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TECHNIQUES AND ANALYSES OF FAST-REACTOR NEUTRON SPECTROSCOPY WITH
PROTON-RECOIL PROPORTIONAL COUNTERS

E.F.Bennett and T. J. Yule

ABSTRACT

Techniques and analyses are described for fast-neutron spectroscopy with proton-recoil
proportional counters. Small, nonperturbing cylindrical counters filled with hydrogen or
methane are used in an isotropic flux environment to measure degraded fission spectra in
the energy range from 1keV to 2MeV. Electronic pulse-shape discrimination distin-
guishes between gamma-ray induced events and proton recoils. Correction schemes are
employed that remove systematic errors inherent in this method of neutron spectroscopy.
Sources of error are the nonlinear relationship between energy and ionization at low
energies, wall-and-end distortion at higher energies, and distortion of internal field lines at
the ends of the counter. The extent of these corrections is assessed for a representative

fast-reactor spectrum.

I. INTRODUCTION

The special character of neutron-proton scattering below
10 MeV, together with other favorable circumstances,
makes it possible to build simple spectrometers with
extended energy response for measurement of degraded
fission-type neutron spectra [1—3]. Neutron-proton scat-
tering has a large, well-known elastic scattering cross
section, which is isotropic below 10 MeV and initiates no
reactions in the energy range of interest [4]. These charac-
teristics of n-p scattering permit one to relate in a simple
manner the proton-recoil spectrum D(E), to the neutron
spectrum ¢(E):

$E) = {F o) O

where o(E) is the n-p scattering cross section and NT is the
product of the hydrogen atom number in the effective
counter volume by the time duration of the measurement.

Itis fortunate that hydrogen gas is a suitable proportional-
counter filling. In proportional counters the gas multiplica-
tion process is almost noiseless and with care to minimize
space-charge saturation is linear. One can produce a pulse
proportional to ionization, even for a single ion pair created
in the gas [5]. Thus, even low-energy elastically scattered
proton recoils can be detected with good resolution.
Moreover, the ratio between energy loss and ionization, W,
is remarkably insensitive to the proton energy for protons
stopping in hydrogen gas. The onset of any detectable W
variation is well below 10keV, and no more than about a
10% change in W occurs down to 1keV [6]. Thus, it is
straightforward to relate the proton-recoil ionization to

energy over an extensive energy range.

The physical bases for proton recoil spectrometers, both
in gaseous electronics and in an understanding of features
of n-p scattering, have been well known for a long time [7].
Initial applications of this method were directed toward use
of proportional counters as flux monitors. The work of
Ref. 8, for example, describes studies of the response of
counters to monoenergetic neutrons and compares this
response to a calculated one which takes into account
wall-andsend distortion.

It is hardly surprising that these detectors have been of
limited value in accelerator experiments—the inherent time
jitter is too large (>50 nsec) to be satisfactory for timing
purposes. Also, it is difficult to make an efficient detector,
since the maximum pressure is limited by contaminants in
the gas and high-voltage requirements.

Another obstacle to the use of proton-recoil counters as
neutron spectrometers can be traced to the limitations of
available electronics prior to the introduction of computers.
Classical pulse-height analyzers available since the early
1950’s were most effectively used with a reaction that
linearly relates neutron energy to pulse height, such as the
familiar *He(n,p)t reaction [9]. Here, a pulse-height spec-
trum leads directly to the neutron spectrum. The proton-
recoil reaction, on the other hand, requires that the
measured result be differentiated. This is easily accom-
plished with a computer but cumbersome to perform
“long hand.” Probably, more than any other factor, the
introduction of computers has made it feasible to consider
proton-recoil proportional counters for certain neutron-
spectroscopy applications with due allowance for inherent
limitations in these counters.



The early applications of proton-recoil proportional
counters to neutron spectroscopy had a limited low-energy
range. Gamma fluxes, which invariably accompany neu-
trons, introduce sufficient ionization in the lower-energy
region to mask clear identification of the proton-recoil
distribution in this range. The initial approach to the
problem of gamma-induced background was to reduce gas
pressure. As the pressure is decreased, the maximum
jonization a fast electron can create as it traverses the
counter decreases. Recoil protons of ionization above this
limit can be safely counted. The difficulty with the
extension of this approach to very low energies is that a
reduction to pressures too low to be practical for propor-
tional counting occurs. (Stable detection at high gain
requires a minimal ultraviolet quenching cross section and
therefore an adequate gas pressure.) The practical energy
limit for low-pressure hydrogen counters used for neutron
spectroscopy appears to be about 20keV. In addition to
loss of response at low energies, low-pressure counters with
little stopping power will also be severely limited at high
energy by wall-and-end effects in which proton-recoil
events with substantial range leave the effective counting
volume before stopping. The simple relationship between
proton energy and ionization breaks down. Pulse-shape
discrimination, in which events of low and high specific
ionization are recognized electronically and separated,
affords a way of distinguishing proton-recoil events from
gamma-induced, fast-electron events without compromising
pressure [10]. The technique is simple. Low-energy
proton-recoil tracks with small spatial extension induce a
pulse whose initial rate of rise is substantially greater than
that for a track of large spatial extension which contains
the same total number of ion pairs. An example of this
shape-discrimination effect is seen in Fig. 1. The distribu-
tion shown is of the ratio of initial rise to fully integrated
amplitude for proton recoils and gamma-induced electron
events that create the same given ionization. That part of
the distribution shown to the left, which was produced by
fast electron pulses with low rate of rise, is clearly separable
from that part of the distribution to the right, which was
produced by proton-recoil pulses with high rate of rise. The
distribution from a pure gamma source is also shown in
Fig. 1 and it, of course, does not exhibit the fast-rising
component.

In any radiation environment in which all the ionizing
events can be counted and the relative number of gamma-
induced events to neutron-induced events is not inordi-
nately high, shape discrimination can be used to extend the
low-energy response to a kilovolt or less. Equally impor-
tz.mt‘ the best results are obtained by operating a counter of
given size at as high a gas pressure as is consistent with good
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Fig. 1. Specific Ionization Spectrum Illustrating Gamma-
Neutron Shape Discrimination in Proportional Counter. ANL
Neg. No. 113-16.

energy resolution. This follows since the gamma sensitivity
is proportional to the counter wall-and-end area, whereas
neutron sensitivity is proportional to the pressure. Not only
is the neutron-to-gamma ratio improved at higher pressures,
but the onset of wall-and-end truncation is deferred.

While a hydrogen-gas-filled counter with gamma-ray
discrimination works well down to low energies of the
order of 1 keV, its useful high-energy limit is a few hundred
keV. It is necessary to use a gas filling with higher stopping
power to extend the energy range to a few MeV. Methane is
used to obtain increased containment. More complicated
hydrocarbon gases liquify at too low a pressure to be
useful. Methane counters using gamma-ray discrimination
have a low-energy limit of about 100keV, below which
carbon recoils from elastic scattering of neutrons on carbon
compromise the usefulness of methane as a filling gas.

Both the hydrogen-filled and methane-filled counters
contain a small amount of nitrogen gas, which permits
energy calibration. Placing the counters in a thermal flux
and observing the 585-keV protons from the '*N(n,p)'*C
reaction permit an absolute relationship between pulse
height and proton energy to be established.

An attractive feature of the technique of using proton-
recoil counters for neutron spectroscopy is flexibility in
size and efficiency. Where circumstances permit, cylinders
of large length and diameter may be used to increase
efficiency. On the other hand, rather small detectors work
quite well; a 1-cm-dia hydrogen-filled counter has been used
for in-core neutron spectroscopy. The structural material
required is minimal, and the macroscopic scattering of the
whole detector can easily be reduced to the point where no
significant perturbation of an incident neutron flux oceurs.



II. DETECTORS

A. CONSTRUCTION

Figure 2 shows the construction details of the hydrogen-
and methane-filled detectors used for in-core spectroscopy
measurements. The methane-filled detector is the larger
one. Detector bodies are of thin-walled stainless steel and
anodes are of fine stainless steel wire. Field tubes are used
to define the sensitive volume of the detector. The
detectors shown in Fig. 2 are rather small with a corre-
spondingly short internal effective length. It is somewhat
easier to build larger detectors. They permit better separa-
tion between gamma-induced events and proton recoils and
reduced influence of distortion introduced by the end
regions. Detectors with diameters as large as 5 cm and with
effective lengths as long as several meters have been used
for some special tests and measurements [11].Some of the
intermediate-size detectors are described in later sections,
where tests made with these detectors are discussed. The
smaller detectors are, however, necessary for compatibility
with the requirements of counting inside large plutonium-
fueled fast reactors. Invariably, spontaneous fission neu-
trons from 24°Pu in the fuel will provide a high-neutron-
flux environment inside the cores, even for far subcritical
operation. To approach reasonably near (k > 0.98) critical
and still maintain the total event rate within acceptable
limits (less than 20,000 counts per second), small chambers
must be used. A buffer gas cannot be used to desensitize
the counters, since the neutron-to-gamma ratio would then
become unacceptable.

Both detectors shown in Fig. 2 were filled to as high a
pressure as possible before the resolution began to worsen
from electron capture by contaminants in the gas—notably
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Fig. 2. Proton-recoil Proportional Counters for Use

in Fast Reactors. Anodes are 9 u in radius, and the
field tubes 64 u in radius. ANL Neg. No. 116-28.

oxygen and water vapor. Using tank methane and hydrogen
without provision for baking or for cold traps, about
10 atm of predominantly hydrogen gas could be put in the
smaller counter and about 8 atm of predominantly methane
gas in the larger counter before the resolution exceeded
10%. Note that, to first approximation, if the gain is kept
constant, the resolution is unchanged for a given product of
pressure times counter diameter. Since the figure of merit
for containment of recoils is proportional to this product,
going to larger counters will not significantly change the
high-energy limit.

B. OPERATING RANGE

Proper operation of proportional counters is only
attained at intermediate values of gas multiplication.
Ionization created in an end region over field tubes may
contribute events of significant amplitude relative to events
over the normal anode unless the multiplication over the
anode is substantially greater than unity. The acceptable
value of multiplication depends upon the spectrum of
events and the energy region under observation. It is usually
not desirable to operate at an anode gas multiplication
much less than about 10; the field tube must be sufficiently
larger than the anode to preclude any multiplication upon
it over the working voltage range.

Space-charge saturation, on the other hand, will preclude
an excessively high multiplication since the attendant
nonlinear relationship between ionization and energy de-
grades the quality of spectra. The onset of nonlinearities
relating 4to space charge is not easily recognized and
conservative operating multiplication limits for a given type
of detector should be established before its use. One
sensitive method of testing is by observation of spectra
following successive complementary changes in voltage (gas
gain) and amplifier gain—these altered so as to maintain a
fixed energy region under surveillance. (Methods of deter-
mining the gas gain are considered in Sec. V.) Ordinarily it
will not be possible to operate at gas gains sufficiently high
that electronics noise will be completely negligible, and a
high premium must be placed on low-noise preamplifiers
for proportional counter spectroscopy. Thus, in practice,
one has a limited range of suitable gas multiplications for
viewing a particular proton-recoil energy range. Table I
contains the voltage settings with the corresponding gas
gains and ionization per channel used in a typical meas-
urement of the proton-recoil distribution from 0.5 keV to
3 MeV. Data are only used from channel 29 to channel 128,
which is full scale. Below channel 29 broadening by
electronic noise becomes comparable to counter resolution
and gamma discrimination becomes more difficult. Data are
only taken to about 150keV with the hydrogen counter.
Problems associated with the use of a hydrogen counter



TABLE L. Voltage, Gas Gain, and lonization per Channel
Used in Measuring Proton-recoil Distributions
from About 0.5 keV to 3 MeV

Ionization/Channel,

Voltage Gas Gain keV/channel
3250-Methane 0.893E 01 0.237E 02
3550 0.172E 02 0.123E 02
3750 0.285E 02 0.372E 01
3350-Hydrogen 0.326E 02 0.130E 01
3650 0.868E 02 0.488E 00
3950 0.254E 03 0.167E 00
4250 0.804E 03 0.527E-01
4500 0.224E 04 0.189E-01

when the track length becomes long introduce this rather
low high-energy limit (see Sec. V). Gamma discrimination is
used for all the hydrogen-filled-counter voltage settings and
for the highest methane-filled-counter setting.

C. REDUCTION OF BACKGROUND ELECTRON
RESPONSE

A counter set to view the low-energy region of the
proton-recoil distribution responds readily to fast electrons
traversing the tube. If pulse-shape discrimination against
electron background is to be successful, the relative number
of proton-recoil events to fast-electron events must be
favorable. Measurements near alpha emitters may have an

especially high background, independent of the neutron

level. Alpha decay in fertile and fissile isotopes will produce
a very strong photon and electron component resulting
from deexcitation of decay-product nuclei and probably to
a lesser extent from ionization during stopping of the
alpha particles. Most of this component is readily absorbed
in the material itself, but a substantial surface emission will
nevertheless exist.

To estimate the magnitude of this background a simple
shielding experiment was done. Successively thicker sleeves
of gold or lead were wrapped around a stainless steel
hydrogen-filled counter with 0.4-mm walls. The counter
was placed in a block of depleted uranium and set to
register all events in excess of 0.5 keV. The results are
shown in Table II. By interpolation, it is seen that only
0.25 mm of lead will significantly reduce this background.
Lead shielding, to this extent, will have no observable effect
on the neutron spectrum and is recommended in any
experience in which chambers are placed near uranium or
plutonium metal.

TABLE II. Effectiveness of Various Shielding in
Reducing Background Electron Response

Detection Rate, Detection Rate,
Shielding counts/min Shielding counts/min
None 333,000 0.10-mm lead 53,000
0.05-mm gold 97,000 0.5-mm lead 44,000




III. ELECTRONICS SYSTEM

A. AMPLIFIER SYSTEM

One problem immediately encountered in measuring
neutron spectra with proportional counters is that the
electronics system must operate satisfactorily under severe
amplifier overloads. When the proton spectra are being
recorded in the low-keV range with the counter voltage set
at high gas multiplication, protons with several MeV of
energy are creating large overloads. These overloads should
not be allowed to cause saturation in the preamplifier and
should be handled appropriately by the slow ionization
amplifier, such that at moderate count rates undistorted
spectra can be obtained.

A block diagram of the amplifier system is shown in
Fig. 3. The preamplifier, besides not saturating under heavy
overloads, must have a moderately fast rise time and low
noise. A rise time less than 15 nsec is adequate, since
diffusion of the electron bunch makes using time constants
of less than 20 nsec meaningless, even for a fast gas like
methane. At shorter time constants, the separation of
proton-recoils and gamma-induced electrons does not im-
prove, while the resolution of the peaks worsens because of
increased noise. A charge-sensitive preamplifier specifically
designed for proton-recoil proportional counting is
used [12,13]. The preamplifier may be operated with gas
amplifications greater than 3000 without saturating. The
output pulse from this preamplifier decays with a single
time constant of 250 usec.

The slow side of the amplifier system, which produces a
pulse whose height is proportional to the ionization,
consists of a pole-zero-compensated linear amplifier, a
base-line restorer, and an inverter amplifier. Preamplifier
noise dominates the noise in the slow channel, the noise
from the shaping amplifier is negligible. The amplifier must
be able to rapidly recover from 1000X overloads. Because
of the shape of the collection profile, it is not obvious
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Fig. 3. Block Diagram of Amplifier System Used for Neutron
Spectroscopy with Proton-recoil Proportional Counters. ANL Neg.
No. 116-316.

whether using unipolar or bipolar pulse shaping is superior
in high-count-rate applications. The shape of the pulse for a
point event is given by [14]

gle 2VKt
B(f) == [—az n (b /a)+ 1], ()]

until P = -¢/C, at which time all charge is collected. Here, e
is the charge of the electron, C the input capacitance of the
counter-preamplifier combination, V the voltage on the
counter, K the positive-ion mobility, and a and b the radii
of the anode and cathode, respectively. A sketch of the
pulse profile is shown in Fig. 4A. The slow component of
the pulse persists until positive ion collection. The time
scale is chosen so that one unit corresponds to complete
collection. For a hydrogen-filled counter, complete collec-
tion can take several milliseconds. Using reasonable time
constants of a few microseconds in the amplifier, a sizable
pedestal results for large overloads with unipolar pulse
shaping, as shown in Fig. 4B. This pedestal may be
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Fig. 4. Pulse Profiles. (a) Pulse profile at input of preamplifier;
(b) overload profile at output of slow amplifier without pole zero
correction for undershoot. ANL Neg. No. 116-315 Rev. 1.



removed, so that reasonable count-rate capability can be
obtained, by using the pole-zero correction adjusted so that
a slight negative undershoot is observed that just exceeds
the amplitude of the pedestal [13]. The pulse is then
restored by using a fast-restoring base-line restorer. In the
bipolar mode, the pedestal is strongly attenuated and the dc
restorer is not used. For both the unipolar and the bipolar
mode, time constants of 2.4 usec are used. The inverter
amplifier inverts the pulse and for the bipolar pulses clips
the second node to be compatible with the pulse selector
and linear gate, which are described in Sec. B below.

The fast side of the amplifier system, which produces a
pulse whose height is proportional to the rise time of the
pulse from the preamplifier, consists of a fast linear
amplifier, a fast stretcher, and an inverter amplifier. The
fast-amplifier system must have pulse-shaping constants in
the 20- to 100-nsec range for proton-recoil spectroscopy. A
fast amplifier with RC integration and differentiation is
used for fast-pulse shaping. The amplifier was designed for
timing with Ge(Li) detectors, surface barrier detectors, or
photomultipliers. The pulse stretcher and inverter condition
the pulse for the linear gate.

B. LOGIC SYSTEM

A block diagram of the logic system is shown in Fig. 5.
The heart of the logic system is the pulse selector [15,16],
which determines whether the slow-channel pulse is an
acceptable data pulse and. if so, allows it along with the
corresponding fast pulse to be analyzed by the analog-to-

digital converters (ADCs). A number of requirements
must be met before the pulse is regarded as accep-
table. The pulse must be within a window set by
an upper-level and a lower-level discriminator. The ADC-
computer combination must not be busy. The pulse
must be a data pulse and not a pulser pulse. Pulser
pulses are used for live timing. The timer must be
on. The base line must have been down for a set
period of time. This function is performed by a base-
line discriminator and a paralysis circuit. For a given
pulse or combination of overlapping pulses, the length
of time the base-line discriminator is exceeded is de-
termined. This time may be referred to as the pulse
width. The pulse selector will deem unacceptable any
pulse that comes within a preset number of pulse
widths of a previous pulse. The preset number of dead
widths may be 1, 2, or 3. The logic outputs from
the pulse selector are: one that indicates that the base-
line discriminator has been exceeded—BLD; one that
indicates the pulse is an acceptable data pulse—PSO.TAG;
and one that indicates that the pulse is an acceptable
pulser pulse—PSO.TAG. An acceptable pulser pulse must
meet all the requirements that an acceptable data pulse must
meet. A test pulser pulse is distinguished from a data pulse
at the pulse selector by a coincident tag pulse—TAG.

The pulse selector also contains an option for pileup
rejection. The pileup rejection circuit differentiates the
pulse with a short time constant and checks to see that the
zero crossing of the pulse appears at the proper time with
respect to the time mark generated by the differentiation.
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Fig. 5. Block Diagram of Logic System and Data-storage System Used for Neutron
Spectroscopy with Proton-recoil Proportional Counters. ANL Neg. No. 116-314.




We have chosen not to use the option in two-parameter
analysis for two reasons. First, the two-parameter analysis
already contains a fast differentiation, whose magnitude is
stored with the pulse height. If a proton pulse is distorted
because of pileup, the division of the fast pulse height by
the slow pulse height for a given slow pulse height will be
such that the event will appear to be a gamma-ray-induced
event and not be counted as a proton recoil. Second, the
large range of rise times for pulses from a hydrogen counter
(where electron drift velocities are low) are such that if the
pileup sensor is to be effective for detecting proton-event
pileup, some legitimate single gamma-ray-induced events
will appear to be pileup events and thus rejected. The shape
of the peak of the gamma-ray-induced events will depend
on the count rate. An uncertainty results when one makes a
background subtraction using background generated at
some different count rate, because the backgrounds will not
match. There are ways around this problem by employing
additional circuits, but unless one wants to increase the
count rates far in excess of 20,000 counts/sec, such
measures are not called for. However, when gamma-ray
discrimination is not being employed, pileup rejection may
be effective in limiting distortion. Care must be taken not
to set the pileup rejection for too short a pulse width, since
even in a fast gas like methane, long track lengths along the
diameter have a considerably different rise time than tracks
along the axis.

The linear gates delay and stretch the pulses from the
slow and fast sides of the system and allow the pulses to be
strobed through to the ADCs, only if the appropriate
PSO.TAG logic pulses are present. Scalers record BLD and
PSO.TAG.

C. COUNTING-LOSS DETERMINATION

Because of the presence of the pulse selector, it is not
possible to determine counting losses by simply monitoring
the amount of time that the ADC-computer combination is
busy [16]. The whole system must be taken into account.
Pulses from a test pulser operating at a fixed rate (60 per
sec) are presented to the input of the preamplifier. A tag
pulse is also generated to identify pulser pulses. The test
pulse must meet all the requirements of an undistorted data
pulse and be accompanied by a tag to have the pulse
selector generate a PSO.TAG pulse. The live time of the
system is simply

PSO.TAG

TAG °
where Real Time is determined from the timer, TAG is the
number of test pulses generated during this time, and
PSO.TAG is the number of acceptable pulser pulses. Such a
live-timing system is only suitable for constant count
rates [16] .

Such a counting-loss determination system may be

(3

Live Time = Real Time

applied as a rapid method of determining distortion as a
function of count rate. In this mode one allows only pulser
pulses to be analyzed in the presence of counter-generated
pulses. PSO.TAG is used to strobe the linear gates and
ADCs instead of PSO.TAG. The resulting distribution of
pulser pulses indicates the extent of distortion. Results of
such tests are considered in Sec. IV.B.

D. STORAGE OF INFORMATION

The ADCs* are interfaced to a Varian Data Machines**
622 computer [17,18]. There are two proton-recoil spec-
troscopy systems in operation at Argonne, Illinois: one
with a discrete-component 622A computer, and one with
an integrated-circuit 622/i computer. The computers have
an 8k memory and an 18-bit word length and are identical
in speed and instruction repertoire.

Analog-to-digital conversion is performed at a 40 MHz
digitizing rate. Both the fast and slow pulses are converted
to 512 channels. Analyzer dead time per event is approxi-
mately 3 + 0.025N usec, where N is the channel number
of the larger analyzed input. Once encoding begins until a
RESET signal is received, the ADCs present a BUSY signal
to the pulse selector.

After the encoding process is complete, a STORE signal
is sent to the computer interface, indicating that data are
ready for transfer to the computer. The STORE signal and
the two nine-bit codes remain until accepted by the
computer.

Data are transferred into the computer in a series of
operations. The computer transmits a code to the interface
to test whether a STORE signal has been sent by the ADCs.
The time for one cycle in the loop is 7.8 usec. If a STORE
signal is present, a true code is returned to the computer. A
code containing the ADC to be read is sent. and data are
returned to the computer and placed in one of the
operational registers. The time required for the transfer of
data from each ADC to a register is 3.8 usec. The total time
for the transfer of two words to two registers from the
beginning of the sense operation is 11.2 usec. After the
second data word is read into the computer. a RESET
signal is sent to the ADCs to remove the STORE command
and to reset the address scalers and all logic circuits so that
another input can be accepted for analysis.

After the words have been placed in the registers, some
preliminary operations are performed and the data stored
before returning to the sensing cycle for further data
transfer. The ratio of the fast-to-slow pulse height is
formed, i.e., the radial specific ionization of the event. This
ratio is scaled to 32 channels, and the ionization data are
scaled to 100 channels. Checks are made that the ratio and

*Northern Scientific Model NS-625, Northern Scientific, 2551 West
Beltine, P.O. Box 66, Middleton, Wisconsin.
**Varian Data Machines, 2722 Michelson Drive, Irvine, California.



ionization are within preset bounds. The data are then stored
ina 100 X 32-channel array. The time required for the prelim-
inary data reduction and storage is approximately 110 usec.

The stored array may be output from the computer in a
number of ways. For a given ionization, one may display
counts versus specific radial ionization on an oscilloscope.
Figure 6 contains a representation of such an output. The
region at high values of the specific radial ionization
corresponds to proton-recoil events and at low values to
electrons. The whole array may be punched on paper tape
or printed on a teletype.

Some data reduction and analysis can also be performed
with the computer. The analysis and corresponding codes
are discussed later. As is evident from Fig. 6, the distribu-
tion of gamma-ray events is quite broad and thus some
form of background subtraction is necessary. The shape of
the spectrum may be approximated by out-of-reactor
gamma fields. Using a suitable gamma background, correc-
tions can be made for the projection of the gamma-ray-
induced event tail under the proton-recoil peak. For a given

voltage the integrated proton-recoil number is determined
and printed or punched for each of the 100 energy channels.
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IV. TESTING THE ELECTRONICS SYSTEM

A. STATIC TESTS OF SYSTEM

Certain static tests were made of the system to test the
integral and differential linearity of the system. The integral
linearity was checked by varying the pulse height from a
test pulser. The differential linearity was checked by using a
ramp generator as the voltage reference for the test pulser.
Although a system may show the proper degree of
differential and integral linearity under the static condition,
tests must also be performed with various count-rate and
overload conditions.

B. DYNAMIC TEST-PULSER TEST OF SYSTEM

The count-rate capability of the system was checked
using the test pulser method described in Sec. A above. A
2.54-cm-dia counter with a 16.5-cm sensitive length filled
with 5.4 atm of predominantly hydrogen gas was placed
13cm from the graphite-uranium interface of the Snell
block [19]. The spectrum in this position is quite hard, and
the long sensitive length of the counter means that proton
recoils of several MeV can be stopped in the counter. The
counter was operated at 4400 V, which corresponds to a
gas gain of about 3300. The electronics were such that
full-scale ionization would be a few keV. This represents
about the most unfavorable condition with respect to
severe overloads. The undistorted pulse-height distribution,
ie., no voltage on the counter, is shown in Fig. 7. The
effect of various pulse-shaping and dead-width combina-
tions at a dead-time-corrected, base-line-discriminator rate
of 22,000 counts/sec are shown in Figs. 8-11. Note that the
ordinate is a logarithmic scale. The cleanest peak is
obtained with unipolar shaping using the base-line restorer
and a dead-width setting of 3 pulse widths, as shown in
Fig. 8. Figure 9 indicates that when the dead-width setting
is reduced to 1, unacceptable distortion occurs. There is
some fast undershoot associated with the large overloads
that the base line restorer is not able to smooth out.
Figure 10 indicates the effect of using bipolar pulse shaping
and a dead-width setting of 3. The pulse width is that
associated with only the first node of the bipolar pulse. The
amount of distortion is acceptable—only about 3% of the
counts fall in channels less than 90 and greater than 100.
Figure 11 shows the effect of using unipolar pulse shaping
and a dead-width setting of 2. When unipolar pulse shaping
and bipolar pulse shaping are compared, it is most useful to
consider Figs. 10 and 11. The pulse width times the
dead-width settings are approximately equal for the two
cases—only the width of the first node is taken for the
bipolar pulse. It is seen that unipolar shaping produces
slightly less of a low-energy tail, whereas there is no
difference in the high-energy tails. For a given live time, the
unipolar and bipolar modes are almost equivalent.

10
- I I 3
& BLD = 60 A
B UNIPOLAR 3
DEADWIDTH = 3
LIVETIME = 100.0%
L
ey =
C J
y C ]
w L -
z
z
z 15 4
< |
o
N = —
(2]
2
z
=1 k- =
o
o
10? |— —
+ 5
i | | |
80 90 100 110 120

PULSE HEIGHT

Fig. 7. Pulser Pulse-height Spectrum Using Unipolar Pulse
Shaping and a Preset Dead Width of 3 with Zero Counter
Voltage. ANL Neg. No. 116-310.

The system was also checked for differential linearity in
the various modes by using a ramp generator as the voltage
reference for the test pulser. The 2.54-cm-dia hydrogen
counter at 4400 V was used.

C. GAMMA-SPECTRUM TESTING OF SYSTEM

Tests of the electronic system were also made by looking
at the recoil electrons from the wall of the counter when a
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voltage and count-rate combinations were investigated.
Instead of a two-parameter analysis, one parameter was
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because one is looking at legitimate counter pulses with
their variety of profiles. However, these tests are dependent
on relative calibration data for the various voltages. (The
accuracy of calibration data are discussed in Sec. V below.)
Good overlap was realized for the various voltages in the
tests, indicating that probably no systematic errors were
being overlooked.

An undue emphasis may appear to have been placed in
detailing the types and quality of the tests performed.
Nevertheless, the tests proved essential in determining the
quality of the electronic system. About two years ago a
solid-state, voltage-sensitive preamplifier passed all the
static tests described above, as well as the dynamic tests
with the test pulser. However, all data taken with this
preamplifier showed differences of a few percent in overlap
of data taken at different voltages. Only after careful tests
with the gamma-spectrum method were made could the
overlap difficulty be attributed to a small differential
nonlinearity for proportional-counter pulse profiles. The
preamplifier was subsequently replaced with the one
described above.



