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THE INFLUENCE OF A 
PREDOMINANTLY OXIDE FUEL LOADING 
ON THE DYNAMIC BEHAVIOR OF EBR-ll 

by 

A . V. Campise 

ABSTRACT 

The AIROS-IIA dynamic- simulation digital code was 
used to study the behavior of future EBR-ll cores containing 
predominantly oxide fuel. This study completes a survey of 
the response of EBR-ll to hypothetical malfunctions of com­
ponents. Previous studies , as well as operating experience 
at EBR-ll, have been with loadings of predominantly metallic 
driver fuel . The response of this fuel to a variety of oper­
ating conditions has been well documented. Future loadings , 
however , are expected to contain an increasingly higher pro­
portion of experimental oxide fuels . The pre sent study con­
siders the response of predominantly oxide cores with and 
without Doppler feedbacks . The study concludes that the 
future dynamic behavior ofEBR-ll with loadings of predomi­
nantly oxide fuel is predictable, safe , and well within the 
range of present operating experience . 

I . INTRODUCTION 

EBR-ll, * currently the principal LMFBR irradiation facility , was 
originally designed as an engineering facility to demonstrate the engi­
neering and operating feasibility of sodium- cooled fast breeder reactors 
as applied to the de sign of central- station power plants . 1

•
2 In the natural 

evolution of the LMFBR program, the need for a fast-neutron irradiation 
facility was identified, and the primary objective of EBR-ll was changed 
to meet this need . 

Many years of operating experience have been gained with EBR-ll 
core loadings composed predominantly of metallic driver-fuel elements 
containing uranium- 5 wt o/o fissium . The dynamic behavior of the EBR-ll 
core with a predominantly metallic fuel loading is well understood and 
documented. The change in the EBR-ll objective to that of a fast-neutron 

"Experimental Breeder Reactor 11 (EBR-Il) is the Unned States Atomic Energy Commission's primary facility 
for irradiation tests of fuels and mate rials tn the Ltqutd Meta l Fast Breeder Reactor (LMFBR) Program. 
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uradiation facility h as calle d for a gradual r ec onfiguration in core loading, 
however . An increasing number of irradiation expe rime nts c ontaining 
ceramic fue l , mostly oxide, have b een loa d e d into the reactor. The effect 
of these ceramic f u e l e l e m e nts ha s b ecome important in relating the dy­
namic characteristi cs of future cores to earlie r exp e rie nce with metallic 
driver fuel. 

This r eport prese nts the fundamental dynamic behavior of typical 
oxide and metallic fuel e l e m e nts . The report a lso analyzes the dynamic 
charact eris tics of EBR-II c ores with h eavy loa ding s of oxide fuel elements 
a n d presents the differences to be exp ect ed, both during normal operations 
a nd during ope r a t ion a l abnormalities in the reactor plant . The report 
covers the dynamic b ehavior of EBR-II during rod-drop experiments, dur­
ing normal r eactor trips, and during h ypothetical malfunctions involving 
control and safety rods . 

Various EBR-II co r e c onfigurations are studied herein by assuming 
variou s feedback networks in the reac tor system. The most important of 
these feedback n e tworks involve linea r axial fuel expansion and involve 
Doppler coefficient in o x ide fuel. The ove rall charac teristics of future 
cores loaded pre dominantly with oxide fuel are summarized with respect 
to variations expect ed from the pre se nt dy namic b e h avior of EBR-II . 



II . TRENDS IN EBR-II IRRADIATION-CORE LOADINGS 

The initial experimental subassemblies were loaded into EBR-Il for 
fast-neutron irradiation in May 1965. 3 The irradiation-core loadings have 
subsequently varied according to experimental demands, plant maintenance, 
and the performance of special physics measurements. Figure l shows the 
number of in-core experimental subassemblies as a function of years of 
EBR-II operation as the principal LMFBR irradiation facility. Temporary 
variations in experimental core loadings were primarily due to physics 
measurements in response to reactor stability questions that arose during 
the operation of EBR-II with a stainless steel reflector . The second major 
type of variation included in Fig. l had to do with the identification of leak­
ing fuel elements that were releasing activity into the reactor tank. The 
suspected subassemblies were unloaded in sequential batches to identify 
the source of the activity . Figures 2-6 and Tables I-V pre sent typical 
trends in EBR-Il irradiation core loadings. 
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Fig. 1. Number of In-core Experimental Subassemblies as a Function of Years of 
EBR-!1 Operation as the AEC LMFBR Irradiation Facility. ANL Neg No. 

!D-103-M5682. 
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TABLE I. Data for EBR-11 Run 4 In-subassembly core size I 

Chronology 
Dale started 
Date ended 
Number of days for run 

Power Data 
-----wcumulalive MWdltl at start of run 

IBI Cumulative MWdltl at end of run 
MWdltl generated during run IB-AI 

Types of Subassemblies in Core 
Blanket 
Core 
Control rod 
Safety rod 
Experimental lrows 1-61 

Experimental Subassemblies in Row 7 

4124/65 
5/4/65 

10 

1280 
1631 
351 

II 
47 
12 
2 
D 
D 

Key to Types ol Subassemblies Shown 
in Loading Diagram !Fig. 21 

B--Depleled Uranium 

BETH--Beryllium Thimble 

C--Control Rod 

0--Driver Fuel 

S--Safety Rod 

Fig. 2. Core-loading Pattern for Run 4. ANL Neg. No. ID-103-M5683. 



TABLE II. Data for EBR-11 Run 7 174-subassembly core size I 

Chronology 
Date started 
Date ended 
Number of days for run 

POWilr Data 
~ulative MWd(tl at start of run 

IBI Cumulative MWd(tl a( end of run 
MWdltl generated during run IB -AI 

Types of Subassemblies in Core 
Blanket 
Core 
Control rod 
Safety rod 
Experimental trows 1-61 

Experimental Subassemblies in Row 7 

7/2!1/65 
8/15/65 

17 

2502 
2927 
425 

12 
47 
II 
2 
I 
3 

Key to Types of Subassemblies Shown 
in Load1ng D1agram IF1g. 3) 

B--Depleted Uranium 

BETH--Beryllium Thimble 

C--Control Rod 

D-- Driver Fuel 

s--Safety Rod 

SSCR--Stainless Steel Control Rod 

X--Experimental Subassembly 

Fig . 3. Core - loading Pattern for Run 7. ANL Neg. No. ID-1 03 -M5684. 
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TABLE Ill . Data lor EBR-11 Run 14 (8(}-subassembly core sizel 

Chronology 
Dale started 
Date ended 
Number of days for run 

Power Data 
---wcUriiulative MWdltl at start of run 

IBI Cumulative MWdltl at end of run 
MWdltl generated during run IB-AI 

Types of Subassemblies in Core 
Blanket 
Core 
Control rod 
Safety rod 
Experimental !rows l-61 

Experimental Subassemblies in Row 7 

U10/66 
U22/66 

12 

5050 
5570 
520 

18 
43 
11 
2 
5 
3 

Key to Types of Subassemblies Shown 
in Loading Diagram IFig. 41 

B--Oepleted Uranium 

BETH--Beryllium Thimble 

C--Control Rod 

0--Driver Fuel 

S--Safety Rod 

SSCR--Stainless Steel Control Rod 

X--Experimental Subassembly 

Fig. 4. Core-loading Pattern for Run 14. ANL Neg. No. ID-103-M5685. 



