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PLANE-STRAIN STRESS INTENSITY FACTORS FOR 
CRACKED HEXAGONAL SUBASSEMBLY DUCTS 

by 

H. J. Petroski, J. L. Glazik, 
and J.D. Achenbach 

ABSTRACT 

Plane-strain stress intensity factors for a pressurized 
hexagonal subassembly duct with a crack in a corner or midflat 
are presented in convenient graphical forn1 for representative 
LMFBR hexcan dimensions. Corner-crack calibrations based 
on several different models of the round hexcan corner are de
termined first in order to bound the stress intensity factor. 
A subsequent finite-element analysis of a uniformly pressur
ized hexcan with a corner crack gives accurate data for the 
stress intensity factor from which a weight function for this 
geornetry may be constructed. 

The effects of different numbers of cracks, different 
locations for cracks, and different loading modes are discussed 
briefly, and some comments are made on the application of 
linear elastic fracture mechanics to cracked hexagonal ducts 
that have suffered a high degree of irradiation embrittlement. 

I. INTRODUCTION 

Liquid Metal Fast Breeder Reactor (LMFBR) subassembly ducts have 
cross sections that are regular hexagons with rounded corners, as shown in 

8 
A 

Fig. 1 

Cross Section of LMFBR Sub-

Fig. l. These "hexcans" are typically made of 
stainless steels, Type 304 or ZOo/o cold-worked 
Type 316, which are tough, ductile materials under 
ordinary service conditions. Thus, flaws, scratches, 
and cracks, which invariably are introduced during 
fabrication, transportation, handling, and service, 
and which are small enough to escape detection, 
are not generally considered to pose a threat to 
the integrity of hexcans. However, the prolonged 
exposure to a fast-neutron environment that these 
ducts can experience is now known to alter greatly 
the mechanical properties of stainless steel. 1 The 
high-toughness, low-ductility material of fresh hex
cans loaded into an LMFBR core is expected to be
come a low-toughness, low-ductility material at the 
goal fluences ( ·1027 n/m2

) of current reactor 
de signs. 

7 
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Although the degree of ductility loss has been monitored for stainless 

steels exposed to fluences approaching such limits, the degradation in the 
ability of the material to resist unstable crack propagation (the "fracture 
toughness" of the material) is not currently known. Experience with at least 
one highly irradiated hexcan,2 however, does indicate that the toughness may 
be reduced to a level at which fast, brittle fracture is a problem of concern 
in LMFBR Safety Analysis. The abnormal overpressurization resulting from 

certain interactions within a subassembly or the rupture of one or more fuel 
pins may be sufficient to overload an otherwise subcritical crack in an em
brittled hexcan. It is to such situations that the results of the present report 

are addressed. 

From the point of view of fracture mechanics, there are three adverse 

effects of exposure to high fast-neutron fluences: 

l. Reduced ductility 

2. Reduced fracture toughness 

3. Inc rea sed yield strength a round inlet temperatures. 

Brittle fracture becomes an especially acute problem when the yield 

strength of the material is raised to such an extent that the stress intensity 
at the tip of a crack reaches the critical value at net section stresses below 
the yield stress. Under such circumstances, linear elastic fracture mechanics 
is applicable, and its applicability implicitly will be assumed throughout this 
report. In other words, the failure criteria developed here are intended to apply 
only when they would indicate failure at lower load levels than some ultimate
tensile-strength or strain-lintit criterion. 

The effect of a crack in a linear elastic material is potentially to in
troduce a large stress gradient and thus greatly intensify the stresses at the 
tip of the crack. A mathematical singularity of order r-llz in the stress, 
where r is the distance measured from the crack tip, is characteristic of 
linear elastic materials, and the strength of this singularity, which is pro
portional to the loading, is known as the stress intensity factor, Kr. Thus, if 
the hexcan material is ductile, sufficient plastic yielding may be able to occur 
aro.und the crack tip and thus preclude the possibility of unstable crack propa
gatlOn. If, on the other hand, the material is brittle, the stress intensity can
not be relieved to any great extent by yielding, and fast fracture will occur 
when the stress intensity exceeds some critical value characteristic of the 
material. This characteristic value is the fracture toughness, Krc 

Since the stress intensity factor associated with a crack depends in 
nonlin.ear ways on geometry, and since th~ hexcan geometry is complex, 
espectally tn the cnttcal corner regtons, tt is necessary to "calibrate" cracks 
in hexcans for various crack sizes; i.e., Kr must be determ·n d ' . 

1 e as a runctton 
of crack size for a fixed hexcan geometry and mode of loadt'ng Th 

1
. . ese ca 1-

brations are customarily presented in the form of plots of dt'me s· l n ton ess stress 



intensity factor versus crack size, and such plots are the principal result of 
this report. These calibrations may be readily used to check the safety of a 

postulated crack, if the critical stress intensity factor Krc is known. 

Since the hexcan corner is a region of high stress levels and large 
stress gradients, even in the absence of flaws, the problem of a cracked hex

MIDFLAT 
CRACK 

B 

CORNER-~---# 
CRACK 

h 

Fig. 2. Section of Hexcan. Shov.·
ing Locations of Cracks 

of action. This report presents the 

can corner appears to be a worst-case 
problem, at least in the case of over

pressurization. The plane- strain 
problem of a long, shallow crack in 
such a geometry (see Fig. 2) is one 
that might model a scratch introduced 
during manufacture or assembly, and 
the solution to this problem will pro
vide a basis on which to build solutions 
for more co1nplex crack geometries. 
However, even such an idealized 
problem presents formidable ana
lytical obstacles because of the finite 
thickness and difficult geometry of 
the actual corner. Therefore, an 
exact analysis is not considered 
possible at present and a finite
element analysis of the true geometry 
or an analytical solution to a more 
idealized problem is a natural course 

results of calculations of stress intensity 
factors for the plane-strain problem by means of various methods. 

The following paragraphs provide an outline of the report. 

In Sec. II the concept of stress intensity factor is made rna the rna tically 
precise, and the conventional notation is introduced. The important principle 
of superposition of linear-elasticity solutions is also discussed in the context 
of its important application in the calculation of stress intensity factors. 

The uniform pressure loading of a hexcan is considered in Sec. III, 
and the corner and midflat sections are identified as critical. The stress 

distributions across these sections are calculated from straight- and curved
beam theory. Explicit results are presented for two hexcan designs. Although 
only uniform loading is treated here, Sec. XIII shows how stress intensity 
factors associated with other loadings rna y be derived from this base case by 
methods explained in this report. 

Section IV uses standard calibrations from a handbook of stress in
tensity factors to construct calibration curves for hexcan midflat cracks. 

9 
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Handbook calibrations are not adequate for cracks in hexcan corners, 
however, and some comments relevant to modeling the round corner are pre
sented in Sec. V. Cracked rings, C-shaped fracture-toughness specimens, 
and cracked infinite strips are discussed in relation to their ability to model 

the compliance of the hexcan. 

The strip calibration is compared with the straight- beam calibration 
in Sec. VI, where the inadequacy of the straight-beam handbook calibration 
to model the curved-beam hexcan-corner stress distribution is demonstrated. 
The experimentally based C-specimen calibration is presented in Sec. VII, 
where it is seen to agree well with the strip calibration, thus confirming the 
validity of the latter. 

The important and powerful technique of calculating stress intensity 
factors by a weight-function procedure is introduced in Sec. VIII. This tech
nique is essentially a method of superposition, which builds up the desired 
solution from known results for a basic problem involving the geometry of 
interest and a simple loading. In the case of the cracked hexcan, since there 
do not exist any solutions on which to build directly, some results of Grandt 
for cracked rings 3 have been used in conjunction with some assumptions about 
the crack shape. 

Bounds on the stress intensity factors for corner cracks are presented 
in Sec. IX. These are based on the models discussed in the previous sections. 