V. RELATIONSHIP BETWEEN PULSE HEIGHT AND
IONIZATION AS A FUNCTION OF VOLTAGE

In the next two sections the relationship between pulse
height and proton-recoil energy is discussed. The measured
distribution is one of a number of events per unit pulse
height and must be transformed to one of a number of
events per unit energy. If one has an accelerator that can
provide monoenergetic neutrons over the full range of
interest, it is possible, in principle, to determine the
relationship between pulse height and energy. However, if
measurements are to be made in the energy region of less
than tens of keV, an accelerator cannot provide suitable
low-energy neutrons for a determination of this relation-
ship. It is also inconvenient to have to use an accelerator
every time there is a change in detector parameters to
recalibrate the detector.

The problem of relating pulse height to energy can be
meaningfully divided into two parts: the first part of the
problem is to determine the relationship between pulse
height and ionization created by the proton recoil as a
function of voltage; the second part is to determine the
relationship between ionization created by the proton
recoil and its energy. This division of the problem is
attractive because the first part depends on the properties
of the counter such as the anode size and pressure, whereas
the second part depends only on the intrinsic properties of
the gas. In solving the first part of the problem, gas gain as a
function of voltage is obtained. Knowledge of this relation-
ship is necessary for the determination of the electric field
response functions (see Sec.VII). In this section we
consider the first part of the problem.

A. PULSE HEIGHT AND GAS GAIN

It is usually assumed that the pulse height is propor-
tional to the product of ionization created by the proton
recoil times the gas gain. If the gas gain as a function of
voltage is determined, the first part of the problem is
solved. Before methods of determining the gas gain as a
function of voltage are outlined, factors that can cause the

above assumption to be violated are considered. One such
factor is space-char

; 8¢ saturation. If space-charge saturati
is occurring, the P ge saturation

gas gain will not only be a function of
\;:)Jrl\t.age_. but also of the amount and distribution of
1zation before multiplication. Although gas gain as a

fects will induce systematic differences between the
distributions.

There is another effect associated with the distribution
of initial ionization which may lead to a breakdown in the
above assumption. Although the initial rise time of the
pulse from a point event is very rapid (see Sec. III.A), the
time needed for all the ionization in a track to reach the
multiplication region near the anode is reflected in the
pulse shape. If the amplifier integrating time constants are
not adequately long, a smaller fraction of the pulse from
the long-track-length event will be integrated than from a
short-track-length event. This problem may become serious
for a counter filled with a slow gas like hydrogen. One is
forced to use somewhat shorter time constants than
desirable if a reasonable count-rate capability is to be
maintained. This effect has been seen in the pulse-height
distributions from hydrogen counters for events above a
few hundred keV-an energy region at which the track
length begins to become significant. Data from the
hydrogen-filled counter above a few hundred keV are not
used in constructing the full proton-recoil distribution. If it
is not necessary to count at high rates, or if a gated
integrator is used, adequate time constants can be used to
eliminate this source of difficulty. This effect became
apparent from a systematic bias noted in the energy scale of
short-track-length events when the long-track-length pro-
tons from the '*N(n,p)" *C reaction (the use for calibration
is described in Sec. B below) was used to determine the
energy calibration.

Another effect which can also cause the violation of the
above assumption is introduced by excessive amounts of
contaminants in the gas. The average distance that an
undistorted track—one that has not been truncated by a
collision with the walls—has to travel to reach the anode
becomes shorter as the track length becomes longer. Long
tracks far from the anode are likely to become distorted.
The average number of collisions that electrons in long
tracks suffer on their way to the anode with electron-
attaching contaminants decreases as the track length in-
creases. High-energy recoils will have a higher fraction of
their ionization reach the multiplication region than low-
energy recoils. In Sec. IX (see Fig.34), a representative
fast-reactor spectrum measured with the methane- and
hydrogen-filled counters described previously is compared
with a calculated spectrum. The part of the neutron
spectrum derived from the methane-filled counter seems to
indicate this behavior. The evidence is that neutron spectra

» seem to indicate less of a disagreement

between the measured and calculated neutron-scattering
resonance structure.

Bearing in mind that the above difficulties may destroy



the simple relationship between pulse height and ionization
created by the proton recoil inferred from gas-gain-versus-
voltage considerations alone, we now consider the relation-
ship between gas gain A and counter voltage.

No simple prescription of general validity has been
completely successful in relating gas gain A to counter
voltage, although several of those proposed are adequate for
use over a limited range of parameters. A prescription that
appears to provide an adequate fit to measured values of
multiplication as a function of voltage over a larger voltage
range than the “Diethorn” prescription [20] is

log A

—=— =CI*V +C2. 4
vQ 1*V +C2 (4)

The power factor Q, as well as the slope C1 and intercept
C2, are derived by a least-squares fitting procedure. A
simple program to derive values for Q, C1 and C2 is
included in Appendix A. No physical significance whatso-
ever is attached to the prescription of Eq. 4; it is merely a
way of parameterizing (with the use of only three numbers)
a measured gain-voltage relationship.

B. PEAK-PULSE-AMPLITUDE CALIBRATION

This section and Sec. C below describes two methods for
determining gas gain as a function of voltage. The first
method is based on the observation of the shift in the peak
pulse amplitude from monoionizating events in the counter
gas as a function of voltage. A small amount of nitrogen gas
is included in a normal counter-filling mixture. The
pulse-height distribution of the '*N(n,p)'*C reaction on
exposure of the counter to thermal neutrons is observed as
a function of voltage. The proton has an energy of
585 keV. However, the ionization from the carbon recoil is
simultaneously collected with that of the proton. The
equivalent energy of the combination, as determined by
comparison with accelerator neutrons, is 615 keV with an
uncertainty of about 1%. The peak amplitude may be
followed up to gas gains at which space-charge effects begin
to distort the distribution. The electron collection at this
point will usually be in the neighborhood of 107 electrons,
and one cannot proceed higher. By including a small
amount of 37Ar (2.8-keV § emitter), one may extend the
calibration to higher voltages before space-charge limita-
tions appear. A sufficient region of voltage overlap using
these two sources exists to allow a normalization to be
made.

A joint argon-nitrogen calibration over the voltage region
from 2800 to 4600V is listed in Table III. The chamber
was filled with a mixture consisting of 0.03 atm of both
nitrogen and methane to a total pressure of 5.4 atm of
hydrogen. The counter anode and cathode diameters were
0.00254 and 2.54 cm, respectively. Also shown in the table
are values for A derived by use of Eq. 4, where values for Q,

TABLE I11. Measured and Fitted Gain
as a Function of Voltage

Measured Fitted
Voltage Multiplicationd Multiplicationb

2800 17.80¢ 17.71
2900 23.15 23.17
3000 30.27 30.58
3100 40.60 40.72
3200 54.58 54.68
3300 74.12 74.05
3400 102.2 101.1
3500 140.5 139.2
3600 1971 193.3
3700 271.4 270.5
3800 380.0 381.5
3850 4573 454.5
3900 541.1 542.5
3950 644.1 648.7
3800 377.14 381.5
3850 445.8 454.5
3900 537.1 542.5
3950 651.4 648.7
4000 9773 777.4
4050 9371 933.3
4100 1135 1123
4150 1371 1353
4200 1649 1634
4300 2418 2397
4400 3547 3542
4500 5300 5273
4600 7835 7910

AThe argon measurement is normalized to the
nitrogen results in the overlap region.
Q = 0.70, slope = 7.442 X 10°°,
9,733 X 1072,
CStart of nitrogen data.
dStart of argon data.

intercept =

C1, and C2 were determined by the least-squares fitting
procedure described in Appendix A. The simple prescrip-
tion of Eq. 4 is able to produce accurate gain values over
the entire voltage region. Any change in detector design,
filling pressure, gas type, etc., would require recalibration
which would lead to different values for Q, C1, and C2. If
data are available only from the '*N(n,p)'*C reaction and
if the power factor Q is known, the prescription of
Eq. 4 will permit an accurate extrapolation to higher
voltages. Some extrapolation from nitrogen-based data
alone is wusually required to provide multiplication
values at the higher voltages required for a measure-
ment. For a methane-filled counter, only nitrogen data
are required, since the counter is operated at low
multiplication.

C. ELECTROMETER CALIBRATION

The proton-recoil chamber, though designed and opti-
mized for fast-pulse counting, functions as a current
chamber without modification. The cathode of the cham-
ber whose calibration by argon and nitrogen pulse counting
is listed in Table ITI was connected to negative high voltage.
The anode was connected directly to an electrometer,
whose output drove a voltage-to-frequency converter which
could be scaled over known time intervals. A thick
cadmium sheet was wrapped around the chamber, which



was then placed in a well-thermalized neutron flux. Capture
gammas from the cadmium induced substantial current in
the chamber. To determine the gas gain, the amplitude of
this current was followed as a function of voltage. To make
certain that space-charge effects were small, the electrom-
eter output was also followed as a function of pile power at
the maximum voltage used (4600 V) in the calibration. The
point of onset of nonlinearity indicated the tolerable limit
for pile power, and the measurement of chamber current
versus voltage was made well below this limit. No absolute
multiplication values can be obtained by this method, since
the source intensity is unknown.

The ratio of calibration by electrometer current to that
from argon and nitrogen counting is plotted against voltage
in Fig. 12. The ratio is not independent of voltage, as one
would expect, but decreases as voltage increases. The reason
for this is found in the fact that the true detector-response
function changes with increasing voltage due to the electric
field effect (see Sec. VII). The mean value of the calculated
response function decreased by about 5% from the bottom
to the top of the voltage range. This caused a corresponding
decrease in the output current. The effect is considerably
less significant when the peak amplitude of a monoionizing
particle distribution is used, since in determining the peak
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value one automatically biases the distribution towards
those events occurring in the midchamber region where the
electric field is strongest. Also plotted in Fig. 12 is the ratio
of calibration after the electrometer result was divided by
the mean value of the response-function distribution at
each voltage. The ratio changes very little after the
correction has been made. The electrometer method serves
as a cross-check of the peak-amplitude method. Systematic
errors introduced by collection time effects or track
orientation would be uncovered.

In summary, if care is taken to avoid factors that destroy
the assumed proportionality between pulse height and the
product of ionization created by the proton recoil times gas
gain, the distribution per unit ionization, dN/dI, is readily
constructed from the distribution per unit pulse height,
dN/dP. The relationship between the distributions is

AN _dNdP

dl ~ dP dI’ ®)

The above assumption states that dP/dI is a constant for
each voltage. The constant is determined from the relation-
ship of gas gain to voltage. Space-charge effects, short time
constants, or an excessive number of contaminants will
cause dP/dI to be a function of I. This relationship would
have to be determined before the ionization distribution
could be constructed.

The calibration of gas-multiplication change with voltage
may be done conveniently either by observing the change in
the peak amplitude of a monoionizing source with voltage
or by following the increase of the direct-current chamber
output with voltage in response to any high-level (spatially
uniform) ionizing source. Absolute multiplication values are
difficult to measure and not necessary when an appropriate
proton source such as is produced by the '*N(n;p)'*C
reaction is available. The relationship of pulse height to
ionization to voltage is fixed at the calibration point.
Direct-current calibration must be corrected for the change
with voltage of the detector response function due to
electric-field effects, and when this is done one may expect
that the results of either method of calibration will agree.




VI. VARIATION OF W WITH ENERGY

The ionization-scale calibration of counters may be
conveniently determined as indicated in the previous
section. The number of events per unit ionization is
determined as a function of ionization, and if W is known
the density of events per unit energy is given by

dN/dE = (dN/dI)/W. (6)
It is necessary to have the proton distributions per unit
energy to determine the neutron spectrum.

The remarkable thing about W is that it varies so slightly
with energy, especially for noble gases and hydrogen. The
ionization mechanisms operating to produce free electrons
at the expense of an energy loss by a fast proton are
markedly different at different energies. Theories valid for
proton velocities much greater than orbital electron veloci-
ties, such as the Bethe-Block formulation, are not correct
for protons in the kilovolt energy region [21].Phenomena
such as charge exchange occur with high probability, and a
kilovolt proton actually spends a considerable fraction of
its time in an uncharged state. With due regard to the
considerable theoretical and experimental effort that has
gone into the problem of W determination, no results
currently exist that are entirely adequate for proton-recoil
neutron spectroscopy [22].

Many measurements are of the integral-energy-versus-
ionization variety and are not sufficiently precise for
differential dE/dI analysis [1,23]. Also, a filling gas most
useful for high-gain proportional counters would normally
require some additives, for instance, methane for quenching
and nitrogen for calibration in predominantly hydrogen-
filled counters. These additives may only occur at low
partial pressure, but their effect could be significant
nonetheless [22] .

To be useful for neutron spectroscopy, W must be
known precisely at all energies below the energy of interest
in the measurement. Not only is it necessary to divide
ionization density by W to produce proton-energy-density
spectra (Eq. 6), but the energy assigned to any ionization
value I is obtained by the integral

I
E=E +f w(I) dI, (7)
0

where Eg, is a threshold energy below which ionization is
energetically impossible. Knowledge of W at higher energies
only is insufficient to allow the evaluation of Eq.7.
Measurements of W inevitably terminate at some finite
energy and associated ionization values (here denoted by
EL and BI), and if W is known only in excess of these
values, Eq. 7 may be modified to read

E:Euf;I W(I) dI. (8)

A minimum understanding of the energy-ionization rela-
tionship for spectroscopy requires that W be known in
excess of an energy and ionization (both also known) that
form a lower bound to the range of experimental interest.

A. MEASUREMENTS

The most recent direct observation of W for protons in
hydrogen at energies as low as 1 keV are from experiments
using a lead slowing-down spectrometer [6]. These are
difficult experiments to perform, and only limited accuracy
can be obtained, but an interesting variation in W was
observed in which W decreased in value as energy decreased
in the region of a few keV. W must ultimately increase with
further decreasing energy, and the initial decrease is an
indication of competition between the several processes
responsible for ionization at these energies.

Reference 6 also mentions the better agreement with
calculation achieved using the observed W variation when
applied to neutron-spectrum measurements. That proton-
recoil distributions measured in certain neutron flux spectra
may be quite sensitive to the W variation is clear from
Eq. 6. If the neutron spectrum is hard to the extent that
very little of the actual flux exists below a few kilovolts,
the proton-recoil distribution per unit energy is flat. Any
observed variation in this distribution will, in the absence of
other effects, such as field-response distortion, directly
reflect a variation in W. A selection of proton-recoil data
from hard heutron spectra were analyzed to elucidate this
trend in W more clearly. These were spectra measured in a
predominantly uranium metal environment with no light
material for moderation [19]. Theory predicts lack of any
significant flux below about 5 keV, and the variation of W
shown in Fig. 13 was arrived at by comparing the residual
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curvature of proton spectra after making a correction for
electric-field-response effects. These results were found to
be in reasonable agreement with those reported in Ref. 6
above about 2 keV and also clearly showed the downward
trend in W as energy decreases. Unfortunately, neither the
analysis reported here nor that in Ref. 6 contains any
meaningful data below about 2 keV. The upturn in Fig. 13
is not significant relative to errors in the analysis, which are
conservatively estimated as *3% in relative W between
2keV and about 8 keV above which the variation appears
to cease.

The data relating to W variations in methane are also not
sufficiently well known for spectroscopy—this in spite of
the fact that most measurements with methane chambers
are made above about 100 keV where monoenergetic
accelerator neutrons are available for calibration. Again, it
is the differential W measured everywhere below a few MeV
that is needed. Existing data for methane show a definite
curvature in ionization-versus-energy plots [1]. If one does
a linear fit to the data from 100 keV to 1 MeV, an intercept
at about 4 keV on the energy axis is found.

B. PARAMETERIZATION

To take advantage of the existing evidence relating W to
energy, and to provide a framework for improvement as
better data become available, it is convenient to introduce
an expression relating W to I in parametric form. An
expansion of W in powers of log I works well, since the
resulting expression can be integrated exactly. In addition,
it is reasonable to introduce an ionization TI about which
W is constant. This constant may be taken as unity; the
absolute value will not matter when calibration is done
relative to a known proton energy. TI for hydrogen appears
to occur at about 8 keV, and there is no clear experimental
evidence for a change in W above this energy. Let the
expansion coefficients be designated by CW(J), where J
ranges from 1 to 6. W is then given by

6
W)= Y CW(I)(log )1 ©)
J=1
E is given by
E-EL+.[l W) dI
Bl (1) (10)
for I<TI, and by
I
E=EL+/;IW(I)dI+l-Tl (11)

for 1> TI.
If Eq. 9 is introduced into Eqs. 10 and 11, the results

may be written as

6 6
E=EL+1 Y CE()(loghF -BI JZ CE(J)(log BI)J1
=1

J=1
(12)
for I < TI, and
6
E=EL+I-TI+TI 2. CE(J)log (TI)}-!
Jj=1 (13)

-BI Y. CE(J)(log BI)J-t

for I > TI. The coefficients CE in the energy expansion of
Egs. 12 and 13 are obtained from the W expansion

coefficients CW according to

CE(1) = CW(1) - CW(2) + 2CW(3) - 6CW(4)
+ 24CW(5) - 120CW(6);

CE(2) = CW(2) - 2CW(3) + 6CW(4) - 24CW(5)
+ 120CW(6);

CE(3) = CW(3) - 3CW(4) + 12CW(5) - 60cw(e); [ (14
CE(4) = CW(4) - 4CW(5) + 20CW(6):
CE(5) = CW(5) - 5CW(6);
CE(6) = CW(6).
If one defines a parameter BS as
6
BS=BI ) CE(J)(log BI)J-t (15)
J=1
and another parameter TS as
6
TS=TI ). CE(J)(log TI)-1, (16)
J=1

the expression relating energy to ionization may be put in
the form
E=EL-BS+TS-TI+I (17)

for I > TI, and
6
E=EL-BS+1 ). CE(J)log I} (18)
J=1

for I <TI.
The W variation shown in Fig. 13 is consistent with the



following choice of expansion terms: EL=0.6,BI = 0.5, TI =
8.0, CW(1) = 0.962014, CW(2) = -0.143042, CW(3) =
0.0200147, CW(4) = 0.0515192, CW(5) = 0.0146597,
CW(6) = -0.0125811. These coefficients are based upon
meager experimental evidence and are only to be consid-
ered valid for energies above 2 keV for protons in pre-
dominantly hydrogen gas.

Anapproximation appropriate to methane gas when used
above 200 keV is to assume W constant (CW(1) = 1 and all
other CW values 0) with an EL of 4.1 and a BI and TI of
0.1. This produces the 4-keV intercept observed in ionization-
versus-energy plots over energy values greater than 100 keV.

The numbers provided here for W are to be considered as
an improvement over the assumption that it is everywhere
constant. They are by no means adequate to the accuracy
desired. Neutron spectra with weak amplitude at low
energies measured in the presence of a more intense
high-energy component may reflect large percentage sys-
tematic errors in the absence of an accurately known W
variation. Uncertainty in W is probably the factor most
strongly limiting the low-energy measurements of spectra,
and it is clear that useful spectroscopy will be possible
below 1keV only with some substantially improved data
(see Sec. X.B).



VIL THE INTERNAL ELECTRIC FIELD IN CYLINDRICAL
PROPORTIONAL COUNTERS

The response function and the sensitive volume of

cylindrical proportional counters depends upon the manner
in which an effective length is defined. It has been
recognized that difficulties arise due to the method of end
definition, and some measurements have been made. One of
the earliest relevant studies is contained in the familiar text
of Rossi and Staub [24], and results of more recent work
can be found in Refs. 25 and 26.

Numerous arrangements of electrode structures have
been used in the past to define an end over which
ionization is not recorded. Reference 25 contains a detailed
summary of some of the types of structures, including
references to original sources, and no attempt will be made
here to cover this material again.

The simplest method of defining an end is by inserting a
section of tubing (several times the diameter of the anode)
over the anode. The tube extends well inside the counter
from the electrical insulation at the extreme end. Tubing
and anode are in electrical contact, and the tube also serves
as a support for the anode, which may be extremely fragile.
This simple end design is the most widely used, and
counters of small size are as readily assembled as are larger
ones. A defect in counters built in this way is associated
with the transition region near the tip, where field strengths
at the anode surface are weakening (ultimately to a value
too low to cause multiplication). If the transition were
rapid, multiplication would be reduced over an axial
distance too short to be of significance (assuming negligible
axial broadening of the electron pulse). In practice, and
even with a minimal increase of diameter in the end region,
multiplication decreases gradually. This produces a low-
energy tail on the distribution of monoionizing events,
causes the active volume to differ from the mechanical one,
and degrades the instrument for spectroscopy.

Counters with large length-to-diameter ratios are corre-
spondingly less disturbed by tip-effect problems; the
transition region is relatively less significant as the anode
length increases for a fixed tube diameter. If the particular
counting application permits a large diameter, the addition
of an intermediate-potential field tube may be feasible, and
this will also improve the electrical characteristics. Counters
with the intermediate-potential structure are difficult to
construct in diameters less than about 5 cm, and this is
unacceptably large for some applications, including in-
reactor neutron spectroscopy.

A detailed theoretical study of the effect of a particular
end-electrode structure upon the response function of
proportional counters was not feasible before the avail-
ability of computers. The problem is the familiar one of
solving Laplace’s equation for boundary configurations not
reducible to an easily managed form. Straightforward

numerical methods have been widely used for similar
problems and are applicable here as well [27].

A. DESCRIPTION OF A NUMERICAL SOLUTION

Figure 14 is a schematic diagram of the *“‘simple’ end,
consisting of a concentric field tube (of several anode radii)
and maintained at anode potential. Some electric field lines
have also been included. The drawing is not to scale; in
practice, the cathode-to-anode ratio may easily be 1000
while the field-tube-to-anode ratio may be 10 or so. The
field-tube radius must be sufficiently greater than the anode
radius to reduce gas multiplication to a negligible value over
its entire length.

The response function of a detector is altered from the
ideal by the complex behavior of field lines near the tip
discontinuity. The field in the immediate vicinity of the
anode (where gas multiplication occurs) shifts continuously
from values too low to cause multiplication to an asymp-
totic value achieved at a distance of about 1.5 cathode radii
from the discontinuity. The asymptotic value of the electric
field is that appropriate to infinite concentric cylinders,
V/[r log (c/a)], where V is the potential difference. In
addition to a gradual weakening of the anode field, field
lines will not lie precisely along the radial; and since
ionization collected will follow field lines, the electrical
volume of the detector will be different from the mechani-
cal volume.

All these effects are described qualitatively in Ref. 25.
Even the simple end-electrode structure of Fig. 14 does not,
apparently, permit a solution of the variation in anode field
strength along the z direction expressed in tabulated
functions.

To study in detail the variation of the electric field near
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tips and the resulting effect upon pulse-height spectra,
Laplace’s equation for the potential with appropriate
boundary conditions was solved by iteration. A standard
finite-difference approximation was used; and in the most
elementary way the potential at any interior mesh point
was expressed as a suitable “‘four-point™ average over
adjacent mesh points [27]. The radial dimension, r, was
first mapped into a variable u = log (r/a), a being the anode
radius. A fixed mesh interval was chosen in u space. The
axial dimension was broken into mesh intervals that
increased in geometric progression as distance from the
discontinuity increased both along the anode region and
along the end. This initial mapping of both radial and axial
distance permitted a much more efficient (mesh-point
number and iteration time) solution to the problem.

The boundary conditions maintained the anode (in-
cluding the field-definition tube) and cathode at a fixed
potential difference. At the midplane of the counter,
potential gradients along the z axis were set to zero for all
radial mesh points. At the extreme counter-end boundary,
an arbitrary set of radial potentials could be input in order
to ascertain any possible effect of end construction upon
anode field. The true field pattern at the extreme end is
generally complicated, since lead-in seals and anode sup-
porting structures cause distortion. The calculation indi-
cated an insensitivity of anode field to reasonable end
potentials where field-tube insertion exceeded 1.5 cathode
radii.

After a sufficient number of iterations of the finite-
difference expression, potentials converged to values that
were essentially independent of details of dimensioning and
mesh spacing over a broad range of these variables. The
electric field at the anode was taken to be the value of
potential at the radial mesh point adjacent to the anode;
absolute electric fields were not relevant to the problem.
Appendix B includes additional detail describing the way in
which the field calculation was done, together with a
FORTRAN code.

In practice, the field-tube inside diameter will be several
times the diameter of the anode; and, apart from misalign-
ment in construction, the actual region near the tip will be
as shown in Fig. 14. The calculation was set up to solve this
case, but no significant effect upon anode field was
observed when a solid field-tube structure was used, as
would occur for example if solder filled the anode-field-
tube space during construction of the counter. The anode is
usually not precisely aligned within the field tube, and the
fact that little effect can be seen by filling in the field tube
(in the symmetrical case) indicates that misalignment does
not lead to troublesome consequences.

The anode-field variation derived for a counter used in a
spectroscopy application is shown in Fig. 15. The counter
had an anode radius of 0.0127 mm. The ratio of field-tube
radius to anode radius was 10.0, and the ratio of cathode to
anode was 625. The total length of anode was 4000 anode
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radii, and at the half-anode distance (2000 radii), axial
potential gradients were set to zero. At 912 radii from the
discontinuity measured along the field-definition tube, the
potentials were maintained at infinite cylinder values.

The initial rapid increase in anode field is seen in Fig. 15,
followed by a rather slow approach to asymptotic. Gas
multiplication is extremely sensitive to field strength, and
the results of Fig. 15 clearly indicate that end effects will
persist for some considerable distance along the anode
region.

To estimate the influence upon “electrical volume” of
field-line bowing, field lines originating at the anode were
followed outward radially to their termination at the
cathode. Several of these lines are shown in Fig. 16 for the
test counter (the Case 1 “‘nominal counter” in Table IV).
The mechanical volume is 4.92 (in units 10° cubic anode
radii); the volume contained by field lines touching the
tip-anode di§cominuity is only 4.71. This very substantial
discrepancy is of considerable importance, especially in
absolute measurements. The electrical volume is well
defined (and independent of voltage), but the actual
amount of gas contained within it is considerably less than
calculated from internal tube dimensions alone.
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TABLE IV. Description of Chambers Used in Field-response Study

Anode diameter = 0.0254 mm. Field-tube diamfter = 0‘./254 mm.
Nominal cathode diameter = 1.59 cm. Voltage = 4050 V.

= 0°C) with 1/2 volume percent CH,. %
iﬁzz‘i’fengl:.gasaotgnczz.(Mechanical volume = 0.491 X 10" ° cubic anode radii.

Mesh Equivalent- Electrical Volume,

True End-
cathode Diameter,
units of anode radius

cathode Diameter,
units of anode radius

units of 10" °
cubic anode radii

Case
1 625 625 0.471
2 468 500 0.483
3 312 321 0.487

The calculation described here (and in Appendix B)
includes an option to permit the cathode to assume a
diameter over the end region that is less than its value over
the cathode. A reduction in cathode diameter over the
region occupied by field tubes has two obvious advantages.
The end region from which particle tracks may enter the
effective anode volume is reduced, and the field at the
anode varies more uniformly as distance increases from the
tip. The operation of detectors constructed with a reduced
cathode radius over the field-tube region is explored more

fully in Sec. E below.
B. COUNTER RESPONSE FUNCTIONS

The numerical solution to the internal radial and axial
potential variation can be used to produce a response
function for the counter which will be appropriate for
lonizing events of negligible spatial extent arising uniformly
in the gas volume (see Appendix C). The electric-field
variation along the anode surface is that of the potential
gradient at the surface and is calculated together with the
volume enclosed by any field line originating at the anode.
The electrical volume is needed as a weighting factor, since
the number of events enclosed by adjacent field lines is
relatively fewer near the tips.

In proportional counters, gas multiplication occurs only
in the immediate vicinity of the anode. If the electric-field
variation and differential electrical volume along the anode
are known, and if a calibration expressing gas multiplication
as a function of voltage is also available. it is easy to derive
a response function for the counter at any voltage. To do
this, one only has to replace the calculated anode field (a
function of axial distance z) by an appropriate multipli-
cation value from the calibration. Normalization is chosen
such that at large z the anode field is set equal to the
nominal voltage setting for the detector as it is used in the
spectroscopy experiment. The result obtained is the varia-
tion in gas multiplication with z.

Figure 17 contains the calibration for the test counter
using *7Ar as the calibration source (see Sec. V.B). The
peak channel of the 37Ar distribution is broad, but is
readily determined from the observed pulse height spec-
trum (see Fig. 19 later). The data are fit with the
parameterization discussed in Sec. V. All of the response-

20

function derivations presented here use the parameteriza-
tion given in Fig. 17.

To derive an amplitude distribution of events, it is
necessary to transform from the (constant) density of
events per unit anode to the corresponding density per unit
multiplication. The actual prescription for expressing A
versus V. is irrelevant to the transformation from events per
unit anode length to events per unit amplitude. Any
relationship superior to Eq. 4 will improve, corre-
spondingly, the end result. Equation 4 fails for very
low values of multiplication (in the transition region
between ion collection and proportional modes of counter
behavior), as do other prescriptions that have been
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Fig. 17. Gas Multiplication Variation with Counter
Voltage. Solid-line is a fit with Q = 0.2, C] = 0.00070247,
and C2 =-1.2503. ANL Neg. No. 116-507 Rey. |.




proposed [20] . A FORTRAN code deriving the transforma-
tion from field strength to pulse height is given in
Appendix C.

