X-Ray Computed Tomography for Structural Ceramic Applications: Beam Hardening Corrections

by W. A. Ellingson, E. Segal, and M. W. Vannier

Argonne National Laboratory, Argonne, Illinois 60439
operated by The University of Chicago
for the United States Department of Energy under Contract W-31-109-Eng-38
Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Department of Energy.

--- DISCLAIMER ---

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Printed in the United States of America
Available from
National Technical Information Service
U. S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy: A03
Microfiche Copy: A01
X-RAY COMPUTED TOMOGRAPHY FOR STRUCTURAL CERAMIC APPLICATIONS:
BEAM HARDENING CORRECTIONS

by

W. A. Ellingson, E. Segal* and M. W. Vannier**

Materials and Components Technology Division

May 1987

Prepared for the U.S. Department of Energy, Office of Fossil Energy,
Advanced Research and Technology Development Fossil Energy Materials Program
(FWP 49640) and the U.S. Department of Energy, Assistant Secretary for
Conservation and Renewable Energy, Office of Transportation Systems, as part
of the Ceramic Technology for Advanced Heat Engines Project of the Advanced
Materials Development Program (Contract ACK-85234).

*Visiting Scientist, The Technion, Israel Institute of Technology,
Haifa, Israel.

**Visiting Scientist, Mallinckrodt Institute of Radiology/Washington
University, St. Louis, MO.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. NATURE OF BEAM HARDENING IN CERAMICS</td>
<td>2</td>
</tr>
<tr>
<td>III. THEORETICAL BEAM HARDENING RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>IV. APPROACHES TO CORRECTION FOR THE BEAM HARDENING EFFECT</td>
<td>7</td>
</tr>
<tr>
<td>A. The "Water Bag" Approach</td>
<td>7</td>
</tr>
<tr>
<td>B. Prehardening of the X-Ray Beam</td>
<td>9</td>
</tr>
<tr>
<td>C. Software Methods</td>
<td>9</td>
</tr>
<tr>
<td>D. Dual-Energy Methods</td>
<td>13</td>
</tr>
<tr>
<td>V. CONCLUSIONS</td>
<td>18</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>18</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Schematic Setup of X-Ray Source and Detector in a CT Scanner</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Energy Dependence of the Mass Attenuation Coefficient for Four Elements</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Energy Dependence of the Mass Attenuation Coefficient for Three Common Ceramic Compounds</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>X-Ray Spectra for Siemens Somatom Model DR-H CT Scanner Operated at Head Voltages of 96 and 125 kV</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Variation in X-Ray Spectrum as a Function of Absorber Thickness</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Effect of Specimen Thickness on X-Ray Attenuation in Si$_3$N$_4$</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Effect of Specimen Thickness on X-Ray Attenuation in Two Ceramic Compounds of Higher z and Higher Mass Density than the Si$_3$N$_4$ Specimens of Fig. 6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>The CT Process with BH Correction</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>"Water Bag" Equivalent to Reduce BH Effect in Ceramics</td>
<td>8</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Contd.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td>CT Scan and Density Trace of MgO Specimen 1 Without Teflon Ring</td>
<td>8</td>
</tr>
<tr>
<td>11.</td>
<td>CT Scan and Density Trace of MgO Specimen 1 Inside Teflon Ring</td>
<td>9</td>
</tr>
<tr>
<td>12.</td>
<td>Prehardening of the X-Ray Beam to Reduce BH Effects</td>
<td>9</td>
</tr>
<tr>
<td>13.</td>
<td>Total Linear Attenuation Coefficient for Dense and Green-State Si₃N₄ and Freon TF</td>
<td>11</td>
</tr>
<tr>
<td>14.</td>
<td>Comparison Between Linear Attenuation Coefficients with No Correction for X-Ray Polychromaticity and the Effective Total Linear Attenuation Coefficients Used in the Linearization Correction Process for Green-State and Dense Si₃N₄</td>
<td>11</td>
</tr>
<tr>
<td>15.</td>
<td>Comparison Between Theoretically Calculated and Experimentally Measured BH Effect for a Green-State Si₃N₄ Specimen</td>
<td>12</td>
</tr>
<tr>
<td>16.</td>
<td>Comparison of Theoretically Derived Uncorrected Nonlinear Attenuation with Corrected Linear Attenuation for Estimated X-Ray Spectrum of Polychromatic Source from Elscint Excel 2002 CT Scanner</td>
<td>12</td>
</tr>
<tr>
<td>17.</td>
<td>CT Scan of 53-mm-Diameter Polyethylene Bottle Filled with Liquid Freon TF, with Water BH Correction</td>
<td>13</td>
</tr>
<tr>
<td>18.</td>
<td>CT Scan of Same Specimen Shown in Fig. 17, with Linearization BH Correction</td>
<td>13</td>
</tr>
<tr>
<td>19.</td>
<td>The Basis-Material Plane</td>
<td>14</td>
</tr>
<tr>
<td>20.</td>
<td>Processing Scheme for Dual-kVp Data Evaluation</td>
<td>16</td>
</tr>
<tr>
<td>21.</td>
<td>Illustration of the Dual-Energy Principle and Resulting CT Images</td>
<td>17</td>
</tr>
<tr>
<td>22.</td>
<td>CT Image of Freon TF with Dual-Energy Reconstruction Package</td>
<td>18</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Beam-Hardening Correction Methods</td>
<td>2</td>
</tr>
</tbody>
</table>
X-RAY COMPUTED TOMOGRAPHY FOR STRUCTURAL CERAMIC APPLICATIONS: BEAM HARDENING CORRECTIONS

