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PROGRAM ABSTRACT 

1. Name of Program: VARIANT- a new nodal module for the D I F 3 D ' ' 2 ncutronics 

code 

2. Computer for which Program is Designed and Other Machine Version Packages 

Available: CRAY X-MP. Sun SPARCstations. IBM RS6000 series. 

3. Description of Problem Solved: VARIANT solves the multigroup steady-state 

neutron diffusion and transport equations in two- and three-dimensional Cartesian 

and hexagonal geometries using variational nodal methods. The transport 

approximations involve complete spherical harmonic expansions up to order P5. 

Eigenvalue, adjoint, fixed source, gamma heating, and criticality (concentration) 

search problems are permitted. Anisotropic scattering is treated, and although 

primarily designed for fast reactor problems, upscattering options are also 

included. 

4. Method of Solution: The neutron and transport equations are solved using a 

variational nodal method-^'' with one mesh cell (node) per hexagonal assembly 

(Cartesian geometry node sizes are specified by the user). The nodal equations 

are derived from a functional incorporating nodal balance, and reflective and 

vacuum boundary conditions through Lagrange multipliers. Expansion of the 

functional in orthogonal spatial and angular (spherical harmonics) polynomials 

leads to a set of response matrix equations relating partial current moments to flux 

and source moments. The equations are solved by fission source iteration in 

conjunction with a coarse mesh rebalance acceleration scheme. The inner 

iterations are accelerated by a partitioned matrix scheme equivalent to a synthetic 

diffusion acceleration method". 

5. Restrictions on the Complexity of the Problems: Problem dimensions are all 

variable. Enough memory must be allocated to contain all the information for at 

least one energy group. Flux and source expansions of up to sixth order are 

allowed. Partial current expansions up to second order arc allowed. Angular and 

scattering expansions of up to P5 are allowed. The typical limiting factor for a 

vu 



problem lies in the storage of response matrices for problems involving large 

numbers of unique node types. For highly heterogeneous problems involving 

thousands of different node types, calculation and storage of response matrices 

represents the primary computational cost. 

6. Typical Running Time: The times provided apply to a three dimensional isotropic 

problem for a small LMR with 30° planar symmetry, 9 energy groups, 14 axial 

mesh planes and 16 rings of hexagons. The problem consisted of 1694 nodes with 

24 compositions and 216 unique node types. Each outer iteration required 70 

inner iterations (5 groups required 10 inner iterations and 4 groups required 4 

inner iterarions). The diffusion calculation required 18 outer iterations and the 

transport calculation required 19 outer iterations. The diffusion calculation 

iterations used 41 CPU seconds on a CRAY X-MP/14, 47 seconds on an IBM 

RS6000, and 107 seconds on a SPARC 20/50. The transport calculation for this 

problem (with a P3 angular expansion) required 231 seconds on the CRAY X-

MP/14, 1046 seconds on an IBM RS6000 and 2183 seconds on a SPARC 20/50. 

7. Unusual Features: Variational nodal methods incorporate a number of attractive 

features. These include a standard hierarchy of space-angle approximation, well 

behaved small mesh limits, and the absence of both ray effects and artificial 

diagonal streaming depressions. Dimensionless parts of the response matrices 

involving integrals in space and angle are pre-computed once using 

MATHEMATICA for each geometry option. The results are stored in 

FORTRAN data statements and used to generate response matrix sets for unique 

nodes (defined by cross section and dimension data) prior to fission source 

iteration. Anisotropic scattering (up to order P5) is also available. VARIANT 

achieves near Monte Carlo accuracy at a fraction of the cost. 

8. Related and Auxiliary Programs: VARIANT reads and writes the standard 

interface files specified the Committee on Computer Code Coordination (CCCC). 

9. Status: VARIANT is currendy in use on the Reactor Analysis Division network 

which consists of Sun SPARCstations and IBM RS6000 series workstations. 

Modules for perturbation calculations, and inhomogeneous nodes are under 

development. 
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VARIANT: VARIational Anisotropic Nodal Transport 
fur Multidimensional Cartesian and Hexagonal (icometry Calculation 

by 

G. Palmiotti, E. E. Lewis, and C. B. Carrico 

ABSTRACT 

The theoretical basis, iinpleinentation information and 
numerical results are presented for VARIANT (VARIational 
Anisotropic Neutron Transport), a FORTOAN module of the 
DIF3D code system at Argonne National Laboratory. 
VARIANT employs the variational nodal method lo .solve 
multigroup steady-state neutron diffusion and transport 
problem.s. The variational nodal method is a hybrid finite 
element method that guarantees nodal balance and permits 
spatial refinement through the u.se of hierarchical complete 
polynomial trial functions. Angular variables are expanded 
with complete or simplified P,, P, or P, spherical harmonics 
approximations with full anisotropic scattering capability. 
Nodal response matrices are obtained, and the within-group 
equations are solved by red-black or four-color iteration, 
accelerated by a partitioned matrix algorithm. Fission source 
and upscatter iterations strategies follow those of DIF3D. 
Two- and three-dimensional Cartesian and hexagonal 
geometries are implemented. Forward and adjoint eigenvalue, 
fixed source, gamma heating, and cTiticality (concentration) 
search problems may be performed. 





I. INTRODUCTION 

VARIANT (VARIational Anisotropic Neutron Transport) is a FORTRAN module 

of the DIF3D code system' al Argonne National Laboratory. It performs multigroup 

neutron transport calculations In both Cartesian and hexagonal geometries in two and three 

dimensions. Both forward and adjoint calculations may be performed. Spherical harmonics 

are employed lo treat the angular variables; at present P ] , P3 and P5 approximations are 

implemented in all geometries and include both within-group and group-to-group 

anisotropic scattering. The spatial dependence of the flux variables is represented by 

complete polynomials within coarse mesh nodes, and along internode interfaces. 

Polynomials as high as fourth order for Cartesian and sixth order for hexagonal geometries 

arc implemented. 

Solutions of the within-group neutron transport equation are obtained using the 

variational nodal method, which originated at Northwestern University and has been 

developed in close collaboration with Argonne National Laboratory.^""^ The defining 

feature of the method is a variational principle for the even-parity form of the transport 

equation in which odd-parity Lagrange multipliers along the node interfaces guarantee 

neutron conservation for each node. The well-founded variational formulation allows 

computational algorithms to be derived using the classical Ritz procedure: known trial 

functions in angle and in space are used to approximate the fiux variables and obtain sets 

of linear algebraic equations for each node, with inter-node coupling specified by 

concomitant continuity conditions. For computations effectiveness a transformation of 

variables is then employed to reduce the nodal equations to response matnx form. 

The systematic use of the Ritz procedure allows well-defined hierarchies of 

approximations in angle and in space to be generated. Diffusion or Pi theory is the natural 

lowest-order angular approximation to arise from the formulation, allowing diffusion 

calculations to be compared easily lo higher-order spherical harmonics solutions. The 

treatment of the spatial variables parallels hybrid finite element methods. The formalism 

allows polynomials of increasing degrees to be used in examining spatial truncation errors 

by p convergence as an alternative lo the standard h convergence obtained from mesh 

refinement. In addition to the standard spherical harmonic hierarchy of angular 

approximations, VARIANT'S variational formulation is also adapted easily to reduced 

angular and simplified spherical harmonics approximations,'^''' thus providing additional 

flexibility in trade-offs between accuracy and computalional cost. 



The foregoing approach contrasts significantly with those nodal methods which 

were first formulated and applied with great success for diffirsion theory and then extended 

to transport theory. They begin with a statement of nodal balance and employ transverse 

integration procedures to obtain approximate quasi-one-dimensional equations whose 

solutions provide the necessary auxiliary conditions. While highly successful in obtaining 

fast, coarse mesh diffusion solutions, these approaches have been confounded to some 

extent by the complexity of space-angle coupling found in the transport equation. 

Difficulties have been encountered in going beyond spatially flat interface assumptions and 

in reconciling the angular approximation within the nodes with those along the interfaces. 

Such methods provide only one space-angle "transport approximation" and allow neither 

space-angle refinement to examine truncation error nor straight-forward provisions for 

reconstructing intranodal flux distributions. Moreover, they provide neither the capability 

to treat anisotropic scattering nor straight-forward provisions for adjoint calculations. 

Discrete ordinate nodal methods circumvent some of these shortcomings by using a 

standard SN hierarchy of angular approximations, but they have not been developed 

sufficiently for reactor calculations to evaluate their potential. More extensive discussions 

of competing nodal transport methods may be found elsewhere.12,13 

As a module of the DIF3D code system, VARIANT makes extensive use of other 

system modules to perform those operations which do not pertain either to the generation of 

the response matrices or to the within-group solution algorithms. These include node 

generation, outer iteration on the fission source and its acceleration, input of both geometry 

and cross section files and output editing. Substantial modifications were made to handle 

the input of anisotropic scattering cross section, which had not been a part of the original 

DIF3D code. 

A unique feature of VARIANT is the central role played by symbolic manipulation 

in generating the nodal response matrices. For each new geometry or level of space-angle 

approximation, the Ritz procedure spawns many - in most cases thousands - of 

multidimensional integrals over known trial functions. Error-free evaluation of these large 

arrays of integrals is intractable by hand. However they are easily put in dimensionless 

form. Thus we utilize symbolic manipulafion in the form of the Mathematica software 

package 1"* to automate the analytical evaluation of the integrals. The resulting arrays of 

numbers are stored as DATA statements in the FORTRAN subroutines which generate the 



response matrices. Thus the symbolic manipulation is performed only once for each new 

geometry or for each new approximation in space or angle which is added to VARIANT. 

Since the variational nodal equations are cast in response matrix form, VARIANT 

is also able to make extensive u.se of existing coding in the nodal option'-^ of the DIF3D. 

The ntxlc numbering and other data handling capability for performing red-black or four 

color response matrix iterations in Cartesian and hexagonal geometries, respectively is 

retained in VARIANT. Nodal coding previously developed by R. Lawrence""'^ also 

ser\'es as an excellent point of departure from which to implement the partitioned matrix 

algonthm developed for VARIANT to accelerate the iterative solution of the within-group 

response matrix equations. 

The remainder of this report is organized as follows. In Chapter 2 the variational 

nodal method is described and the derivation of the response matrix equations presented. 

Special attention is given to the treatment of boundary conditions and inclusion of 

anisotropic scattering. In Chapter 3 the response matrix solutions algorithm and the 

partitioned matrix acceleration techniques are described. In Chapters 4 and 5 respectively 

numerical examples and u.ser information are presented. 



II. THE VARIATIONAL NODAL METHOD 

In this Chapter we set forth the theory behind the variational nodal method and 

derive the linear algebraic equations used in the resulting multigroup response matrix 

algorithm. For simplicity, in Sections II. A and B we first formulate the problem and 

discretize the equations assuming isotropic scattering, and make use only of some of the 

more general properties of the space-angle approximations. In Section II. C we then 

examine the spherical harmonics approximation, the associated boundary conditions and 

spatial approximations in more detail. In Section II. D we generalize the variational nodal 

method to include both within-group and group-to-group anisotropic scattering. Finally, in 

Section II. E. we present the symbolic manipulation evaluation of the integrals involved in 

the coupling coefficient calculations. 

II. A. The Variational Formulation 

In this section we present the variational basis for the computational algorithms 

which constitute the variational nodal method. We begin with the within-group transport 

equation with isotropic scattering and sources: 

[ii-V + a{r)J¥{r,a) = J dQ'cT,(r)l'(r,i2') + S(r) , (2.1) 

where a is the total cross section, and Os is the within-group scattering cross section; 4* 

represents the angular flux and S the group source; r and i i are the neutron position and 

direction of travel. In the following subsections we furst rewrite this equation in even parity 

form, and then set forth the variational principle and its properties. The section concludes 

with a demonstration of the nodal balance property of the variational principle. 

// . A.l The Even-Parity Equations 

The definitions of the even- and odd-parity flux components are 

and 

Mr,ii) = i [4'(r,ii) + ^Pfr.-ii)] (2.2) 

X(r,ii) = l[4'(r,£2)-4'(r,-ii)] (2.3) 



respectively. To formulate the problem varialionally. we first obtain Ihe even-parity 

equation with isotropic scattering and sources. This is accomplished by first evaluating Eq. 

2.1 at and i i and at -ii and then adding one half of the results to obtain 

i i V x(r4i}+ a(r)v|/(r^) = a j r ) j dii'ii/(r,ii') -i- .S(r). (2.4) 

Likewise, subtracting the results yields 

iiVv(r4i}+a{r)x(r,ii) = 0 . (2.5) 

The even parity equation. 

-aVa"'aVvt> -KTV = â (t) -i-S, (2.6) 

is then obtained by using Eq 2,5 to express the (xld-parity flux in terms of y as 

X = - a ' n V y (2.7) 

and then eliminating it from Eq. 2.4. 

The scalar flux is written in terms of the even-panty flux as 

(]) = f dfiy , 

and the current vector in terms of the odd-parity flux as 

(2.8) 

J = JdiiQx . (2.9) 

Thus combing Eqs. 2.7 and 2.9, we have 

J = - a ' f d i i i i a V v . (2.10) 

On reflected boundaries, both even- and odd-parity flux components must meet the angular 

symmetry conditions. Vacuum boundaries may be shown to reduce lo the conditions'* 

tl/{r.i2) = ±z(r.O) n-Q^O (2.11) 

where n is the outward normal on the vacuum surface. 



/ / . A.2 The Nodal Variational Principle 

The even-parity transport equation may be formulated as a variational principle in 

terms of a global functional, F, which is a superposition of volume and surface 

conti-ibutions from the v spatial nodes and J nodal interfaces comprising the problem 

domain: 
FIM'.X] = X Fv[V>X] , (2.12) 

V 

where the contribution from node v is 

F^V, x] = r d v | ( diifo' (iiV v|/)2 -I- cn|f̂ ] - Os(t)2 - 2(t)s|-F 2J d p j di2i2n,V|OC (2.13) 

In the absence of the interface term containing % . Eqs. 2.12 and 2.13 reduce to the 

functional first formulated by Vladimirovl^, and since used as the basis for many finite-

element and related approximations to the transport equation. The use of % as a Lagrange 

multiplier at node interfaces is the unique feature which differentiates this functional from 

previous even-parity variational formulations and gives rise to the variational nodal method. 

For as we shall see, the continuity requirements of more conventional spatial finite 

element approximations are relaxed, while neutron conservation is enforced on each node. 

Requiring this functional to be stationary with respect to variations in \|/ and % may 

be shown to lead to the even-parity Euler-Lagrange equation within each node and the 

continuity of both even and odd-parity fluxes across the interfaces. This is accomplished 

as follows.!^ Suppose we let xj/̂  be the reference even parity flux for r e V^, and % the 

corresponding odd parity flux for r e F.̂ ,. Next, we examine the effect of taking arbitirary 

variations about the reference functions: 

\|/ = \|/^,-i-5\|/ , reVy (2.14) 

5C = XY+5X . r e P ^ (2.15) 

Substituting these variations into Eq. 2.13, we may write 

Fv[Vv + 5v,Xy+5x] = F^VvaJ + 5F,[v,x] + 52F^V,X] , (2.16) 

where the three terms on the right are referred to respectively as the zero, first and second 

variations with respect to \|/ and % • The zero variation is just Eq. 2.13 evaluated with the 



(2.17) 

reference solution, while the second v;iriation contains only products of Ihe variations, 

(5^)" and 5v)/5x Here, the first variation is the focus of interest, since for the functional 

of Eq. 2.12 to be stationary, Ihe sum of these variations must vanish. 

The contribution of node V, to the first variation may be written explicitly as 

6Fv(v. X] = 2 [ dv/1" d i i |o ' ( i i V 6v)ii V y, -H CT\J/,6\|/,| - &() (a,,(t>. -i- S) 

+ 2 jdr j 'd i2i in^x,5v + v|/,6x) 

To put the first variation In more transptu'ent form, wc utilize the identity 

0"'(iiV5v)/)iiVn;, = -5 i | / aVa ' i iVv) / . - ( -V( i i5va ' aVn / . ) , (2.18) 

along with the divergence theorem, 

r dV f diiii V (5v)/Q Vy,) = r d r [ d i i i i n , 5 y a V y . (2.18a) 

j" d i iSy = 5<ti 
and 

(2.18b) 

to rearrange terms and obtain 

5Fv{v, x] = 2 I" dV f dQ5H/j - a V O ' Q V V|/. + mf, - ô t}), - s] 

+ 2[dr[di i i in^H((a- 'QVv.-(-Xy)+ 2 f df f diiii n, \(/.5x 
(2.19) 

Requiring Eq. 2.12, the global functional, to be stationary is equivalent to 

requinng the fist order variation to vanish: 

5Flv,x) = l5F^M/.X] = 0 . (2.20) 
V 

Thus, the volume term from each 5F̂ , must vanish if 6F is to vanish. But since 6y within 

each ntxic is arbitrary, this takes place only if the bracketed term in Eq. 2.19 vanishes. But 

this term and Eq. 2.6 are identical. Thus within each node, the even-parity transport 

equation is the functional's Euler-Lagrange equation. 



The terms over the internal interfaces must be treated somewhat differently. 

Consider the interface between nodes V^ and V -̂. Any such interface, designated by 

r^ and n^, is opposite another node interface, say Ty and n^ , such that Fy = r^ and 

ny = - n^ . From Eq. 2.19 we see that the conti-ibution of this interface to the variation 

of Eq. 2.20 may be written as the sum of just two integrals, 

2J dPJ diinn^v|/( a ' i i V v . - a ' i i V v . ) + 2^ d p j di i i in , 5x [w. - Vv.) ^221) 

since the x^W terms in the second integral of Eq. 2.19 cancel. For the second term to 

vanish with arbitrary variations, the even parity flux must be continuous across the 

interface. Likewise, for the first term to vanish the flux gradient terms, which are seen 

from Eq. 2.7 to represent the odd-parity flux, must also be continuous across the interface. 

Thus the exact interface conditions are met. Finally, note that discontinuities in the cross 

sections at the node interface have no effect on the foregoing argument (we would need 

only to place nodal subscripts on the cross sections). 

We have yet to consider the boundary conditions on the outer surface of the 

problem domain. The functional is not varied on reflective boundaries. Rather, the 

essential symmetry conditions are imposed on the angular distribution of even- and odd-

parity fluxes. This causes the \)/x term in Eq. 2.13 to be identically equal to zero on 

reflected boundaries. On vacuum boundaries, the replacement of the \|/x term with the 

integral 

("dpfdiilnyalvj/^ (2.22) 

yields Eq. 2.11. These are referred to as modified natural boundary conditions. We shall 

return to a more detailed treatment of boundary conditions. 

Before proceeding, we observe that the natural lowest-order angular approximation 

with the foregoing variational formulation is the diffusion or Pi approximation. If we 

require the even-parity flux to be independent of angle, v(f(r,£i) —> (|)(r) , and likewise take 

X (r,£i) —> 3ii-J(r), the diffusion equation becomes the Euler -Lagrange equation, and 

continuity of the scalar flux and normal current component across interfaces is imposed by 

the Lagrange-multiplier term. 



//. A.3 Nodal Balance 

An imptirtant property of the nodal formulation is Ihe imposition of neutron balance 

over each node. Ntxlal balance may be demonstrated as follows. Suppose we define the 

volume-averaged scalar flux for a particular ntxle as 

$=^J^0(r)dV (2.23) 

and wnte the even panly flux as 

\(/(r,ii) =^ -i-Vo(r,ii) (2.24) 

where the second term is required only to be orthogonal to $ : 

f dV r dii\|/„(r,ii) = 0 . (2.25) 

Likewise, we define the average source as 

S = J - f S(r)dV (2.26) 

and write 

S(r) =S -i-S„(r) (2.27) 

with the Orthogonality condition 

J S„(r)dV =0 (2.28) 

If we insert Eqs. 2.24 and 2.27 into the functional given by Eq. 2.13, and utilize 

the orthogonality conditions, and the definition of J, we may rearrange terms to obtain 

FJn/, Xl = fcr - a,)V>^ - 2V>S -i- 2 ^ | dPn, J 

+ j dv{J dii|a-' (iiV Vo)^ + CTH^y - 0,(1 diiVo)' }+ 2 | dpJ diiiin,v|/oX 
(2.29) 

Note that only the first three terms contain $ . Thus if we let $ —> $ -i- 5$ and require F̂  

to be stationary with respect to arbitrary variations 5$ , wc obtain Ihe nodal balance 

equation 

(a - a , )V> + f dFn, J = V^S (2.30) 



which just states that absorption plus leakage must be equal to the number of source 

neutrons produced in the node. This proof that nodal balance is preserved whether 

l(fo represents the exact solution or only some approximation thereof The approximate 

case is very important, for it states that nodal neutron balance is maintained, independent 

of the even- and odd-parity flux approximations which are used. 

II. B. Transport Equation Discretization 

In this section we utilize the foregoing variational formulation to discretize the 

transport equation and obtain a set of linear equations suitable for efficient numerical 

computations. Accomplishing this entails choosing a suitable set of space-angle trial 

functions and employing it in a classical Ritz procedure. The equations which result from 

the Ritz procedure are then cast in a form suitable for within-group response matrix 

calculations. These, in tum, are embedded in a multigroup formalism. The choice of trial 

functions is central to the development of accurate and computationally efficient methods. 

Generally, we utilize orthogonal polynomials in space and spherical harmonics in angle. 

We defer, however, a detailed discussion of trial functions and their associated boundary 

conditions to Section n. D. In this section, we need specify only some of the more general 

properties of the trial functions necessary to carry out the discretization. 

//. B.l The Ritz Procedure 

The classical Ritz procedure consists of approximating the dependent variable or 

variables in a variational principle with a set of known trial or basis functions, and 

determining the unknown coefficients by requiring the functional to be stationary with 

respect to variations in the coefficients. We apply the Ritz procedure by approximating the 

even- and odd-parity fluxes as separable expansions of spatial and angular trial functions 

with unknown coefficients. With the convention hereafter that repeated English (but not 

Greek) subscripts imply summation, these take the form: 

\|/(r,ii) = fi(r)g|{,(ii)U T E V V (2.31) 

and 

x(r,a) = hjT(r)km(nkjn7 . r e P^ (2.32) 

Since, at present, only isoti-opic scattering is considered, the even-parity group source is 
independent of angle and may be approximated as 
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r e Vv (2.33). 

and the .scalar flux as 

«(r) = f,(r)5,„^,. ••^Vv (2.34) 

In the foregoing equations the îm and Xjny '•^'^ arrays of unknown coefficients, and 
the s, are source coefficients. The f|(r) and hjY(r) represent spatial basis functions which 

are complete polynomials. They are orthonormal over the node volume and surfaces, 

respectively, meeting the conditions 

£ fj(r)f,.(r)dV = 5̂ ;. (2.35) 

and 

[ hj^r)hj../r)dr = 8^.. (2.36) 

The angular basis functions, gn,(ii), within the node are even-parity spherical harmonics 

meeting the orthonormality conditions 

J g;(ii)g^(ii)dii = 5„„. . (2.37) 

The odd-parity basis function, k ^ i i ) , along the interfaces consist of odd-order spherical 

harmonics; their form is discussed further in section II. C. 

Inserting the expansions of V, X, and S into Eq. 2.13 results in the reduced 

functional 

EvfC,.. X,^] = ^ . .Ar 'Cr . - - 2C,.s,^ + 2X ^,,M™Xj„, (2.38) 
r 

where for convenience we have defined Sj^ = ^Q^H, • The matrices in this equation are 

defined as 

\ ^ =a ' PI'I'-HI^,"' +Vv5ii{a5mm'-055|m5lm') 2 39) 

and 
MijY - DyyEmnY. (2.40) 
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Each of the elements of these matrices is given in terms of integrals over known spatial or 

angular trial functions as defined in Table I. The isotropic source moments are given by 

Si=JdVfi(r)S(r) . (2.41) 

The reduced functional may be written in a more compact form by defining C, and 

Xy as partitioned vectors formed from the successive columns of ̂ jn, and Zjny, which are 

the arrays of unknown coefficients. The resulting functional appears as 

Fv[Cx] = C''A^2CTs + 2XCX3Cy • (2-42) 

where the partitioning of A, s and M is consistent with that of ^ and Xy . We may 

eliminate the sum over the surfaces by defining a single vector over the surfaces 

X^ =[xi^X2\-,x7.-] (2.42a) 

and the corresponding coupling matiix 

M = [ M „ M „ - , M ^ . . . ] (2.42b) 

Equation 2.42 may then be written as 

Fv[Cx] = C''A^2C'^s + 2C'̂ Mx (2.42c) 

Requiring the functional to be stationary with respect to variations in ^T then 
yields 

C = A - ' S - A - ' M X . (2.43) 

The variation with respect to Xy across an interface leads to the requirement that 

V y = M % ^2.44) 

be continuous across each interface. Thus for the surfaces of the node we form an even-
parity vector, whose subvectors are the y^ , in tenns of the internal tiial function ^ 
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\|» = M^^ (2.44a) 

Combining Eqs.2.43 ;uid 2.44a. wc have 

y=M"''A"'s - M' ' "A" 'MX. (2.45) 

This equation relates the even-parity flux moments on the node interfaces to the source 

moments within the node and lo the odd-parity flux moments on the node interfaces. 

//. B.2 Multigroup Response Matrix Equations 

Equation 2.45 may be viewed as a generalization of the T ' form of a within-group 

response matrix equation, which has previously been developed only for diffusion 

theory.2' To obtain a response matrix in conventional form, we introduce the change of 

variables 

J * = 3 V ± i X • (2.46) 

where j and j ~ are, respectively, outgoing and incoming partial current-like moments, 
each integrated over the corresponding node surface F . In the diffusion approximation 

these reduce to the partial currents. Inverting Eq. 2.46 then yields 

V=2a*+j") (2.46a) 

and 
X = J ' - J ' - (2.46b) 

Combining Eqs. 2.45 and 2.46, we may then write the nodal response matrix equation in 

the form 

r = Bs-Hy-, (2.47) 

where 
R= [G-t-I]-'[G-I] (2.48) 

B = [ G - H ] - ' C (2-49) 

The matrices G and C arc partitioned into submatrices defined for each interface. The 

submatrices are defined as 
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G^ = i M X M y ' ('-'"^ 

""** _ i T -1 . (2.51) 

Once the partial current moments are detennined, the even-parity flux moments for the node 

interior can be determined from the coefficients given by Eq. 2.43. Using Eq. 2.46b, we 

have 
C = A - ' s - 2 c ( r - j - ) , (2.52) 

where the first subvector <|) of the vector C contains the scalar flux moments. 

The multigroup coupling equation for group g is given in the standard form 

S = ̂ vaf,4g- + CT,A" (2.53) 

where the cross section notation is conventional. With the scalar flux expanded in each 

group as indicated in Eq. 2.53, we obtain 

Sgi =k'' 8„oXgVOfg-Cg'io + ^gg ^g'io (2-54) 

where the subscript g is added to the source moments to denote the energy group, and we 
continue to use the shorthand notation Sj„ = Sg^s,. The group source moments depend 

only on the corresponding scalar flux moments, ^g'io, in the higher energy groups, g'<g. 

II. C The Spatial and Angular Trial Functions 

We next examine the trial functions is space and angle in more detail. In choosing 

the level of the spatial approximation, attention must be given to the rank of the matrix 

which couples the nodal to the interface approximations. Likewise, care must be taken in 

the coupling of the angular approximations if the classical spherical harmonics equations 

are to be obtained. 

//. Cl Spatial Approximations 

The spatial trial functions are taken to be complete polynomials both within the nodes and 

along the interfaces. The internal polynomial is taken to be of a higher order than that on 

the interface. In cases where there are relatively few response matrix types, there is little 
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penalty in making the interior polynomial of high enough order Ihal it differs little for the 

exact spatial solution. However, in problems with many response matrix types, the 

formation of the respon.se matrices, particularly the inversion of the A matrix, becomes 

expensive as the dimension of the A matrix grows with the number of space-angle trial 

functions. Therefore an important question is that of determining the lowest reasonable 

order for the complete polynomial for the node interior. 

An important criteria is that the D matrix must have full rank.^^ Spatial 

approximations which result in rank deficient matrices prevent convergence of the red-black 

response matrix solution algorithms from being carried lo completion. Round-off errors 

introduce extraneous solutions which do not grow, but persist in preventing eigenvalue 

calculations from being converged beyond the sixth or seventh decimal place. 

//. C.2 Angular Approximations 

The even- and odd-order spherical harmonics angular trial functions appearing in 

the g and k vectors must be specified with care. Variational nodal methods based on 

spherical harmonics expansions solve the even-angular-parity flux equations within the 

nodes, while continuity between nodes is provided by even- and odd-parity flux moments. 

In three-dimensional odd-order PN approximations, there are N(N-(-l)/2 coupled second-

order differential equations within each node. There are, however, N(N-l-l)/2 even- and 

(N-i-1 )(N-t-2)/2 odd-parity moments across the interfaces. Thus N-i-1 odd-parity continuity 

conditions must be eliminated, since additional conditions would result in an over-

determined set of nodal equations. To derive general PN approximations, we turn to the 

use of the Rumyantsev interface conditions.^3 As detailed elsewhere,^ the Rumyantsev 

conditions are identical to those imposed by the variational nodal functional, provided the 

choice of odd-parity trial functions is restricted to those that result in a full rank matiix 

coupling odd- and even-parity moments. This is accomplished most simply by deleting the 

Yn±n terms from the odd-order interface expansions.' 

To apply the odd-order PN approximation to the foregoing functional we expand the 

even- and odd- parity fluxes in terms of the spherical harmonics defined by 

Y„(ii)=C„P>)~' '^; ' '" ; , P = "'''^--N (2.55) 
" " '^ '^ stn(qco) |q| = 0.1.2, .p ' 
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where Pp(|J.) are the associated Legendre polynomials. The coefficients Cp, are chosen 

such that 
jYpq(ii)Yp,q-(ii)dii = 6pp,8qq, , (2.56) 

and we follow the convention that q>0 signifies the cosine series and q<0 the sine series. 

Within the nodes, we approximate the even-parity flux by 

V(r,n) = XYp,(ii)Cp,(r) U-o'Tl (2-57) 
pq | T | ' ' ' '^ 

At the interfaces we employ the odd-parity flux approximation 

X(r,ii) = X Y . ( « ) X „ ( r ) , , j r i t t j i (2.58) 

where the angles in the odd-parity expansion are defined in terms of n, the outward normal 

to the interface. Acentralpointis the deletion of the Yp±p, p=l,3,5,...N terms from the 

odd-parity expansion of Eq. 2.58. These deletions yield the correct number of odd-parity 

interface conditions. Equally important, it is demonstrated elsewhere that the resulting 

spherical harmonics formulation satisfies the Rumyantsev interface conditions and results 

in a full-rank coupling matrices between the even-order spherical harmonics expansions 

within the nodes and the odd-order expansion at the interfaces.^ 

We may write the variational nodal form of the spherical harmonics equations 

compactly by first expressing the expansions of Eqs. 2.31 and 2.32 as vector 

relationships. Define the vectorof even-parity angular trial functions gj^(ii) as 

g(iif=JYo„,Y2.2,Y,,,Y,o,Y,„Y^,Y, 22> i 4-4> (2.59) 

and a corresponding vector consisting of the odd-parity tiial functions k ^ i i ) : 

H J ~ '',o,Y3.2,Y3.|,Y3|),Y3|,Y32,Y5.4,. (2.60) 

The foregoing conditions are general and may be applied to any odd-order 

spherical harmonics approximation. In earlier implementations of the variational nodal 
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method a somewhat different form of Ihe interface conditions were used in P3 

approximations.--^ For the three-dimensional P\ approximation Ihe correct number of 

odd-panty conditions may be obtained by requiring continuity of the P|(p ), P|(ri), P|(£) 

and Pnp ), PiCll- P.i(^) moments, where p Is the direction cosine perpendicular to and T\ 

and £ parallel lo the interface. The.sc moments have lead to consistently accurate numerical 

results In two- and three-dimensional calculations. 