Section X reports the finite-element technique used to determine the 
stress intensity factor for a corner crack, and it is seen to give results within 
the bounds reported earlier. 4 

Sections XI and XII consider the effects of cracks in different locations 
under different loading conditions and of different numbers of corner cracks. 
A conservative analysis based on a single corner crack should generally be 
cons1dered 1n any fracture-mechanics analysis of cracked ducts. 

A weight function based on the finite-element results of Sec. X for 
c~r.ner cracked hexcans is presented in Sec. XIII, and it is seen capable of 
g1vmg results as good as those obtained by finite-element analysis. 

Some comments on the application of linear elast1·c fr t h · ac ure mec an1cs 
to cracked hexcan are made in Sec. XN and some of the c 1 · f h • one us1ons o t e 
report are summarized in Sec. XV. 



II. THE CONCEPT OF STRESS INTENSITY FACTOR* 

When a linear elastic body contains a sharp crack, the stress field at 
the tip of the crack possesses a mathematical singularity of order r-l/Z 

ll 

lll 

Crack-opening Modes 

(where r is the distance from the crack tip), and the 
strength of this singularity is known as a stress intensity 

factor. Three stress intensity factors are associated with 

a crack, one for each mode of crack opening: KI, which 
characterizes the stress field tending to open the crack 
symmetrically in tension; Kn, which characterizes the 

stress field tending to displace the crack faces with an 
in-plane shear; and Krn• which characterizes the stress 
field tending to skew the crack faces by an antiplane shear. 
The three basic modes of crack surface displacement are 
shown in Fig. 3. 

Generally the first mode, that of pulling the faces 

of the crack apart symmetrically, leads to unstable crack 
propagation, and this report is restricted to stress intensity 
factors of mode one. 

When an elastic body, such as the cracked plate in 
Fig. 4, has dimensions that are large compared to the crack 
length la, the mathematical problem of a crack in an in
finite sheet is considered to accurately model the stresses 
near the crack tip. The uniform stress field o at infinity 

gives rise to the plane-strain stress field, which, near the crack tip, may 
be represented by the singular terms alone: 

KI e 
(1 

8 3;) ox "" cos - sin sin 
~ 2 2 

KI v 
(1 sin e 

sin 3
2
S) 

oy --- cos + 
~ l 2 

KI 
( 1) 

sin 
'J 6 3S 

'~xy := cos cos -,;z.:; 2 2 2 

Oz = '"(ox+ oy); 

Tyz = - = 0, zx 

* l h--· development of this section follll\\·~ closely thar of Ref. .s. 
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CT 

Fig. 4. Cracked Sheet ~;ith Uni-
form Far-field Load 

where v is Poisson's ratio and the polar co
ordinates (r,8) are defined in the plane of 
symmetry (x, y) according to Fig. 4. The 
associated displacement field near the crack 

tip is given by 

KIA cos ~ ( 1 - 2v + sinz §.). 
ux ~ G 2n 2 • 

KI ft e ( z e) (2) 

uy ~ sin 2 2 - 2v - cos 2 ; 
G 2n 

uz = 0, 

where G is the shear modulus. If E repre

sents Young's modulus, then G = E/(2(1 + v)]. 

Since only two variables, the stress 
field 0 and the half-crack length a, charac

terize the plane elastic problem of Fig. 4, dimensional considerations lead to 
the conclusion that KI is proportional to 0 and to a to the one-half power. 
If C is the constant of proportionality, 

KI = C0.,fa. ( 3) 

Since C = ../TI for the crack in a uniformly loaded infinite sheet, it is customary 
to normalize the stress intensity factor with respect to 0,/iT and to work with 
the dimensionless stress intensity factor Y: 

y = ( 4) 

In finite bodies, the value of C in Eq. 3, and hence of Y in Eq. 4, de
pends on the dimensions of the body as well as the crack length and loading, 
and the determination of this coefficient for configurations of interest for 
LMFBR safety analysis is the principal goal of this report. The results will 
be presented in the form of plots of appropriately normalized stress intensity 
factors versus crack lengths for specific loading conditions and geometry. 
Such plots are known asK-calibrations. 

According to linear elastic fracture mechanics, the crack in the sheet 
of Fig. 4 will not propagate in an unstable manner until the product 0../a reaches 
a critical value. This obviously can be achieved in one of two ways: (1) by 
overloading the sheet, i.e., by increasing 0 beyond some critical value for a 
particular crack length, or (2) by introducing a crack that is larger than some 
critical size for a specified loading. The first situation may arise by some 



abnormally high accident loading; the second may occur after an initially 
subcritical crack has grown to a critical size due to some mechanism such 
as stable, subcritical fatigue- crack propagation due to prolonged service under 
fluctuating loading conditions. 

The criterion for unstable crack propagation may be expressed in terms 
of a critical value of Kr, which is designated Krc and is known as the fracture 
toughness of the material. This quantity is believed to be an independent ma
terial property and may be measured by prescribed tests on standardized 
specimens. 6 When the fracture toughness is known, the allowable loading for 
a given crack size is given by 

(5) 

while the largest crack size that may be tolerated at a given load a is given 
by 

a = ~(Krc)
2 

c n Ycr 
(6) 

Since the principle of superposition applies in linear elastic fracture 
mechanics, the stress intensity factor may be computed simply by loading the 
crack faces with the negative of the stress distribution that would exist across 
the crack plane in an unflawed body of the same overall dimensions and loaded 
in the same way as the cracked body of interest. This follows because the solu
tion to the problem of the unflawed body would be nonsingular and, hence, would 
have associated with it a zero stress intensity factor. Adding the two solutions 
would cancel the stresses on the crack faces, satisfying the boundary conditions 
of a stress-free crack. Figure 5 illustrates the principle of superposition. 

• 

!I) NO CRACK IN 
LOADED STRIP 

'" I K
1 

= 0 ) 

+ 

PRINCIPLE OF SUPERPOSITION 

1 
+ cr 1,1 

;!!!!Hii~o~ 
"'•'ttl' ;tl'' 

I 21 LOADED CRACK 
IN FREE STRIP 

"' I KI = KI ) 

• 

Ill STRESS-FREE CRACK 
IN LOADED STRIP 

l3l 111 12) 
I Kl = Kl-+ Kl = K1l 

Fig. 5 

The Principle of Superposition 

If there were some crack-face pressure due to the existence of a pres
surizing medium filling the crack, the total stress intensity factor would then 
be the sum of the Kr associated with the unflawed-body stress distribution and 
that associated with the uniform pressure loading. 

13 
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Ill. STRESS DISTRIBUTIONS IN UNIFORMLY PRESSURIZED HEXCANS 

When a hexcan is uniformly loaded, only one-twelfth of the duct need 

be analyzed. Figure 6 shows the parameters characterizing such a segment, 
and Fig. 7 defines the positive directions for the bending moment M and 
normal force N involved in the curved- and straight- beam theories herein 

employed. 

p 

\ 

c 

Fig, 6, One-twelfth of a Hexcan 

" 6 
0 ~ X~ l 

Fig. 7. Force and Coordinate Systems 

. Table I gives the dimensions of two typical LMFBR hexcan designs, 
heretnafter destgnated E and F. Note that the mean corner radius R -
r + (h/2) (see Fig. 8), has been used to specify the dimensionless c~rne~ 

TABLE I. Representative Hexcan Dimensions and Parameters 

Hexcan E, mm (in.) Hexcan F. mm (in.) 

p 28.07(1.105) p 55.05 (Z.1675) 
h I.OZ (0.040) h 3.05 (0.1ZO) 
r I. 78 (0.070) r 4.45 (0.175) 
R Z.Z9 (0.090) R 5.975 (O.Z35) 
e 0.0384 (0.00 150) e 0.13Z (0.005ZO) 
L 15.19(0.598) L Z9.Z1 (1.150) 

Ratios 

h/ p 0.036 h/ p 0.055 
r/h I. 745 r/h 1.458 
R(h Z.Z5 R/h 1.96 
oa 0.636 oa 0.593 

aa = r/(r +h) is the ratio of inner to outer radius of the hexcan 
corner. 