The computed amplitude distribution will be voltage-
sensitive. Figure 18 shows the calculated distribution at
3500 and 4500 V using the test counter and its calibration.
The distributions are normalized such that the amplitude at
maximum gain is placed at full scale. The maximum
amplitude is achieved for events in excess of about 1000
anode radii from the tip, and the distributions increase
sharply for amplitudes greater than 70% of maximum. As
may be seen, the response distribution depends upon
counter voltage. Operating at lower voltages produces a
response behavior closer to ideal, since relatively fewer
events are strongly degraded by the field.

C. TEST OF THE CALCULATED RESPONSE

A comparison of predicted response with a pulse-height
distribution of 37Ar is given in Fig. 19. Two distinct
deexcitation modes occur; one, involving betas at about
2.8 keV, is the dominant peak in the figure. Another mode,
with energy about 200 eV, also occurs; and this line causes
the sharp increase in the spectrum below channel 20. A
discriminator blocks all events below about channel 13.
Statistical effects introduce substantial broadening into the
measured result.

The calculated pulse-height distribution was smoothed
using a Gaussian shape with width chosen to match the
observed distribution over the peak. Calculated and meas-
ured distributions were normalized in the region of the
main peak. The extent of agreement over the limited region
between soft beta decay at low channels and the onset of

104
g 1%
= = 2
fels #
w
e
3
! A
<
E 102
e RESPONSE AT 4500V
e
™
w
o

RESPONSE AT 3500V
=
100)
o 1 2 3 . s 6 1 L] 9 10

PULSE AMPLITUDE

Fig. 18. Effect of Voltage upon Response. ANL Neg.
No. 116-508.

the statistically broadened dominant peak at high channels
can be seen. The calculated distribution falls somewhat
below the data at low pulse heights, even after allowing for
the fact that the soft (200 eV) beta emission increasingly
dominates the distribution at low values of pulse height.
From the comparison of Fig. 19, one cannot draw any
conclusion as to the validity of the calculated response
below about channel 25.

Any disagreement can probably be attributed to two
effects of unrelated origin not accounted for in the
response-function calculation. As can be seen in Fig. 16, the
total path ionization must follow before collection is
substantially longer for events collected near the tip than
for events collected near the counter midplane. One
consequence of the lengthened field line is that the average
field over the line is weaker. This combination of circum-
stances will ensure that ionization collected near tips
remains in transit for a much longer time than the average,
and probability for electron attachment by contaminants is
correspondingly greater. The effect upon the response is to
raise the low-amplitude distribution in accord with observa-
tions in Fig. 19.

Another effect not involved in the response calculation
is related to axial diffusion of the assumed initial point-
ionization distribution [14]. By the time this ionization is
collected, a substantial axial broadening has occurred,
especially near the tip where time to collection is greatest.
Because of the nature of the change in multiplication with
distance along the anode, this broadening will also serve to
enhance the low-amplitude response.

It is feasible to use the calculated response to correct
measured distributions. Counters of practical interest will
usually possess sufficiently long anode regions to maintain
field-distortidn effects at a low level. Expected systematic
errors in the response determination will be of limited
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extent in applying this correction to data in most practical
situations.

D. PARAMETERIZATION OF COUNTER RESPONSE
FUNCTION

The calculated pulse-height distributions, as determined
from the electric-field anode variation increase rapidly as
pulse height approaches its maximum value. To utilize, in
the simplest manner, the calculated response to unfold
response effects from measured data, it was found conve-
nient to break the distribution into two parts. The dividing
amplitude was chosen to be 70% of the maximum of the
distribution. All events in excess of 70% of maximum were
lumped together into a “contained’ response fraction and
assigned an amplitude equal to the maximum value. The tail
of the distribution below 70% of maximum varied
smoothly and was least-squares fit to a polynomial of fifth
order for use in response-correction codes (see Sec. XI.B.2).

Splitting the response into a “‘contained” fraction and a
“tail” is convenient for unfolding purposes, but is not a
justifiable procedure. The neglect of the actual shape near
maximum can be expected to introduce some systematic
error; it is difficult to treat this region in any precise
manner. The intrinsic line shape for the counter will not
generally be Gaussian and will depend upon energy. A
“complete” response function at each energy could be
derived by smoothing the field effect with the line shape (if
known). Use of the resulting distribution would require
more elaborate numerical methods and would certainly
limit the problem to the larger, faster computers for
solution. We have tried to manage most of the response
correction using the same (8k, 18 bit) computer available
for on-line accumulation of pulse-height information.

The use of detectors with relatively little distortion due
to field effects is obviously to be desired, and insofar as this
is possible, it is expected that neglect of the intrinsic line
shape details will not introduce exceptional difficulties. A
full understanding of instrumental resolution is made
difficult where effects as diverse as internal field shape,
ionization statistics, and electron attachment all contribute.
A fairly reliable estimate of line width can be obtained at
each energy, but more than this may not be feasible in most
instances.

The low-amplitude behavior of the calculated response
functions warrants some additional comment. The actual
shape will depend upon the validity of the gain-voltage
prescription (Eq. 4) for low amplitudes, as well as upon
other phenomena such as axial diffusion and field-line
shape. The increase in the calculated distribution at low
amplitudes seen in Fig. 18 is probably meaningless, and no
weight should be given to the response below a few percent
of maximum in using the response for correcting data. In
most applications, this low-amplitude detail will have little
effect upon spectra.
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Another point regarding the field-effect-associated re-
sponse functions is that they are calculated from the
electric-field pattern assuming a point source of initial
jonization distributed uniformly over the anode. This may
not necessarily apply in a measurement, however, and if
track lengths extend significantly, or if a nonuniform
spatial distribution is encountered, the effect upon response
functions will have to be taken into consideration. The
complete response, where track truncation (wall-and-end
effect) occurs coincidentally with field distortion, cannot
be treated in any simple way. For extended tracks a spatial
averaging automatically occurs, and these events tend to be
less affected by the field-distortion problem, which remains
localized near counter ends. Additional discussion of this
point appears in Sec. VIIL.

E. EFFECT OF A REDUCTION IN CATHODE
DIAMETER OVER THE END REGION

The code described in Appendix B is equipped to
compute the counter potential map, assuming that the
cathode radius over the end region is reduced from that
over the anode. Actually, the code will round off to force
the true radius over the end to conform to the radial mesh
structure. This will cause some discrepancy between the
end radius actually solved for in the problem and the radius
as input.

The advantages of a reduction in end radius are twofold.
First, there is less end area from which particles with
substantial range can enter the effective anode region.
Events of this type are more difficult to include in a
finite-range wall-and-end effect analysis than events origi-
nating within the effective anode region. Second, a pattern
of field lines is established in which the electrical and
mechanical volumes are in better agreement. Effects occur
that significantly improve the pulse-height response—i.e.,
remove to a large extent the low amplitude tail on all
spectra taken with the normal cylindrical tube as shown in
Fig. 19.

The upshot is that an optimal reduction of end-cathode
radius allows a better spectrometer response, reduces un-
certainties in the true sensitive volume, and reduces the
probability for entrance of particles from the end region.

Additional calculations were made for the modified end
configurations. The corresponding counters were constructed
and the *7Ar response observed. The same basic chamber
previously described and the same calibrationgiven in Fig. 17
were used. Table IV summarizes the characteristics of the
three cases studied; Case 1 is the normal cylinder pre-
viously discussed.

The calculation in Appendix B sets the actual end-

* cathode radius to agree with a radial mesh point, and

consequently the calculated radius does not necessarily
agree with the radius of the physical chamber. Table IV lists
both the true chamber end radius and the radius for which



the calculation was done. The electrical volumes are also
shown for the three cases. These are the volumes contained
by the field line touching the tip-anode discontinuity.

Case 3 is a rather extreme reduction, by a factor of 2, in
the radius of the cathode over the end region. The
dependence of anode field upon distance from the tip is
shown in Fig. 20 (this to be compared with the normal
cathode configuration in Fig. 15). As expected, the effect
of a reduction in end-cathode diameter causes a more rapid
initial increase in field with distance from the tip. This, in
effect, reduces the relative number of highly degraded
events and strongly depresses the low-energy tail on the
response function. The slight overshoot of anode field
before relaxing to an asymptotic value for Case 3 has the
effect of producing a high-amplitude tail on the response
function. Figure 21 is a field-line pattern for Case 3
comparable to that for Case 1 shown in Fig. 16. Field lines
are very markedly warped near the ends, but the electrical
volume (that volume enclosed by the field line touching the
tip) is close to the mechanical one, as shown in Table IV.
One other consequence of the warping of lines is that the
differential volume contained by adjacent field lines touch-
ing on the anode near the tip is less than its value at a
distance from the tip, and this also reduces the amplitude
of degraded events in the response.

Figure 22 compares the calculated response to the meas-
ured *7Ar pulse-height spectrum for the Case 3 detector. In
all the response-function computations, a Gaussian-
smoothing full width at half maximum of 27% was used.
Abscissa and ordinate were scaled in each case to produce a
best eye fit to the measured distribution. The agreement
between calculated response and spectrum measurement is
quite good, and the high-amplitude overshoot is correctly
predicted. Some residual excess of measured amplitude over
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Fig. 20. Anode-field Dependence upon Distance from Tip for
Case 3 Chamber. ANL Neg. No. 116-505.
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Fig. 21. Internal Field Pattern for Case 3 Chamber. ANL Neg.
No. 116-510.

that calculated still remains in the minimum between about
channels 20 and 40; the explanation is probably that given
previously in the discussion of the normal counter. The
discrepancy is small, however, and it is apparent that a
chamber designed as in Case 3 is markedly superior for
absolute rate determinations than the normal chamber of
Case 1.

Case 2 with end-cathode radius reduced by /2 is
intermediate between Cases 1 and 3. The anode field does not
overshoot its asymptotic value, and the field pattern is not
as violently distorted near the ends. Figure 23 shows the
result of a response calculation compared to the measured
7Ar result. Again, the agreement with experiment is good,
and the low-energy tail is strongly depressed. Case 2
represents a near-optimum design for good resolution, as is
required in a spectroscopy problem. Case 3 is a better
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Fig. 22. Comparison of Measured and Calculated Spectra of
*7 Ar for Case 3 Chamber. ANL Neg. No. 116-511 Rev. 1.
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Fig. 23. Comparison of Measured and Calculated Spectra of
37 Ar for Case 2 Chamber. ANL Neg. No. 116-512 Rev. 1.

design for absolute counting, where spectroscopic quality
can be sacrificed to some extent to improve the plateau.
The generally satisfactory agreement between the calcu-
lated response function and that observed by counting
37Ar beta emission indicates that a fairly detailed study of
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the spectroscopic quality of a cylindrical detector desensi-
tized at the ends by a field tube can be made using simple
numerical techniques. The several parameters affecting
counter behavior can be adjusted to optimize the objective,
i.e., a good plateau as for Case 3, or a clean line response as
for Case 2. There is unlikely to exist any simple rule of
thumb by which this optimization can be arrived at, and
the computer studies, with the method used here, are time-
consuming. Nevertheless, substantial improvements in cylin-
drical chamber spectrometers can be achieved by opti-
mizing the design of the cathode in the region near the
ends.

We intend to use the modified-end cathode structures in
future applications to proton-recoil neutron spectroscopy.
Since a good line response is essential here, the reduction in
end-cathode radius will correspond to the Case 2 study,
although the chambers will be of different size.

The Case 3 study was sufficiently encouraging that an
enriched BF; chamber identical to Case 3 was acquired
and, if practical, will be used for absolute ' °B capture-rate
determinations in fast-reactor spectra. The improvement in
plateau for the Case 3 chamber over that for Case I (as
compared in a fast-neutron spectrum) has been observed.
Results will be published if in-core feasibility can be
shown.



VIII. WALL-AND-END RESPONSE FUNCTION

If neutron spectra are to be accurately determined with
proton-recoil proportional counters, it is necessary to
correct for wall-and-end distortion. Some proton-recoil
tracks are truncated by collisions with the walls, or they
pass into an end region, where there is no multiplication.
For these events there is an incomplete collection of
ionization in the sensitive region, and the relationship of
proton energy to collected ionization is distorted.

It is assumed that to first approximation wall-and-end
distortion and electric-field distortion may be treated
independently; i.e., the complete response function is
separable. The wall-and-end part of the response function
for a 4m-geometry counter is the energy distribution from
monoenergetic protons of a given energy generated uni-
formly and isotropically throughout a particular counter.
The determination of response functions for 4m-geometry
proton-recoil counters has been considered in a number of
papers. Various methods have been employed. Monte Carlo
techniques have been used for spherical counters [3,28] as
well as for cylindrical counters used with neutron beams
parallel to the counter axis [29]. A method has been
developed to empirically determine response functions for
4m-geometry counters [26] . Meantime, analytical solutions
to the wall-and-end problem have been found for both
spherical and cylindrical counters [30]. The analytical
solutions have been applied to correction schemes for
measurements with spherical counters [31].

This section indicates the method of calculation of the
wall-and-end part of the response function, compares
calculated response functions with measured distributions,
and outlines application to proportional-counter spectrome-
try. In Section X the extent of wall-and-end response
corrections on a representative fast-reactor spectrum is
assessed. Appendixes D and E contain detailed mathemati-
cal expressions and a description and listing of computer
programs for the determination of the wall-and-end part of
the response function.

A. CALCULATION OF WALL-AND-END PART OF
RESPONSE FUNCTION

In the calculation of the wall-and-end part of the
response function, certain simplifying assumptions are
made. The counter is divided into three right cylindrical
region. There is the central or sensitive region, in which it
is assumed that the gas multiplication is constant, and there
are the two end regions, in which it is assumed that there is
no multiplication. Thus the volume changes and multiplica-
tion changes associated with the distortion of the internal
field lines discussed in the previous section are neglected.
Tracks of detectable events—ones that create ionization in
the sensitive region—can be divided into four mutually
exclusive categories.
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1. The track starts in the sensitive region and ends in the
sensitive region without distortion.

2. The track starts in the sensitive region and is
truncated by the walls or extends into an end region.

3. The track starts in an end region and stops in the
sensitive region.

4. The track starts in the end region and is truncated by
the walls in the sensitive region or extends into the

other end.
Probability functions with the path lengths in the
various regions as independent variables have been

derived [30] for each of these categories under the assump-
tions that (1)it is equally likely that a track starts
anywhere in the volume—uniform distribution; and (2) it is
equally likely that a track starts in any direction—isotropic
distribution. For protons of range R, and energy E,, the
response function R(E,E,) in terms of track-length func-
tions for each category is

R(EEy) =
VEFROB(E - Eo) Vs S| IR, -R(Eo- B)]
2

+ 2Vdﬁ G[Rp - R(E),Rq]
dE|g

Eo-E
+2V4q f . g_IFj
Ec0 E,E'E

M[R, *R(E, - E'), Ro - R(E, - E' - E)] dE'".

dR
HE| e
Eo-E

(19)

The first two terms on the right-hand side of Eq. 19 are
associated with events starting in the sensitive region whose
volume is V. In the first term, F(Q) is the probability that
the path length to a surface is greater than € and thus, with
Q equal to Ry, is the probability for the first category of
tracks. The term 6(E - Eg) is a delta function. Figure 24
shows F(€) for a counter with a 1.27-cm radius for various
cylinder lengths. In all cases, once the track length becomes
comparable with the diameter of the counter, F({) becomes
rather small. For path lengths up to a radius, F(®) is rather
well approximated by a straight line—the result that arises if
one neglects the curvature of the surfaces. In the second
term of Eq. 19, N(?) d€ is the probability that a path length
is between € and €+d¢ and thus is the probability
associated with the second category of tracks. The length
¢ =Ry - R(Ey - E) is the length of track in the sensitive
region of a proton that starts in the sensitive region and
deposits an amount of energy E in the sensitive region.
Figure 25 shows N(¢) for a counter with a 1.27-cm radius
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Fig. 24. The Probability F(2) That a Track of Length ¢ Will
Not Be Truncated or Pass through the End of a Cylinder of
Radius a Equal to 1.27 cm and Various Lengths L. ANL Neg.
No. 113-2303 Rev. 1.

for various cylinder lengths. For small values of ¢, N(?) is
constant—the result which arises if one neglects the
curvature of the surfaces. The term dR/dE is the inverse of
the stopping cross section €(E) of the counter gas adjusted
for-the density N of the gas

dR 1

(g — A T (20)
G|y p NeEo B)

Figure 26 shows € versus energy and range versus energy for
methane gas—the dominant filling gas for the counters for
which the response functions are determined.

The last two terms on the right-hand side of Eq. 19 are
associated with events that emanate from the end regions,
each with a volume V. In the third term, G(£',¢) d¢' is the
probability that the path length is between ¢’ and ¢' + d¢' in

a-N(D)

Fig. 25. The Probability N(2) d? That a Track Is between ¢ and
€ +dQ for a Cylinder of Radiusa Equal to 1.27 ¢m for Various
Lengths L. Normalization is that one track starts per unit volume.
ANL Neg. No. 113-2313 Rev. 1.
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Fig. 26. Stopping Cross Section € vs Energy, and Range vs
Energy, of Protons in Methane Gas. ANL Neg. No. 113-2314.

an end region, and that the total length to the surface is
greater than €. The length € = R, - R(E) is the length of
track in an end region of a proton that deposits energy E in
the sensitive region. In the fourth term, M(€' Q) d¢'d€ is the
probability that a track starting in an end region with a
length between ¢' and & + d¢ has a total length to the
surface between £ and € + d€.

The third term of Eq. 19 is rather easily evaluated.
However, the fourth term is calculationally cumbersome,
requiring a numerical integration for its evaluation. In this
report the events from the end regions are neglected. The
influence of these end events is presently being investigated.
Wherever possible, the correction schemes have been
constructed to allow suitable changes when the end regions
are taken into account. For a counter with reduced-
diameter cathodes over the end regions, the influence of
end events is proportionally less.

When the ends are neglected, only the first two terms on
the right-hand side of Eq. 19 are required. The first term is
the number of events not distorted and is referred to as the
undistorted part of the response function; the second term

_constitutes the distorted part of the response function. The

detailed expressions for the probability functions F(€) and
N(%), as well as the program that calculates the response
function are contained in Appendix D.

For a given geometry the response function is a



two-dimensional function depending on both the energy E,
and the range R, of the protons. If E, is held constant, the
pressure is inversely proportional to R, and the pressure or
R, can be used to parameterize R(E,E,). The significance
of this case is made clear in Sec. B below. If the pressure is
held constant, the relationship between E, and R, is fixed
and either variable can be used to parameterize the response
function. This is the response function that applies to a
counter used as a spectrometer. In general, if R, is less than
the radius of the counter, N(Q) is almost constant and the
energy dependence of R(E.E;) results from the energy
dependence of €. Once the range of the protons becomes
comparable with the diameter of the counter, the energy
dependence of € dominates R(E,E,) for E much less than
E, and the form of N(2) dominates R(E,E,) for E close to
Ey. Calculated distributions of the distorted part of the
response function for which E, is held constant and the
pressure is varied are shown in Fig. 29. Distributions for
which the pressure is held constant and E, is varied are
shown in Fig. 32. The distributions are discussed in more
detail in Sec. C below.

B. COMPARISON OF MEASURED DISTRIBUTIONS
WITH CALCULATED DISTRIBUTIONS

One would ideally like to compare calculated and
measured proton-recoil distributions for a fixed counter
pressure as a function of E, over the full range of
proton-recoil energies. However, it is not experimentally
feasible to generate such distributions. Since the response
function is a two-dimensional function, an alternative is to
consider distributions from a fixed-energy proton source
and vary the counter pressure. This sequence is easy to
realize experimentally. If the counter contains some nitro-
gen and is placed in a uniform and isotropic thermal flux, a
uniform and isotropic distribution of 585-keV protons will
result from the '*N(n,p)'*C reaction. This is the same
reaction used for calibration (see Sec.V). The response
function for a given energy E, and density N is related to
that for a different Ej, and N’ by

Ne (Eo -E)

Ne(E;-E) |

R(E,Ep) = R(E.E).

Thus the ability to determine response functions for a fixed
E, as a function of pressure is meaningful in ascertaining
how well one can determine response functions for a fixed
counter pressure.

The experimental method is described in detail else-
where [26]. A schematic drawing of the counter used for
these tests is shown in Fig. 27. For each pressure, the
counter was filled from a mixture of 49% CH, and 51% N, .
The large amount of nitrogen was desirable to keep
background contributions negligible. For all pressures, the
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Fig. 27. Schematic Drawing of Proton-recoil Counter. Field
tubes are 0.25-mm-dia hypodermic needles; anode is a
0.025-mm-dia stainless steel wire. ANL Neg. No. 113-2305.

overall gain of the system was kept fixed by varying only
the counter voltage. A fission counter was used to monitor
the relative number of thermal neutrons during each
measurement.

Figure 28 shows a measured distribution for which the
range of the 585-keV protons is 1.53 cm. The rapid increase
in the number of counts per channel at lower energies
results from the detection of Compton electrons from the
interaction of gamma rays with the material in the walls of
the counter. As the pressure is increased, the electrons are
able to lose more energy in the counter, and the tail of
these events moves out to higher energies. Carbon recoils
from the 'N(n,p)'*C reaction are also detected. The
carbon recoils deposit an equivalent ionization of 30 keV,
and thus bias the whole distribution by this amount, since
their ionization is collected simultaneously with that from
the protons.

Measurements were made from a pressure of 5.3 atm
(which corre.gponds to arange of 0.20 cm) to 0.27 atm (which
corresponds to 3.87 cm). The high-pressure limit was de-
termined by the movement of the gamma-ray-induced
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Fig. 28. Measured Pulse-height Spectrum from '*N(n,p)'*C
Reaction with Thermal Neutrons. Range R, of the 585-keV
protons was 1.53 cm. ANL Neg. No. 113-2309 Rev. 1.



event tail to almost 50% of the peak energy. The low-
pressure limit was determined by the point at which it
was still possible to discern the peak.

The presence of the tail from gamma-ray-induced events,
distortions introduced by electric field effects, as well as
distortions introduced by the resolution of the detector
prevent a straightforward comparison of measured and
calculated distributions. An examination of calculated
distorted distributions indicates how comparisons might be
made. Figure 29 shows two calculated distributions for
which E, is 585 keV. Ry is small for one and large for the
other. In both cases, the calculations indicate that from
zero energy to almost the peak energy a straight-line fit to
the curve is possible. The extrapolation in the measured
distributions to zero energy is obvious. For small values of
Ry, there is a rapid change in the calculated distributions
near the peak energy introduced by the energy dependence
of the stopping cross section (see Fig. 26). The rapid
variation occurs so near the peak energy that if the
resolution of the detector is taken into account, these
events cannot be distinguished from undistorted events.
Fortunately, this region of the distribution does not
introduce a serious problem in comparing measured and
calculated distributions, because the number of events
contained in the region is small compared to the total
number of distorted events.

It was decided to compare two parameters of the
measured and calculated distributions: the fraction of
events that are not distorted and the slope of the
straight-line fits to the distributions over the energy region
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for which a straight line is a good approximation. Figure 28
indicates how the two parameters are obtained from a
measured distribution. A bias is set to take into account the
energy deposited by the carbon recoils. Assuming a
straight-line fit to the data in the region just beyond the tail
of the gamma-ray-induced events, the line is extrapolated
back to zero energy. Near a peak, a horizontal line is drawn
from the energy at which the slope is zero to the peak
energy. The shaded area indicates the events that are
considered distorted. The remaining events in the peak are
considered to be undistorted. The consistency of the
extrapolation method to zero energy was checked by
totaling the number of events thought to be protons and
comparing it with the number consistent with the thermal
flux and amount of nitrogen in the counter. In all cases the
agreement was good.

Figure 30 shows the measured fractions of undistorted
events versus Ry, and Fig. 31 the measured slopes versus
Ro. The figures also contain calculated curves of these
quantities. The solid lines result from using Eq.19 to
calculate the distributions. Only wall-and-end distortions,
or, as they are referred to on the figures, geometry effects,
are taken into account. The solid curves do not provide a
good fit to the data. This is not surprising, since the
discussion in Sec. VII indicated the importance of account-
ing for electric-field distortions. The same type of approach
as outlined in that section could be used to determine the
electric-field part of the response function, which could be
combined with the wall-and-end part to yield the full
response function. However, for purposes of this compari-
son, it was found suitable to use an approximation to the
true electric-field response function. It was assumed that
the fraction of events distorted by the electric field would
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Fig. 30. Measured Fraction of Distribution That Is Undis-
torted vs Range R, of 585 keV Protons. The solid (dashed) curve
is the calculated fraction and takes into account geometrical
(geometrical and field) effects. ANL Neg. No. 113-2307.
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correspond to any event starting in a right cylindrical
transition region with volume V¢, and that the energy
distribution of events that start in this region can be
represented by a straight line with slope St. Vt and St are
parameters estimated from the field calculation. Since the
gas multiplication was kept the same for all measurements,
the assumption of a single electric-field response function
independent of R, is probably rather good. The expression
for the fraction of events not distorted when both
geometry and electric-field effects are taken into account
assumes the form

VsF(Ro)

T T I

(22)
The expression for the slope S(R,) of the composite
distribution is

2ViSt

. [Vs - VsE(Ro)] Sg(Ro)
S(Ro) =¥ 32V - VsF(R)

Vs+ 2Vi-VsF(Rg)

(23)

where Sg(R,) is the slope associated with the geometrical
response function. The areas of the energy distributions of
events from each type of distortion, as well as the area for
the combined distorted distribution are normalized to
unity. The dashed lines, which result from Eqs. 22 and 23,
produce significantly better agreement. The exception is for
the slopes associated with large values of R,. This is not
surprising, since protons with long track lengths lose only a
small fraction of their energy in the transition region and
thus are not influenced by this region.

These comparisons between the calculated and measured
distributions indicate the importance of taking into account
electric-field distortions. Once this is done, one can
reproduce the measured distributions. It is also reassuring
to see that it is possible to a good approximation to
separate the two sources of distortion. The electric-field
part of the response function dominates the total response
function for short track lengths, and the wall-and-end part
dominates it for long track lengths. Neglecting events from
the end regions has not led to serious differences between
the calculated and measured distributions.
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C. APPLICATION TO PROPORTIONAL-COUNTER
SPECTROMETRY

The appropriate response function for application to
proportional-counter spectrometry is that for a fixed
counter-gas pressure. Since a neutron can c.eate a proton
recoil with an energy equal to the incident neutron energy,
it is necessary in principle to determine the response
function for energies equal to the maximum neutron
energy. Figures 32 and 33 show the response function at
various energies for the counter described in Sec. B above
filled with about 6.5 atm methane. This pressure is close to
that at which the resolution begins to appreciably worsen
because of contaminants in the gas. In Fig. 32 two
examples of calculated distorted distributions are repre-
sented by the solid curves. For this illustration. the same
values of R, were chosen as appear in Fig. 29. For a fixed
value of R,, the transformation of a distribution for one
value of E, to another is independent of energy, except in
the neighborhood of the peak. Figure 33 shows three
examples of calculated response functions which are repre-
sentative of the behavior of the response function in various
energy regions. The uppermost response function represents
the region in which the distorted part of the response
function can be represented by a straight-line fit for
energies almost up to the peak energy. The dashed line
represents the undistorted events. The middle response
function represents the region in which the distorted part
of the response function assumes a more complicated
shape, but a region in which R can still be contained in the
sensitive region. In this case, the number of undistorted
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indicated. The solid curve is the calculation, and the dashed curve
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with 6.5 atm Methane. The range R, and corresponding
energy E; are indicated. ANL Neg. No. 116-475.

events is so small that they are not even shown on the
.ﬁgure.. The bottom response function represents the region
in which all tracks are distorted. The maximum energy a
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proton recoil can deposit is less than Eo .

It is not possible to unfold the neutron spectrum for
energies above that at which all events are distorted. To
accurately determine neutron spectra with proton-recoil
proportional counters, the neutron spectrum above some
energy E¢—an energy somewhat below the energy at which
all events are distorted—is required. This high-energy
spectrum may be obtained from measurements with emul-
sions, foils, or other techniques or under certain conditions
from calculations. In any case, the neutron spectrum above
Ec is used to generate the corresponding proton-recoil
distribution. The wall-and-end response function is then
applied to this distribution to obtain the distorted proton-
recoil distribution. This distribution, which may be referred
to as the downscatter distribution, is then subtracted from
the measured proton-recoil distribution. The resulting
distribution then has no contribution from neutrons above
Ec. This proton-recoil distribution is then unfolded with
the response function from E¢ on down in energy to yield
the proton-recoil distribution corrected for wall-and-end
distortion.