TABL£ IV Dala lor EBR- 11 Run 29A 187-subassembly core sizel 

Chronology 
Date started 
Date ended 
Number of days for run 

Power Data 
~ulative MWdltl at start of run 

181 Cumulative MWdltl at end of run 
MWdlllgeneraled during run 18-AI 

Types of Subasemblies in Core 
Blanket 
Core 
Control rod 
Safety rod 
EJcperimental trows 1-61 

Experimental Subassemblies in Row 7 

6/26/68 
7/5/68 

Q 

17,984 
18,172 

188 

23 
35 
II 
2 

15 
5 

Key lo Types of Subassemblies Shown in Loading 
D1agram lf1g . 51 

8--Depleted Uranium 
BETH--Beryllium Thimble 

C--Control Rod 
0--Driver Fuel 

OSC--Oscillator Rod 
P--112 Driver Fuel and 1}2 Stainless Steel 
R--Stainless Steel Reflector 
S--Safety Rod 

SSCR--Siainless Steel Control Rod 
SST--Stain less Steel Thimble 

X--Experimental Subassembly 

Fig. 5. Core-loading Pattern for Run 29A . ANL Neg No. ID-103-M5686 . 
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TABLE V. Data for EBR- 11 Run 38B 19()-subassembly core sizel 

Chronology 
Date started 
Date ended 
Number of days for run 

Power Data 
~ulative MWdltl at start of run 

IBI Cumulative MWdltl at end of run 
MWdltl generated during run IB-AI 

Types of Subassemblies in Core 
Blanket 
Core 
Control rod 
Safety rod 
Experimental trows l-61 

Experimental Subassemblies in Row 7 

10/3/69 
10/16/69 

13 

29.440 
30.040 

600 

25 
32 
II 
2 

19 
lO 

Key to Types of Subassemblies Shown in loading 
Diagram !Fig. 61 

B--Depleted Uranium 
BETH--Beryll ium Thimble 

C--Control Rod 
CF--Controlled-flow Subassembly 
0--Driver Fuel 

MK 11--Mark- 11 Fuel 
Ni--Nickel-corrosion Subassembly 
P-- U2 Driver Fuel and U2 Stainless Steel 
s--Safety Rod 

IOJ.--Driver Fuel Enriched to Ill'!. 235u 
SSCR-- Stainless Steel Control Rod 

SST--Stain less Steel Thimble 
X--Exper imental Subassembly 

Fig. 6. Core-loading Pattern for Run 388. ANL Neg. No. ID-103-M5687_ 

The irradiation experiments loaded into the EBR- ll core have pre­
domina ntly cont a ined fu el e l ements of mixed plutonium and u ranium oxide. 
Clearly the trend presented in Fig. 1 is upward, proje c ting an increased 
number of in- core experiments and therefore an increased number of 
oxide - fuel experiments. 



III . DYNAMIC SIMULATION OF REACTOR-CORE LOADINGS 

In the study of future EBR-II cores containing a varying complement 
of ceramic fuel elements and metallic driver-fuel elements, many assump­
tions must be made to allow a simulation of the dynamic behavior of the 
cores . These assumptions , along with the models and limitations, are 
briefly discussed below . 

A . Assumptions 

l . A reactor-core loading may be simulated by assuming that the 
peak-power-density and average-power-density driver and experimental 
fuel elements typify the core . 

23 

2 . Space-independent kinetics are sufficient to describe the dy­
namic behavior of the EBR-Il core during both normal and abnormal reactor­
operating conditions . 

3 . The magnitudes of temperature- induced reactivity coefficients 
used to describe various past rod-drop experiments are applicable to the 
study of the dynamic response of EBR-II cores containing a varying com­
plement of oxide-fuel subassemblies . 

B . Dynamic Models 

Two basic dynamic models were used in studies presented in the 
main body of this report . These models are briefly discussed below. 

l . Rod- drop Experiments 

A detailed dynamic simulation was used to analyze the rod-drop 
experiments conducted on various EBR-II cores . This model, depicted in 
Figs . 7 and 8 , consisted of the following core and blanket channels : 

a. Average fuel channel in row (core center) 

b . Average fuel channel in row 2 

c . Average fuel channel in row 3 

d . Average fuel channel in row 4 

e . Average fuel channel in row 5 

f . Average control rod fuel channel in row 5 

g. Average fuel channel in row 6 

h . Average fuel channel in inner-blanket region. 
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Fig. 7. Feedback Network for Simulating the- Closed-loop Behavior of EBR-ll 
during Rod -drop Experiments. ANL Neg . No. ID-103 -M5688. 
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These channels were used to typify the driver-fuel and blanket 
elements in the EBR-II core and inner blanket. Associated with these 
channels were temperature-induced reactivity coefficients weighed accord­
ing to position and material loading in each individual core and blanket row. 
Reference 4 compares results from this dynamic simulation with earlier 
experimental results . Since excellent agreement was achieved with this 
type of dynamic simulation , this model with an additional channel was used 
to simulate rod-drop experime nts in various future oxide-core configura­
tions. The additional channel represented the average oxide-fuel experi ­
ment in row 5 . With th e additional channel , the model used for study of 
rod-drop experiments is referred to h ereafter as the nine-channel model. 

2 . Dynamic System Analysis (seven-channel model) 

To analyze the dynamic r espo nse to hypothetical malfunctions in 
EBR-Il cores containing predominantly oxide fuel , the dynamic simulation 
pres en ted in Figs. 9 and 10 was used . This model cons is ted of the following 
fuel and blanket channels : 

a. Peak-power-density driver-fuel channel in the core. 

b. Average-power-density driver-fuel channel in the core. 
(This c hannel was used to compute the feedback from driver fuel in the core 
and was specified to operate at th e average temp erature of driver fuel in 
the core . ) 

c. Peak-power-density oxide-fuel channel i n the core. 

d. Average-power-density oxide-fuel channel in th e core . 
(This channel was used to typify the average oxide experiment in the core 
and the expected temperature-induced feedback from oxide fuel.) 

e. Average carbide-fuel channel in the core. (Temperatures 
from this channel were studied to ensure that no material temperature ex­

ceeded a value that would cause concern regarding continued operation of 
the EBR-II core.) 

f. Average inner-blanket element. 

g. Average outer - blanket element. 

These seven- and nine-channel models were used to study the 
dynamic behavior of various oxi de fuel loadings co ntaining various assumed 
feedback networks . 
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Fig. 9 . Feedback Network for Simulating the Closed - loop Behavior of EBR-Il 
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C. Limitations 

The limitations of this study are inherent in the assumptions made 
to survey the dynamic behavior of predominantly oxide cores. The princl­
pal limitation has to do with the assumptions that must be made about 
temperature-induced reactivity-feedback networks in ox ide cores. Because 
of lack of data on these networks, the main body of this report 1ncludes a 
series of parametric surveys of expected and possible variations in Doppler 
and axial- expansion feedbacks from oxide fuel . The feedback from metallic 
driver fuel is presumed to be reduced as a result of increased oxide-fuel 
loadings and limited space in the core. No allowance has been made 1n the 
present studies for increasing the core size . However , it is believed that 
enough variations in the temperature- induced reactivity-feedback networks 
have been studied to cover the possible range of dynami c b ehavior of future 
predominantly oxide-fuel cores in EBR-II. 
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IV . FUNDAMENTAL DYNAMIC BEHAVIOR OF OXIDE 
AND METALLIC FUEL ELEMENTS 

Oxide and metallic fuel elements are basically different in dynamic 
behavior because of their physical properties. The dynamic behavior of 
metallic driver-fuel elements is typical of conductors having a high thermal 
conductivity, as opposed to oxide elements, which have the characteristics 
of an insulator with a low thermal conductivity. The effects of these physi­
cal properties on the dynamic behavior of fuel elements are studied in the 
following subsections. The seven-channel model described in the previous 
section was used in this portion of the study. The assumed operating char­
acteristics of each channel are presented in Table VI. The values in the 
table assume a reactor power level of 62.5 MWt. 

Channel 
Number 

2 

3 

4 

5 

6 

7 

TABLE VI. Seven-channel Model Used in the 
Dynamic System Analysis of Predominantly 

Oxide Fuel Loadings in EBR-II 

Reactor Power = 62.5 MWt 

Simulation Power, Btu/ sec Flow, lb / sec 

Peak driver-fuel 
element 9.832 0.1490 

Feedback driver- fuel 
element 7.548 0.0980 

Peak oxide- fuel 
element 18.00 0.210 

Feedback oxide- fuel 
element 13 . 60 0.1550 

Average carbide-fuel 
element 22 . 70 0 . 3140 

Average inner- blanket 
element 12 . 70 0 . 1280 

Average outer- blanket 
element 1. 945 0.0362 

A. Physical Properties of Fuel Elements 

Figure 11 shows the measured thermal conductivity of uranium-
5 wt% fissium and Pu0z-U02 fuel as a function of temperature. As indi­
cated, the thermal conductivity of uranium- 5 wt % fis s ium is at least an 
order of magnitude higher than that for the Pu02 - U02 fuel over the normal 
operating range of each fuel type. The initial effect of this difference in 



thermal conductivity would appear as a higher rate of heat transfer from a 
metallic element as compared to an oxide element. Figure 12 shows the 
specific heat of uranium-5 wt o/o fissium and Pu0 2-U0 2 in the normal opera­
tion range of each type of fuel. The effect of this property would be to re­
quire more heat input to raise a given amount of oxide fuel through a given 
temperature range. To study, in a general way, the effect of these proper­
ties separately on dynamic behavior of metallic and oxide fuel, the physical 
properties were initially assumed to be those presented in Table VII. Al­
though these physical properties are normally a function of temperature 
over the radius of the fuel pin in the dynamic-channel simulation, they were 
assumed not to vary with radius in this survey. The properties of metallic 
driver fuel were then held constant in the following studies and only the 
oxide-fuel properties were varied. 
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Fig. 11. Thermal Conductivity of Uranium-5 wt "/o Fissium and Pu02 -U02 
as a Function of Temperature . ANL Neg. No. ID-103-M5692. 
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Fig. 12. Specific Heat of Uranium - 5 wt% Fissium and PuQz-UOz as a 
Function of Temperature. ANL Neg. No. ID-103-M5693. 