~---==-:---- I ! /2 

- ----
- -;l -

l 
r R fi 

:J__ ___ _ll __ 
Ftg. 8. Parameters for Curved-beam Theory 

radius Rjh. (Sometimes it is more convenient to work with the ratio r/h.) 
Since this ratio is approximately 2 for the duct designs E and F, the assump
tion of a linear stress distribution across the rounded corner section would 
result in maximum bending stresses more than 15% below that calculated as
suming the hyperbolic stress distribution of curved-beam theory. 7 Figure 9 
demonstrates the underestimate of the stress by straight-beam theory at the 
inside corner of the hexcan, the most critical location for a crack. Hence, the 
stress distribution in the corner will be taken to be hyperbolically varying 
through the thickness of the duct wall. Elastic- equilibrium cons ide rations, 
including the use of Castigliano' s theorem to calculate MA for this statically 
indeterminate problem, 7 give the following force and moment distributions 
acting on a duct of length B, where B is measured normal to the hexagonal 
cross section: 

N = rpB + (A r)Bp cos tp } 
on AO 

M = MA- (A- r)(1 - cos tp)pRB 

N = PpB 

}
on OB, 

[ (A - r) ( 1 - cos 11) pR + p Lx - i px2
] B 

( 7) 

(8) 

where 0,;; tp,;; 11 = n/6 on AO, 0,;; x <Lon OB, p is the internal pressure, 

and 

R = 

L = 

A. = 

MA = 

r + (h/ 2); 

( p - r) tan 11; 

r + [(P - r)/ cos 11]; 

{(A - r) [(~ -
L 
-cos 
I 

+ L
3 

+ r 11} Bp . 
31 h ~ ' 

11)R +!sin 11(1 - ~)] 

(9) 
(Contd.) 
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e = 

1.0 c------.-.::---------, 

0.9 

Slr01ghl Beam 

Curved Beom 

o Fin1te Element 

OL_-~-~--L _ _L_~~~ 

·300 ·200 ·100 0 100 200 300 
()" /p 

(Contd.) 
(9) 

It follows that the membrane 
force N is constant through the flat 

portion of the duct, and that the ratio 

of NA = ABp to the membrane force 

NB is 

NA r ( r) 1 
NB = p + l - p cosT)" (10) 

For the reference hexcans, this gives 
the force at A to be about 14o/o above 
that at B. The magnitude of the bending 
moments, however, can differ by a 
factor of two from corner to midflat, 
and the variation of the bending moment 
around a duct with an h/ p equal to that 
of an F duct is shown in Fig. 10. In 
this figure, points A, B, and 0 are, 
respectively, the corner, the midflat, 
and the point at which the round corner 
section joins the flat. Since different 

Fig. 9. Stress Distribution through F Hexcan Wall normalizing parameters are used, 
at a Corner Fig. 10 is distorted in the horizontal 

direction. Nevertheless, the figure 
does show that the midflat moment is relatively insensitive to corner radii 
r/h below about 6, while the corner moment changes by almost a factor of two 
over that same range. 

Fig. 10 

Elastic-moment Distribution 
around F Hexcan Wall 

0.5 

t~ooss 

(HORIZONTAL AXIS NOT TO SCALE l 

0 
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0.5 
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Table II gives the dimensionless values 

n = N 
pBp' m = ( ll) 

of the total normal force N and bending moment M at the sections identified 
as critical in Fig. 10, viz., the corner A and the midflat B of Fig. l. 

Hexcan 

E 
F 

TABLE 11. Dimensionless Membrane Forces and 
Moments at Critical Hexcan Section sa 

l. 14 5 
1.142 

Corner 

0.102 
0.099 

1.000 
1.000 

Midflat 

an ~ N/(PBp); rn M/ (P'Bp). 

-0.0 56 
-0.057 

For internal pressurization of a hexcan, the inside corner and the out
side midflat are in tension. For external pressurization, the maximum tensile 
stresses occur at the outside corner and inside midflat. These latter are not 
numerically as great as the values corresponding to internal pressurization, 
because of the compressive membrane force that acts in the external
pressurization case. Stress distributions for the more severe internal pres
surization will therefore be calculated. 

In computing the total tensile- stress distribution in a section, the 
tension due to bending is superimposed on that due to the membrane force N 
to give the total tensile stress. For straight beams, the familiar formula 

My 
a = -I- ( 12) 

gives a linear stress distribution, such as that shown by the solid line in 
Fig. 9. For the curved corner of the hexcan, however, to compute the stresses 
due to bending in the hexcan corner, we will use the hyperbolic distribution 
(also shown in Fig. 9) given by 

= My 
a Ae(R - e - y) ' 

(13) 

where A is the cross-sectional area of the beam (numerically equal to h for 

a unit length of hexcan section). 

The tensile- stress distributions through the duct wall at sections A 

and B are therefore given by 

17 
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OA 
p 

p p2 
= h nA + he(R - e - y) rnA; 

( 14) 

where y is positive when measured toward the center of the hexcan from the 

local neutral axis associated with bending. This axis coincides with the cen

troidal axis at the midflat. 

The maximum tensile stresses at the critical corner and midflat sec

tions are given by 

(cr:Lax 

p 
+ 

p2(h t Ze) m . 
= +-nA eh(ZR +h) A, -h 

( 15) 

C:Lax 

+p 6p2 
= -hnB -roB 

h2 ' 

where the upper signs correspond to internal pressure (p > 0) and the lower 
to external pressure (p < 0). For external pressurization, because of a larger 
projected area on which the pressurizing medium acts, the normal-force 
terms are increased by a factor hjp, but this does not appreciably change the 
total stress distribution given by Eqs. 15. 

Table III summarizes the magnifications of the pressure these maxi

mum tensile stresses represent. 

Hexcan 

E 
F 

TABLE III. Maximum Tensile Stresses in Hexcan Wall due to 
Internal (and External) Pressurizationa 

Inside 

579 
256 

Corner 

cr/p 

(Outside) 

(374) 
( 144) 

Outside 

284 
130 

Midflat 

cr/p 

aParenthetical entries represent external-pressurization data. 

(Inside) 

(229) 
(94) 

Hence, under internal (external) pressurization, the inside (outside) 
corner stresses are about twice (one and one-half times} the outside (inside} 
midflat stresses. In all cases, the maximum stress occurs in the corner. 

For the purpose of calculating stress intensity factors, it will be con
venient to have an expression for the stress distribution through the thickness 
of the hexcan corner as a function of distance x from the inside corner 



(see Fig. 8). Since y + e = (h/2) - x, it follows from Eqs. 14 that in the 
corner of the hexcan the circumferential tensile stress distribution may be 
put in the form, with C = x/h, 

p 

a = f( C) ( 16) 

where the values of the constants are as given in Table IV for the reference 
ducts. 

TABLE IV. Values of c; for Internally Pressurized Hexcans 

Hexcan 

E 
F 

1012.63 
373.06 

Cz 

-2038.34 
-730.3 7 

l. 75 
1.46 

The stress distribution represented by Eq. 16 for hexcan F is plotted 
as the solid line in Fig. 9. It is seen to be in good agreement with finite
element results. The inadequacy of the straight- beam stress distribution is 
also shown in this figure. 

Hexcan sections loaded nonuniformly will, of course, have different 
stress distributions than those computed above. If such unsymmetrical stress 
distributions are computed in a similar n1anner, however, stress intensity 
factors may also be computed in ways similar to those outlined below. 