by

W. A. Ellingson, E. Segal, and M. W. Vannier

ABSTRACT

Beam hardening (BH), caused by the energy dependence of X-ray attenuation in materials, reduces the reliability of images generated by computed tomographic (CT) when polychromatic X-ray sources are used. The magnitude of the BH effect was calculated, and four different approaches to BH correction for CT imaging of ceramics were investigated: the "water bag" approach, prehardening of the beam by use of a filter, linearization correction, and dual-energy methods. The dual-energy approach appears to be a promising means of BH correction for CT imaging of ceramics.

I. INTRODUCTION

Computed tomographic (CT) imaging with both monochromatic and polychromatic X-ray sources can be a powerful NDE method for characterization (e.g., measurement of density gradients) as well as detection of flaws (e.g., cracks, voids, inclusions) in ceramics. However, the accuracy of CT images is limited by partial volume effects, scatter, spectral shift, and the heterogeneous nature of ceramic specimens. Among these limitations, the most important in many ceramic applications of scanners with polychromatic X-ray sources is spectral shift, which can cause image artifacts and reduce the reliability of linear attenuation measurements through beam hardening (BH) effects [1]. Beam hardening occurs because X-ray attenuation in a given material is energy dependent. Without an appropriate correction, the BH effect prevents the reliable measurement of relative or absolute X-ray attenuation in ceramics. Thus, quantitative and even qualitative density comparisons between samples of the same material but of different sizes or shapes become unreliable [2].

Many different correction approaches can be considered in CT systems to eliminate or reduce the BH effect, as noted in Table 1. These can range from "water bag" (i.e., prehardening of the beam) and dual-energy approaches [3,4] to correction of the image after reconstruction [5,6]. An intensive correction effort undertaken for medical CT systems has reduced BH for tissue and tissue-like materials to less than a few Hounsfield units or to tenths of a percent. However, for many industrial components made of relatively high-density materials such as ceramics, the BH effect is considerably greater than encountered in medical applications, and very little has been done to cope with this problem [7]. Rather, the BH effect is avoided in many industrial CT systems by using monochromatic isotope

Table 1. Beam-Hardening Correction Methods

<table>
<thead>
<tr>
<th>Preprocessing</th>
<th>- prefiltration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- water bag</td>
</tr>
<tr>
<td></td>
<td>- special convolution kernels</td>
</tr>
<tr>
<td></td>
<td>- linearization</td>
</tr>
<tr>
<td>Postprocessing</td>
<td>- 2nd-order correction</td>
</tr>
<tr>
<td>Dual energy</td>
<td>- with energy-dependent reconstruction</td>
</tr>
<tr>
<td>Monoenergetic</td>
<td>- isotope sources</td>
</tr>
</tbody>
</table>

sources [8,9]. The main disadvantages of isotope-source CT systems are the low source intensity (which leads to longer image data acquisition times) and the more stringent safety measures required to protect personnel. The purpose of the work reported here is to develop a BH correction method applicable for CT examination of ceramic materials with polychromatic x-ray sources.

II. NATURE OF BEAM HARDENING IN CERAMICS

A CT scanner measures the attenuation of photons through an object along projection lines, as shown schematically in Fig. 1. The measurement of attenuation can be expressed [2,3] as

\[
I(p, \theta) = I_o e^{-\int \mu(x,y)ds},
\]

(1)

where

\[I(p, \theta)\] = normalized photon intensity (as a function of ray projection \(p\) and projection angle \(\theta\)) after penetrating an object of dimension \(s\) (in cm);

\[I_o\] = normalized X-ray (photon) intensity of the source; and

\[\mu(x,y)\] = total\(^*\) local linear attenuation coefficient (LAC) of the object in this line path, in \(cm^{-1}\).

