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AN EFFICIENT NUMERICAL SCHEME BASED ON 
THE METHOD OF CHARACTERISTICS APPLICABLE TO 

TWO-DIMENSIONAL FLUID TRANSIENTS 

by 

Yong W. Shin and Richard A. Valentin 

ABSTRACT 

This report presents two- step explicit numerical pro­
cedures based on the method of characteristics. These proce­
dures use four bicharacteristics equally spaced on the Mach 
cone. The velocity components are first obtained for the entire 
field using known initial data. Pressure is calculated in the 
second step in which the advanced velocity data are used. No­
where in these procedures is an iterative scheme required. 

A linearized set of hyperbolic differential equations de­
scribing two-dimensional transients in slightly compressible 
fluid is considered for numerical solution. Detailed schemes 
are described in which all integration paths (bicharacteristics) 
remain in the coordinate planes; hence, only simple linear in­
terpolation is required. These schemes allow time steps as 
large as the entire Courant step . Further, a stable new scheme 
is discussed in which the allowable time step can actuallyex­
ceed the Courant time step. The procedure recommended for 
such computations was chosen after an extensive numerical ex­
perimentation that demonstrated its simplicity, efficiency, and 
accuracy. Exact analytical solutions are constructed and com­
pared with numerical results to demonstrate the accuracy of 
the recommended scheme . 

I. INTRODUCTION 

The method of characteristics is a useful technique for reducing com­
plex differential equations in hyperbolic-type problems to a simpler set of 

equations suitable for numerical integration . In a general sense, the new set 
of equations relates conditions along directions in which physical disturbances 

propagate. Thus a close relationship is maintained between the physical phe­
nomena and the numerical- solution procedure. This results in convenient phys­
ical interpretation of the parameters that control numerical stability. In a 
two-variable case, the systems of partial differential equations are reduced to 
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ordinary differential equations , and m.any well-established techniques are avail­

able for obtaining a num.erical solution . In problem.s with m.ore than two inde­

p endent variables (e.g . , m.ultidim.ensional fluid transient problem.s) , the 
characteri stic equations rem.ain partial differential equations, and num.erical 
solution is m.ore difficult . Nevertheless, num.er ical techniques have been de­

veloped by which these diffic ulties can be overcom.e. 

I 2 d ' . Butler and Ric hardson developed a schem.e in two space Im.enSlons 
in which the characteristic partial differential equations are solved num.erically 
j us t as in the or dinary differential- equation case. The scheme uses four bichar­
a c teristics and one particle path so that gradients in the noncharacteristic di­
rections a re elim.inated from the difference relations. The resulting relations 

are then used for the solution of desired flow variables. Shin and Valentin
3 

have 
used a variation of this schem.e for fluid transient analysis. The Von Neumann 
stability test of their schem.e revealed that the time step was restricted to one ­
half of the whole Courant step . Sauer 4 has developed a low- order - accuracy 
scheme in which multidimensional problem.s are treated by repeating the 
s cheme of a one-dim.ensional problem.. The integration paths chosen are the 
lines called nearcharacteristics; gradients in direction s other than the near ­
characteristics are evaluated by finite-difference quotients, using initial data . 
The choice of nearcharacteristics that lie in coordinate planes was applied by 
Shin and Kot,5 who showed that an averaging was required for numerical sta­
b i lity of the two independent solutions obtained from. the two coordinate planes. 

The Von Neum.ann stability criterion was applied to Sauer ' s schemes to show 
the unconditional instability of any of the two schemes if one considers only 
one coordinate plane. The stability requirem.ent for the third scheme that takes 

an average of the two unstable solutions was found to be the same as the bichar­
acteristic schem.e. 3 

This report discusses a new scheme that provides improved efficiency 
and accuracy; the scheme allows the use of lar ge time steps , and hence 
num.erical-dispersion effects are minim.ized. In the num.erical procedure , two 
calculations are performed for each tim.e- step advancement. In the first calcu­
lation, the two velocity com.ponents are obtained for the entire field. These 
advanced velocity components are then used to calculate the new pres sures . 
This schem.e, applied to the linearized fluid-hammer equations, uses f our 
bicharacteristics , all lying in coordinate plane s . The near c haracteris tic lines 
collapse onto the bicharacteristics in this linearized problem . 