The fortuitous correspondence of Ihc number of required conditions with the 

number of odd-order Legendre polynomials wilh direction cosines perpendicular and 

parallel lo the interface, however, holds only for the P3 approximation. They therefore 

cannot be extended to P5 or higher approximations. Moreover they do not satisfy the 

Rumyantsev conditions and result in an angular coupling matrix which is rank deficient. 

Unlike rank deficiency in the spatial trial functions, there seems to be no effect on 

convergence if it appears in the angular vanables. 

A number of other angular approximations are also be employed within the 

framework of the variational nodal method to reduce the number of interface basis 

functions without a commensurate loss of accuracy. The reduced**'' and the simplified 

spherical harmonics^ approximations are discussed elsewhere. With any set of angular trial 

functions used to approximate the transport equation, one must also specify a compatible 

set of approximate boundary conditions. Both reflected and vacuum boundary conditions 

are included in VARIANT. These two classes of conditions are treated .somewhat 

differently, since in the variational formulation, reflected conditions are "essential" and 

must be imposed on the trial functions, while vacuum conditions are "modified natural" and 

are incorporated into the variational format through the addition of appropriate surface 

terms to the functional. 

//. C.3 Reflected Boundary Conditions 

With the foregoing angular trial functions, the Rumaynstev interface conditions are 

satisfied by requiring y, and Xy 'o be continuous across nodal interfaces. The 

components of the vector Xr "̂̂  'he odd-parity expansion coefficients Xjn̂ î 'ong the 

interface. In contrast, the vector y, is expressed by Eq. 2.44 as a linear combination of 

the even-parity coefficients ,̂„ within Ihe nodes. In expanded form these linear 

combinations may be written as 
*fjnY=Di]yE„ny î,. (2.61) 
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Reflected boundary conditions are essential in the variational formulations and 

therefore must be imposed direcfly on the \|/j„̂  and Xm coefficients. To do this, we first 

note that the index n in the \|/j„̂  and Xm coefficients corresponds to the odd-parity 

spherical harmonic ordering in the vector k(ii] as defined in Eq. 2.60. 

As shown elsewhere,' the angular symmetry conditions for reflected boundary 

conditions are satisfied if the \|/j„.y coefficients are set equal to zero for values of n 

corresponding to Ypq with even q, and the XJ„Y coefficient are set to zero for terms 

corresponding to odd q. Suppose we partition the vectors of interface vectors according to 

even and odd values of q: 

Vv Arf~ (2.62) 

Then the reflective boundary conditions are then 

Vo = 0 , Xe = 0 

and therefore the scalar product vanishes: 

V^Xy=0 

r € r , (2.63) 

r e r , (2.64) 

This result, combined with Eq. 2.44, causes the Lagrange multiplier term C'̂ M.̂ Xy to 

vanish for reflected boundaries from the reduced functional, Eq. 2.42 and from 

subsequent equations. If Eqs. 2.63 are inserted into Eq. 2.46 for the partial current 

moments, we obtain on reflected boundaries 

Se ie iO "Jo r e r , (2.65) 

which are the conditions employed in the response matiix solution algorithm. 

//. C.4 Vacuum Boundary Conditions 

Vacuum boundary conditions, in contrast to reflected conditions, are modified 

natural boundary conditions. By modifying the functional with an appropriate surface term 

along the vacuum, the exact condition is obtained by requiring the functional to be 
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stationary along the boundary. There are three ways in which this characteristic of vacuum 

boundary conditions can be incorporated into the computational algorithm. 

The tlrst is the classical approach described in Section 11.A. Wc remove Ihe 

Lagrange multiplier integral from Eq. 2.13 along the vacuum boundary and replace it with 

the integral, shown as Eq. 2.22. Then when the functional is required to be stationary with 

respect to variations 5y (r,ii), r e F^,, the correct vacuum boundary conditions results. 

However, it is in terms of Ihe gradient of the even parity flux rather than the odd-parity 

Lagrange multiplier with which we would like to work. For if the Ritz procedure is applied 

using this formulation, the partial current moments along the vacuum boundary are 

eliminated, and the condition is incorporated into a response matrix of reduced dimension. 

This approach is awkward to apply, gives rise to response matrices which are boundary-

condition-dependent and is difficult to incorporated into iterative solution algorithms for 

the respcn.se matrix equations. 

The foregoing difficulty is circumvented by retaining the odd-parity Lagrange 

multiplier on the vacuum boundary as follows. Instead of replacing the vacuum surface 

term in the functional by Eq. 2.13, we add the following term consisting of two integrals, 

I = f d r | " d i i | n i i | y ' ' - 2 f d r f d i i n i i v ' x (2.66) 

to yield 

Fvjv. z] = f dV I" d i i a ' ( i i V \^if -hCK^' - 2 f dW(\iS+ 2 [ d r f dOii nyx 

1" dF f dii I n n [y'' - 2 f dF f d i i i i nv|/'x 
(2.67) 

Requiring the functional to be stationary with respect to 5x(r,ii) along the vacuum 

boundary then yields y (r.ii) = y (r.ii) . When combined with this condition, the 

vanation 5y (r,ti) then yields the correct vacuum conditions given by Eq. 2.11. 

To apply the Ritz procedure, we approximate y" and x similarly to Eqs. 2.31 and 

2.32 on the vacuum boundary, 

y"(r ,n) = fi(r)g;;iiiK;„ r e r , (2.68) 

and 
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x(r,ii) = hjT(r)knv(ii}xjn7 . r e P ^ (2.69) 

Equation 2.66 then takes the form 

I = C i ' > i i ' f mm'yCi'm'" 2Ci>iJYEm„vXjny. (2-70) 

where elements of the L and W arrays are given in terms of the angular and spatial ti-ial 

functions respectively in Table 1. Defining 

NX = '^W^ram' (2.71) 

and utilizing the definition of M^, we may rewrite Eq. 2.70 as 

i=^LN!?fCm'-2CM;?;xj„y . (2.72) 

Writing this expression in vector form and adding it to the reduced functional given by Eq. 

2.42 then yields 

FJC, X\ = C'"AC - 2Ĉ s + 2X CM,3C + C^y^i' - 2C"'M,̂ Xy, (2.73) 
Y 

Requiring the reduced functional to be stationary with respect to variations 6x yields ^ = ? 

on the vacuum boundary and likewise taking 8^ yields 

N ^ " = M^XY (2.74) 

Eliminating ^ between these results and solving for ^ yields 

; = N;'MyXy. r 6 r j 2 . 7 5 ) 

Then applying Eq.2.44 to obtain the even-parity surface variable, we obtain the vacuum 

boundary condition: 

y , = M X y x , (2.76) 
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Finally, if we make the transformation of variables to the partial current moments defined 

by Eq. 2.46 we have 

j * =( '/2M:J'N^'M^-I. l)" ' ( '/2M:J'N^'M.,- l ) j - . (2.77) 

A somewhat simpler form of the vacuum boundary condition can be obtained by 

applying the requirement that the reduced functional fx; stationary only with respect to the 

angular variables. We begin again with the integrals of Eq. 2.66, but this time we expand 

the even- and odd-parity fluxes only in angle, allowing arbitiary spatial variation, 

y"(r,Q) = g; ( i i )Or) r e T, (2.78) 

X(r.n) = k^i i lX^r) r e r , (2.79) 

Equation 2.66 then reduce to a difference of spatial integrals 

' = j <i^C^mm'-fi'm' - 2 | drCE„„^x„^ (2.80) 

Taking the appropriate variations now yields Cm = ^m '̂ "'̂  Ln,n,'.^^. - En,n.yXny . 

which in matrix form may be expressed as 

LC = Ex r € r , (2.81) 

respectively. Therefore solving for ^ and combing the result with Eq.2.44 yields the 

vacuum boundary condition 

y = E V E X . r € r , (2.82) 

It may be shown with Eq. 2.46 that on the vacuum boundaries may be expressed in terms 

of the partial current moments as 

j -=[iETL-'E + l ] - ' [ j E T L ' E - l ] r . , e r (2.83) 
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Here however V , X and the corresponding partial current vectors are spatially dependent, 

meaning that unlike Eq. 2.77 which imposes the condition only on the m spatial moments, 

here it is imposed at each point r on the vacuum boundary. This is too stiong a condition. 

It may be relaxed, however, by requiring that Eq. 2.83 hold only for the spatial moments 

f drhj^r)y„^r) and j drhjn/r)x„^r) and therefore for the con-esponding vector 

ofthejin^andji^^. 

II. D Anisotropic Scattering 

With the methodology thus far developed, we are now prepared to generalize the 

variational nodal method to include anisotropic scattering. The arguments contained in the 

preceding section conceming ttial functions and boundary conditions remain valid. Thus 

we need only to repeat the operations of Sections n. A and B in generalizing the variational 

formalism and obtaining the multigroup response matrix equations with anisotropic 

scattering.'' Our starting point is the within-group transport equation with anisotropic 

scattering: 

[ii-V -I- CT(r)]1'(r,ii) = f dii'03(r,i2.£i'Mr,ii') + S(r,i2) , (2.84) 

where a is the total cross section, and Og is the within-group anisotropic scattering cross 

section; 4* represents the angular flux and S the anisoti-opic group source. 

//. D.l Variational Formulation 

To formulate the problem variationally, we must obtain the even-parity equation 

with isotropic scattering and sources. This is accomplished by first using the even-parity 

flux definitions in Eqs. 2.2 and 2.3 to obtain the following pair of second order equations 

which are generalizations of Eq. 2.4 and 2.5 

and 

a V x(r,ii)+ a(r)y(r,ii) = J dii'CT+(r,ii.£2')y(r,ii') + S'-(r,ii) (2.85) 

Q-Vy(r,ii}f a(r)x(r,£i) = J dii'or-(r,£i£2')x(r,i2') + S-(r,Q) , (2-86) 
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where we have divided Ihe anisotropic scattering kernel into even- and odd-parity 

components, a'*' and a', each of which is expanded In spherical harmonics of 

corresponding parity, 

0^rilir) = ai(r)sU^l)eim . (2,87, 

Again repeated English indices denote summation, and the anisotropic cross section 
components, a,n, do not contain a factor of 2C-(-l (see reference 7 for a discussion of the 

expansion of the scattering kernel).Combining equations yields 

X = - a ' a V y - i - a ' S - a ' ' | "dira"( i i . i i ' ) | i i 'Vy(ii ' )-S(ii ' )] , (2.88) 

where for brevity we have defined 

a1i i ii ') = (l - a y a [ ' an,gs,(ii)gs,(ii'). (2.89) 

Since Eq. 2.88 is an explicit relation for x in terms of the even-parity flux and group 

source, we may substitute it into Eq. 2.85 to obtain the within-group even-parity equation 

with anisotiopic scattenng included: 

- a V a ' a V y - i i V a - f dri 'a'(aii ') iT V y(ii')-1-(jy = 

f dn'a*(ii ii')y(ii') -i- S* - QVa-'[s- + a'i dii'a"(iiii')S-(ii') 
(2.90) 

The variational functional for the even-parity transport equation may be generalized 

to include anisotiopic scattering terms in the foregoing equations. The global functional, F, 

is a superposition of volume and surface contributions as in Eq. 2.12 With anisotiopic 

scattering, the contribution from node v is 

Fv(V. Xl = j d v j di i la ' ( a V y)^ + ay^| 

+ j dV {a„,o-y diig;„iiV y| '- a^^j diig^ y | ' ) - 2J d v | dfly S^ (2.91) 

-f 2 [ dV f diKi V y a ' l s + a ' J dii'a (ii ii')S (ii')| + 2 [ dF f diiii nyx . 

23 



Requiring the functional to be stationary with respect to variations in y yields Eq. 2.90 as 

the Euler-Lagrange equation within Vv and Eq. 2.88 along the interfaces. The continuity 

of y across the interfaces is assured by requiring the functional to be stationary with respect 

to interface variations in x. while the continuity of X is imposed by Lagrange multiplier 

terms applied on nodal interfaces. 

// . D.2 Within-Group Equations 

A Ritz procedure employed to obtain the nodal response matrices for each energy 

group parallels the isotiopic case. We furst approximate the even- and odd-parity fluxes as 

separable expansions of spatial and angular trial functions, as in Eqs. 2.12 and 2.13. The 

even- and odd-parity group sources are expanded as 

S±(r,ii)=fi(r)g^(ii)sf„ _ reVv.(2.92) 

where the source coefficients are given by 

Sm = J d i i g * S * . (2.93) 

Inserting the expansions of V, X, and S into Eq. 2.91 results in the reduced 
functional 

F[̂ i™. XjnJ = ^^XXm- - ^^A - 2?iX^"'n,' + 2 l i;,J^Xy (2-94) 
y 

This differs from the isotropic scattering case in two respects. First, in the A matrix 
additional terms augment the isotiopic case to account for the within-group anisotiopic 
scattering: 

2-mm'_ mni' -lpk( . l~-. .mp,,in 'p , , , o + 1 5 . 

Second, the even- and odd-parity source moments: 

sL = JdV^(r)|diig±(i2)S±(r,i2) . (2.96) 
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appear in conjunction with the array 

Tu''"'^(o-a„,)'ul,.v;"'" (2.97) 

which operates on the odd-parity source. These are required to treat the anisotropic group-

to-group scattering. The U and V matrices, which do not appear with isotropic scattering, 

are given in terms of the known angular and spatial trial functions. They are included in 

Table I. 

Aside from the division of the group source into even- and odd-parity components 

the reduced functional is quite similar to its isotropic counterpart given in Eq. 2.42. 

FJC X] = Ĉ 'AC - 2Cs' - 2CTS + 2 X ("M.^. • (2.98) 
y 

Requiring the functional to be stationary with respect to variations in ^^ then yields 

C=A's^-t-A'Ts-XA' 'M^X^ . (2.99) 
Y 

while the variation with respect to Xy across an interface again yields Eq. 2.44. Taken 

together, Eqs. 2.44 and 2.99 yield a result analogous to Eq. 2.45: 

\|/^ = M^A"'s^ + M ^ A - ' T S - - y M^^A-'MyXy. (2.100) 

To obtain a respon.se matrix equations, the partial curtent variables defined by Eq. 2.46 are 

again intioduced. TTie result is 

j-^ = B*s*-I-Bs--I-Rj\ (2.101) 

where R is defined as before by Eq. 2.48,while in the source moment terms 

B*=[G-Hl]-'C (2.102) 

and 
B =B+T . (2.103) 
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For anisotiopic scattering, however, A is replaced by A in the definitions of the G and C 

matrices. Analogous to Eq. 2.43, the even-parity flux moments for the node interior are 

given by 
C = A"V + A"'Ts--2C(j' '-j-). (2.104) 

//. D.3 Multigroup Coupling Equations 

In the case where only within-group anisotiopic scattering is included, the odd-

parity source term vanishes and the even-parity source inclu4ps only scalar flux moments 

from other energy groups. The anisotiopic scattering terms thus affect only the magnitudes 

of the R and B matiix elements. With group-to-group anisoti-opic scattering, however, the 

source for group g contains both even- and odd-parity components: 

S^(n) = ̂ vEfg-J diiyg-{ii) + J dii'a^g^ni2')yg{£2') (2.105) 

S-(n) = |dii'CTgg-(aS')Xg{i2') , (2.106) 
and 

To eliminate the odd-parity flux from the group source terms we express the even-

and odd- parity components of the group-to-group scattering cross section in terms of the 

like-parity spherical harmonics g+ and g": 

4{ii .£i ' ) = a±g-„g±(n)g^(£i') . g'<g (2.107) 

After a fair amount of algebraic manipulation the x flux components within the nodes can 

be eliminated, and we obtain for s~.^ 

Sgim=k' SmCXgVSfg'Cg'iO + Ogg'ni^g'im (2 .108) 

and 

Sgim =(^g'-<^g'm)"' f^gg'mSg'im " Tn\rm' • (2-109) 

The even-parity group source moments depend only on the corresponding flux moments, 

Cg'im. in the higher energy groups, g'<g, and on ^g'io, the scalar flux moments. The odd-

parity source moments, however, are a function of the Sg'̂ „ for g'<g as well as of the 
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Cgim- Thus in multigroup calculations the s^.,,,,, as well as the ^g-jm inusi be stored for 

each energy group, and Ihe ixld-parity source are computed recursively from the .sources in 

the higher energy groups. In the case of upscattering, ihe g'>g terms are taken from the 

previous iteration. 

IL K Evaluation of Nodal Integrals 

In Ihree dimensional geometry for a fourth order approximation the vector f has 35 

elements, and for a quadratic approximation h.̂  has 6 elements. For a full P5 

approximation the nodal and interface angular trial function vectors each consist of 15 

elements. The A matrix is a 275,625 (35x35x15x15) clement array. For hexagonal-Z 

geometry, with 8 interfaces per node, the M matrix contains 378,000 (8x35x15x15) 

elements. Taking full advantage of symmetiies of the coefficient submatrices, and of the 

orthogonality properties of the trial functions still leaves one with a staggering number of 

integrals to evaluate. 

Performing these integrals by hand represents an intractable task. This problem is 

overcome through the use of a symbolic manipulation program to automate the evaluation 

of the cross-section independent integrals involved in generating the coefficients. To 

accomplish this we must break the matrices into volume and angular cross-section 

independent integrals which may be evaluated separately. The constituent parts are shown 

in Table I in dimensionless form. 

The individual submatrices consist of known functions of space and angle which 

may be explicitly integrated. The symbolic manipulation ccxie MATHEMATICA''* is used 

to evaluate the integrals. The implementation of these integrals within the symbolic 

manipulation code is fairly straight forward. Initially, the functional definitions of 

Legendre polynomials and spherical harmonics are defined within the program. These 

functions are then used to build up the vectors of trial functions. A simple nested do loop 

structure then accesses the appropriate vector elements and constructs the integrand 

corresponding to a particular submatiix element. The integration is then carried out over 

the explicitly defined domain, and the result is stored as an element in an array 

corresponding to a given submatrix. The array is written to an ASCII file which in tum is 

read by a FORTRAN program which generates a FORTRAN DATA statement containing 

the integrated values. The integration process is thus totally automated, and it is relatively 
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simple, in principle, to generate the coefficient mattices for any desired set of trial functions 

using Legendre polynomials, for other sets of orthogonal polynomials. 

In Appendix A we show the MATHEMATICA scripts used to generate the orthogonal 

polynomials as well as the submatrices needed to calculate the response matrix coefficients 

and the flux reconstruction arrays. A three-dimensional Cartesian node is shown in Figure 1. 

The local nodal coordinate system appears in Figure 2. For hexagonal geometry. Figure 3 

shows the orientation of the positive directions along the sides. 

Table I. Integral Arrays of Spatial and Angular Basis Functions 

P '̂ = [ dV V îV,f, H r ' = / dQ Q,Q,gig;, 

u\,=[dYf,v,f, v^ '= /dQ^g;g;„ , 

Dijy = J ^ d r ^ h j E,ny = J d n f i . ; i , g ; k „ 

Wi,^ = J^dr^^. L^-^=[di i l i i -n lg ; ;g- , 

Figure 1 

Three-Dimensional Cartesian Node 
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Nodal Dimensions: 
-u^ > X > u/2 
-wfl > y > v/2 
-w/2 > z > w/2 

H=cos9 
r|= sin0 cos<? 
^ = sin9sin<i) 

Figure 2 

Local Nodal Coordinate System 

J L 

Figure 3 

Orientation of the Positive Directions Along the Sides for Hexagonal Geometry 
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IIL SOLUTION ALGORITHMS 

In this Chapter we present those solution algorithms which are unique to the 

solution of the response matrix equations contained in VARIANT. In energy, VARIANT 

is a conventional multigroup code, utilizing algorithms akeady existing in the DIF3D shell 

of which it is a part. The energy-group equations are solved by fission source iteration in 

conjunction with a coarse mesh rebalance acceleration scheme. These iterations, referred to 

as outer iterations, are described in the DIF3D manual • and in standard texts. To perform 

such fission source iterations in multigroup problems, it is necessary to be able to solve for 

the flux moments within a group, given the group source. In VARIANT we use a red-

black within-group response matrix algorithm to solve for the partial currents and then 

reconstruct the flux moments. In Hexagonal geometry the two-color red-black scheme 

must be replaced by a four color algorithm, but otherwise the logic is the same. In sections 

III A. we set forth the basic red-black response matrix algorithm, but for brevity the 

derivation of the four color algorithm is omitted. The inner iterations are accelerated by a 

partitioned matrix scheme similar to a synthetic diffusion acceleration method.^ We 

examine the matrix partition in Section IH B. In Sections ni C and in D respectively the 

implementation of the inner and outer iterations are presented. 

III.A Red-Black Response Matrix Algorithm 

The response matrix equations derived in Chapter 2 are represented in a local coordinate 

system centered about the node. Before we can describe the iterative solution algorithm 

quantitatively we must express the coupled set of response matrix equations for all of the 

nodes in the problem domain in terms of the local equations. We consider here the case of 

two-dimensional X-Y geometry, before discussing the complication of hexagonal and 

three-dimensional configurations. 

To begin, we first divide the problem into a red-black checkerboard domain. We 

may then add subscripts to Eq. 2.47 or 2.101 to indicate the K th red node 

J« = RrKJm + qrK K = 1 , 2 , 3 , - . K , (3.1) 

where in the case of anisotropic scattering both even- and odd-parity group sources are 
contained in q^. Suppose we now define the partial current and source vectors for the red 

nodes 
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J?l 

<lr = 

q,2 

qri (3.2) 

i%. 

and the corresponding block-diagonal global respon.se matrices as 

Rri 0 0 

0 Rr2 0 

0 0 Rr3 

We may then write the global equations for the red nodes: 

(3.3) 

Ji'^RrJr + qr (3.4) 

The equivalent equations for the black nodes are obtained simply by replacing r subscripts 

with b in the foregoing procedure. The combined .set of equations for red and black nodes 

may thus be written as 

iH [ R, 0 If i l \a. 
(3.5) 

j ; 

jb 

Rr 0 

0 R, 

y, 
jb 

-^-Qr 

flb 

We may now complete the global notation by noting that each component of the 
incoming partial current to a red cell is the identical to an outgoing partial current 
component from the adjoining black cell. This may be expressed in terms of a global 
connectivity matnx 11^ as 

i; = ^tit (3.6) 
for the red cells and 

Jb = n H j ; (3.7) 

for the black. Note that the connectivity matrices will have at most one non-zero entry per 

line and these will be equal to one at internal interfaces. Moreover, nj{̂  = n(,j. 
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Equations 3.5 through 3.7 may now be used to obtain a single global response 

matrix equation 
f T D i n 

- . . . (3.8) 
-Rh 

where we have defined 

and 

-Rfb 

I 

Jr 

Jb 

Qr 

Qb 

Rrb = Rrl^b 

Rbr = RbHbr 

(3.9) 

(3.10) 

which unlike Rr and Rb are no longer block diagonal For brevity we have also deleted the 

+ superscript from jr and jb since corresponding incoming partial currents have been 

eliminated. 

The standard red-black iteration may be written as a matiix splitting in which Rbr 

is moved to the right side of the equation: 

I 0 

Rbr I 

/ + 1 0 Rrt 

0 0 
(3.11) 

which reduces to the final two-step iteration process 

Jr '=RrbJb + qr 

j ( ^ '=Rbr j ^ '+qb , (3.12) 

where / is the iteration index. 

III. B The Partitioned Matrix Algorithm 

Since flie dimensions of tiansport response matiices are often large, the time per red-black 

iterations can be quite long. For this reason a partitioned matrix algorithm has been 

developed which substantially shortens the CPU time required to converge a witiiin-group 

calculation.6 The basic idea is to partition the response matiix between a diffusion-like 

response matrix with only one term per interface and the larger number of higher-order 

space-angle interface terms required to achieve accurate tiansport solutions. An iteration 

consists of using the existing higher-order terms as a quasi-source to solve the diffusion-
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like response matrix equations. Then a single sweep is made through Ihe nodes to update 

the higher-order moments using the new quasi-diffusion solution. The saving in using 

this partitioning are often quite large. In three-dimensional P3 calculations with bilinear 

spatial dependence at the interfaces, for example, there are eighteen terms per interface, 

meaning that the dimension of the full response matrix is eighteen times that of the quasi-

diffusion calculation. In multigroup eigenvalue computations one such iteration per outer 

iteration is usually sufficient. In fixed source problems a larger number is required. 

The procedure used in deriving the partitioned matrix algorithm parallel to 

considerable extent those utilized in section III. A. We First partition Eq.2.47 or 2.101 for 

the K th red node to obtain an expanded form of Eq. 3.1: 

j ^ ^ 

j -

pOO Q O I 

IjlO i jU 

j ^ 

ĵ v 
-1-

q^ 

q̂ x 
(3.13) 

where j ^ represents the flat, normal partial currents for a given node, and j ^ ^ represents 

all other higher-order current moments. 

We next construct global vectors for the red nodes, analogous to Eqs. 3.2 

jO± 
J r l 

• o± 
Jr2 

.o± 
Jr3 

.o± 
Jnc 

J ; ^ = 

j ^ 

jg 

ĵ f 

Ĵ K 

q? = 

q?i 

q?2 

<l% 

q" 

q;= 

qri 

qt2 

q;3 

q' 

(3.14) 

The equivalent partitioned vectors may be written for each black node by substituting b for 

r. We may then write a partitioned matiix equation analogous to Eq. 3.5 as 
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jr 
jr 
jr 
jr 

= 

0 -K° 
<? 0 

0 -Rjg 

-Rbr 0 

0 -R?^ 

-K 0 

0 -K 
-K 0 

jr 
jr 
jr 
jr 

+ 

q? 
qS 

qJ 

q̂  

(3.15) 

To convert from local to global numbering we must make a partition of the n^(, and H^ 

matrices. These may be written as i^ = T]^^j^, j ' - = 'n^f^j'^, j^=:TI^^j°*aiui 

Jb" = Ilbr j r . Using these expressions to eliminate the incoming currents from the right of 

Eq. 3.8 , we obtain 

(3.16) 

I -R%° 

K I 
0 -R-

K 0 

0 -RSJ 

-RbJ 0 

I -K 
-K I 

j? 
jg 

i\ 
il 

q? 
qS 

qJ 
q^ 

where analogously to Eqs. 3.9 and 3.10 we have defined 

and 
^f-KH 

Kh^M 

a = o,i;P = o,t (3.17) 

a = o,i;P = o,i (3.18) 

We are now prepared to perform a matrix splitting. We move three of the non-zero 
submahices in Eq. 3.16 to the right hand side as follows 

I -R%° 

K? I 

0 -R-

C 0 

0 
0 

I 

"'^br 

0 
0 

0 

I 

j? 
jb" 

jj 
il 

0 
0 

0 
0 

0 
0 

0 
0 

0 R°J 

K 0 

0 K 
0 0 

Jr° 
JS 

i) 
il 

+ 

q? 
qg 

qt 
q̂  

(3.19) 

Note ttiat witii the exception of the R°S submartix ttie coefficient matiix on the left is lower 

tiiangular. This suggests that the iterative scheme cieated by adding the iteration index / to 
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the partial currents on the right and / -t-l on those to Ihc left If we separate the equations 

into Iwo subsets, the iterative prt>cedure is seen more clearly: 

and 

I R 0 R^ 

fj; 
jh 

/ t l 

q'r 

qh 
-1-

0 R-

R- 0 

j? 
Jh 

;+i 

+ 
0 R;;, 

0 0 

J;' 

il 

(3.20) 

(3.21) 

To solve for the / -l- 1 iterate of j° and j[̂  wc must invert the operator on the left of 

the first equation. But this matrix has a much smaller dimension than that in the second 

equation; its ditnension is only equal to the number of node interfaces in the problem 

domain. In fad the solution is quite analogous to solving the diffusion nodal equation with 

only the flat components of the current at each interface. For smaller problems it may be 

economical to invert Eq.3.20 directly. In VARIANT we employ red-black iteration on Eq. 

3.20 in the same manner described in III.B. 

.0 .0 

Once the / -I- 1 iterate of Jr and lb is known, the lower triangular structure on the 

left of the second equation, allows the /-H 1 iterate of j ^ and j ^ to be determined by a 

single successive sweep through the red and then the black nodes. For simplified coding, 

the red-black sweep of the second equation is replaced by a final sweep utilizing the entire 

response matrix. This modification may be shown to have no effect provided the quasi-

diffusion calculation is converged. If the quasi-diffusion solution is not completely 
.0 .0 

converged, the inclusion of Jr and Jb in the final red-black sweep simply gives a slight 

improvement in the convergence. 

III. C Inner Iterations 

In coding the calculation of the response matrices R and B of Eq. 2.47, the 

LINPACK and LAPACK subroutines related to matiix inversion and matrix multiplication 

have been u.sed in order to improve computing times 

Equation 2.67 is the basic equation solved by inner iteration once the source term is 

known. A guessed vector j is used to start the calculation. Boundary conditions arc used 
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to perfonn a complete sweep over the geometiy and continuity conditions (outgoing partial 

current through an interface set equal to the incoming partial cun-ent for the adjacent node) 

are used to update the cun-ents and perfomi inner iterations. 

For boundary conditions the incoming partial currents on nodal surfaces which 

form part of the outer boundary of the solution domain are computed in terms of the 

outgoing partial current on tiie same surface: 

j =yj'^ 

where tiie albedo y is given by: 
_ l - 2 a 

Y~ 1-1-2a 

with "a" being tiie flux extrapolation constant. For the diffusion (Pi) approximation we 

have: 
zero flux boundary condition: a = ~ y =-1 

zero incoming current boundary condition a = 0.5 y = 0 

zero flux at exttapolated boundaries a = 0.4692 y = 0.4692 

zero net current (reflective boundary condition a = 0 y =-1-1 

Periodic boundary conditions are tieated by using the computed outgoing current across a 

boundary as an incoming current across the corresponding periodic boundary. 

For the transport calculations, the void boundary condition is represented by Eq. 
2.38. For the reflective and periodic boundary conditions, because of the spherical 
harmonics expansion chosen, y is set equal to -i-l or -1 according to the moment of the 

partial current considered. 

The total number of unknowns involved in a calculation is given by the number of 

nodes multiplied by the number of sides of the nodes and by the total number of moments 

of the partial current on each side. In hexagonal-Z geometry, a full P3 approximation, with 

a linear approximation on each surface results in 144 unknowns (8x6x3) per node. 