\(^*\)That is, the total of the photoelectric, Compton, and Rayleigh components.
In the CT reconstruction process, the integral equations of all the ray projections are solved for the total local LAC, $\mu(x,y)$. The total LAC, μ_t, of the object (in cm$^{-1}$) is dependent upon the energy, E, of the X-rays; the atomic numbers, z, of the elements composing the object; and the mass density, ρ, of the object:

$$\mu_L = \mu_L(E,z,\rho) \quad (2)$$

The dependence of μ_L on ρ is linear and is given by

$$\mu_L = \rho \mu_M(E,z) \quad (3)$$

where μ_M is the mass attenuation coefficient in cm2/g. The quantity μ_M, which is defined [3] as

$$\frac{\mu_L}{\rho} = \mu_M(E,z) \quad (4)$$

is a complex function of E and z. In order to calculate a total μ_M for a polychromatic photon source, the photon energy spectrum of the source must be known or assumed. For monoenergetic radiation, this is not a concern; E is known, and an effective z can be calculated* according to Walter [10] as

$$z_{\text{eff}} = \sqrt[2.94]{az_1^{2.94} + bz_2^{2.94} + cz_3^{2.94} + \ldots} \quad (5)$$

where a, b, c, etc. are the fractional content of electrons belonging to elements z_1, z_2, z_3, etc. Figure 2 shows the calculated μ_M as a function of energy for a few elements from which ceramic compounds are composed and Fig. 3 gives the μ_M of a few ceramic compounds. Water is included because it is a commonly used reference material for medical CT scanners. The calculated μ_M values of these compounds are based on the μ_M values of the constituent elements as given in Refs. 11-14.

*Calculation of effective atomic number, z_{eff}, is currently a matter of interest. The exponent 2.94 may need to be reconsidered.
As noted earlier, for a homogeneous material, z (or the effective z) is constant. Therefore, for a homogeneous material scanned with a monoenergetic beam, the \(\mu_M \) will be constant and the calculated \(\mu_L(x,y) \) will be directly proportional to the local density of the material, \(\rho(x,y) \). However, for a polychromatic photon beam this is not the case and the effective total LAC, \(\mu_L^{\text{eff}} \), for homogeneous material becomes

\[
\mu_L^{\text{eff}}(x,y) = \rho(x,y) \int_{E_L}^{E_U} \mu_M(E) dE ,
\]

where \(E_L \) and \(E_U \) are the lower and upper limits, respectively, of the X-ray head photon energies (see Fig. 4).

Figures 2 and 3 indicate that for ceramic materials, \(\mu_M \) changes by an order of magnitude or more in the energy region of a typical medical scanner. This implies that the effective total LAC (see Eq. 6) is no longer proportional to the local density of the material and unless a correction is made, the measured attenuation will not be a measure of the material density.

Fig. 2. Energy Dependence of the Mass Attenuation Coefficient for Four Elements.

Fig. 3. Energy Dependence of the Mass Attenuation Coefficient for Three Ceramic Compounds.
III. THEORETICAL BEAM HARDENING RESULTS

In order to evaluate the severity of BH in ceramics imaged with a polychromatic X-ray source, theoretical calculations were made from available information about X-ray attenuation [2] and typical X-ray tube spectra for medical CT scanners. The typical polychromatic X-ray tube spectrum selected was that of a Siemens Somatom Model DR-H scanner, as experiments could be conducted on this machine for verification. The spectra of the X-ray source in the Model DR-H scanner (as published by Siemens) for two different head voltages are shown in Fig. 4.

The X-ray spectrum varies from point to point along the beam path through an object examined in the CT scanner. This can be illustrated by showing the alteration in the X-ray spectrum for different thicknesses of a material. The X-ray spectrum may be characterized by computing effective energy and comparing the ratio of the source intensity, \(I_0 \), to the attenuated intensity, \(I(p,\theta) \). Beam hardening causes a shift toward a higher effective energy and diminution of the overall intensity, as illustrated in Fig. 5.

![Fig. 4. X-Ray Spectra for Siemens Somatom Model DR-H CT Scanner Operated Head Voltages of (a) 96 and (b) 125 kV.](image)

The effect of object thickness on X-ray beam quality was calculated for several ceramics, on the basis of the published X-ray spectra for the Model DR-H CT scanner and our knowledge of the energy dependence of X-ray attenuation (Fig. 3). Figure 6 shows the calculated attenuation in green and dense \(\text{Si}_3\text{N}_4 \) specimens ranging from 1 to 5 cm in thickness. Green ceramics have reasonably low densities (\(\rho = 1.3-2 \text{ g/cm}^3 \)) relative to densified ceramics (3 to 5 g/cm\(^3\)). Of primary interest is the marked low-energy attenuation in both green and dense ceramics. This is, of course, expected from the attenuation data shown in Figs. 2 and 3. Figure 7 shows the calculated attenuation in two ceramic compounds of much higher z and mass density than the \(\text{Si}_3\text{N}_4 \) shown in Fig. 6. The thickness ranges shown in Fig. 7 are 1-10 mm for Monofrax S5 (40% \(\text{ZrO}_2 \), 48% \(\text{Al}_2\text{O}_3 \)) and 50 \(\mu \text{m} \) to 1 mm for the electronic ceramic \(\text{LaMnO}_3 \). A strong effect of the La K-edge (38.9 keV) is evident in the spectra for \(\text{LaMnO}_3 \) (Fig. 7b); this K-edge adds a low-energy component to the total received photon intensity.
125 kVp Spectrum
(Filtration: 3 mm Al + 0.25 mm Cu)

<table>
<thead>
<tr>
<th>Curve</th>
<th>(\frac{I_0}{I(p, \theta)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>46.6</td>
</tr>
<tr>
<td>3</td>
<td>297.8</td>
</tr>
<tr>
<td>4</td>
<td>1846.0</td>
</tr>
<tr>
<td>5</td>
<td>296.5</td>
</tr>
</tbody>
</table>

Fig. 5. Variation in X-Ray Spectrum As a Function of Absorber Thickness. (1) Original X-ray spectrum; (2) through 20 cm of water; (3) through 30 cm of water; (4) through 40 cm of water; and (5) through 20 cm of water and 3.4 cm of calcium.