When the hexcan has a crack, the stress distribution is, naturally, 
different from that described above. If we neglect the effect of pressure p 
on the crack faces, these faces are stress-free and Eq. 16 is no longer directly 
applicable. However, this stress distribution, calculated for an unflawed 
specimen, may be used to determine the stress intensity factor associated 
with a flawed specimen through the principle of superposition, which applies 
in linear elasticity. This principle, as outlined in Sec. II, states that any two 
solutions to the equations of equilibrium may be added to give a third solution 

to the equations. 

Thus, the problem of a crack in a hexcan corner may be considered 
to be the sum of two elasticity solutions: ( l) the solution to the problem of 
an unflawed hexcan loaded with internal pressure p, and (2) the solution to 
the problem of a cracked hexcan loaded on its crack faces with stresses equal 
and opposite to those stresses calculated in problem (l) to act across the 
plane where the crack is now located. Since the stress field in problem (l) at 
the location of the crack tip is nonsingular, no stress intensity factor is as
sociated with that solution. Therefore, the stress intensity factor calculated 
in problem (2) is the total stress intensity factor for the cracked hexcan 
loaded by internal pressure p. Thus, in all problems discussed below, the 
crack faces are simply loaded with the stress distribution of Eq. 16 and the 
corresponding stress intensity factors are calculated. 
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IV. CALIBRATIONS OF STRESS INTENSITY FACTOR 
FOR MIDFLAT CRACKS 

The stress intensity factor 

cracks (at section Bin Fig. I; s<·e 

KI associated with long, shallow midflat 

Fig. 2) may be approximated by assuming 

erN 

rnm 

~ !:"" 
(JM ffh.. "'1) (JN •CJ.n~-ICJM- CJN) ___ ,-cr. 

the loading of the section t" be rep
resented by the superposition of a 
uniformly distributed membrane stress 
and a linearly varying bending stress, 

as suggested in Fig. II. Since the 
prt>ssure is orders of magnitude 
smaller than the maximum tensile 
stresses to which it gives rise (see 
Table III), one should not expect too 

tnuch error in KI to result from ig
noring the pres sure loading transmitted 
to the crack faces through the pres
surizing medium when compared to 

t 

rnm 

Fig. 11. Superposition of Bending and Membrane 
Sn~:se~ by Straight-beam fheory 

the loading due to the bending momentM 
and membrane force N. Since the 
normal force N does not vary across 
the flat width, and since the bending 
n10ment M is almost constant near 

the midflat (see Fig. 10), one would expect the handbook superposition 
technique to give good results for 1nidflat cracks. 

The stress intensity factor for a crack of depth a in a hexcan midflat 
may then be taken as 

( l 7) 

where KIM and KIN are the stress intensity factors associated with the bending 
moment M and the normal force N, respectively. Handbook values for these 
Kr are of the form 

KrM = D"M .Jila.FM( a/h); } KIN = crN vnaFN( a/h), 
( 18) 

where 

6M 
crM = 

hz ' 

N 
( 19) 

crN = 
h' 



and where the values of the functions FM and FN are given to within 0.5% by8 

= !failC [0.923 + 0.199(1 - sin C) 4
] ,· 

FM V ---c- cos C 

(20) 

FN = ~c C [0. 752 + 2.02(a/h) + 0.37( 1 
cos c 

- sin 

where C = na/(2h). 

For an externally cracked. hexcan loaded by internal pressure, KI is 
given by the curves in Fig. 12, based on the above calibrations. 
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Fig. lc. Hex can 'lid flat K I Cdllhration 

Although the functions FM and 
FN in the forms of Eq. 20 are indeter
Ininate as a- 0, the limiting values for 
the normalized stress intensity factors 
KI/pv'i'iii associated with vanishingly 
small cracks Ina y be determined from 
the well-known expression 

KI = l.122av"i'ia ( 21) 

for a crack in a half-space, using for 
a the maximum stresses given in 
Table III. These limiting values have 
been used in completing the KI calibra
tion curves for vanishingly small cracks. 

Since the maximum midflat 
stresses due to external pressurization 
are always lower than those due to 
internal pressurization, and since 
hexcan internals would add to the duct 
strength, the stress intensity factors 
associated with internal midflat cracks 

will not be explicitly presented here. A conservative analysis would result 
from using the KI of Fig. 12 for internal midflat cracks in externally pres-
surized hexcans. 

Because of the significant magnification of the maximum tensile stresses 
due to the curvature of the hexcan corner (see Fig. 9), handbook calibrations, 
such as those made above for midflat cracks, would not be expected to give 
reliable results for cracks in the hexcan corner. Such handbook calibrations 
have been made, however, for comparison with more accurate con1putations, 
and these comparisons are presented in Sec. VI below. 
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V. MODELING A CRACKED HEXCAN CORNER 

Using standard hanbook Kr calibrations for a cracked straight beam 
subjected to tension and bending would not be expected to give very accurate 
results for the cracked hexcan corner, because such calibrations completely 
ignore the significant curvature of the true geometry. Jones 9 has compared 
such handbook-based calibrations for three-point bend specimens with finite
element results for sections of cylinders with Q = 0.95, 0.9, and 0.8, and the 
handbook results give progressively poorer estimates of K1 as Q decreases. 
The indicated trend is that such straight-beam calibrations for the Q = 0.6 
hexcan corner would underpredict the true Kr· 

However, a handbook calibration for a cracked infinite strip loaded by 
a point force (see Fig. 13) may be integrated with the stress distribution of 

Eq. 16 acting on the crack faces, and this would be expected to give one cal
ibration for the hexcan corner. This calibration would be expected to over
estimate the actual stress intensity factor, however, because the stiffening 
effects of hexcan flats and corner curvature are totally ignored. 

Figure l4a shows, to scale, the details of one corner of the hexcan of 
Fig. l., including the location of the crack whose associated stress intensity 
factor is desired. The hexcan segment ABCDEFA may be thought of geomet
rically as a segment of a cracked ring of the same radius and thickness, but 
beyond the common segment ABCDEFA the two geometries are obviously 

different, and even where the geometries are congruent, the 
stress distributions are not equivalent. 

p 

X 

However, if the stress intensity factor is calculated by 
loading the crack faces with the stress distribution that would 
act across the same plane in an uncracked body, as described 
above, then one might expect the local stress field around the 
crack to be similar in both the hexcan and ring segments. That 
this is not exactly the case may be seen by the following argu
ment for the case of two rings, one with a single radial crack, 
and one with two diametrically opposite radial cracks. 

The two rings are illustrated in Fig. 14. The singly 
cracked nng 1s superimposed on the he · F" 14 . xcan corner 1n 1g. a, 
and the symmetncal doubly cracked ring is represented by 
one of 1ts halves in Fig. l-Ib. If the identical cracks at A are 
loaded with a uniform crack-face pressure th · t d . . p, e assoc1a e 
stress mtens1ty factors should be the same if the far crack 
d1d not Influence the behavior within the ap ar tl · ·1 
sectors ABCDEFA. P en Y Slml ar 

( :rackt:"J Infinite Strip LoaJcJ by Point Force:; 
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Grande has reported calibrations of the 
like those of Fig. 14 for inner- to outer-radius 
are presented in Fig. 15, and the divergent 
curves indicate that the presence of a sec-
ond crack has an effect that is significant 
for the thicker ring and cannot be ignored 
for larger cracks in the thinner ring. The 
hexcan corner, for which Q = 0.6, would 
appear to be thick enough so that the ge

'ometry outside sections AB and EF should 
not be ignored. 

Furthermore, the compliance of the 
rings that are congruent with ahexcan cor
ner wouldnotbe expectedtobethe same as 
that of a hexcan corner, and a crack in a 
hexcan corner should be expected to open 
up more freely than a crack in a ring. How
ever, as one approximation, stress inten
sity factors have been calculated for hexcan 
corner cracks by interpolating informa
tion available for cracked rings. The pro
cedure is described in Sec. VIII below. 
Results for doubly cracked rings would be 
expectedto modelthehexcan corner crack 
more accurately because of the greater 
compliance of that configuration over the 
singly cracked ring. 