The unaccelerated inner iteration is performed by ordering the nodes and carrying 
out a red-black (Oj ordering) sweep of the spatial grid. In hexagonal geometry, consistent 

with the existing algorithm of the DIF3D nodal option, a four color ordering has been 
applied. 
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The number of inner iterations Mg in group g for a plane is determined in a manner 

similar to that of the ncxlal option of D1F3D. Define: 

h = Ll,^> K = s/^T^, 
where c ' " is the removal (absorption -I- out.scattcring) cross section of the node n and D" 

is the diffusion coefficient. 

The dimension "h" is taken equal to the lattice pilch in hexagonal geometry and to 

the square root of the area in x-y geometry. The quantity kg Is simply the averaged value 

of the node dimension measured in diffusion lengths. The convergence rate of the iterative 

procedure increases wilh increasing kg since the spectral radius of Ihe Gauss-Seidel 

iteration matrix decrea.ses with increasing node size. The decreased spectral radius of the 

iteration matnx is due to the decreasing value of the transmission coefficient with increasing 

node size, which In tum increa.ses the diagonal dominance of the global coefficient matrix. 

In view of this observation, plus numerical results for a number of test problems, the 
following simple formula is used to determine the number of inner iterations in each group 

k^>l 

Mg = { 10, 0.5<kg< 1 

15, kg<0.5 

The strategy adopted for the three-dimensional solution of Eq. 2.47 is consistent 

with the one used in the original DIF3D nodal option. Instead of considering the full 

matrix, R is split into the plane components and the axial ones. Then the contributions 

coming from the incoming axial partial currents are included in the source term. The inner 

(plane)iterations are performed in each plane to calculate the outgoing partial currents and 

axial inner iterations (sweeps) are then performed with an odd-even ordering of the planes. 

An algorithm, not present in the original code has been introduces to calculate the number 

of axial inner iterations M "̂ . It is similar to the planar algorithm, except that h in Ex\. 3.22 

is equal to the axial mesh size of the node, and the number of iterations is now selected to 

be 
12, k„>().5 

M'"=/ ^ 
X 1 4 , k < 0 . 5 
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In coding the algorithms, much care has been taken in order to insure a maximum use of 

vectorization, especially in solving Eqs. 3.20 and 3.21, which are fully and optimally 

vectorized. 

Several attempts have been made to take advantage of symmetry of the matrix and 

the presence of a significant number of zero values in the response matrix due to the 

orthogonality of the expansion functions. Unfortunately, the penalty associated with the 

use of an indirect addressing and a partial loss of vectorization has discouraged such an 

approach. Therefore, the full response matiices are presentiy used for the computation of 

the partial currents. 

III. D Outer Iterations 
Once the partial currents are calculated the average flux in the node may be 

evaluated using Eq. 2.52. When the scalar flux moments are known , the Keff calculation 

can proceed as in a standard code, by the evaluation of the fission source. Than, a new 

outer iteration can be performed with the evaluation of the inner iteration process of the 

required quantities group by group (currents, fluxes, scattering sources). 

An attempt was made to accelerate the convergence of the outer iterations by 

intioducing the Chebychev polynomial method. The already existing machinery used by 

the finite difference option of DIF3D was employed. Unfortunately, the acceleration 

method tumed out to be ineffective, and sometimes slowed convergence. No clear reasons 

have been found to explain such a behavior. The Chebychev polynomial acceleration is 

independent of the algorithm used to solve the fixed source problem related to a single outer 

iteration, provided that the inner iterations are sufficienfly converged. Nevertheless, it was 

found that greatiy increasing the number of full-matrix inner iterations has no positive 

impact on the efficiency of the Chebychev method when applied to the variational nodal 

method. Moreover, a similar trend has been observed when this acceleration method has 

been applied to the original DIF3D nodal option. A possible explanation is related to the 

presence of flux moments, and therefore of fission source moments. In this situation, the 

dominance ratio calculated to evaluate the acceleration parameters will not be representative 

of the entire iterative matrix because only the first moment of the fission source is used in 

its determination. 

For this reason it was decided to apply and adapt the algorithms already existing in 

the DIF3D nodal option to accelerate the outer iterations: coarse mesh rebalancing and 
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asymptotic source extrapolation. Full details of these methods are given in Ref 15. We 

only note that in calculating the leakage term of the coarse mesh rebalance equation we use 

only the first moment of Ihc partial currents because of the physical meaning of the 

quantity. Slight differences are also caused by the fact thai in our algorithm the partial 

currents appear as integrated quantities over the node surface, whereas in the original 

D1F3D nodal option, the partial currents are averaged values. The efficiency of the coarse 

mesh rebalance acceleration and the asymptotic source extrapolation methods has been 

verified for u.se in conjunction with the variational nodal method by several numerical tests. 
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IV. NUMERICAL CALCULATIONS 

Several numerical calculations have been carried out in order to determine the 

optimum order of spatial approximation for the flux, source and leakage dependence. Based 

on these results, it was decided to adopt a fourth order expansion for the flux dependence 

inside the node. A linear leakage spatial dependence has been adopted together with a 

quadratic expansion for the source. When using simplified spherical harmonics, a flat 

approximation on the leakage term is used. Because of error compensation, this 

approximation was found to give better results. Of course, all these approximation have been 

left parametrized in the code in such a way that the user can change them. 

rV. A Two Dimensional Results 

In Table II we show the results obtained from an x-y model of the EBR-II reactor 

siinilar to the one defined in reference 24. The model has been modified in order to enhance 

the transport effect (more than 3% of AK/K). A nine group energy structure is used. 

Table II. EBR-II x-y Geometry (enhanced transport effect) 

Type or CalcuIatioD 

S4(A) 

S8(A) 

S8(4A) 

SjdeA) 

VARIANT Pi(diffusion) 

VARIANT P3, 

VARIANT Simpl.Pj 

VARIANT P3 

Reference 

K,,, 

0.99314 

0.99070 

1.01417 

1.01980 

0.99084 

1.02361 

1.02409 

1.02207 

1.02199 

CPU Time (sec)° 

3.5 

5.5 

24.4 

20.0 

0.9 (0.3 -1- 0.6) 

2.1(1.1-1-0.6) 

1.2(0.6-1-0.6) 

6.8 (4.2 + 2.6) 

-

Tor VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU calculation 
time is given in parenthesis. 
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For this ca.se we report also the S^ results for different angular approximations and 

different inesh sizes (the ki.sic mesh grid A, used in the nodal calculation, has been 

successively refined by dividing the mesh size by two (4A ) and four (16A )). Tlic S^ 

calculations have been carried out using the highly optimized TWODANT code'^. The 

reference solutions have been obtained by extrapolation of the refined TWODANT finite 

difference calculations. 

The Sfj cafculations are very poor for the basic mesh grid where both Ŝ  and Sj, give 

results comparable with the diffusion calculation (P, solution of VARIANT). The Ŝ  (16A) 

calculation, which is still not as accurate as the P, solution of VARIANT, requires a factor 

3 more computation time. All calculations, as well as the ones presented in the following, 

have been carried out on a RISC 6000/350 IBM workstation. 

The P,, (corresponding to the reduced angular approximation) and the simplified 

spherical harmonic cakulations provide comparable results. They overestimate the reference 

solution by less than Q.29c of AK/K, and, therefore, account for more than 90% of the total 

transport effect. The simplified spherical harmonic approximation requires almost half the 

time of the P31 calculation. 

We also observe that for the full P, approximation most of the time is spent in the 

coupling coefficient calculation. This time is 14 times larger than that required for the 

corresponding P, (diffusion) calculation. The reason is related to the different number of 

floating point operation, which increa.ses as the square of the response matrix dimension. 

In Table III we show results for an EBR-II hexagonal 2D model. In this ca.se the total 

tiansport effect is of the order of 1.3% AK/K. The S^ calculations were carried out with the 

TWOHEX''' code, using 6 tiiangles (A) or 24 u-iangles (4A) per subassetnbly. Recall that in 

the case of the variational no<lal inethod, only one node per subassembly is used. 

Comparing computing times, we can note that the TWOHEX S4 (A ) calculation 

requires 5 times more CPU time than the VARIANT P, solution, which is in satisfactory 
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Table HI. EBR-II Hexagonal 2-D Geometry 

Type of Calculation 

S4(A) 

SiW 

Ss (4A) 

VARIANT P,(diffusion) 

VARIANT P31 

VARIANT Simpl. P3 

VARIANT P3 

Reference 

K„„ 

1.03240 

1.03274 

1.03285 

1.01882 

1.03641 

1.03396 

1.03326 

1.03289 

CPU Time (sec)" 

89.5 

268.2 

1053 

2.6(0.4-1-2.2) 

6.0 (3.7 + 2.3) 

1.8 (0.8-H 1.0) 

17.6 (9.0 + 8.6) 

-

'For VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU 
calculation time is given in parenthesis. 

agreement with the reference solution. Again a significant time is spent in computing the 

response matiix coefficients. This is due to the presence of a large number (19) of nodes with 

different conpositions. The simplified spherical harmonic calculation gives a solution that is 

clearly more accurate than the P31 solution and requires more than a factor 3 less time. 

We also point out that, in hexagonal geometiy, VARIANT provides better results than 

the nodal diffusion approximation of DIF3D'^ for difftision calculations when the solutions 

from both methodologies are conpared against a reference solution obtained by exttapolating 

the finite difference results to a zero mesh size '̂. This is related to the fact that the variational 

nodal method enploys a conplete polynomial expansion to describe the flux intt-anodal spatial 

dependence, whereas in the case of the DF3D nodal option, cross terms are neglected. This 

is not the case in Cartesian geometiy where the two methods give afrnost identical results for 

diffusion calculation when similar approximations are used for the flux, source and leakage 

spatial dependence. 
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IV. R Three Dimen.siunal Re.suits 

Tlie Takeda benchmark^" inodel 2 ha.s been used totest the performance of VARIANT 

in three dimeasional Cartesian geometry. This inodel Ls representative of a small FBR reactor 

and employs a four group energy structure. Results are shown in Table IV. TTie reference 

solution is provided by the ANL VIM"'' Monte Carlo code using the same multigroup cross 

section set. Table IV also exhibits results (from reference 2K) of S ,̂ solutions calculated by 

tiie THREEDANTcode--. 

Table IV. Takeda Benchmark Model 2 x-y-z Geometry Small FBR 

Type of 
Calculation 

Miintc C\irlo VIM 

Tluccdant Sj 

DIF^D Nodal 
Tran.sport Optinn 

VARIANT P, 

VARIANT P,, 

VARIANT 
Simpl. P, 

VARIANT P, 

Krfj Rod Out 

().')7144± 
(l.OOOIh 

0.97.^4X 

l).97I.^X 

0.969 13 

0.97228 

0.97429 

0.97349 

K ^ Rod In 

ll.959SX± 
0.00038 

0,451^31 

0.9.S7(I1 

0.9.S430 

(1.9.SX14 

0.96028 

0.95942 

Control Rod 
Worth 

0.I45I± 
0.(M)0.S7 

0.1517 

0.1546 

0.1604 

I). 15 IX 

0.1497 

0.1506 

CPU Time 
(sec)' 

Xhrs 

11.7(0.5-1- 11.2) 

44.5 (0.3-I-44.2) 

46.9(1.6-1-45.3) 

28.7(0.6-1. 18.1) 

562 (25 -1- 537) 

'For VARIANT llic breakdown of. respectively, response matrix LiiclTicicnt.s and outer iteration CPU 
calculation lime is given in parentticsls. 

The P, VARIANT results are very similar to the S^ calculations. Both solutions are 

in very good agreement with the reference Monte Carlo calculation. Of course, the CPU time 

required by VARIANT is more than one order of magnitude less than that needed by VIM. 

The simplified spherical harinonic solution is again more accurate than the P,, 

solution and requires even le.ss CPU time than the diffusion solution. For comparison, we 

have also displayed the results obtained by the tiansport option of the D1F3D nodal 
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calculation. Altough the time required is less than that for the simplified spherical harmonics, 

we observe that the latter solution provides better results for both Kgfl̂  and contiol rod worth. 

Finally to test the code in 3D hexagonal geometiy, we have considered the simplified 

model of EBR-ll provided in reference 24 (see figure 4). Results are provided in Table V. 

Table V. EBR-II Hexagonal-z Geometry 

Type of Calculation 

Monte Carlo VIM 

VARIANT Pi 

VARIANT P3, 

VARIANT Simpl. P3 

VARIANT P, 

Kpff 

1.20423+0.00045 

1.17268 

1.19523 

1.20292 

1.20349 

CPU Time (sec)' 

~ 4 days 

7 3 ( 2 - H 7 1 ) 

213 (42-H 171) 

47 (5-H 42) 

1542 (308 -1- 1234) 

'For VARIANT the breakdown of, respectively, response matrix coefficients and outer iteration CPU 
calculation time is given in parenthesis. 

The P3 variational nodal eigenvalue is within a few tenths of one percent of the VIM 

Monte Carlo code result. We note that the VIM calculation required a few days of CPU time 

against the 26 minutes required by VARIANT. 

The simplified spherical harmonics calculation provides far superior results to the P,, 

solution (96% of the total tiansport effect against 72%) with a CPU time that again is lower 

than the diffusion calculation. This is mainly due to the lower number of outer iterations 

required to converge. The number of unknowns are the same for the diffusion and the 

simplified harmonic approximation (16 per node). 

In Table VI the comparison for the hexagonal row axially integrated power obtained 

is shown. As we can see, the discrepancy between the P3 and the VIM values does not exceed 

0.5%. The diffusion solution has discrepancies of the order of 5% in the reflector and blanket 

regions, whereas the maximum en-or for the sinplified spherical harmonic calculation is of tiie 

order of 1 % and occurs in the first ring of tiie reflector region. 
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Figure 4 

EBR-II Reprcsciitation for a Threo Diiiiciisional Criticality Problem 
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Table VI. EBR-H Ring Axially Integrated Power (MWth) 

Ring 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

VIM 

3.440 

3.385 

6.500 

9.084 

10.975 

12.089 

12.457 

14.435 X 10-̂  

14.65 X 10-2 

13.112 X 10-2 

95.30 X 10-3 

64.846 X 10-2 

37.505 X 10-2 

21.972 X 10-2 

VARIANT ?,' 

3.395 (-1.31) 

3.343 (-1.25) 

6.431 (-1.06) 

9.027 (-0.63) 

10.938 (-0.34) 

12.065 (-0.20) 

12.606 (1.20) 

15.166x10-2(5.06) 

15.40 X 10-2(5.17) 

13.816 x 10-2(5.37) 

10.058 X 10-2(5.53) 

68.179 X 10-2(5.14) 

39.165 X 10-2(4.43) 

22.829 X 10-2(3.90) 

VARIANT Simpl. P / 

3.425 (-0.44) 

3.373 (-0.35) 

6.486 (-0.22) 

9.098 (0.15) 

11.009(0.31) 

12.089 (0.00) 

12.432 (-0.20) 

14.587 X 10-2 (1.05) 

14.763 X 10-2(0.76) 

13.222 X 10-2(0.84) 

96.098 X 10-3(0.83) 

65.316 X 10-2(0.72) 

37.627 X 10-2(0.33) 

21.960 X 10-2 (-0.05) 

VARIANT P,» 

3.441 (0.03) 

3.387 (0.06) 

6.508 (0.12) 

9.117(0.36) 

11.010(0.32) 

12.067 (-0.78) 

12.400 (-0.46) 

14.492 X 10-2 (-0.39) 

14.676 X 10-2(0.17) 

13.143 X 10-2(0.24) 

95.595 X 10-3(0.30) 

65.158 X 10-2(0.48) 

37.614 X 10-2(0.29) 

21.984 X 10-2(0.05) 

'Discrepancy (in percent) with respect to the reference VIM value is given in parenthesis. 
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V. USER INFORMATION 

VARIANT can be executed as an option in a standard DIF3D calculation. Tliis 

section highlights infonnation of particular interest lo u.sers of the variational nodal option and 

supplements the documentation provided in references I and 15 and the description of the 

BCD input files. 

V. A Data Management 

In order to minimize differences with the original coding of DIF3D, data management 

has been kept with the same sffategy of two large blocks of work space (fast and extended 

core memory) even as rwo-level computers are becoming obsolete. The philosophy of 

containment stays the same: extended core memory contains arrays which can be stored on 

external data files. 

Becau.se a large memory size Ls required to store nodal coupling coefficients, a special 

strategy has been introduced for their management. First, all the matrices involved in the 

response matrix equation and in the flux and source evaluations are mapped for unique non­

zero values. TTiis mapping is done before the total memory requirement is evaluated and 

demands a sizable quantity of memory (of the order of the one normally required in the fast 

core memory array). 

If the memory allocated by the user for the extended core array is sufficient, matrices 

are used as they are; otherwise they are compressed and only unique elements are stored 

along with their location in the original matiices. Of course, with the compressed matrices 

computation time during outer iterations is penalized because of the use of indirect 

addressing. 

Due to the methodology of mtxleling anisotropic scattering in VARIANT, a new 

COMPXS file structure has been implemented. TTie modification has been made in order to 
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preserve conpatibility with akeady existing codes that use COMPXS files. The description 

of the new file stractiire is presented in Appendix B. 

To enhance the performance on vector machines a new ordering of the partial current 

moments has been adopted. This is reflected in the new specification of the NHFLUX file 

stiucttire shown in Appendix C. Contiary to the COMPXS file, the NHFLUX generated by 

VARIANT will be incompatible with existing codes that use partial currents with moments 

greater than first. 

Recall that in order to reduce storage and computation time, the flux in VARIANT 

is evaluated, using Eq. 2.52 - only up to the number of moments of the sotu'ce expansion. 

This is done because only these moments of the flux are needed to compute the new outer 

iteration source distribution. Therefore, only these moments are stored on the NHFLUX file. 

In the case of the anisotropic calculation, the even-parity angular flux moments are also 

evaluated and stored on NHFLUX, because they are needed in the anisotropic source 

computation. 

A post processor program, that reads the flux moments firom the NHFLUX file, 

reconstracts the flux locally at designated points of specified subassemblies and computes the 

related reaction rates, will be soon made available. 

V. B Variational Nodal Parameters 

A new card 12 of the BCD input file A.DIF3D (see Appendix D) has been intioduced 

to specify the nodal variational parameters. Some comments on their meaning and use follow. 

V. B.l Nodal Spatial Approximation 

Default values for within the node flux spatial approximations are fourtii order in 

Cartesian geometiy and sixth order in hexagonal geometiy. Linear dependence of tiie leakage 
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on the surface of the node Ls also recommended. These values eliminate rank deficiency from 

the nodal coupling coefficient matiices.'* 

Figure 5 shows the required internal order for a given surface approximation in order 

to insure rank suftlciency. For a linear approximation of the spatial leakage slope, a third 

order intra nodal flux expansion is needed for Cartesian geometry, and a sixth order expansion 

is needed for hexagonal geometry. For a very tight convergence criteria (e.g., - 10^), rank 

deficiency will result in a lack of convergeiKC. For relaxed convergence criteria (e.g., - 10 ), 

third order for Cartesian and fourth order for hexagonal geometry can be safely used in 

connection with linear approximation on the leakage term. For three-dimensional hexagonal 

geometries, the axial expansion is kept to fourth order in order to minimize the size of the 

response matrices while insuring rank sufficiency. 

The order of the default source expansion polynomial is taken equal to one greater 

than the surface approximation. It has been found that in some cases (especially for thermal 

reactor configurations) an order equal to that used for the intia-nodal flux is necessary to 

insure good power distribution results. 

V. B.2 Angular Approximations 

Specification of the P, approximation for both flux and leakage will provide diffusion 

results. Using P, for the flux and P, for the leakage will U-igger the use of the reduced 

angular approximation. With a negative value for the angular approximation variable input, 

the code will use the corresponding simpUfied spherical harmonics. Because of error 

compensation, the best results in this case are mo.st often obtained with a flat (0) 

approximation for the spatial dependence of the leakage on the surface of the node. The flux 

angular expansion cannot be lower than the anisotiopic order NPNO specified later. 
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V. B.3 Asymptotic Extrapolation Sentinel 

A new option, (a.syrnpIotic extiapolation) has been intioduced. This option is invoked 

by .setting the .sentinel to -1. In this ca.se only the fission sources are accelerated and no extra 

space Ls needed to store previous outer iteration partial currents. No significant penalty has 

been observed in the performance of the acceleration using this option. 

V. B.4 Anisotropic Scattering Order (NPNO) and Extended Transport 
.Approximation (NXTR) 

No anisotropk; order greater than either MAXORD (scattering order of cross sections 

on the COMPXS file) or the flux angular expansion is allowed. 

An option (NEXTR parameter) to invoke the use of the total cross section, tiansport 

cross section, or extended tiansport approximation is described below. 

NEXTR set to a negative value is intended solely to perform comparison calculation 

and shoukd not be u.sed for any other purpose. TTiLs .setting forces the use of the zero moment 

of the total cross section for isotiopic calculations, and the use of the transport cross section 

for anisotiopic calculations. 

The default value of 0 is strongly recommended for NEXTR. With this value tiie 

transport cross section is used for isotropic calculation. For the anisotiopic calculations the 

total cross section is used unless the value of NPNO is lower tiian MAXORD. hi this case 

the BHS approximation'" Ls applied (the extended tiansport approximation corrects the total 

cross section by taking into account the NPNO+1 order of the anisotropic .scattering). 

If NEXTR is specified to set at a value N greater than NPNO, an extended tiansport 

approximation is applied from NPNO-i-l to NXTR. Be aware that if NXTR is greater than 

NPNO-i-1, this cortection is done at the risk of the user; there is no proof that such correction 

will give reasonable results. 
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With these premises, having a pair of identical values for NPNO and NXTR 

(00,11,22,33, etc.) will be sttictiy equivalent to having: 00,10,20,30, etc. 

V. B.5 Nodal Coupling Coeffwient Packing Option 

The default value (0) results in no packing of the nodal coupling mad-ices unless the 

array length provided by the user for the extended core memory is not sufficient The user 

can force the packing by providing a value of 1 for this option. This sometimes can be useful 

when it wiH allow the problem to mn with all the group constants (cross sections, fluxes, 

currents) in core, thus reducing the input/output operations and therefore compensating for 

the increase in CPU time resulting from the use of indirect addressing to unpack the matrices 

during the iterations calculations. Workstations with poor input/output performances seem 

to benefit most from this sttategy. 

V. B.6 Radial Inner Iteration Algorithm 

The default value (0) implies the use of the partitioned algorithm. For an outer 

iteration, n inner iteration are first performed on the first moment of the partial currents, the 

higher moments contiibutions are included in the source term. This is followed by a full 

sweep on aU the moments. Sometimes, the full sweep matiix algorithm is necessary to avoid 

convergence problems. This is performed by applying the partitioned algorithm cycle n times, 

where n is the total number of inner iterations. 

When the maximum number of outer iterations or convergence is reached, proper 

convergence of the inner iterations is checked. The last outer iteration is performed using the 

full sweep matiix algorithm. The inner iteration convergence criteria is identical to the 

pointwise fission source specified in convergence criteria card 5. Only tiie first moment of 

the partial currents is checked. 
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V. C Limitations 

Enough memory must be allocated to contain all Ihe information for at least one 

energy group. Flux and .source expansions up to sixth order are allowed in hexagonal 

geometiy. fourth order in Cartesian geometry. Partial current expansion up to second order 

are allowed. Angular and scattering expansion of up to P,; are allowed. For highly 

heterogeneous reactor configurations involving thou.sands of different node types, calculation 

and storage of respon.se mamces represents the primary coinputational cost. In probleins of 

thi.s type, it Ls highly desirable to store as many response matiices as possible in fast memory. 

V. D Programming Information 

The programming structure of the nodal option of DIF3D has been retained for the 

VARIANT option. Many of the existing subroutines have been modified, keeping es.sentially 

the same functionality, and added with a new name where a V replaces an N. TTie hst of 

modified subroutines can be found in Table Vll. Table VIII lists the names of the new 

subroutines that were not part of the original version of DIF3D. The call tree for the main 

branches of the VARIANT option is shown in Fig. 6, keeping in mind that, referring to Fig. 

7.1 of Ref 15, VHINIT, VHSST and VSINIT have replaced NHINIT, NHSST and XSINIT. 

Subroutines starting with D belong to the LAPACK and LINPACK mathematical package. 

A new common block A'ARIAN/, which contains parameters specific to the nodal variational 

option, has been added. Fmally in Table IX we show the list of the original DIF3D 

subroutines that have been modified, without changing their name, in order to accommodate 

the new VARIANT option and the new COMPXS file stiucture with anisotiopic scattering 

capabihty. 
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Table VII. List of Modified Original DIF3D Subroutines, 
With Name Changes where a V Replaces an N 

RVHFLX 
VALINT 
VBLADD 
VCCEL 

VCCL3D 
VCHEX 

VCHEXB 
VCMPXS 

VCZ 
VCZB 

VDSCTM 
VEXBAL 
VEXREA 
VFSINI 

VFXREA 
VHCC2D 
VHCC3D 

VHCCPT 
VHCMPT 
VHCORE 
VHDISK 

VHEDDM 
VHGEOM 
VHINED 
VHINIT 
VHINNR 
VHOEDO 
VHPEAK 
VHPKED 
VHPNT 

VHSHAP 
VHSST 

VHXSEC 
VLXHEX 

VLXZ 
VMBKRG 
VMFSYM 
VMINIT 
VMJBDJ 

VMMTRX 
VNHCCC 
VNHHN 
VNHOUT 
VNHSTT 
VONVCK 
VRCFIS 

VRCHEX 
VRCSCT 
VRCZl 

VSCREV 
VSEDIT 

VSERRN 
VSGETl 
VSGET2 
VSINIT 

VSTOUl 
VST0U2 
VSUPDT 
VUTRl 
VUTR2 
VUTR3 
VUTR4 
VUTR5 
VXINIT 

VXSHAP 
VXYZCC 
WVHFLX 

Table Vni. List of the New Subroutines that Were Not 
Part of the Original Version of DIF3D 

CONCKI 
HALCOP 
MACH2D 
MACH3D 

MACXY 
MACXYZ 
NPKCC 
PCXY 

SRCSCP 
TVACBC 
UNIEL 

VC0H2D 

VC0H3D 
YCOXY 

VCOXYZ 
ZERMAP 

Table IX. List of Modified Original DIF3D Subroutines Without Name Changes 

BCDINP 
BININP 
DIF3D 

DSSTOl 
DSST02 
DSST03 

DXSREV 

EDITOR 
LINKRl 
LINKR2 
NHSIGA 
PD1F3D 
RADF3D 
SSINIT 

SSTATE 
COPIER 

DOMODS 
FARSET 
HMG4C 
1SOR58 

MAXBND 

0VL2 
0VL3 
0VL5 

SVSCAT 
UPDATE 
WRECl 
WREC4 
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Figure 6. Call Tree for the Main Branches of the VARI.AN I Option 

CLOscr 
Dsricr 
HKZMAP 
ICRID 
ICRIT 
NHZHXP 
OPENCF-
POROCr 
pnnoE 
PDTM 
VHCCPT 
VHCMPT 
VaCORB 

ICRED 

DE7ICT 
DELKCP 
KDITCR 
KRROR 
INTSET 
LINES 
pmiacF 
PtJROE 
HIPOOT 
DEPIDF 
DOPC 
KRROR 
GETIJ 
HPKCC ERROR 

LIMES 
MACH2D DCOPY 

DGEMM 
IXJETF2 
DGETRI 
DPOTF2 
DPOTRI 
DSCAL 
DSYMM 
HALCOP 
DGEMM 
DGETF2 
tXSETRI 
DP0TF2 
DPOTRI 
DSCAL 
DSYMM 
HALCOP 
DCOPY 
DGEMM 
DGETFS 
DGETRI 
DP0TF2 
DPOTRI 
DSCAL 
DSYMM 
HALCOP 
DCOPY 
DGEMM 
DGETF2 
DGETRI 
DPOTF2 
DPOTRI 
DSCAL 
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Figure 6. 
Call Tree for the Main Branches of the VARIANT Option (Cont'd.) 

VHINED LINES 
VHPNT INTSET 

EUTM 
WIPOOT 

• 

PDTM 
DNIEL 
VC0H2D 
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VCOXY 
VCOXYZ 
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DSYMM 
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CLOSDF 
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OPENCF 
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PDRGE 
PtnM 
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BLKFDT 
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FINPDT 
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ICRIT 
NODVOL 
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PCRIT 
VHCC2D 

VHINNR 
VHXSEC 
VXYCC 

BLKGET 
BLKFDT 
FINGET 
FIHPDT 
FLTSET 
ICRED 
NODVOL 
OPENCF 
OPENDF 
PCRED 
PCRIT 
PDRGE 

FILGAH 
GETBND 
H11CH2D 
FILGAM 
GETBND 
HACH3D 

FLTSET 
FILGAH 
GETBNS 
Hl̂ CXY 
FILGAM 
GETBND 
MACXYZ 
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Figure 6. Call Tree for the Main Branches of the VARIANT Option (Cont'd.) 