II . BASIC DIFFERENTIAL EQUATIONS 

The basic equations considered for a gene rally compressibl flow are 
the conservation e quations of mass, momentum., and en rgy . In man transient 
problem.s, however, it is sufficient to consider th fluid s nly slight! 



cOITlpressible . This enables an approxiITlation (the so-called fluid-haITlITler 

approxiITlation) in which the energy equation is replaced with a siITlple isen­

tropic relation . The resulting differential equations, in two diITlensions, are 
(with the isentropic relation in differential forITl) as follows. 

Continuity: 

~ + u ~ + v ~ + p( b u + b v + v yV) = O. 
M bx by bx by 

( l) 

MOITlentUITl : 

bu bu bu 1 bp 
+ u- + v- + + F x = 0, 

M ox oy p bx 
(2) 

and 

ov o v bv _1 Op + u- + v- + + F = O. 
M bx oy p oy y 

(3 ) 

Isentropic relation: 

( 4) 

Equation 1 IS cOITlbined with Eq . 4 to eliITlinate the density change: 

op op bp Z(OU ov V) 
>'t + u- + v- + pc - + - + \)- = O. 
v ox by ox oy y 

(5 ) 

Equations 2, 3 , and 5 forITl a set of three equations with three unknowns: the 
pressure p, and the two velocity cOITlponents u and v . Typically, the sonic 
speed in any liquid is large; hence, for any given pres sure change the corre-

• sponding change in density is small, as indicated in Eq. 4. It is thus reasonable 
to aSSUITle constant density in these equations. 

In ITlost cases, the fluid velocities in liquids are sITlall, cOITlpared to the 
sonic speeds. For exaITlple, in still water at room teITlperature, a fluid particle 
velocity of about 4 .57 ITl/s (15 ft/s) is developed by a pressure pulse of 6.89MPa 
(1000 psi). Since the sonic speed in water is 1487 ITl/s (4880 ft/s), the particle 
velocity is only 0.3% of the sonic speed . Thus, for pressure pulses of this order 
of magnitude, it is reasonable to linearize the above equations and obtain 

(6) 
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bv 
+ 

bp 
+ Fy 0, - = 

bt by 
(7) 

and 

bp bu bv v 
O. + -+ - + \) - = 

bt bx by y 
(8) 

These equations have been written in dimensionless form, using the following 

nondimensionalization: 

(u, v) = (u*, v*)/U, 

p = p*/pcU, 

(Fx,Fy) = (Fi. , F~)L/Uc, 
(9) 

(x, y) = (x*, y*}/L, 

and 

t = ct*/L, 

where the asterisks identify the dimensional variables . The reference veloc­
ity U can be obtained in terms of a reference pressure pulse ~p as 

• 

U = ~p 
pc 

( lO) 

Ill. CHARACTERISTIC EQUATIONS 

The hyperbolic system of linearized partial differential equations 6 - 8 
are linearly combined to yield a new set of equations in a characteristic form. 
This new set, unlike the case of two-variable problems, includes infinitely many 
equations from which a choice is made for a suitable solution procedure . As 
derived in d etail in Ref. 3, the set of characteristic equations are written para-
metrically as 

dp du dv. l. 
- cos e - - sin e - + Sill 

dt dt dt 
e(bU + \) v) + cosl. e(b V 

+ v-) 
bx y by y 

_ sin e cos e(bU + bY) = cos e . F x + sin e . F y' 
by bx 

(11 ) 



where 

d 
dt = - cos 

bt 
sin e~ 

by 
( ll) 

is a derivative along a bicharacteristic identified by a particular value of e 
between 0 and In. In Fig. 1, a local Mach cone is shown with its vertex at P 
and the initial data in the x-y plane . With e as defined in Fig. 1, d/ dt of Eq. II 
is easily identified as a derivative along a bicharacteristic- -a line connecting 
a point on the base circle with point P. 