Fig. 6. Effect of Specimen Thickness (in the 1 to 5-cm Range) on X-Ray Attenuation in Si\textsubscript{3}N\textsubscript{4}.
Fig. 7. Effect of Specimen Thickness on X-Ray Attenuation in Two Ceramic Compounds of Higher \(z \) and Higher Mass Density than the \(\text{Si}_3\text{N}_4 \) Specimens of Fig. 6.

IV. APPROACHES TO CORRECTION FOR THE BEAM HARDENING EFFECT

A. The "Water Bag" Approach

Beam hardening is a function of the depth of penetration in an object. In a noncylindrical object, different CT projections will undergo different BH effects because of different ray-path lengths. To overcome the limitations imposed by BH, a number of approaches have been applied. These may be conceptualized as shown in Fig. 8. In the early days of medical tomographic scanning with polychromatic radiation, patients were surrounded by a water bag to reduce BH artifacts in the resulting images. A "water bag equivalent" for ceramics is a fitted symmetrical structure composed of a material that is similar in mass and electron density, as suggested in Fig. 9. Putting an object of interest inside a cylindrical container filled with a liquid material that has the same or similar X-ray attenuation properties ensures that rays from all directions undergo nearly the same BH effect.
To experimentally estimate the effectiveness of this method, a cold-pressed MgO cylinder ($\rho = 1.8 \text{ g/cm}^3$, $z_{\text{eff}} = 10.7$) was scanned with and without a ceramic "water bag equivalent" -- in this case, a Teflon ring ($\rho = 2.15 \text{ g/cm}^3$, $z_{\text{eff}} = 8.2$). Figure 10 shows a CT image of the MgO ceramic scanned without a "bag"; the BH effect is about 8.7%. Figure 11 is a similar CT scan with the MgO surrounded by the Teflon ring. As the object and the ring are symmetrical, the BH is the same for all directions. The ring reduces the BH effect in the ceramic to <3%. In this case, however, since the ring reduces the number of photons reaching the object, it increases the statistical noise in the image and reduces the contrast resolution of the reconstructed image. This approach, in principle, can reduce the BH effect but not eliminate it.
Fig. 11
CT Scan and Density Trace of MgO Specimen 1 Inside Teflon Ring. The density trace no longer shows the very high-density outer region seen within the MgO in Fig. 10.

B. Prehardening of the X-Ray Beam

A second approach is to make the BH correction in the X-ray CT machine itself, by using an equivalent filter made of a material which is placed between the X-ray head and the object under interrogation. The thickness and shape of the filter will vary with the material and geometry of the object, to ensure that all parts of the object have the same effective BH. For example, a cylindrical object would require a filter geometry similar to that shown in Fig. 12.

Fig. 12
Prehardening of the X-Ray Beam to Reduce BH Effects.

The disadvantages of this BH correction approach, besides the inconvenience of designing the filter, are similar to those of the water bag approach: (1) it will reduce the BH but will not eliminate it and (2) the hardening of the beam lowers the contrast resolution and increases the noise of the image, because the optimal energy for typical ceramic components is in the low region of the X-ray spectrum (Fig. 3) [15,16].

C. Software Methods

Another approach to the BH problem is to use sophisticated software solutions. One such method is linearization correction [17]. This method requires exact knowledge of the spectrum of the X-ray head and the composition of the material being studied, as well as access to the raw detector data. Such BH correction relationships, in theory, can be put into the CT reconstruction algorithm as a polynomial or as a look-up table.
It has been recognized for some time that the nonlinear CT image reconstruction process can be linearized if the material being scanned can be assumed to be homogeneous. This linearization process can be mathematically explained as follows: The intensity, \(I(x) \), of a polychromatic X-ray beam after penetrating a homogeneous material to a depth \(x \) is given by

\[
I(x) = \int S(E) e^{-\mu_L(E)x} dE ,
\]

(7)

where \(S(E) \) is the spectrum of the polychromatic source and \(\mu_L(E) \) is the total LAC. The polychromatic x-ray beam can be represented by an equivalent monoenergetic x-ray beam as follows: Substituting

\[
\mu_L^{(\text{eff})}(x) = \mu_L(E)
\]

(8)

and

\[
I_o = \int S(E)dE
\]

(9)

into Eq. (7), one obtains

\[
I(x) = I_o e^{-\mu_L^{(\text{eff})}(x)x} ,
\]