VNHOtJT 

VHEDDM 
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VHXSEC 
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ICRED 
PCRED 
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TIMER 

ERROR 
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FEQDAT 
VCHEXB 
FEQUAT 
VCZB 

CONCKI 
DCOPY 
PCOPY 
VCHZXB 
VCZB 
DCOPY 
VCZB 

VMBKRG 
VMFSYM 
VMJBDY 

TVACBC 

TVACBC 

...etc 

...etc 

...etc 

TVACBC 
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Figure 6. Call Tree for the Main Branches of the VARIANT Option (Cont'd.) 
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APPENDIX A 

Mathematical Scripts Used to Generate the Orthogonal Polynomials and the 
Submatrices needed to Calculate the Response Matrix Coefficients and 

the Flux Reconsti^ction Arrays. 
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ANGULAR TRIAL FUNCTIONS 

{x, y, z are direction cosines) 

FILE: even parity.functions.2d 

i * * * * * * t * * * * * * * * i 

* Even Parity spherical harmonics, through P4 terms: 
• YtO.O], Y[2,2], Y[2,l], Y[2,0], Y[4,4], Y[4,3], Y(4,2], Y[4,l], Y(4,0] 

1, 
1/2 SqrtdSl 

-Sqrt US) 
-1/2 Sqrt[51 
3/8 Sqrt[351 
-3/2 Sqrt[35/2] 
-3/4 Sqrt[51 
3/2 Sqrt[5/2! 
3/8 

( y'2 - z*2 ), 
X y. 
( 1 - 3 x'2 ), 
( y"4 - 6 y*2 z*2 
X y ( y"2 - 3 z*2 
( y"2 - z'2 ) ( 1 
X y ( 3 - 7 x"2 ) 
( 3 - 3 0 x*2 + 35 

FILE: odd_parity.functions.2d 

I- * * * * * ) 

Odd Parity spherical harmonics, through P5 terms with Y[n,n] deleted: 
Y[1,0], Y[3,2], Y[3,l], Y[3,0], Y[5,4], Y[5,3], Y[5,2], Y[5,l], Y[5,0] 

1/2 
1/2 
1/2 
3/8 
1/8 
1/4 
1/8 
1/8 

Sqrt[31 
Sqrt[105) 
SqrC[21/21 
Sqrt[7] 

Sqrt(385) 
Sqrt(385/2 
Sqrt(11551 
Sqrt[165] 
Sqrt[11] 

( y' 
( 1 
( 5 

( Y' 
( 9 
{ 3 
( 1 
( 6: 

2 

-
X 

4 
X 

X 

-

- 2 
5 X 
2 -
- 6 
2 -
2 -

*2 ) 
"2 ) 
3 ) 
y'2 
1 ) 
1 ) 

z'2 

( y 
( y 

14 x'2 + 21 
x'4 - 70 x'2 

+ 

2 
2 
X 

+ 

z' 
-
-
4 
IE 

4) 
3 
z 

) , 
) 

, 
z*2 
2 

, 

) 

FILE: even_parity.functions.3d 

r * * * * * * « ********** 

* Even Parity spherical harmonics, through P4 terms: 
* Y(0,0], V[2,2], Y[2,l], Y(2,0], Y[2,'ll, Y[2,-2l, Y[4,4], 

********** 

******** 

Y[4, -4] *) 

*̂********** 

g = ( 
1, 63 



1/2 S q r t [ 1 5 ] 
- S q r t [ 1 5 ] 

- 1 / 2 S q r t [ 5 ] 
- S q r t [ 1 5 ] 
- S q r t [ 1 5 ] 

3 /8 S q r t [ 3 5 ] 
- 3 / 2 S q r t [ 3 5 / 2 ] 
- 3 / 4 S q r t [ 5 ] 

3 /2 S q r t [ 5 / 2 ] 
3 / 8 

3/2 S q r t [ 5 / 2 ] 
3/2 S q r t [ 5 ] 
3 /2 S q r t [ 3 5 / 2 ] 
3/2 S q r t [35] 

} 

( 
X 

( 
X 

y 
( 

X 

( 
X 

( 
X 

y 
X 

y 

y " 2 

y. 
1 -

Z / 

Z / 

y " 4 

y ( 
y ^ 2 

y ( 
3 -
z ( 
z ( 
z ( 
z ( 

- z"2 ) , 

3 x ' 2 ) , 

- 6 y*2 z*2 + z 
y*2 - 3 z*2 ) , 
- z^2 ) ( 1 - 7 
3 - 7 x*2 ) , 
30 x*2 + 35 x*4 
3 - 7 x ' 2 ) , 
1 - 7 x^2 ) , 
z*2 - 3 y*2 ) , 
z"2 - y"2 ) 

'4 ), 

x"2 ) , 

FILE: odd_parity.functions.3d 

************************************************************************** 
* * 
* Odd Parity spherical harmonics, through P5 terms with Y[n,n] deleted: * 
* Y[1,0], Y[3,2], ,Y[3,-2], y[5,4], Y[5,3], , Y[5,-3], Y[5,-4] * 
* * 
************************************************************************** 

1 / 2 

1 / 2 

1 / 2 

1 / 2 

-
- 3 / 8 
- 1 / 8 

1 / 4 

- 1 / 8 
1 / 8 

- 1 / 8 
- 1 / 2 
- 1 / 8 
- 3 / 2 

S q r t [ 3 ] 
S q r t [ 1 0 5 ] 
S q r t [ 2 1 / 2 ] 
S q r t [ 7 ] 
S q r t [ 2 1 / 2 ] 
S q r t [ 1 0 5 ] 
S q r t [385] 
S q r t [ 3 8 5 / 2 ] 
S q r t [ 1 1 5 5 ] 
S q r t [ 1 6 5 ] 
S q r t [ 1 1 ] X 
S q r t [ 1 6 5 ] z 
S q r t [ 1 1 5 5 ] 
S q r t [ 3 8 5 / 2 ] 
S q r t [385] 

X , 

X ( y^2 - z*2 ) , 
y ( 1 - 5 x*2 ) , 
X ( 5 x*2 - 3 ) , 
z ( 1 - 5 x*2 ) , 
X y z , 
X ( y^4 - 6 y^2 z*2 + z*4) , 
y ( 9 x*2 - 1 ) ( y"2 - 3 z"2 ) 
X ( 3 x ' 2 - 1 ) ( y"2 - z"2 ) , 
y ( 1 - 14 x*2 + 21 X*4 ) , 
( 63 x^4 - 70 x*2 + IS ) , 
( 1 - 1 4 x*2 + 21 x*4 ) , 

X y z ( 3 x*2 - 1 ) , 
z ( 9 x"2 - 1 ) ( 3 y*2 - z"2 
X ( y*3 z - y z*3 ) 

), 
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ft******* 

FILE: Anglnt.math used in several l^athematica scripts to 
calculate the angular integrals. The following relations are used: 
(1) Integrate[ Sin(xl'(m-1) Cos[xP(n-l), x, (O, Pi) ] = 

( lt(-l)*(m-l) ) Beta(m/2,n/2) / 2 
(2) Integrate[ Sin[xl*(m-1) Cos[xl'(n-1), x, (o, 2 Pi) ] = 

( l+(-l)"(m-l) + (-l)'(n-l)*(-l)*(m-l) (-l)'(n-l) ) Beta (m/2 , n/2) / 2 

The algorithm treats each integrand as a polynmial in sines and cosines 
of theta and phi (where phi is the azimuthal angle). The exponents 
are extracted, along with any leading coefficinets, and the values for 
the integrals in phi and theta are calculated using (1) and (2). 

The integral values are summed term by term to arrive at the value 
of the integral of the entire integrand. 

The variable "dummy is introduce to ensure the integrand has the proper 
polynomial structure (i.e. the number of terms is never less than 2). 
"dummy" is zeroed out prior to adding the term to the sum 

. . . . . . . . . . . . . . . . . . . • . . . . . • . . • • • . . . • • . . . * . * * • * . • . • • . . . . . . . . • • • • . . . . » . • . * • • • ) 

nDig = 30 
<:</usr/local/math2 . 2/Packages/Algebra/Trigonometry. m; 

Angint ! f_ ! := Module[ 
(terms, sumTerms, coeff, expl, exp2, exp3, exp4, cl, c2, c3, c4 }, 
integrand = N[ Expand[ TrigReduce[ PowerExpand[ 

Sin[thl/(4 Pi) f 1 1 ], nDig ] + dummy; 

(• Get the number of terms in the integrand *) 
terms = Length[ integrand 1; 

(• Calculate the integral for each term in the polynomial *) 

sumTerms = 0; 
Dot 

/ * • • • * • • * • « * • * * * • • * * • • • * • • • * * • * * * • • • * * * * * * * * * • * * * * • * * * * * 

Print[ "Part ",1,": ",N[ integrand[[1]] ] ]; 
* • » • • • • * * * * * * * • • • * * * * * * * * • * * * * * • * * * * * * • * * * * * * * * * * * * * * * * ) 

(• Check to see if term is a contant *) 

If [ 
NumberQ[ integrand[[1]1 ], 

(• Constant term *) 
coeff = integrand[[1]]; 
expl = 0; 
exp2 = 0 ,-
exp3 » 0; 
exp4 = 0, 

(» function of theta and phi *) 

If [ 
Length[ integrand[[1]] ) > 1, 

If [ 

NumberQl integrand[(1,1)] ], 

coeff = integrand[[1,1]], 

coeff =1.0 55 



] , 

coeff = 1.0 

(* Check for "dummy" structure terra •) 
If [ Exponent[ integrand[[1]],dummy ] > 0, coeff = 0.0 ]; 

(* Extract exponents of sines and cosines *) 
expl = Exponent[ integrand[[1]],Cos[th] ], 
exp2 = Exponent! integrand[[1]],Sin[th] ], 
exp3 = Exponent[ integrand[[1]],Cos[ph] ], 
exp4 = Exponent[ integrand[[1]],Sin[ph] ] 

]; 

/************************************************* 
Print[ "Cos[th] power = ",expl ], 
Print[ "Sin[th] power = ",exp2 ]; 
Print[ "Cos[ph] power = ",exp3 ]; 
Print[ "Sin[ph] power = ",exp4 ]; 
Print! "Coefficient = ",coeff ]; 
************************************************* J 

ol = (1 + (-l)*expl)/2; 
c2 = (1 + {-l)*exp3 + (-l)*exp3 (-l)*exp4 + (-1)'exp4)/2; 
c3 = Beta[ (expl+l)/2,(exp2+l)/2 ]; 
c4 = Beta[ (exp3+l)/2,(exp4+l)/2 ]; 
(***************************************************** 
DEBUG 

Print! "cl, c2, c3, c4 = ",cl," ",c2," ",c3," ", c4 ]; 
DEBUG 

*****************************************************j 

sumTerms = sumTerms + N[ coeff cl c2 c3 c4, nDig ], 
{1,terms} 

]; 
sumTerms 
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(**************•**•*••*******•**••******************••********************* 

FILE: AnglntPos.math used in the vacuum boundary condition calculation. 
Same as Anglnt.math except that accounts for absolute value of 
direction cosine in the integrand. The following relations are used: 

(1) 2*Integrate( Sin[xl*(m-1) Cos[x]'(n-1), x, (O, Pi/2) 1 -
Beta(m/2,n/2) 

(2) Integrate[ Sin(x)*(m-1) Cos[x]'(n-1), x, (o, 2 Pi) ] -
( !•(-1)*(m-1)+(-1)^(n-1)+(-1)*(m-1)(-1)'(n-1) ) Beta(m/2,n/2) / 2 

The algorithm treats each integrand as a polynmial in sines and cosines 
of theta and phi (where phi is the azimuthal angle). The exponents 
are extracted, along with any leading coefficinets, and the values for 
the integrals in phi and theta are calculated using (1) and (2). 

The integral values are summed term by term to arrive at the value 
of the integral of the entire integrand. 

The variable "dummy is introduce to ensure the integrand has the proper 
polynomial structure (i.e. the number of terms is never less than 2). 
"dummy" is zeroed out prior to adding the term to the sum 

....................*................................) 

nDig = 30 
<</usr/local/math2.2/Packages/Algebra/Trigonometry.m; 
AnglntPos [ f_ ) := Module[ 

{terms, sumTerms, coeff, expl, exp2, exp3, exp4, cl, c2, c3, c4 }, 
integrand = N[ Expand! TrigReduce[ PowerExpand[ 

Sin[th]/(4 Pi) f 1 ] ], nDig ] + dummy; 

(• Get the number of terms in the integrand •) 
terms = Length[ integrand ]; 

(• Calculate the integral for each term in the polynomial *) 

sumTerms = 0; 
Do( 

( « . * • • • • * • • . * * • • * . . . . * • . * * * . * * . . * * * • * * * * * * * * * * * * * * * * • * * * 

Print[ "Part ",1,": ",N( integrand[[1]] ] ]; 

(* Check to see if term is a contant *) 

If [ 
NumberQ[ integrand[[1)] ], 

(* Constant term *) 
coeff = integrand[[1]]; 
expl = 0; 
exp2 = 0 
exp3 = 0 
exp4 = 0, 

(• function of theta and phi *) 

If [ 
Lengthl integrand[[11 ] 1 > 1. 

If! 
NumberQ[ integrand[[1,ll] 1, 

coeff = integrand[(1,1)1, 
0/ 



coeff 

coeff =1.0 

1 ; 

(* Check for "dummy" structure term *) 
If [ Exponent! integrand!!1]],dummy ] > 0, coeff = 0.0 ], 

(• Extract exponents of sines and cosines *) 
expl = Exponent! integrand!!1]],Cos!th] ] 
exp2 = Exponent! integrand!!1]],Sin!th] ] 
exp3 = Exponent! integrand!!1]],Cos !ph] ] 
exp4 = Exponent! integrand!!1]],Sin!ph] ] 

(*** ******************************************** 
Print! "Cos!th] power = 
Print! "Sin!th] power = 
Print! "Coslph] power = 
Print! "Sin!ph] power = 
Print! "Coefficient = 

,expl ] 
,exp2 ] 
,exp3 ] 
,exp4 ] 
,coeff ] 

*************************************************) 

cl = 1 ; 
c2 = (1 + (-l)*exp3 + (-l)*exp3 (-l)*exp4 + (-1)*exp4)/2; 
c3 = Beta! (expl+l)/2,(exp2+l)/2 ]; 
c4 = Beta! (exp3+l)/2,(exp4+l)/2 ]; 
(***************************************************** 
DEBUG 

Print I "cl, c2, c3, c4 = ",cl," ",c2," ",c3," ", c4 ]; 
DEBUG 

*****************************************************) 
sumTerms = sumTerms + N! coeff cl c2 c3 c4, nDig ], 
{1,terms} 

1, 
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'^ Mathematica script to generate the H matrix, which takes into account 
Che angular dependence of the node interior. 
2d Geometry *) 

ifa = 9 

rules = {x -> Cos(th),y -> Sin[th]Cos(ph),z -> Sin[th]Sin[ph]} 
<<even_parity.functions.2d 
g = g /. rules 
o . ( C o s [ t h J , S i n [ t h l ' C o s [ph) ) 
<<;AngInt .ma th 

h . T a b l e [ 0 , { i , : ) , {- , , : ) , ( k , i f a ) , { i . i f a } ) 
D o [ a - A n g I n t [ o ( [ i ) ] o [ [ j ) ] g 1 [k] ] g [ [ l ] J ] ; 

h [ [ i . : , k , l ] ] = a ; 
a-a , (* 
h [ [ i , : . l , k ] l - a ; 
h [ [ j , i , k , l ] l . a ; 
h [ ( j , i , l , k ) ] . a , • ) 
(1,2}.{j,2),(k,ifa),(l.ifa)] 

(• Save["hxy.dat",h) •) 
stmp =• OpenWrite ["hxy . rawdata") 
WriteString[stmp,"H \n") 

Do[Write[stmp,N[h[[1,],k,1J) ,16]] ,{1,ifa),{k,ifa},{j,2},{i,2}] 
Close[stmp] 
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(********************************************************************** 

This MATHEMATICA script calculate the E matrix (angular coupling) 
for 2-D X-Y geometry. The E matrix is defined as 

E = Integrate! g!i] k!j] Omega[j] .n, {th, 0,Pi}, {ph, 0, 2 Pi}] 

where g!i] are the even parity angular trial functions, 
k!j] are the odd parity trial functions on a given face 
n is the unit normal for the face 

Omega.n is alway equalent to the "mu" direction in surface coordinates 

The angular trial function set defined in this script covers up to a 
P5 expansion. 

************************************************************************) 
ifa = 9 
< <Angint.math 
<<even__parity. functions. 2d 
<<odd_parity.functions.2d 
k = Sqrt [3] x k 
kl = k /. {x->u,y->n,z->s} 
k2 = k /. {x->n,y->u,z->s} 
trigl = {x->Cos !th] ,y->Sin!th] Cos !ph] , z->SinIth] Sin!ph] } 
trig2 = {u->Cos !th] ,n->Sin!th]Cos !ph] , s->Sin!th] Sin!ph] } 
g = g /. trigl 
kl = kl /. trig2 
k2 = k2 /. trig2 
e = Table!0,{i,2},{j,ifa},{l,ifa}] 
Do! 

e![l,i,j]] = Anglnt[g!!i]]kl![j]]] ; 
e!!2,i,j]] = Anglnt!g!!i]]k2!!j]]] , 
{i,ifa},{j,ifa} 

] 
Save!"exy.dat",e] 

stmp = OpenWrite!"exy.rawdata"] 
WriteString!stmp,"E \n"] 
DoIWrite!strap,NIe!!i, j,l]] ,16]] , {l,ifa}, {j,ifa}, {i,2}] 
Close!stmp] 
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This MATHEMATICA script calculate the E matrix (angular coupling) 
for :-D hexagonal geometry. The E matrix is defined as 

E = Integrate! g[i] k[jl Omega[j).n,(th,0,Pi),(ph,0,2 Pi}] 

where g[i] are the even parity angular trial functions, 
k[j] are the odd parity trial functions on a given face 
n is the unit normal for the face 

Omega.n is alway equalent to the "mu" direction in surface coordinates 

The angular trial function set defined in this script covers up to a 
P5 expansion. 

(* Define number of angular moments *) 
nAng = 9 

(* Define even parity angular trial functions *) 
<<even_parity.functions.2d 
gg = g 
Clear[g] 

(* Define odd parity angular trial functions *) 
<<odd_parity.functions.2d 
kx = Sqrt [3] x k 
Clear(k) 

(* Rotate odd parity functions into surface coordinates *) 
cl = 1/2 
c2 = Sqrt [3] /2 
g g = g g / . { x - > u , y - > v , z - > w } 

kl = kx /. { x -> u, y -> V, z -> w } 
k2 = kx / . { X - > cl u + c2 V, y - > c2 u - cl V, z - > w } 
k3 = kx /. { x -> -cl u + c2 V, y -> c2 u + cl V, z -> w } 

(* convert to direction cosines *) 
trig = (u->Cos [th] , V->Sin [th] Cos [ph] , w->Sin [th] Sin [ph] } 
gg = gg /. trig 
kl = kl /. trig 
k2 = k2 /. trig 
k3 = k3 /. trig 

e = Table[0,{i,3},{j,nAng},{k,nAng)J 

(* Calculate integrands for the E matrix *) 
Print["Begin calculating v and w face data"] 
<<AngInt.math 
Do[ 

P r i n t ! " G e n e r a t i n g e [ i , " , j , " , " , k , " ) " ] , 
e [ ( l , j , k ] ] = A n g l n t [ g g d j l ] k l [ [k] ] 
e [ [ 2 , ] , k ! ] = A n g l n t [ g g [ [ j l ) k 2 [ [ k ] ] ] , 
e [ [ 3 , j , k ) l = A n g l n t I g g [ [ j ] ] k3 [ [k] ] 1, 
{ j , n A n g } , {k,nAng} 71 



(* Save E matrix, and generate raw data for data statement *) 
(* Save["ehex.dat",e] *) 
strap = OpenWrite["ehex.rawdata"] 
Wri teStr ing[stmp,"E \n"] 
Do[ 

Write[ stmp. Chop[ N! e!!i,j,k]], 12 ], 10^-14 ] ], 
{k.nAng},{j,nAng},{i,3} 

] 
CloseIstmp] 
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(• A Mathematica script to generate the V matrix, 
the angular dependence array needed in the anisotropic scattering 
calculation. 2D Geometry *) 

(* Define even parity angular trial functions *) 
<<even_parity.functions.2d 
gg = g 
Clear [g] 

(* Define odd-parity scattering functions *) 
gm = {Sqrt[3]x, 

Sqrt[3]y, 
Sqrt[7/4] (5x'3-3x) , 
Sqrt[21/8](5x'2-l)y, 
Sqrt[105/4)(y'2-z*2)x, 
Sqrt[35/8](y'2-3z'2)y. 

1/8 Sqrt[11] 
-1/8 Sqrt[165] 
1/4 Sqrt[1155) 
-1/8 Sqrt[385/2] 
-3/8 Sqrt[385] 
3/8 Sqrt[77/2] y 

x ( 63 x'4 - 70 x"2 + 15 ), 
y ( 1 - 14 x*2 + 21 x'4 ), 
X ( 3 x"2 - 1 ) ( y*2 - z'2 ) , 
y ( 9 x'2 - 1 ) ( y"2 - 3 z'2 
x ( y*4 - 6 y*2 z*2 + z*4), 

(y*4 -10 y*2 z*2 + 5z *4), 

o = { C o s [ t h ] , S i n [ t h ] * C o s t p h ] ) 

t r i g = { x - > C o s [ t h ] , y - > S i n [ t h ] C o s [ p h ] , 2 - > S i n [ t h ] S i n [ p h ] ^ 
gg = gg / . t r i g 
gm = gm / . t r i g 

v = T a b l e [ 0 , { i , 2 ) , { j , 9 } , ( k , 1 2 ) ] 

(* Calculate integrands for the V matrix *) 
<<AngInt.math 
Do[ 

P r i n t [ " G e n e r a t i n g v [ i , " , j , " , " , k , " ] " 1; 
v [ [ l , j , k ] ] = A n g l n t [ o [ [1] ] gg [ [ j ] ] g m [ [ k l l ) ; 
v [ t 2 , ] , k ] ] = A n g l n t l o [ [2] ] gg [ [ j ] ] g m [ [ k l ] ] , 

( D . 9 } . (k , 12) 
1 

(* Save V matrix, and generate raw data for data 
statement *) 
(• Save["vxy.dat",v] *) 
stmp = OpenWrite["vxy.rawdata"] 
WriteString[stmp,"V \n"] 
Do[ 
Write[ stmp. Chop[ N[ v[[i,j,k)), 12 ], 10*-14 1 1, 
(k,12),{:,9),{l,2} 

] 
Close(stmp) 
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(• A Mathematica script to generate vacuum boundary conditions. 
2D Geometry •) 

rl = {x -> Cos[th],y -> Sin [th] Cos [ph] , z -> Sin [th] Sin !ph] } 
r2 = {u -> CosIth],n -> Sin [th] Cos !ph] , s -> Sin !th] Sin !ph] } 

<<even_parity.functions.2d 
gl = g /. rl 

<<AngIntPos.math 

<<exy.dat; 
el = Table! e ! !l,i,j]],{i,9},{j,9}]; 
1 = Table!0,{j,9},{k,9}]; 
uu = Table!0,{j,9},{k,9}]; 
vac = Table!0,{j,9},{k,9}]; 
i9 = IdentityMatrix!9]; 

Do! 
1[! j,k]] = AnglntPos ! Cos!th] gl! [j]] gl! !k]] ], 
{j,9}.(k,9} 

] ; 
uu = (Transpose !el] .Inverse!!] .el)/2; 
vac = Inverse!uu+i9].(uu-i9); 
(* Save I"vacxy.dat",el,l,uu,vac] 

stmp = OpenWrite!"vacxy.out",FormatType->OutputForm] 
Write[stmp, MatrixForm!N!vac,8]]] 
Close!stmp] *) 

stmp = OpenWrite!"vacxy.rawdata"] 
WriteString!stmp,"P \n"] 
Do!Write!stmp,N!vac! !i, j] ] , 16] ] , {j , 9}, {i, 9}] 
CloseIstmp] 
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(* A Mathematica s c r i p t to genera te the H mat r ix , which takes i n t o account 
the angular dependence of the node i n t e r i o r . 
3d Geometry *) 

r u l e s - {x -> C o s ! t h l , y -> S i n ! t h ] C o s I p h ) , z -> S i n ! t h ] S i n [ p h ] ) 
<<even_parity .functions .3d 
<<;AngInt. math 
g = g / . r u l e s 
o = { C o s [ t h ] , S i n [ t h l ' C o s [ph] , S i n [ t h ] S i n [ p h ] ) 
h = T a b l e [ 0 . ( 1 , 3 ) , { j , 3 } , { k , 1 5 ) , { 1 , 1 5 } ] 
Do( 

a = A n g I n t [ o [ [ i ] ] o [ [ j ] J g [ [ k ] ] g [ [ l ] l ] ; 
h [ [ i , j , k , l l ) = a ; 
h [ [ i , j , l , k ) l . a ; 
h [ [ j , i , k , l ) l . a ; 
h [ [ j , i , l , k l ] - a , 
{i,3},{j,i,3),{k,15},(l,k,15}] 

(* Save["hxyz.dat",h) •) 
stmp = OpenWrite["hxyz.rawdata"] 
WriteString[stmp,"H \n"] 

Do[Write[stmp,N[h((i,j,k,l]],16]),{l,15),{k,15),{j,3),{i,3}] 
Close[stmp] 
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(********************************************************************** 

This MATHEMATICA script calculate the E matrix (angular coupling) 
for 3-D X-Y-Z geometry. The B matrix is defined as 

E = Integrate! g [i] k[j] Omega !j] .n, {th, 0, Pi}, {ph, 0, 2 Pi}] 

where g!i] are the even parity angular trial functions, 
k!j] are the odd parity trial functions on a given face 
n is the unit normal for the face 

Omega.n is alway equalent to the "mu" direction in surface coordinates 

The angular trial function set defined in this script covers up to a 
P5 expansion. 

************************************************************************) 
ifa = 15 
< <AngInt.math 
<<even_pari ty.funct ions.3d 
<<odd_pari ty.funct ions.3d 
k = Sqrt !3] x k 
kl = k / . {x->u,y->n,z->s} 
k2 = k / . {x->n,y->u,z->s} 
k3 = k / . {x->s,y->u,z->n} 
t r i g l = {x->Cos !th] ,y->Sin!th]Cos !ph] , z ->Sin! th ]S in[ph] } 
t r i g 2 = {u->Cos [th] ,n->Sin[th]Cos [ph] , s ->Sin! th ]S in !ph] } 
g = g / . t r i g l 
kl = kl / . t r i g 2 
k2 = k2 / . t r i g 2 
k3 = k3 / . t r i g 2 
e = T a b l e [ 0 , { i , 3 } , { j , i f a } , { l , i f a } ] 
Do! 

e ! I l , i , j ] ] = A n g l n t ! g ! ! i ] ] k l ! ! j ] ] ] ; 
e ! !2, i , j ] ] = Angint Ig [ !i] ] k2 !! j) ] ] ; 
e ! ! 3 , i , j ] ] = A n g l n t ! g I I i ] ] k 3 I ! j ] ] ] , 
{ i , i f a } , { j , i f a } 

] 
(* SaveI"exyz .da t" ,e ] *) 
stmp = OpenWriteI"exyz.rawdata"] 
Wri teStr ingIstmp,"E \n"] 
DoIWr i t e I s tmp ,N!e ! I i , j , l ] ] ,16]] , {1, i f a } , { j , i f a} , { i , 3}] 
CloseIstmp] 
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******** 

This MATHEMATICA script calculate the E matrix {angular coupling) 
for 3-D hexagonal geometry. The E matrix is defined as 

E - Integrate! g[i] k[j] Omega(j].n,{th,0,Pi},(ph,0,2 Pi}] 

where g[il are the even parity angular trial functions, 
k[j] are the odd parity trial functions on a given face 
n is the unit normal for the face 

Omega,n is alway equalent to the "mu" direction in surface coordinates 

The angular trial function set defined in this script covers up to a 
P5 expansion. 

nAng = 15 
<<Angint.math 
<<even_pari ty.functions.3d 
<<odd_parity.functions.3d 

gg = g 
Clear[g] 

kx = Sqrt [3] x k 
Clear [k] 

(* Rotate odd p a r i t y funct ions i n t o surface coord ina tes *) 
c l = 1 / 2 

c 2 = S q r t [ 3 ] / 2 

g g = g g / . { x - > u , y - > v , z - > w } 

k l = k x / . { x - > u , y - > V, z - > w } 
k2 = kx / . {x -> c l u + c2 V, y -> c2 u - c l v , z -> w } 
k3 = kx / . { X -> - c l u + c2 V, y -> c2 u + c l v , 2 -> w } 
k4 = k x / . ( X - > w , y - > u , 2 - > v } 

(* c o n v e r t t o d i r e c t i o n c o s i n e s *) 
t r i g = { u - > C o s [ t h l , v - > S i n [ t h ] C o s [ p h ] , w - > S i n [ t h ] S i n [ p h ] } 

kl 
k2 
k3 
k4 

= yy 
= kl 
= k2 
= k3 
= k4 

/ 
/ 
/ 
/ 

trig 
trig 
trig 
trig 

Clear !e) 
e = Table[0,{i,4},(j,nAng},{k,nAng)] 

Do[ 
P r i n t [ " G e n e r a t i n g e [ i , " , j , " , " , k , " ] " ] 
e [ ( l , j , k ] ] = A n g i n t [gg[ [ j U k l [ [k] ] ] 
e [ [ 2 , j , k ] ] = A n g i n t ( g g [ [ : l 1 k2 [ [k] ] ) 
e [ [ 3 , : , k ] ) = A n g i n t [gg[ [ j ] 1 k3 [ [k] ] ] 
e [ [ 4 , j , k l l = A n g i n t [gg[ [ j ] 1 k4 [ [k] ] ) 
{ j , n A n g } , {k,nAng} 
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(* Save E matrix, and generate raw data for data statement *) 

(* Save["ehexz.dat",e] *) 
stmp = OpenWriteI"ehexz.rawdata"] 
WriteStr ingIstmp,"E \n"] 
Do! 

Wri te! stmp. Chop! NI e ! I i , j , k ] ] , 12 ] , 10^-14 ] ] , 
{k,nAng},{j,nAng},{1,4} 

] 
Close Istmp] 
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(* A Mathematica script to generate the V matrix, 
the angular dependence array needed in the anisotropic scattering 
calculation. 3D Geometry *) 

trig = (x -> Cos[th],y -> Sin [th] Cos [ph) , z -> Sin [ th] Sin [ph] } 
(* Define even parity angular trial functions *) 
<<even_parity.functions.3d 

gp ' g 
Clear (gl 
gp = gp • trig 

(* Define odd-parity scattering functions *) 
gm = (Sqrt[3)x, 

Sqrt[3]y, 
Sqrt[3]z, 
Sqrt[7/4](5x'3-3x), 
Sqrt(21/8)(5x*2-l)y, 
Sqrt[21/81(5x*2-l)z, 
Sqrt[105/4](y*2-z*2)x, 
Sqrt[105]x*y*z, 
Sqrt[35/81(y'2-3z*2)y, 
Sqrt[35/8](3y'2-z'2)z, 
1/8 Sqrt[ll] X ( 63 x"4 - 70 x*2 + 15 ) , 
-1/8 Sqrt[165) y ( 1 - 14 x'2 + 21 x'4 ), 
-1/8 Sqrt[165) z ( 1 - 14 x'2 + 21 x'4 ), 
1/4 Sqrt[1155] x ( 3 x'2 - 1 ) ( y'2 - z*2 ), 
-1/2 Sqrt[1155] x y z ( 3 x'2 - 1), 
-1/8 Sqrt[3e5/2] y ( 9 x'2 - 1 ) ( y'2 - 3 z'2 ), 
-1/8 Sqrt[385/2) z ( 9 x'2 - 1 ) ( 3 y'2 - z'2), 
-3/8 Sqrt[385] X ( y'4 - 6 y'2 z'2 + z'4), 
-3/2 Sqrt[385] x ( y'3 z - y z'3 ), 
3/8 Sqrt[77/2] y (y'4 -10 y'2 z'2 + 5z '4), 
3/8 Sqrt(77/2] z (z'4 -10 y'2 z'2 + 5 y'4), 

} 

gm = gm / . t r i g 

o={Cos [ t h ] , S i n [ t h ] ' C o s [ph] , S i n [ t h ] S i n [ p h ) } 

<< Angint.math 

V = T a b l e [ 0 , { 3 , 3 ) , ( k , 1 5 } , ( 1 , 2 1 ) ] 

D o [ v ( ( ] , k , l ] ] = A n g I n t [ o [ ( : ] ] g p [ [ k ] ] g m [ [ l ] ] ] , { j , 3 ) , { k , 1 5 ) , { l , 2 l ) ] 
(• S a v e [ " v x y z . d a t " , v ] ' ) 
Put[V ,"vxyz.rawdata"] 
Do[PutAppend[N[v[[3,k,l)),16),"vxyz.rawdata"),{l,2l),(k,15},{j,3)] 
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(* A Mathematica script to generate vacuum boundary conditions. 