E 

Fig. 1 

Mach Cone and Mesh Net. Bicharacteristics IP, 
2P, 3P, and 4P are integration paths. ANL Neg. 
No. 113-77-249. 

A choice of four equations is made by selecting e = 0, n/l, n, and 3n/l . 
Two of the four spatial derivatives, bu/by and bv/bx, are eliminated in this 
procedure , and the resulting equations are written as difference relations: 

( 13a) 

( l3b) 

(
bU V) P - P + (v - v 3) + M - + \I - = - 6 t( Fy) , 

3 bx y 3 
( l3c) 

and 

(
bU V) P - P - (v - V4) + M - + \1- = M(Fy) . 

4 bx y 4 
( l3d) 

Where appearing , variables and derivatives without subscripts refer to the 
advanced point P, and subscripts 1-4 represent base points of the four 
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bicharacteristics (see Fig . 1). The frictional terms are evaluated using the 

initial data , and the divergence terms bu/bx, bv/by, and v/y are placed at the 
n ew point P . 

Equations 13 ar e the basic difference relations used to construct the 
computational schemes discussed in this report. Var i ables at other than the 
mesh points in the initial plane are numerically evaluated by linear interpola­

tion, using neighboring mesh points . For example , U3 in Fig . 1 is evaluated 

using Uc and uo : 

where 

r = 03!OC . 

IV. BASIC NUMERICAL SCHEME 

Equations 9 allow us to formulate a procedure whereby the velocity 
components can be obtained for the entire field without a simultaneous s olution 
f o r the pressure . Subtraction of Eq . 13b from Eq. 13a yields a s o lution for u, 
and subtraction of Eq. 13d from Eq . 13c provides a solution for v: 

u = ·HUl + Uz + P - P - lit[(Fx) + (Fx) J}; 
1 Z 1 l 

( 14) 

and 

v = t {v 3 + V 4 + P - P - lit[ (Fy) + (Fy) J}. 
3 4 3 4 

(15 ) 

These velocity calculations are performed for the entire field first. Then new 
velocity values are used to construct the procedure for pressure calculation. 
Addition of Eqs. 13a and 13b yields 

( 16) 

An equally valid choice is the use of Eqs . 13 c and 13d, which results m 

(17) 

The derivatives of Eqs. 16 and 17 can be evaluated b y difference quotients, 
using field values of u and vat the adjacent mesh points. High-order central 
differences are employe d for interior mesh points . At the boundaries, how­
eve r , lower-order sid e d differences are used . 



Equations 14-16--or Eq. 17 in place of Eq . 16 as an alternative-­
constitute the basic scheme for interior mesh points where all four bicharac­

teristics are available for use . At the boundary meshes, however, some 

bicharacteristics fall outside the computational domain. In these cases, ap­
propriate boundary conditions provide needed information on velocities; for 

example, at a rigid x-boundary, u = 0, and at a y-boundary, v = 0. Nonzero 

velocities also can be specified if such condition exists, as in the fluid- structure 
interaction problem. The pressure, however, still must be calculated. 

Pressure calculation at boundaries is performed somewhat differently 
than at interior points. Either Eq. 16 or 17 is used first, whichever is appli­

cable; for example, at an x-boundary, Eq . 17 is used . A second calculation is 

then made and used to form an algebraic average with the fir st calculation . 

This second calculation considers the available bicharacteristic relation (one 
of Eqs. 13 normal to the boundary . For example, at an x-boundary, x = 0 , 

where x < ° is external to the domain, Eq. 13b is used . In this cause, u ap­
pearing in the equation will represent the wall velocity. 