TABLE VII. Assumed Physical Properties 
of Typical Fuel Elements 

Fuel 
Element 

Driver fuel 

Oxide fuel 

Thermal Conductivity, 
Btu/ s ec-ft- oF 

0.00530 

0.00036 

Specific Heat, 
Btu/lb-°F 

0.047 

0.082 



B. General Dynamic Behavior 

Figure 13 presents the transient response of oxide fuel following 
an assumed insertion of reactivity at a ramp rate of 5$/sec in a just ­
critical core. A wide range of variations in the thermal conductivity of 
oxide fuel is included, but the specific heat is held constant. The figure 
shows that for the assumed variations in thermal conductivity, the tem­
perature profiles vary widely. 

2~ .----.-----.-----r----.-----.-----.----.-----.----~ 

REACTOR TRIP 

1500 

500 
Kmeta\ = 5.3J, 10-3 

0 L----L--~L---~----~--~~--~--~~~~--~-
0 0. 1 0.2 0.3 0.~ 0.5 0.6 0.7 0.8 0.9 

TIME AFTER START OF IHSERTIOM, SEC 

Fig. 13. Transient Response of Oxide Fuel Elements following an Accidental 
Insertion of Reactivity at a Ramp Rate of 5$/sec into a Just -critical 
Core, Showing Variations due to Assumed Thermal Conductivities 
of Oxide Fuel. ANL Neg. No. lD -103-M5694. 

Following a reactor trip at 0.325 sec, the temperature of the metal­
lic driver-fuel element decreases rapidly to isothermal conditions of 700 °F. 
Meanwhile, the oxide element in the top curve maintains its temperature be ­
cause of its extremely long time constant. The time constant of metallic 
driver-fuel elements is approximately 0.3 sec, as opposed to 4.0 sec for the 
oxide fuel element. This difference in time constant is principally due to the 
difference in thermal conductivity. 
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Figure 14 also shows the transient response of oxide fuel following 
an accidental insertion of reactivity at a ramp rate of 5$/ sec in a just­
critical core, but only variations in oxide-fuel specific heat are included. 
The thermal conductivity is held constant at the values listed in Table Vll. 
Here, again, the driver - fuel temperature following a trip at 0.325 sec 
promptly decays to its isothermal value of 700°F. As the specific heat of 
the oxide is l owered to approach the specific heat of the metal, the oxide 
element shows an increased heat rate prior to the reactor trip. Following 
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Fig. 14. Transient Response of Oxide Fuel Elements following an Accidental 
Insertion of Reactivity at a Ramp Rate of 5$/sec into a Just-critical 
Core, Showing Variations due to Assumed Specific Heats of Oxide 
Fuel. ANL Neg. No . ID-103-M5695. 



the tnp, the low thermal conductivity of the oxide causes all temperatures 
to remam at a h1gher level than the transient temperatures of the driver­
fuel element for the same time interval. 

F1gures 13 and 14 demonstrate that the physical properties of oxide 
fuel will affect the temperature of the ox1de fuel element , both during a re­
actor transient and after a reactor tnp; and th1s behavior is governed 
mainly by the oxide-fuel thermal conductivity . The influence of th1s phe­
nomenon on the dynamic behavior of oxide fuel elements is reviewed 1n 

greater detail m the following sections . 

C. The Effect of Thermal Conductiv1ty on Dynamic Response 

To mvestigate the fuel behav10r in further detall , the startup tran­
sient behavior of oxide-fuel elements w1th various assumed physical prop­
erties was stud1ed , using hypothetical reactivity insertions spanmng the 
range from 0 .01 to 10$/sec. In the hrst series of cases , the measured 
physical properties of the metallic and ox1de fuel elements were used to 
establish a base case. F1gures 15-18 present the transient characteris­
tics of the central heat-transfer node of the peak oxide and metallic fuel 
elements following various reactivity insertions . All of these cases 
assume the full primary- coolant flow . 

The figures show that as the reactivity 1nsertion decreases , the peak 
oxide temperature rises appreciably above the peak metallic-fuel tempera­
ture. This behav10r is princ1pally due to the lower thermal conductivity of 
the oxide elements as compared to metall ' c elements . In all cases, there­
actor is assumed to be tripped at the point of metallic-driver-fuel meltmg 
of l834°F , and the hgures show the decrease in temperatures following 
the trip. 

These results are summarized m Fig . 19 , wh1ch shows the maxl­
mum fuel temperatures for vanous react1v1ty ramp rates , assuming 
measured phys1cal properties. Under conditions of full flow, the peak-
ox1de cente r node will be the first point of melting 1n the reactor core for 
reactiv1ty ramps of less than 0 . 1$/sec. For reactivity ramp rates of 
greater than 0 l $/ sec , melting of the peak-metal central nod e will occur 
pnor to oxide melting . The results show that the first point of meltmg in 
an EBR-II core contaming experimental oxide elements 1s dependent on the 
reactiv1ty ramp rate assumed to be present durmg a component malfunction. 
These results w1ll be used later m analyzing control- and safety- rod 
malfunctions . 

To further study the effect of thermal conductiVlty on the dynamic 
charactenstics of ox1de elements , the assumption was made that the ther­
mal conductivity of the ox1de was equal to that of the metal , and the meas­
ured specific heats of the metal and the oxide were used . F1gures 20-23 
present peak fuel temperatures following the inadvertent insertion of 
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reactivity at ramp rates varying from 10 to 0.1$/ sec, under conditions of 
a just-critical core with full primary flow. (As above, the reactor is as­
sumed to be tripped at the point of metallic-driver- fuel melting of 1834°F.) 
The figures show that the peak temperatures in the oxide and metallic ele­
ments are close together for all reactivity insertions. 
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Fig. 15. Peak Fuel Temperatures following an Inadvertent Insertion of Reactivity 
at a Ramp Rate of 10$/sec into a Just -critical Core under Conditions of 
Full Primary-coolant Flow, Using Measured k and Cp for Oxide Fuel. 
ANL Neg. No. ID-103-M5696. 
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Fig. 17. Peak Fuel Temperatures following an lnadverte!lt Insertion of Reactivity 
at a Ramp Rate of 0.1$/sec into a Just-critical Core under Conditions of 
Full Primary-coolant Flow. Using Measured k and Cp for Oxide Fuel. 
ANL Neg. No. 1D-103-M5698. 
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Fig. 18. Peak Fuel Temperatures following an Inadvertent Insertion of Reactivity 
at a Ramp Rate of 0,01$/sec into a Just-critical Core under Conditions 
of Full Primary-coolant Flow, Using Measured k and Cp for Oxide Fuel. 
ANL Neg. No. ID-103 -M5699. 
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Fig. 19. Peak Fuel Temperatures for Various Reactivity 
Ramp Rates , Using Measured k and Cp for 
Oxide Fuel. ANL Neg. No. ID-103 -M5700, 
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Fig. 20. Peak Fuel Temperatures following an Inadvertent Insertion of Reactivity 
at a Ramp Rate of 10$/sec into a Just-critical Core unde r Conditions of 
Full Primary-coolant Flow, Using Measured Cp and Oxide k = Metal k. 
ANL Neg. No. ID-103-M5701. 
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Fig. 21. Peak Fuel Temperatures following an Inadvertent Insertion o f Reactivity 
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Fig. 22. Peak Fuel Temperatures following an Inadvertent Insertion of Reactivity 
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These results are summarized in Fig. 24, which indicates the fuel 

temperatures for various reactivity ramp rates, assuming normal specific 
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Fig. 24. Peak Fuel Temperatures for Various Reactivity 
Ramp Rates, Using Measured Cp and Oxide k = 
Metal k. ANL Neg. No . ID -103-M5705. 

heat, but the oxide thermal con­
ductivity equal to the metallic 
thermal conductivity. Note the 
dramatic change in the shape 
of this curve as compared to 
Fig. 18, indicating that if the 
oxide had thermal conductivi ­
ties as high as the metal, only 
metallic- fuel melting would 
occur for a wide range of as­
sumed insertions of reactivity. 