The way one applies the response function to correcting
measured proton-recoil distributions depends on the com-
puting facilities available and the efficiency required. The
response function for E, above E¢ has a rather complicated
shape and is not amenable to parameterization. However,
F(Q) and N(?) may be parameterized over various ranges of
Q. Using a range-energy table and stopping power parame-
terization, the response function may be rather rapidly
calculated. One then can generate the response function
during the calculation of the downscatter distribution. A
computer code for generating the downscatter matrix is
presented in Appendix E. If end events are taken into
account, one must evaluate the third and fourth terms on
the right-hand side of Eq.19. In that case, it would be
better to develop a response matrix for E, greater than Eg,
which could be permanently stored. This matrix would be
called out during the calculation of the downscatter matrix.

For energies less than Ec, the distorted part of the
response function at a given energy may be fit with the first
four Legendre polynomials. In Fig. 32 the dashed lines are
fits to the distorted part of the response function. The use
of this parameterization for unfolding the data is outlined
in Sec. XI.

The undistorted part of the response function is repre-
sented by a delta function. One could take into account the
resolution of the counter by smoothing the calculated
response function. However, as pointed out in the discus-
sion of the electric-field response function (see Sec. VILD),
there are many factors that contribute to broaden the

* distribution, and furthermore, the intrinsic line shape is not

known. A smoothing of the proton-recoil distribution is
introduced by the numerical differentiation used to obtain
the neutron spectrum. Smoothing the response function has
little effect on the derived neutron spectrum [26] .



IX. CORRECTION FOR CARBON RECOILS

When methane is used as the filling gas, the ionization
spectrum contains not only proton recoils and electrons
from gamma-ray interactions, but also carbon recoils from
elastic scattering of neutrons on carbon. A simple correc-
tion scheme for this effect has been described else-
where [26] . The topic is introduced here simply for
completeness. In Sec. X the influence of various corrections
on a representative reactor spectrum is assessed; the
influence of carbon-recoil correction is included there.

In the correction scheme presently employed, a number
of simplifying assumptions are made. It is assumed that the
center-of-mass scattering cross section is isotropic and that
it may be represented by

5520
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with E in keV and o¢ in barns. The cross section is known
to have several resonances above 2MeV and to be aniso-
tropic above 100 keV. A cross section that is isotropic in

the center-of-mass produces a simple recoil distribution in
the laboratory; for a given neutron energy, the number of
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recoils per unit energy is constant up to the maximum
energy the recoil can obtain. For scattering on carbon, this
energy is 28% of the incident neutron energy. One also has
to know W for the correction. Limited measurements have
indicated that, relative to protons, the carbon recoil creates
about 75% as much ionization. It is assumed that this value
holds for all energies, even though it is known that there are
substantial changes in W for heavy fragments, especially at
lower energies.

The importance of the carbon-recoil correction will
depend on the hardness of the spectrum. The harder the
spectrum, the more important the correction becomes.
Because of the assumptions used in correcting for carbon
recoils, one does not like to see the correction become
large. If the correction is greater than several percent, one
might consider using a heavier gas to get a good stopping
cross section, but a gas whose recoils are not important
until lower energies. Krypton combined with hydrogen has
been successfully used in proton-recoil proportional coun-
ters, and becomes increasingly attractive as an alternative to
methane when the carbon-recoil component induces a very
significant effect [32].



X. INFLUENCE OF THE VARIOUS CORRECTIONS ON
A REPRESENTATIVE SPECTRUM

In the previous sections, correction schemes were out-
lined for various sources of systematic errors encountered
in the determination of neutron spectra with proton-recoil
proportional counters. In this section, the extent of these
corrections is assessed for a representative fast-reactor
spectrum. The central spectrum in a mockup of the Fast
Flux Test Facility core was chosen as the representative
spectrum [33]. This facility is to be a plutonium oxide-
fueled, sodium-cooled fast reactor.

Figure 34 shows the measured central spectrum corrected
for the various systematic errors together with a
fundamental-mode calculated spectrum. The error bars on
the measured points indicate only statistical uncertainties
and do not include uncertainties associated with the various
corrections. In order that a meaningful comparison may be
made between the calculated and measured spectrum, the
calculated spectrum, which was produced as a histogram in
1/120 lethargy width, was smoothed with a Gaussian
window whose width corresponded to the experimental
resolution. Various scattering resonances are clearly seen:
the oxygen resonances at 400 keV and 1 MeV, a chromium
resonance at 50 keV, an iron resonance at 30 keV, and a
sodium resonance at 3 keV. In general, the agreement is
good, except in the neighborhood of the resonances.

A. INFLUENCE OF ELECTRIC-FIELD CORRECTIONS

Figure 35 contains the neutron spectrum derived from
the uncorrected proton-recoil distribution and the spectrum
from the electric-field-response-corrected distribution. The
part of the spectrum derived from the methane-filled
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counter data extends above 100 keV, and that from the
hydrogen-filled counter below 100keV. For both the
methane and the hydrogen counter data, the correction is
only applied at energies at which the track lengths are short
(see Sec. VII.D). The assumptions under which the electric-
field response functions were derived break down for long
track lengths. For the methane counter data, this energy is
assumed to be somewhat lower than 1 MeV. Changing this
cutoff energy within reasonable limits has little effect on
the neutron spectrum. For the methane counter data, the
correction becomes significant at the lower end of its range,
ie., below a few hundred keV. Both the shape of the
spectrum and the shape of the response function as a
function of voltage contribute to magnify the effect in this
range. When the spectrum is rapidly falling off with
increasing energy, the influence of the tail of response
function from higher-energy events will be minimized. At
the lower energies, the higher gas multiplications are used.
The electric-field response function becomes more distorted
as the voltage increases (see Fig. 18). Note also that the
magnitude of the oscillation associated with the oxygen
resonance is increased.

For the data taken with the hydrogen counter, the
influence of the electric-field correction is seen over the
whole range. Since the hydrogen counter is only used in the
short-track-length region (see Sec. V.A), the cutoff energy
is above the top of the data. The larger effects are seen at
the lower energies. Percentagewise, the correction is large.
If the spectrum were not decreasing as rapidly with
decreasing energy as in this example, the magnitude of the



effect would be about the same and the percentage
importance of the effect would decrease.

B. INFLUENCE OF W CORRECTION

Figure 35 also contains the neutron spectrum derived
from the electric-field-response-corrected and W-corrected
proton-recoil distribution. W is assumed to be constant for
the methane-counter data and for the hydrogen-counter
data above 8 keV. The data above this energy are un-
changed. Below 8 keV the correction is significant and for
this example is the same order of magnitude as the
electric-field response correction. As for the electric-field
correction, the percentage importance of the W correction
depends on the spectrum shape. The large uncertainty in
the value of W is seen to be the limiting factor in
determining the spectra in the keV range.

If Fig. 34 is reexamined, one notices that the positions
of the resonances obtained from the methane-counter data
are in systematic disagreement with the calculated reso-
nance energies. Accelerator measurements of pulse height
versus energy rule out attributing all of the disagreement to
W variation. As indicated in Sec. V.A, this disagreement is
probably introduced by an excessive number of contami-
nants in the gas.

C. INFLUENCE OF WALL-AND-END CORRECTION

For the example under consideration, the neutron
spectrum above E.—the energy above which one must have
an independent determination of the neutron spectrum—
was assumed to be that predicted by a fundamental-mode
calculation. E¢ was chosen to be 2.5 MeV, and it was found
that the energy dependence of the spectrum could be
represented by

N(E) «./Ee-E/T, (25)
where T is a coefficient adjusted to fit the calculated
spectra. It may be noted that the functional form is the
same as that used to describe the fission spectrum, but with
a different value for T. In making the downscatter
correction, the calculated distorted proton-recoil distribu-
tion from neutrons above 2.5 MeV was normalized to the
measured distribution between 2.5 MeV and the end of the
measured data at about 3 MeV. Thus, only the shape of the
neutron spectrum above 2.5 MeV was required.

Figure 36 shows the neutron spectrum derived from the
uncorrected proton-recoil distribution, the spectrum de-
rived from a downscatter-corrected distribution, and the
spectrum derived from the downscatter- and upscatter-
corrected distribution. Only the data taken with the
methane-filled counter are presented in the figure. The
upscatter correction is for wall-and-end distortion suffered
by recoil protons produced by neutrons with energies less
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than E¢. The downscatter correction significantly reduces
the spectrum for energies greater than 1 MeV. The com-
bined downscatter and upscatter correction raises the high
energy end of the neutron spectrum, but has little effect at
lower energies. It is interesting that the complete wall-and-
end effect corrected neutron spectrum is not much differ-
ent than that derived from an uncorrected proton-recoil
distribution. This situation will usually not apply for
neutron spectra with shapes significantly different than that
of a degraded fission source. It is difficult to ascertain the
uncertainty associated with the wall-and-end correction for
energies above 1.5 MeV. Part of the problem is associated
with uncertainty in the energy calibration and part with
uncertainty in the response function introduced by neglect-
ing events entering the sensitive volume from the end
region.

D. INFLUENCE OF CARBON-RECOIL CORRECTION

Figure 37 presents the neutron spectrum derived from
the uncorrected proton-recoil distribution and the spectrum
derived from a proton-recoil distribution corrected for
carbon recoils. The correction becomes significant at lower
energies. As long as the neutron spectrum is falling off
rapidly with energy, carbon recoils from higher-energy
neutrons will only slightly distort the rapidly increasing
proton-recoil distribution. Because of the approximations
contained in the carbon-recoil correction scheme, one
would like to see the extent of this correction remain small.
For the neutron spectrum under consideration, the size of
the correction is rather large at the lower energies.

In summary, the corrections for the most part can be
considered as small perturbations on the spectrum. This is
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rather reassuring since the various correction schemes
contain simplifying assumptions which limit their accuracy.
Furthermore, the order in which the various corrections
were applied introduced almost no change in the resulting
neutron spectrum. This encourages the conclusion that the
corrections are to first order separable. Of course, some
care must be taken in extending these conclusions to a
spectrum with a substantially different shape than that of a
degraded fission source.

Accuracy at lower energies is presently limited by
uncertainties in the variation of W. At higher energies the
accuracy is limited by uncertainties as to the extent to
which inclusion of events from the ends might alter the
wall-and-end response function. An uncertain relationship
of pulse height to energy for proton recoils stopping in
methane also limits the accuracy.



XI. CODES FOR DATA REDUCTION FOR PROTON-RECOIL
NEUTRON SPECTROSCOPY

The small computer used as part of the pulse-analysis
system for collecting proton-recoil spectra is also used
extensively for reduction of data at the termination of an
experiment. This reduction is done with standard
FORTRAN programming. The number of codes and the
way in which they are written reflect the very limited
capability of the machine and its software. A larger
computer would be able to manage several of these
reduction codes simultaneously. A breakdown of the
analysis into several steps is, in some respects, not undesir-
able. Admittedly, some time is lost in the paper-tape
communication of data from succeeding stages of the
reduction, but results from each step are preserved and the
progress of the reduction is readily followed. A consider-
able amount of computational detail to provide electric-
field and wall-and-end response functions must necessarily
be done with larger, faster computers. Those codes are
described in Appendixes B-E. Once the parameters have
been generated for a given detector and its operating
conditions, they may be used in the reduction of data from
any spectrum measurement. Only the small computer is
necessary. The composition and use of the data-reduction
codes are discussed in this section.

A. INITIAL FORMAT OF UNCORRECTED
PROTON-RECOIL DATA

lonization spectra are accumulated at various voltages
with a methane-filled and a hydrogen-filled counter. Due to
memory capacity during the data reduction, the maximum
number of voltage runs is limited to eight, and the
maximum number of these that may be taken with the
methane-filled counter is limited to three. Ordinarily, eight
runs will suffice to provide data over the energy range from
1keV to about 3 MeV, which is near the practical
measurement limit for the counters described in Sec. I1.B.
It is desirable to have as much overlap as possible for
adjacent voltage runs, since the quality of results will be
reflected in the closeness of agreement of spectra in overlap
regions.

For each ionization spectrum at a given voltage, the
keV-per-channel ionization scale factor A(J) and a normal-
ization factor C(J) are known. A(J) are determined through
calibration with sources of known energy as described in
Sec. V. C(J) are the product of live times and hydrogen
atom number in the effective detector volume (in units of
10*% atoms). This information becomes part of a header
tape.

The ionization spectra are each of 100 channels extent—
the upper 100 channels of a 128-channel (linear to full
scale) spectrum. The lower 28 channels are ignored during
the analysis because electronics noise compromises the
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data. Each point of the spectrum consists of two single-
precision numbers (six digits), the second of which is the
overflow count. The maximum single-precision number
stored in the computer is 2' 7 - 1= 131071. (The 18th bit is
the sign bit and is not used.)

B. CODES

The various Proton Spectrum to Neutron Spectrum
(PSNS) codes are described below. The codes and tables
describing the input formats are listed in Appendix F.

1. PSNS-1

This code is intended as a survey of an experiment
immediately after termination. Any measurement problems
will probably show up in this survey. The heading material
is read in, and then each of the hundred-channel spectra.
The spectra are normalized and denoted by RAPS.

According to the sense-switch options, the data may be
written onto the storage scope either over an interval
(input) of voltage sets or over an arbitrary ionization range.
Before plotting, the distributions are scaled to the range of
maximum scope deflection.

The spectrum RAPS may be punched on tape; this tape
is in format to serve as input to the remaining PSNS codes.
A sense-switch option permits rereading an output tape.
This feature is sometimes useful for a scope inspection of
data from a completed run.

»

2. PSNS-2

This code corrects the spectrum with the electric-field
response function (see Sec. VII) and for W variation (see
Sec. VI).

If R(LI") denotes the response function by which an
event initially of amplitude I' leads to a measured effect of
amplitude 1 (I' > I), the measured distribution M(I) in
response to a source distribution S(I) is

M([):me(l,I')S(I') dr'. (26)

I

It is assumed that the response function can be written as
R(/I') = [AS(1 - 1') + BRo(LI)]/1', (27)

where

I e
_/:, Ro(11) dl/I' = 1, @8)



and also that A + B= 1. A and B are the integral amplitudes
for “*on-diagonal” and *off-diagonal terms, respectively.

We recognize that this procedure is overly simple. As V\‘/as
discussed in Sec. VILD, it is not possible to parameterize
the response in this simple way, since the response is a
smoothly varying function of amplitude and the delta
function contribution is actually nonexistent.

If Eq. 27 is placed into the integral of Eq. 26, the result

M(I)- B flm Ro(L1)S(1') dI'/I
A

(29)

S(I) =

is obtained. By proceeding with the correction from high to
low I values, we remove the effect of “off-diagonal” effects
from higher ionization events from the distribution.

In PSNS-2, the response function describing the effects
of nonideal electric fields is expressed as an expansion in a
polynomial (fifth order) of the form

ipc n)"™
R(LI') = ( )(T)
J=1

The six coefficients and a normalization (AREA) for each
voltage are sufficient to describe, in an approximate way,
the response function. The coefficients PC are input such
that the integral over R (with the argument I/I' ranging
from 0 to RHI) is unity. AREA is the fractional weight of
the “‘contained™ part of the response defined to include
amplitudes in excess of RHI of maximum.

Input to PSNS-2 consists in addition to the A and C
values, i.e., the header tape (common to all codes) of cutoff
values COME and COHY for both methane and hydrogen
chambers. Following these are AREA values expressing the
fraction of events in excess of some fraction RHI of
maximum for each chamber and voltage. Next are the six
coefficients from which the response (normalized) can be
derived at any amplitude below RHI. Last is the fraction
RHI (usually set to 0.7) separating the response into
diagonal and off-diagonal parts. These data are contained
on the electric-field response function tape.

The cutoff values COME and COHY require comment
(see Sec. VIL.D). The integral in Eq. 29 cannot be extended
infinitely, since the data are never that extensive and, in
addition, the response function produced for the field
distortion was generated on the assumption of a point-like
proton track extension. As track lengths increase, an
automatic spatial averaging over the axial counter direction
oceurs (together with wall-and-end truncation effects). This
averaging will rather quickly cause the field-response
distribution to lose its low-amplitude tail. To account for
this effect, the field-response correction integration in
Eq. 30 terminates when ionization exceeds the cutoff value.
The contained fraction AREA is increased by the fraction
of response function that is in excess of cutoff to preserve
the correct normalization for the correction and to allow

(30)
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for the change in response shape for long tracks.

The effect upon the correction of changing this cutoff
value over a reasonable range is very slight. The two-
parameter mode of pulse analysis used to accumulate
spectra and described in Sec. I also provides a method of
estimating the cutoff energy. The width of the fast-rising
(proton-recoil) component broadens quickly at energies for
which track extent starts to increase.

The response-function integration in PSNS-2 is a correc-
tion to the ionization spectrum; as a consequence, no
effects involving W (energy per ion pair) enter. After the
correction is made, however, the ionization spectrum RAPS
is divided by W. All subsequent use of RAPS will assume it
to be spectra per unit energy. The data for W correction is
contained on the W-to-ionization and energy-to-ionization
tape.

The scope display is organized to allow the spectrum to
be plotted before and after the electric-field response
connection.

3. PSNS-3

PSNS-3 treats response corrections to the data taken
only with methane counters. It corrects with the wall-and-
end response function and for the effects of carbon recoils.

The code has an option to allow subtracting from the
proton spectrum RAPS, a spectrum calculated to be the
downscatter from track truncation effects occurring above
an energy RLME which is input (see Sec.VIL.C and
Appendix E). A normalization of the calculated down-
scatter spectrum to the data over energies above RLME is
made prior to subtraction. RLME must be chosen some-
what less than the maximum energy point and not above a
point where the Legendre parameterization of the response
loses significance. In practice, RLME will usually be 2 MeV
or above for the counters described in Sec. I.A.

The carbon-recoil correction described in Sec. IX is
made next. It requires the neutron spectrum at energies
higher than the point at which the correction is made. An
adequate neutron spectrum is produced by first neglecting
the carbon-recoil problem and the wall-and-end problem
and analyzing the uncorrected methane data. Fortunately,
this correction is usually small.

After the downscatter and carbon-recoil corrections are
made, a correction for upscatter is made (see Sec. VIII.C
and Appendix D). The approach, by correcting the distribu-
tion from high energies downward, is basically the same as
was discussed under PSNS-2. Since the “off-diagonal”
response is energy-dependent. the expressions are corre-
spondingly more elaborate.

The response function has the form

R(E.Eq) = CLEG(1)5(E - Eo) + CLEG(2)

(€)

s
+CLEG(2) ). CLEG(i)P;.;(E/E,),
i=3



where Pj are Legendre functions. The five amplitudes CLEG
are generated from a polynomial expansion (fifth order) in
energy. The coefficients of the expansion are designated by
CPET. The first coefficient CLEG(1) is the “‘diagonal”
amplitude, the number of events (relative to unit-sensitive
volume) that originate in the sensitive region and stop
without truncation. The next four coefficients, CLEG(2)
through CLEG(S), are coefficients of the analysis of the
off-diagonal distribution using the first four Legendre
amplitudes.

CLEG(2), the first term in the Legendre analysis of the
off-diagonal distribution is also the integral of the off-
diagonal distribution, and the sum CLEG(1)+ CLEG(2)
would be unity if no contribution to the distribution from
events originating in the dead region at counter ends
occured. As was discussed in Sec. VIII.A, the contribution
from events entering at ends is small relative to the totality
of events and may be neglected without serious error,
except for the high-energy, long-track events, which are
relatively few in number. These events were not included in
the calculated response function, but the codes described
here will accommodate them if desired.

The first four Legendre functions of argument 0 <x < 1
are:

P =1

P, =1.722(2x - 1)
(32)
P, =2.236[6x(x-1)+1]

P; =2.646 {x[12-x(30 - 20x)] - 1}.

The amplitude of each Pj is determined by analysis of the
off-diagonal finite-range problem. The Legendre polyno-
mials in Eq. 32 are orthogonal and unit-normalized from 0
to 1.

The expansion coefficients CPFT as used in the code are
not directly those determined by analysis with the func-
tions of Eq. 32. Some rearranging was done for convenience
and in order to avoid repetitious computation time. The
last four CPFT coefficients, as input, are related to those
derived in the following way:

CPFT(2) for P, = derived coefficient, )
_ (derived coefficient) 1.732
CPFT(3) for P, = CLEG() ;
_ (derived coefficient) 2.236

CPFT(4) for P; = CLEG(2) s> (33)
and

(derived coefficient) 2.646
CPFT(5) for Py = CLEG(2) 1

J

37

The response-function expansion is valid only in the energy
region below RLME.

The scope plotting routines in PSNS-3 display two distri-
butions (RAPS, COPS) simultaneously. In this way the effect
of each correction can be seen directly. Arrays may be trans-
ferred between RAPS and COPS; this must be done, for
example, after the carbon-recoil correction and before the
finite proton-range correction, since the RAPS are consid-
ered “uncorrected” and the COPS “corrected” distributions.

4. PSNS-4

This calculation continues the finite proton-range correc-
tion to data for the hydrogen counters at lower energies. If
corrected methane spectra are available, these may be read
in. The coefficients that parameterize the response func-
tion, CPFT, are of the same type used in PSNS-3 (they are
relevant, of course, to the hydrogen gas filling which has
less stopping power than methane). The limit energy for use
of these response functions is input as RLHY.

The response-function tape format is the same as for
PSNS-3. Both methane and hydrogen data are placed on a
single tape; the methane numbers are deleted prior to
reading those for hydrogen.

Due to the numerical tedium involved in generating
appropriate response functions at each energy used in the
integral, PSNS-4 requires a relatively long running time
(approximately three hours) for a full data set. For
fast-reactor spectra the effect of this correction is small and
in most cases can be ignored altogether.

5. PSNS-5
»

The series of codes described up to this point has dealt
with the proton distribution exclusively. Corrections for
various nonideal response effects are made within the
framework of PSNS codes 2, 3, and 4, and the end product
should be the ideal density (per unit energy) of recoil
events.

The extraction of a neutron spectra is a very simple
procedure (see also Ref.2). The slope of the proton
distribution is derived at a series of equally spaced (in
lethargy) energies. Factors involving energy and the known
n-p scattering cross sections are applied to produce the
neutron spectrum (see Eq. 1), and a calculation of the
resolution (at each energy) is made.

In addition to the header tape and the tape relating
energy to ionization, information is entered on the teletype
keyboard.

RA and RB specify the slope-taking half interval STHW,
which is derived from the equation

STHW =+/RA? + RB*/E.

At each energy in a sequence (with lethargy spacing DINC)

(34)



of energies, EDEN, data within the range *STHW are
searched out and the slope and error computed. This is
done for each set of data that include changes in counter
type as well as changes in voltage for a given counter. Data
are read in set by set, and neutron spectra derived from
data for the set of EDEN values spanned by the set. Where
data from different sets overlap, a (statistically) weighted
mean is produced at the value of EDEN.

Equation 34 generates an energy-dependent slope-taking
interval which increases (if RB is nonzero) with decreasing
energy. If RB is taken to be ~0.8, the purely statistical
effects that broaden resolution will be of about the right
magnitude. Since the ultimate resolution attainable will be
limited by statistics and since no additional accuracy is
achieved by using slope-taking intervals less than statistics,
the prescription in Eq. 34 will permit a gradual increase in
slope-taking with no loss in overall accuracy.

The intrinsic resolution FWHM for a detector with a
mechanical resolution (full width half maximum) of FW is
derived from the expression
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FWHM =+/FW? + 0.17/E.

As energy increases, the statistical contribution, 0.17/E,
becomes insignificant and only the ‘“mechanical” part
remains. The effective resolution achieved here is depend-
ent upon both the slope-taking interval and the intrinsic
width; a discussion in detail has been provided in Ref. 2.
Values for mechanical widths for methane and hydrogen
are required as input, and the code produces an effective
resolution FWHM at each EDEN value and outputs this
number together with flux and error at the termination of
the problem.

An input option will cause neutron spectra to be com-
puted only for the methane detector. This option may be
used for the carbon-recoil correction described in PSNS-3.

The punched output of PSNS-5 consists of an energy,
flux, statistical error, and effective resolution for each
nonempty value in the energy sequence generated by DINC.
A scope plot of the neutron spectrum may be done prior to
punching.

(3%)



APPENDIX A

ANALYSIS OF GAIN-VOLTAGE DATA

The short FORTRAN program that follows is used to fit
the measured multiplications as a function of voltage with
the prescription

“’—EQA=C1*V+02, (A1)

where V is the voltage and Q, C1, and C2 are constants.
Input data consist, initially, of voltages and corresponding
gas multiplications (a total of N points).

A request for the voltage power factor Q is made, and a
number (usually near unity) is entered on the teletype
keyboard. The coefficients C1 and C2 are determined from
a least-squares fit and the root-mean-square deviation of
fitted A from measured A is printed. The process may be
repeated for different Q until a minimum rms deviation is
found.

Raising sense switch 2 will cause the quantities C1 and
C2 (slope and intercept) to be printed together with a table
of input-voltage values, input multiplications, fitted multi-
plications, and the percentage deviation.

If, after the table is completed, sense switch 1 is
observed to be up, six additional numbers are read from
paper tape. The first three are voltage limits and a voltage
increment used in forming a calibration table of energy full
scale and energy per channel. The following pair of
numbers, VREF and TEST, are a particular voltage and
corresponding peak channel value for the '*N(n,p)'*C
(615 keV) reaction used in the calibration (see Sec. V.B).
The last number, EXCS, is the ratio of the 615-keV proton
pulse height that would occur with an arbitrarily long
amplifier integrating time constant to the actual pulse
height. EXCS for methane will be close to unity, but for
the slower hydrogen-filled chambers, especially those of
large diameter, it may be as high as 1.10.
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X//38H  COUINTER  ENES EV)  IGNIZATIGN /
X WLTAGE FULL SCALE | PER CHAWNEL /)

28 FURMATC ///28H VOLTAGE PGVER FACTGR 1S = )

29 FURMATCF6.3)

VRITECO, 17)
READC 420 W
D61 I=1s
1 READC2, 18) VKDDL ACD
34 WRITECO, 28)

CGMPUTE THE fS EKKOR BETWEEN THE VALUE GF A FRGM THE LINEAR FIT
FOR EACH X INFUT AND THE MEASURED VALUE GF A.

READECRATIX
sY=

Soe0e0
5VS0=0.0

SYV=0.0

D2

vur-n.nqmu 1) /uC1 I wex
SY=SY+Y

Soeseeuih>
SUSG=5USGeUCI#UCT)

C2=(SUSQ# SY~SUeSY V) /DEN
RESG=0.0
D53 1=1.8
DIF=(Y(1)=Cl#VC(1)=CR) /¥ (1)
3 RESG=RESG#DI F#DIF
RESQ=SAKTCRESG/ FLOATCN) )
WRITECO, 19) RESG
PAUSE
SHOW QUALITY GF FITTED A VALUES IF S52 1S LIT.

IFCISNS(2))31,31,32
32 WRITE(0,24) C1.C2
WRITEC0,21)
DG35 1= 1N
AEVREXPCCUCI) #oX) 8 CC1#UCI)+C2))
PCD=100.# CAEV=ACI))/ACT)
35 WRITECOs 18 VUC1),ACI)sAEVS PCD

TERMINATE BY LISTING LGNIZATIGN VERSUS VOLTAGE IF SSI 1S LIT-
IF SS1 1S NGT LIT» CONTINUE FITTING To INPUT X VALUES

31 IFCISNSC1)) 34, 34,33
32 aEADte, 18) VBST, WAST, VINCR: VREF TEST EXCS
AO=EXP((UREF##X) #(C 1% UREF+C2)
DAt A0S 158 0N 615 O/ (TESTOEXCS)
WRITE(0,26)
WRITE(O, 18) UREF» TESTs EXCSs EMAX.
¥RLTECC,2T)

10 Dateutn
YrCoUPRED) 10 110 11

11 IFCWAST-U) 124 13,

13 GAIN-EXP(CUROX) (C10UsC2))

FULL= BMAX.

EPCHASEFULLS 128+
URE TEC0s 18 Uy EFULL, EPCHA
6 0 10

12 STOF
END



APPENDIX B

ELECTRIC-FIELD CALCULATION

A finite-difference solution to Laplace’s equation for the
electrode structure of Fig. 14 was sought. The peculiar
feature of the problem is the relatively small ratio of anode
to cathode. Typically the cathode radius is 1000 times the
anode radius, while the field-tube radius is about 10 times
the anode radius.

One would expect that any finite-difference approxima-
tion would have to possess a relatively fine radial and axial
mesh spacing near the tip where potentials undergo a rapid
variation. However, if a uniform spacing comparable to
anode size is chosen in both radial and axial dimensions, an
unreasonably large array results, and convergence is very
time-consuming.