At a corner point where both boundarie s exist, both Eqs. 14 and 15 are 

replaced by wall conditions; i.e . , u = ° and v = 0 . Here, neither of the pres­
sure equations, Eqs. 16 and 17, is applicable. Independent pressure calcula­
tions are made from the two available equations of Eqs. 13, and the results 
are then averaged. At the nonboundary axial points for a cylindrical geometry, 
y = 0, the term v/y is not defined, and the term is replaced by bv/by. 

The numerical stability of the foregoing scheme is governed by the 

Courant-Friedrichs-Lewi (CFL) condition that applies to all hyperbolic sys­
terns: The domain of dependence of the difference system must contain the 
domain of dependence of the differential system. With reference to Fig . 1, the 
domain of dependence of the differential system is the base circle of the Mach 
cone, and the difference domain is considered to be the rectangle EFGH. Hence, 
the CFL condition requires that the base circle should lie inside the rectangle 

EFGH, which implie s that 

t 
S:l. ( 18) 

The CFL condition is not sufficient for stability. A sufficient condition 

can be found by Fourier analysis, as was done in Ref. 3 . Here, however, a 

series of numerical experiments was performed as an alternative method. The 

problem chosen for this purpose was a rectangular domain with 5 x 10 mesh 

points in which an initial pressure discontinuity was given to induce two­

dimensional flow development from an initially stagnant condition. Calculations 

were continued for 250 time steps, and the qualitative features of the solution 

tIn dimensional variables. Eq. 18 is expressed c6. t* /6x* oS 1. 
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were used to defin numerical stability for a given time step. The result 

showed clear stability when the time step was chosen as 

lit s; 4/5. 
lIx 

( 19) 

This time step is a significant increase from earlier schemes in which 

the requirement was 1/2. Equation 19 applies t o both Cartesian and cylindrical 

geometry. 

V . VARIATIONS OF THE BASIC SCHEME 

Many variations of the basic scheme were formulated and examined for 

accuracy and stability . These all used the same veloc i ty equations, Eqs . 14 a nd 
15 , as the basic scheme of the previous section. H owever, the pres sure calcu­

lations were done differently. In the first scheme, the pressures were calcu­
lated by taking an average of two independent calculations, using Eqs. 16 and 
17, respectively, for all points (interior and b oundary) . It differ s from the 
basic scheme discussed in the previous section in that the basic scheme em­
ploys the pres sure averaging for the boundary nodes only . The pres sure av­
eraging for all nodes allowed the first scheme for a slightly g reater time step 
with generally a comparable accuracy to the basic scheme . Nevertheless, the 
basic scheme is preferred , since it reduces identically t o th e one -dimensional 
method of characteristics scheme and yields more ac curate results when one­
dimensional waves are encountered. 

This property of the basic s cheme is c onsidered important to applications 
involving long geometries where , for points far from the disturbance source , 
the waves are essentially on e -dimensional and the accuracy is important. The 
time step allowed for Cartesian geometry was as large as a whole C ourant step, 
i.e ., lIt/lIx = 1. For a cylindrical problem, this scheme required a slight! re­

duced time step , lI t / lIx = 0 .9. In the sec ond scheme one pre s sure equation , 
Eq . 16 , was used for every mesh point . This resulted in the limitation lIt/ = 
3/4. Due to the smaller time step, this scheme exhibited a slightly greate r 
disper sion effect than th e basi c scheme . 

Other schemes examined included different ways of treating spatial de­
rivatives appearing in the pressure equations . Thes e derivati s ere placed 
in the current time plane instead of the advanced plane a in the basi scheme 

and in the schemes discus sed above. (The spatial derivati es \l ere formed with 
known cur rent time values .) These schem s further r edu d th allowable time 

step and increased disper sion rror s . Also examin d w r s h n"le s invo lving 
d i ffer ent combina tions of pressur calculations in the int rior a well as on 
boundar ies, and with th spatial d rivatives placed in th ad anced time plane. 
Thes e schemes wer ith r mparable or inf rior to the basic schen"le in both 

stability and aura y. 