D. The Effect of Specific Heat 
on Dynamic Response 

In this series of cases, 
the measured thermal conduc ­
tivities of the oxide and metal 
were used, but it was assumed 
that the specific heat of the ox­
ide was equal to the specific 
heat of the metal. Figures 25 -
28 present the temperature 
changes due to reactivity in­
sertions of 10 to 0.01$/sec. In 
these cases, the peak oxide 
temperatures exceed the metal 

temperatures by a considerable amount. (As in previous cases, the reac­
tor is assumed to be tripped at the point of metallic-driver-fuel melting 
of 1834°F.) 

These results are summarized in Fig. 29, which shows the fuel 
temperatures for various reactivity ramp rates, assuming normal thermal 
conductivity, but with the specific heat of the oxide equal to the specific 
heat of the metal. Note that there is a slight shift in the point at which 
oxide melts first. This point now occurs at a reactivity ramp rate of less 
than 0.4$/sec, indicating that decreases in specific heat only aggravate 
oxide - fuel melting by increasing the heating rate for the same assumed 
heat-transfer capability. 

The effects of thermal conductivity and specific heat on the tran­
sient behavior of oxide elements will be used in the following sections to 
analyze various combinations of operating conditions in which the dynamic 

behavior of oxide and metallic elements plays a prominent role. 
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Fig. 29 . Peak Fuel Temperatures for Various Reactivity 
Ramp Rates, Using Measured k and Oxide Cp 
Me tal Cp . ANL Neg . No . lD-1 03-M571 0. 

The fundamental dynamic studies in this section have covered a 
range of heating rates corresponding to reactivity ramp rates of 0.01 to 
10$/ sec . These ramp rates cover a very wide range of hypothetical mal ­
functions in reactor- system components. The above studies indicate that 
the physical properties of the oxide fuel are dramatically different from 
those of the metallic fuel, and the initial point of fuel melting in the EBR-Il 
core is heavily dependent on the physical properties of the oxide. The most 
dramatic of the differences is the order - of- magnitude -lower thermal con­
ductivity of the oxide as compared t o the metallic driver fuel. The effect 
of this decreased thermal conductivity in future cores predominantly loaded 
with oxide fuel will be analyzed in th e following sections. 



V. DYNAMIC BEHAVIOR DURING N ORMAL REACTOR OPERATION S 

Two types of normal reactor operations are studied in this section : 
(l) reactor stability tests involving rod-dr o p experiments, and (2) reactor 
conditions initiating an automatic reactor trip. Only that portion of the 
power transient following the trip is exam ined, to assess the differences 
in the decay of temperatures in oxide and metallic fuel elements. 

A . Rod- drop Experiments 

The nine- channel dynamic simulatio n described in Section Ill was 
used to study a variety of feedback networks to assess the characteristics 
of the rod-drop data acquired during normal experiments on the reactor 
plant. Table VIII presents the physical characteristics of each channel. 
All rod-drop-experiment studies are for 50 MWt, so that trends from meas­
ured data may be assessed. Figure 30 pres e nts a typical set of data relating 
decrease in power and increase in reactivity feedback following a rod drop. 
This figure represents recent rod-drop tests conducted at 50 MWt using the 
present low-worth drop rod (whose wo rth is 0 .011$). This base case will be 
used for comparison with various conditions that may exist as the EBR - ll 
core is loaded with mor e and more ce ramic fuel elements. 

One possible condition that may prevail, if no desig n effo rts are made 
to introduce a prompt negative feedback in the oxide fuel, is the worse case 
of no feedback from the oxide fuel. Figure 31 presents this case, in which it 
is assumed that the only temperature-induced reac tivity feedback in the core 

TABLE VIII. Nine-channel Model Used in Dy namic Simulation 
of EBR-11 Rod-drop Experiments 

Channel 
No. 

4 

6 

S1mulation 

Averag e driver- fuel 
element in row I 

Average d r iver-fuel 
element in row 2 

Average driver-fuel 
elemen t in row 3 

Average driver- fuel 
element in row 4 

Average driver- fuel 
element in row 5 

Ave rage fuel element in 
co ntr ol rods (row 5) 

Average driver-fuel 
element in row 6 

Average blanket eleme nt 

in row 7 

Average oxide- fuel 
element in row 5 

Reactor Power = 50 MWt 

Power , Btu / sec Flow, lb / sec 

8 . H 38 2 107 

8 . 1552 0. 1131 

6 . 756 1 0 . 1854 

7.3374 0 . 1359 

6 .5508 0. 1151 

6 . 7786 0. 0866 

5. 3778 0.0993 

3.9323 0 . 1429 

9 . 8715 0.242 1 
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is from the sod1um coolant. The results are what would be expected if 
there were no feedback from the oxide fuel and should not be a surprise. 
Initial inspection of Fig . 31 could imply increased positive feedback , de­
creasing the overall negative feedback ; however , the analysis indicates 
that if only sodium feedback were present , the type of results shown in 
the figure would be expected . 

Possibly , w1th a fresh , heavily loaded core of oxide fuel elements , 
the reactiv1ty coefficient due to linear axial expansion of the oxide could be 
appreciable . In Fig . 32 it is assumed that the reactivity coeffie1ent due to 
linear axial expansion of the oxide fuel i s equal to 80% of the reactiv i ty co­
efficient for axial expansion of metallic fuel. As ind1cated , an mcreased 
reactivity feedback would be obtamed in the rod-drop expenment , indicating 
an increase in the negative component of the prompt feedback in the reactor. 
These results would be expected if there were fuel expansion in fresh oxide­
fuel elements. 

Although fuel expansion might be present 1n fresh oxide fuel , it is 
expected , from the experience at the Rapsodie reactor in France , that the 
expans10n would decrease as a function of irrad1at10n time . If we now re­
duce the assumed reactivity coefficient due to oxide-fuel expansion to 40% 
of the coefficient for metallic driver fuel , the feedback curves w1ll decrease 
as a function of time , as shown in Fig. 33 . This result is to be expected if 
irrad1ation produces a gradual change in the temperature-induced reactivity 
coeffic1ent due to axial expans 10n in the oxide fuel. 

It 1s entirely possible that with increased ox1de loadmgs , a Doppler 
coefficient may be present in the oxide fuel. If thi s is the case , Fig . 34 
shows the kind of reactivity feedback that would be measured dunng the 
rod-drop experiments . The flgure shows the reactivity feedbacks for a 
reactor core hav i ng a Doppler constant of T ok / ?JT = -0 .00 l. Th i s curve 
is similar to that for the base case , demonstrating that with a Doppler con­
stant of -0 . 00 l and a constant sodium- coolant temperature coefficient , this 
oxide core would have a dynamic behavior similar to that of the reference 
core with axial expans10n of metallic driver fuel and normal sodlUm-density 
changes. Therefore , for a Doppler constant of -0 . 001 , we would see no dif­
ferences in rod-drop expenments in this ox1de - fueled core as compared to 
earlier cases with only metallic driver fuel. 

The last case considered assumes that the axial expans1on of oxide 
fuel is equal to the axial expansion of metallic fuel , and the normal sodium­
density changes are present . As Fig . 3 5 shows , there w1ll be an appreciable 
reactivity feedback durmg a rod-drop experiment , and this is to be expected 
1f there is an equal amount of fuel expansion in fresh oxide and metallic fuel. 
These results are summarized in Table IX , which compares rod-drop ex­
periments assuming several d1fferent types of reactivity- feedback sources . 
All data are compared at the end of 40 sec after the rod drop . As the table 
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Case 
No . 

4 

TABLE IX. Comparison of Rod-drop Exper ime nts Assuming 
Several Different Types of Reactivity-feedback Sources 

(Data compared at 40.0 sec after rod drop) 

Type of Feedback 

Driver-fuel expan -
sian+ sodium-density 
changes 

No oxide feedback ; 
only sodium-density 
changes from oxide 

Reduced oxide- fuel 
expansion+ sodium -
density changes 

Full oxide- fuel ex pan -
sian+ sodium - density 
changes 

Small oxide - fuel 
Doppler feedback + 
sodium-density changes 

Oxide-fuel axial expan -
sion = driver-fuel axial 
expansion+ sodium-
density changes 

Temperatu re Changes 
in Typical Metallic 
Fuel Element, °F 

Fuel Sodium 

11 

16 

Temperature Changes 
in Typical Oxide 
Fuel Element, °F 

Fuel Sodium 

86 

121 10 

74 

51 

72 

45 

Feedback 
Reactivity, 

$ 

0.00807 

0 .00446 

0.00937 

0.0 ll lO 

0.00953 

0.01171 

Change 
in Reactor 
P owe r, o/o 

4.01 

5. 71 

3.44 

2. 38 

3.35 

2.05 

shows, there is a lar ger temperature change in the oxide fuel than in the cor­
responding metallic fuel. This is due primarily to the different thermal con­
ductivities of these types of fuel. Typically, we note that in reactor cores 
containing predominantly metallic driver fuel, the temperature-induced re­
activity coefficient due to axial expansion of the fuel accounts for 67% of the 
total feedback, while the sodium-density change accounts for 33% of the total 
feedback. However, for oxide fuel, 85% of the feedback is due to fuel effects, 
and only 15% is due to density changes in sodium coolant. This phenomenon 
may be traced to the fundamental differences in physical properties of the 
oxide fuel as compared to metallic fuel. In summary, note that the measured 
reactivity feedback from rod-drop experiments in EBR-II will vary, depend­
ing on the effective physical properties of the fuel loadings--that is, on 
whether there is an initial axial-fuel-expansion coefficient or on whether a 
Doppler coefficient is built into the reactor core. An increased loading of 
oxide fuel elements may increase or decrease the total measured reactivity 
feedback of the reactor system . 