-
' 

Fig. 14 

Alternative Models for the 
Cracked Hexcan Corner 

stress intensity factor for rings 
ratios Q = 0. 5 and 0. 8. These 

3.0 

1.0 

- - - I CRACK 

- 2 CRACKS 

a/( R
0

-R
1

) 

Fig. 15 

Stress Intensity Factors for 
Rings Loaded by Uniform 
Crack-face Pressure 

The hexcan corner might also be modeled by a sector of a cylinder loaded 
as shown in Fig. 14c. Collocation results have been studied by Underwood et al., 10 

for this configuration; these authors have provided an analytical expression 
for the stress intensity factor, which they found depends upon the ratio of load 
eccentricity to specimen thickness, e/h, as well as the usual ratio of crack 
depth to specimen thickness, a/h: 

(22) 
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This calibration is reported to be applicable to geometries with Q 

ranging from 0.4 to 0.7 and for 0.3< e/h< 1.6 and 0.2< a/h< 0.6. The cal
ibration is given below in Sec. VII, where its application to the hexcan is 
made, but one would expect that the compliance of the C-shaped specimen, 
like that of the infinite strip, would exhibit more flexibility than the cracked 
hexcan corner. Nevertheless, the results based on these specimens indicate 
an upper bound to the true hexcan Kr; those based on the ring, because of its 
greater stiffness than the hexcan corner, are expected to bound the true Kr 
from below. 

VI. STRIP CALIBRATION FOR CORNER CRACKS 

One approach for obtaining K1 calibrations for corner-cracked hexcans 
is to use a handbook calibration for a cracked infinite strip of unit thickness 
whose crack faces are loaded by concentrated forces P as shown in Fig. 13. 
For a crack of length a, with P acting a distance x from the crack mouth, the 
stress intensity factor is given by8 

(2 3) 

where, letting (; = x/h and c = a/h, 

= 3. 52[1 - ((;/c)] 

( )
3/2 

1 - c 

4. 35- 5.28((;/c) + {1. 30 - 0. 30(c/c) 312 

J/2 ------------------

(1 - c) [l _ (c/c)2]1/2 

+ 0.83- 1.76((;/cJ[r- (1- ~)c]. (24) 

The stress intensity factor for the hexcan corner may then be calculated 
by loading the crack w1th P = cr(x)dx and integrating over the crack length: 

or 

p 
KI 
p a(x)dx ( 2 5) 

(26) 



where f(C) is given by Eq. 16 for the hexcan corner. This integration has been 
carried out, and the results are presented in Fig. 16. 
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Hexcan Cnrnt.:r K 1 Calibrations by 
Straight- and Curved-L,eam Theory 

The handbook calibration based on the straight-beam superposition 
principle illustrated in Fig. 11 is also plotted in Fig. 16. This latter calibration 
underestimates the stress intensity factor for shallow corner cracks, when 
compared with the calibration based on the more accurate infinite- strip model 
loaded with the hexcan-corner stress distribution as given by curved-beam 
theory. 

Since a hexcan is expected to provide more resistance than a strip to 
the opening of a corner crack, the infinite-strip calibration is expected to be 
conservative. That is, the actual stress intensity factors for corner-cracked 
hexcans should be less than those given in Fig. 16 by the strip calibration 

curves. 

VII. C-SPECIMEN CALIBRATIONS 

The C-shaped specimens of Fig. l-Ie may be loaded by the forces Pc 
at the offset e/h in such a way that the normal force Nc and bending moment 
Me transmitted across the crack plane are in the same ratio as those in a 

hexcan corner. For the C-shaped specimen, across the crack plane 

" !:(1 + 2~} 2 h . 
(2 7} 
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h h Orne r M/N is shown in Table V. If the C specimen is 
and for t e excan c • 
taken to have the same Q and h as the hexcan corner, the M/N ratios will be 

the same if and only if 

1M 1 ( 28) 

the values of which are also given in Table V. Since Nc = Pc and N = npBp, 

h l f and the refore the stresses, are equal in the hexcan and the t e norma orces, . . 
· ·f d 1 'f p - npBp Then the C-specimen cal1bratwn, Eq. 7, C spec1men 1 an on y 1 c - · 

takes the form 

( 2 9) 

. . by!O where the function F c 1s g1ven 

Fe(~·~)= [1.411 + 33.68(a/h)- 104.9(a/h)
2 

+ 221.8(a/h) 3
- 125.4(a/h)4 ](e/h) 

+ [6.447- 48.17(a/h) + 277.8(a/h)2
- 575.0(a/h)

3 + 469. 3(a/h}
4

]. 

(30} 

TABLE V. Parameters for 
C-specimen Calibration 

Hexcan 

E 

F 

0.0891 

0.0867 

e/h 

l. 961 

l. 066 

This calibration is plotted in Fig. 17, and, within the range 0. 2 :;; 
a/h 50.6 for which it is applicable, it demonstrates that the straight-strip 
calibrations of Sec. VI, plotted again in Fig. 17, give trends of the Kr behavior 
that are consistent with the experimental data on which the C-specimen cal
ibration is based. These C-specimen data would reflect the true stress dis
tribution existing across the crack plane, while the infinite-strip calibration 
is based on (approximate) curved- beam theory. 
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VIII. RING CALIBRATIONS 

As discussed in Sec. V, a cracked hexcan corner might also be modeled 
as a cracked ring having the same ratio Q of inner to outer radius. If the 
crack faces of the ring are loaded with the stress distribution that exists 
through the uncracked wall of a hexcan corner, the corresponding KI values 
should bound those of the hexcan from below. The weight-function principle 
associated with Rice 11 and Bueckner12 provides a convenient technique for 
determining the KI values associated with the hexcan stress distribution from 
those of Grandt, 3 given in Fig. 15, for the ring loaded by uniform crack-face 
pressure. 

This principle states that, if the crack-face displacement u and the 
stress intensity factor K are known as functions of crack length a for any 
one symmetrical load system acting on a linear elastic body in plane strain, 
then the stress intensity factor KI associated with any other symmetrical load 
system on the same body may be determined by 

KI =[a cr(x)h(a, x)dx ( 31) 

where cr(x) is the stress distribution with which KI 1s associated and where the 
weight function 

h(a, x) 
= Hou(a,x) 

K oa 
( 32) 
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d. 1 nt u of the reference problem, 
is computed from the crack-face lkspl ac::ea and the distance x from the crack 
which is a functiOn of both the crac eng / 2) 

1 
t · 

mouth. The material constant H is equal to E ( l - v for P ane s rain. 

Petroski and Achenbacht3 recently have developed a simple tech~ique . 
d · d from the known stress 1ntens1ty 

by which the weight function may be etermme . Th 
factor K alone without any a priori knowledge of the displacement u. ~y 
have obtained excellent results for cracked strips, holes • and nngs by using 

the simple representation 

cro [ (a) 12 L/2 (a) -112( )3/2] u(a,x} = H.J2 4F L a 1 (a-x} + G L a a-x ' 
( 3 3} 

where a and L are a characteristic stress and length of the problem, and 
o . . K/ ( )112 s· Eq 31 y1elds F is the dimensionless stress 1ntens1ty factor cro na · lnce · 

an identity for the reference case when K = K 1, the function G has been com-

puted in Ref. 13 to be given by 

( 34} 

with 

( 3 5} 

The important advantage of this technique is that Kr may be computed 
from simple quadratures involving only the stress cr(x) and the dimensionless 
stress intensity factor F of the reference problem, which for the ring has 
been taken as that corresponding to uniform crack-face pressure. 