The basic scheme and an earlier scheme 3 were applied to a different 

mesh net in t-x-y space involving a time step exceeding the Courant number 

unity. In this case, the characteristic s project over more than one mesh. The 

case of square meshes is shown in Fig. 2. The base-point values (values at 

points 1, 2, 3, and 4) were evaluated by linear interpolation, using adjacent 

mesh-point values. As such, the necessary CFL condition is satisfied, since 

the numerical domain encloses the differential domain. Nevertheless, many 
of the me sh configurations examined proved to be unconditionally unstable . 

Two of the most important configurations are shown in Figs. 3b and 3c. These 
would be desirable since the dispersion errors would be minimal and such con­

figurations would be suitable for problems with major extension in one coordi­
nate direction (such as a very long or very short cylinder). Unfortunately, no 

stable schemes were found for these configurations . 

Fig. 2. Mesh-net Configuration and Mach Cone 
for a Large-time-step Scheme. (Time 
step is greater than CFL step.) ANL Neg. 
No. 11 3-77-547. 

Fig. 3. Mesh Configurations for x-y Plane Con­
sidered as Variations from Basic Method. 
ANL Neg. No. 113-77-545. 

The configuration shown in Fig. 3a, however, was shown to be stable 

using the basic scheme discussed in the previous section. (The earlier scheme
3 

showed unconditional instability in this case .) The stability requirement was 

found to be 

6t 
1 ~ s 1.3 

6x 
(20) 
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in both Cartesian and cylindrical coordinates. The characteristic equations, 
Eqs . 13 , apply to this case in general; however, special calculations must be 
made for mesh points next to the boundary . In this cas.e, one of the fo u r char­
acteristics changes its direction (two in the case of a corner point); hence, the 
integration path involves two different characteristics. Figure 4 indicates the 
four possible cas es in which P is the mesh point one mesh away from bound­
aries . Consider the first case of the boundary, x = 0, in which case the char­
acteristic equation along the path flIP require s a special treatment . Path I ' P 
is the characteristic corresponding to a e value of 3n/ 2 (refer to Fig. 1), and, 

letting the associated time step be tit I , the characteristic equation can be 

written 

P - p, + (u - u l ') + tlt l - + v - = - 6tl ' (F~I " (
bV V) 

I by y 

For fTi, the equation for e = n/2 with time step tltl is 

Adding these two equations and using the same approximations for the inhomo­
geneous terms as in Eqs . 13, we obtain 

p _ p + (u - 2uI' + ul) + M(b V + vV ) = -tlt(F~ . 
I by y I 

( 21 a ) 

Here, tit = tit I + tltl was used . The form of this equation differs only slightly 
from the corresponding Eq . 13a: uI' is the wall normal velocity. For other 

I t 

t t 
I + lit t +6t 

3' 4 ' 

I 

t 
t + III 

t 

t 
, + lit 

2' 

-~ -~ 

Fi g. 4. LnlCgrlllion Palhs for Points N xt t Boundari sin Lllrgc­

lime- sl c i S ' hem. ANL Neg. N . 113-77-543. 



walls, different characteristics require special treatment. For the wall y = 0, 
the affected path of integration is 33' P , etc . Similar expressions can be ob­
tained for the remaining wall cases as follows: 

(21 b) 

(21 c) 

and 

(
OU V) P - P - (v - 2 V 4' + v 4) + 6 t - + 'J - = M( Fy) . 

4 Ox Y 4 
(21d) 

For mesh points near corners, two of Eqs . 21 must be used instead of 
the corresponding single equation from those listed in Eqs. 13 . Proper com­
binations of Eqs. 13 and 21 enable construction of a complete solution scheme, 
which is essentially the same as the basic method described in Section IV: 
Velocity calculations are performed first for the entire field, and the results 
are used to form v elocity gradients needed for the pres sure calculations. 

The velocity gradients use the nearest neighbor points in the difference 
quotients. Pressure calculations use x-direction characteristics only for the 
interior mesh points; averaging is used for boundary points. 