The problem has cylindrical symmetry, and it is conve-
nient to map radial distance, r, into a dimensionless
variable, u, according to

u = log (r/a), (B1)
where a is the anode radius. For infinite coaxial cylinders, u
is the potential at any point in the region a <r <c, with ¢
the cathode radius. The mapping u=log(r/a) permits a
coarse u-mesh to contain a relatively large number of points
in the radial region between the anode and the outer-field-
tube radius. If, in addition, the axial dimension z (whose
origin is the field-tube-anode discontinuity) is measured in
units of a, Laplace’s equation becomes

e.zuazv 9%V

—t5 =

PP g (B2)

Boundary conditions were chosen as follows: At the
midplane, due to symmetry, the axial electric field vanishes
for all values of u. At the absolute end, distant from the
field tube tip and measured along the end region, potentials
appropriate to infinite cylinders,

_ log (1/b) log (c/a)
V==l ) ®3)
with b the field tube radius, were usually assumed. If
desired, other than infinite cylinder values for the radial
potential values along the absolute end may be input. In
practice, a complication in the form of electrical insulation
exists at the absolute end. The actual end boundary will not
influence the anode field significantly if the field tube
extends more than about 1.5 cathode radii into the
counter. Also, it was observed that axial potential gradients
were quite small as distance along the anode exceeded
about 1.5 cathode radii.

In the radial direction, the potential was maintained at
zero over the anode and end electrodes and was set to the
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value log (c/a) at the cathode.

A choice of mesh spacing along the u and z dimensions
was made in a way consistent with the mapping of r into u
and with the requirement of a dense mesh near the tip. A
fixed interval, H, sufficed along u. A z-mesh was chosen in
which successive mesh intervals increased by a fixed ratio,
7y, as distance increased both along the anode and end
regions. The progression, y, will differ over anode and end
regions if the number of mesh points in these regions
differs. If the zeroth mesh point is taken at the anode-end
interface, the kth mesh spacing is given by

Az = BASE vk-1, (B4)
where BASE is the initial mesh interval, for both the anode
and end regions. After a total of N intervals, the axial
distance to the Nth point is

2=BASE ("N - 1)/(y - 1). (BS)

A first-order approximation to the second derivative of

V at the z-mesh point k is given by

_| VK41 - V(zK)  V(zi) - V(zk-,) | [ Azksr + Az
Azt i Az 2

&y

dz?

(B6)

Equation B2 and the approximation of Eq. B6 lead, with
a little manipulation, to the following finite-difference
relation at the radial mesh point j and axial point k:

Vikj)=TLVG + |J)*7V(k-1{;j)+lz+v(k.j =) +V iy 1)

(B7)
where
T1=T2/(1+7),
and
T2 = 2H? exp[2(j - H] /y(Azk)?. (B8)
H is the mesh interval along u. The initial u-mesh point (j =
1) is taken at the anode surface. The factor y weighting the
term V(k - 1j) in Eq.B7 is due to the second finite-

difference approximation applied along the z axis where
successive intervals are of slightly different extent (their

«ratio is ).

Equation B7 is the elementary result solved by repeated
iteration. The starting potentials over both the anode and
end regions are those appropriate to infinite coaxial
cylinders. The radii of the field tube (inside and outside)



are adjusted by the code to agree with the choice of mesh
interval, H. Consequently, the problem solved will not, in
general, be exactly the desired one; parameters for the
problem solved are listed by the code.

The iteration proceeds initially along the anode for all
kj values with k in excess of the tip mesh point. Iteration
over the end region follows, first for j values in excess of
the outer-field-tube radii, and finally, inside the field tube if
the field tube is chosen to be “hollow.” The prescription
(Eq. B7) is slightly different for j (radial) points at the
tip-end discontinuity, since the adjacent k (axial) mesh
points both have the same spacing.

The input data and its format are listed in Table B.I. The
total number of iterations performed is determined by the
convergence requirement that the greatest change in anode
field V(k,2) not exceed 107* times the asymptotic value of
field between 1000 iterations. The problem, as presented, is
well converged after about 10,000 passes, this number
depending upon mesh size. For a problem with adequate
dimensioning (NANO = 110, NEND = 30, NUMP = 30), an
iteration time of about 3 hr on an SEL-840 with hardware
arithmetic was required for convergence. The code listing is
for a version run on an SEL-840 computer with 16k of core
memory. It appears that 16k is adequate; use of radial
arrays larger than those in the DIMENSION statement will
improve the accuracy of the electrical-volume calculation
somewhat at the expense of additional time required for
convergence.

The sensitivity of the computed field to parameter
changes was studied. It was noticed that some deviation of
the computed field occured if the initial mesh spacing
(BASE) exceeded four anode radii. Most runs were made
with BASE set equal to two radii. At least 75 anode mesh
points (NANO) were required to produce a field suffi-

ciently smoothly varying for use with the calculation in
which the counter response function was derived and
parameterized. Only a small change in anode field was
observed on increasing the radial mesh (NUMP) from
10 to 30 points. However, a fine radial mesh structure is
desired to improve the calculation of electrical volume, and
most runs were made with the full 30 radial mesh points.

A series of boundary potentials at the absolute end
(NBND > 0) was input, and the effect upon anode field
observed. On the assumption that the field tube extends
1.5 radii into the counter, no significant perturbation upon
anode field could be seen from reasonable assumptions
concerning potentials at the absolute end.

No significant effect upon anode field was observed
when a “hollow” tip condition (TIRA > 1) was employed.

After convergence has been obtained, a map of potential
along the radial for each axial mesh point is printed. It is
possible to estimate the direction of the electric field at
each point; the tangent of the field angle is the ratio of the
axial field component to the radial component. The axial
potential gradient over the kth mesh interval at the radial
mesh point j is just

[VGk + 1) - V(G k)] Az, (B9)

the difference between successive potentials along the axial
divided by the corresponding interval. The radial potential
gradient at the axial mesh point k is

V(G + 1K) -Vik) 1
H = (B10)

dr  du dr

where H is the fixed radial mesh interval.
During ealculation of the path of field lines, the
subroutine ANGLE (R,Z) is used to determine the sine and

TABLE B.I. Input for Program That Determines the Electric Field and Sensitive Volume

Card Variable Format Description
1 NANO 110 Number of mesh points in the anode.

NEND 110 Number of mesh points in the end.

NUMP 110 Number of mesh points along the radius.

NPRN 110 Block iteration count; after NPRN iterations, the block iteration
and maximum change in anode field may be printed depending
on sense switch options.

NBND 110 Greater than zero if absolute-end boundary potentials are to be
input.

2 DANO E12.5 Length of anode in units of anode radii.

DEND E12.5 Length of end in units of anode radii.

BASE E12.5 Initial z-mesh spacing in units of anode radii.

CATH E12.5 Cathode radius over anode in units of anode radii.

3 TORA E12.5 Outer-field-tube radius in units of anode radii.

TIRA E12.5 Inner-field-tube radius in units of anode radii. If set to 1.0,
problem solved for solid-field-tube configuration.

EIRA E12.5 Cathode radius over ends in units of anode radii.

4 BNDR 6E12.5 Radial potential boundary values for the absolute end if infinite

cylinder values are not used. NBND must be positive. First
potential is zero and last equal to log (CATH).

After convergence is obtained, the direction of field lines may be determined by a sense-switch
option. The anode terminus of a field line START, in units of anode radii, and the fixed path
increment DEL, in units of anode radii, are input in F8.2 format on the teletype.
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cosine of the field at any radial and axial distance r,z. A
fixed path increment, DEL, is propagated_fmfn anode to
cathode; its orientation to the radial direction is computed ‘
by ANGLE as its proceeds along. According to a sepse—
switch option, one may select a particular anode terminus
of a field line and follow the detailed path taken by the
field line to the cathode. In addition to the anode starting
point, a path length DEL is needed as input. The
accumulative radial and axial termini are calculated as the
total path, in increments of DEL, until finally the cathode
is reached. The number of increments and the field angle
and position are provided as output. From these calcula-
tions, pattern diagrams such as shown in Figs. 16 and 21
may be drawn.

The electrical volume enclosed by each axial mesh point
is essential for a response function derivation, since the
difference in volume enclosed by successive points provides
the weighting appropriate to events in corresponding
gas-multiplication intervals. By a sense-switch option, a
terminal calculation is done in which DEL is set to 3.0 and
the electrical volume calculated point by point. Decreasing
DEL below 3.0 did not improve the accuracy of the volume
calculation. As the calculation proceeds, both the near-
anode potential (proportional to electric field at the anode
surface) and the electrical volume are punched for use as
input in the response-function determination described in
Appendix C.

The FORTRAN code listing follows.

ELECTRIC “[ELD DETERMINATION FOR CYLINDRICAL PROPORTIONAL COUNTERS
WITH SIMPLE END-DEFINITION STRUCTURES. VERSION FOR THE SEL-840.
ALL DIMENSIONS ARE IN UNITS OF ANOD € WIRE RADIUS.

DIMENSION 7 AXIS ARRAY NOT GREATER .THAN 1| BELOW NAX [NUM.

DIMENSTON V(141,30), TERM(30) ,THNT(141),BNDR(30)
COMMON V., TERN, THNT JBNDR « NUMP . ML, L (H 4 SINA, COSIA

2015(1.L)=BASE*(RANOws (1-L)=1.0) /(RAND-1.0)
EDIS(1,L)=BASE®(RENDs» (L~{)=1.0) / (REND-1.0)
FORMAT(5110)

FORMAT(6EL2.5)

FORMAT(  SOH MESH POINTS IN ANDDE. END. AND RADIAL DIRECT[ON - /
X2X,3110;
4 FORMAT(///4TH ANODE LENGTH, PROGRESSION FACTOR. INITIAL AND /
X33H FINAL MESH SPACINGS ALONG MIRE —/2X.4E16.5)
5 FORMAT(///51H FIELD TUBE LENGTH, PROGRESSION FACTOR, INITIAL AND /
X32H FINAL MESH SPACINGS ALONG END - /2X,4E14.5)
6 FORMAT(///4TH ACTUAL OUTER TIP RADIUS AND RADIAL MESH POINT- /

X 2X.F10.2,110///47H ACTUAL INNER TIP RADTUS AND RADIAL MESH POINT-
X/2X.F10.2,110///42H ACTUAL END CATHODE RADIUS AND RADIAL MESH

X TH POINT- /2X,F10.2,110)

FORMAT(///30H ITERATIONS DONE IN BLOCKS OF-

7 7 2% 110)

B FORMAT(1H13IH ITERATION CYCLES TO THIS POINT - 1107/ )

9 FORMAT(X,14.F8.2,10F10.5)

0 FORMAT(1H126H INCORRECT INPUT MESK DATA )

1 FORMAT(//14H POINT  DIST.30X.32H RADIAL

12 FORMAT(16,3(6X/E12.5))

13 FURMAT(1HI&S5H ELECTRIC FIELD DETERMINATION FOR CYLINDR ICAL
X614 PROPORTIONAL COUNTERS WITH SIMPLE END-DEFINITION S TRUC TURES.
X14010)

14 FORMAT( //38W THE CATHODE RADIUS OVER THE ANODDE IS- /6X.F10.2 //
X 36H THE CATHODE RADIUS OVER THE END IS- /6X,F10.2)

IS FORMATC1H1//50H FIELD LINES TERMINATE AT ANODE AND CATHODE
X18H 2 DISTANCE SHOMN. ///6H ZMESHBX.6H ANDDE12X,B8H CATHODE

16 FORMAT(16,2F12.6)

17 FORMAT(/47H INPUT ANDDE TERMINUS AND INCREMENT (F8.2/F8.2) /)

18 FURMAT(F8.2/F8.2)

19 FORMAT(1H1.30X,23H FIELD ANGLE VARIATION. ///
X4X.2H NTX. 11K SINE ANGLE 6X,12H AXIAL DIST. 6X.13H RADIAL OIST.)

201 FORMAT(/10X, ZOH VOLUME ENCLOSED 1S- E12.5)

POTENTIAL  VARIATION)

AT THE
n

READ (3,1 )NAND, NEND, NUNP , NPRN, NBND
READ(3,2)DAND,DEND BASE, CATH
READ(3,2)TORA, TIRA.EIRA

FIX THE MESH SPACING ALONG THE RADIAL AND FIND THE MESH POINTS WHICH
ACTUALLY CORRESPONDS TO THE OUTSIDE SURFACE OF THE FIELD TUBE (JTIP)
AND TO THE INSIDE SURFACE OF THE FIELD TUBE (JINS).

ALSO FIX THE INSIDE END-REGION MESH POINT NEWP.

UMAX=ALOG(CATH)

MUNL=NUNP-1

MAX/FLOAT (NUN1)
JTIP=1+1FIX( ALOG(TORA) /H+0.5)

AKD=EXP( HeFLOAT(UTIP-1))
JINS=L+TFIX(ALOG(TIRA) /H+0.5)
ART=EXP(HFLOAT(JINS-1))
JIMI=IFIXCALOG(EIRA)/H+0.5)
AIND=EXP(H*FLOATUJINL) )

1
IF(JIN1-JT1) 63,63, 30
30 DU36 J=2,NUMP

36 TERM(J)=HeH¥EXP(2.0%HSFLOAT(J=1))
c
C INPUT END BOUNDARY IF NBND POSITIVE. FIRST POTENTIAL WUST BE 0.0,
C LAST POTENTIAL WUST BE UMAX.
[ 4
1F (NBND) 25,25, 26
26 READ(3,2) (BNDR(J), J=1, NEWP)
25 H=NAND
L=NEND+1
HL=M+L
c
C FIX THE RATIO FACTORS (RAND,REND) FIOR BOTH ANODE AND END REGIONS
c
NR=1
N=NAND
X=DANO/BASE
59 AN=FLOAT(N)
(F(X-AN) 63,6362
63 MRITE(5,10)
62 NC=4
DEL=0.01
R=1.01
53 Y= (RevAN-1.0)/(R-1.0)
IF (X=Y)51,51,52
52 R=R+DE
G0 TO 53
51 R=R-DEL
DEL=DEL/10.0
NC=NC-1
IF(NC)56,53,53
564 IF(NR)60,60,61
61 RAND=R
NR=NR-1
X=DEND/BASE
N=NEND
G0 T0 59
60 REND=R
c
C FIND THE MAXIMUM MESH SPACING AND THE TRUE ANDDE AND END LENG THS.
4
SAND=BASERANO+ (FLOAT(NANO-1) )
SEND=BASE*REND+* (FLOAT (NENI )
EANO= (RAND*S ANO-BASE )/ (RANO-
EEND=(REND*SEND-BASE )/ (REND~
&
€ LIMIT THE LEFT ITERATION WITHIN FIELD TUBE TO 20 POINTS OR LESS.
c
KLFT=1
IF(NEND- 20164, 64,65
65 KLFT=NEND-19
c
C FIX SOME VARIABLES USED IN THE ITERATION
c
64 W1A=1.0/ (RANOYRAND)
WLE=1.0/ (REND*REND)
=1.0/ (1.0 +RANG)
M2E=1.0/(1.0+REND)
T2A0=2.0/(BASEvBASE*RAND)
A T2€0=2.0/(BASE*BASE*REND)
C FORM BOUNDARIES AND STARTING POTENTIAL.
[
D021 K=L.HL
nP
21 FLOAT (J-1)vH
JTIP, NEWP
22 FLOAT(J-JTIP) sUMAX/FLOATONEMP=JTIP)

1L
D024 J=NEMP, NUNP
26 V(K. J)=UNAX

~
S

VK, 2)
ALTR=0.0001%V(ML,2)*FLOAT(NPRN)/1000.

EXTERNAL END BOUNDARY CONDITION.! INTRODUCE HERE.

IF (NBND)28,28,29
29 D027 J=JTIP, NEWP
27 V(1,J)=BNDR( J)

INITIAL DATA PRINT, ONLY ONCE PER PROBLEM.
PAUSE AFTER FINISH TO TURN OFF PRINTER, DISC ETC.

Annn

28 WRITE(S5.13)
MRITE(S,3)NAND, NEND, NUNP
MRITE(5,14)CATH,EIRA
MRITE(5,4)EAND,RAND,BASE , SAND
MRITE(S,5)EEND,REND, BASE , SEND
MRITE(5,6)AR0,JTIP (AR JINS, AL ND .\ NENP
WRITE(5, 7)NPRN
PAUSE

ITERATE THROUGH AND RETURN HERE UNL ESS CONVERGED OR TERMINATED.
FIRST ITERATION GOES RIGHT (AMODE REGION) FOR ALL RADIAL POINTS.

1TND=1
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KP1=Ke1

ke ? e (TIAS (VKL ) sRANOSV (KWL +0)) $V(Ko JP1) SV UKy JN1) )/ (T2042.0)
IF(K-HL) 31,35,35

T24=T24% 1A

T1A=T2Av W24

60 T0 33

-
5

KM1=K-

2 ) =VIKNL L)
39 CONTINUE

ITERATE LEFT (END REGION) FOR ALL RADIAL MESH POINTS IN
OF THE OUTER TUBE RADIUS. IN EXCESS

D041 J=JTL.JINL

PL=de1

VUK J)=(TIE®(VIKHLLJ)#REND®V (KPL o J) ) #V(K, JP1 ) #V(K, JN1) )/ (T 2E +2.0)
K=K-1

IF (K-1)41,41,37
37 T2E=T2EWMIE
TLE=T2FvW2F

G0 TO 38

41 CONTINUE

ITERATE TO LEFT INSIDE FIELD TUBE IF PROBLEM SO REQUIRES.
LFOJINS-1) 77,7771

71 IF(JINS-JTIP)72,63463

72 JFIN=JINS-1

IF (JFIN-1)63,63. 76
76 D075 J=2.JFIN

KP1=K+1
VIKe ) =(229(VIKPL, J) +V(KML4J)) +V (Ko JPT)#V(Ky JHL) )/ (2142.0)
K=K-1

KP1=K+1

75 CONTINUE
77 1T=1Ts1
IFCIT-NPRN)46.46,49

TEST .IF COMVERGED. REQUIRES THAT GREATEST CHANGE IN ANODE VOL TAGE
NOT EXCEED .0001 OF NOMINAL BETWEEN 1000 ITERAT.IONS.

49 DEF=0.0
D0120 K=L,
VARA=V (K, 2)- THNT(K)
IF(VARA) 124,125,125

K, 2)
IF (VARA-DEF) 120,120,121
121 DEF=VARA
120 CONTINUE
IF(DEF-AITR) 48,48, 122

IF SENSE 2 UP, WARK THE END OF EACH. NPRN ITERATION BLOCK BY

LISTING THE ITERATION NUMBER, THE FIRST ANDDE VOLTAGE' AND THE

GREATEST CHANGE [N VOLTAGE. CAN FORCE TERMINATION WITH SENSE SWITCH O
IF SENSE 3 UP, PRINT THE VOLTAGE MAP BEFORE CONTINUING.

122 CALL SSWTCH(2,N)
GO TO(141,142).N
141 WRITEC1,16)ITND,VILe1,2) DEF
142 CALL SSWTCH(O.N)
GO TO (48,123).N
123 CALL SSWTCH(3.N)
GO/ TO(143,145) N
146 DO147 K=L.ML
167 THNT(K)=V (K, 2)
145 ATNO=1TNOsL
GO TO 47

AFTER LAST ITERATION COMPLETED,
PRINT VOLTAGES AT EACH Z-AXIS MESH IPOINT. SENSE 3 MUST BE DOWN.

W8 PAUSE
143 00103 k=1,
IF(K=L)101,101.102

AmAnAan
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101 lnnnn:(m.

0 T0 1
lnnnx):mlsu.n
CONTI
ullvns.u
1=
IF (NUWP-10183,83,82
MRITE(S,11)

102
103
1TND.

»
N

3
L JLF=1+9
VARA=THNT (K)
WRITE(S, 9)K, VARA L (V(K,J) 4 J=1, JLF)
K=K+1
|Hx-nulo.uo.u
I+

®
o

uuv-
lflll)!)
WRITE(S, ll)
VARA=THNT (K
MRITE(5,9)K, VARA, (V(KsJ) o J=1,NUNP)

IF(K-ML) 85,85, 144
CALL SSWTCH(3.N)
GO TO(146,111) .8

IF SENSE 1 DOWN, CALCULATE THE FIELD CONTOUR AND ENCLOSED VOLUME F(R
Au INPUT STARTING POINT. SENSE 1 UP CALCULATES THE VOLUME ENCLOSED.
EACH FIELD CONTOUR AND EXITS BY PUNCHING THE ANODE FIELD AND

HIE VOLUME ENCLOSED BY THAT FIELD LINE

111 PAUSE

CALL SSMTCH(1,N)

G0 TO(110,116) N
WRITE(3,16)M,BASE, RANO

K=Le1

START=2DIS(K.L)

G0 TO 119

WRITE(5,19)

WRITE(1,17)
READ(1,18)START,DEL

IF (START-DAND) 119,118,118

CALL SSMTCH(1.N)

GO TO (109,114).N
WRITE(5,12)J,SINALZ R
JzJe1

DELZ=DEL*SINA
DELR=DEL »COSA

1H(2)130,130,115
1F(R-CATH) 113,131,131
VOL=VOL+ (DANO-Z+DELZ/2.) %6 .283 2% DELR*(R-DELR /2.0)
CALL AIBLE(D.U
G0 TO 11
voL= vol~; 14167DAND*(CATHYCATH-R *R)
G0 TO
X=DELR~ n-cun
VOL=VOL+6.2832%(DAND-Z)eX» (CATH-X/2.0)
CALL SSWTCH(1,N)
GO TO (133,134).N
WRITE(5.201) VOL
60 TO
MRITE (3, 2) V(KL 2) V0L
K=K+l
1F (K= nLnn.so.so
50 VOL=
MR[’E().ZDV(K 2),v0L
STOI
EID

115
13

SUBROUTINE ANGLE COMPUTES THE ANGLEI OF TILT OF THE ELECTRIC FIELD
TO THE RADIAL AT ANY AXIAL-RADIAL COORDINATE.

SUBRUUTINE ANGLE(R ,2)
DIMENSTON V(141,30),TERM(30) ,THNT(141) BNDR( 30)
CUMMON V., TERM, THNT,BNOR . NUMP ML, L \H, SINA . COSA

001 WAL
ZUT=Z-THNT(K)

IF(ZWT) 24141

CONT INUE
DELZ=THNT(K)-THNT(K-1)
U=ALOG(R)

003 + NUMP

UMT=U-He FLOAT(J-1)

IF(UNT) 6,33
3 CONTINUE
4 ESUBZ=((V(KsJ)=V(K=1,J)) % (HeUNT) +(V(K,J=1) =V (K=1,J=1)) s(~UMT))/
X(H*DELZ)

ESUBR= ((V(K,J) =V (KyJ=1)) w(DELZ+ZMT)#(VIK=1,J)-V(K-1,J=1) )% (~ZUTI}/
X (HeR*DELZ

D=SQRT (ESUBZ +ESUBZ +ESUBR *ESUBR )

SINA=ESUBZ/D

COSA=ESUBR/D

RETURN

END



APPENDIX C

FIELD-TO-PULSE-HEIGHT TRANSFORMATION

A knowledge of the axial dependence of anode field and
the volume contained by successive anode mesh points.
together with a relationship between gas multiplication and
voltage, is sufficient to permit construction of the af:tual
pulse-height response function (see Sec. VIL.B). A uniform
distribution of ionization from individual particle tracks of
negligible spatial extent is assumed. Particles initiating
ionization do not necessarily possess negligible track extent,
however, and a more elaborate approach than that provided
here would be necessary (see Sec. VIL.D).

The input data and its format are listed in Table C.I. The
code initially requires three numbers used to parameterize
gas multiplication versus voltage (see Sec. V.B). The param-
eterization prescription is contained only in the function
statement S(k) and consequently may be readily altered.
Data required are the anode field strength and correspond-
ing electrical volume derived from the calculation described
in Appendix B.

For each voltage a calculation of the response distribu-
tion is made by first transforming from the initial
(constant) density of events per unit anode length to the
integral distribution at each amplitude. The integral distri-
bution may be printed. The differential distribution is then
derived, and the mean value of the distribution is output.

The quantity GMAX, which is the ratio of maximum
gain to gain at the chamber center plane, is also output. For
the normal case of a cathode uniform across both the end
and anode regions (CATH and EIRA identical), the
maximum multiplication will occur at the axial center
plane. This is the situation in the example given in Fig. 15.
If EIRA is reduced, the maximum gain may actually occur
other than at the chamber center.

The differential distribution over four decades may be
plotted next. Typical results are shown in Fig. 18.

After derivation of the “ideal” differential distribution,

TABLE C.IL Input for Program That Transforms Field-
to-Pulse-height Distribution

Card Variable Format Description
i Q E12.5 Coefficient in the expansion of
log A (see Sec. V.B).
C1 E12.5 Coefficient in the expansion of
log A.
(i) E12.5 Coefficient in the expansion of
log A.

‘The anode field strength and corresponding electrical volume,
which were punched on paper tape in the program described in
Appendix B, are read in.

The reference voltage VREF is input in F12.4 format on the
teletype.

If smoothing of the distribution with a Gaussian is to be
done, the percent full-width-at-half-maximum WIDTH and the
amount the abscissa is to be scaled XNRM and the amount the

ordinate is to be scaled YNRM are i i
S input in F12.4 format on the
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smoothing with a Gaussian may be done to approximate
detector resolution. The percent full-width-at-half-
maximum is required as input together with horizontal and
vertical scaling. Typical results are shown in Figs. 19, 22,
and 23.

Another code (not given here) uses the differential
distribution in a polynomial fitting routine. The coeffi-
cients of a fifth-order fit are derived from the distribution
below 0.70 of maximum, together with the fraction of the
distribution in excess of 0.70 of maximum. These parame-
ters are in a form suitable for subsequent use in simple
integral unfolding routines used to correct measured
spectra for response effects (see Sec. XI.B).

The FORTRAN code listing follows.

FIELD TO PULSE HEIGHT TRANSFORMATION FOR COUNTERS WITH FIELD TUBES
AT ANODE POTENTIAL DEFINING THE ENDS.
RESULTS MAY BE FOLDED WITH A GAUSSI AN APPROXIMATION FOR RESOLUT ION.

DIMENSTON V(125),Z(125) PAMP(100),XYZ(125) ,VOL(125)
CUMMON PAMP, Z, V., VOL
EQUIVALENCE(Z(1)4XYZ(1))
GCI)=0.01¢FLOAT(L) *GHAX

H IS THE VOLUME WEIGHT AT MESH POINT K AND
HOK)=VOL (K=1)-VDL (K)
SCKI=EXPC(V(K) *2Q) v (V(K)eC1eC2))

S= THE MULTIPLICATION.

6 FORMAT( 14,2E14.5)

B [ORMAT(/32H INPUT REFERENCE VOLTAGE (F10.2) /)
10 FORMAT(//3TH RATIO OF MAXIMJM GAIN TO NOMINAL IS-
11 FURMAT( 1642F12.6)
12 FORMAT( 1H146H LISTED BELOW ARE TOTAL POINTS, ANODE LENGTH, 7/
X 44H MINUMUM MESH SPACING AND PIROGRESSION RATIO,.
X60H AND FINALLY. THREE COEFFICIENTS WHICH PARAMETRIZE GAIN VS v/
X/2X4 19, /(1PELS.S5) )

FORMAT(6EL2.5)
14 FORMAT(/51H [NPUT THE AVERAGING FULL WIDTH (F12.4) IN PERCENT- )
15 FORMAT(//39H THE MEAN VALUE OF THE DISTRIBUTION IS FB8.4 /)
16 FORMAT(//34H SCALE ABSCISSA BY AMOUNT (F12.4)-
17 FORMAT(//34H SCALE ORDINATE BY AMCUNT (F12:4)- )
18 FORMAT( 54H 552 LISTS INTEGRAL DIST. SS3 PLOTS DIFFERENTIAL DIST.
X/ SIH 554 PLOTS THE GAUSSIAN SMOOTHED DIFFERENTIAL DIST. //
32H INPUT REFERENCE VOLTAGE (F12.4)

19 FORMAT(F12.4)
22 FURMAT( L1H145H
23 FORMAT(

F10.3)

INTEGRAL AMPLITUDE DISTRIBUTION //)
BX16:6X E12.5,6Xe 112, 6X,E12.5)

READ(3,13)0,C1.C2
CALL ASC
READ (2,1 1)MZ ,BANO, RAND
0093 K=1,HZ

93 READ(2,13)V(K).VOL(K)

CHECK THAT VOLUME WEIGHTS ARE CONSISTENT NEAR TIPS.

K=hz

96 LF(VOL(K=1)-VOL(K))94,95,95
94 VOL(K=1)=VOL (K)

95 K=K-1

IF(K=1)97,97,96
97 DAND=BANO®(RAND*s(FLOAT(MZ))~1.0)/(RANO-1.0)
WRITE(1,12)MZ,DAND, BANO,RAND,Q.C1,C2

92 WRITE(1,18)
READ(1,19)VREF
D056 [=1,100

56 PAMP(1)=0.0
D071 K=1,MZ

T1 VIKI=V(K)SVREF/VINZ)
AREF =S (MZ)

Ztn=0.0

0052 K=2,M2
DUM=S(K)

LF (DUM-1.0)53,52,52

0091 K=1
91 GHAX=AMAXI (GHAX,Z(K) )

Nz

DETERMINE THE INTEGRAL AMPLITUDE DISTRIBUTION.