The normalized stress intensity factor F was represented as a fifth
order polynomial fit to the K calibrations due to Grandt, 3 which are shown in 
Fig. 15, for this reference problem. The resulting polynomial suffices to de
termine the function G from Eqs. 34 and 35, and this determination is sim
plified by the fact that cr(x} = cr0 , a constant. By interpolating between the 
derived values of G for the rings, we can determine values of the function G 
for the cases Q = 0.59 and Q = 0.64 corresponding, respectively, to the 



F and E hexcans. Fitting polynomials to these enables a determination of the 
weight function h in Eq. 32 from Eq. 33. Then it is simple to use this 
weight function with the hexcan stress distribution of Eq. 16 in Eq. 31 to calculate 
hexcan K 1 values. Calibrations for Kr based on the weight-function principle 
are presented in Figs. 18 and 19. The upper curve is based on Grar.dt's K for 
two cracks, the lower on his K for one crack. As explained in Sec. V above, 
the two-crack case is belived to more accurately bound the true hexcan cor
ner Kr from below. 
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IX. ESTIMATES AND BOUNDS ON Kr 

The calculations based on results for doubly cracked rings and C-shaped 
fracture-toughness specimens are believed to provide bounds on the true stress 
intensity factor, because these models of the hexcan corner include the effects 
of curvature and the compliance of the hexcan. The C-specimen and closely 
agreeing infinite-strip model, both being more flexible than a hexcan corner, 
are expected to bound the true Kr from above. The doubly cracked ring, on 
the other hand, providing much more resistance to crack opening than exists 
in the hexcan, is expected to bound the true values of K1 from below. 

These bounds, and the strip calibration that falls between them, are 
plotted in Figs. 20 and 21 to fix limits on Kr for the hexcan corner. Although 
the curves identified as bounds on the true K1 calibration for a cracked hexcan 
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corner diverge considerably for cracks greater than half the thickness, it is 
believed that such large cracks cannot be reason ably postulated to exist in 
subassembly corners for a linear elastic analysis. For cracks up to 40o/o of 
the wall thickness, the lower bound is only 2 5o/o below the upper one, and a 
conservative analysis could be based on the higher curve, or the curve based 

on the strip could be used. 
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These elementary models have served as a means for getting a feel 
for the behavtor of a cracked hexcan corner before performing more complex 
and costly analyses. The next section discusses a finite-element technique 
that has been applted to the same problem. 



X. FINITE-ELEMENT ANALYSIS 

One method of determining KI, the strength of the stress singularity 
at the crack tip, is the finite-element method. In recent years, much use has 
been made of the finite-element method to describe mathematical singularities 
in elastic bodies. Due to the high stress gradient, a large number of ordinary 
finite elements surrounding the singular point are needed to obtain acceptably 
accurate solutions. The error decreases with element size as o(.Jil) rather 
than as O(hz) when no singularity is present. The use of very small ordinary 
elements near the crack tip is obviously a costly and inefficient procedure. 

For this reason, several special elements containing the proper singu
larity have been recently formulated. These "singular" elements are based 
on the asymptotic near-crack-tip displacement field. This procedure requires 
the formulation of a complicated element-stiffness matrix that can be easily 
coupled to conventional elements. Coarse meshing near the crack tip gives 
very accurate results. 

Benzley14 presented an analysis of crack problems in elastic bodies 
using is parametric quadrilateral elements with a singular displacement field 
near the crack tip. A finite-element computer code based on this work, 
CHILES, 15 was acquired through the Argonne Code Center to treat the cracked
hexcan problem. The CHILES computer program is a two-dimensional-solid, 
finite-element code which calculates the state of strain at the tip of a crack 
in either a plane-stress, plane-strain, or axisymmetric geometry. Linear 
isotropic stress- strain material properties are used, and small-strain theory 
is assumed. Isoparametric quadrilateral finite elements are employed, and 
compatibility between singular and ordinary elements is maintained to ensure 

monotonic convergence. 

The version of CHILES acquired is suitable for use on the CDC 6600 
computer. Repunching of the program. conversion to double precision, and 
some other programming changes were necessary for implementation on the 
IBM 370/195. The code was subsequently checked out with the supplied prob

lem as well as other test problems. 

In linear elastic fractur<e m<echanics, a crack in a brittle material be
comes unstable as KI approaches Krc• the critical stress intensity factor. 
For brittle materials, Kic• which is a material property, can be measured in 
the laboratory with an accuracy of about 5o/o. It has not been determined if 
this accuracy can be achieved with highly irradiated materials, since testing 
must be performed remotely. Nevertheless, calculations made with CHILES 

appear to be well within this accuracy. 

The dimensions of the LMFBR hexcan design chosen for analysis are 
those of hexcan F given in Table I. Preliminary to determining the stress 
intensity factors associated with a uniformly pressurized hexcan having a 
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corner flaw is the selecting of a suitable finite-element mesh. Since a large 
stress intensification is expected in the corners of even unflawed hexcans, 
particular attention must be given to the spatial discretization of these regions. 
Several numerical experiments were done varying the number and, therefore, 

the size of the elements both cir cumferentially and 

Fig. 2~ 

through the thickness of the hexcan corner. Finite
element results showing the stress distribution 
through the corner are presented in Fig. 9. The 
meshing chosen for l/l2th of the hexcan is shown in 
Fig. 22. Half the hexcan must be modeled in this 
fashion so that the problem of a crack in a single 
corner can be solved. The total grid for the half 
hexcan consists of 1700 elements with 3762 degrees 

of freedom. 

Finite-element Grid for 
One-twelfth Hexcan 

Crack-tip singular elements were placed at 
various positions through the hexcan corner to repre
sent different depths of crack penetration. Stress in
tensity factors for hexcan F with a crack in one corner 
subjected to uniform internal pressure were calculated 
and are shown in nondimensional form in Fig. 23. The 
previously determined estimates and bounds

4 
on Kr 

derived from the simpler models discussed above are 

repeated in this figure. 
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tend to underestimate the true solution The d' s' a~ ey . . · curve pre 1cted us1ng the infinite-
~racke~~stnpO:;odel 1s a very good approximation for cracks that penetrate 
eeper. an 2. o of the hexcan wall and gives a conservative estimate of h 

stress 1ntens1ty factors for more shallow k Th . t e crac s. e C-spee1men model is 



also a fairly good approximation and gives consistently conservative values 
over its range of applicability. On the other hand, the cracked-ring model 
offers entirely too much resistance to crack opening and does not appear to 
be a reasonable approximation for the hexcan corner. 

XI. EFFECT OF NONUNIFORM LOADING 

To address questions of integrity, one must identify worst-case prob
lems, so that cracks and flaws may be postulated to exist in the most unfavor
able locations in the hexcan wall. Where these locations are depends on loading 
conditions, and how a hexcan is loaded depends on what abnormal event is pos
tulated. Figure 24 illustrates three possible loading modes of concern in safety 
analysis. Figure 24a illustrates a uniform overpressurization of the hexcan 
section; Figs. 24b and 24c represent localized pressure pulses which may 
arise from the escape of fission gas from a failed fuel pin. The complex 
reaction on the hexcan wall opposite the pin failure is simply represented by 
its resultant. The time-independent case will be considered in this first look 
at the problem. 

\ 

(a) (C) 

Fig. 24. Uniform and Nonuniform Hexcan Loadings 

Figure 25 shows finite-element results for the mode of deformation 
(amplified for clarity) of an unflawed hexcan under uniform pressure. As ex
pected, the maximum radial deflection occurs at the rnidflats. The small 
outward radial deflections that occur at the corners are also predicted by the 

¢---==---=----·=" ~~---=:::::::=::::·--·--:::::::_-" 
I 

\\ 

\\ •, 

' \\\ ...... > .... 