3D Geometry *) 
ifa = 15 
r l = {x -> Cos[ th ] ,y -> Sin [th] Cos [ph] , z -> Sin [th] Sin [ph] } 
r2 = {u -> Cos! th] ,n -> Sin Ith] Cos Iph] , s -> Sin Ith] Sin Iph] } 
<< even_par i ty . func t ions .3d 
g l = g / . r l 
<<AngIntPos.math 

<<exyz.dat; 
el = Table! e I II,i,j]],{i,ifa},{j,ifa}]; 
1 = Table!0,{j,ifa},{k,ifa}]; 
uu = Table 10,{j,ifa},{k,ifa}] ; 
vacz = Table!0,{j,ifa},{k,ifa}]; 
i4 = IdentityMatrixIifa]; 

Do! 
l [ I j , k ] ] = AnglntPos! Cos Ith] g l l l j ] ] g l ! !k] ] ] , 
{ j , i f a } , { k , i f a } 

] ; 
Pr in t I"Inver t ing m a t r i x " ] ; 
uu = (Transpose!el] . Inverse II] . e l ) / 2 ; 
vacz = Inve r se !uu+ i4 ] . (uu - i4 ) ; 
(* Save T 'vacxyz .da t " , e l , l , uu ,vacz ] 

stmp = OpenWrite I"vacxyz .out" , ForraatType->OutputForra] 
WriteIstmp, MatrixFormINlvacz,8]]] 
CloseIstmp] *) 

stmp = OpenWriteI"vacxyz.rawdata"] 
WriteStr ingIstmp,"P \n"] 
Do IWri teIs tmp,NivaczII i , j ] ] , 16] ] , {j , i f a } , { i , i f a } ] 
CloseIstmp] 

80 



FILE: f.surf.xy.dat 

Trial functions on a side of a X-Y node. Expansion order: 2 

1 = (1, 2*3'{l/2)*x, -5*(l/2)/2 + 6'5'(l/2)*x'2) 

FILE: f.vol.xy.dat 

Trial functions on the interior of a X-Y node. Expansion order: 4 

f = {1, 2*3*(l/2)*x, 2*3'(l/2)*y, -5'(l/2)/2 + 6*5'(1/2)•x'2, 12'x»y, 
-5"(l/2)/2 + 6*5*(1/2)*y'2, -3*7'(l/2)*x t 20*7'(1/2)•x'3, 
-(15'(l/2)*y) + 12*15*(1/2)*x'2*y, -(15'(1/2)'x) + 12 * 15'(1/2)*x*y'2, 
-3*7'(l/2)«y + 20*7'(1/2)*y'3, 

-21/8 + 210*x'4 - (3*5*(1/2) • (-5*(1/2)/2 + 6*5' (1/2)*x'2) )/2, 
-6*21'(1/2)'x'y • 40*21'(1/2)*x*3*y, 
-5/4 - (5'(1/2)*(-5*(1/2)/2 + 6*5'(1/2)*x'2))/2 + 180*x'2*y'2 -

(5*(l/2)*(-5*(l/2)/2 * 6*5'(l/2)*y'2))/2, 
-6*21"(1/2)•x*y + 40*21'(1/2)*x*y'3, 
-21/8 + 210*y'4 - (3*5'(1/2)*(-5'(1/2)/2 + 6*5'(1/2)*y'2))/2) 

FILE: f.surf.hex.dat 

Trial functions on a side of a hex node. Expansion order: 2 

1 = {l, 3*2'(1/2)'3'(1/4)*x, -5'(l/2)/2 + 9*15'{1/2)*x'2) 

FILE: f.vol.hex.dat 

Trial functions on the interior of an hex node. Expansion order: 6 

f = {l.. 3.531397147659254*x, 3.531397147659254*y, 
-0.992094737665681 * 12.37218113922247*x'2, 15.2127765851133*x*y, 
-1.386623516201175 * 4.220134183810281*x'2 + 13.07212295960745*y*2, 
-7.364172208855169*x + 45.55400150508527*x'3, 
-2.843918214276882*y + 52.77654471105122*x'2*y, 
-6.215410878336123*x + 15.34253644105606*x'3 + 69.31604172534397*x*y'2, 
-9.20730654962232*y + 30.49051331999612*x'2*y + 46.79193393431396*y'3, 
1.144405667459047 - 40.06601247254548*x'2 + 168.2602416904509*x'4 -
1.406229436608328*y'2, - 26.50296143625209*x*y + 193.4898333051816*x'3*y, 

0.937907092856306 - 25.07947109327715*x'2 + 54.30072427626424*x'4 -
8.90944642896137*7*2 + 250.7950289971609*x*2*y'2, 
-50.42654572628691*x*y + 130.7053493868987*x'3*y + 
302.4959930449739*x*y'3, 1.53 94 7444 5844 34 5 - 8.59954682742715*x'2 + 
5. 127712221713981*x'4 - 47.18963566829999*y'2 + 
173.7862848738076*x'2*y'2 + 163.2901353147327*y'4, 
11.6653537350933*x - 194.1305451511002*x'3 + 623.0154297905012*x'5 -
5.717241004090825*X*y*2, 4.69185605425132*y - 157.7548620476962*x'2*y + 
717.9223962484047*x'4*y - 9.2171369165954*y'3, 

9.6975593701989B*x - 106.9840393103204*x'3 + 197.8190140565777*x'5 -
102.629B897072043*x*y'2 + 917.106990708609*x'3*y'2, 

5.264241230760947*y - 205.4054425941534*x'2*y + 464.0234379739513*x'4*y -
27.72465200112097*y'3 + 1184.265472234982*x'2*y'3, 
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3 0 9 . 2 5 4 1 6 7 5 8 1 9 7 7 2 * x * y ' 2 + 8 5 1 . 4 1 4 4 6 4 7 1 5 4 2 1 * x ' 3 * y * 2 + 
1 2 5 5 . 4 6 3 5 6 7 1 6 3 2 1 7 * x * y ' 4 , 15 .68457470472548*y - 1 1 1 . 2 8 2 3 4 4 8 2 2 0 2 * x * 2 * y + 
1 3 2 . 8 6 4 2 3 2 4 4 0 2 0 5 1 * x ' 4 * y - 2 1 5 . 3 5 0 9 7 2 7 2 0 6 9 9 6 * y ' 3 + 
8 9 9 . 2 2 8 5 7 2 5 1 0 3 5 6 * x ' 2 * y ' 3 + 5 6 1 . 3 5 9 0 9 5 5 7 7 0 8 2 4 * y ' 5 , 

- 1 . 0 6 0 0 9 5 7 8 7 8 2 2 5 4 5 + 8 3 . 0 1 9 6 8 3 6 2 1 2 9 5 * x ' 2 - 8 8 9 . 2 2 8 5 7 2 8 3 2 4 4 1 * x ' 4 + 
2313 .052962198468*x*6 - 1 . 293105354507158*y '2 -
1 1 . 5 3 7 0 3 5 2 1 7 6 1 2 9 9 * x ' 2 * y ' 2 + 9 . 3 9 1 1 9 0 2 2 1 8 4 6 1 5 * y ' 4 , 

0 . 0 0 0 0 1 0 8 3 5 8 0 9 5 4 5 1 9 3 2 * x * y * ( 4 . 3 3 5 2 3 8 3 0 0 8 5 5 3 2 9 * 1 0 ' 6 - 7 . 2 4 6 4 2 7 * 1 0 * 7 * x * 2 + 
2 . 4 5 2 5 5 4 7 4 1 1 4 0 9 1 4 * 1 0 ' 8 * x ' 4 - 4 . 9 0 1 9 7 0 0 0 0 0 0 0 0 0 1 * 1 0 ' 6 * y ' 2 ) , 

- 1 . 342920857770678 + 6 3 . 3 0 6 6 1 8 3 0 6 6 0 2 1 1 * x ' 2 - 4 4 8 . 8 5 4 8 5 0 8 8 5 5 4 2 4 * x ' 4 + 
7 2 0 . 0 8 6 6 8 1 0 0 9 0 3 4 7 * x ' 6 + 2 1 . 1 9 0 3 9 8 5 7 9 2 1 6 6 6 * y ' 2 -
6 8 2 . 8 4 8 5 9 5 0 1 1 3 2 4 1 * x ' 2 * y ' 2 + 3 4 1 9 . 5 4 5 9 4 4 8 8 2 7 3 2 * x ' 4 * y ' 2 -
4 1 . 9 2 7 4 2 3 5 7 2 0 6 4 1 9 * y ' 4 , 66 .87661377195044*x*y - 8 7 8 . 8 0 6 7 8 2 5 6 8 3 5 8 * x " 3 * y + 
1 6 9 8 . 7 7 9 1 8 4 2 0 0 6 1 4 * x ' 5 * y - 3 8 8 . 6 9 6 4 3 3 5 7 3 5 1 3 8 * x * y ' 3 + 
4 3 8 9 . 1 0 4 1 8 8 5 3 5 0 6 * x ' 3 * y ' 3 , - 0 . 6 9 5 2 9 2 5 5 1 1 1 5 8 1 + 33 .14469660668448*X*2 -
1 0 8 . 7 0 4 2 5 9 3 7 9 2 0 7 4 * x ' 4 + 17 .72340254766733*x*6 + 2 3 . 1 2 2 9 2 9 4 2 7 6 3 9 0 3 * y " 2 -
1 3 2 6 . 7 5 5 0 5 8 4 0 2 5 5 3 * x ' 2 * y ' 2 + 3 1 3 8 . 8 1 1 0 8 5 4 8 2 7 0 5 * x * 4 * y ' 2 -
8 4 . 7 8 4 8 1 4 6 3 7 3 7 9 5 * y ' 4 + 5 4 2 6 . 4 1 2 0 2 1 4 0 3 2 3 2 * x ' 2 * y ' 4 , 

100 .3195658795806*x*y - 5 0 5 . 5 1 7 3 8 7 3 5 0 2 2 0 8 * x ' 3 * y + 
4 4 7 . 2 9 2 9 1 8 0 7 4 6 5 4 4 * x ' 5 * y - 1647 . 523967451926*x*y"3 -I-
4 8 S 4 . 8 3 2 4 2 5 8 8 4 5 3 8 * x ' 3 * y ' 3 + 4 9 8 6 . 5 8 1 3 4 9 2 4 4 3 0 1 * x * y * 5 , 

-1 .735740046497104 + 1 8 . 4 6 2 4 6 5 9 4 S 7 3 0 3 5 * x ' 2 - 4 5 . 4 8 8 0 7 2 7 5 0 5 5 1 5 6 * x * 4 + 
2 8 . S 5 3 8 1 1 6 3 5 6 1 6 9 3 * x ' 6 + 1 0 6 . 5 5 5 4 0 5 1 8 0 7 0 7 * y ' 2 - 8 9 1 . 9 7 4 9 1 5 7 2 6 2 9 7 * x * 2 * y * 2 + 
1 3 0 7 . 2 9 2 8 5 7 8 7 8 2 3 3 * x ' 4 * y ' 2 - 9 1 8 . 7 3 2 5 2 5 5 8 2 5 7 4 * y ' 4 + 
4 3 8 0 . 1 1 3 5 0 5 4 4 5 9 3 9 * x ' 2 * y ' 4 + 1915 .895220021416*y*6} 

FILE: f . su r fxy .xyz .da t 

T r i a l functions on a surface of a X-Y-Z node. Expansion o rde r : 2 

f = {1, 2 * 3 ' ( l / 2 ) * x , 2*3"( l /2)*y, - 5 ' ( l / 2 ) / 2 + 6*5"(1 /2 )*x '2 , 12*x*y 
- S ' ( l / 2 ) / 2 + 6*5 ' ( l / 2 )*y ' 2} 

FILE: f .voL.xyz .da t 

T r i a l functions on the i n t e r i o r of a X-Y-Z node. Expansion o rde r : 4 

f = {1, 2*3 ' ( l / 2 )*x , 2*3"( l /2)*y, 2 * 3 ' ( l / 2 ) * z , - 5 " ( l / 2 ) / 2 + 6*5 ' (1 /2)*x"2 
12*x*y, - 5 ' ( l / 2 ) / 2 + 6 * 5 ' ( l / 2 ) * y ' 2 , 12*y*z, - 5 ' ( l / 2 ) / 2 + 6 * 5 ' ( 1 / 2 ) * z " 2 ' 
' M T M / ; ? * ' , " ^ " * ' ' : 20*7" (1/2) * x ' 3 , - ( 1 5 " ( l / 2 ) * y ) + 12*15" (1/2) *x"2*y 
- ( 1 5 J l / 2 ) * x ) + 12*15" (1/2) *x*y"2, -3*7" (1/2) *y + 20*7" (1/2) *y"3 
~[lUV,Vs*^^ + 12*15" (1/2) *y"2*z, - (15" ( l / 2 )*y ) ^ 12*15" (1/2) *y:z"2 , 

" " , y , i \ : \ " '°*' ' y ^ ' * ' ^ ' - - ' ^ ^ ^ ' ^ / 2 ' * ^ ' - ^2*1=^(V2)*x*z"2, 
-(15 ( l /2)*z) + 12*15"(1/2)*x"2*z, 24*3"(1/2)*x*y*2 
- l / (80*( l /3600 - ( - l / ( 3 2 * 5 " ( l / 2 ) ) + (3*5" (1/2) )/224)'"2) " (1/2) ) . 

M ( ^ f ° , " / " ' ^ " ' * ' ^ ' ' / ' " " ( 3 * 5 " ( l / 2 ) ) / 2 2 4 ) " 2 ) " 1/2 -
( -1 / (32*5" (1/2)) . ( 3 * 5 " ( l / 2 ) ) / 2 2 4 ) * ( - 5 " ( l / 2 ) / 2 + 6*5" 1/2) *x"2) ) / 
6 2 " n / 2 ; * ' : ' " ' ' * ' ^ ' ^ ' ' ' " ^ ( 3 * 5 " ( l / 2 , ) / 2 2 4 ) " 2 , " ( l / 2 ) , ^ ' " ^ 

-6*21 (l /2)*x*y + 40*21"(1/2)*x"3*y 
"m/(32i5"n/,°V '^/'^^*5",l/2)) : 5"(l/2)/288)"2)"(l/2)) -
M/-,Lnn ( " 5'{l/2)/288)*(-5"(l/2)/2 + 6*5" (1/2 ) *x"2 ) ) / 
(1/14400 - (l/(32*5"(l/2)) - 5"(1/2)/288)"2)"(1/2) i 

( 5"(L2l/,"^'^! = °,"/'^'"* = ̂ '^/'" - 5"(l/2)/288)"2)"(l/2) -(-5 (l/2)/2 + 6*5 (l/2)*y"2)/ 

JlV-'nll(V*^^^^^^°° ' <l/(32*5"(l/2)) - 5"(l/2)/288)"2)"(l/2)), 
-6*21 {l/2)*x*y + 40*21"(1/2)*x*y"3 
-21/8 + 210*y"4 - (3*5"(1/2)*(-5"(1/2)/2 + 6*5"(1/2)*y"2))/2, 
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-b»21 (l/2)*y«z + 40*21 (l/2)*y*3*z, 
-5/4 - (5"(l/2)*(-5"(l/2)/2 + 6*5"(1/2)*y"2))/2 + 180*y*2*z'2 -
(5"(l/2)*(-S"(l/2)/2 + 6*5"(l/2)*z"2))/2, 

-6*21"(1/2)'y'z + 40*21"(1/2)*y«z"3, 
-21/8 + 210*z"4 - (3*5"(1/2)*(-5"(1/2)/2 + 6 * 5"(1/2)*z"2) )/2, 
-6*21*(1/2)*x*z + 40*21'(1/2)*x*z"3, 
-1/(144*(1/14400 - (1/(32*5"(1/2)) - 5'(1/2)/2e8)'2)'(1/2)) -

((l/(32*5"(l/2)) - 5"(l/2)/288)*(-5'(l/2)/2 + 6•5'(1/2)*x'2))/ 
(1/14400 - (l/(32*5"(l/2)) - 5*(1/2)/288)*2)*(1/2) + 

(X*2*z*2)/(1/14400 - (1/(32*5* (1/2) ) - 5* (1/2)/288)* 2) ' (1/2) -
{-5*(l/2)/2 + 6*5"(l/2)*z"2)/ 
{72*5"(1/2)*(1/14400 - (1/(32*5* (1/2) ) - 5' (1/2)/288) '2)' (1/2) ) , 

-6*21"(1/2)*x*z + 40*21*(1/2)*x"3*2, -6*5*(1/2)*y*z + 72*5*(1/2)*x*2*y*z, 
-6*5"(l/2)*x*z + 72*5*(1/2)*x*y*2*z, -6*5*(1/2)*x*y + 72*5*(1/2)*x*y*z*2) 

FILE: f.surfxy.hexz.dat 

Trial functions on a X-Y surface of a hex-Z node. Expansion order: 2 

f = {1, 3*2*(1/2)*3*(1/4)*x, 2*3*(l/2)*y, -5*(l/2)/2 * 9*15'(1/2)*x'2, 
6*2*(1/2)*3*(3/4)*x*y, -5*(l/2)/2 + 6 * 5'(1/2)*y*2) 

FILE: f.surfh.hexz.dat 

Trial functions on a hex surface of a hex-Z node. Expansion order: 2 

f = {1, (6*3* (l/4)*x)/5* (1/2) , (6*3* (1/4) *y)/5*(l/2) , 
-5*(5/127)*(1/2) + 36*(15/127)*(1/2)*x*2, 18*(5/7)*(1/2)*X*y, 
(-5*(635/903)*(l/2) )/4 + (41 * (- 5*(5/127)' (1/2) + 36*(15/127) *(1/2)*X*2))/ 

(4*903*(1/2)) + 9*(635/301)*(1/2)*y*2} 

FILE: f64.vol.hexz.dat 

Trial functions on the interior of a hex-Z node. 
Expansion order: 6 in the X-Y plane, 4 in the Z axis. 

f = (l., 3.531397147659254*x, 3.531397147659254*y, 3.4641016151377S4*Z, 
-0.992094737665681 + 12.37218113922247*x*2, 15.2127765851133*x*y, 
-1.386623516201175 + 4.22013418381028*x*2 + 13.07212295960745*y"2, 
12.23311856289929*y*z, -1.11803 3 98874 9895 + 13.41640786499874*z"2, 
12.23311856289929*x*z, - 7.364172208855168*x + 45.55400150508527*x"3, 
-2.843918214276883*y + 52.77654471105124*x*2*y, 

-6.215410878336125*x + 15.34253644105606*x"3 + 69.31604172534398*x*y"2, 
-9.20730654962232*y + 30.49051331999613*x"2*y + 46.79193393431396*y"3, 
-3.436716983117353*z + 42.85849266715744*y*2*z, 
-3.948222038857477*y + 47.37866446628973*y*z"2, 
-7.937253933193773*z + 52.91502622129182*z'3, 
-3.948222038857477*x + 47.37866446628973*x*z*2, 

-4.803404762060481*z + 45.28316225765551*x*2*z + 14.61897364223524*y*2*z, 
52.6986039392208*x*y*z, 1.1444 056674 5904 7 - 40.06601247254547*x*2 + 
168.2602416904509*x*4 - 1.406229436608328*y*2, 
-26.5029614362521*x*y + 193.4898333051816*x*3*y, 
0.937907092856306 - 25.07947109327715*x*2 + 54.30072427626425*x*4 -
8.90944642896137*y*2 + 250.7950289971609*x*2*y*2, 
-50.42654572628692*x*y + 130.7053493868988*x*3*y + 
302.4959930449739*x*y*3, 1.5 394 7444 5844 34 5 - 8.59954682742714*x'2 + 
5.127712221713985*x*4 - 47.18963566829997*y*2 + 
173.7862848738076*x*2*y*2 + 163.2901353147327*y*4, 
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- 2 2 . 6 8 9 1 6 5 1 6 1 3 8 2 7 2 * y * z + 1 4 0 . 3 5 2 8 1 0 1 4 5 8 4 4 9 * y " 3 * z , 
1 .109195636770142 + 8 .88178419700125*10" -16*x"2 - 1 3 . 8 3 2 S 1 9 0 2 8 6 2 1 1 2 * y " 2 

13 .31034764124171*z"2 + 1 6 5 . 9 9 0 2 2 8 3 4 3 4 5 3 4 * y " 2 * z " 2 , 
-28 .02959589992768*y*z + 1 8 6 . 8 6 3 9 7 2 6 6 6 1 8 4 5 * y * z " 3 , 
1 .125 - 45 .00000000000001*z"2 + 2 1 0 . * z " 4 , 
-28 .02959589992768*x*z + 1 8 6 . 8 6 3 9 7 2 6 6 6 1 8 4 5 * x * z " 3 , 
1 .550292220712804 - 14 .615077773959*x"2 - 4 . 7 1 8 2 5 3 4 5 4 5 8 5 1 8 9 * y " 2 -

i e . 6 0 3 5 0 6 6 4 8 5 5 3 6 5 * z " 2 + 175 .380933287508*x"2*z"2 + 
5 6 . 6 1 9 0 4 1 4 5 5 0 2 2 2 7 * y " 2 * z " 2 , - 25 .51024084284776*x*z + 
157 .8036901897536*x"3*z , -24 .48571340145234*y*z + 
211 .1407608441662*x"2*y*z + 8 1 . 0 8 5 8 1 6 6 3 8 4 4 0 8 * y " 3 * z , 

-21 .53081486238894*x*z + 53 .14810526577217*x"3*z + 
240 .1178120957201*x*y"2*z , - 1 7 . 0 0 8 4 0 1 2 8 5 4 1 5 2 2 * x * y + 
204 .1008154249827*x*y*z"2 , 11 .66535373509326*x - 1 9 4 . 1 3 0 5 4 5 1 5 1 0 9 9 5 * x " 3 + 
623 .0154297904985*x"5 - 5 .717241004090801*x*y"2 , 

4 .691856054251322*y - 157 .7548620476962*x"2*y + 7 1 7 . 9 2 2 3 9 6 2 4 8 4 0 5 1 * x " 4 * y -
9 .2171369165954*y"3 , 9 .69755937019897*x - 1 0 6 . 9 8 4 0 3 9 3 1 0 3 2 0 2 * x " 3 + 
197 .8190140565769*x"5 - 102 .6298897072043*x*y"2 + 
917 .106990708609*x"3*y"2 , 5 .264241230760949*y -
205 .4054425941535*x"2*y + 4 6 4 . 0 2 3 4 3 7 9 7 3 9 5 1 6 * x " 4 * y -
27 .72465200112097*y"3 + 1 1 8 4 . 2 6 5 4 7 2 2 3 4 9 8 2 * x " 2 * y " 3 , 

8 .09990722997389*x - 32 . 6914364353943*x"3 -̂  9 . 0669661188542*x"5 -
309 .2541675819773*x*y"2 + 8 5 1 . 4 1 4 4 6 4 7 1 5 4 2 1 * x " 3 * y " 2 + 
1255 .463567163217*x*y"4 , 15 .68457470472548*y - 1 1 1 . 2 8 2 3 4 4 8 2 2 0 2 * x " 2 * y + 
132 .8642324402053*x"4*y - 2 1 5 . 3 5 0 9 7 2 7 2 0 6 9 9 6 * y " 3 + 
899 .228572510356*x"2*y"3 + 5 6 1 . 3 5 9 0 9 5 5 7 7 0 8 2 4 * y " 5 , 

-1 .060095787822544 + 83 .019683621295*x"2 - 8 8 9 . 2 2 8 5 7 2 8 3 2 4 4 1 * x " 4 + 
2313 .052962198468*x"6 - 1 .293105354507159*y"2 -
11 .53703521761299*x"2*y"2 + 9 . 3 9 1 1 9 0 2 2 1 8 4 6 1 4 * y " 4 , 

46 .97581656109533*x*y - 7 8 5 . 2 0 9 0 2 8 5 5 1 4 5 7 5 * x " 3 * y + 
2657 .541607416357*x"5*y - 5 3 . 1 1 6 8 1 3 3 1 6 2 5 0 7 3 * x * y " 3 , 

-1 .342920857770676 + 63 .30661830660207*x"2 - 4 4 8 . 8 5 4 8 S 0 8 8 5 5 4 2 4 * x " 4 + 
720 .0866810090344*x"6 + 2 1 . 1 9 0 3 9 8 5 7 9 2 1 6 6 4 * y " 2 -
682 .8485950113239*x"2*y"2 + 3 4 1 9 . 5 4 5 9 4 4 8 8 2 7 3 1 * x " 4 * y " 2 -
4 1 . 9 2 7 4 2 3 5 7 2 0 6 4 1 6 * y " 4 , 66 .87661377195044*x*y - 8 7 8 . 8 0 6 7 8 2 5 6 8 3 5 8 * x " 3 * y + 
1698 .779184200614*x"5*y - 3 8 8 . 6 9 5 4 3 3 5 7 3 5 1 3 8 * x * y " 3 + 
4 3 8 9 . 1 0 4 1 8 8 5 3 5 0 6 * x " 3 * y " 3 , - 0 . 6 9 5 2 9 2 5 5 1 1 1 5 8 1 0 2 + 3 3 . 1 4 4 6 9 6 6 0 6 6 8 4 4 6 * x " 2 -
108 .7042593792074*x"4 + 1 7 . 7 2 3 4 0 2 5 4 7 6 6 7 2 1 * x " 6 + 2 3 . 1 2 2 9 2 9 4 2 7 6 3 9 0 3 * y " 2 -
1326 .755058402552*x"2*y"2 + 3 1 3 8 . 8 1 1 0 8 5 4 8 2 7 0 4 * x " 4 * y " 2 -
84 .7848146373794*y"4 + 5 4 2 6 . 4 1 2 0 2 1 4 0 3 2 3 2 * x " 2 * y " 4 , 

100 .3195658795807*x*y - 5 0 5 . 5 1 7 3 8 7 3 5 0 2 2 0 8 * x " 3 * y + 
447 .2929180746549*x"5*y - 1 6 4 7 . 5 2 3 9 6 7 4 5 1 9 2 7 * x * y " 3 + 
4884 .832425884538*x"3*y"3 + 4 9 8 6 . 5 8 1 3 4 9 2 4 4 3 0 1 * x * y " 5 , 

- 1 .735740046497101 + 18 .46246594573032*x"2 - 4 5 . 4 8 8 0 7 2 7 5 0 5 5 1 6 * x " 4 + 
28 .55381163561682*x"6 + 1 0 6 . 5 5 5 4 0 5 1 8 0 7 0 6 9 * y " 2 -
891 .974915726297*x"2*y"2 + 1 3 0 7 . 2 9 2 8 5 7 8 7 8 2 3 2 * x " 4 * y " 2 -
918 .732525582574*y"4 + 4 3 8 0 . 1 1 3 5 0 5 4 4 5 9 3 8 * x " 2 * y " 4 + 1 9 1 5 . 8 9 5 2 2 0 0 2 1 4 1 6 * y " 6 } 
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{* A Mathematica script to generate othornormal trial functions 
over an XY node 

(1) Define volume integral over the domain 

(2) Define vector of complete polynomials up to order desired (g) 

(3) Define first orthonormal trial function aa l/sqrt(volume) (f[l]) 

(4) Loop over lin. indep. polynomials to det. trial function coefficients 

f [n] = sum (a [i]f[i]:i = l,n-l)+a[n]g[n] {l} 

(a) calculate inner products and store in a 

(b) using inner products calc a[n] -

a[n] = l/sqrt(<g[n] ,g [n]>-sum{<f[i],g[n]>*2:i = l,n-l)) (2} 

(c) using a[n], calculate all a[i] 

a[i] = -a [n]<f [i] ,g [n]>, i = l,n-l {3} 

(d) using the coefficients stored in a, calculate the nth trial 

function using {1} 

(* Define the volume integral over the node *) 

VolInt[f_] := Integrate[f,{x,-1/2,1/2},{y,-1/2,1/2}] 

(* Define a vector consisting of the functions making up a complete 

fourth order polynomial *} 

g = {l,x,y,x*2,x*y,y'2,x*3,x*2*y,x*y*2,y*3,x*4,x*3*y,x''2*y*2,x*y*3,y''4} 

(* Define and initali2e a vector for the orthogonal trial functions *) 

f = Table[0,(i,15}] 

(* Define and initialize a vector for the trial function coefficients •*} 

a = Table[0,{i,15}] 

(* Define the first trial function as 1 •) 

f[[l]l = 1 

{* Begin loop to determine trial functions *} 

Do[ 

Print["Generating trial function " , n ] ; 

(* Calculate inner products *) 

Do[ a[[-)]] = VolInt[f [[jl]*g[(n]l) , {j,l,n~l} ] ; 

a[[n]] = VolInt [g[ [n]]*g[ [n] ]] ; 

{* Calculate sum of squares of inner products *) 
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sum = 0; 

Do! sura = s u r a + a ! I j ] ] " 2 , { j , n - l } ] ; 

(* C a l c u l a t e t h e v a l u e s of t h e c o e f f i c i e n t s *) 

a I In] ] = 1 / S q r t l a ! In] ] - sum] ; 

Do! a l l j ] ] = - a l l n ] ] * a ! l j ] ] , { j , n - l } ] ; 

(* Store the trial function in f!n] *) 

sura = 0; 
Do! sura = sum+a! I j ] ] *f ! I j ] ] , {j , n - l } ] ; 
f I ! n ] ] = sum + a ! In] ] *g ! In] ] , 

(* End of Do l o o p *) 
{ n , 2 , 1 5 } ] 

(* Save the set of trial functions *) 

Save["f.vol.xy.dat",f] 
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(* A M a t h e m a t i c a s c r i p t t o g e n e r a t e o t h o r n o r r a a l t r i a l f u n c t i o n s 
o v e r an XY s i d e *) 

V o l I n t ! f _ ] := I n t e g r a t e l f , ( x , - 1 / 2 , 1 / 2 ) 1 
g = { l , x , x * 2 } 
1 = T a b l e [ 0 , ( i , 3 ) ] 
a = T a b l e [ 0 , { i , 3 ) 1 
1 ( [ 1 ) ) = 1 
Do[ 

P r i n t I " G e n e r a t i n g t r i a l f u n c t i o n " , n ] ; 
D o [ a ( [ j ) ] •= V o l i n t [ l [ l j ] ] * g [ ( n l ] ] , { j , l , n - l ) 1; 
a ( [ n ] ! =. V o l i n t [ g [ [ n ] ] * g [ [ n ] ] ] ; 
P r i n t [ " E n d of V o l i n t " ] ; 
sum = 0; 
Do[ sum = s u m + a [ [ j ] ) * 2 , ( j , n - 1 ) ) ; 
a [ [ n ] ] = 1 / S q r t [ a [ [ n ] ] - s u m ] ; 
Do[ a [ [ j ] ] = - a [ [ n ] ] * a [ [ j ] ] , { j , n - l ) ] ; 
sum = 0; 
Do( sum = sum+a[[]1]*1[[j]],{j,n-l) ]; 
l[[nl 1 = sum + a[[n]]*g( [n)] , 
(n.:,3) 1 

Save["f.surf.xy.dat",1) 
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(* A Mathematica script to generate the P matrix, which takes into account 
the spatial dependence of the node interior. 
X-Y Geometry *) 

<<f.vol.xy.dat 
VolInt[f_] := IntegrateIf,{x,-l/2,l/2},{y,-l/2,l/2}] 

s = {x, y} 
p = Tab le lO,{ i ,15} ,{ j ,15} ,{k ,2} ,{1 ,2}] 
Do! 