=1
60 k=1
68 [F(Z(K)=G(1)161,61,62
61 K=K+l
G0 TO 68
62 DZ=H(K)®(Z(KI=GLL))/(Z(K)=2(K=1) )
31 K=K+l
IF(K-M2)32.32,65
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32
33
35

TF(GCII-2(K=-11)33, 33,34
IF(GCI)=2(K))35,35,36

0Z=DZ+H(K)

G0 T
CZ=DZ+H(K) *( Z(K=1)=G(1))/(Z(K=1) ~2(K))
G0 TO 31

IF(G(I)=2(K))37,37,3

34 1
DZ=DZ+HIK)I*(Z(K)=GLI))/(Z(KI=Z(K=1))

El

PAMP(1)=02
1=1+1
1F (1-100) 60,

LIST THE INTEGRAL DISTRIBUTION IF SSMTCH 2 IS UP.

CALL SSWTCH(Z, M)
GO TO(76477) N
76 MRITE(4,22)
1,50

NLR=1+50
78 WRITE(4.23) NLL.PAMP (NLL),NLR, PANP(NLR)

CHANGE INTEGRAL TO DIFFERENTIAL DISTRIBUTION.

77 0054 1=1
54 PAMPCI)=PAMP (1) -PANP(1+1)

CALCULATE THE MEAN VALUE OF THE AMPILITUDE DISTRIBUTION.

SUD=0.0

AVG=0.0

D055 (21,99

AVG=FLOAT(I) sPAMP (1) + AVG
55 SUD=SUD+PANP (I

AVG=0.01%AVG /SUD

PRINT DETAILS OF THE DIFFERENTIAL D ISTRIBUT [ON.

MRITE(1.15)AVG
MRITE(1,10) GHAX

IF SENSE
IF SENSE
IF SENSE
IF SENSE

3 IS uP, PLOT lllE TRANSF ORMED DISTRIBU TION.
DOWN, DO NOT PLO

4 IS UP, PLOT ru( "GAUSSIAN-SHDOTHED DISTRIBUTION.
4 IS DOWN, DO NOT PLOT

PAUSE
CALL SSWTCH(3,N)
GO TO(SB.4T) N

PLOT DISTRIBUTIONS. & DECADES FOR AMPLITUDE, LINEAR FOR HEIGHT.
58 YY1:0.0
0040 1=
40 vuununvu.unrlln
0041 1=
‘1 PAIPIIl-lDMU.-PlnP(I)IV"
CALL PLOT(0.,0.,-3)
CALL PLOT (10.40.13)
CALL PLOT (10.,10..2)
CALL PLOT (0.,10.,2)
CALL PLOT (0.,0..3)
CALL AXIS (O 0.40.40.41.0,~17)
CALL PLOT (0.,0..3
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Aan

149

150
153

152
151

CALL LOGAX (0. o .-n.lo 0,90. 0, 4,4,0.20)
CALL PLOT (0.
00 42 11,99
X=10.0%G(1)/GHAX
IF (PAMP(1)-1.0043,43,44

GO T0 45
¥=10.0+ALOG(PAMP (1)) /ALOG(10000. )
CALL SYMBOL (X:Y,45.,.03,26,1)
CONT INUE

CALL PLOT (12.040.,3)

PAUSE

CALL SSWTCH(4,N)

GO TO(48,92),N

“
45
42

FORM AVERAGE OVER A GAUSSIAN SHAPE FUNCTION.

48 WRITE(1,14)
READ(1,19)WIDTH
00149

121,125

-0
~*ALOG(2.)
1,99
EJ=FLOAT(J)
NGY=WIDTH*EJ/100.
1=PANP(J) *SORT(DELTA/3.14159) /DENGY
CON2=DEL TA/( DENGY+DENGY)
MOR=IF IX(SORT(21./CON2))
00 152 W125
IF (J-K-MOR1150,150,152
IF (K-J=MOR)153,153,152

=FLOAT (K)
(EJ=EK) v (EJ-EK) v CONZ
XYZ(K)=XYZ(K)+CONLs EXP(-ARG)
CONT (NUE
CONT INUE

PLOT DATA.

Yri=0.0

D075 [=1,125

YY1 = AMAXLOYY1.XYZ(1))
WRITECL,16)

READ(1,19) XNRH
WRITE(1,17)
READ(1,19) YNRH

CALL
cALL

PLOT(0.,0.,-3)
PLOT(13.,0..2)
PLOT(13.,10..1)
i
)

1
XP=130. -lunn/l 5
YP=XYZ(10)#10.0v YNRH/YY1
CALL PLOT(XP,YP,3)
D073J=11,12
XP=FLOAT(J)*(13./125.) vXNR
IF(XP=13.)72,73,73
YP = (XYZ(J)/YY1)v10.0vYNRH
CALL PLOT(XP,YP,2
CONT INUE
CALL PLOT(15.,0.,3)
AUSE

G0 TO 92
END.



APPENDIX D

WALL-AND-END-EFFECT RESPONSE FUNCTION

Knowledge of the track-length probability functions and
of the range-energy and stopping-power relations for a
particular counter-gas filling permits the determination of
the wall-and-end-effect response function (see Sec. VIIL.A).
At present the influence on the response function of events
originating in the end regions is neglected—the response
function is approximated by the first two terms on the
right-hand side of Eq. 19. One has only to evaluate the
track-length probability functions for: 1) a track starting in
the sensitive region and ending in the sensitive region
without distortion, F(¢), and 2)a track starting in the
sensitive region and being truncated by the walls or
extending into an end region, N(2). This appendix describes
the two codes that evaluate and parameterize the response
function. The first code evaluates F(2) and N(X), as well as
the first coefficient CLEG(1) in the expansion of the
response function (see Sec. XI.B.3). The second code
evaluates the distorted part of the response function over
the energy region in which not all events are distorted—the
region in which the upscatter correction is applied (see
Sec. VIIL.C). A Legendre fit is made to the distribution, and
the coefficients CLEG(2) through CLEG(S) are determined.
Appendix E considers the code for generating the proton-
recoil distribution for the downscatter correction.

Under the assumption that the distribution of tracks is
uniform and isotropic, the track-length probability function
F(?) for € less than the diameter is [30]

F(Q) = [4(1 -k*)/(37k)] X [K(k) - F(cos ' mkK)]
- [401 +K)/(3m)] X [E(k) - E(cos™' m k)]
+ [(4k? - 1)/(4mak)] X sin”! k -{(Zm/n)
+ [4k*(1-m?)- l]/(47rak)}>< SR (EmE) L2
+m-km?/(2a) - {[2km/(317)] + [2K3(1 -m?)+ 1] /(47ra)}
x{a-mi-ea -m)}
+[(1 + 2k*)/(4ma)] X (1-Kk?)V2, (D1)
and for € greater than the diameter
F(O) = (40 1)/3m)] x {K1 /)
- Flsin™! k(1 -mz)‘”.l/k]}- (40< + 1)/(3m)]
o {E(l/k) -E[sin™! k(1 - m?)1/2 ,l/k]}

5 {2m/n + [4k*(1 - m?) - I]/(47rak)}

X sin”! k(1 -m?)""? + m - 1/(8ak)

+k/(2a)(1 - m?)

-{2km/(31r) + [2K3(1-m?) + 1] /(41ra)}
x{(@-mh)1-ke -ty 2 ®2)

F(¢ k) and E(¢k) are incomplete elliptic integrals of the
first and second kind,

~1/2

F(oX) = [,%(1-k? sin? 6)"'* do,

(D3)
E(pk) = [,?(1-K? sin? 8)712 qp,

and K(k) = F(m/2 k) and E(k) = E(n/2k). The parameters k
and a are in units of radii and are

k =¢/(2a)
and (D4)
a=1L/(2a),
where a is the radius of the cylinder and L is the length of
the sensitive region. The parameter m is the smaller of L/¢
anql'}ll.e track-length probability function N(2), where N(£) d¢
is the probability that a path length is between £ and
¢ + d¢, is, for ¢ less than the diameter,
N(9) = [2(1 -k?)/(3mak?)] X [K(k) - F(cos ' mk)]
- [2(1 - 2k?)/(3mak?)] X [E(K) - E(cos ' mk)]
- [(1 + 4k?)/(8maak?)] X sin”! k
+ {[1 +4k2(1 »mz)]/(81raak)}>< sin™! k(1 -m?)"/?
+ 1 [(4aa) + {2m/(3na) + [6K2(1 -m?)- 1] /(81raak)}
X {(l -m?)[1 -k*(1 - mz)]}
+ [(1 - 6k?)/(8maak)] X (1 -k2)/2, (D5)
«and, for ¢ greater than the diameter,
N(9) = [2(2K2 - 1)(3mak)] X{E(l/k)-E[sin" k(1 -m’)”’,l/k]}

- [4(k* - 1)/(3mak)] (D6)
(Contd.)
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(C°'(‘]t)d6'; X {K(l/k) R k(lem?)2) l/k]}
+ {lemiGnay) + (o1 ) - 11/(8naalo) }
x{a-mtyi e )

+{weqme)+ 1/(8raak®)} X sir k(1 - m?)"?

- [1+4K*(1 - m?)] /(16aak?).
F(Q) is related to N(£) by

F(©) = j‘; fmax \0) a, (07)
where fmax = (L? + 4a%)'"? . Calculated F(2) and N(®) are
shown in Figs. 24 and 25, respectively.

Besides the track-length probability functions, one must
have the range-energy and stopping power €(E) relation-
ships. We will consider only the relationships for methane
gas; similar ones may be worked out for hydrogen. A
parameterization of €(E) for methane at 76 cm Hg and
15°C was determined from a fit to the data contained in
Ref. 34. For E greater than 300 keV, €(E) was fit with the
Bethe-Block formula

e(E)—°235 (10.01n E + 40.0). (D8)

in the energy range of 30 to 300keV, a fifth-order
least-squares approximation to the data was used. For E less

than 30 keV the data was approximated by

€(E)=155.1 E°*. (D9)

The ranges were taken from the table of Ref. 34. For E less
than 30 keV, the ranges were determined to be consistent
with the energy dependence assumed for € in this range;
i.e., the ranges were determined from

E dE
R(E) fo & (D10)
The uncertainties associated with the data below 30keV
are rather large. Fortunately, these uncertainties have little
effect in the calculation of the response function.

The first program calculates the track-length probability
function F(?) and a*N(®) for values of k = £/(2a) at which
the elliptic integrals are evaluated. The values of the elliptic
integrals may be obtained from interpolation of the tables
in Ref.35. The input variables and their formats are
indicated in Table D.I. The track-length probability func-
tions depend only on the counter geometry and are
independent of the counter gas. However, since CLEG(1) is
simply equal to F(R,) at E, corresponding to Ry, it is
convenient to evaluate CLEG(1) in this program. The range-
energy table must be inputso that E, may be determined. The
factor P times the density associated with the range-energy
table gives the density of the counter gas for which
CLEG(1) is evaluated. The output includes the input track
length, Eq, CLEG(1), and the track-length probability
functions F(¢) and a*N({). The program is written for the
SEL-840, and a listing appears at the end of this appendix.

The second program calculates the distorted part of the
response function for a particular track length and fits it
with a Legendre polynomial expansion. The function
a*N(Q) is only evaluated at certain values of € in the first

TABLE D.1. Input for Program that Determines Track-length Probability Functions and CLEG(1)

Card Variable Format Description
1 NPROB 17A 4 Title card—up to 68 characters.
2 A E12.5 Radius in cm.
SL E12.5 Length of sensitive reguon in cm. Enter as 0, if L is infinite.
P E12.5 Pressure in atm at 15°C.
3-7 E 12F6.4 Energies in MeV in increasing magnitude at which the ranges are specified.
812 RGE 12F6.4 Corresponding proton ranges in cm.

For each value of € at which the track-length probability functions are to be calculated, one or

two cards are required.

13a C E12.5
ASIN E12.5
F90 E12.5
E90 E12.5

Track length divided by the diameter k; k = 2/(2a).

sin”' ; deleted for k greater than one.

Complete elliptic integral of first kind K(k); K(k) = F(m/2,k).
Complete elliptic integral of second kind E(k); E(k) = E(7/2,k).

If Q is greater than the length of the sensitive region, SL, card 13b is required.

13b BSIN E12.5  sin'k@-m?)'"?
track length.
FIN E12.5
EIN E12.5

with m equal to the sensitive length divided by the

lncomplete elliptic integral of first kind F(¢,k). For k Iess (han one,

F(cos' m,k); for k greater than one, F[sin"' k(l-m?)""?, 1/k].

Incomplete elllpnc integral of second kind E(¢, k) For k less than

one, E(cos’ m,k); for k greater than one, E[sin™! k(- m? , 1/k].

Last Cards 13a and 13b are repeated for each value of 2.
The program is terminated by a negative value of C on card 13a.




program; it is necessary to have a continuous representation
of it for the calculation of the response function. From
Fig. 25 it is seen that N(2) undergoes rapid change in shape
near values of € equal to the counter diameter. It was found
that two sets of coefficients from least-squares polynomial
fits of fifth order, one set for values of € less than a
diameter and the other for values greater than the diameter,
adequately represent a*N({).

The two sets of coefficients and boundary value of ¢
between the two sets are input to the second program, as
well as a range-energy table, the density factor, and EA and
EB, which refer to the stopping cross-section data. The
stopping cross-section data, or dE/dx data, are input as the
statement functions EP1, EP2, and EP3. The variable EA
defines the boundary between EP1 and EP2, and EB
defines the boundary between EP2 and EP3. The input
variables and their formats are shown in Table D.II.

For an input value of the range Ry, the program first
calculates the corresponding value of E, from the range-
energy table. A hundred equal-energy intervals are formed
between zero and E,. Using the stopping cross-section data.
the range-energy table, and the approximation to a*N(?),
the values of the distorted part of the response function are
calculated at values of E in the middle of each interval.

The hundred calculated points are plotted on a Calcomp
plotter. Sense switch 1 is set up if scales are desired.
Because of the rapid variation of the distorted distribution
for small values of E, near the energy E, (see Fig. 29), it is
desirable to modify the end part of the distribution before
fitting is attempted. After the distribution is plotted, an
integer, NFIT, is input on the teletype, and the program

sets all points greater than the NFIT point equal to the
value of the distribution at the NFIT point.

The program then performs a Legendre-polynomial
analysis of the distorted distribution with four polynomials.
The Legendre-polynomial coefficients are represented by
C(1) through C(4). In terms of the coefficients listed in
Sec. XI.B.3, the correspondence is that CLEG(2) through
CLEG(S) are equal to C(1) through C(4), respectively.
CLEG(2) is simply 1 - CLEG(1), when events from the ends
are neglected. However, both CLEG(1) and CLEG(2) are
kept as independent coefficients, so that when end events
are included, no further modifications will be necessary to
the data-reduction codes. The coefficients C(2) through
C(4) [CLEG(3) through CLEG(5)] are normalized as if
C(1) [CLEG(2)] were one. This permits a better fit to the
coefficients at low energies. In the expansion of the
response function (see Eq.31), it is thus necessary to
multiply the last three coefficients by CLEG(2). A
FORTRAN listing for the SEL-840 appears at the end of
this appendix.

From the first program, one has CLEG(1) for various
values of Ey, and from the second program, CLEG(2)
through CLEG(5) for various values of E,. It was found
that a satisfactory continuous representation of each
coefficient could be obtained by a fifth-order least-squares
polynomial approximation. The program for the fitting is
not included here. Figures 38—41 show this fit. The
coefficients of the least-squares fit parameterize the re-
sponse function for energies at which there are still
undistorted tracks. For higher energies no such simple
parameterization is possible (see Appendix E).

TABLE D.II Input for Program that Determines the Legendre Polynomial Coefficients
for the Distorted Part of the Response Function

Card Variable Format Description
1 NPROB 17A 4 Title card—up to 68 characters.
2 P E12.5 Pressure in atm at 15°C.
CcuT E12.5 For @ less than CUT, one set of coefficients for a*N(®) is used; for €
greater than CUT, the other ¢ is input in cm.
EA E12.5 For energies less than EA, the function EP1 is used to determine dE/dx.
EB E12.5 For energies between EA and EB, the function EP2 is used to determine
dE/dx. Both EA and EB are entered in MeV.

3-4 CAN 6E12.5 The coefficients of the polynomial expansion that approximates
a*N(Q). The first six coefficients are for € less than CUT, and the second
six for € greater than CUT.

5-9 E 12F6.4 Energies in MeV in increasing magnitude at which the ranges are
specified.

10-14 RGE 12F6.4 Corresponding proton ranges in cm.

For each value of R, at which the Legendre coefficients are to be calculated, one card is required.

15 RO E12.5

Range in cm of proton at which the coefficients are to be determined.

After the distribution is plotted on the Calcomp, the integer NFIT is read in on the typewriter
in I3 format. Use of NFIT in program is explained in text.

Last The program is terminated by a negative value of RO on Card 15.
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The FORTRAN code listing follows.

DETERMINATI@N OF THE TRACK LENGTH PknsABlLlrv
FUNUTIBNS F (L) ANU AN(L) AND OF CLEG(1

UIMENSI@N E(60),RGE(60)
COMMDN s RUE

1 FURMAT(6ELZ.5)

2 EBRMAT( X, BNRADIUS = E12.3,3H CH,0X,dBHSENSTTIVE LENGTH = E12.
X58H CH:/6X, 1/HPRESSURE FACTER = E12.5

S FURMAT(12F6.

4 fnhnAv<xnu;gx.nuL M, 9Xs2HEU, 7X» THCLEG(1) # 7X, 4HF (L) +BX, SHAN(L) )

¥ FOKMAT(17A4)

9 FORMAT(1H17 X 1/A4)

e
T

REAU(4,199) NPRUB
WRITE(5,299) NPROB
READ(4:,1) A/SLIP
WRITE(5,2) AsSLiP
KEAD(4,3) E
REAU(4,3) RGE
WRIIE(5,4)
Do 64 1 2

64 RGELI) '\n.:(lup

T 70 J = 1,60

=J

lb(NhE\N)) 70.10,9

7u CONIINI

v lr(bL) xu.xuyxl
0.0

uu 10 12
2.
11 c,A51~.rvu.EDn
sAsC
0

-0
N = 0.5 + U.25048
10 69

o
T Ce1 = 1.
1F(C=1.0) 114.::1.);5
1 = SQRI{C21)
5 IF(SL) 17,17.15
15 AR = SL/(2.9A%C)
1F(AM=1.) 16,1/:17
16 READ(4,1) BSINs FINs EIN
6o To 18

=
5
R
z
s
3

SAMZ1 = SORT(AMZ1)
28 1F(C=1.0) ¢5, SU, 35

EVALUATION @F F(L)
K LESS THAN 1

25 rz- u tZAAlQDC:l/C'(790 FIN) = 0.4244148(1.4C2)/Ce(ES0=EIN)
12. SQEbeOC)lAB'lSlN = (0.6366200AH+(4,0C20AN21

2122u
C?‘AHZ]) .

M+ (2.9C20AM2141.)#0.079577
+#C2)90.07957750AB45C21

F2 = AW

X5ak) sSAn2L e SORT (i
ER P e

Go 10 125

K EQUALS 1



[

ioae

L
¢
[
c
¢

125 AN = 0, z:zzw-czucz-(nu-rl -
IN)

(0.6366209AM+(3 2)e
(0.2122079AN+(3.-2.%

0.3750A8 =

= -y, *(10EIN)  +
50 ¢ U B4BBZES (1 ANeiuaeAE. <

XAB®0.0795775)8BSIN ¢ AN =
X AM2)e0,U795775%AB) sAMSSANZL
G610 130

K GREATER THAN 1
140(C2+1,)8(EQ0~ EIN)

35 F = 0.4244148(=C21)8(F90-FIN) =
- +(4,0C20AN21-1, :ua-n 0795775/C)eBSIN
A a“““":‘ .;-%-AB AM21 = 2122070CeAM* (2, -l:zunnq-
x)e0. d7v>77>us)oSANAcSuR!u.-CZ'A"Zll
G0 To 135

EVALUATION OF ANCL)

K LESS THAN 1

0.212207#(1.~2,9C2)/C20(E90
c2reaprcaensiN. o 0.0397888%(1.+4.®
(0.212207AM+0,0397888%
0.0397888%ABs (

U.03978888 (1,44
x:g-lHEl)CAB/C?'USIN * D.25eAMZeAB ¢
XAB®(6,9C20AM21=1,)/C) #SAM218SORT (1.=C29AN21) +
X1.-6,0C2)/Co5C21

w T2

K EQUALS 1

= E +4.0AH21
AN = 0.2122079(EJ0=EIN) = 0.31259AB + 0.039788BeABe(1,4.9
Ui Ce U 2o AZeAD o (01212207 4AK+0.03978084ABe (5. o5, SANZ)
X)eAM®SAMZL
w0 19 40

¢
L

e

orcioe e

o

o

e

e

e

e

K GREATER THAN 1

C2=1.)/C*(E90=EIN) = 0.424414%(=C21)/Ce(F90~
3978889AB®(6,9C2+AN2-1,)) ®SAM218S0RT (1.~
CZeAM21+1.)/C2#BSIN = (1,e4.0C20

0.2122070(2,
* (U.212207%AN
geussqungiiset

185 AN =
XEIN)
XCeeAm21) o

XAMZ1)@AB/(16.0C2)
EVALUATIEN 2F C1(E0)

AND EO
Wl
83 nm,-nnurm 66,65,65
85 E0 = =10
% w e 69
65 LB 68 J = 2,N

IF (AL = WGE(J)) 67,67,68
67 uuw (AL = RGE(J= nl/(neeul - nasu =1
€0 = E(J = 1) * RATIDeE(Y) = E(J =

ev
88 LONTINVE

PRINT RESULTS

6y WRITE
" Ge Te
9y STeP
" END

(5:1) ALIED,C1,FiAN
12

DETERMINATIEN UF THE LEGENDRE COEFFICIENTS
GZUEU), C3(ED) ANU C4(

DIMENSIBN cANuz:.E(eo).RsEibm EN(100),C(100),C5(100),ENS(100),
XNPROE (17) 1 ASUBF

CUMMBN AN E4RGE,EN/C,CS,ENS
DE/UX DATA FER PROTONS IN METHANE

LESS THAN $U KE
EPL(£2) = laz u(eg--a 40)

¢: 82805 + ZY(525.9812 + 2ye(=6. unsns‘! + ZYel(2.67778
X1E+4 & £Y0(=4.3/35336+4 + 2Y81,756109E+4)))

GREATER THAN 3U0 KEV

EPS(ZX) = 0.235/2X%(10.9ALBG(2X) + 40.0)

1 FBRMAT(17A4)
2 FRRMAT(8E12.5)

3 FORMAT(12F6.4)

4 FURMATULHI/ X 17A4/10X, 17HPRESSURE (EACTER =
5 FURMAT(/26H ENERGY 100 HIGH FBR TAB

6 FUNMAT ( 45H LEGENDRE raLv FIT oF nISYlRVED DISTRIBUTION )
7 FURMAT( 7H ENEKGY )

5 FORMAT(5H KO = F7.4, 2X 4HED = F7.4 )
FORMAT(13)

URMAT(// 16HOLEGENDRE CREFF

BRMAT (10X ZHCC 11,30 o E12.5')

E12.5// )

v
10k
iF
READ(4,1) NFRUB
READ(4:2) P.CUT/EAIER
REAU(4:2) CAN
KEAD(4:3) E
REAU(4,3) RUE
WRITE(5:4) NPREE.P

FUHN HANGE TABLE FOR LRUNTER LBNDITIBNS

ve 1
20 nhE\I) = nc:(n/p
B 21 1

NN ® 6=y
|s<wcsum)l 2121422
21 CONIINUE

KEAU RU AND DETERMINE EQ
22 THEAD(4,2) KU

IFTRO) 99,122,122
lF(ﬁu-RGE(NNH 23,23.123

12¢
19 li(”El
G 10 o
2800 25 J 32,
IF (ROU= ﬁGE(JJl (4.20.45
24 RATIC = (RU-RGE(J=1))/(RGE(J)=RGE(J=1))
E0 = E(ym1) + numngu)-&u-n

50

GB 1@ 26
2> CONTINUE
CALCULATE DISIBKTED DISTRIBUTIEN

e

26 LE = £0/100,
08 39 1 = 1,100
ENCI) = FLOAT(I=1)®DE + DE/2,
EOUI = E0 - ENCL)
1F(EQUT-E(1)) 126,208,127

128 wul = EQUT/E(1)®RGE(1)

12/ 0o 29 J= 2,
LIFCEQUT=E(J) )2/, 28,29
27 RATIg = (EQUT=E(J=1))/(E(J)=E(J=1))
-KBUT = RGELJ=1)"¢ RATIOe (RGE(J)-AGE(J=1))
28 neuv = nus(a:
12 30
2y cunglnu&
$U RIN = RU=RGUT
LFCRIN=CUT) $1431,32
31K =1
G0 19 33
32 K ="
35 AWK 3 CaNCK) » RIN®(CAN(K+1) + RIN®(CAN(K$2) + RIN®(CAN(K+3) +
XRIN®(CAN(K*4) + RINSCAN(K+5) 1))
LECEBUI=EA) 340 34,35
34 DEDL = EP1(EGYT)

8> Ih(EQUT=Ed) 36,36,3/
86 DtUL = EP2(EOUT)
3¢

3/ ueuL = EP3(EQUT)
38 CCI) = ANRZLELL
89 évmmuﬁ

= 0,
U6 40 121,100
4U SUM = SUN « (1)
T De 41 Y
41 Gl = CCLi/sum
© PAUSE
c
L PLO) DISTRIBUIION. SENSE SWITCH 1 UP FBR SCALES
c
- U 42 Je1,100
CS(J) = c(U)
42 ENS(U) = ENCY)

CALL PLOT(U.,0, R
CALL SCALE{CS,100,10.,YNIN/DY)
CALL scuu:us,wo.:a..xnm.nn
CALL SSWTCH(1,K
Go 1Y (43,44 )oK

43 CALL AKIS(U..I‘I.;!O +90.sYMIN,DY,45)
WKIIE(16,6
CALC Answ..u-.xz..n..xnxu.nx,-xzn
WRIIE(16,7)
CALL EERT{IZi e
CALL PLET(1 1u..21
CALL PLOT(0: 1

48 CALL semnns..v..n...w)
WKITE(16+8) ROsE
Up 45 121,100

4> CaLL svnnux»-vﬂ.n...w.q-u
CALL Fwnu..u..
KEAD(149) N
Ve 46 K:NFH.xou

40 GLJ) = CONEIT)

aon

LEGENUKE POLYNBMIAL ANALYSIS OF DISTBRTED DISTRIBUTIEN

ue 47 l.
47 Cs(1)
nnnna.a) RU,E0
LB 50 N=1
ARG = EN(1)/E0
ASUBF (N) = \:(U'PLE&(N.ARG!'Z
Lo 48 Jz2,y
ARG = Enwneu
48 AsusrlNl =z Asuurlm .cC
KG = EN(10U)/ED
Asuanm = Asuur(m * C(1O0U)®PLEG (N, ARG)® (2, (E0=EN(100)))/E0

+*EN(1)/EQ

(JISPLEG(N,ARG) ® (EN(J+1)~EN(J=1))/(2,E0)

v CS(3) 3 esly) . ASUBF (N)*PLEG(N,EN(J)/E0)
50 CONTINUE
DIRA'E(51101
RM ASUBF (1)
ua 51 I=1,
SUF (1) = Asum(n/wnun
51 WRITE(5,11) 1,ASUBF (]

PLOT FIT TO DISTRIBUTION

oa

FIT & (CS(1) = YMIN)/DY
CALL PL@HENS(U;F” 3)
CALL PLTX(1

0e 52 I-E,:wu

FIT = (CSC1)=YMIN)/DY
CALL PLW'(ENS(HJI‘.X)

v
e

CALL PL .
G Tp zz

9y STOP
EN

FUNCTIEN PLEG(N,ARG)
ie

Go (1,243,4)0N
LE .

-
-

~

FLEG=(2.eAKG - 1.)e1,73205

RETURN

PLEGE (6. #AKG® (AKG=1.) + 1,)e2.23607
RETURN

PLEG = (=1.+ARG®(12.-ARG#(30,~ARG20
u:vuu

s

>

$1))%2.64575
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APPENDIX E

THE DOWNSCATTER MATRIX

Above a certain energy determined by the dimensions of
a particular counter and its filling gas, all proton-recoil
tracks are distorted (see Sec. VIII.C). The neutron spectrum
above this energy cannot be determined with this counter.
Of course, the neutron spectrum above this energy creates
ionization over the range recorded by the counter and must
be taken into account if the neutron spectrum below this
energy is to be accurately determined. This appendix
describes a program that generates the ionization distribu-
tion recorded by the counter from an input neutron
spectrum extending above the measurement limit. This
distribution is used in the downscatter correction section of
the data-reduction code for correction of wall-and-end
effects in the methane counter (see Sec. XI1.B.3).

The asymptotic neutron spectrum above some energy E
is assumed to have the shape

ASNS(E) =,/E e-E/T, (E1)

where E is the energy and T is a constant characteristic of a
particular spectrum. This form has been found to provide a
reasonably good fit to calculated fast-reactor spectra above
a few MeV. It is interesting to note that this is the same

analytical form as that used to describe the prompt-fission
neutron energy spectrum [36] . The energy E. is chosen to
be somewhat below the highest energy data point.