\\\\ 
\\ 

\.\ 
- __1_1 

Fig. 25 

Mode of Deflection for Unflawed 
Hexcan under Uniform Pressure 
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STRAw code while in the elastic range. 16 The elastic deformation of a hexcan 
loaded at two opposite midflats is shown (exaggerated, but to scale) in Fig. 26. 
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Fig. 26. Mode of Deformation of an Unflawed 
Hexcan Loaded at Opposite Midflats 

Although the corners adjacent to a 
loaded midflat are not as severely 
strained as the midflat, those re
mote from the load are (i.e., the 
remote corners undergo a greater 
change of curvature), and thus a 
greater peak tensile stress occurs 
in them. 

The stresses due to uniform 
pressure loading, as in Fig. 24a, 
have been discus sed in Sec. III, 
where it was shown for hexcan F 
that the maximum tensile hoop 
stress a occurs at an inside corner 

and represents a 250-times magnification of the pressure p; the maximum 
stress at a midflat is only about half that value. For the loading illustrated 
in Fig. 24b, which may be further idealized as a pair of equal and opposite 
forces P per unit axial length B of the hexcan section, the maximum stresses 
occur at the midflat under the load, but the peak tensile stresses at corners 
remote from the load are only about 15% lower. 

The loading illustrated in Fig. 24c again causes maximum stresses at 
the corner to be significantly higher than the maximum midflat stresses, and 
this case will not be considered further here. The effect of distributing a load 
over a finite portion of the hexcan wall is to slightly reduce the maximum 
stresses under the load, so that the concentrated load represents a conserva
tive model that is to be favored for its simplicity. Moving the concentrated 
load away from the midflat generally increases corner stresses and reduces 
midflat stresses. 

Since the maximum hoop stresses have relative maxima at corner and 
midflat sections under these loading cases, it is conservative to assume that 
any flaws that might exist in a hexcan wall are located at these critical sec
tions. A common flaw expected in subassembly ducts is an axial scratch that 
is long compared to the hexcan thickness (see Fig. 2), and such a flaw could 
be modeled as a crack that penetrates to a depth a in a hexcan wall of thick
ness h and is oriented perpendicular to the maximum tensile stresses. 

Two such cracks are illustrated in Fig. 2. Since the cracks are long 
compared to the dimension h, a plane-strain elasticity problem results, in 
which the singular stress distribution around a crack tip is measured by the 
stress intensity factor Kr, which has been seen to be a function of crack size, 
hex can geometry, and loading. As long as the Kr associated with a particular 
crack is below some critical value Krc• that crack is stable. For very shallow 



cracks, the stress intensity factor may be estimated as Kr = l.l2crMAX.,.rrfa, 
where GMAX is the maximum tensile stress that would exist at the section 
were there no crack present. 

Then it follows that, for equally deep but shallow cracks at the inside 
corner and outside midflat of a hexcan, the more critical crack will be that in 
the corner when the hexcan is uniformly pressurized as in Fig. 24a, whereas 
the midflat crack is slightly more critical under loading conditions like that 
shown in Fig. 24b. To compare larger cracks of unequal sizes, it is necessary 
to have Kr values as functions of crack size at both locations. 

For uniform pressurization, the Kr calibration for midflat cracks 
shown in Fig. 12 and that for corner cracks shown in Fig. 23 may be used to 
compare the relative importance of the two crack locations. To more readily 
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Fig. 2"7. Comparison of ClHner and \lid
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compare the effects of different crack 
lengths at different locations for this load
ing case, the stress intensity factors have 
been expressed in the dimensionless form 
Kr/p-/h rather than the more conventional 
Kr/pvG'a and plotted together in Fig. 27. 
This figure shows that, for a uniformly 
pressurized hexcan, an inside corner crack 
is always worse than an outside midflat 
crack of the same depth. A corner crack 
whose depth is only lOo/o of the wall thick
ness, for example, has a Kr in this case 
equal to that of a 30o/o deep midflat crack. 

The case of a cracked hexcan loaded 
at opposite midflats must be calibrated be
fore a similar comparison of midflat and 
corner cracks can be made. 

be expected to give an 
The midflat crack may 
straight beams. 

Since the strip model has been seen 
to give a good estimate of the hexcan-corner 
Kr calibration for uniform pressure, it can 

equally good estimate of Kr for nonuniform loading. 
be calibrated, as before, by handbook calibrations for 

If the technique outlined in Sec. III is used, it is easy to calculate the 
stress distribution through a hexcan corner remote from the two midflats 

under concentrated loads P: 

crhB 
p = 

46.33- 99.35( 
l. 46 + c (36) 

It also follows that the midflats under the loads are subject to a pure bending 
moment equal in magnitude to M/hP = 6.12. 
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Using the cracked-strip model of 

S VI with the stress distribution (Eq. 36) ec. 
for the corner crack and the straight-beam 
model of Sec. IV for the midflat crack en

ables a comparison of the cases. 

Figure 28 shows the resulting 
calibrations, and it demonstrates that the 
worst location for a crack in this case is 
directly under a load, but the same size 

of crack at remote corners may be only 
slightly less severe. A midflat crack 
whose depth is lOo/o of the hexcan wall 
and a 15% deep corner crack, for example, 

have the same Kr- Since inside corners 
are less accessible to inspection than 
outside midflats, however, one might have 
to assume larger cracks in corner loca
tions. Such considerations could make a 
corner crack at least as important as a 
midflat one in this case also. Further-

more, the critical stress intensity factor Kic could be lower in the corner 
region due to additional coldworking there. 

XII. EFFECT OF DIFFERENT NUMBERS OF CORNER CRACKS 

The analysis based on simple models does not consider the effects of 
having more than one hexcan corner cracked. Grandt's analysis of cracked 
rings, however, provides some insight into the multiple-crack problem. 
Figure 15 shows that, when loaded by a uniform crack-face pressure, a ring 
with two diametrically opposite radial cracks exhibits higher stress intensity 
factors than a ring with only one crack. The effect is much more pronounced 
for rings with lower ratios of inner to outer radii. The behavior of the hexcan 
with two diametrically opposite corner cracks is expected to be similar. The 
correctness of this assumption can be checked by applying the CHILES code 
to the problem. 

In addition to the half-hexcan grid used to generate the stress intensity 

factors for the one-corner cracked hexcan, a quarter-hexcan grid was created 
to solve the problem of two corner cracks diametrically opposite each other, 
and a 1/ l2th-hexcan grid (illustrated in Fig. 22) was constructed for the prob
lem of a hexcan with six corner cracks. The results from the code calcula
tions for these problems are shown in Fig. 29. The one- and two-crack hex
cans exhibit the same type of behavior as Grandt's cracked rings (see Fig. 15). 
The difference in stress intensity factor is small for shallow cracks, as for 
the thin cracked rings, with greater differences appearing for larger cracks. 
The gross deformations of the one- and two-crack cases are perpendicular to 
the plane of the two cracks. 
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geometry studied. For the smaller 

Naturally, the stress intensity 
factors for the two-crack case are higher, 
since the cracks can open more in that 
direction. The six-crack hexcan, how
ever, deforms uniformly, much like the 
unflawed hexcan, and the effect of this 
mode of deformation is to restrain the 
opening of any one crack. Even so, the 
difference between the stress intensity 
factor for the one- and six- crack cases 
is less than 7% for cracks that are 40% 
of the hexcan thickness and smaller. 
The similarity of results for smaller 
cracks in all three cases is due to the 
thinness of the hexcan wall compared to 
the distance between corners. This dis
tance appears to be large enough so that 
effects on one corner from the others 
are minimal. 

The results presented indicate 
that the determination of the worst-case 
problem (i.e., one, two, or six cracks) is 
not particularly important for the hexcan-F 

cracks, which are of major interest, the 
differences in stress intensity factors are not especially significant for this 
geometry. 