IfIk==l, 
D o I p I ! i , j , k , l ] ] = VolInt lDlf t I i ] ] , s ! ! k ] ] ] * D [ f I I j ] ] , s ! I l ] ] ] ] ; 

P r i n t ! ! , " " , j , " " , k , " " , 1 , " " , p ! ! i , j , k , 1 ] ] ] ; 
p l [ j , i , k , l ] ] = p l l i , j , k , l ] ] , 
{ i , 15} , { j , i , 1 5 } 

] , 
D o l p l l i , j , k , l ] ] = VolIntlDlf ! ! i ] ] , s I Ik ] ] ]*D! f ! ! j ] ] , s ! ! l ] ] ] ] ; 

P r i n t i i , " " , j , " " , k , " " , 1 , " " ,p I I i , j , k , 1 ] ] ] ; 
p ! I j , i , l , k ] ] = p l l i , j , k , l ] ] , 
{ i , 15} , {j,15} 

] 
] , 

{k,2}, { l ,k ,2} 
] 
{* SaveI"pxy.dat" ,p] *) 
Put I" P " , "pxy. rawdata" ] 
D o l P u t A p p e n d l N I p ! I i , j , k , l ] ] , 1 6 ] , " p x y . r a w d a t a " ] , { 1 , 2 } , { k , 2 } , { j , 15}, { i , 15}] 



(* A Mathematica script to generate the D matrix, which couples 
the spatial dependence of the node surfaces to the node interior. 
X-Y Geometry 

*) 
<<f.vol.xy,dat 
<cf.surf.xy.dat 
1 = 1 /. x->s 
fl = f /. {x->l/2,y->3) 
f2 = f /. {y->l/2,x->s} 
mx = (1,-1,1,1,-1,1.-1,1,-1,1,1,-1,1,-1,1) 
my = {1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1) 
Surflnt!f_] := Integrate If,{s,-1/2,1/2)] 
d = TablelO,{i,4),{j,15),(k,3)] 
Do[ d [ [ l , j , k ] ] = S u r f l n t [ f l [ [ j ] ] * l [ [ k ] ) ] ; 

P r i n t [ " s i d e 1 " , d [ [ 1 , j , k ] ] ] ; 
d [ ! 3 , : j , k ] l = m x ! ( j ) ] * d l [ l , j . k U ; 
P r i n t [ " s i d e 3 " , d [ [ 3 , j , k ] ] ] ; 
d [ [ 2 , j , k ] ] = S u r f l n t [ f 2 [ [ j ] ] * l [ ( k ] ] ] ; 
P r i n t [ " s i d e 2 " , d [ [ 2 , j , k ] ] ] ; 
d [ [ 4 , j , k ] ) = my( [ j ] ) * d [ [ 2 , j , k ) ) ; 
P r i n t [ " s i d e 4 " , d [ [4 , ] , k] ] ] , 
( J . 1 5 ) , { k . 3 ) 

1 
(* S a v e [ " d x y . d a t " , d ] •) 
P u t [ D , " d x y . r a w d a t a " ) 
D o [ P u t A p p e n d [ N l d [ [ i , D , k ] ] , 1 6 ] , " d x y . r a w d a t a " ) , { k , 3 ) , { j , 1 5 ) , { i , 4 ) ] 
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(* A Mathematica script to generate the U matrix, 
the spatial dependence array needed in the anisotropic scattering 
calculation. X-Y Geometry *) 

<<f. vol.xy.dat 
Volint[f_] := Integrate If,{x,-1/2,1/2),{y,-1/2,1/2}] 
s = {x, y) 

u = TablelO,{i,15),{j,15},{1,2}] 
Do! 

Dolulli, j,l]] = Vollntif !Ij]]*D!f Hi]] ,s!!l]]]] ; 
Printii," " , j , " ",1," " , u ! !i, j , 1] ] ] , 

{1,15}, {j,15} 
], 

{1-2} 
] 
(* Savet"uxy.dat" ,u] *) 
Put!U,"uxy.rawdata"] 
Do!Pu tAppendINIu [ ! i , j , l ] ] , 16 ] , "uxy . r awda ta" ] , {1 ,2} ,{ j , 15} ,{ i , 15}] 
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(* A Mathematica script to generate othornormal trial functions 
over an hex node 

(1) Define volume integral over the domain 

(2) Define vector of complete polynomials up to order desired (g) 

(3) Define first orthonormal trial function as l/sqrt(volume) (f[l]) 

(4) Loop over lin. indep. polynomials to det. trial function coefficients 

f[n] . sum(a(i)f[i]:i=l,n-l)+a[n)g[n] {l) 

(a) calculate inner products and store in a 

(b) using inner products calc a[n] -

aln] = l/sqrtl^g[n],g[n]>-sum{cf[i],g[n]>*2:i=l,n-1)) {2} 

(c) using a[n], calculate all a[i] 

a[i] = -a [n) cf [i] ,g [n] >, i = l,n-l {3} 

(d) using the coefficients stored in a, calculate the nth trial 

function using (l) 

* . . . . . * * * * * * . * . . . . . . . . * . . . . . . . . * . . * . . * * * * * * * * * * * * * * * * * * * * * * . . * i 

V o l I n t [ f _ ) := (b = 3 * ( 3 / 4 ) / S q r t [ 2 ] ; 
Simpl i f y [ 
I n t e g r a t e ( f , { x , - b / 3 , 0 ) , { y , - x / S q r t [ 3 ] - 1 / b , x / S q r t [ 3 ] + l / b ) ] + 
I n t e g r a t e [ f , { x , 0 , b / 3 ) , ( y , x / S q r t [ 3 ] - 1 / b , - x / S q r t [ 3 ] + l / b } ] ] ) 

g = ( 1 . 
x . y , 
x " 2 , x*y , y * 2 . 

****** 

y " 3 . 
x * y * 3 , y * 4 , 

x * 2 * y * 3 , x * y * 4 , y * 5 , 
x ' 3 * y ' 3 , x * 2 * y * 4 , x * y " 5 , 

x 3 . x 2*y, x*y 2 
x*4 , x*3*y , x ' 2 * y ' 2 
x ' 5 , x ' 4 * y , x*3*y*2 
x*6 , x*5*y , x * 4 * y ' 2 

f = T a b l e [ 0 , { i , 2 8 ) ] 
a = T a b l e [ 0 , ( i , 2 8 ) ] 
f [ [ l ) l = 1 
Do[ 

P r i n t [ " G e n e r a t i n g t r i a l f u n c t i o n " , n ] ; 
Do[ a [ [ 3 l ) = V o l I n t [ f [ [ j ] ] * g [ [ n ] ] l , { j , l , n - l } ] ; 
a [ [ n ] ] = V o l i n t [ g [ [ n ] ] * g [ [ n ] 11 ; 
P r i n t ( " E n d of V o l i n t " ] ; 
sum = 0; 
Do [ sum = sum+aI I j ] ] * 2 , ( j , n - 1 ) ] ; 
a [ [ n ] ) = 1 / S q r t [ a [ [ n ] ] - s u m ] ; 
Do[ a [ [ : ] ] = - a [ [ n ] ] * a [ [ j ] ] , ( j , n - l ) 1 ; 
sum = 0; 
Do( sum = s u m + a [ [ j ] 1 * f [ [ j ] ] , { j , n - l ) ] ; 
f [ [ n ] ] = sum + a [ [ n ) ] * g [ [ n ] ] , 
{ n , 2 , 2 8 ) ] 

S a v e [ " f . v o l . h e x . d a t " , f ] 

y*6) 
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(* A Mathematica s c r i p t to generate othornormal t r i a l funct ions 
over an hexagon s ide *) 

VolInt[f_] := (b = 3" (3 /4 ) /Sqr t 12] ; 
b * I n t e g r a t e [ f , { x , - 1 / ( 2 b ) , 1 / ( 2 b ) } ] ) 

g = { l ,x ,x"2} 
1 = TablelO, {1,3}] 
a = Table lo ,{ i ,3}] 
1I!1]] = 1 
Do! 

P r in t I"Generating t r i a l function " , n ] ; 
Do! a l l j ] ] = V o l l n t ! l I I j ] ] * g ! ! n ] ] ] , { j , l , n - l } ] ; 
a ! !n] ] = Volint Ig ! In] ] *g I In] ] ] ; 
P r in t I"End of V o l i n t " ] ; 
sura = 0; 
Do! sura = sum+a ! Ij] ] "2, {j , n - l } ] ; 
a ! In] ] = 1/Sqrt la I In] ] -sum] ; 
Do! a ! ! j ] ] = - a ! l n ) ] * a l t j ] ] , { j , n - l } ] ; 
sum = 0; 
Do! sum = sum+a I Ij] ] *11 !j] ] , {j , n - l } ] ; 
11 In] ] = sura + a I In] ] •g I !n] ] , 
{n,2,3} ] 

Save I " f . s u r f . h e x . d a t " , 1 ] 
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(* A Mathematica script to generate the P matrix, which takes into account 
the spatial dependence of the node interior. 
hex Geometry *) 

<<f.vol.hex.dat 
VolInt[f_] := (b = 3*(3/4)/Sqrt[2); 

Simplify[ 

I n t e g r a t e [ f , { x , - b / 3 , o ) , { y , - x / S q r t [ 3 ] - 1 / b , x / S q r t [ 3 ] + l / b ) ] + 
l n t e g r a t e [ f , j x , 0 , b / 3 ) , ( y , x / S q r t [ 3 ] - 1 / b , - x / S q r t [ 3 J + l / b ) ] ] ) 

s = {x, y} 
p = T a b l e [ 0 , ( 1 , 2 8 ) , { j , 2 8 ) , ( k , 2 ) , { 1 , 2 ) 1 
Do[ 

If [k = = l , 
D o [ p [ [ i , j , k , l ] ] = V o l I n t [ D [ f [ [ i l ] , s ( [ k ] ) ] * D [ f [ ( ] ] 1 , s [ [ l ] ] ) ] ; 

P r i n t [ i , " " , j , " " , k , " " , 1 , " " , p ( [ i , j , k , 1 1 ] ] ; 
p [ [ j , i , k , l ] ] = p [ [ i , j , k , l ] ] , 
{ 1 , 2 8 ) , { j , i , 2 8 ) 

1, 
D o [ p [ [ l , j . k . l ) 1 = V o l I n t [ D ( f [ [ i ] ) , s [ [ k ) ) ] * D [ f [ [ : ) ] , s [ ( l ] ] ] ] ; 

P r i n t [ i , " " , j , " " , k , " " , 1 , " " , p [ [ i , j , k , 1 ] 1 ] ; 

p [ [ j , i , l , k ] ] = p [ [ i , : , k , l ] ] , 

( 1 , 2 8 ) , { : , 2 8 ) 

) 
] . 

{ k , 2 ) , ( l , k , 2 ) 

) 
(* S a v e [ " p h e x . d a t " , p ] *) 
P u t [ P , " p h e x . r a w d a t a " ] 
Do IPut A p p e n d [ N [ p [ [ i , j , k , l ] ] , 1 6 ] , " p h e x . r a w d a t a " ) , ( 1 , 2 ) , ( k , 2 ) , { j , 2 8 ) , { i , 2 8 } ] 
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(• A Mathematica script to generate the D matrix, which couples 

the spatial dependence of the node surfaces to the node interior, 

hex Geometry 

*) 

(* Load vector of basis functions •) 

<<f.vol.hex.dat 

(* Load vector of surface trial functions) 

<<f.surf.hex.dat 

(* Define vectors fn where fn is the vector of interior trial functions 
transformed to the surface n's coordinate system *) 

b = 3"(3/4)/Sqrt[2] 

(• the notation a /. {x -> x', y -> y'} can be read as transform the 
expression "a" replacing x with x' and y with y' *) 

1 = 1 /. x->s 
fl = f /. { x -> b/3 , y -> s 
f2 = f /. { X -> b/6(2b s + 1), y -> -l/(4b)(2b s - 3) 
f3 = f /. { X -> b/6(2b s - 1), y -> l/(4b) (2b s + 3) 
f4 = f /. { X -> -b/3 , y -> s 
f5 = f /. { X -> b/6(2b s - 1) , y -> -l/(4b) (2b s + 3) 
f6 = f /. { X -> b/6(2b s + 1), y -> l/(4b)(2b s - 3) 

(* Define the surface integral on a node surface *) 

Surflnt[f_] := b*Integrate[f, {s,-l/(2b) ,l/(2b) }] 

(• Define and initialize the elements of the D matrix *) 

d = Table[0,{i,6},{j,28},{k,3}] 

(* Calculate the elements of the D mat r ix . The D mat r ix i s def ined as 
D [ i , : , k ] = Sur f ln t i f I j ] * l l k ] ] on the i t h nodal sur face where f and 1 
are vectors of orthogonal t r i a l funct ions on the node i n t e r i o r and 
nodal surface i *) 

Do! d l l l , j , k j ] = S u r f l n t l f l l l j ] ] * i [ [ k ] ] 
d l ! 2 , j , k ] ] = S u r f l n t l f 2 ! l j ] ] * l ! t k ] ] 
d [ [ 3 , j , k ] ] = S u r f I n t ! f 3 I I j ] ] * H [ k ] ] 
d [ I 4 , j , k ] ] = S u r f l n t l f 4 ! l j ] ] * l l l k ] ] 
d l ! 5 , j , k ] ] = S u r f I n t ! f 5 I I j ] ] * i t [ k ] ] 94 



d!!6,j,kl) . Surflnt!f6![jl]*l![k]]] , 
{j.28},{k,3) 

(* Store the completed D matrix *) 

(* Save["dhex.dat",d) *) 

(* Write the numerical values of the D matrix to an ascii file *) 

Put[D,"dhex.rawdata") 

D o [ P u t A p p e n d [ N [ d [ [ i , ] , k ] ] , 1 6 ] , " d h e x . r a w d a t a " ] . { k , 3 ) , { j , 2 8 ) , ( i , 6 ) ) 
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(* A Mathematica s c r i p t t o genera te the U matr ix , 
the s p a t i a l dependence a r ray needed in the a n i s o t r o p i c s c a t t e r i n g 
c a l c u l a t i o n . hex Geometry *) 

<<f .vol .hex .da t 
Volint [f_] := (b = 3" (3 /4) /Sqr t [2] ; 

Simplify[ 
i n t e g r a t e [ f , { x , - b / 3 , O ) , { y , - x / S q r t [ 3 ] - 1 / b , x /Sqr t13]+ l /b} ]+ 
i n t e g r a t e ! f , { x , 0 , b /3},{y, x / S q r t 1 3 ] - 1 / b , - x / S q r t !3 ]+ l /b}] ] ) 

s = {x, y) 
u = Table lO,{ i ,28} ,{ j ,28} ,{1 ,2}] 
Do! 

DoIuII i , j , l ] ] = Vol ln t i f ! I j ] ] * D l f ! ! i ] ] , s ! ! l ] ] ] ] ; 
P r i n t i i , " " , j , " " , 1 , " " ,u ! I i , j , 1] ] ] , 

{ i , 28} , {j,28} 
] , 
{1.2} 

] 
(* Save!"uhex.dat",u] *) 
PutlU ,"uhex.rawdata"] 
Do iPu tAppendINlu I I i , j , 1 ] ] , 16 ] , "uhex . r awda ta" ] , { l , 2} ,{ j , 28} ,{ i , 28} ] 
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(* A Mathematica script to generate othornormal trial functions 

over an XYZ node 

(1) Define volume integral over the domain 

(2) Define vector of complete polynomials up to order desired (g) 

(3) Define first orthonormal trial function as l/sqrt(volume) {f(l]) 

(4) Loop over lin. indep. polynomials to det. trial function coefficients 

f[n] = sum(a [i] f [i] : i==l,n-l)+a [n]g [n] {l} 

(a) calculate inner products and store in a 

(b) using inner products calc a[n] -

a[n] = l/sqrt(eg[n] ,g [n] >-sum(<f[i],g[n]>*2;i = l,n-l)) {2} 

(c) using a [ n ] , calculate all a[i] 

a[il = -a[nl<f[il,g[n)>, i = l,n-l {3} 

(d) using the coefficients stored in a, calculate the nth trial 

function using {l} 

Volint[f_] := Integrate [f, {x,-l/2,l/2},{y,-l/2,l/2},{z,-l/2,l/2}] 

g = (1- " 
X, 

y. 

z, 

x*2, 

x*y, 

y'2, 

y*z, 

z*2, 

z*x, 

x*3, 

x*2 *y, 

x*y*2, 

y*3, 

y*2*z, 

y*z*2, 

z*3, 

z*2*x, 

z*x*2, 

x*y*z, 

x*4 , 

x*3*y, 

x*2*y"2, 

x*y"3, « 

y'l. 
y*3*z, 

y*2*z*2, 

y*z*3, 

z'4 , 

z*3*x, 

z*2*x*2, 

z*x"3, 

x"2*y*z, 

x*y*2*z, 97 



x*y*z"2} 

f = TablelO,{i ,35}] 
a = Table 10,{i,35}] 
f i l l ] ] = 1 
Do! 

P r in t I"Generating t r i a l function " , n ] ; 
Do! a l l j ] ] = Vol ln t i f I ! j ] ] * g ! I n ] ] ] , { j , l , n - 1 ) ] , 
a ! In] ] = Volint !g ! In] ] *g I In] ] ] ; 
PrintI"End of V o l i n t " ] ; 
sum = 0; 
Do I sura = sum+a! I j ] ] "2 ,{ j ,n - l} ] ; 
a I In]] = 1/Sqrt !a I In] ]-sura] ; 
Do! a l l j ] ] = - a l ! n ] ] * a ! [ j ] ) , { j , n - l } ] ; 
sum = 0; 
Do I sum = sum+a I !j] ] *f ! Ij] ] , {j , n - l } ] ; 
f I In] ] = sum + a I In] ] *g I In] ] , 
{n,2,35} ] 

Save I" f. vo l . xyz . dat" , f ] 
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(* A Mathematica script to generate othornormal trial functions 
over an X-Y surface of a X-Y-Z node. 

(1) Define volume integral over the domain 

(2) Define vector of complete polynomials up to order desired (g) 

(3) Define first orthonormal trial function as l/sqrt(volume) (f[l]) 

(4) Loop over lin. indep. polynomials to det. trial function coefficients 

f[n] . sum(a[i]f[i]:i=l,n-l)+a[n)g[n] {l) 

(a) calculate inner products and store in a 

(b) using inner products calc a[n] -

a[n] = l/sqrt(<g[n],gIn]>-sum(<f[i],g[n]>*2:i=l,n-1)) (2) 

(c) using a[n], calculate all a[i] 

a[i] I -a[n]<f[i],g[n]>, 1=1,n-1 (3) 

(d) using the coefficients stored in a, calculate the nth trial 

function using {l) 

*****.**•******.**....*........***..*.************************************\ 

(* Define the volume integral over the node *) 

VolInt[f_J := Integrate[f,{x,-1/2,1/2),{y,-1/2,1/2)] 

(* Define a vector consisting of the functions making up a complete 
second order polynomial *) 

g = {l,x,y,x*2,x*y,y*2} 

(* Define and initalize a vector for the orthogonal trial functions *) 

f = Table[0,(i,6)j 

(* Define and initialize a vector for the trial function coefficients *) 

a = Table [0, {i,6}] 

(* Define the first trial function as 1 *) 

f![l]) = 1 

(* Begin loop to determine trial functions *) 

Do[ 

Print["Generating trial function ",n]; 

(* Calculate inner products •) 

Do[ a[[j]) = VolInt[f[[j]]*g[[n]]],{j,l,n-l) ]; 
a[[n]] = Volint (g[[n]]*g[ In]]] ; 

(* Calculate sum of squares of inner products *) 
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sum = 0; 

Do[ sum = sum+a[ [ j ] ] "2 , { j , n - l } ] ; 

(* Calcula te the values of the c o e f f i c i e n t s *) 

a [ [n ] ] = 1/Sqrt [a [ [n] ]-sum] ; 

Do[ a l l j ] ] = - a l ! n ] ] * a ! l j ] ] , { j , n - l } ] ; 

(* Store the trial function in fin] *) 

sum = 0; 
Do! sum = sum+a! Ij] ] *f ! Ij ] ] , {j ,n-l} ] ; 
f I In] ] = sum + a ! In] ] *g I In] ] , 

(* End of Do loop *) 
{n,2,6} ] 

(* Save the set of trial functions *) 

SaveI"f.surfxy.xyz.dat",f] 
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(* A Mathematica script to generate the P matrix, which takes into account 
the spatial dependence of the node interior. 
X-Y-Z Geometry *) 

<<f.vol.xyz.dat 
Volint[f_l :- Integrate [f, {x,-1/2,1/2), {y,-1/2, 1/2),{z,-1/2,1/2)] 
s > {x, y, z) 
p . Table[0,{i,35),{l,35),{k,3),{1,3)1 
Do[ 

If[k==l. 
Do[p([i,:J,k,l)] . VolInt[D[f [[i]) ,s[(kl ]]*D[f ([jll ,s[ [1])]) ; 

Printii," " , j , " ",k," ",1," ",p[[i,j,k,1]1]; 
p[ [j,i,k,l)) = p[[i,j,k,l]] , 
(1,35), {1,1,35) 

1 , 
Do(p[[i, j.k.ll ) = VolInt(D[f ([i]] ,s{ (k) l]*D[f [(]] 1 ,s[[llll] ; 

Print[i," " , j , " ",k," ",1," ",p[[i,j,k,1]11; 
p[[j,i,l,kl) - p[(i,j,k,l]], 
(1.35), {j,35) 

{ k , 3 ) , ( l , k , 3 } 

1 
(* S a v e [ " p x y z . d a t " , p ] *) 
P u t [ P , " p x y z . r a w d a t a " ) 
D o [ P u t A p p e n d ( N [ p [ [ i , j , k , 1 ] 1 , 1 6 ] , " p x y z . r a w d a t a " ] , { l , 3 ) , { k , 3 ) , { j , 3 5 ) , ( i , 3 5 ) ] 
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(* A M a t h e m a t i c a s c r i p t t o g e n e r a t e t h e D m a t r i x , wh ich c o u p l e s 
t h e s p a t i a l d e p e n d e n c e of t h e node s u r f a c e s t o t h e node i n t e r i o r . 
X-Y-Z Geometry *) 

< < f . s u r f x y . x y z . d a t 
1 = f / . { x - > t , y - > s ) 
C l e a r [f] 
< < f . v o l . x y z . d a t 
f l = f / . { x - > l / 2 , y - > t , z - > s } 
f2 = f / . { y - > l / 2 , x - > t , z - > s } 
f3 = f / . { z - > l / 2 , x - > t , y - > s ) 
f4 = f / . { x - > - l / 2 , y - > t , z - > s } 
f5 = f / . { y - > - l / 2 , x - > t , z - > s } 
f6 = f / . { z - > - l / 2 , x - > t , y - > s } 
(*mx = T a b l e [ l , { i , 3 5 } ] 

my = T a b l e l l , { i , 3 5 } ] 
mz = T a b l e l l , { i , 3 5 } l 
mxm = { 2 , 6 , 1 0 , 1 1 , 1 3 , 1 8 , 2 0 , 2 2 , 2 4 , 3 0 , 3 2 , 3 4 , 3 5 } 
mym = { 3 , 6 , 8 , 1 2 , 1 4 , 1 6 , 2 0 , 2 2 , 2 4 , 2 6 , 2 8 , 3 3 , 3 5 } 
mzm = { 5 , 8 , 1 0 , 1 5 , 1 7 , 1 9 , 2 0 , 2 6 , 2 8 , 2 9 , 3 2 , 3 3 , 3 4 } 
Do! rax! Imxml I i ] ] ] ] = - 1 ; 

my! Irayra! I i ] ] ] ] = - 1 ; 
raz I Imzra! I i ] ] ] ] = - 1 , 
{ i - 1 3 } 

] *) 
S u r f l n t l f J := I n t e g r a t e l f , { s , - l / 2 , l / 2 } , { t , - l / 2 , l / 2 } ] 
d = T a b l e l O , { i , 6 ) , { j , 3 5 ) , { k , 6 } ] 
Do! d l l l , j , k ] ] = S u r f l n t ! f l l ! j ] ] * l ! ! k ] ] ] ; 

P r i n t ! " s i d e 1 ", d l U , j ,k ] ] ] ; 
( * d I I 3 , j , k ] ] = m x l ! j ] ] * d l ! 2 , j , k ] ] ;*) 

d 113, j , k] ] = Sur f i n t If 4 11 j ] ] *1I Ik] ] ] ; 
P r i n t ! " s i d e 3 " , d I 13 , j , k ] ] ] ; 
d l l 2 , j , k ] ] = S u r f l n t l f 2 ! l j ] ] * l ! l k ] ] ] ; 
P r i n t ! " s i d e 2 " , d ! 12, j ,k ] ] ] ; 
( * d l t 4 , j , k ] ] = m y I ! j ] ] * d I I 2 , j , k ] ] ;*) 

d ! I 4 , j , k ] ] = S u r f l n t l f 5 1 1 j ] ] * l ! ! k ] ] ] ; 
P r i n t ! " s i d e 4 " , d I 14, j , k ] ] ] ; 
d I I 5 , j , k ] ] = S u r f I n t ! f 3 I I j ] ] * l I I k ] ] ] ; 
P r i n t ! " s i d e 5 " , d I 1 5 , j , k ] ] ] ; 
( * d I I 6 , j , k ] ] = m z l l j ] ] * d l ! 5 , j , k ] ] ;*) 

d I I 6 , j , k ] ] = S u r f l n t ! f 6 1 ! j ] ] * l ! ! k ] ] ] ; 
P r i n t ! " s i d e 6 ", d 116 , j , k] ] ] , 
{ j - 3 5 } , { k , 5 ) 

] 
(* S a v e l " d x y z . d a t " , d ] *) 
Put I D , " d x y z . r a w d a t a " ] 
D o l P u t A p p e n d l N l d l l i , j , k ] ] ,16] , " dxy z . r a w d a t a " ] , { k , 6 } , { j , 3 5 } , { i , 6 } ] 
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(* A Mathematica script to generate the U matrix, 
the spatial dependence array needed in the anisotropic scattering 
calculation. X-Y-Z Geometry *) 

ccf vol xyz.dat 
Volint[f_] :. Integrate [f, (x,-1/2,1/2), {y,-1/2,1/2), (z,-1/2,1/2)] 
s = {x, y, z) 
u = Table[0,{1,35),{:,35),{1,3)1 
Do[ 

D o [ u [ [ i , j , l ) ] . V o l i n t [ f [ [ j ) ] * D [ f ( [ i l l , s [ ( l ) l 1 1 ; 
P r i n t [ i , " " , j , " " , 1 , " " , u [ [ i , j , 1 1 ] ] , 

( 1 . 3 5 ) , { j , 3 5 ) 
1, 
( 1 . 3 ) 

1 
(* S a v e ( " u x y z d a t " , u l *) 
P u t [ U , " u x y z . r a w d a t a " ] 
Do I P u t A p p e n d [ N [ u [ [ i , j , l l ) , 1 6 1 , " u x y z . r a w d a t a " ] , { 1 , 3 ) , { j , 3 5 ) , { 1 , 3 5 ) 1 
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(* A Mathematica script to generate othornormal trial functions 
over an hex-Z node. Complete expansion order is: 6th order in X and Y, 
4th order in Z. 

(1) Define volume integral over the domain 
(2) Define vector of complete polynoraials up to order desired (g) 
(3) Define first orthonormal trial function as l/sqrt (volume) (fU]) 
(4) Loop over lin. indep. polynomials to det. trial function coefficients 

fin] = sum(ali] f Ii] :i = l,n-l)+aln]g!n] {l} 

(a) calculate inner products and store in a 
(b) using inner products calc aln] -

aln] = l/sqrt (<gln] ,gin] >-sura(<f!i] ,g[n] >"2:i=l,n-1) ) {2} 

(c) using aln], calculate all a!i] 

ali] = -aln]<f [i] ,g!n]>, i = l,n-l {3} 

(d) using the coefficients stored in a, calculate the nth trial 
function using {l} 

Vollntlfj := (b = 3" (3/4)/Sqrt 12] ; 
Simplify! 

integrate If, {x, -b/3 , 0}, {y, -x/Sqrt 13] -1/b, x/Sqrt 13] +l/b}, {z, -1/2,1/2)] + 

^ ^integratelf, {x,0, b/3},{y, x/Sqrt13]-1/b,-x/Sqrt13]+l/b},{z,-1/2,1/2}]]) 

x,y,z, 

x"2, 
x*y, 
y'2, 
y*z, 
z"2, 
z*x, 

x"3, 
x"2*y, 
x*y"2, 
y'3, 
y"2*z, 
y*z"2, 
z"3, 
z"2*x, 
z*x"2, 
x*y*z, 

x"4, 
x"3*y, 
x"2*y"2, 
x*y"3, 
y"4, 
y"3*z, 
y"2*z"2, 
y*z"3, 
z"4, 
z"3*x, 
z"2*x"2, 

104 



J^ A - y - « , 

x*y"2*z . 
x * y * z " 2 . 