B . Reactor Trips 

The importance of the thermal conductivity of oxide fuel following a 
reactor trip has been mentioned above . The effect of this physical property 
of oxide fuel is to control the rate of heat removal from the fuel element, so 
that the oxide fuel remains at a higher temperature for a longer period of 



time following a reactor trip. Figure 36 shows the temperature curves fo l ­
lowing the insertion of reactivity at a ramp rate of 1.0$/sec, followed by a 
reactor trip l. 5 sec after the start of the insertion. Following the trip, a 
prompt decay of the driver-fuel temperature occurs with a time constant 
of 0.3 sec, as opposed to a slow decay of the oxide-fuel temperature with a 
time constant of 4 s ec. This is reflected in the sodium-coolant outlet tem­
perature, as shown in Fig. 37. The temperature of sodium coolant from 
the metallic fuel exceeds that from the oxide, owing to the excellent thermal 
conductivity of t h e metallic fuel. Following the reactor trip, the cool ant­
outlet temperature from the driver-fuel element decays rapidly, whereas 
the coolant- outlet temperature from the oxide fuel e l ement decays slowly. 
There can be a hundred or more degrees difference between the coolant­
outlet temperatures from the oxide and metallic fuel - element channels. 
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Fuel Temperatures following the Insertion of Reactivity at a Ramp Rate 
of 1.0$/sec, Followed by a Reactor Trip at 1.5 sec after Start of Insertion. 
ANL Neg. No. ID -103-M5717. 
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at a Ramp Rate of 1.0$/sec , Followed by a Reactor Trip at 1.5 sec after 
Start of Insertion, ANL Neg. No. ID-103 - M5718. 

This difference could be eve n larger for slower reactivity ramp rates. 
Therefore, thermal shocks to the upper reactor structure must be studied 
to assess the effect of hot and cold streams of sodium impinging on this 
structure. As larger and larger numbers of oxide fuel elements are intro­
duced into the co re, we will have re g ions of hot and co ld outl et coolant dur­
ing and following reactor transients , and this effect must be evaluated in 
locating oxide irradiation subass emblies in the EBR-Il core. Obviously, 
for a complete loading of ceramic fuel in EBR-II, we would see far less of 
a thermal sho c k to the structure , be cause of the slow decay of the oxide­
fuel temperature following a reactor trip . 



VI. DYNAMIC BEHAVIOR DURING OPERATIONAL ABNORMALITIES 

The primary intent of this report is to give operational guidance for 
future core loadings of predominantly oxide fuel. From this viewpoint, it 
is not useful to consider hypothetical component malfunctions such as fuel­
handling accidents, since they do not, in themselves, give operational guid ­
ance. It is, however, considered credible, although of very low probability 
due to redundant plant-protective-system trip points, that an operational 
malfunction of a control rod or the safety rods may occur. Therefore, 
these ope rational malfunctions are considered to gain information related 
to the dynamic operating characteristics of an EBR - Il core loaded pre­
dominantly with oxide fuel. 

A. Full-power Operations 

During normal full-power operations, an inadvertent movement of a 
control rod would be easily guarded against by the plant-protective system. 
However, in the following studies to set up a figure of merit, it is assumed 
that an uncontrolled insertion of reactivity is introduced into the reactor 
during full-power operation, and the time required to reach the first point 
of peak - oxide - fuel melting is evaluated. (The figure of merit is taken to be 
the number of seconds to melting of oxide fuel. A larger figure of merit 
is a more de sir able condition, implying a longer time to fue 1 melting.) 
Reactivity ramp rates from 0.001 to 0.1$/sec are considered. This more 
than spans the range of reactivity ramp rates anticipated from present or 
future high - worth control rods. Figure 38 shows the time to centerline 
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melting of oxide fuel f o r t wo assume d m e tal-core feedbacks , as a function 
of reactivity ramp rate . One curve shows the time to melting of oxide fuel, 
assuming the present normal prompt - feedback effects from metallic driver 
fuel and sodium. Cance lling out the fuel e ffe c t a nd leaving only the sodium­
temperature reactivity effect is s hown on the othe r curve. E ven for reac ­
tivity ramps as high as 0.01$/sec, the time t o centerline m e lting is greater 
than 20 sec, thus providing ample time for plant-pr ot ective- sys t e m a c tion 
o r for admini st r ative contr o l. 

Figure 39 s h ows the time t o cente rline m e lting of oxide fue l for 
va ri ous reactivity ramp r a t es, assuming that the reactivity effect of oxide ­
fue l expans i on is equ a l in magnitude t o the r eactivity effe ct of driver - fuel 
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expansion, and assuming normal sodium - coolant density effects. As indi­
cated, the times to centerline melting are approximately equal to the times 
obtained with only reactivity effects from driver-fuel expansion. For no fuel 
expansion in the oxide and only sodium-density effects, the curves converge 
at ::::0.01$/ sec to a time to melting of slightly over 10 sec--which is lower by 
a factor of 2 than the time for cores protected by driver-fuel feedback. How ­
ever, this still provides ample time for plant-protective - system action or 
administrative control. 

Finally, as noted in Section V .A above, a Doppler coefficient may be 
present in oxide fuel. To assess this effect, Doppler constants, T ok/oT, 
from 0.00 to -0.004 were considered. Figure 40 presents the results of 
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these studies, indicating that for increasingly negative Doppler constants, 
the time to melting is appreciably lengthened. The figure shows that for 
a D oppler constant of -0 . 001 , the time to melting is very similar to that 
for oxide e lements protected by normal metallic-driver-fuel feedback. 
These conclusions are similar to the conclusions drawn in the rod-drop 
studies , which indicate that the feedback networks in a predominantly 
oxide core with a Doppler constant of -0.001 would be nearly identical to 
those for the present metallic-driver-fuel core in EBR-Il . 

B . Startup 

Two low-probability malfunctions of components are considered for 
the startup m ode of EBR-II. These involve inadvertent driving in of a control 
rod , or inadvertent driving in of safety rods, with the core just critical and 
with full coolant flow. Four separate cases are considered in the anal ysis. 
The feedback networks characterized in these four cases are swnmarized in 
Table X . The values for the first case involve asswning that half the feed­
back in the core is due to metallic driver fuel and half is due to oxide fuel 
with an extremely small, but negative, D oppler constant of -0 . 0005. (Recent 
nuclear analyses indicate that this is the kind of Doppler constant that would 
be present with oxide fuel in the present EBR-II geometry.) The second 
case asswnes a Doppler constant of -0.001 with no metal feedback. The 
third case assumes a Doppler constant of -0 . 002 with half the feedback 
coming from the metallic fuel. Finally, the fourth case asswnes a Doppler 
constant of -0 . 004 with no metal feedback. It is believed that these cases 
span the credible range of feedback networks for oxide-fueled EBR-II cores. 

Case 
Number 

2 

3 

4 

TABLE X . Range of Temperature-induced Feedback 
Parameters Used in Dynamic Analysis 

Driver -fuel-element 
F eedbacks 

Fuel, $joF Coolant, $joF 

- 0.000 l89a -0 . 000680 

0.0 0.0 

-0 . 000 189a -0 . 000680 

0.0 0.0 

Oxide-fuel-element 
Feedbacks 

Fuel, T ok/oT 

-0 .0 005 -0 . 000621 

-0.0010 -0 .00062 1 

-0 . 0020 -0 . 000621 

-0.0040 -0.000621 

aThis driver-fuel feedback value is half the feedback expected from a 
core predominantly loaded with metallic driver fuel. 