A comparison of the different modes of deformation discussed in the 
previous section is also helpful in understanding the effects of having more 
than one hexcan corner cracked. The deformation of a uniformly pressurized 
hexcan with two opposite corner cracks would deform in a mode with twofold 
symmetry like that of Fig. 26, whereas a pressurized hexcan with only one 
corner cracked would offer more resistance to opening and have only one plane 
of symmetry: the crack plane. A hexcan with all six corners cracked would 
deform in a sixfold symmetric mode more like that of the uncracked hexcan 
illustrated in Fig. 25. Thus, for example, one would expect two opposite 
corner cracks to be a worse case than a single crack. These observations 
have already been quantified by the finite-element results reported above 
and illustrated in Fig. 29. 

XIII. A WEIGHT FUNCTION FOR HEXCAN CORNER CRACKS 

The finite-element results shown in Fig. 23 may be used to construct 
a weight function for hexcan corner cracks. Such a tool would enable one to 
study the effects of a variety of hexcan loadings on the stress intensity fac
tor Kr without further resort to the more costly finite-element analyses. 
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Table VI shows the finite-element results, which provide the func
tion F and the values of the function G, which are derived from Eqs. 34 and 
35. These suffice to construct the weight function (Eq. 32) from Eq. 33 as 

follows: 

h(a, x) = 

Further details of computation are given in Ref. 13. 

TABLE VI. Values of the Functions F and G for a Corner Crack in 

a Uniformly Pressurized F Hexcan 

( 3 7) 

a F G 
h (Finite-element results) (From Eq. 34) 

."_ 
h 

F 
(Finite-element results) 

G 
{From Eq. 34) 

0 287a -126.5 

0. 1 248 -27.9 

0.2 245 45.2 

0.3 254.3 156.8 

aLimiting value for an edge crack in a half-space. 

0.4 

0.5 

0.6 

0. 7 

2 76.6 

314.7 

373.8 

460.4 

339.8 

623.3 

1122.6 

1976.9 

To illustrate the efficacy of a weight function so constructed, the prob
lem of a corner-cracked hexcan loaded by concentrated forces at opposite 
midflats was considered. This problem was solved independently by the 
finite-element method as described in Sec. X and by the weight-function tech
nique of Sec. Vlll. The stress distribution (Eq. 36) was used in Eq. 31 with 
the weight function derived from Table VI. 

Figure 30 compares the results. ·The weight-function and finite
element results are essentially identical, and this provides validation of the 
technique of Sec. VIII. The figure also shows the results of using the straight
strip calibration in conjunction with the stress distribution of Eq. 36. For 
reasonable sizes of cracks the strip is seen again to provide a good estimate, 
but the weight-function technique is to be preferred for its accuracy. 
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XIV. COMMENTS ON THE APPLICATION OF 
LEFM TO CRACKED HEXCANS 

Whether an actual crack in an irradiated hexcan will propagate unstably 
depends on what the fracture toughness Krc of the hexcan material is when the 
pressure p is applied. This number is not presently available for highly ir
radiated hexcan material, which typically for E cans is Type 304 and for 
F cans 20o/o coldworked Type 316 stainless steel. 

The fracture toughness of unirradcated stainless steel is extremely 
high, and the material is very ductile. Hence, yielding occurs at stresses 
well below the stress corresponding to Kic• and an ultimate stress or strain 
criterion of failure is applicable. After prolonged irradiation (fluences of the 
order of 1027 n/m2

, E > 0.1 MeV}, however, the hexcan material is expected 
to exhibit the following deleterious changes in its mechanical properties: 

1. The yield strength increases (at lower temperatures). 

2. The ductility decreases. 

3. The fracture toughness decreases. 

Quantitative data on items l and 2 are reported in the Nuclear Systems 
Materials Handbook, 1 which is updated as new data become available. How
ever, the decrease in fracture toughness of the subassembly materials has not 
been monitored, and it will probably be years before such data become avail
able in the range of fluences of interest. 

Table VII compares geometrically similar cracks in the hex can de
signs E and F. Although the normalized KI/p../h is over twice as great in 
E as in F hexcans, the Kr/p values are comparable when the geometric 
factor is eliminated. Since the larger F design may be expected to be subject 
to larger energy releases, fracture considerations may indeed have to be more 
of a concern in these ducts. 

TABLE VII. Comparison of Corner Cracks with 
a/h = 0.1 in Uniformly Pressurized Hexcans 

Hex can 
Type 

E 

F 

332.57 

146.50 

Kr/p, 
Fm (Kn.) 

10.60 (66.51) 

8.90 (50.75) 

0.0183 (0.115) 

0.0348 (0.198) 

If one assumes that 20o/o coldworked Type 316 stainless steel can 
suffer irradiation damage such that its fracture toughness drops to around 
220 MPa· cm112 (20 ksi·.,/In.), then a crack in the corner of an F hex can could 
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propagate unstably when p = 2. 72 MPa (394 psi), since the corresponding 
maximum hoop stress is about crmax = 690 MPa (100,000 ps1), by Table VII, 
and this is below the yield strength under certain combinations of irradiation 
conditions and test conditions. For example, the yield strength of 20% cold

worked Type 316 stainless steel irradiated to a fluence of 3 x 10
26 

n/m
2 

(E > 0.1 MeV) near 370°C (700°F) and tested at or below the irradiation tem

perature at a strain rate of 3 x 10- 5 s- 1 is about 830 MPa (120,000 psi). 

The ASTM criterion6 for plane-strain conditions to apply is that the 

size of the plastic zone at the tip of a crack should be much smaller than the 
smallest dimension of the specimen. The plastic zone size is assumed to be 

ignorable if the quantity 

Krc 

( 

z 

6 = 2.5 cry), 

where cr is the material yield stress, and is smaller than the uncracked liga
ment. -lor the above example, 6 ~ l. 76 mm ( 0. 07 in.), which is about half the 
thickness of the F duct. Thus, for a crack h/10 deep (0.3 mm or 0.012 in.) 
the uncracked ligament would be sufficiently large to accommodate a plastic 
zone and maintain plane- strain conditions, thus justifying the analysis by 
linear elastic fracture mechanics carried out in this report. 

It must be reemphasized, however, that the critical material property, 

the fracture toughness, Krc• is not known at this time for the condition of 
interest. Therefore, no firm conclusions about the strength or safety of 
flawed hexcans can be drawn here. 

XV. CONCLUSIONS 

Plane-strain stress intensity factors for cracked hexagonal subassembly 
ducts subject to uniform pressurization have been determined. A crack in the 
unique hexcan-corner geometry was modeled in several different ways to esti
mate the true hexcan Kr, and a subsequent finite-element analysis proved that 
a simple strip model provides the best first estimate. 

A weight-function technique enables one to obtain results with as good 
an accuracy as finite-element results, but with considerably less computational 
effort. This technique and the finite-element method have corroborated each 
other in the analysis of a hexcan loaded nonuniformly by concentrated loads at 
opposite midflats. 

The effects of cracks at different locations have been explored. The 
corner crack is much more severe than that of a similar midflat crack in a 
uniformly pressurized hexcan. Although the midflat crack can give rise to the 
greatest Kr under certain loading conditions, the corner crack appears to be 



at least an equally important case to consider because of greater uncertainties 
associated with flaw size and properties of materials at the corner location. 

If more than one corner of a hexcan should be cracked simultaneously, 
the stress intensity factor will be a function of the number of cracks. The Kr 
associated with two opposite corner cracks has been determined to be the 
worst case, but the increase in stress intensity over the one-crack case is 
not significant for cracks of moderate size. 

The two hexcan designs considered--the 1-mm (40-mil)-wall hexcan E 
and the 3-mm (120-mil)-wall hexcan F--are gometrically similar. However, 
geometrically similar cracks in these two designs should not be expected to 
behave similarly. Besides the different material and irradiation conditions 
of the two hexcans, the potential for larger energy releases in the larger can 
and the ability of the greater wall thickness to contain plastic yielding could 
make unstable crack propagation possible in F hexcans even though it would 
not occur in an equivalently cracked smaller E hexcan. 
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