(10)

where \(\mu_L^{(\text{eff})}(x) \) is the effective total LAC obtained over the energy spectrum of interest. Having obtained \(\mu_L^{(\text{eff})}(x) \), one can refer to an attenuation vs. energy plot and obtain an equivalent monoenergetic photon energy. Figures 4b and 13 may be used to illustrate this process for the case of Si\(_3\)N\(_4\) and a typical polychromatic X-ray spectrum. Figure 4b shows the X-ray spectrum for a Siemens Somatom DR-H CT scanner operated at 125 kV. Figure 13 is a plot of \(\mu_t(x) \) as a function of photon energy for dense and green Si\(_3\)N\(_4\) and for a fluorinated hydrocarbon, Freon TF. At each of 100 points on the X-ray energy spectrum curve of Fig. 4b, the relative flux was multiplied by the \(\mu_t(x) \) value shown for that energy in Fig. 13. The weighted average of the 100 values thus obtained is \(\mu_L^{(\text{eff})}(x) \); this average was 0.901 for dense Si\(_3\)N\(_4\). This effective total LAC is independent of the depth of penetration, and thus the total attenuation becomes a linear function of \(x \).

From the linear attenuation curve for dense Si\(_3\)N\(_4\) (Fig. 13) and the \(\mu_L^{(\text{eff})}(x) \) value of 0.901, the equivalent monoenergetic photon energy is found to be 60.6 keV.

Figure 14 shows this effect graphically by comparing the uncorrected LAC's with the corresponding \(\mu_L^{(\text{eff})}(x) \) values for two Si\(_3\)N\(_4\) densities. Note that the uncorrected LAC has a thickness dependence which is significant at specimen sizes of engineering interest (e.g., > 1 cm). From Fig. 14, the BH correction value for specimens of different thickness can be theoretically determined.
In order to evaluate the accuracy of the $\mu_{L(\text{eff})}(x)$ method for a known X-ray spectrum and a homogeneous material, a theoretical calculation was completed and compared with an experimental measurement on a green-state Si_3N_4 specimen ($\rho = 1.995 \text{ g/cm}^3$) with dimensions of $5.7 \times 4.3 \times 3.1 \text{ cm}$. Figure 15 shows a comparison between the experimental data and theoretical calculations based on the X-ray head spectrum shown in Fig. 4. The agreement between the experimental and theoretical results demonstrates that a relative BH effect can be calculated for ceramic materials. Figure 15 also shows how severe the BH effect can be.

Fig. 13
Total Linear Attenuation Coefficient for Dense and Green-State Si_3N_4 and Freon TF.

Fig. 14. Comparison Between Linear Attenuation Coefficients with No Correction for X-Ray Polychromaticity (Solid Curves) and the Effective Total Linear Attenuation Coefficients Used in the Linearization Correction Process (Dashed Curves), for Green-State and Dense Si_3N_4.
The difficulty of implementing such a linearization BH correction method for ceramic materials was experimentally tested with an Elscint Excel 2002 second-generation medical CT scanner. Partial access to the normalized detector data for this scanner was obtained. An approximate energy spectrum, $S(E)$, was used to represent the polychromatic source. Freon TF was chosen as the test material because this fluid has a mass density ($\rho = 1.565 \text{ g/cm}^3$) and an electron density ($Z_{eff} = 14.4$) close to those of both green and dense Si_3N_4 (see Fig. 13). The test specimen was a 53-mm-diameter thin-walled polyethylene bottle filled with Freon TF and placed in the CT machine so as to produce a nominally circular cross-sectional image. Figure 16 shows a plot of the uncorrected nonlinear attenuation and the linearization correction obtained by using $\mu_1(\text{eff})$ at the equivalent monoenergetic photon energy (60.6 keV). The nonlinear polynomial-curve coefficients were empirically established during tests on the machine.

Figure 17 shows a CT image of Freon TF, obtained with a standard "water equivalent" BH correction. The BH effect is about 10%. Figure 18 shows the CT image obtained when an empirically derived linearization BH correction was implemented. In this case the BH was reduced to $<1\%$.

Fig. 15
Comparison between Theoretically Calculated and Experimentally Measured BH Effect for a Green-State Si_3N_4 Specimen.

Fig. 16
Comparison of Theoretically Derived Uncorrected Nonlinear Attenuation with Corrected Linear Attenuation for Estimated X-Ray Spectrum of Polychromatic Source from Elscint Excel 2002 CT Scanner.
Dual-Energy Methods

Dual-energy methods [19,20] provide an analytically correct solution to the BH problem, unlike the previously discussed water-bag and linearization methods, which provide only approximate solutions. In current medical practice, dual-energy methods have been found to be more accurate, reproducible, and reliable for quantifying the mineral content of bone than the
use of polychromatic sources operated at single kVp values [21]. The drawbacks are the increased cost and complexity of the instrumentation, larger data sets with associated increased data processing requirements, and noise limitations.