Figure 41 shows the power and reactivity curves following the driving 
of a control rod into a just-critical core with full flow . Note that the reac­
tivity feedback turns the power burst downward. In Fig. 42 the peak driver­
fuel temperatures are presented following this inadvertent driving of a 
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Fig. 41. Power and Reactivity Curves following the Driving of 

a Control Rod into a Just-critical Core; Doppler Con­
stant = - 0.0005; Half o f Metal -fuel Feedback; Full 
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control rod into a just-critical core. The peak driver-fuel temperature, 
150 sec after the start of the insertion, reaches a level of ll00°F, whereas 
the cladding is approximately 1 000°F. 
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Fig. 43 . Temperatures in Peak Oxide -fuel Element 
following the Driving of a Control Rod into 
a Just-critical Core; Dopp ler Constant = 
-0.0005; Half of Metal -fuel Feedback; Full 
Coolant Flow. ANLNeg. No.ID-103 -M5724. 

Figure 43 shows the peak 
oxide - fuel temperatures. The 
center of the fuel is at 4900°F at 
the end of !50 sec, as opposed to 
1000°F for the cladding. Figure 44 
shows the expected center and 
c ladding temperatures in an aver­
age oxide -fue l element following 
this malfunction. The center tem­
perature is lower, approximately 
4200°F, and the cladding tempera­
ture is app r oximate l y l 000°F. 

Figure 45 shows the power 
and reactivity curves following the 
driving of a control rod into a core 
having a Doppler cons tant of -0.001 
and no feedback from the metallic 
fuel. As the figure indicates, the 
reactivity is limited to approximately 
60/ prior to the onset of the negative 
reactivity feedback. The peak 
driver-fuel - e l ement temperatures 
(see Fig. 46) do not exceed lll0°F 
in the fuel or l 0 l 0°F on the hot spot 
on the cladding. Peak oxide-fuel ­
element temperatures (see Fig. 47) 
do not exceed 5000°F in the fue l or 
l000°F on the cladding. Figure 48 
shows the expected temperatures 
in the average oxide element. 

Cases l and 2 (see Table X) give similar results, indicating that a Doppler 
constant of -0 .001 would give the same protection as a core obtaining half 
its feedback from metallic fue l and half from oxide fuel. Therefore, it 
can be concluded from cases l and 2 that a fairly wide latitude is available 
in oxide core loadings w ithout departing appreciably from the dynamic 
characteristics of present cores protected by metallic driver fuel. 

Figure 49 shows the power and reactivity curves following the 
driving of a control rod into a core whose Doppler constant is -0.002, 
assuming that half the feedback comes from metallic fuel. Again, the 
reactivity is limited to approximately 60/, and the prompt feedbacks turn 
the power burst around. Figure 50 shows the peak driver-fuel temperatures, 
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Fig. 49 . Power and Reactivity Curves following the Driving of 
a Control Rod into a Just-critical Core; Doppler Con­
stant = -0.002; Half of Metal-fuel Feedback; Full 
Coolant Flow. ANL Neg. No. ID-103-M5730. 
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Fig. 50. Temperatures in Peak Driver-fuel Element 

following the Driving of a Control Rod into 
a Just-critical Core; Doppler Constant = 
-0.002; Half of Metal-fuel Feedback; Full 
Coolant Flow. ANLNeg. No. ID-103-M5731. 

which are now limited to 850°F in 
the fuel and 820°F on the cladding. 
Peak oxide-fuel temperatures for a 
Doppler constant of -0.002 (Fig . 5 1) 
are limited to 2500°F in the fue l and 
850°F on the cladding. Average oxide 
temperatures are even lower, as 
shown in Fig. 52. 

Finally, for a Doppler con­
stant of - 0.004, the power and reac­
tivity curves are shown in Fig. 53. 
Peak temperatures in the driver fuel 
(see Fig. 54) are now limited to 800°F 
in the fuel and 770°F on the cladding. 
Peak oxide temperatures (Fig. 55) 
are limited to I 7 50°F in the fue l and 
780°F on the cladding. Average oxide 
temperatures are lower, as shown in 
Fig. 56. These results imply a 
greater degree of safety with large 
Doppler coefficients. (However, 
large Doppler coefficients imply 
beryllium moderation to a greate r 
degree, leading to appreciable mod ­
eration of the fast - neutron irradiation 
spectrum, and this is considered 
undesirable in view of the research 
programs that the LMFBR program 
has identified for EBR-II.) 

The above results are summarized in Table XI, which compares the 
various reactivity-feedback effects on peak-fue l -element temperatures 
following the inadvertent driving in of a control rod during reactor startup. 

The inadvertent driving in of a safety rod is a low-probability mal ­
function that is also considered in this study. Figure 57 shows the power 
and reactivity curves following an inadvertent driving of the safety rods 
into a just- critical core with full flow. In this case, the Doppler constant 
is assumed to be - 0.0005 and half the fuel feedback comes from the metallic 
fuel. The peak driver - fuel temperatures resulting from this insertion are 
depicted in Fig. 58. The peak fuel temperature in the driver fuel is l200°F, 
as opposed to a cladding temperature of ll00°F. Peak oxide temperatures 
following this insertion exceed 6300°F at the fuel center, and the cladding 
is l000°F at the hot spot (see Fig. 59). The average oxide temperatures 
are lower (see Fig. 60). At the end of 150 sec, the average oxide fuel 
would be approaching centerline melting and the cladding temperature would 
be approaching II 00°F. 
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Fig. 57, Power and Reactivity Curves following the Driving 
of the Safety Rods into a Just-critical Core; Doppler 
Constant = -0.0005; Half of Metal -fuel Feedback; 
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Case No. 

TABLE XI. Comparison of Various Reactivity-feedback Effects on Peak Fuel-element Temperatures 
following an Inadvertent Driving In of a Control Rod during Reactor Startup 

Temperatures in Peak Temperatures in Peak 
Driver-fuel Element Oxide-fuel Element 

Feedback from Driver- Feedback from Oxide- 150 sec after Start 150 sec after Start 
fuel Element ruel Element of Insertion of Insertion 

Fuel, $/Of Coolant, $/Of Fuel, T ok/oT Coolant, $/OF Fuel, Of Cladding. Of Fuel, Of Cladding, Of 

-0.000189 -O.oo:J680 -0.0005 -0.000621 liDO 1000 4900 1000 

0.0 0.0 -0.0010 -0.000621 lllO 1010 5000 1000 

-0.000189 -0.oo:J680 -0.0020 -0.000621 850 820 2500 850 

0.0 0.0 -0.0040 -D.000621 800 770 1750 780 

For an assume d Doppler constant of -0.001 with full coolant flow 
and no metallic-driver-fuel feedback, the resulting power and reactivity 
curves are shown in Fig. 61. The reactivity is limited to an insertion of 
less than 701- b efore system-feedback effects take hold and appreciably 
reduce the total reactivity. The peak driver-fuel-element temperature (see 
Fig. 62) reaches 1270°F in 150 sec, with the cladding temperature reaching 
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Fig_ 61. Power and Reactivity Curves following the Driving 
of the Safety Rods into a Just-critical Core; Doppler 
Constant = -0_001; No Metal-fuel Feedback; Full 
Coolant Flow_ ANL Neg. No. ID-103-M5742. 
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111 0°F. P eak oxide t e mperatures 
(see Fig . 63) are higher than in the 
previous case, approaching 7000°F 
in the fuel and 1020°F in the clad­
ding. The average oxide tempera ­
tures (see Fig . 64) approach 
centerline melting, with a cladding 
temperature approaching 11 00°F. 

Figure 65 shows powe r and 
reactivity for the case in which half 
the driver-fuel fe e dback is present 
and there is a Doppler constant of 
-0 . 002. P eak driver-fuel tempera ­
tures are now limited appreciably 
by the Dapple r feedback to a value 
of 910°F in the peak driver fuel and 
870°F on the cladding (Fig. 66). 
Peak oxide temperatures are also 
appreciably limited to 3000°F in 
the hottest spot in the oxi de - fuel 
e lement, with the c ladding tempera ­
ture approaching 900°F (Fig. 67). 
Average oxide temperatures (Fig. 68) 
approach 2500°F in the fuel a nd 
900°F on the cladding . Temperatures in Peak Driver-fuel Element 

following the Driving of the Safety Rods into 
a Just-critical Core; Doppler Constant = 
- 0.001; No Metal - fuel Feedback; Full Coo l­
ant Flow. ANL Neg. No. ID-103- M5743. 

Figure 69 shows power and 
reactivity for the case in which the 
Dapple r constant is -0 .004 with no 

metal feedback. The peak driver-fuel - element tempe ratur e s are greatly 
limited by this large Doppler constant, approaching 820°F in the fuel and 
790°F in the cladding (as shown in Fig. 70). Peak oxide temperatures (see 
Fig. 71) are limited to ::::2050°F, with the cladding t e mperature limited to 
850°F. Average oxide temperatur e s (shown in Fig. 72) are appreciably 
lower, approaching approximately 1650°F in the fuel c enter . 