VI. SAMPLE PROBLEM CALCULATIONS 

Simple sample problems were considered to verify the numerical tech­
nique by comparison with exact analytical solutions . Analytical solutions were 
g enerated, using the method discus sed by Keller and Blank. 7 This involves 
transformation of the wave equation into a Laplace equation, using Busemann's 
conical-flow technique. 8 This method, combined with a conformal mapping, was 
used to solve for a step pressure pulse traversing a 90 ° corner . The resultant 
analytical solution forms the basis for verifying the numerical method dis-
cus sed earlier . Details of the analytical solutions are given in the appendix. 

Three sample problems were chosen and are shown in Fig . 5. These 
problems were selected to test as many features of the numerical technique as 
possible, while remaining simple enough to be amenable to exact solution. The 
first sample problem, shown in Fig. Sa, involves two-dimensional (CarteSian) 
wave propagation of a step pulse around a 90° corner . The diffracted wave 
from the corner interacts with both the undisturbed and the reflected wave 
front . Initially , a high pressure (pz) is placed one mesh from the corner so 
that the flow accelerates into the low-pres sure region (p ) . 

1 
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-
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Ib) TEST CASE 2 IDECOMPRESSION INTO SUOOEN ENLARGEMENT) 

I C) TEST CASE 3 I PROPAGATION Of PLANE PRESSURE PULSE ) 

Fig. 5. Three Sa rnple Pro blems Conside red 

for Verification of Proposed Method. 

ANL Neg. No. 113-77-358 Rev. l. 

In the second sample problem 
(Fig. 5b), there is a sudden area enlarge ­
ment, again in Cartesian ge ometry, and two 
features not contained in the first example 
are involved. In this case, the diffracted 
waves originating from the two corners 
interact with each other . This problem also 
involves diffracted waves being reflected 
from flat surfaces . Here a g ain, the tran­
sient is developed from an initial unbalance 
of pres sure . The area ratio considered is 
1 to 2 . The analytical solution for this 

sample problem was obtained by superposi­
tion of simpler problems, as described in 
the appendix. 

The third sample problem is one ­
dimensional and was intended to test 

numerical-dispersion effects for one ­

dimensional waves . A gain, a step pulse 
was used and wave shapes were examined 

as the wave fr ont propagated down the pipe . 

Figures 6 and 7 compare the nu-
merical calculations and analytical solu­

tions for the first and second sample problems, respectively. Figure 6 plots 
pressure distribution on the wedge surfaces up to the diffraction wave front. 

Fig . 6 

Result for Plane-step-pulse Input ornpressi ng 

around 90 · o rner (Test Case 1) . ANL Neg. 
No. 113-77-356 Rev. l. 
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Fig . 7 . Res ult for Plane- step-pulse Input Expanding into Sudd en Area 
Enlargem ent (Tes t Case 2) . AN L Neg. No . 113-77-355. 

Generally, the agreeITlent is good. At the discontinuity front (9 = 0 in Fig. 6) , 
SOITle dispersiveness of the nUITlerical scheITle can be seen . ExperiITlental data 

obtained by White and Bleakney9 are also plotted for cOITlparison . The discrep­
ancy between the ex periITlental data and the analytical or the numerical solution 
is due to the vortex phenoITlenon around the corner. Viscous effects as sociated 
with the corner vortex are neglected in the analytical and numerical treatITlents. 

White and Bleakney used a 12% excess pressure , P/ Pl = 1 . 12, which is low 
enough so that linear behavio r could be expected . 

Results for the sudden- enlargeITlent probleITl (second saITlple probleITl) 

are given in Fig . 7 . Here again, the agreeITlent is good, except for SOITle nu­
ITlerical spreading near sharp gradient changes . In particular, at point AI (see 

Fig . 5b for its location), the los s in the initial peak pre s sure (short duration) 
is appreciable , although the general pres sure history is in good agreeITlent . 

Early arrivals of the disturbance pulses are also evident and can be attributed 

to nUITlerical-dispersion effects . 