The proton-recoil distribution is calculated for this
asymptotic neutron spectrum. The neutron spectrum below
E¢ is zero, and thus the proton-recoil distribution is flat
below E¢. This proton-recoil distribution is folded in with
the counter response function to produce the downscatter
distribution. The counter response function for energies
greater than E. is evaluated with the subroutine
RESP(EZERO). The influence of events from the end
regions is neglected. Using an input parameterization of
a*N(?) and a range-energy table and stopping power
parameterization (see Appendix D), the distorted part of
the response function is evaluated at a hundred equally
spaced energy points between zero and E,. The contained
fraction at each E, is determined from an input fit to
F(E,) over the energy range from E to the energy at which
the contained fraction goes to zero. The fit to the
contained fraction must join smoothly at E¢ to CLEG(1),
which is identical to the contained fraction for energies less
than E¢. The response function for energies less than E is
determined from the Legendre polynomial parameterization

TABLE E.I. Input for Program that Determines the Downscatter Matrix

Card Variable Format - Description

1 MN 16 Number of methane runs.

2 AQ)) SE12.5 Ionization per channel; same informdtion as on header tape for PSNS
programs.

3 RLME E12.5 An energy cutoff E; below the highest-energy point. The calculated
proton-recoil distribution is normalized to the measured distribution
between E; and highest datum point.

4-8 CPFT 6E12.5 The polynomial expansion for the Legendre coefficients that describe
the response function below E; same coefficients are used in PSNS 3.

9 T E12.5 Constant that appears in Eq. E1 which is determined from fit to spectrum
above E¢; input in units of keV.

10 EA E12.5 For energies less than EA, the function EP1 is used to determine dE/dx.

EB E12.5 For energies between EA and EB, the function EP2 is used to determine
dE/dx. Both EA and EB are entered in MeV.
P E12.5 Gas pressure in atm at 15°C.
DIA E12.5 Diameter of counter in cm.
CLEN E12.5 Sensitive length of counter in cm.
ELIM E12.5 Above this energy, all proton-recoil tracks are distorted; input in MeV.

1 1§ CAN 6E12.5 Coefficients of polynomial expansion which approximate a*N(?) for
€ less than the diameter.

12 CLAN 6E12.5 Coefficients of polynomial expansion which approximate a*N(%) for ¢
greater than the diameter.

13 cCi1 6E12.5 Cocfﬁf:ients of polynomial expansion which specify the contained
fraction as a function of energy in MeV for energies greater than E..

14-18 E 12F6.4 Energies in MeV in increasing magnitude at which ranges specified.
19-23 RGE 12F6.4 Corresponding proton ranges in cm.

51



(see Appendix D). The output consists of that part
of the downscatter matrix from events above E¢ and the
complete downscatter matrix. The downscatter matrix is
determined in the same format and over the same energy
range as the methane data that is to be corrected—i.e.,
MN sets of data with a hundred energy channels in each set.
The normalization at this point is irrelevant;it is determined
later when this calculated distribution is normalized to the
measured distribution over the energy range from E¢ to the
top of the measured data.

The input format for the downscatter matrix calculation
is listed in Table E.I. A FORTRAN listing of the program
for the SEL-840 follows.

¢
© CUKKECTIZN Te MEASURED METHANE PRETEN RECEIL DISTRIBUTIONS FOR
C HIGH ENEKGY NEUTRONS ASSUMING THAT THE SPECTRUM BF THESE
T NEUTHDNS IS MAXWELLIAN WITH TEMPERATURE T.
4
& DIMENSIEN CAN(6)CLAN(S),CC1(6),E(60),RGE(60),C(101),ENC101),
XKAPS(100+3),A(8)/CPFT(6,5) PRD(200),CLEG(5)
COMMUN EAJEH,NNsDIAJCLEN,ELIM, CAN,CLAN,CC1,E,RGE, C,EN
¢
5 PRUCH) =DE®F LUAT (M) *RLME
(] ENthV VALUES FOR THE DATA ARRAV DERIVED FROM THE EXPRESSIpN-
5 CHEN(1,J)=ALJ) F LUAT (12|
C THE ASYMPIBTIL NEUTREN sp:cvaun IS ASSUMED T@ WAVE THE SHAPE=
= “ASNS(ENERGY) =SUKT (ENERGY) sEXP (~ENERGY/T)
¢
T 1 FURMAT(I6)
2 FURMAT(5E1Z.5)
3 FURMAT(6E12.5)
4 FORMAT(1HO//// 12X+37H CEMPLETED DOWNSCATTER SPECTRUM LIST //)
5 FORMAT(1K1///47/H LISTED BELBW ARE RESPENSE LIMIT RLME F@LLOWED
X75%H BY THE A(J) VALUES SPECIFYING THE SPECTRUM ENERGY’ FORHAT. ./
X5UH THEN AKE LISTED VALUES FOR EA,EB,P:DIAsCLEN, EL
X 45H AND FINALLY THE FAST NEUTRON TEMPERATURE.
6 FRRMAT(12F6.4)
7 FERMAT(1HO0//// 12X,36H DEWNSCATTER FROM EVENTS ABOVE RLME //)
z KEAD(4)1) MN
READ(4:2) (ALJ) s9=14HN)
¢
€ INFUI HIGH ENEKGY CUT=BFF RLME. RLME MUST BE CHRSEN BELDW THE
€ HIGHEST ENERGY DAlUM PUINT BUI NBT BELOW 2 MEV. ALS@ INPUT LEGENDRE
€ EXPANSION CREFFICIENTS WHICH PARAMETRIZE RESPONSE BELOW RLME
¢
£ REAL(4,3) RLME
812 12115
12 READ(4,3) (CPFT(J/1),0=1,6)
¢
T INPUI THE MAXWELLIAN TEMPERATURE T FOR NEUTRONS IN THE
€ ASYMPIOTIC ENERGY REGION. DIMENSION FOR T IS IN KILBVOLTS.
<
= READ(4,3) 1
c
€ REAU IME GAS AND DETECTER PARAMETERS NEEDED T0 DERIVE THE RESPONSE.
4
E MEAD(4,3) EAJEB,P,ULA,CLENIELIN
KEAU(4,3) CAN
KEAD(4,5) CLAN
REAU(4,3) CL1
KEAD(4,6) E
KEAU(4,6) RUE
¢
§ LIST THE VARIOUS DATA WHICH HAS BEEN INPUT.
. WRITE(5)5)
WRITE(5,2) RLME
WRITE(5:3) (ACJ)+J=10 M
WRITE(>,3) hA.tu.P.nlA.CLEN.ELIN
WKITE(5,3) 1
FAUSE
c
¢ FURM RANGE TASLE FOR COUNTER PRESSURE
H E
- Yo 23 1 = 1,60
23 RGE(I) = RGE(I)/P
U 21 J = 1,00
NN = 1=y
1F (RGE(NN)) 21,21,20
€1 CONTINUE
¢
C CEMPUTE THE ACTUAL PROTEN RECBIL DIS'R[BUYIBN (PRD) ABBVE R|
E THE DISTRIBUTISN BELW KLME WILL BE FL £ S
T2y ks ununu.- m.nsuew.
FRD(200)=0
12199
42 XEPRO(1)
11 = -1,86+Xe(9.415E- 05)~x'x0() 306E-10)
0.422354x80 :Jue-
“zoses as:¢v1-vxx~3 1416/(X»(1.206E-03) 472072
D= ﬂuA|-1z~n=-ns~$(lr-sxn/xx- ) 2rel
1K(1)45,45,42
4> APUSPRD(1)
[
& EVALUATE IHE LEWN-SCAITER FROM EVENTS ABRVE TH
BoIE HESPONSE SFECTRUM C(1) HAS ALL OF THE CbNVElhé:l:h:::féN N
H CUivl) AND THE REST DISTRIBUTED FREM 1 T 100.

U836 Jz1,MN

52

ey

[LECTr

aicio

i

0 o0 eac

cae

e

oa

056 1=1,100
& RAPS(1,J)sU.0

v
°

KE1v9
EZERV=EPRD (K)

v
R

o
~

UECHEN( 1, J)
IF (U=EZERD )58, 58,60
1F (U=EZER@+DE)59,5961
nAPS(l.4)-KAPS(l.Jl~E(l°l)-PRv(K)
=%
li!l-aua)sz.oz.ga
39 DB54 L=2,100
©OIFCENCLI=U) 24,54,57
54 CONIINUE

a7 RAPS(1+J)=RAPS(1+J)+Se(CIL)=(EN(L)=U)®(CIL)=C(L=1))/CEN(L)=EN(L=1)

o
a4

sy ynuglnus
Kak=1
1F(K)52,52:55
LIST THE DOWNSCATTER IN RESPENSE BNLY T@ WALL EFFECTS ABBVE RLME.

52 lnllt(5-7)
008
] HKI'E(S.Z}IHAPS(I-J)vX’i.luﬂ)

EVALUATE UBWN=SCATTER RESPBNSE IN THE ENERGY REGIBN BEL@W RLME
WHERE LEGENDRE PARAMETRIZATIGN IS USED.

B8 STAPLSA(M)
=1

79 VECHEN(N/M)
0.0
le1
90 USCHENCI,
xr|u-RLne;vx.94.v2
1 lr(l-u’u;,v§.9>
95 D897 K=1:5

08V/U-1.0
£1.50ARG ARG
RS 'CLEG(él‘CLEG(Q)I('ESV 0.5)+ARG® (CLEG(3)+CLEG(5)
X *(1,66667% ES
1E(1=N285
RAFS(NrH)lRAPSlN:H)’APDICLEE(ll

rs
td

<o
i3

-xoRS/y

1S
=

90
92 KAPS(N.n)-«APSIN.M)osol
NaN+.
IF(N=100179,79478
Mak=1

>

1F(M)82,82,83
LIST THE DRWN-SCATTER SPECTRUM. ALS® PUNCH RESULTS IF DESIRED.
B2 WRITE(S

4
ver1 y=1,
1 uulvex>.2| (RAVS(an)rl=l.§0ﬂl

1

v

un:nsts‘zx anastl.J).lxx.xual
guu
SUBROUTINE RETURNS A 101 CHANNEL RESPONSE DISTRIBUTIEN FBR ANY ENERGY
SUBROUTINE RESP(EZERD)
DIMENSION cnnle).cgnu(o).c:x(sl.s«su).keE(onx.clxoxl.sn(xox)
COMMBN EA,EB,NN/DIA,CLEN,ELIM,CAN,CLAN,CC1,E»RGE, G4 E
UE/DX UATA FOR PROTONS IN METHANE
EP1(22) 2 122.10(22000.40)
(EP2(2Y) 3 25.85805 + 3Y8(555.9812 + 2Ye(=6.468577E43 + 2ys(2.67778
A1E+4 + 2Ye(-4,373533E44 o 2Ye1.756109E+4))))
GREATER THAN 3U0 KEV
EPS(2X) » 0.235/2X8(10.9ALOG(ZX) + 40.0)
CUNVERT ENERGY FROM KEV T@ MEV
EU=EZERR/1000.
UETERMINE RO
D 3y = 2,NN

=E(J)) 2,13
= RGE(JI

1F
1 R
2 NAVIB s (E0=E(J=1))/ (E(J)=E(J=1)
%o =g RGE(J=1) + RA'lll(RGElJ)-RGE(J-l))
s QIN!INUE
ETERMINE EMAX

LF (RO=CLEN) 5,5,6
EMAX = ED

s

o
=,
=
o
B
e
&
o
™
z

DB 10 J = 2/NN
1F (RL=RGE(J)) 87,10
EL s L)
e T8 9
NA 10 = (RL=RGE(J=1))/(RGE(J)=RGE(J=1))
EL= E(J=1) + RATIBS(E(J)=E(J=1))

@ o~



oo

y ENAK - Eﬂ-kL

] C|nilnué
CALCULATE UNNORMALIZED DISTRRTED DISTRIBUTION

11 EN(L0D) = D
De = E0/100.
08 27 1 = 1,100
ENC(1) = FLOAT(I=1)eD2 + D2/2,
lFlEN(ll-ERlX)lI!:II!:lZ
12 Clll . 0.

1z En-enlx)
3 E(1)) 13
18 Elu'/Ell)-nnE(x)

14 08 17 J = 2.NN

5 lilElUl-E(J)) 15,16,17

(EIUT-ElJ 1)) /(E(J)=E(J=1))

* RGE(J=1) + RATIR®(RUE(J)-RGE(J-1))

INVE
RO=RBUT
.y |r1ll~ DIA) 19+
NR CAN(l!ollﬂnlCAN(2loﬂln-(clu!a:~n|u-iCAuil)ORlu-chnlsloaxn.
lCAN!O) ))1)

-
k]

2 iLNI . CLAN(l)‘RlN’(CLAN(zI'RlNO‘CLANIl)'RlN'(CLANlA)oRINOlCLAN(5)

53

Icoe

X*RINOCLAN(S) ))))

ANR = EXP(ALNR)
21 IF(EBUT-EA) zz.zz.za
22 LE L 2 EP1(ER

Ge Te 26
3 IF(EDUT-EBl 24124,25
4 DEDL = Esztsa 1)

T

o

(7]
2> DeDC = EPJ‘:BUY)
K C(ll * ANR/DEDL
27 CONTINUE

NBKMALIZE THE DISTRIBUTIEN AND CENVERT ENERGY BACK T@ KEV.

Ih(EoseLim 29,2828
28 CT401
ca . x n

1
2y c: Pt o E09(0C1(2) ¢ EOR(CCL(3) + EDR(CCL(A) ¢ FOeLECH(3)
X E08CCL(6) 1))
€1101) = 1.-C1
30 SOM = 0.
9 31 1 = 1,100
1 SUM = SUM ¢ C(1)/100,
1,100

EN EN(1)e1000.
$2 CUI) = C1eC([)/(SUM®100.)

zu(xoxl s EN(101)%1000.
RETUR
END



APPENDIX F

CODES FOR DATA REDUCTION

The FORTRAN listings of the five codes used in data
reduction and described in Sec. XI.B are contained in this
appendix. The machine-language data-collection code has
been described elsewhere [18] .

The Varian-622 computer for which these codes are
written has an 18-bit word length with 8k memory. Several
peripherals are available. These are a paper-tape system
(FORT.DEVICE02) consisting of a 300-character-per-
second optical reader and a 60-character-per-second paper-
tape punch, a teletype keyboard and paper printer
(FORT.DEVICE00), and a storage-type oscilloscope. In
many instances, a scope display of data is sufficient; where
a high-quality record is needed, results are plotted on a
Calcomp digital plotter with a larger computer.

DATA-620 PSNS-1.
INITIAL SURVEY OF RAW IONIZATION SPECTRA. SPECTRA CAN BE COMPARED
EITHER BY VOLTAGE SETS OR BY ENERGY INTERVAL. PUNCHED RESULTS
ARE COMPATIBLE VITH CODES FOR RESPONSE CORRECTION AND FOR

SLOPE TAKING. 172471970+

ocoocaaa

DIMENSION RAPS(100,8),A(8),C(8)
COMMON RAPS,AC
CHENCI,J)=ACJ) FLOATC1+28)

FORMAT(/37H INPUT INITIAL SET AND LAST SET (12) )
FORMAT(12/12)
FORMAT(/20H ENERGY LIMITS ARE- )
16 FORMATCSEI2.5)
19 FORMAT(//30H N  KEV/CHAN  MONITOR 7
20 FORMAT(6EI2.5)
21 FORMAT(2F7.0)
23 FORMAT(/16HRAV DATA SURVEY
X /25H LISTED BELOW ARE MN,NMET )
24 FORMAT(F10.2)
25 FORMAT(/15H MAXIMUM FLUX = / E12.5)
29 FORMAT(/13H ENERGY RANGE )
30 FORMAT(14,2E12.5)

P

READ HEADER TAPE.

aaa

WRITEC0,23)
READ (2,2) MN,NMET
WRITE(0,2) nw.um:r
DO701 J=
701 READ(2,16) n(.n.cu)

WRITEC0,19)

VRITEC0,30) (JsACJ)»CCJ) s JalsMN)
PAUSE

IF 553 LIT, READ PRE-PUNCHED SPECTRUM DIRECTLY.

coa

IFCISNS(3))40,40,41
40 DOS J=1,MN
DO 713 1=1,100
READ(2,21) DNUM,DOFL
713 RAPSCI,J) = (DOFL#131071. + DNUM)/(CCJI$ACS))
PAUSE
CONTINUE
GO TO 312
41 D042 J=1,
42 READC2,16) (RAPS(I1,J)51=1,100)

»

ACCORDING TO SENSE LIGHT OPTIONS, DISPLAY PROTON SPECTRA BY
SETS (S51)» OR BY INPUT ENERGY RANGE (S52) . IF NEITHER SS1 OR
2 ARE LIT,PUNCH THE SPECTRUM.

annaa

312 PAUSE
IFCISNSC1))311,311,313
311 IFCISNS(2))201,201,202

INPUT THE SETS TO BE PLOTTED,SCALE TO MAXIMUM,DRAV AXES
CUNTIL SS3 IS LIT) AND THEN PLOT

acoa

313 WRITEC0,1)
READ(0,2) NLO, NHI
X=0.0
DO175 J=NLO,NHI
DO175 1=1,100
U=CHENCI, J) #RAPS(1,J)
IFCU-X)175,175,176

176 X=u

175 CONTINUE
WRITE(0,25) X
ELOV=CHEN( 1, NHI )
EUPP=CHEN( 100, NL0)
WRITEC0,3)
WRITE(0, 16) ELOV, EUPP
CALL AXIS

SPAN=ALOG(EUPP/ELOV)
DO205 Js=NLO,NHI
D0205 I=1,100
UsCHENCI, J'
IX=IFIXC131071+#ALOGCU/ELOW) / SPAN)
IY=IFIX(130000+#USRAPSCI+J) /X)
CALL PLOTCIX,IY)

205 CONTINUE
G0 TO 312

202 WRITE(0,29)
EAD(0,24) ELOV
READ(0,24) EUPP
X=0.0
DO185 J=1,MN

IFCU-ELOV) 18551655165
165 IFCEUPP-U) 185,166,166
166 UsUSRAPS(I,J)
1F(U-X) 185,185,186
186 X=U
185 CONTINUE
WRITE(0,25) X
CALL AXIS
SPAN = ALOG(EUPP/ELOW)
DO209 J=1sMN
D0209 I=1,100
U = CHENCI,»J)
IFCU-ELOV) 209,208,208
208 IFCEUPP-U)209,207,207
207 IX=IFIXC131071+#ALOGCU/ELOW) /SPAN)
1Y=1FIX(130000+#U$RAPS (1, J) /X)
CALL PLOTCIX»IY)
209 CONTINUE
GO TO 312

PUNCH SPECTRUM ON PAPER TAPE.

aaa

201 DO177 JmlsMN

177 WRITE(2,16) CRAPSCI,J)»1=1,100)
60 TO 3
END
END

DATA-620 PSNS-2.

RESPONSE CORRECTION TO IONIZATION.SPECTRA TO ALLOV FOR THE
EFFECT OF FIELD DEFINITION AT COUNTER ENDS.

MAY ALSO NORMALIZE SPECTRA TO W. 172471970+

canaaa

DIMENSION RAPS(100,8),MNOLL(8),A(8),PC(6,8),AREACE),
XCWM(6) CWH(6)

COMMON CWM, CWH,A»NMET,RAPS, TIME, TIHY

CHENCI,J)=A(J) #FLOAT(1+28)

16 FORMAT(SEI2.5)

17 FORMAT(//24HTHE RESPONSE DIVIDES AT- /F10.2)

18 FORMAT(//31HV IS UNITY FOR ME AND HY ABOVE- /2F10.2)
19 FORMAT(//39HW EXPANSION COEFFICIENTS FOR ME AND HY- /)
20 FORMAT(6EI2.5)

21 FORMAT(F8.1)

22 FORMAT(12/12)

23 FORMAT(///10X,37HRESPONSE CORRECTION FOR FIELD EFFECTS
24 FORMAT(//5X,41HPOLYNOMIAL COEFFICIENTS FOR FIELD EFFECTS
25 FORMATCISH MAXIMUM FLUX = / E12.5)

27 FORMAT(///24H N CONTAINED FRACTION /

)

INPUT AN ENERGY INTERVAL, SCALE, DRAW AXES (UNTIL SS3 LIT) AND PLOT

”

28 FORMAT(//40HINTEGRAL CUT-OFF ENERGIES FOR ME AND HY= /2F10.2)

29 FORMAT(/21H INPUT ENERGY LIMITS
30 FORMAT(I4,E12.5)

READ HEADER TAPE.

caa

WRITE(0,23)
READ (2,22)MN,NMET
1 J=lsMN
701 READ(2,16)ACJ),X
PAUSE

READ ELECTRIC FIELD RESPONSE DATA.

aaa

READ(2,20) COME, COHY
WRITECO,28) COME, COHY
WRITE(0,27)
DOBSI I=1,MN
READ(2,20)AREACI)
851 WRITEC0,30)1,AREACI)
WRITE(0,24)
D031 I=1,MN
READ (2,20)(PCCJs1)5Ju146)
31 WRITE(0,20)(PCCJ,1),J=1,6)
DOB9L I=1,MN
D089 J=1,6
891 PCCJ,1)=(1.0=AREACI))#PCCJ, 1)
READ(2,16) RHI
VRITEC0,17) RHI
PAUS

READ THE RAW PROTON DISTRIBUTION.

com

DOS J=1,MN
5 READ(2,16) CRAPS(1,J)»1=1,100)

54



2 :; ::; t};.nlsvuv DISTRIBUTIONS ON SCOPE.
» PUNCH RESULTS, NOT LIT - DO RESPONSE INTEGRA .
C IF BOTH SS1 AND 2 ARE LIT - READ W AND NORMALIZE. H

c
210 PAUS]
IFCISNSC1))204,204,208
204 IFCISNS(2))203,203,201
208 IFCISNS(2))202,202,314

c
C READ PARAMETERS RELATING W TO IONIZATION. THEN NORMALIZE TO W.

314 READ(2,20)X»X» TIMEs X, Xs TIHY
READ(2,20) CCWM(J) » J=1,6)
READ(2,20) (CWH(J) » J=1,6)
WRITECO, 18) TIME, TIHY
VRITE(0»19)

WRITEC0,20) (CWM(J), J=1,6)
WRITE(0520) (CWHC(J) » J=146)
DO316 J=1,MN
DO316 1=1,100
316 RAPS(I,»J)=RAPS(1,J)/W(I,J)
2

c
C DEFINE A MINIMUM NON-OVERLAP LIMIT, MNOLL, FOR EACH SET.

203 DO 68 J=1,MN
IFCJ+1=MN) 40, 40, 62
40 TEST = CHENC100,J+1)
DO 67 K=1,100
1FCCHEN(K, J)=TEST) 67, 68, 68
67 CONTINUE
68 MNOLL(J) = K
62 MNOLL(MN) =1

c
C RESPONSE FUNCTION INTEGRATION
c

D077 I=1,MN

IFCI-NMET) 52,52, 53
52 CO=COME

60 TO 54

PCI1=PCC1,1)
PC2=PC(2,1)
PC3=PC(3,1)
PCA=PC(4, 1)
PCS=PCCS, 1)
PC6=PC(6,1)

V=CHEN(N, 1)

IFCV/RHI=C0) 595504 50
59 DO 86 J=1,MN

MNLL = MNOLL(J)

88 UsCHEN(L,»J)

1FCU=C0) 56557557
56 ARG=V/U

SPWT = 0+5%(RAPS(L»J)+RAPS(L+15J))/U
S=ACJ) #SPVT

PC6Y))))
IFCARG-RH1)94,94,95
95 X=X+S#RS#(CHEN(L#1,J)=V/RHI)/ACJ)

94 X = X +S5#RS

STL=L-=1
IFCI = J)92,91,92

92 IF(MNLL-L)88,88,81

91 1F(N-L)88,88,51

81 S=(U-CHENC100,J+1))#SPVT
X = X+S#RS

86 CONTINUE

51 ARG=V/CO

PC1+ARGH (
XARG#PC6/6+)))))
Q=AREAC1)+RSINT
6o TO
50 Q=1.0 .
89 RAPS(N,1) = C(RAPS(N,1) = X)/Q
NeN-1
IF(N) 7777290
77 CONTINUE
60 TO 210

ARG (PCA4/. PC5/5.+

: SCALE TO MAXIMUM,DRAV AXES UNTIL SS3 LIT, THEN WRITE ON SCOPE.

202 WRITE(0,29)
READ(0,21) ELOV
READ(0,21) EUPP
X=0.0
DO175 J=1.MN
DO175 1=1,100
U = CHENCI,J)

1FCU-ELOW) 175,165,165

165
166

1FCEUPP-U) 175,166,166
U=USRAPS(1+J)

IFCU-X) 175,175,176
X=U

CONTINUE

VRITEC0,25) X

176
175

U = CHENCI,J)
lr(u-n.o\lmo:.:g:.:g:

-1)205,207
:;:m;t‘llu:n.ou.oa(u/ll.ovuu.nl(mnn,g',,
Iy=1FIXC130000«#USRAPSC12J)/X)

CALL PLOTCIX,IY)
CONTINUE
G0 TO 210

206
207

c
C PUNCH THE SPECTRUM:
c

55

R FYTEEERERREREREFSFTSRRFTY T T

66666&666&6&""'&A&""""‘&J-A&"""‘666

201 DO177 J=1,MN
177 WRITE(2,16)C RAPS(I,J),1

END
END

EVALUATE ¥ (DE/DI) FROM THE EXPANSION IN POVERS OF LOGCI).

FUNCTION WCI,J)
DIMENSION RAPSC100,8),A(8),CWM(6),CWH(6)
COMMON CWM, CWH, A, NMET, RAPS, TIME, TIHY

X=A(J)*FLOAT(1+28)
IFCJ-NMET) 1,1,2
IFCX-TIME)B,> 7,7

“=
<
¥
o

Cl=CwMC1)
C2=CWM(2)
C3=CWM(3)
CA=CWM(4)
C5=CWMC(S)
C6=CWMC(6)

60 TO
IFCX-TIHY)5, 7,7
C1=CWH(1)
C2=CWH(2)
C3=CWH(3)
CA=CWH(4)
C5=CVHCS)
C6=CWH(6)
U=ALOGCX)
WmC1+Us(C24Us (CI+US(CA+Us (CS+USC6))))
RETURN

END

END

an

©

DATA-620 PSNS-3.

VALL AND END (FINITE PROTON RANGE) CORRECTION TO PROTON SPECTRA
FROM METHANE COUNTERS. A CORRECTION FOR CARBON RECOILS CAN ALSO
BE MADE. 471071970+

DIMENSION RAPS(100,3),MNOLL(3),A(3),CEM(6)»CPFT(6,5),CLEG(S) s
X COPS(100,3)» EDENC 50, FLXL(50)
COMMON RAPS,COPS»A,CEM, EDEN, FLXL» ELME, BSME, TSME, TIME

CARBON ELASTIC SCATTERING DETERMINED FROM-
SIGC(L) = 5520./CEDENCL)+1150+)

16 FORMAT(SE12.5)

17 FORMATCF10+3,E11.4,E10+3,F5.3)

20 FORMAT(6E12.5)

21 FORMATC(F8.1)

22 FORMAT(12/12)

23 FORMAT(//26HMETHANE RESPONSE LIMIT 1S- /F9.2)
24 FORMATC/15H WHERE TO NEXT )

25 FORMAT(/15H MAXIMUM FLUX = 12.5)

26 FORMAT(//10X,29HCPFT COEFFICIENTS FOR METHANE )
28 FORMAT(12)

29 FORMAT(/48H INPUT LOVER AND UPPER ENERGY PLOTTING LIMITS
30 FORMAT(14,E12.5)

READ HEADER, TAPE.

READ (2,22) MN,NMET
DO701 J=1,NMET
701 READ(2,16)ACJ)X

READ MATERIAL RELATING ENERGY TO IONIZATION.

PAUSE

READ(2,20) ELME, X» TIMEs X X2 X
READ(2,20)XsXsXsXsXsX
READ(2,20)X»X»Xs XsXs X
READ(2,20) BSME, TSHE, X» X
READ(2,20) (CEM(J) » J=1,6)
PAUSE

INPUT FINITE RANGE RESPONSE FUNCTION. THE UPPER ENERGY CUT OFF
(RLME) MUST BE CHOSEN BELOW THE HIGHEST ENERGY DATUM POINT.

READ(2, 1 6) RLME
WRITE(0,23)RLME

NHY=MN-NMET

MN=NMET

WRITE(0,26)

D031 I=1,5

READ (2,20)CCPFTC(J,1)5Jm156)
WRITEC0,20) CCPFTC(J,1)5Jm1,6)
PAUSE

3

INPUT UNCORRECTED PROTON SPECTRA AND SET COPS TO ZERO.

D04 J=1,MN
4 READ(2,16) (RAPS(1,J)»1=1,100)

5 COPS(1,J)=0.0

TELETYPE INPUT DETERMINES WHAT IS DONE.

SCOPE DISPLAY OF BOTH RAPS AND COPS.

FINITE SIZE CORRECTION MADE.

CARBON RECOIL CORRECTION.

OUTPUT COPS RESULTS ON TALLY PUNCH.