These results are swnmarized in Table XII, which indic a tes that a 
Doppl er constant of - 0.0005 to -0 . 001 would yield simi l ar characteristics 
to the present core of predominantly metallic drive r fuel. 

Case No. 

TABlE XII. Comparison of Vanous ReactlvJty·feedback meets on Peak Fuel-element Temperatures 
fotlowmg an Inadvertent Driving In of the Safety Rods du nng Reactor Startup 

Temperat ures In Peak Temperatures in Peak 
Driver-fuel Element Olude-luel Dement 

feedback from Dnver · Feedback !rom Ox ide- 150 sec alter Start 150 sec alter Start 
fuel Element fuel Element of Insertion of Insertion 

Fuel , tfOF Coolant, t/Df fuel. I dkldl Coolant, stOf Fuel, or Cladding, Of Fuel , Of Cladding, Of 

-ll.OOOI89 ·0.000680 ·0.0005 ·0000621 12110 11110 6JOO 1000 
0.0 0.0 ·O.IXJIO ·0.000621 1270 1110 7000 1040 

-ll.000189 ·0. 000680 ·0.11020 ·0.000621 910 870 JOO() 900 
0.0 0.0 ·0 0040 ·0.000621 820 790 2050 850 
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Fig . 63. Temperatures in Peak Oxide - fuel Element 
following the Driving of the Safety Rods into 
a Just-critica l Core; Doppler Constant = 
- 0.001; No Metal-fuel Feedback; Full Cool­
ant Flow, ANL Neg. No . ID-103- M5744. 

7500 

7000 

6500 

6000 

5500 

5000 

!t ~500 

i ~000 3500 

3000 

2500 

2000 

1500 

1000 

CENTER OF AVE RAGE 

100 

OXIDE ELEMENT 

120 100 

TIHE, SEC 
160 180 200 

Fig. 64. Temperatures in Average Oxide-fuel Element 
following the Driving of the Safety Rods into 
a Jus t-critical Core; Doppler Constant = 
- 0.001; No Metal-fuel Feedback; Full Coolant 
Flow. AN L Neg . No. ID-103- M5745. 
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Fig. 65. Power and Reactivity Curves following the Driving 
of the Safety Rods into a Just-critical Core; Doppler 
Constant= -0.002; Half of Metal-fuel Feedback; 
Full Coolant Flow. ANL Neg. No. 1D-103-M5746. 
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Fig. 66. Temperatures in Peak Driver-fuel Element 
following the Driving of the Safety Rods into 
a Just-critical Core; Doppler Constant = 
-0.002; Half of Metal - fuel Feedback; Full 
Coolant Flow. ANLNeg. No.ID-103-M5747. 
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Fig. 67. Temperatures in Peak Oxide -fuel Element 
following the Driving of the Safety Rods into 
a Just-critical Core ; Doppler Constant = 
· 0.002; Half of Metal -fuel Feedback; Full 
Coolant Flow. ANL Neg. No. ID-103-M5748. 
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Fig. 68. Temperatures in Average Oxide-fuel Element 
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a Just-critical Core; Doppler Constant = 
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Fig . 69. Power and Reactivity Curves following the Driving 
of the Safety Rods into a Just -critical Core; Doppler 
Constant = -0.004; No Metal-fuel Feedback; Full 
Coolant Flow. ANL Neg. No. ID-103-M5750. 
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Fig . 70 . Temperatures in Peak Driver - fuel Element 
following the Driving of the Safety Rods into 
a Just -critical Core; Dopp ler Constant = 
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ant Flow. ANL Neg. No . ID -103-M5751. 
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Fig. 71. Temperatures in Peak Oxide-fuel Element 
following the Driving of the Safety Rods into 
a Just -critical Core; Doppler Consrant = 
-0.004; No Metal-fuel Feedback; Full Cool ­
ant Flow. ANL Neg . No. ID -103 -M5752 . 
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a Just -critical Core; Doppler Constant = 
-0.004; No Metal-fuel Feedback; Full Cool ­
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VII. SUMMARY AND CONCLUSIONS 

The influence of pre dominantly oxide fue 1 loadings on the operational 
characteristics of EBR-II has been investigated by means of a dynamic 
simulation of the neutronic, thermal, and hydraulic characteristics of a 
reactor core having feedback networks typical of oxide fuel. Routine reactor 
operations have been studied by simulating rod-drop experiments and auto­
matic reactor trips. Operational abnormalities caused by hypothetical mal­
functions of a control rod or the safety rods have been analyzed for meaningful 
departures from the behavior shown in past studies with metallic fuel. The 
main conclusions obtained from the investigations presented in this report 
are briefly listed below: 

1. Over the operating range for EBR-II, an increased loading of 
oxide-fuel subassemblies will not compromise the inherent safety of EBR-II 
as an irradiation facility . 

2 . The reduced thermal conductivity of oxide fuel is the main 
cause of the different transient characteristics of oxide fuel as compared 
to the present EBR-Il metallic driver fuel. 

3 . The reduced thermal conductivity of oxide fuel elements will 
cause a mismatch in the decay of sodium outlet temperatures following an 
automatic reactor trip. 

4 . The initial point of fuel melting , in a core containing oxide and 
metallic fuel elements, is dependent on reactivity ramp rate , coolant flow 
rate, and the inherent phys1cal properties of the fuel. 

5 . Rod-drop experimental results obtained from predominantly 
oxide fuel loadings will exhibit similar response times to predominantly 
metallic fuel loadings , but may vary somewhat in magnitude depending on 
the irradiation behavior of oxide fuel. 

6. A Doppler constant of -0.001 in a predominantly oxide fuel 
loading plus normal sodium-density changes will produce an overall dynamic 
behavior similar to that of the present EBR-II core loading of predominantly 
metallic driver fuel. 

7 . An increased D oppler constant of -0 .002 to -0 .004 will provide 
greater inherent transient protection in oxide -fueled cores, but the associ ­
ated softer neutron spectrum may be undesirable for irradiation tests . 
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A PPEN DIX A 

Fuel- handling Malfunctions 

Malfunc tions o f c ompone nts during fu e l handling , l eading to changes 
in reac tor pa r ame t e r s , are highly h y pothetical occurrenc e s and therefore 
affo rd no oper a tional guidance . Howeve r , s inc e refe r e nc e is made in the 
Hazard Summar y R e port to these t y p es of h y pothe tical occurrences , a few 
se l e cte d , a ss ume d malfunc tions ar e pre s e nted in thi s appe ndix. 

The many failur es in the f u e l - handling c ircuitry and in administra ­
tive c ontrol require d to se t the initial c onditions for these hypothetical 
o ccurrenc e s are l i s t e d in R e f . 5 . The malfunctions c ons idered include 
high- and low- s pe e d inse rtions of a central drive r-fuel subassembly into 
a jus t- c ritical c ore under c ondition of c onvective flow of the primary cool ­
ant. The dropping of a central driver - fuel suba ss embl y is als o analyzed 
unde r these c onditions . Two Dopple r c ons t a nts a re c onside red, -0 .0005 
a nd -0 .002 , with one -ha lf of the norma l f ee dback from the m e tallic driver 
fu e l. 

1 . Inse rtion of C e ntr a l Suba s s e mbly a t High Speed 

(Doppler c ons t a nt = -0 .000 5 ; h a lf of meta llic- fu e l feedba c k) 

The powe r a nd r eactiv ity curves following the high- speed insertion 
of a centr a l drive r-fue l s ubassembly a r e pr ese nted in Fig . 73. The s ys t e m 
r eactiv ity r e a c h es a p e ak of0 . 9 6 $ b e for e the prompt n e gative fe edbac ks re ­
du c e the r eact ivity. The t e mp e r a tures in the p eak drive r- fu e l e lement , as 
s hown in Fig . 74 , r eac h l800°F in the ce nte r of the fue l and 1750°F on the 
cla dding 10 sec a fte r the s t a rt of the inse rtion. Correspondingly, the peak 
ox ide t e mpe r a tur es, as s hown in Fig . 75 , r eac h 2250°F in the cent er of the 
fu e l a nd 1490°F on the cla dding . The a v e rag e ox ide -fue l t e mp e r a tures 
(Fig . 7 6 ) r each 2200°F in the fu e l a nd only l 200°F on the cladding. The 
m e t a llic -drive r-fue l t e mpera tur es a r e high b ecau se only c onve c t ive cool ­
ant i s pre s e nt , whe r eas the ox ide-fue l temp e ratues ar e low b e c a use of the 
prompt t empe r a tur e -induce d r eactivity feedb ack from s odium-density 
c h a nges ass o ciat e d with the m e t a llic drive r-fue l e l e m e nts . 

