to precede a taped demonstration of the Checker in TSO. 

15.1. Creating a PL/I source dataset. 

To create a source dataset containing a PL/I program, in 
TSO, enter the EDIT command with either of the "dataset" 
types" PLI or PLIF, as in 

EDIT PROG PLI NEW 
You will be prompted with line numbers. As you type each 
line, remember that the first character you type goes into 
the column reserved (by our default compiler options) for 
a listing control character; it is not part of the source 
program. (Except when you want a blank line, overprinting, 
or a page eject in the listing, type a blank as the first 
character.) 

PLIF dataset type produces a dataset having FB-format 
records with an LRECL of 80. The EDIT line numbers are 
placed in columns 73-80. The first character you type goes 
into column 1; the next 71 or less go into columns 2 through 
72. These are the default conventions assumed by the com
piler for source margins and sequence information for source 
datasets consisting of fixed-length records. 

PLI dataset type produces a dataset having VB-format records 
with an LRECL of 104. The first four bytes of a record are 
used by the system to indicate the length of the remainder 
of the record. The EDIT line numbers are placed in columns 
1-8 of the data portion of the record, i.e., immediately 
following that length prefix. The first character you type 
goes into column 9. The next 91 or less go into columns 10 
through 100. Short records are produced if you do not type 
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all 91 possible characters. These conventions match those 
assumed by the compiler, by default, for variable-length 
records. 

Note that the use of either dataset type results in the 
appending of the "dataset qualifier" PLI to the dataset 
name given in the EDIT command. 

PLI dataset type is generally more efficient than PLIF data-
set type, in that short lines won't waste space. However, 
you cannot conveniently dump such a dataset onto cards. 
You would have to use the COPY command of TSO first to make 
a copy of the dataset in card image format. You will need 
several operands of the COPY command to arrange for this 
change of format and movement of the line numbers. Note 
that lines containing in excess of 71 source characters 
would be truncated during the copy. 

A guide to the use of the editor may be found in CTUG 5 and 
OTUG 6. The two terminal users guides should be consulted, 
by those new to TSO, for chapters on other basic aspects of 
using TSO. 

15.2. Invoking the Checker. 

The Checkout compiler is invoked with the PLIC command in 
TSO. Before we get into that, we must mention the need for 
you to issue the IPLIC command first. This is used once 
per session, before the Checker is entered. It allocates 
the file SYSPLIC to the system dataset SYSl.PLICLNK required 
by the Checker. In addition, it allocates files SYSIN and 
SYSPRINT to the terminal. Use of the IPLIC command will not 
be necessary if you use the PLICKLGN logon procedure (it per
forms the above three allocations). If you have not used 
IPLIC or PLICKLGN, the response to your PLIC command will be 
a rather fast READY not accompanied by any further information. 

The Checkout compiler absolutely cannot run in our 70K 
regions. For very small programs it might squeeze by in 
140K. If the program is of moderate size, the amount of 
spilling" performed when only 140K is available will be 
painfully slow and expensive for you, and probably detri
mental to the performance of TSO for everyone. The use of 
the 200K region will result in more efficient processing of 
typical programs. 
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The PLIC command has the general form 
PLIC dsn keyword-operands 

For example, 
PLIC PROG 

or 
PLIC PROG LMSG HALT MACRO 

The dsn is the source dataset name. (PLI is appended as 
a dataset qualifier automatically.) You are actually invok
ing what is known as a "prompter" for the Checkout compiler. 
Its main function is to allocate files and datasets required 
for your compilation and then invoke the compiler itself. 
Some of the keyword-operands are defined by, and used by, 
the prompter only. The majority of them, however, translate 
into compiler options and are assembled by the prompter as 
a string of compiler options to be passed to the compiler. 
If you specify operands erroneously, you will be prompted 
by the prompter for corrections. 

How can you find out about operands of the PLIC command? Two 
ways : 

(a) Use the TSO HELP command. This is available for 
the purpose of finding out about the operands 
of any TSO command. 

(b) See CTUG 6. 

Typical or ordinary use of the PLIC command serves the same 
purpose as the PLCCG cataloged procedure (Lesson 13), i.e., 
the compiler proceeds from translation into interpretation 
without creating an object module. This is suitable for the 
execution of a self-contained main program not requiring 
link editing with other external procedures. Object modules 
and intermediate text modules may be created for later com
bining by the linkage editor or loader and execution under 
the interpreter phase of the Checker (references and a few 
brief notes will be given later). 

We will here mention a few essential operands of PLIC. 

One of the most essential is the PRINT operand. It controls 
the allocation of the file used for SYSPRINT. Note that 
when you use the PLIC command, the allocation of SYSPRINT 
to the terminal previously established by IPLIC or PLICKLGN 
is not actually used (it would be used for isolated execu
tion under the interpreter phase). The default for the 
PRINT operand is PRINT(*), which says to allocate the file 
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to be used for SYSPRINT to the terminal. Generally, you 
can rely on this default. Recall that SYSPRINT is used by 
the translator phase for listings and similar outputs you 
select via options, and it is used (generally) by the pro
gram itself (and by the system) as a standard output file 
during execution. So, allocation to the terminal is quite 
reasonable. Note that you will not be flooded by listings, 
etc., since the compiler options for them have been set 
"off" in the defaults that apply when the compiler is used 
conversationally (see OTHER 3 again). 