5, 
x*4*y . 
x * 3 * y * 2 . 
x * 2 * y * 3 , 
x*y*4 , 
y ' 5 , 

6, 
x "S*y , 
x * 4 * y * 2 . 
x * 3 * y * 3 , 
x * 2 * y " 4 . 
x * y * 5 , 
y*6 

) 

f = T a b l e [ 0 , ( i , 4 8 ) ] 
a = T a b l e ( 0 , { i , 4 8 ) ) 
f ( [ l ) ] = 1 
Do[ 

P r i n t [ " G e n e r a t i n g t r i a l f u n c t i o n " , n ) ; 
D o l a l l j l l = V o l l n t i f I ! j l ] * g I I n ] l l , ( j , l , n - 1 ) ] , 
a ! In ] ] = V o l i n t ( g [ [ n l ) * g [ [ n i l ) ; 
P r i n t [ " E n d of V o l i n t " ] ; 
sum = 0; 
Do! sum = s u m + a [ [ j ] 1 * 2 , { j , n - l ) ] ; 
a [ I n ] ] = 1 / S q r t l a [ [ n ] 1 - s u m ] ; 
Do( a [ [ j l l = - a [ [ n ) l * a [ [ j ] ] , { : , n - l ) ] ; 
sum = 0; 
Do! sum = s u m + a ! I J ] ] * f ! I j ] ] , { j , n - l ) 1; 
f I l n ] ] = sum + a l l n ] ] * g ! In ] ] , 
{ n , 2 , 4 8 ) 1 

S a v e I " f . h e x 3 d 6 4 . d a t " , f ) 
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(* A Mathematica script to generate othornorraal trial functions 
over an XY surface FOR A SIDE OF A HEX CAN 

(1) Define volurae integral over the domain 
(2) Define vector of complete polynomials up to order desired (g) 
(3) Define first orthonormal trial function as l/sqrt(volume) (ftl]) 
(4) Loop over lin. indep. polynomials to det. trial function coefficients 

fin] = sum(a!i] f Ii] :i=l,n-l)+aln]g!n] {l} 

(a) calculate inner products and store in a 
(b) using inner products calc aln] -

a[n] = l/sqrt (<gln] ,gin] >-sura(.;f!i] ,gin] >"2:i=l,n-1) ) {2} 

(c) using aln], calculate all ali] 

ali] = -a[n] <f Ii] ,gln] >, i=l,n-l {3} 

(d) using the coefficients stored in a, calculate the nth trial 
function using {l} 

*********^^•*->:•^****•>:•^**•>:***^.**^,*•^^,^,•,•^^,^,^:^:^,^,^,^,t^,*^,*^,^n,^,^,^r^,t^,t^,ti,*^,^,^,^,^,^,^,^,t*^,*) 

(* Define the volume integral over the node *) 

Vollntlfj := (b=3" (3/4)/Sqrt 12] ; 
b*Integrate[f,{x,-l/(2 b),l/(2 b)},{y,-1/2,1/2}]) 

(* Define a vector consisting of the functions making up a complete 
fourth order polynomial *) 

g = {l,x,y,x"2,x*y,y"2} 

(* Define and initalize a vector for the orthogonal trial functions *) 

f = TablelO,{i,6)] 

(* Define and initialize a vector for the trial function coefficients *) 

a = TablelO,{i,6}] 

(* Define the first trial function as 1 *) 

fill]] = 1 

(* Begin loop to determine trial functions *) 

Do! 

Print I "Generating trial function " , n ] ; 

(* Calculate inner products *) 

Dolalljl] = VolIntIfIIj]J*g[[nl]],{j,i,n-i) ] . 
alln]] = Volint !glln]]*gltn]]]; ' '• 

(* Calculate sum of squares of inner products *) 
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sum - 0; 

Do! sum « sum+a I Ij1)"2,{j,n-l) ]; 

(* Calculate the values of the coefficients *) 

alln]] • 1/Sqrtla[[n]]-sum]; 

Do! a[[jll . -a([n]l*a[[j)], {j,n-l} ); 

(* Store the trial function in f[n] •) 

sum = 0; 
Dol sum . s u m + a [ [ j ] 1 * f [ [ j ] ) , { j , n - l ) 1; 
f ( [ n i l = sum + a [ [ n ] ] * g [ [ n l ] , 

(* End of Do l o o p *) 
{ n , 2 , 6 ) ) 

(* Save the set of trial functions *) 

Save["f.surfxy.hexz.dat",f] 

107 



(* A Mathematica script to generate othornormal trial functions 
over an hex surface FOR A SIDE OF A HEX CAN 

(1) Define volume integral over the domain 

(2) Define vector of complete polynoraials up to order desired (g) 

(3) Define first orthonormal trial function as l/sqrt(volume) (f[l]) 

(4) Loop over lin. indep. polynoraials to det. trial function coefficients 

f[n] = sum(a[i]f [iJ :i = l,n-l)+aln]gln] {l} 

(a) calculate inner products and store in a 

(b) using inner products calc a In] -

aln] = l/sqrt(<g!n] ,g!n]>-sum(<f Ii] ,g!n]>"2:i=l,n-l)) {2} 

(c) using aln], calculate all a!i] 

ali] = -a!n]<f [i] ,g!n]>, i=l,n-l {3} 

(d) using the coefficients stored in a, calculate the nth trial 

function using {l) 

******************************************+*******************************\ 

VolintIf_] := (b = 3"(3/4)/Sqrt12]; 

Simplify I 
Integratelf,{x,-b/3,0},{y,-x/Sqrt13]-1/b, x/Sqrt13]+l/b}]+ 
Integratelf,{x,0, b/3},{y, x/Sqrt13]-1/b,-x/Sqrt I3]+l/b}]]) 

g = {1, 
x,y, 
x"2,x*y,y"2} 

f = TablelO,{i ,6}] 
a = Table 10,{i,6}] 
f i l l ] ] = 1 
Do! 

P r in t I"Generating t r i a l funct ion " , n ] ; 
Do! a l l j ] ] = v o l l n t i f ! ! j ] ] * g ! ! n ] ] ] , { j , i , n - l } ] ; 
a I In] ] = Volint Ig I In] ] *g I In] ] ] ; 
Print!"End of V o l i n t " ] ; 
sura = 0; 
Do! sum = sum+a! Ij] ] "2, { j , n - l ) ] ; 
a l l n ] ] = 1 /Sq r t l a I l n ] ] - sum] ; 
Do! a l l j ] ] = - a l l n ] ] * a ! l j ] ] , { j , n - l } ] ; 
sum = 0 ; 
Do! sum = sum+a! Ij] ]*f I I j ] ] , { j , n - l ) ] ; 
f I In] ] = sum + a I In] ] *g I In] ] , 
{n,2,6} 1 

Save I " f . su r fh .hexz .da t " , f1 

108 



(* A Mathematica script to generate the P matrix, which takes into account 
the spatial dependence of the node interior. 
hex-Z Geometry *) 

c<f64.vol.hexz.dat 
f = SimplifyiNIf,15)) 
Volint!f_l :- ( 

b = 3* (3/4)/Sqrt C ) ; 
Simplify[ 

Integrate[f,{x,-b/3,0),(y,-x/Sqrt[3]-1/b, x/Sqrt[3]+l/b),{z,-1/2,1/2)1+ 
Integrate[f,{x,0, b/3),{y, x/Sqrt[3]-1/b,-x/Sqrt[31+1/b),{z,-1/2,1/2)11) 

s = {x, y, z) 

p = Table[0, {i,48), {j,48), (k,3), (1,3)1 

Do[ 
If[k.=l, 

Do[ 
p[[i.j,k,lll = VolInt[D[f [[ill ,s[[k]]]*D[f [(jll ,s[[lll]] ; 

Print[ 1," " , j , " ",k," ",1," ",N[ p[(i,l,k,l]l ] ]; 
p[[],i,k,lll = p[[i,j,k,l]], 
(1,48), {:,1,48) 

], 
Do! 

p [ [ i , j , k , l ] l = V o l I n t [ D [ f d i l l , s I I k l ] ] * D I f ! I j l l ,31111111 ; 
P r i n t [ 1 , " " , j , " " , k , " " , 1 , " " , N [ p [ [ i , j , k , l l 1 ] ] ; 

p [ [ l , i , l , k l l = p [ [ i , j , k , l ] l , 
( 1 , 4 8 ) , { j , 4 8 } 

1 
1; 

(* Save["s64.phexz.dat",p), 
{k,3), (l,k,3) 

1 •) 
stmp = OpenWrite["s64.phexz.rawdata"1 
WriteString[stmp,"P \n"] 
Do[ 

Write[ stmp. Chop[ N[ pIIi,j,k,1]1, 12 ], 10"-12 1 ] , 
{l,3},{k,3},{j,48},{i,48) 

1 
CloseIstmp] 
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(* Script for calculating the hex-z D matrix. The sides are numbered 
as follows: 

Sides 1-6 : rectangular faces starting at x = b/3, numbered counter 

clockwise 
Side 7 : upper hexagonal face 
Side 8 : lower hexagonal face 

*) 

(* Number of internal moments *) 
(* 4th order in z, 6th order in xy *) 
nFluxMom = 48 

(* Number of surface moments *) 
(* quadratic in s and t *) 
nCurrMora = 6 

(* Load vector of surface trial functions *) 

{* xy trial functions on the rectangular faces *) 
<< f.surfxy.hexz.dat 
f=SimplifyiNlf,15]] 
hxy = f 
hxy = ]ixy /. { x - > s , y - > t } 
Clear If] 

(* hex trial functions on the z faces *) 
<< f.surfh.hexz.dat 
f=SimplifyiNlf,15] ] 
hz = f 
h z = h z / . { x - > s , y - > t } 
Clear If] 

(* define a function which returns the appropriate surface trial function *) 

hli_,j_] = ( If! i < 7, hxyllj]], hzltjl] ] ); 

(* Define surface integral: sides 1-6 - rectangular domain 

sides 7-8 - hexagonal domain *) 
surfIntIf_,i_] = ( 

If I 
i < 7,b=3"(3/4)/Sqrt!2] ; 

b*IntegrateIf,{s,-l/(2 b),l/{2 b)},{t,-1/2,1/2}] 
b = 3"(3/4)/Sqrt 12] ; 
Simplify I 

Integratelf,{s,-b/3,0},{t,-s/Sqrtl3]-l/b, s/Sqrt!3]+l /b)] + 
Integrate If,{s,0, b/3),{t, s/Sqrt13]-1/b,-s/Sqrt13]+1 /b}] 

] 

); 

») 
(* Load vector of internal basis functi 

<<f64.vol.hexz.dat 
f=SimplifylN!f ,15] ] 

(* Define vectors fp where fp[In]] is the vector of interior trial functions 
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b - 3*(3/4)/Sqrt 12] 

fp = Table! 0, 

£p( 
£pl 
fpt 
fp l 
£p! 
£p[ 
fp l 
fp l 

[111 
(21) 
[3]) 
(4)1 
[5]) 
[611 
(711 
[811 

= f 
= f 
= f 
- f 
= f 
= f 
. f 
= f 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

i,8) 1 
x -> b/3 , y - > B , z - > t 
X -> b/6(2b s + 1), y -> -l/(4b)(2b a - 3), z -i t 
x -> b/6(2b s - 1), y -> l/(4b)(2b s + 3), z -> t 
x--*-b/3 , y - > B , z - > t 
X -5 b/6(2b s - 1), y -> -l/(4b)(2b s + 3), z -> t 
X -> b/6(2b s + 1), y -> l/(4b)(2b s - 3), z -> t 
z-> 1/2,x-> s, y-> t ) 
z -> -1/2, X -> s, y-> t ) 

(* Define and initialize the elements of the D matrix *) 

d = Table[0,{l,8),{3,nFluxMom),{k,nCurrMom)] 

Do[ 
d [ [ i , ] , k ] l = s u r f l n t i S i m p l i f y [ N[ f p [ [ i , j ) l h [ i , k l , 14 1 1, 
P r i n t [ " S u r f a c e " , i , " P a i r [ " , j , " , " , k , " 1 = ", N[ d [ [ i , j , k l l 

( i , 8 ) , { j . n F l u x M o m ) , ( k . n C u r r M o m ) 

1 

(* Store the completed D matrix *) 

(* Save["s64.dhexz.dat",d] *) 

(* Write the numerical values of the D matrix to an ascii file *) 

stmp = OpenWrite["s64.dhexz.rawdata"1 
WriteString[stmp,"D \n"l 
Do[ 

Write[ stmp. Chop[ N[ d[[1,j,kl1,12 1, 10'-12 1 ], 
(k,nCurrMom), (j,nFluxMom), (i,8) 
1 

Close[stmp] 

1 ) , 

) 1 , 
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(* A Mathematica s c r i p t t o genera te the U matr ix , 
the s p a t i a l dependence a r ray needed in the a n i s o t r o p i c s c a t t e r i n g 
c a l c u l a t i o n . hex-Z Geometry *) 

<•;£64 .vol .hexz.dat 
f=Simplify [N[f ,15] ] 
V o l l n t l f j := (b = 3" (3 /4 ) /Sqr t !2 ] ; 

Simplify I 
I n t e g r a t e l f , ( x , - b / 3 , 0 ) , { y , - x / S q r t 1 3 ] -1 /b , x / S q r t 1 3 ] + l / b } , { z , - 1 / 2 , 1/2}] + 
I n t e g r a t e l f , { x , 0 , b /3},{y, x / S q r t 1 3 ] - 1 / b , - x / S q r t 1 3 ] + l / b } , { z , - 1 / 2 , 1/2}]]) 

s = {x, y, z} 
u = Tab le lO ,{ i , 48 ) , ( j , 48} ,{1 ,3} ] 
Do! 

D o l u l l i , j , l ] ] = Vol ln t i f IIj]]*D If H i ] ] , s ! ! l ] ] ] ] ; 
P r i n t i i , " " , j , " " , 1 , " " , u [ I i , j , 1] ] ] , 

{ i , 48} , {j,48} 
] , 
{1.3} 

] 
(* Save I"s64.uhexz.dat" ,u] *) 
Put lu ,"s64.uhexz.rawdata"] 
DolPutAppendlNluIIi, j , l ] ] ,16] , "s64 .uhexz .rawdata"] , {1 ,3} , { j , 4 8 } , { i ,48}] 
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(* A M a t h e m a t i c a s c r i p t t o g e n e r a t e t h e P m a t r i x , wh ich t a k e s i n t o a c c o u n t 
the a n g u l a r d e p e n d e n c e of t h e node i n t e r i o r . 
2d Geomet ry *) 

i f a = 9 
r u l e s = {x -> C o s l t h l . y -> S i n [ t h ] C o s [ p h ] , z -> S i n [ t h ] S i n [ p h ] ) 
< :<even_pa r i t y . f u n c t i o n s . 2d 
g = g / . r u l e s 
o = ( C o s [ t h l , S i n [ t h ] * C o s [ p h ] ) 
c c A n g l n t . m a t h 
h = T a b l e l O , { i , 2 ) , { j , 2 ) , { k , i f a ) , { 1 , i f a ) ) 
Do[a»AngIn t [ o [ [ i l ) o [ [ j l l g l l k ] ] g l U l ) 1; 

h ! ! i , j , k , l l l . a ; 
a - a , (* 
h l l i , j , l , k ] ] . a ; 
h ! ( j , i , k , l ) ] . a ; 
h ! ! j , i , l , k ] ] . a , *) 
{i,2},{j,2},{k,ifa},{l,ifa)l 

(• Save("hxy.dat",h) *) 
stmp = OpenWrite["hxy.rawdata"] 
WriteString[stmp,"H \n") 

Do (Write(stmp,N[h[[i,j,k,ll),1611,{l,ifa),{k,ifa),{j,2),{i,2)] 
Close[stmp] 
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(• A Mathematica s c r i p t to genera te the P matrix, which takes in to account 
the angular dependence of the node i n t e r i o r . 
3d Geometry *) 

r u l e s = {x -> Cos! th ] ,y -> Sin Ith] Cos Iph] , z -> Sin Ith] Sin [ph] } 
<<even_parity. funct ions . 3d 
<<AngInt.math 
g = g / . r u l e s 
o={Cos Ith] , Sin Ith] •Cos Iph] , Sin Ith] Sin tph] } 
h = T a b l e l O , ( i , 3 ) , ( j , 3 } , { k , 1 5 ) , { 1 , 1 5 } ] 
Do! 

a=AngIntI o l l i ] ] o l l j ] ] g l l k ] ] g l U ] ] ] ; 
h l l i , j , k , l ] ] = a ; 
h l l i , j , l , k ] ] = a ; 
h l ! j , i , k , l ] ] = a ; 
h ! I j , i , l , k ] ] = a , 
{i,3),{j,i,3),{k,15),{l,k,15}] 

(* Savet"hxyz.dat",h] *) 
stmp = OpenWriteI"hxyz.rawdata"] 
WriteStringIstmp,"H \n"] 

DoIWrite!stmp,N!hI!i, j,k,l] ] , 16] ] , {1,15}, {k, 15}, { j , 3} , {i, 3}] 
CloseIstmp] 
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APPENDIX B 

DESCRIPTION OF FILE COMPXS 

C** 
C 
C 
C 
C 
CF 
CE 
C 
C** 

ft*********. k * * * * * . 

PREPARED 3/7/78 AT ANL 
LAST REVISED 08/31/95 

COMPXS 
MACROSCOPIC COMPOSITION CROSS SECTIONS 

C--
CS 
CS 
CS 
CS 
CS 
CS 
CS 
CS 
CS 
cs 
CS 
cs 
cs 
CS 

cs 
CS 
C 
C--

FILE STRUCTURE 

RECORD TYPE 

SPECIFICATIONS 
COMPOSITION INDEPENDENT DATA 
*••• (REPEAT FOR ALL COMPOSITIONS) 
COMPOSITION SPECIFICATIONS 
**** (REPEAT FOR ALL ENERGY GROUPS 

IN THE ORDER OF DECREASING 
ENERGY) 

COMPOSITION MACROSCOPIC GROUP 
CROSS SECTIONS 

PRESENT IF 

POWER CONVERSION FACTORS 

ALWAYS 
ALWAYS 

ALWAYS 

CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 

NGROUP 
ICHI 

NUP(I) 

NDN(I) 

NFAM 
MULT 

NUMBER OF ENERGY GROUPS. 
PROMPT FISSION SPECTRUM FLAG FOR THIS 
COMPOSITION. ICHI=-1 IF COMPOSITION USES THE 
SET-WIDE PROMPT CHI GIVEN IN SET CHI RECORD 
(BELOW). ICHI=0 IF COMPOSITION IS NOT 
FISSIONABLE. ICHI=1 FOR COMPOSITION PROMPT CHI 
VECTOR. ICHI=NGROUP FOR COMPOSITION PROMPT CHI 
MATRIX. 

NUMBER OF GROUPS OF UPSCATTERING INTO GROUP I 
FROM LOWER ENERGY GROUPS FOR THE CURRENT 
COMPOSITION 
NUMBER OF GROUPS OF DOWNSCATTERING INTO GROUP I 
FROM HIGHER ENERGY GROUPS FOR THE CURRENT 
COMPOSITION 

PROMPT FISSION SPECTRUM FLAG. ISCHI=0 IF 
THERE IS NO SET-WIDE PROMPT CHI. ISCHI=1 IF 
THERE IS A SET-WIDE PROMPT CHI VECTOR. 
ISCHI=NGROUP IF THERE IS A SET-WIDE PROMPT 
CHI MATRIX. 

NUMBER OF DELAYED NEUTRON FAMILIES. 
2 FOR IBM MACHINES, 1 OTHERWISE. 
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C--
CR 
C 
CL 
C 
CW 
C 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
C 
C--

SPECIFICATIONS (TYPE 1) 

NCMP, NGROUP, ISCHI, NFCMP, MAXUP, MAXDN, NFAM, NDUMl, NDUM2 , NDUM3 

10 

NCMP 
NFCMP 
MAXUP 

MAXDN 

MAXORD 
NDUM2 
NDUM3 

NUMBER OF COMPOSITIONS. 
NUMBER OF FISSIONABLE COMPOSITIONS. 
MAXIMUM NUMBER OF GROUPS OF UPSCATTERING FOR 

THE SET. 
MAXIMUM NUMBER OF GROUPS OF DOWNSCATTERING 

FOR THE SET. 
ANISOTROPIC SCATTERING ORDER 
RESERVED. 
RESERVED. 

C--
CR 
C 
CC 
C 
CL 
CL 
CL 
C 
CW 
c 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
C 
C---

COMPOSITION INDEPENDENT DATA (TYPE 2) 

ALWAYS PRESENT 

((CHI(I,J),1=1,ISCHI),J=1,NGROUP),(VEL(J),J=1,NGROUP), 
1(EMAX(J),J=1,NGROUP),EMIN,((CHID(J,K),J=1,NGROUP),K=1,NFAM), 
2 (FLAM(K) ,K=1,NFAM) , (NKFAM(J) , J=1,NCMP) 

MULT* (NGROUP* (ISCHI+2+NFAM) +1+NFAM) +NCMP 

CHI PROMPT FISSION FRACTION INTO GROUP J FROM 
GROUP I. IF ISCHI=1, THE LIST REDUCES TO 
(CHI(J),J=1,NGROUP), WHERE CHI(J) IS THE 
FISSION FRACTION INTO GROUP J. 

VEL MEAN NEUTRON VELOCITY IN GROUP J (CM/SEC) . 
EMAX MAXIMUM ENERGY BOUND OF GROUP J (EV) . 
EMIN MINIMUM ENERGY BOUND OF SET (EV) . 
CHID FRACTION OF DELAYED NEUTRONS EMITTED INTO 

NEUTRON ENERGY GROUP J FROM PRECURSOR 
FAMILY K. 

FIAM DELAYED NEUTRON PRECURSOR DECAY CONSTANT 
FOR FAMILY K. 

NKFAM NXMBER OF FAMILIES TO WHICH FISSION IN 

COMPOSITION J CONTRIBUTES DELAYED NEUTRON 
PRECURSORS. 

C 
CR 
C 
CC 
C 

CL ICHI, (NUP(I) ,1 = 1,NGROUP) , (NDN(I) , 1=1,NGROUP) 
CL KNUMFAMd) ,I=1,NKFAMI) 

COMPOSITION SPECIFICATIONS (TYPE 3) 

ALWAYS PRESENT 

CC NKFAMI = NKFAM (K) 
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CW 

c 
CD 
CD 
C 
C--

1+2*NGR0UP+NKFAMI 

FAMILY NUMBER OF THE I-TH YIELD VECTOR IN 
ARRAY SNUDEL(I). 

C--
CR 
C 
CC 
C 
CL 
CL 
CL 
CL 
C 
CC 
CC 
CC 
C 
CW 
CW 
CW 
C 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 

COMPOSITION MACROSCOPIC GROUP CROSS SECTIONS (TYPE 4) 

ALWAYS PRESENT 

XA,XTOT,XREM,XTR,XF,XNF,(CHI(I),1=1,ICHI), 
1(XSCATU(I),I.1,NUMUP),XSCATJ,(XSCATD(I),I»1,NUMDN), 
2PC,A1,B1,A2,B2,A3,B3,(SNUDEL(I),I»1,NKFAMI),XN2N, 
3 ( (XSCAUPd, L) , I = 1,NUMUP) , (XSCAJP(I,L) , I = 1,NUMDN) , L=l, MAXORD) 

NUMUP = NUP FOR THE CURRENT GROUP 
NUMDN = NDN FOR THE CURRENT GROUP 
NKFAMI = NKFAM(K) 

MULT*(15+ICHI+NUMUP+NUMDN+NKFAMI) 
MULT*(15+NUMUP+NUMDN+NKFAMI) 
MULT*(13+NUMUP+NUMDN+NKFAMI) 

IF ICHI.GT.O 
IF ICHI.EQ.-1 
IF ICHI.EQ.O 

XA 
XTOT 
XREM 

XTR 
XF 

XNF 

CHI 

XSCATJ 

XSCATD 

ABSORPTION CROSS SECTION. 
TOTAL CROSS SECTION. 
REMOVAL CROSS SECTION, TOTAL CROSS SECTION 
FOR REMOVING A NEUTRON FROM GROUP J DUE TO ALL 
PROCESSES. 
TRANSPORT CROSS SECTION. 
FISSION CROSS SECTION, PRESENT ONLY IF 
ICHI.NE.O. 
TOTAL NUMBER OF NEUTRONS EMITTED PER FISSION 
TIMES XF, PRESENT ONLY IF ICHI.NE.O. 
PROMPT FISSION FRACTION INTO GROUP J FROM 
GROUP I, PRESENT ONLY IF ICHI.GT.O. IF ICHI=1, 
THE LIST REDUCES TO THE SINGLE NUMBER CHI, 
WHICH IS THE PROMPT FISSION FRACTION INTO 
GROUP J. 
TOTAL SCATTERING CROSS SECTION INTO GROUP J 
FROM GROUPS J+NUP(J) ,J+NUP(J) -1 J + 2,J+1, 
PRESENT ONLY IF NUP(J).GT.0. 
TOTAL SELF-SCATTERING CROSS SECTION FROM 
GROUP J TO GROUP J. 
TOTAL SCATTERING CROSS SECTION INTO GROUP J 
FROM GROUPS J-1,J-2,...,J-NDN(J), PRESENT 
ONLY IF NDN(J).GT.0. 
PC TIMES THE GROUP J REGION INTEGRATED 
FLUX FOR THE REGIONS CONTAINING THE CURRENT 
COMPOSITION YIELDS THE POWER IN WATTS IN THOSE 
REGIONS AND ENERGY GROUP J DUE TO FISSIONS 
AND NON-FISSION ABSORPTIONS. 
FIRST DIMENSION DIRECTIONAL DIFFUSION 
COEFFICIENT MULTIPLIER. 
FIRST DIMENSION DIRECTIONAL DIFFUSION 
COEFFICIENT ADDITIVE TERM. 
SECOND DIMENSION DIRECTIONAL DIFFUSION 
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CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
C 
CN 
CN 
CN 
CN 
CN 
C 
CD 
CD 
C 
C--

XSCAUP 
XSCAJP 

COEFFICIENT MULTIPLIER. 
SECOND DIMENSION DIRECTIONAL DIFFUSION 
COEFFICIENT ADDITIVE TERM. 
THIRD DIMENSION DIRECTIONAL DIFFUSION 

COEFFICIENT MULTIPLIER. 
THIRD DIMENSION DIRECTIONAL DIFFUSION 

COEFFICIENT ADDITIVE TERM. 

NUMBER OF DELAYED NEUTRON PRECURSORS PRODUCED -

IN FAMILY NUMBER NUMFAM(I) PER FISSION 

IN GROUP J. 
N,2N REACTION CROSS SECTION 

THE MACROSCOPIC XN2N(J) TIMES THE FLUX IN GROUP-
J GIVES THE RATE AT WHICH N,2N REACTIONS OCCUR -
IN GROUP J. THUS, FOR N, 2N SCATTERING, 
XN2N(J)=0.5* (SUM OF SCAT (J TO G) ) SUMMED OVER -
ALL G WHERE SCAT IS THE N,2N SCATTERING MATRIX.-

SAME AS XSCATU BUT FOR ANISOTROPIC ORDER L 
SAME AS XSCATJ BUT FOR ANISOTROPIC ORDER L 

C--
CR 
C 
CC 
C 
CL 
C 
CW 
c 
CD 
CD 
C 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
C 
C--. 

POWER CONVERSION FACTORS (TYPE 5) 

ALWAYS PRESENT 

(FPWS(I),1=1,NCMP),(CPWS(I),1=1,NCMP) 

2*MULT*NCMP 

FPWS 
CPWS 

FISSIONS/WATT-SECOND FOR EACH COMPOSITION 
CAPTURES/WATT-SECOND FOR EACH COMPOSITION 

IF ENERGY CONVERSION DATA ARE SUPPLIED FOR 
NEITHER FISSION NOR CAPTURE FOR A PARTICULAR 
COMPOSITION, BOTH FPWS AND CPWS SHOULD BE SET 
TO THE ARTIFICIAL VALUE OF -l.OE+20 FOR THAT 
COMPOSITION. 

IF EITHER FPWS(I) OR CPWS(I) (BUT NOT BOTH) IS 
SPECIFIED BY THE USER FOR COMPOSITION I, THEN 
THE ITEM WHICH IS NOT SPECIFIED SHOULD BE SET 
TO ZERO FOR COMPOSITION I . 

AT THE PRESENT TIME, REBUS-3 IS THE ONLY CODE 
WHICH USES THE DATA IN RECORD TYPE 5, AND 
THE -l.OE+20 NUMBERS ARE USED TO INDICATE THAT 
THE USER HAS SPECIFIED NEITHER FISSION NOR 
NON-FISSION CAPTURE ENERGY CONVERSION FACTORS 
FOR VARIOUS COMPOSITIONS. 
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APPENDIX C 

DESCRIPTION OF VARIANT OUTPUT FILE NHFLUX 

C** 
c 
c 
c 
c 
c 
CF 
CE 
c 
CN 
CN 
CN 
C 
C** 

ft . . . . . « 

PREPARED 3/01/82 
LAST REVISED 8/31/95 
REVISED 5/29/91 FOR DIF3D 7.0 

NHFLUX 

REGULAR NODAL FLUX-MOMENTS AND INTERFACE PARTIAL CURRENTS 

ORDER OF GROUPS IS ACCORDING TO DECREASING 
ENERGY. NOTE THAT DOUBLE PRECISION FLUXES ARE 
GIVEN WHEN MULT=2 

ft * * * * * * 

C--
CS 
CS 
CS 
CS 
CS 
cs 
cs 
cs 
cs 
cs 
cs 
cs 
cs 
c 
C--

FILE STRUCTURE 

REC01U3 TYPE 

FILE IDENTIFICATION 
SPECIFICATIONS 
INTEGER POINTERS 

••••(REPEAT FOR ALL GROUPS) 
FLUX MOMENTS 
XY-DIRECTED PARTIAL CURRENTS 
Z -DIRECTED PARTIAL CURRENTS 

RECORD 

ID 
2D 

3D 
4D 
5D 

PRESENT IF 

ALWAYS 
ALWAYS 
NSURF.GT.1 

ALWAYS 
ALWAYS 
NDIM.EQ.3 

C--
CR 
C 
CL 
C 
CW 
C 
CD 
CD 
CD 
CD 
CD 
CD 
C 
C--

FILE IDENTIFICATION 

HNAME,(HUSE(I),1=1,2),IVERS 

1+3^MULT=NUMBER OF WORDS 

HNAME 
HUSE(I) 
IVERS 
MULT 

(A6) 
(A6) 

HOLLERITH FILE NAME - NHFLUX 
HOLLERITH USER IDENTIFICATION 
FILE VERSION NUMBER 
DOUBLE PRECISION PARAMETER 

1- A6 WORD IS SINGLE WORD 
2- A6 WORD IS DOUBLE PRECISION WORD 

C--
CR 
C 

SPECIFICATIONS (ID RECORD) 
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CL 
CL 
CL 
C 
CW 
C 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
C 
CN 
CN 
C 
C---

NDIM,NGROUP,NINTI,NINTJ,NINTK,ITER,EFFK,POWER,NSURF, 
NMOM,NINTXY,NPCXY,NSCOEF, ITRORD, lAPRX, ILEAK, lAPRXZ, ILEAKZ, 
IORDER,IDUM 

20 =NUMBER OF WORDS 

NDIM 
NGROUP 
NINTI 
NINTJ 
NINTK 

EFFK 
POWER 
NSURF 
NMOM 
NINTXY 
NPCXY 

NSCOEF 

ITRORD 

lAPRX 

ILEAK 

lAPRXZ 
ILEAKZ 
lORDER 

NUMBER OF DIMENSIONS 
NUMBER OF ENERGY GROUPS 

NUMBER OF FIRST DIMENSION FINE MESH INTERVALS 
NUMBER OF SECOND DIMENSION FINE MESH INTERVALS 
NUMBER OF THIRD DIMENSION FINE MESH INTERVALS. 
NINTK.EQ.l IF NDIM.LE.2 
OUTER ITERATION NUMBER AT WHICH FLUX WAS 
WRITTEN 
EFFECTIVE MULTIPLICATION FACTOR 
POWER IN WATTS TO WHICH FLUX IS NORMALIZED 
NUMBER OF XY-PLANE SURFACES PER NODE. 
NUMBER OF FLUX MOMENTS IN NODAL APPROXIMATION 
NUMBER OF MESH CELLS (NODES) ON XY-PLANE 
NUMBER OF XY-DIRECTED PARTIAL CURRENTS ON 
XY-PLANE 
NUMBER OF PARTIAL CURRENT MOMENTS PER NODE 
SURFACE 
ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 
SOURCE WITHIN THE NODE 
ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 
FLUXES WITHIN THE NODE 
ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 
LEAKAGES ON THE SURFACES OF THE NODES 
ORDER OF THE PN EXPANSION OF THE FLUX 
ORDER OF THE PN EXPANSION OF THE LEAKAGE 
MESH ORDERING SENTINEL 

=0, ORIGINAL NODAL ORDERING PRIOR TO DIF3D 7.0 
=1, REVISED NODAL ORDERING, DIF3D 7.0 
RESERVED FOR FUTURE USE 

lORDER PERMITS DETECTION OF NHFLUX FILES FROM 
DIF3D VERSIONS PRECEDING DIF3D 7.0 

C--
CR 
C 
CC 
C 
CL 
CL 
C 
CW 
C 
CD 
CD 
CD 
CD 
CD 
CD 
C 
CN 

INTEGER POINTERS (2D RECORD) 

PRESENT IF NSURF.GT.1 

(IPCPNTd, J) , 1 = 1,NSURF) ,J=1,NINTXY) , (IPCBDY(I) , I=1,NPCBDY) , 
(ITRMAP(I),1=1,NINTXY) 

NSURF*NINTXY + NPCBDY + NINTXY =NUMBER OF WORDS 

IPCPNTd,J) POINTERS TO INCOMING XY-PLANE PARTIAL CURRENTS. 
IPCBDY(I) POINTERS TO OUTGOING PARTIAL CURRENTS ON OUTER 

XY-PLANE BOUNDARY. 
ITRMAPd) TRANSFORMATION MAP BETWEEN NODAL AND GEODST 

MESH CELL ORDERINGS. 
NPCBDY = NPCXY - NSURF*NINTXy. 