2 . Inse rtion of Centr a l Subassembly a t Low Speed 

(Dopple r c ons t a nt = -0 .002 ; half of m e t a lli c - fue l feedba c k) 

The promp t r esponse of the power a nd the sys t e m r eactivity to the 
l ow -sp eed i nse rti on of a centr a l drive r s ubass embly i s presente d in Fig. 77 . 
The r eact ivit y i s limi t e d to a peak of 0 . 70 $ b y the ox ide Doppler c ons t a nt 
a nd the m e t a llic -driver-fu e l f eedback s . The t empe ratur es in the p eak 
driver - fu e l e l e m e nt (see F ig . 78) r each l280°F in the fu e l and 1200°F on 
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Fig . 73. Power and Reactivity Curves following the 
Driving of a Central Subassembly at High 
Speed into a Just-critical Core; Doppler 
Constant = -0.0005; llalf of Metal-fuel 
Feedback; Reduced Coolant Flow. ANL 
Neg . No. ID-103 -M5754. 
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Fig. 74. Temperatures in Peak Driver-fuel Element 
following the Driving of a Central Subas ­
sembly at High Speed into a Just-critical 
Core; Doppler Constant = -0.0005; Halfof 
Metal - fue l Feedback; Reduced Coolant Flow. 
ANL Neg No . ID-1 03 -M5755. 
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Fig . 75. Temperatures in Peak Oxide-fuel Subas­
sembly following the Driving of a Central 
Subassembly at High Speed into a Just­
critical Core; Doppler Constant = -0.0005; 
Half of Metal -fuel Feedback; Reduced Cool ­
ant Flow. ANL Neg. No. ID-103 -M5756 . 
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Fig. 76 . Temperatures in Average Oxide -fuel Subas ­
sembly follO\;ing the Driving of a Central 
Subassembly at High Speed into a Just­
critical Core; Doppler Constant = -0.0005; 
Half of Metal -fuel Feedback; Reduced Cool­
ant Flow. ANL Neg. No. ID-1 03-M5757. 
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Fig. 77. Power and Reactivity Curves following the Driving 
of a Central Subassembly at Low Speed into a Just­
Critical Core; Doppler Constant = -0.002; Half of 
Metal -fuel Feedback; Reduced Coolant Flow. ANL 

Neg. No. ID-103-M5758. 
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Fig. 78. Temperatures in Peak Driver-fuel Element 
following the Driving of a Central Subas­
sembly at L01; Speed into a Just-critical 
Core; Doppler Constant = -0.002; Half of 

Metal-fuel Feedback; Reduced Coolant Flow. 
ANL Neg. No. ID-103-M5759. 
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the cladding. The temperatures in the peak oxide-fuel element are slightly 
higher, reaching l600°F in the fuel a nd l450° F on the cladding (see Fig . 79). 
The average oxide-fuel temperatures, as shown in Fig. 80, lie between the 
peak metal and oxide temperatures, with values of l490°F in the fuel and 
l390°F on the cladding. The increased system fe e dbac ks maintain reactivity 
and material temperatures to the low values presented above for this type of 

hypothetical malfunction. 
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Fig. 79 . Temperatures in Peak Oxide - fuel Element 
following the Driving of a Central Subas­
sembly at Low Speed into a Just -critical 
Core; Doppler Constant = -0.002; Half of 
Metal - fuel Feedback; Reduced Coolant Flow. 
ANL Neg. No . ID-103-M5760. 
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Fig. 80. Temperatures in Average Oxide -fuel Subas­
sembly following the Driving of a Central 
Subassembly at Low Speed into a Just­
c ritical Core; Doppler Constant = -0.002; 
Half of Metal-fuel Feedback; Reduced Cool ­
ant Flow. ANL Neg. No . ID-103 - M5761. 

(Doppler constant = -0 .002; half of metallic-fuel feedback) 

This hypothetical malfunction is prevented by numerous levels of 
redundant control s, but since this malfunction is mentioned in the EBR-II 
Hazard Summary Report, 1

•
2 an analysis with Doppler feedback is 



presented. The power and reactivity curves following this insertion, as 
shown in Fig . 81, indicate that the reactor would be prompt critical for a 
short time. Peak driver-fuel-element temperatures {plotted in Fig. 82) 
reach 1800°F in the fuel and 1700°F on the cladding. Peak oxide tempera­
tures remain low at 2200°F in the fuel and 1200°F on the cladding, as 
shown in Fig . 83 . The average oxide temperatures {Fig. 84) are even lower 
at 1700°F in the fuel and 11 00°F on the cladding. Owing to the rapid rate of 
heating of the oxide fuel, a Doppler coefficient affords a greater degree of 
protection than metallic-fuel axial expansion in this case. 
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Fig . 81. Power and Reactivity Curves following the Dropping 
of a Central Subassembly into a Just-critical Core; 
Doppler Constant = -0.002; Half of Metal-fuel 
Feedback; Reduced Coolant Flow. ANL Neg . No . 

!D-103-M5762. 
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Fig . 82. Temperatures in Peak Driver -fuel Element 
following the Dropping of a Genua! Sub­
assembly into a Just -critical Core; Doppler 
Constant = -0.002; Half of Metal-fuel 
Feedback; Reduced Coolant Flow. ANL 
Neg. No. ID-1 03 -M5763. 
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Fig. 83. Temperatures in Peak Oxide -fuel Element 
follm•ing the Dropping of a Genua! Sub­
assembly into a Just-critical Core; Doppler 
Constant = -0.002; Half of Metal-fuel 

Feedback; Reduced Coolant Flow. ANL 
Neg . No . ID-103-M5764. 
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Fig . 84, Temperatures in Average Oxide - fuel Element 
following the Dropping of a Central Sub as ­
sembly into a Just-critical Core; Doppler 
Constant = -0,002; Hal[ of Metal -fuel 
Feedback; Reduced Coolant Flow . ANL Neg. 
No, ID - 103 - M5765. 

Results for the above three cases are summarized in Tabl e XIII. 

TABLE Xlll. Comparison of Various Reactivity-feedback Effects on Peak 
Fuel-element Temperatures following Fuel-handling Malfunctions 

Feedback from Feedback from Temperatures Temperatures 

Driver - fuel Oxide-fuel in Peak Driver- in Peak Oxide-

Element Element fuel E lement fuel Element 

Case Fuel, Coolant, 
Fuel. 

Coolant, Fuel, Cladding, Fuel, Cladding, 
No. s/•F s/•F Tok s/·F •F •F •F •F 

oT 

-0.000189 -0 .006800 -0.0005 -0 .00621 I8ooa 1750a 2250a 1490a 

-0.000189 -0 .00680 -0,002 -0.0062 I 1250b 1200b 1600b 1450b 

3 -0.000189 -0 .00680 -0.002 -0 .00621 !800 C !700C 2200C IZOOC 

a10 sec after start of insertion. 
hso sec after start of insertion. 
C} sec after start of insertion. 
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APPENDIX B 

Reactor-kinetics Data 

Table XlV lists the effective d e laye d-neutron constants used in the 
dynamic simulation presented in this report. The s e constants are obtained 
u sing onl y z35U and z38U delayed-neutron data . The effect of l 39Pu or z40Pu 
in oxide fuel on the f3 i was not included in these data . However, owing to 
the anti c ipa t ed high e nric hme nt of oxide irradiation exp e riments, the in­
duced error should b e l ess tha n lOo/o. The principal diffe rences from 
present nuclear c onstants are expect ed in f3eff and £ p . As more definitive 
core loading s are identified u sing predominantly ox ide-fuel irradiation 
experim ent s, these values will be r ec ompute d , and a dditiona l s tudies will 
be made to evalua te c h a nges in these neutron constants. 

TABLE XIV. Effective Delayed- neutron Constants 

Group f3 J f3e ff A. i Group f3j f3 eff A.. 
1 

0.0347 0 .0127 4 0.4041 0.3110 

2 0.2034 0 .0317 5 0 . 1406 1.4000 

3 0 . 184 7 0 . 1150 6 0 .0325 3.8700 

For pre sent EBR-II loading, f3e ff = 0 .0071; for 50% EBR-II 
driver fu e l and 50% mixed-ox ide fuel, f3e ff = 0 . 0066; for 
100% mixed-oxid e fue l , f3e ff = 0 .0056. 
£p = 1.10 x 10- 7 sec. 
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