Another very useful choice is PRINT(dsname). The file used 
for SYSPRINT will be allocated to a dataset having dataset 
name dsname.LIST. If it doesn't exist, it is created for 
you with record format VBA. You can submit a job to list 
it later. What makes this especially valuable is that any 
subsequent interactions that you have with the Checker (its 
prompts and your replies) will be recorded on that dataset. 
Thus, you will have a "hardcopy" record of your session, 
which is nice if you are at a tube. 

But, you ask, wouldn't you miss seeing SYSPRINT ouput pro
duced by your program? Yes, but you can arrange to have 
a copy of what goes to the dataset dsname.LIST during inter
pretation sent to the terminal at the same time (shown later) 
Also, note that all compiler diagnostics (both during trans
lation and interpretation) are automatically copied to the 
terminal, without a specific request from you, if you have 
used PRINT(dsname). 

If you use an operand for a compiler option, such as SOURCE, 
the listing is produced on the file used for SYSPRINT, as 
governed by the PRINT operand. You can also embed that 
option in the TERMINAL operand (which is, itself, a compiler 
option), as in TERMINAL(SOURCE). The listing requested is 
produced on the terminal independent of the allocation of 
the file used for SYSPRINT. 

All diagnostic messages have a long form and a short form. 
Which you get is governed by the compiler option 
LMESSAGE/SMESSAGE. 

In TSO the default (using the abbreviation) is SMSG. Note 
two things: 
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(a) The long messages are generally much more 
informative, and you would do well to request 
them while you are still a beginner. Invoke 
PLIC as follows: 

PLIC dsn LMSG 
(b) If you have started a session with the default 

SMSG, you can change to LMSG during the session 
(demonstrated later). Or, there is a way you 
can ask for the text of the long form of a 
specific diagnostic you have just been given 
(they are always accompanied by their message 
numbers). 

15.3. General behavior of the Checker in TSO. 

As a consequence of our default options, the Checker pro
ceeds as follows. 

First it proceeds through translation. Syntax checking 
occurs first. If sufficiently severe syntax errors are 
found, control is turned over to you at the terminal. You 
can use various facilities of the Checker to correct the 
syntax errors that are reported, then go on. Next "global" 
checking of the program for consistency is performed. Again, 
if sufficiently severe errors are found, control is sent to 
the terminal and you are given a chance to correct them. 

Following that, interpretation begins. As the program 
proceeds, various things can happen which again cause 
control to be sent to the terminal. You can interact with 
the program in several ways, modify it, etc., and go on. 

Whenever control is sent to the terminal, you are prompted 
for a request. A prompt always ends in a "?" but that may 
be preceded by other characters which denote the state of 
the Checkout compiler. A variety of responses from you are 
permitted, depending on the state. 

When control is passed to the terminal. 

In general, when control has been passed to the terminal 
you may issue a subcommand. These are considered to be 
subcommands of the PLIC command just like CHANGE, LIST, 
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SAVE, etc., are subcommands of EDIT. There are a very 
large number of subcommands of PLIC. 

In addition, when control is passed to the terminal during 
interpretation (identified by the prompt "?" without any 
preceding characters), you may enter PL/I statements from 
the terminal ("immediate-mode PL/I"). These are immedi
ately translated and interpreted. Almost any PL/I state
ment, no matter how complex, is allowed. You may enter a 
DO group, a begin block, etc. 

One of the subcommands is HELP. It serves various purposes, 
depending on the operands written with the subcommand. 
HELP is valid in response to any prompt. When used without 
any operands, i.e., as just HELP or H, the reply will be an 
explanation of the current state followed by a list of sub
commands valid in that state. Whenever you don't know what 
is expected of you, type H. 

Two other uses of the HELP command are as follows : 
(a) To ask for an explanation of a particular sub

command. For instance, H LIST (or just H L) 
requests information on the LIST subcommand. 
H H requests information on the HELP subcommand. 

(b) To ask for the long form of a particular compiler 
diagnostic whose short form has just been given 
to you. Example: H 1093 (here, we assume the 
short-form message was prefixed by the message 
number IEN1093I). 

Another useful subcommand, valid most of the time, is OPTIONS. 
It can be used to list or change compiler options. For 
instance, OP LMSG sets the LMESSAGE option for subsequent 
diagnostics. 

The MONITOR subcommand is used to initiate the copying at 
the terminal of all output directed to a stream file allo
cated to a dataset. For instance, if SYSPRINT has been 
effectively allocated to a dataset (by use of the PRINT 
operand of PLIC as shown above), you can get a copy of 
SYSPRINT output at the terminal by issuing the subcommand 
MONITOR SYSPRINT. NOMONITOR terminates monitoring. 