A basic assumption underlying dual-energy reconstruction methods is that within the X-ray energy range of interest, the energy-dependent mass attenuation coefficient \((\mu/\rho)(E)\) of materials can be expressed with sufficient accuracy as a linear combination of the Compton and photoelectric coefficients [22]. The mass attenuation coefficient can be expressed as a sum of two linearly independent basis vectors that span its space:

\[
(\mu/\rho)(E) = \sum_{i=1}^{\infty} a_i f_i(E), \tag{11}
\]

Among the pairs of vectors that can be used to span this space are X-ray attenuations for a pair of basis or calibration materials (Fig. 19). Provided that the energy dependence of the coefficients of these materials is known, the X-ray spectra at two different tube energies are known, and the measured attenuation values for the sample object are given at the corresponding energies, it is possible to compute conventional CT values as well as many new equivalent values for each voxel in the reconstructed images. For example, one can compute images at equivalent monochromatic energies (which are relatively immune to BH artifacts), equivalent basis-material composition images, electron density images, and effective-z images. The principal applications of these computed or synthesized images are removal of BH effects and selective display of different material densities (Fe, Si, Al, ...). It can be shown [19] that any material's mass attenuation coefficient can be expressed as a linear combination of the coefficients of two so-called basis or calibration materials:

\[
(\mu/\rho)(E) = a_1 \cdot (\mu/\rho)_1(E) + a_2 \cdot (\mu/\rho)_2(E), \tag{12}
\]

where subscripts 1 and 2 refer to reference material 1 and 2, respectively. Since any two linearly independent sums of two basis functions (the Compton and photoelectric components) span the space, they are also adequate basis functions. It follows then that any material \(\xi\) can be expressed as a linear combination of any other two materials, \(\alpha\) and \(\beta\), which are designated the basis-set materials:
where

\[
\frac{\mu_\xi(E)}{\rho_\xi} = a_1 \frac{\mu_\alpha(E)}{\rho_\alpha} + a_2 \frac{\mu_\beta(E)}{\rho_\beta},
\]

(13)

\[
a_1 = \frac{N_{\xi}(Z_{3.8} - Z_\beta)}{N_{\alpha}(Z_{3.8} - Z_\beta)},
\]

(14)

\[
a_2 = \frac{N_{\xi}(Z_{3.8} - Z_{3.8})}{N_{\beta}(Z_{3.8} - Z_{3.8})},
\]

(15)

and \(N_{\text{ex}}\) is the electron mean density for material x. The two basis or calibration materials should be sufficiently different in their atomic number \(Z\) to demonstrate measurable differences in their Compton and photoelectric attenuation characteristics. In CT imaging, the line integral over the LAC is determined for each focus position and detector element. This integral can be expressed accordingly as

\[
\int \mu(r,E)ds = (\mu/\rho)_1(E) \cdot \delta_1 + (\mu/\rho)_2(E) \cdot \delta_2,
\]

(16)

where

\[
\delta_1 = \int \rho_1(r)ds.
\]

(17)

The symbol \(\delta_1\) represents an "area density" in g/cm\(^2\), and \(\rho_1(r)\) represents the local mass density in g/cm\(^3\), of basis material i. When materials other than the basis materials are present, the densities are referred to as equivalent basis-material densities, a linear combination of which reflects the physical density of the attenuating material.

The equivalent "area densities" \(\delta_1\) and \(\delta_2\) of the two basis materials have to be determined for each ray path. By measuring the attenuation with two different spectra, we obtain two nonlinear equations for each ray path:

\[
I_h = \int I_{oh}(E) \cdot \exp \left[-(\mu/\rho)_1(E) \cdot \delta_1 - (\mu/\rho)_2(E) \cdot \delta_2 \right] dE,
\]

(18)

\[
I_\ell = \int I_{o\ell}(E) \cdot \exp \left[-(\mu/\rho)_1(E) \cdot \delta_1 - (\mu/\rho)_2(E) \cdot \delta_2 \right] dE,
\]

(19)

where \(I_h\) and \(I_\ell\) are the attenuated and primary intensities and the subscripts \(h\) and \(\ell\) refer to the high- and low-kVp X-ray head voltages, respectively. Equations (17) and (18) can be solved for the equivalent "area densities" \(\delta_1\) and \(\delta_2\), characterizing the unknown material.
The basis-material decomposition is thus accomplished by calculating the δ_1 and δ_2 values from the measured projection values. Materials with an atomic number z different from those of the two basis materials will contribute to both δ_1 and δ_2 in a specific fashion [23]. The values δ_1 can be interpreted as components in a two-dimensional vector space with the basis materials defining the basis vectors.

The dual-energy correction is usually implemented by use of table look-up procedures. Figure 20 summarizes the basic procedure for the rapid kVp-switching method, which we have chosen for our application. Profiles of attenuation measurements made along the X-ray beam path demonstrate significant BH in Freon TF on medical CT scanners operated in this energy range, as shown in Fig. 17. This effect is virtually completely removed by dual-energy monochromatic-equivalent reconstruction using rapid kVp-switching (Fig. 22).