Figure 8 depicts the results for the one-diITlensional step pulse of the 

last saITlple probleITl. The waveforITl, as it travels down the pipe , is progres­

sively disper sed. (The effects are cumulative .) Results obtained using an ear­
lier technique 3 are plotted in Fig. 8b for cOITlparison. The nUITlerical sITlearing 

is ITluch less in the present scheITle (see Fig . 8a) than in the earlier results . 

This iITlproveITlent is iITlportant in probleITls that involve a long extension in 

one spatial coordinate cOITlpared to the other . The current analysis ITliITliITlizes 

cUITlulative dispersion effects, which could otherwise result in unconservative 
estiITlates . Note also the difference in the required number of cOITlputation 
steps for the input pulse to reach a certain point. This results froITl the differ­

ent size of tiITle steps required for nUITlerical stability of the two ITlethods . 
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(Tes t Case 3) . ANL Neg. No. 113-77- 357. 

The three sample-problem calculations verify many basic features of 
the proposed method . Besides the general interior and rigid- boundary point 

calculations, the numerical scheme can calculate diffraction wave s and their 
interactions with reflected and undisturbed plane waves. The diffraction of a 
curved wave front has not b een considered since the analytical solution is not 
available, and the construction method used for the othe r exact solutions is 
limited to a plane discontinuity. The proposed scheme was found stable for 
the mesh configuration described in Fig. 3a, as discussed earlier . H owever, 
the practical importance of this case was not evident; hence , no effort was 
made to verify its numerical stability . The basic scheme was used in all the 
numerical calculations shown for which the maximum allowable time step 

M/6x = 0 .8 was used . 

VII. DISCUSSION AND CONCLUSION 

This report has described an efficient numerical metho d based on the 
bicharacteristic formulation as applied to the linearized s t of fluid-hammer 

equations . The choice of the integration paths from the infinitely a ailable 
paths resulted in intercepts at mesh lines so that only linear interpolation was 

required in the initial plane . Because of the linearized hara teristics, the 
intercepts of the integration paths with the initial plane an be determined at 
the start of the calculation . Also, be ause there are many available c hoices 



for integration paths, many schemes can be devised, using different combina­

tions of the chosen bicharacteristics or explicit or implicit treatment of the 
inhomogeneous terms of the characteristic equations. Several such schemes 
were examined and their accuracies tested. As a result of extensive numerical 
experimentation, we concluded that the numerical technique discussed here is 
likely to be the simplest, most accurate, and computationally efficient. 

Although general accuracy of the proposed method is demonstrated 
through sample problem calculations, the scheme unfortunately remains disper­
sive . This is in contrast with the one-dimensional method in which the scheme 
is essentially nondispersive . When only plane waves are encountered, the pro­
posed method reduces indentically to the one-dimensional method. We have 
found, although it is not presented in this report, that by use of the maximum 
allowable time step (6t*/6x* = 1), the method can calculate plane step pulses 
propagating with no dispersive smoothing effects. Therefore, we recommend 
that the two- dimensional scheme be used only in regions where detailed local 
effects are of interest and, whenever possible, the remainder of the domain be 
calculated by a one- dimensional scheme. This can be done by providing ap­
propriate approximations at the interface to connect the two schemes. For 
best accuracy, the maximum allowable time step should always be used. 

Applicability of the method to a nonsquare mesh system was also ex­
amined . This is an important option for problems with a domain relatively 
long in one direction, e.g . , a long cylinder. Unfortunately, the scheme proved 
numerically unstable for all meaningful time steps. For these problems, which 
are in essence one-dimensional, the exclusive use of a two-dimensional scheme 
can result in an excessive dispersive error. The size of the error will, of 
course, depend on the waveform, especially for the long-time response . Here 
again, substitution of a one-dimensional scheme in certain parts of the domain 

can enhance the overall accuracy of the result. 