SET RAPS EQUAL TO COPS. DO THIS AFTER C RECOIL CORRECTION
READ HIGH ENERGY DOVWN-SCATTER SPECTRUM. NORMALIZE AND
EQUATE TO COPS.

SUBTRACT COPS FROM RAPS AND SET COPS TO ZERO.

SET COPS EQUAL TO RAPS.

~o wbun=O



VAL Y BT By prer 0 ey

229 WRITE(0,24) 79 LsL-1
READ(0,28) 160 1FC1-1)80,93,80
1F(160)229,202,230 93 IF(N-100) 80,864,860
230 1F(160- nne.eo:.e:l 84 X = 0.0

80 IFCI - J)92,91,92
92 xnnnl.x.-l.)u.u.al
91 IF(N-L)8B,86,8!

231 1FC160-2)229,350,2
232 IF(160- 3)229.201.:11
371 1F(160-4)229,372,390

950/ LEL1E0=HIARD; A0 1: 098 b )
392 1F(160-6)229,393,394 g L)
94 1FC160-7)229,395,289 86 CONTINUE
89 COPSCNsI) = (COPSCNs1) = X)/CLEGC1)
SET COPS EQUAL TO RAPS. e
1FCN) 77, 77,90

295 00396 Jalm 77 CONTINUE

Sl Go TO 229

96 cu?su..n-wsu.ar
SCALE TO MAXIMUM,DRAV AXES AND PLOT ON SCOPE.
BOTH RAV AND CORRECTED SPECTRA ARE PLOTTED.

SET RAPS EQUAL TO COPS.
202 WRITEC0,29)

372 D0370 J-hnll READ(0,21) ELOV
00370 I=1, 1 READ(0,21) EUPP
X=0+0

370 PAaC1 s ACORSCLs o)

(0K DO175 JulsMN

DO175 1=1,100

U = CHENCI,J:
IFCU-ELOV) 175,165,165
165 1FCEUPP-U) 175,166,166

INPUT SPECTRA REPRESENTING HIGH-| an scA'nn AND NORMALIZE
TO DATA ABOVE THE CUT OFF ENERGY RLI

391 D053 Je 166 S=UsCOPS(I,J)

53 HMD(Q'IG)KCDPS(I»J):I-InlDOY U=USRAPS(1,J)
X=0+0 1FCU-X) 181,181,176
5=0.0 176 X=0
nasfil 90 181 IFCS-X)175,175,180
u= 180 X=5  °

- ;F;?mf’lﬂ'”' s2 175 CONTINUE

= , VRITEC0,25) X
S=S+COPS(1,1) 50285

slidownay AN AXIS DRAWN ON SCOPE UNTIL 553 IS LIT.

DOSA 1= 00
CALL AX1S

54 COPS(I,J)=COPSCI,J)#X/S DO20S Ju1sMN

@ 70 289 DO205 1=1,100

SUBTRACT COPS FROM RAPS AND SET COPS TO ZERO.

U = CHENCI,J)
IFC(U-ELOVW) 20552065206

-u'v-v-v-v'.-v-..-vn.-vvva‘,ﬂ,‘.-'v'-”(““,,..'--n-”'.'-n..AA&“..-A‘“‘.”y.-.nvn'-‘,“'“,.&v

206 IFCEUPP-U)205,207,207

207 1X=IFIXC131071.+%ALOGCU/ELOW) /ALOGC EUPP/ELOW))
1Y=1FIXC130000+#UsRAPSCI»J)/X)
CALL PLOTCIX,1Y
IY=IFIX( 130000« #U$COPSCI2J) /X)

393 DOSS J=l,MN
D055 I=1,100
RAPS(1,J)=RAPS(I,J)=COPSCI,J)
55 COPS(1,J)=0.0

0 T ARy CALL PLOTCIX»IY)
READ A NEUTRON SPECTRUM AND MAKE A CARBON RECOIL CORRECTION. L L
o ;o‘::?;f‘::""m'm"c PUNCH SPECTRUM ON PAPER TAPE.
asi1 nnn(e.l;l:n:naun.n.xun.x.x 201 DO177 J=1,MN
20360 T=1,100 177 VRITEC2,16)CCOPSC1,J)51=1,100)
ﬁ?zf::&:ﬁmi;""" IF S52 LIT, CONTINUE METHANE TAPE BY READING IN THE UNCORRECTED
BOI6Y Luls TAPE AND PUNCHING THE HYDROGEN COMPONENT. THIS IS CONVENIENT IF
v aid 351 NO FINITE RANGE CORRECTIONS ARE TO BE MADE TO HYDROGEN DATA.
e o R e SR L
- ¢ LYY= (L) /¢ EDENCL) * EDENCL) #DINC)) 1 Jal,
:lssxs.;i?mﬁ:;tnm L2 L) SROEN L L L 3 251 READC2,16)(RAPS(I,J),1=1,100)
Le=L-1

J=
252 READ(2,16) (RAPS(1,1),1=1,100)
WRITE(2,16) (RAPS(141),1=1,100)

DO363 N=1,L
363 S=5+(FLXL(N)/EDEN(N))#SIGC(N)

--v-v.n-nAaA&bcnhéhu.--v-v-vnéaacvvnvnnv-v-n--hs&avv'.-.----v-

COPS(I,J) = COPSCI,J) = 1+10#DINC#S L
360 CONTINUE TRCHEcERista
G0 T0 22
229 T

DEFINE A MINIMUM NON-OVERLAP LIMIT, MNOLL, FOR EACH SET.

203 DO 68 Ju1,MN <
I1FCJ+1~MN) 40,40, 62 «C EVALUATE E FOR .
40 TEST = CHENC100,J+1) < e Ty
67 K=1,100 - FUNCTION CHENCI,J)
I G DS 81 e ks - DIMENSION RAPS(1003,COPSC100,3),A(3),CEM(6), EDENC50) » FLXL(50)
6 TINU - COMMON RAPS,COPS, A, CEM, EDEN, FLXL , ELME, BSME, TSME, TIME
68 MNOLLCJ) = K <
62 MNOLL(MN)=1 - X=ACJ) #FLOATC1+28)
RESPONSE FUNCTION INTEGRATION ALLOVING ENERGY DEPENDENCE. : S ikita
o 2/ B CHENSEUTATSESR=TIHE
D0380 1=1,100 = 1 UeALOGCX)
380 COPS(1,J)=RAPS(1,J) - CHEN=CUT#+X#(CEM( 1) +UsCCEM(2) +Us (CCEM(3) +Us CCEMC 4) +Us CCEMC 5)
- X+UsCEM(6))))))
o - RETURN
- END
SPWT=0.0
RSPF=0.0 e
CX=0.0
VaCHEN(N, 1)
DO 86 Jsl,MN <
MNLL = MNOLL(J) < DATA-620 PSNS-4.
- ~C  VALL AND END (FINITE PROTON RANGE) RESPONSE CORRECTION TO
88 UCHEN(L»J) ~C PROTON RECOIL SPECTRA TAKEN WITH HYDROGEN. CORRECTED METHANE
1F(U-RLME)95,95,79 «C SPECTRA MAY BE INPUT IF DESIRED.
95 D097 K=1,5 <
CLEG(K) =CPFTC1,K)+Us (CPFT(2,K)+Us (CPFT(3,K) +Us CCPFTC4,K) - DIMENSION RAPSC100,8),MNOLL(8),A(8),CPFTC6,5)
X+US(CPFT(S,K)+Us(CPFT(6,K)))))) - XCEM(6),CEH(6),CLEG(S!
1F(K-2)97,94,400 - COMMON RAPS, A, CEM, CEH, NMET, ELME, BSME, TSME, TIME,
94 CxeCLER(E) - XELHY , BSHY» TSHY, TIHY
<
200 ms:m-cl.mmnnx . = 16 FORMAT(SEI2.S)
97 CONTIN = 20 FORMAT(6E12.5)
SPVT = n.sucursu...n.corsuu..n)/u ~ 21 FORMAT(F8.1)
S =AtDestvs - 22 FORMAT(I2/I2)
AL AT =10 ~ 23 FORMAT(/1THFOR HYDROGEN DATA
= 1+S*ARGHAR T A FUNNATC/RTHRKSPONSE LINETOR SYORONRGE(KIDED
RSPESCLENCE) "+ CUREA)SCTRAT < 0:5) s/ ARGRCCLRACY) e cURaCS] - 25 FORMATC/15H MAX! - .
X 901 6668T9TEST - 1.5 - 26 nmr(nmx.:oucpn TCOEFFICIENTS FOR MYDROGEN
*RSPF = 29 FORMAT(/ASH INPUT LOVER AND UPPER ENERGY PLOTTING LINITS

56
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READ HEADER TAPE.

DO701
701 READ(2,16)ACJ),X
PAUSE

READ PARAMETERS RELATING ENERGY TO IONIZATION.

READ(2,20) ELME, X» TIME, ELHY » X» TIHY
READ(2,20)Xs X»Xs Xs Xs X
READ(2,20)X» X»XsXs Xs X
READ(2,20) BSME, TSME, BSHY , TSHY
READ(2,20) (CEM(J)» J=1, 6)
READ(2,20) (CEH(J), J=1,6)

PAUS]

READ FINITE RANGE RESPONSE FUNCTION.

READ(2,16)X

DOB51 I=1,5

READ(2,20)Xs XsXsXs X X
READ(2, 16) RLHY
WRITEC0,24) RLHY

VRITEC0,26)

D031 I=1,5

READ (2,20 (CPFTCJ,1),Jw1,6)
VRITEC0,20) CCPFTCJs 1), Juls 6)
PAUSE

85

READ THE UNCORRECTED PROTON SPECTRUM.

D04 J=1,MN
4 READ(2,16) (RAPS(I,J),1
PAUS!

100>

OVER-VRITE METHANE WITH CORRECTED RESULTS IF SS1 IS LIT.

IFCISNSC1))210,210,858
DOS J=1,NMET
5 READ(2,16) (RAPS(I,J)»1=1,100)

SS1 LIT DISPLAY DISTRIBUTIONS ON SCOPE.
552 LIT PUNCH RESULTS, NOT LIT-DO RESPONSE INTEGRATION.

210 PAUS

IFCISNSC1))204,204,202
IFCISNS(2))203,203,201

DEFINE A MINIMUM NON-OVERLAP LIMIT,

MNOLL, FOR EACH SET.

203 DO 68 J=1,MN
IF(J+1-MN) 40,40, 62
TEST = CHENC100,J+1)
DO 67 K=1,100

IFCCHENCK, J) =TEST) 675 68 68
CONTINUE

MNOLL(J) = K

MNOLL(MN) =1

40

67
68
62

RESPONSE FUNCTION INTEGRATION ALLOVING ENERGY DEPENDENCE.

MM=NMET+ 1
DO77 1=MM,MN
N=100

90 X = 0.0
SPWT=0.0

V=CHEN(N, 1)

DO 86 J=1,MN

MNLL = MNOLLCJ)

L=99

U=CHEN(L»J)

1F(U-RLHY)95,95, 79

D097 K=1,5
CLEG(K)=CPFTC1,K)+Us(CPFT(2,K)+Us(GPFT(3,K)+Us (CPFTC 4, K)
X+U#CCPFT(5,K)+Us(CPFT(6,K))))))
1F(K-2)97,94, 400

CX=CLEG(2)

95

94

400

T0 97
CLEG(K) =CLEG(K) #CX
97 NUE

CONTI

SPWT = 0.5#(RAPS(L,J)+RAPS(L+1,J))/U
S =ACJ)#SPWT

ARG = 2.#V/U-1.0

TEST = 1.5%ARG#ARG

RSPF=CLEG(2) + CLEG(4)#(TEST = 0.5) + ARG#(CLEG(3) + CLEG(S)
X #C1.66667#TEST = 1.5))

X = X +S®RSPF

L=L-=1

IF(1-1780,93,80

IF(N-100) 80,84,80

X = 0.0

IFCL = J)92,91,92

IFCMNLL~-L)B8,88,81

IF(N-L)88., 88,89
S=(U=CHENC 1005 J+1))#SPVT

X = X+SeRSPF

CONTINUE

RAPS(N, 1) =(RAPS(Ns1)=X) /CLEGC1)

3

93

80
92
91
81

86
89
NeN-1
1F(N) 77, 77590
CONTINUE

@0 TO 210

-
3

SCALE TO MAXIMUM, DRAV AXES CUNTIL SS3 LIT) AND WRITE ON SCOPE.

202 WRITE(0,29)
READ(0,21) ELOV
READ(0,21) EUPP
X=0.0
DO175 Je=l.MN
DO175 I=1,100
U=CHENC1,J)
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IFCU-ELOW) 175,165, 165
165 IFCEUPP-U) 175,166,166
166 U=USRAPS(I,J)

IFCU=-X)175,175,176
176 X=u
175 CONTINUE

WRITEC0,25)X

DRAV AXIS.

CALL AXIS
DO205 Ju=1,MN
DO205 1=1,100
U=CHEN(1,J)
IFCU-ELOV)205,206,206
IF(EUPP-U)205,207,207
lx-lnx(lsloﬂ.tu.nn(u/n.unlu.ou(I‘.UPP/B.ov))
1Y=IFIX(130000+#USRAPSCI,J) /X)
CALL PLOTCIX,1Y)
205 CONTINUE

G0 TO 210

206
207

PUNCH SPECTRUM ON PAPER TAPE.

201 DO177 J=1,MN
177 WRITEC2,16) (RAPS(I,J)»1=1,100)
TOP

END
END

EVALUATE THE ENERGY FOR ANY VALUE OF IONIZATION.

FUNCTION CHENCI,J)

DIMENSION RAPS(100,8),A(8),CEM(6),CEHC6)
COMMON RAPS,A,CEM, CEH, NMET, ELME, BSME, TSME, TIME,
XELHY, BSHY » TSHY » TIHY

X=ACJ) #FLOAT(1+28)
IFCJ-NMET) 1, 1,2
CUT=ELME-BSME
IFCX-TIME)3,3,4
CHEN=CUT+TSME-TIME+X
RETURN

C1=CEMC(1)

Ce=CEM(2)

> =

©

:
:
-

IFCX=TIHY) 6,657
CHENsCUT+TSHY+X~TIHY

c:-cn((:n

Ca=CEH(4)

C5=CEH(S)

C6=CEH(6)

UsALOG(X)
CHEN=CUT#X#(C14U# (024 Us(CI+U(CA+US(CS+USC6)))))
RETURN

END

«

»

DATA=620 PSNS-5.

CALCULATION WHICH DERIVES THE SPECTRUM OF INCIDENT NEUTRONS
FROM A PROTON-RECOIL ENERGY DISTRIBUTION BY SLOPE-TAKING
OVER A SPECIFIED ENERGY INTERVAL. 770+

DIMENSION RAPSC100),EDEN(215),FLXL(215),ERFL(215),
XCEM(6), CEH(6),A(9),C(9)

COMMON RAPS, EDEN» FLXL» ERFL» CEM, CEH, As Cs NMET,
XELME, BSME, TSME, TIME» ELHY » BSHY » TSHY » TIHY

THE SLOPE-TAKING HALF INTERVAL IS COMPUTED FROM-
STHV(E) =SQRTCRA*RA+RB#RB/E)

THE INTRINSIC RESOLUTIONCFWHM) IS COMPUTED FROM-
FWHMCFW, E)=SQRT(FV#FW+0.17/E)

16 FORMAT(/12HSLOPE TAKING ///

XS9HINPUT(F10+5)RA,RB, DINC. INPUTCI2)N1 NON-ZERO FOR METH ONLY.
FORMAT(/44HINPUT LOVER AND UPPER ENERGY PLOTTING LIMITS
FORMAT(F10+5/F10.5/F10+5/12)

FORMAT(SE12.5)
FORMAT(6E12+5)
FORMAT(F8.1)
FORMAT(12/12)

7

S

18

19

20

21

22

23 FORMATC43HINPUT FWHM FOR METHANE AND NYDN‘JGEN(HO‘SI)
X31HAND RESPONSE LIMIT RLMECF10.2)

24 FORMATCF10+3,E11+4,E10+3,F5.3)

25 FORMAT(F10+5/F10.5/F10.2)

32 FORMAT(I4,E12.5)

INPUT MATERIAL RELATING TO SLOPE-TAKING INTERVAL, RESOLUTION.
LETHARGY INTERVAL, DINC, SHOULD NOT BE LESS THAN .04 FOR FULL SET.
NO REASON TO SET RA LESS THA! FVHM/2. RB MAY BE SET TO ZERO.

WRITEC0,16)

READ(0, 18)RA, RB» DINC»N1
WRITE(0,23)

READ(0,25) FWME, FWHY»RLME

READ HEADER TAPE.
READ(2,22)MN, NMET

DO701J=1,MN
701 READ(2,19)ACJ),CCJ)



caaa

coa

ocaa
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SCALE TO MAXIMUM,

PAUSE
c READ PARAMETERS RELATING ENERGY TO IONIZATION.

READ(2,20) ELME, X» TIMEs ELHY » X» TIHY

Run(e.zmx.x.x.x.x.x
READ(2,20)XsXsXsXs Xs X

READ(2, 20)BSME, TSME, BSHY » TSHY
READ(2,20) (CEM(J) s J=1,6)
READ(2,20) (CCEH(J) »J=156)
IFCNLI2s 102

2 MN=NMET

DINC=0.+1

1 PAUSE

FORM EDIT ENERGIES HAVING FIXED LOGARITHMIC SPA
DO NOT USE DATA ABOVE RESPONSE LIMIT RLME.

DOS1 |-J.|ou
X=CHEN
xranDx)sz.se.sl

S1 CONTINUE
52 X=CHEN(I-2,1)

EDENC1) = X/(1++STHW(X))
TEST = CHENCI,MN)

DO 50 1=2,215

FLXLC1)=0.0

ERFL(1)=0.0

EDENCI) = :omtx-n/n.o DINC)
ED = EDENC

xn:n-:msmv«m) ~TEST)15,15550
50 CONTINUE
15 NED = I-1

FLXL(1)=0.0
ERFL(1)=0.0

READ EACH 100 CHANNEL PROTON SPECTRUM.

DO 28 J=
numz.nnms(n.x-l.loo)

DEFINE RANGE OF ENERGY FOR SLOPE TAKING.

cutw = CHENC100»J)

601 INCHEHJ - EDEN(K)) 6025602, 603

G0 TO am

604 K = K +
603 EDIT = }:nmxxy

X = EDIT#STHW(EDIT)
TESTI = EDIT +

TEST2 = EDIT - X

IFCCHENJ - TESTI1) 604,604,605

605 IFCCHENC1,J) = TEST2)606,28,28
606 ITEST = 100

623 1FCCHENCITEST,J) = TEST1) 6705669, 669
669 ITEST = n‘:s'r

GO TO

670 N2 = l|‘I.s|’ il

TEST = 1

614 IFCCHENCITEST,»J) = TEST2) 615,615,616
615 ITEST = ITEST +

614

GO TO
616 NI = ITEST - 1
DETERMINE SLOPES AND ERRORS

-0
687 TCHEN = CHEN(L»J)

T1 = T1 + TCHEN#RAPS(L)

T2 = T2 + TCH

T3 = T3 + RAPS(L

T4 = T4 + TCHEN®TCH

TS = TS + awsu.urcusmrcxm

- L)68B, 687,687
2072

LFCNS
688 T25Q = T2eTi

V = FLOAT(N2 - NI +

SLOPE = (TIsV - T2eT3)/(TasV - T2S
RT ((TS#VU#V+T3eT25Q~ 2..nonwwt:(.nuwn

X_ /(Tasv-T25Q)

Tl= -1.86+EDIT#(9.415E-05) +EDIT#EDIT#(1.306E-10)

T2= 0.4223 + EDIT#(1.30E-04)

. SIGE=9.4248/(EDIT#(1.206E-03)+T1#T1)+
X 3.1416/(EDIT#(1.206E-03)+T20T2)

TEMP = EDIT#EDIT/SIGE

STORE FLUXES AND ERRORS WITH REGARD TO OVERLAP.

1FCERFL(K)) 38,39, 38

38 X = TEMP$ERSL#TEMPSERSL
DEN = 1./CERFLCK)#ERFL(K))+1./X
FLXL(K)=(FLXL(K)/ (ERFL(K)#ERFL(K))-TEMP*SLOPE/X) /DEN

ERFL(K) = 1./SQRT (DEN)

39 FLXLCK) = -TEMP$SLOPE

ERFL(K) = TEMP#ERSL

28 CONTINUE
245 PAUSE

IFCISNS(1))29,29,203
)

203 WRITEC0,17:

READ(0,21) ELOV
READ(0,21) EUPP

TRACE AXES (UNTIL SS3 LIT) AND PLOT ON SCOPE.

58

coo

X = 0.0
DO202 1=1,NED
IFCEDENCI) -ELOW) 202,240, 240
240 1FCEUPP-EDEN(1))202,241,241
241 IF(X-FLXL(I1))201,202,202
201 X = FLXL(I)
202 CONTINUE

CALL AXIS
DO205 I=1,NED
IFCEDENCI)-ELOW) 205,247,247
247 IFCEUPP- :Dn(l))gos.:ob.zos
206 1X=1FIXC131071+#ALOGCEDENCI)/ELOW) /ALOGC EUPP/ELOW))
lv-lnx(l:oooo--nxl.(n/x)
CALL PLOTCIX»1Y)
205 CONTINUE
G0 TO 245

DELETE EMPTY DATA LOCATIONS BEFORE PUNCHING.

=l

506 1FCERFL(L)) 503,504,503
503 L =L+

IFCL - uEn)soa»soa.sas
504 NED = NED -
DO 502 K = Ls NED
ERFL(K) = ERFL(K +1)
FLXL(K) = FLXL(K+1)
EDEN(K) = EDEN(K+1)
G0 TO 29

DETERMINE OVERALL RESOLUTION (FVHM) AND PUNCH RESULTS.

50

505 WRITE(2,32)NED, DINC
TEST=CHEN( 1, NMET)
D0207 I=1,NED
ED=EDENCI)

IFCED-TEST) 401,401,402

402 V=FVHM(FWME, ED)

®

401 Vs FWHM(FWHY » ED)
403 X=2.0%STHWC(ED)/V
IF(X~1.0)404, 404,405
404 TEMP=U
GO TO 207
405 TEMP=U#(1.040+65¢(X=1:0))
207 WRITE(2,24) ED,FLXLCI),ERFLCI), TEMP
STOP
END
END

EVALUATE THE ENERGY FOR GIVEN IONIZATION.

FUNCTION CHEN(I,J)

DIMENSION RAPSC100)»EDEN(215),FLXL(215),ERFL(215),
XCEM(6),CEH(6),A(9),C(9)

COMMON RAPS, EDEN, FLXL » ERFL» CEM, CEH, A, C» NMET,
XELME, BSME, TSME, TIME, ELHY » BSHY » TSHY » TIHY

X=ACJ) #FLOAT(1+28)
IFCJ=NMET) 15 1,2
CUT=ELME-BSME
IF(X-TIME)3,3,4
CHEN=CUT+TSME-TIME+X
RETUR!

C1=CEMC1)

C2=CEM(2)

C3=CEM(3)

C4=CEM(4)

C5=CEM(S)

C6=CEM(6)

GO TO S

CUT=ELHY -BSHY
IFCX-TIHY) 6,657
CHEN=CUT+ TSHY +X~TIHY
RETUR!

Cl=CEHC1)

C2=CEH(2)

c:-cm( 3

©

& = ®

5 U=ALOGCX)
Cleusc CasUsC »

RETURN
END
END

The storage scope is reached through the subroutines
AXIS and PLOT. AXIS, when called, traces a rectangular
box upon the storage screen. Vertical and horizontal gain
adjustments may be made until the box is centered on the
scope face, at which time sense switch No. 3 will cause an
exit to the main program for plotting. The subroutine
PLOT outputs two integer arguments (X and Y coordi-
nates) to the storage scope. The maximum output decoded
is 2'7 -1, and scaling is done to maintain the arguments
within this limit. The subroutines AXIS and PLOT are
described in Ref. 18.



Rather than list the input for each program separately, depending on the program, various combinations of tapes
we have grouped the input in Tables F.I-F.VI according are used. The order in which the tapes are to be
to the subject matter contained. The data in each table input is contained in the comment statements in the

are contained on a separate piece of paper tape. Then, programs.

TABLE F.I. Data on Header Tape for PSNS Data-reduction Codes

Record Variable Format Descriptiona
1 MN 12 Total number of voltage runs. Must not exceed eight.
2 NMET 12 Number of runs with the methane counter.
3 AQ)) E12.5 Ionization per channel in keV. The input is from the lowest

voltage to the highest voltage, starting with the methane
values first.

cQ) E12.5 Product of the live time and hydrogen atom number in the
effective volume.

Record 3 is repeated for each voltage

3There is a more complete description in Section XI.A.

TABLE F.II. Uncorrected Proton-recoil Data

Record Variable Format Description@
1 DNUM F7.0 The number of events per channel is DOFL*131071. + DNUM.
DOFL F7.0

The information is input from low channels to high channels. The first record is
repeated 100 times for each voltage. The input is from the lowest voltage to the
highest voltage, starting with the methane sets first.

AThere is a more complete description in Section XI.A.

»
TABLE F.III. Data for the Electric-field Response Function

Record Variable Format Description@
1 COME E12.5 Cutoff value for field-response integration correction for
the methane-filled counter.
COHY E12.5 Cutoff value for field-response integration correction for

the hydrogen-filled counter.
2 AREA(I) E12.5 Fractional weight of the contained part of the response
function defined to include amplitudes in excess of RHI.
Record 2 is repeated for each voltage from the lowest voltage to the highest voltage,
starting with the methane values first.
3 PC(J,I) 6E12.5 The coefficients of the fifth-order least-squares polynomial
fit to that part of the response function below RHI.
Record 3 is repeated for each voltage from the lowest voltage to the highest
voltage starting with the methane values first.

4 RHI E12.5 Fraction separating the resp into di I and off-di al
parts. Usually set to 0.7.

aThere is a more complete description in Section XI.B.2.
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TABLE F.IV. Data Relating W and Energy to Ionization

Record Variable Format Description@
1 ELME E12.5 Energy lower limit in keV for methane.
BIME E12.5 Ionization lower limit in keV for methane.
TIME E12.5 Lowest ionization in keV at which W is assumed constant for methane.
ELHY E12.5 Energy lower limit in keV for hydrogen.
BIHY E12.5 Ionization lower limit in keV for hydrogen.
TIHY E12.5 Lowest ionization in keV at which W is assumed constant for hydrogen.
2 CwWM(J) 6E12.5 Expansion coefficients relating W to ionization for methane.
3 CWH(J) 6E12.5 Expansion coefficients relating W to ionization for hydrogen.
4 BSME E12.5 Constant used in determing energy-to-ionization relationship for
methane. : p
TSME E12.5 Constant used in determing energy-to-ionization relationship for
hydrogen.
BSHY E12.5 Constant used in determing energy-to-ionization relationship for
hydrogen.
TSHY E12.5 Constant used in determing energy-to-ionization relationship for
hydrogen.
B CEM(J) 6E12.5 Expansion coefficients relating energy to ionization for methane.
6 CEH(J) 6E12.5 Expansion coefficients relating energy to ionization for hydrogen.

AThere is a more complete description in Section VI.B.

bSince the quantities BS, TS, and CE are all derived from the CW coefficients together with EL, BI, and TI,
there is some redundancy of data involved. To minimize computer storage, these energy expansion terms,
once derived, are included on the tape containing the CW, etc., terms for use in those codes requiring E vs I.

TABLE F.V. Data for Wall-and-End Response Function

Record Variable  Format Description@

1 RLME E12.5 The downscatter spectrum is normalized from RLME to the last
datum point. It must be within the range of the Legendre
polyomial parameterization of the response function.

2-6 CPFT(J,I) 6E12.5 The coefficients of the fifth-order least-squares polynomial fit
to CLEG(1) through CLEG(5) for the methane counter.

7 RLHY E12.5 The limit energy for the use of the response function for the
hydrogen counter.

8-12 CPFT(J,I) 6E12.5 The coefficients of the fifth-order least-squares polynomial fit
to CLEG(1) through CLEG(S) for the hydrogen counter.

AThere is a more complete description in Section XI.B.3.

TABLE F.VI. Data Relating to Slope-taking Interval and Resolution

Record Variable Format Description@

1 RA F10.5 RA and RB specify the slope-taking half-interval. It is equal
to SQRT(RA*RA + RB*RB/E), where E is in keV. RA should
not be set less than half the mechanical resolution of the

detector.
2 RB F10.5 RB may be set equal to zero.
3 DINC F10.5 The lethargy spacing between energies at which the neutron

spectrum is determined. Should not be less than 0.04 if
eight voltage sets are used.

4 N1 2 Greatgr_than zero if only methane data are used. Useful for
obtaining neutron spectrum for carbon-recoil correction.

5 FWME F10.5 The mechanical resolution of the methane counter defined as
full width at half maximum. It is assumed to be independent
of energy.

6 FWHY F10.5 The mechanical resolution of the hydrogen counter.

7 RLME F10.2

The maximum energy in keV at which the neutron spectrum is
to be determined.

AThere is a more complete description in Section XI.B.S.
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