![Diagram](image-url)

Fig. 20
Processing Scheme for Dual-kVp Data Evaluation (Adapted from Ref. 19).

We have applied dual-energy CT scanning to demonstrate its potential for reducing BH artifacts in images of ceramic materials. Using calcium and water as the basis materials, we computed equivalent monochromatic images as illustrated in Fig. 21. The initial test object, a container filled with Freon TF fluid, was scanned at room temperature at 85 and 125 kVp.

As mentioned earlier, dual-energy CT scanning techniques are not without drawbacks. Additional X-ray accelerating potential hardware and specialized reconstruction hardware and software are required to provide reconstructed results in a timely fashion. The complexity of the data processing is certainly increased, and the success of the method is based on accurate knowledge of the original X-ray tube spectra, their respective accelerating potentials, and the attenuation characteristics of the basis materials. Beam hardening effects are suppressed, but not completely eliminated. It is often assumed that all of the density errors near the borders of scanned objects are due to BH, but this is not the case in practice. Most investigators have neglected the contributions of partial volume effects, specimen inhomogeneity, and off-focal radiation (scatter).
Dose-related noise is a limitation in dual-energy methods, especially at the lower kVp setting. The spectral separation obtained in practice by switching the X-ray source from 85 to 125 kVp is not ideal for all situations. The decomposition table that is used to perform the dual-energy X-ray computations can be inaccurate owing to variations of the X-ray spectra and incorrect assumptions regarding the basis materials and the energy dependence of their X-ray attenuations.

Fig. 21. Illustration of the Dual-Energy Principle and Resulting CT Images. The low-density ceramic matrix is significantly different from the high-density inclusions with regard to attenuation properties at the two X-ray energies, owing to differences in the energy dependence of X-ray attenuation in the two materials. The basis-material decomposition process (see text) makes use of this information to calculate material density images.
Fig. 22
CT Image of Freon TF with Dual-Energy Reconstruction Package. An 80-keV equivalent monoenergetic photon image is shown with densitometer trace.

V. CONCLUSIONS

We have considered several aspects of CT imaging for structural ceramics. Specifically, we have focused on BH problems and initial work on basis or equivalent materials for phantom/calibration use. These efforts have led to the conclusions that (1) dual-energy methods have the greatest potential for BH corrections on polychromatic CT scanners and (2) Freon TF can be used as a fluid for phantom design.

REFERENCES

Distribution for ANL-87-24

Internal:
R.E. Botto E.L. Hartig A.C.Raptis
F.A. Cafasso L. Johnson J.P.Singh
H. Drucker D.J. Lam E.M. Stefanski
W.A. Ellingson (3) R.L. Larsen J. Taylor
D.C. Fee R. Massow C.E. Till
F.Y. Fradin W.J. McGonnagle R.W. Weeks
B.R.T. Frost M.V. Nevitt H. Wiedersich

External:
DOE-TIC, for distribution per UC-111 and UC-115 (74)
D.T. Goldman, DOE-CH
F. Herbaty, DOE-CH

ADVANCED MATERIALS & PROCESSES, Rt. 87
Metals Park, OH 44073
Laurel M. Sheppard

AFWAL/MLLP
Wright-Patterson AFB, OH 45433-6533
Allan Katz Joseph Moyzis
Robert Ruh Dale E. Chimenti

AIR PRODUCTS AND CHEMICALS, INC., Box 538
Allentown, PA 18105
Ken Baumert

ALCAN INTERNATIONAL LIMITED, Kingston Research & Development Center
P.O. Box 8400, Kingston, Ontario CANADA K7L 4Z4,
Gregory Hayes

ALCOA TECHNICAL CENTER
Alcoa Center, Pa 15069
Thomas Drumwright Martin Jones
John Weyland

ARMY MATERIALS TECHNOLOGY LABORATORY, Arsenal St., SLCMT-OMM
Watertown, MA 02172
Al Broz James Marzik

ATOMIC ENERGY OF CANADA, Chalk River
Ontario, KOJ 1JO CANADA
Stuart MacEwen Barbara Sawicka

BABCOCK & WILCOX RESEARCH CENTER, P. O. Box 785
Lynchburg, VA 24505
William Long Tom Powers
BARKS, RONALD E. & ASSOCIATES, Box 65, Chase Road
Thompson, CT 06277
Ronald E. Barks

BORG-WARNER CORPORATION, Wolf-Algonquin Roads,
Des Plaines, IL 60018
Vance Brown Al Karvelas
Donatus Tijunelis

BRITISH PETROLEUM COMPANY, Chertsey Road, Sudbury-on-Thames
Middlesex TW167LN ENGLAND
C. I. Nicholls

CERAMATEC, INC., 163 West 1700 South
Salt Lake City, UT 84115
Raymond Cutler David W. Richerson

CHISHOLM INSTITUTE OF TECHNOLOGY 900 Dandenong Road
Caulfield East, Victoria, AUSTRALIA 3145
John R. Davis