Although the method has been presented here in terms of fluid-transient 
equations, it should be equally applicable, with small modifications, to the more 
general case of compres sible flows. Modifications would include the use of a 
full nonlinear formulation, two-dimensional interpolation, and the inclusion of 
variable characteristics that probably would require an iterative solution pro­
cedure. Dispersiveness will still exist; nevertheless, the method should pro­
vide an accurate computational tool for a large class of compressible flow 
transients when used in conjunction with a one-dimensional scheme to control 

numerical dispersion. 
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APPENDIX 

Conical-flow Solutions for 90° Corners 

Conical-flow solutions used to construct the solution for a sudden area 
enlargement are outlined below. The basic solution procedure is that given by 
Keller and Blank .? The wave equation * is obtained by combining Eqs . 6 and 7 

and neglecting friction: 

The boundary condition used is 

bp = 0, 
bn 

where n is the coordinate normal to the boundary. 
for example , with u = 0 at the x boundary . 

(A.I) 

{A.2} 

This results from Eq . 6, 

Following Busemann 's conical-flow method , Eq. A . I is rewritten in 
terms of new variables (similarity variables) and becomes a Laplace's equa­
tion in polar coordinates in terms of the similarity variables: 

(A.3) 

where 

(
q_ I)l/l 

y= q+1 ' 

ct 
q = 

(A.4) 

and 

a = tan - 1 Y / x . 

The problem is thus to solve Eq. A.3 for a 90 ° wedge with vanishing 
normal derivatives at the wedge surfaces . This can be redu ed to a unit-circle 
problem by mapping the exterior of the wedge into the interior o f the unit 
circle . 

The closed-form solutions for a step-pulse compressing and expanding 
around a 90° corner are obtained as follows: 

·The variables in this and subs quent equations r pre nt dim nsional qu ntiti s. 



For the compres sing step pulse, 

1 
= 1 + 

n 
arctan 

2~ , 
(1 + .t 4/3) S in ~ + 2.t 2/ 3 cos -

6 3 

and for the expanding step pulse, 

1 
= 

n 

where 

.t = 

arctan 

R 

2~ , 
-(1 + .t 4

/
3)cos 2::.. + 2.t213 cos-

3 3 

(A.5) 

(A.6) 

(A .7) 

R is the distance from the corner, and ~ is the angle measured from one of the 
wedge surfaces , as indicated in Figs. A. land A. 2 . The solutions as expressed 
in Eqs . A. 5 and A. 6 are plotted in the (.t, ~) plane in Figs. A. 3 and A.4. The 
solution for the compres sian corner is the same as that obtained by Keller. 10 
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Fig. A.1. Co mpression Problem for 90· Corner. 
ANL Neg. No. 113-77-544. 
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Fig. A .2. Expansion Problem for 90· Corner. 
ANL Neg. No. 113-77-546. 

23 



24 

11=0 

Fig. A.3. Exact Solution for Comer Compression. 

ANL Neg. No. 113-75-131 Rev. 1. 

11=~ 
2 

11=0 

Fig. AA . Exact Solution for Co mer Expansion. 

ANL Neg. No . 113-75- 132 Rev. 1. 

Finally, the solution to the plane step pulse expanding into a sudden 
enlargement is constructed by a careful superposition of the occurring wave 

fronts. The individual wave fronts, as the step pulse propagates through the 
area transition are depicted in Fig . A .5, plotted with increasing time . The dark 
area is the area swept by wave fronts of curved waves diffracted from the cor ­
ners. In this region, the superposition solution does not apply , since it is limited 
to plane-wave diffractions. The pressure histories at points A, B , C , A I, B ' , 
and CI are constructed by the superposition technique , using the basic solution 
expressed by Eq . A .6 and plotted in Fig. A.4 for the expanding pulse . The re­
sult is shown in Fig . 7 where comparison is made with numerical results . 
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Fig. A.5 . Indiv id ual Wav Front for Sudden Ar a Enlarg ment 

( artes ian ge m etry). ANL Neg. N . 113-77- 353 R v. 1. 
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