How can you force control to be passed to the terminal 
before execution starts, so that you can issue a MONITOR 



15-7 

subcommand? One way is to use the HALT compiler option, 
specified as an operand on the PLIC command. It causes 
control to be passed to the terminal when the main pro
cedure (any external procedure, actually) is entered for 
the first time. When that happens, you can type 

MON (abbreviated; SYSPRINT implied) 
GO (causes execution to resume). 

Several other subcommands will be described later. A 
wealth of information is found in CTUG 7 and CTUG 8. 

15.5. What sends control to the terminal? 

We have already mentioned that the translator sends control 
to the terminal if it finds severe enough errors (the 
required severity is determined by the setting of certain 
compiler options). It also sends control to the terminal 
if you interrupt it (by depressing the BREAK key, for 
instance). In all cases, the prompt is " T ? " to indicate 
that the translator has sent control to the terminal. 

During execution there are many ways control can be sent to 
the terminal. Some are the result of unique extensions to 
the language implemented only by the Checkout compiler. 
Others are the result of slight redefinitions of the language 
as implemented by the Checkout compiler. A few of these are 
as follows. 

(a) Execution of a HALT statement sends control to 
the terminal. See LR.M 315. 

(b) Standard system action for the FINISH condition 
has been redefined to send control to the 
terminal. You are thus given a chance to re-
execute the program, possibly after modifying it, 
before terminating your session. 

(c) Standard system action for the ERROR condition 
has been redefined to send control to the terminal. 
By use of appropriate subcommands you can deter
mine the cause of the error and correct it, then 
resume execution from an appropriate point in 
the program. 

(d) An additional condition, the ATTENTION condition, 
is available in the interactive environment. fEe 
ATTN condition "occurs" during execution when the 
BREAK key is depressed. Standard system action 
is to send control to the terminal. You can, of 
course, establish an ATTN on unit and thereby 
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use the BREAK key to affect the logic of your 
program (but not in a program compiled by the 
Optimizer). 

See LRM 316. 

In all of the above cases, a message is printed at the 
terminal explaining why control was passed to it. You are 
then prompted with "?". 

In the case of either prompt, "T?" or "?", you may issue 
various subcommands. One of these, the GO subcommand, is 
used to resume processing just after the point from which 
control was passed to the terminal. (GO may be abbreviated 
by a null line.) In response to a "?" prompt you may, in 
addition, enter immediate-mode PL/I statements. The GO TO 
statement is an immediate-mode statement useful in this 
context to resume execution at a designated statement. The 
language has been extended to allow a line number after the 
keyword GO TO, so that you may resume execution at an un
labeled statement. In connection with this, GO TO 0 is 
taken by convention to mean "start execution again from the 
beginning." 

Further information on the passing of control to the 
terminal is in CTUG 9. 

15.6. Interactive debugging. 

Rather than write a lot about this subject, we will demon
strate it. The main point, however, is that one does not 
need to switch back and forth between different TSO pro
cessors (EDIT, a compiler, LOADGO). One can do all one's 
debugging and program amending within the environment of 
the Checkout compiler, generally without even retranslating 
the program as it is amended. This is possible because 

(a) An internal copy of the original source dataset 
is available for a variety of purposes at all 
times. When control is at the terminal, sub
commands can be used to list it, modify it, and 
save it in an external dataset. 

(b) PL/I statements may be executed in immediate 
mode to try to understand the nature of an 
execution error that has caused control to be 
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passed to the terminal. Through the use of 
subcommands, "breakpoints" may be established 
in the program and execution resumed. You can 
arrange to execute statements attached at the 
breakpoints or to have control return to the 
terminal when one is reached. 

(c) Statements, or groups of statements, may be 
added, changed, or deleted without requiring 
retranslation of the whole program or loss of 
the execution environment. 

(d) Rather general text editing subcommands are 
provided within the Checker to cope with more 
extensive or arbitrary source program changes. 
Their use mandates a retranslation, but that 
is accomplished by another subcommand. 

Extensive information on the facilities for, and techniques 
of, interactive debugging may be found in LRM 317 and 
CTUG 10 through CTUG 12 (CTUG 11 contains numerous examples). 

15.7. Topics for further study. 

Consult the two TSO User's Guides (CTUG and OTUG) for inform
ation on the following topics, not covered in these notes. 

(a) Use of the Checker in TSO to translate several 
external procedures, followed by their linking 
and execution (using LOADGO, or LINK and CALL). 
Interactive execution (program amending, etc.) 
is still possible, but if one retranslates an 
external procedure he will need to leave the 
Checker environment to use LOADGO or LINK again. 

(b) Mixing Checker and Optimizer modules in TSO. 
(c) Compiling under the Optimizer in TSO. 
(d) Operands of LINK and LOADGO (PLIBASE and PLICMIX) 

that imply the PL/I libraries. 

Also review Section 7.25, "Stream I/O to a Terminal." 

Fetchable load modules (see Section 12.2) may be used in 
TSO providing execution of the program is initiated by 
the CALL command and the fetchable load modules are members 
of the partitioned dataset named in the CALL command. 
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