COORS PORCELAIN COMPANY, Golden, CO 80401
J.E. Knight Dennis Kruetzer
Dave Wirth

CORNING GLASS WORKS SP-FR-51 Sullivan Park
Corning, NY 14831
David C. Larsen

CUMMINS ENGINE COMPANY, Box 3005, Mail Code 50183
Columbus, IN 47202-3005
Thomas M. Yonushonis

DARPA, Materials Science Division, Defense Sciences Office
1400 Wilson Blvd., Arlington, VA 22209-2308
Kay Hardman-Rhyne

E.I. duPONT COMPANY Engineering Physics Lab
Wilmington, DE 19898
John D. Anthony, Jr. Thomas W. Harding

ELECTRIC POWER RESEARCH INSTITUTE, 3412 Hillview Ave.
P. O. Box 10412, Palo Alto, CA 94303
Steve Gehl Wate T. Bakker

FERRO, 7500 E. Pleasant Valley Road., Independence, OH 44131
Alan G. King

FORD MOTOR CO., P.O. Box 2053
S-3039 Scientific Res. Labs. Dearborn, MI 48121
Lee Feldkamp
Arthur F. McLean (Ceramics Material Dept.)
GARRETT CERAMIC COMPONENTS COMPANY 19800 Van Ness Avenue
Torrance, CA 90509
David M. Kotchick Hun C. Yeh

GARRETT TURBINE ENGINE COMPANY, 111 S. 34th St.,
P.O. Box 5217, Phoenix, AZ 85010
David Carruthers Vicki E. Panhuise

GAS RESEARCH INSTITUTE 8600 W. Bryn Mawr Ave.
Chicago, IL 60631
Matt Schriener Max Klein

GENERAL ELECTRIC COMPANY #1361, Bldg. 336/Room 365
Nela Park East Cleveland, OH 44112
Ashvin Srivastava

GENERAL MOTORS CORPORATION Allison Div. P.O. Box 420
Indianapolis, IN 46206
Pramod Khandelwal

GTE LABORATORIES, INC. 40 Sylvan Road
Waltham, MA 02254
Gus Bandyopadhyay William Koenigsberg
Arvid E. Pasto

GTE/WESGO, 509 Calle DeSoto, San Clemente, CA 92672
Harry Kerr

HUGHES AIRCRAFT, Electro-Optical, 2175 Park Place, P.O. Box 902
El Segundo, CA 92045
J. E. Almanza

IDAHO NATIONAL ENGINEERING LABORATORY EG&G Idaho, Inc.
P.O. Box 1625 Idaho Falls, ID 83415
J. B. Walter

INDUSTRIAL MATERIAL RESEARCH INSTITUTE OF CANADA,
75 Boulevard, De Mortagne, Boucherville,
Quebec, CANADA J4B 5K5
Jean Bussiere Jean-Pierre Monchalin

INDUSTRIAL QUALITY INC.
P.O. Box 2397
Gaithersburg, MD 20879-0397
Harry Berger

IOWA STATE UNIVERSITY/APPLIED SCI.CTR., Ames Lab
Ames, Iowa 50011
D. O. Thompson

JOHNS HOPKINS UNIVERSITY, Center for Nondestructive Evaluation,
Maryland Hall, Baltimore, MD 21218
John Murphy Robert E. Green, Jr.
LANXIDE CORPORATION. Tralee Industrial Park
Newark, DE 19711
J. G. Weinstein C.R. Kennedy

LENOX CHINA, Tilton Road
Pomona, NJ 08240
John T. Jones

LIVERMORE NATIONAL LABORATORY, P. O. Box 808
Livermore, CA 94550
Ronald Streit

LOS ALAMOS NATIONAL LABORATORY
P.O. Box 1663, Los Alamos, NM 87545
F. D. Gac David Stupin

McMASTER UNIVERSITY
Hamilton, Ontario, CANADA L8S 4L7
P. S. Nicholson

MARTIN MARIETTA LABS 1450 S. Rolling Rd.
Baltimore, MD 21227
Boro B. Djordjevic

MASSACHUSETTS INSTITUTE OF TECHNOLOGY,
Dept. Materials and Components, Rm. 12-009,
Cambridge, MA 02139
H. K. Brown

MINNESOTA, MINING AND MANUFACTURING (3M),
New Products Division
3M Center, St. Paul, MN 55144
Jane S. Copes

NASA LEWIS RESEARCH CENTER Mail Stop 6-1 2100 Brookpark Rd.
Cleveland, OH 44135
George Baaklini Stan Klima
Alex Vary

NATIONAL BUREAU OF STANDARDS Ceramics Division Bldg. 420
Gaithersburg, MD 20899
Sandy J. Dapkunas Edwin R. Fuller, Jr.
Tom Yolken G. V. Blessing

NAVAL SURFACE WEAPONS CENTER Code R34
Silver Spring, MD 20903-5000
Cliff Anderson

NORTON COMPANY, Advanced Ceramics,
Goddard Road, Northboro, MA 05132-1545
Kamal E. Amin Joseph N. Panzarino
Stephen D. Hartline