IPCBDY WILL INCLUDE OUTGOING PARTIAL CURRENTS 
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CN ON CERTAIN SYMMETRY BOUNDARIES TO AVOID VECTOR 
CN RECURSION IN DIF3D 7,0 AND LATER VERSIONS. 
C 
CH THE NODAL ORDERING IN DIF3D 7.0 AND LATER 
CN VERSIONS HAS ACTIVE NODES ORDERED BY COLOR, 
CN FOLLOWED BY INACTIVE NODES. 
C 

c 
CR REGULAR FLUX MOMENTS (3D RECORD) 
C 
CL ( (FLUX(I,J) ,1 = 1.NMOM) ,J=1,NINTXY) SEE STRUCTURE BELOW 
C 
CW NNOM'NINTXY^MULT = NUMBER OF WORDS 
C 
C DO 1 K-l,NINTK 
C 1 READ(N) *LIST AS ABOVE* 
C 
CD FLUX(I,J] REGULAR FLUX MOMENTS BY NODE FOR THE PRESENT 
CD GROUP 
C 
c - - -

c 
CR REGULAR XY-DIRECTED PARTIAL CURRENTS (4D RECORD) 
C 
CL ( (PCURRHd.M) ,M=1,NSCOEF) , 1 = 1,NPCXY) SEE STRUCTURE BELOW -
C 
CW NPCXY^NSCOEF*MULT » NUMBER OF WORDS 
C 
C DO 1 K=l.NINTK 
C 1 READ(N) •LIST AS ABOVE* 
C 
CD PCURRHd.M) OUTGOING XY-DIRECTED PARTIAL CURRENTS 
CD ACROSS ALL XY-PLANE SURFACES FOR THE 
CD THE PRESENT GROUP 
C 
CN ELEMENTS 1=1,NSURF*NINTXY OF EACH VECTOR PCURRH(.,M) MAP TO 
CN SURFACE S OF NODE N WHERE S = MOD(I- 1,NSURF)+1 AND 
CN N = d-l) /NSURF + 1 
QI 
CN THE REMAINING ELEMENTS (PCURRH(I,M),I=NSURF*NINTXY+1,NPCXY), 
CN IF ANY, CORRESPOND TO INCOMING PARTIAL CURRENTS (M=l) OR INCOMING-
CN HALF-ANGLE INTEGRATED FLUXES (M=2) FOR NODE SURFACES ON THE OUTER-
CN (POSSIBLY IRREGULAR) XY-PLANE BOUNDARY. 
CN 
CN THE FOLLOWING ORIENTATION IS USED TO DENOTE 
CN SURFACES J=l,...,NSURF AND NEIGHBORING NODES J=l,...,NSURF: 
CN 
CN * Y -
CN J.3 * * J.2 

C N * • J . 2 I 
C N • • *.....* I 
C N • • * * I 
CN J = 4 * * J=l J.3 * • J=l + > X 
CN • * * • 
CN * • *«*.•*. 
CN J=5 * • J = 6 J.4 
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CN * 
CN 
CN HEXAGONAL NODES CARTESIAN NODES 
CN NSURF = 6 NSURF = 4 
C 
C 

c 
CR REGULAR Z-DIRECTED PARTIAL CURRENTS (5D RECORD) 
C 
CL (((PCURRZ(I,M,J),1=1,NINTXY),M=1,NSCOEF),J=1,2) 
CL SEE STRUCTURE BELOW 
C 
CW NINTXY*NSC0EF*2*MULT = NUMBER OF WORDS--
C 
C DO 1 K=1,NINTK1 
C 1 READ(N) *LIST AS ABOVE* 
C 
CC WITH NINTKl = NINTK + 1 
C 
CD PCURRZ(I,M,J) REGULAR Z-DIRECTED PARTIAL CURRENTS (M=l) AND 
CD HALF-ANGLE INTEGRATED FLUXES (M=2) IN 
CD PLUS- (J=l) AND MINUS- (J=2) Z DIRECTIONS 
CD ACROSS ALL AXIAL BOUNDARIES FOR THE PRESENT 
CD GROUP 
C 
CN E.G. INCOMING PARTIAL CURRENTS FOR NODE I ON 
CN AXIAL MESH INTERVAL K ARE PCURRZ (1,1,1) ON THE 
CN LOWER BOUNDARY (RECORD K) AND PCURRZ (1, 1, 2) ON 
CN THE UPPER AXIAL BOUNDARY (RECORD K+1). 
C 
C 
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APPENDIX D 

DESCRIPTION OF THE BCD INPUT FILE A.DIF3D 

C*4***.*«.. .**..******.***************************. .***.**...*.. ....... 

c 
C REVISED 8/31/95 
C 
CF A.DIF3D 
CE ONE-, TWO-, AND THREE-DIMENSIONAL DIFFUSION THEORY 
CE MODULE-DEPENDENT BCD INPUT 
C 
CN THIS BCD DATASET MAY BE WRITTEN EITHER 
CN IN FREE FORMAT (UNFORM=A.DIF3D) OR 
CN ACCORDING TO THE FORMATS SPECIFIED FOR EACH 
CN CARD TYPE (DATASET=A.DIF3D). 
CN 
CN COLUMNS 1-2 MUST CONTAIN THE CARD TYPE NUMBER. -
CN 
CN A BLANK OR ZERO FIELD GIVES THE DEFAULT OPTION -
CN INDICATED. 
CN 
CN NON-DEFAULTED DATA ITEMS ON THE A.DIF3D 
CN DATA SET ALWAYS OVERRIDE THE CORRESPONDING 
CN DATA ON THE RESTART DATA SET DIF3D. 
C 
C * . . * * • * . . • • * * • * * * • * * * * * * * • . * . * * . . . . . . . • * • . * . * * * * * * . . . • . . . * * * * * * * * * • * * * * 

c 
CR PROBLEM TITLE (TYPE 01) 
C 
CL FORMAT d2,4X,llA6) 
C 
CD COLUMNS CONTENTS ... IMPLICATIONS, IF ANY 
CD ======= ========================================== 
CD 1-2 01 
CD 
CD 7-72 ANY ALPHANUMERIC CHARACTERS (1 CARD ONLY) 
C 
c- ---

c 
CR STORAGE AND DUMP SPECIFICATIONS (TYPE 02) 
C 
CL FORMAT (I2,4X,3I6) 
C 
CD tt COLUMNS CONTENTS. .. IMPLICATIONS, IF ANY 

CD 1 1-2 02 
CD 
CD 2 7-12 POINTR CONTAINER ARRAY SIZE IN FAST CORE MEMORY (FCM) 
CD IN REAL'S WORDS (DEFAULT=10000). 
CD 
CD 3 13-18 POINTR CONTAINER ARRAY SIZE IN EXTENDED CORE 
CD MEMORY (ECM) IN REAL*8 WORDS (DEFAULT=3 0000). 
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CD 4 19-24 POINTR DEBUGGING EDIT. 
CD 0...NO DEBUGGING PRINTOUT (DEFAULT). 
CD 1...DEBUGGING DUMP PRINTOUT. 
CD 2...DEBUGGING TRACE PRINTOUT. 
CD 3...BOTH DUMP AND TRACE PRINTOUT. 
C 
C 

c 
CR PROBLEM CONTROL PARAMETERS (TYPE 03) 
C 
CL FORMAT (12,4X,1116) 
C 
CD # COLUMNS CONTENTS. . .IMPLICATIONS, IF ANY 
CD = ======= ========= ============================================ = 
CD 1 1-2 03 
CD 
CD 2 7-12 PROBLEM TYPE. 
CD 0...K-EFFECTIVE PROBLEM (DEFAULT). 
CD 1...FIXED SOURCE PROBLEM. 
CD 
CD 3 13-18 SOLUTION TYPE. 
CD 0...REAL SOLUTION (DEFAULT). 
CD 1...ADJOINT SOLUTION. 
CD 2. . .BOTH REAL AND ADJOINT SOLUTION. 
CD 
CD 4 19-24 CHEBYSHEV ACCELERATION OF OUTER ITERATIONS. 
CD O...YES, ACCELERATE THE OUTER ITERATIONS (DEFAULT). 
CD 1... NO ACCELERATION. 
CD 

CD 5 25-30 MINIMUM PLANE-BLOCK (RECORD) SIZE IN REAL*8 WORDS FOR 
CD I/O TRANSFER IN THE CONCURRENT INNER ITERATION 
CD STRATEGY. THE DEFAULT (=4500) IS HIGHLY RECOMMENDED 
CD 
CD 6 31-36 OUTER ITERATION CONTROL. 
CD -3...BYPASS DIF3D MODULE. 
CD -2. . .CALCULATE DATA MANAGEMENT PARAMETERS AND PERFORM 
CD NEUTRONICS EDITS ONLY. 
CD -1. . . CALCULATE DATA MANAGEMENT PARAMETERS, CALCULATE 
CD OVERRELAXATION FACTORS AND PERFORM NEUTRONICS 
CD EDITS ONLY. 
CD .GE.O. . .MAXIMUM NUMBER OF OUTER ITERATIONS (DEFAULT=30) 

CD 
CD 7 37-42 RESTART FLAG. 
CD 0. . .THIS IS NOT A RESTART (DEFAULT) . 
CD 1...THIS IS A RESTART PROBLEM. 
CD 
CD 8 43-48 JOB TIME LIMIT, MAXIMUM (CP AND PP (OR WAIT)) PROCESSOR 
CD SECONDS (DEPADLT=1000000000) 
CD 
CD 9 49-54 NUMBER OP UPSCATTER ITERATIONS PER OUTER ITERATION 
CD (DEFADLT=5) . PERTINENT TO UPSCATTER PROBLEMS ONLY. 

CD 10 55-60 CONCURRENT ITERATION EFFICIENCY OPTION 

™ 0... PERFORM THE ESTIMATED NO. OF INNER ITERATIONS FOR 
CD EACH GROUP. 
^° -̂ • •™0I° THE LAST PASS OF INNER ITERATIONS IN THOSE 

™ ° f ° ™ L ! ° ^ _ ™ ^ ™ ™ ^ ^°- OF ITERATIONS IN THE LAST 
PASS ARE LESS THAN A CODE DEPENDENT THRESHOLD. 
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CD 
CD 11 61-66 ACCELERATION OF OPTIMUM OVERRELAXATION FACTOR 
CD CALCULATION. 
CD 0.. NO ACCELERATION (DEFAULT). 
CD 1...ASYMPTOTIC SOURCE EXTRAPOLATION OF POWER ITERATIONS-
CD USED TO ESTIMATE THE SPECTRAL RADIUS OF EACH INNER -
CD (WITHIN GROUP) ITERATION MATRIX. 
CD 12 67-72 OPTIMUM OVERRELAXATION FACTOR ESTIMATION ITERATION 
CD CONTROL. THE DEFAULT (=50) IS STRONGLY RECOMMENDED. 
C 
CN THE MAXIMUM NUMBER OF OUTER ITERATIONS SENTINEL 
CN SPECIFIES THE NUMBER OF OUTERS THAT CAN BE PERFORMED 
CN (COLS. 31-36) EACH TIME THE DIF3D MODULE IS INVOKED. 
CN 
CN THE DIF3D TERMINATION PROCEDURE WILL ALWAYS: 
CK 1...(RE)WRITE THE APPROPRIATE FLUX FILES 
CN (RTFLUX OR ATFLUX). 
CN 2...(RE)WRITE THE RESTART FILE DIF3D. 
CN TO FACILITATE AUTOMATIC RESTART, THE RESTART FLAG 
CN ON THE DIF3D RESTART CONTROL FILE WILL BE TURNED ON 
CN AUTOMATICALLY UPON DETECTION OF: 
CN I..-MAXIMUM NUMBER OF OUTER ITERATIONS. 
CN 2...TIME LIMIT. 
CN 
CN 
CN TO RESTART THE FLUX CALCULATION: 
CN EITHER 
CN 
CN PROVIDE THE RESTART DATA SET DIF3D AND 
CN THE APPROPRIATE FLUX DATA SET (RTFLUX OR ATFLUX) 
CN AND SPECIFY THEM UNDER "BLOCK=OLD" IN THE BCD 
CK INPUT DATA 
CN OR 
CN 1...SET THE RESTART FLAG (COLS. 37-42) TO 1 ON 
CN THE TYPE 03 CARD. THIS PERMITS IMMEDIATE 
CN RESUMPTION OF OUTER ITERATION ACCELERATION. 
CN 2 ... INCLUDE THE LATEST K-EFFECTIVE ESTIMATE 
CN (COLS. 13-24) AND THE DOMINANCE RATIO 
CN ESTIMATE ON THE TYPE 06 CARD (COLS. 61-72). 
CN 3...INCLUDE THE OPTIMUM OVERRELAXATION FACTORS 
CN FOR EACH GROUP (TYPE 0 7 CARD). 
CN 4...PROVIDE THE APPROPRIATE FLUX DATA SET (RTFLUX -
CTJ OR ATFLUX) AND SPECIFY IT UNDER "BLOCK=OLD" 
CN IN THE BCD INPUT DATA. 
ai 
CN A NON-ZERO TIME LIMIT (COLS. 43-48) OVERRIDES 
ai THE ACTUAL TIME LIMIT DETERMINED INTERNALLY 
CN BY SYSTEM ROUTINES IN THE ANL AND LBL PRODUCTION 
CN IMPLEMENTATIONS 
C^ 
CN THE TIME LIMIT PARAMETER (COLS. 43-48) IS PERTINENT 
CN TO EACH ENTRY TO THE DIF3D MODULE. 
CN 
CN IT IS RECOMMENDED THAT AN ODD NUMBER OF UPSCATTER 
CN ITERATIONS BE SPECIFIED (COLS. 49-54) TO AVOID 
CN ADDITIONAL I/O OVERHEAD. 
CN 
CN THE USER IS CAUTIONED TO MONITOR THE POINT-WISE 
CN FISSION SOURCE CONVERGENCE TO ENSURE THAT MONOTONIC 
CN CONVERGENCE IS OBTAINED WHEN THE EFFICIENCY OPTION 
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CN (COLS. 55-60) IS ACTIVATED. 
CN 
CN THE OPTIMUM OVERRELAXATION FACTOR ACCELERATION OPTION -
CN IS PRIMARILY INTENDED FOR PROBLEMS KNOWN TO HAVE HIGH -
CN (>1.8) OPTIMUM OVERRELAXATION FACTORS. 
CN 
CN ITERATION CONTROL (COLS. 67-72) OF THE OPTIMUM 
CN OVERRELAXATION FACTOR ESTIMATION IS PRIMARILY INTENDED -
CN FOR USE IN CONJUNCTION WITH THE ASYMPTOTIC ACCELERATION-
CN OPTION (COLS. 61-66). 
C 
C 

C 
CR EDIT OPTIONS (TYPE 04) 
C 
CL FORMAT (12,4X,1016) 
C 

CD # COLUMNS CONTENTS. . .IMPLICATIONS, IF ANY 

CD = ======= ======================================================^. 
CD 1 1-2 04 
CD 
CD 2 7-12 PROBLEM DESCRIPTION EDIT (IN ADDITION TO USER INPUT 
CD SPECIFICATIONS WHICH ARE ALWAYS EDITED. 
CD 0...NO EDITS (DEFAULT). 
CD 1. . . PRINT EDITS . 

CD 2 . . . WRITE EDITS TO AUXILIARY OUTPUT FILE. 
CD 3. . .WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD 

CD 3 13-18 GEOMETRY (REGION TO MESH INTERVAL) MAP EDIT. 
CD 0...NO EDITS (DEFAULT). 
CD 1...PRINT EDITS. 

CD 2...WRITE EDITS TO AUXILIARY OUTPUT FILE. 
CD 3. . .WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD 

CD 4 19-24 GEOMETRY (ZONE TO MESH INTERVAL) MAP EDIT. 
CD 0...NO EDITS (DEFAULT). 
CD 1. . . PRINT EDITS . 

CD 2...WRITE EDITS TO AUXILIARY OUTPUT PILE. 

CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD 

CD 5 25-30 MACROSCOPIC CROSS SECTION EDIT. 
CD ENTER TWO DIGIT NUMBER SP WHERE 
CD 

CD S CONTROLS THE SCATTERING AND PRINCIPAL CROSS SECTIONS -
™ P CONTROLS THE PRINCIPAL CROSS SECTIONS EDIT ONLY 
CD 

^° ™ E INTEGERS S AND P SHOULD BE ASSIGNED ONE OF THE -
^° FOLLOWING VALUES (LEADING ZEROES ARE IRRELEVANT) 
CD 0...NO EDITS (DEFAULT). 
CD 1. . . PRINT EDITS . 

CD 2 . . . WRITE EDITS TO AUXILIARY OUTPUT FILE 

™ 3. . .WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-

CD 6 31-36 BALANCE EDITS 
^° ENTER 3 DIGIT NUMBER GBR WHERE 
CD 

^^ ° CONTROLS GROUP BALANCE EDITS INTEGRATED OVER THE 
CD REACTOR 
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CD B CONTROLS REGION BALANCE EDIT BY GROUP 
CD R CONTROLS REGION BALANCE EDIT TOTALS 
CD (INCLUDING NET PRODUCTION AND ENERGY MEDIANS) 
CD 
CD THE INTEGERS G, B, AND R SHOULD BE ASSIGNED ONE OF THE -
CD FOLLOWING VALUES (LEADING ZEROES ARE IRRELEVANT) 
CD 0...NO EDITS (DEFAULT). 
CD 1...PRINT EDITS. 
CD 2...WRITE EDITS TO AUXILIARY OUTPUT FILE. 
CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD 
CD 7 37-42 POWER EDITS 
CD ENTER 2 DIGIT NUMBER RM WHERE 
CD 
CD R CONTROLS REGION POWER AND AVERAGE POWER DENSITY EDITS-
CD M CONTROLS POWER DENSITY BY MESH INTERVAL EDIT (PWDINT)-
CD 
CD THE INTEGERS R AND M SHOULD BE ASSIGNED 
CD ONE OF THE FOLLOWING VALUES (LEADING ZEROES ARE 
CD IRRELEVANT) 
CD 0...NO EDITS (DEFAULT). 
CD 1...PRINT EDITS. 
CD 2...WRITE EDITS TO AUXILIARY OUTPUT FILE. 
CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD 
CD 8 43-48 FLUX EDITS 
CD ENTER 3 DIGIT INTEGER RMB WHERE 
CD 
CD R CONTROLS FLUX EDIT BY REGION AND GROUP 
CD INCLUDING GROUP AND REGION TOTALS 
CD M CONTROLS TOTAL (GROUP INTEGRATED) FLUX EDIT 
CD BY MESH INTERVAL 
CD B CONTROLS TOTAL FLUX EDIT BY MESH INTERVAL AND GROUP 
CD (RTFLUX OR ATFLUX) 
CD 
CD THE INTEGERS R, M, AND B SHOULD BE ASSIGNED 
CD ONE OF THE FOLLOWING VALUES (LEADING ZEROES ARE 
CD IRRELEVANT) 
CD 0...NO EDITS (DEFAULT). 
CD 1...PRINT EDITS. 
CD 2...WRITE EDITS TO AUXILIARY OUTPUT FILE. 
CD 3,..WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD 
CD 9 49-54 ZONE AVERAGED (REAL) FLUX EDIT. 
CD 0...NO EDITS (DEFAULT). 
CD 1.,.PRINT EDITS. 
CD 2...WRITE EDITS TO AUXILIARY OUTPUT FILE. 
CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD 
CD 10 55-60 REGION AVERAGED FLUX EDIT. 
CD 0...NO EDITS (DEFAULT). 
CD 1...PRINT EDITS. 
CD 2...WRITE EDITS TO AUXILIARY OUTPUT FILE. 
CD 3...WRITE EDITS TO BOTH PRINT AND AUXILIARY OUTPUT FILE-
CD 
CD 11 61-66 INTERFACE FILES TO BE WRITTEN IN ADDITION TO RTFLUX 
CD AND/OR ATFLUX. 
CD ENTER 4 DIGIT INTEGER FSRP WHERE 
CD 
CD F CONTROLS WRITING OF SURFACE FAST FLUX TO SFEDIT 
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CD S CONTROLS WRITING OF SURFACE POWER DENSITY TO SFEDIT 

CD R CONTROLS WRITING OF RZFLUX 
CD P CONTROLS WRITING OF PWDINT 

CD 
CD THE INTEGERS F, S, R, AND P SHOULD BE ASSIGNED ONE OF 
CD THE FOLLOWING VALUES (LEADING ZEROES ARE IRRELEVANT) 
CD 0...DO NOT WRITE THE INTERFACE FILE 
CD 1...WRITE THE INTERFACE FILE (SFEDIT WILL BE WRITTEN 
CD IN REGULAR MESH CELL ORDER) 
CD 2... WRITE THE SFEDIT FILE IN REGION ORDER (PERTINENT 
CD TO THE SFEDIT FILE ONLY) 
CD 
CD 12 67-72 MASTER DIF3D EDIT SENTINEL DURING CRITICALITY SEARCHES 
CD -1. . .SUPPRESS ALL D1F3D EDITS EXCEPT THE ITERATION 
CD HISTORY AND ERROR DIAGNOSTICS 
CD O...EDIT INPUT DATA ON 1ST SEARCH PASS, OUTPUT 
CD INTEGRALS UPON CONVERGENCE OR UPON ACHIEVING THE 
CD MAXIMUM SEARCH PASS LIMIT. 
CD N...ALSO INVOKE SPECIFIED DIF3D EDITS EVERY N-TH 
CD SEARCH PASS. 
C 
CN MULTI-DIGIT EDIT SPECIFICATION EXAMPLES. 
CN 
CN ENTERING THE INTEGER 2 01 IN COLUMNS 31-36 YIELDS 
CN THE GROUP BALANCE EDIT ON THE AUXILIARY FILE AND 
CN THE REGION BALANCE EDIT ON THE PRIMARY PRINT FILE. 
CN 
CN ENTERING THE INTEGER 30 IN COLUMNS 31-36 YIELDS 
CN THE REGION BALANCE EDIT BY GROUP ON BOTH THE PRINT AND 
CN THE AUXILIARY OUTPUT FILES. 
CN 
CN THE INTERFACE FILE SFEDIT CONTAINS SURFACE- AND 
CN CELL-AVERAGED POWER DENSITY AND/OR FAST FLUX DATA 
CN BY MESH CELL. ON OPTION IT IS WRITTEN IN EITHER 
CN STANDARD FINE MESH CELL ORDER OR IN REGION ORDER.-
C 
C 

c 
CR CONVERGENCE CRITERIA (TYPE 05) 
C 
CL FORMAT (12 , lOX, 3E12 . 5) 
C 
CD # COLUMNS CONTENTS. . .IMPLICATIONS, IF ANY 

CD 1 1-2 05 
CD 
CD 2 13-24 EIGENVALUE CONVERGENCE CRITERION FOR STEADY STATE 
CD CALCULATION (DEFAULT VALUE = l.OE-7 IS RECOMMENDED) 
CD 

CD 3 25-36 POINTWISE FISSION SOURCE CONVERGENCE CRITERION 
CD FOR STEADY STATE SHAPE CALCULATION 
CD (DEFAULT VALUE = l.OE-5 IS RECOMMENDED). 
CD 

CD 4 37-48 AVERAGE FISSION SOURCE CONVERGENCE CRITERION 
CD FOR STEADY STATE SHAPE CALCULATION 
CD (DEFAULT VALUE = l.OE-5 IS RECOMMENDED). 
C 

CN IN UPSCATTERING PROBLEMS IT IS RECOMMENDED THAT 
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CN THE EIGENVALUE CONVERGENCE CRITERION (COLS. 13-24) 
CN BE .1 TIMES THE POINTWISE FISSION SOURCE CONVERGENCE 
CN CRITERION (COLS. 25-36). 
C 
C 

c -
CR OTHER FLOATING POINT DATA (TYPE 06) 

C 

CL FORMAT (12 , lOX , 5E12 . 5 ) 

C 

CD « COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

CD 1 1-2 06 

CD 

CD ; 13-24 K-EFFECTIVE OF REACTOR (DEFAULT IS OBTAINED FROM 

CD THE APPROPRIATE RTFLUX OR ATFLUX PILE, IF PRESENT. 

CD OTHERWISE DEFAULT = 1.0). 

CD 

CD 3 25-36 ANY POINTWISE FISSION SOURCE WILL BE NEGLECTED IN THE • 

CD POINTWISE FISSION SOURCE CONVERGENCE TEST IF IT IS 

CD LESS THAN THIS FACTOR TIMES THE R.M.S. FISSION 

CD SOURCE (DEFAULT VALUE = .001 IS RECOMMENDED). 

CD 

CD 4 37-48 ERROR REDUCTION FACTOR TO BE ACHIEVED BY EACH SERIES 

CD OF INNER ITERATIONS FOR EACH GROUP DURING A SHAPE 

CD CALCULATION - STRONGLY RECOMMENDED THAT THE DEFAULT 

(n3 VALUE OF (.04) BE USED. 
(n3 
(HD 5 4 9-60 STEADY STATE REACTOR POWER (WATTS). (DEFAULT =1.0). 
CD 
CD 6 61-72 DOMINANCE RATIO (FOR RESTART JOBS ONLY). 
C 
CN K-EFFECTIVE SPECIFICATIONS (COLS. 13-24): 
CN 1...F0R K-EFFECTIVE PROBLEMS, SUPPLY ESTIMATED 
CN K-EFFECTIVE OF REACTOR. 
CN 2...FOR RESTARTED K-EFFECTIVE PROBLEMS, SUPPLY 
CN LATEST K-EFFECTIVE ESTIMATE SUPPLIED ON THE 
CN ITERATION HISTORY EDIT. 
CN 3...FOR SOURCE PROBLEMS, SUPPLY K-EFFECTIVE OF 
CN THE REACTOR. 
CN DEFAULT IS OBTAINED FROM THE APPROPRIATE RTFLUX OR 
CN ATFLUX FILE, IF PRESENT. OTHERWISE DEFAULT=1.0 . 
C 
CN NON-MONOTONIC POINTWISE FISSION SOURCE CONVERGENCE 
a) IS USUALLY INDICATIVE OF THE NEED TO TIGHTEN THE ERROR -
Ctl REDUCTION FACTOR(COLS. 37-48). THIS IS FREQUENTLY TRUE-
CN IN TRIANGULAR GEOMETRY PROBLEMS WHERE A VALUE OF .01 IS-
CN USUALLY SUFFICIENT TO OBTAIN MONOTONIC CONVERGENCE. 
C 

c ---
CR OPTIMUM OVERRELAXATION FACTORS (TYPE 07) 

C 

CL FORMAT (12 , lOX, 5E12 , 5) 

C 

CD « COLUMNS CONTENTS...IMPLICATIONS, IF ANY 
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CD 1 1-2 07 
CD 
CD 2 13-24 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 1. 
CD 
CD 3 25-36 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 2. 
CD 
CD 4 37-48 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 3. 
CD 
CD 5 49-6 0 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 4. 
CD 
CD 6 61-72 OPTIMUM OVERRELAXATION FACTOR FOR GROUP 5. 
C 

CN REPEAT S VALUES PER CARD FOR AS MANY TYPE 0 7 CARDS 
CN AS ARE NEEDED. 
CN 
CN THE OPTIMUM OVERRELAXATION FACTORS ARE NORMALLY 
CN OBTAINED FROM THE RESTART INSTRUCTIONS PRINTED 
CN IMMEDIATELY AFTER THE DIF3D ITERATION HISTORY EDIT. 
CN IN THE RESTART INSTRUCTIONS, THE FACTORS ARE ALWAYS 
CN EDITTED IN THE --REAL PROBLEM-- ORDERING AND SHOULD BE 
CN ENTERED ON THE TYPE 07 CARD --EXACTLY-- AS EDITTED 
CN IN THE RESTART INSTRUCTIONS. 
CN 
CN THE PERMISSIBLE FACTOR RANGE IS BOUNDED BY 1. 0 AND 2.0 
CN INCLUSIVE. A ZERO OR BLANK FACTOR ENTRY DEFAULTS 
CN TO 1. 0 . FACTORS ARE COMPUTED FOR THOSE GROUPS HAVING 
CN A FACTOR OF 1.0; FACTORS GREATER THAN 1. 0 ARE NOT 
CN RECOMPUTED. 
CN 
CN TYPE 07 CARDS ARE PRIMARILY INTENDED FOR RESTART JOBS 
CN ONLY (STRONGLY RECOMMENDED). 
C 
C 

c 
CR NEAR CRITICAL SOURCE PROBLEM ASYMPTOTIC EXTRAPOLATION 

CR PARAMETERS (TYPE 08) 

C 

CC ***** WARNING. . .SELECT THIS OPTION ONLY IF THE ***** 

CC ***** ASYMPTOTIC EXTRAPOLATION IS REQUIRED FOR ***** 

CC ***** THIS PROBLEM. ***** 

C 

CL FORMAT (12 , 4X, 16 , E12 . 5 , 16) 

C 

CD # COLUMNS CONTENTS... IMPLICATIONS, IF ANY 

CD 1 1-2 08 

CD 

CD 2 7-12 NUMBER OF OUTER (POWER) ITERATIONS PERFORMED PRIOR TO 

CD ASYMPTOTIC EXTRAPOLATION OF NEAR CRITICAL SOURCE 
CD PROBLEM (DEFAULT=5). 

CD 

CD 3 13-24 EIGENVALUE OF THE HOMOGENEOUS PROBLEM CORRESPONDING 

CD TO THE NEAR CRITICAL SOURCE PROBLEM. THIS EIGENVALUE 
CD MUST BE LESS THAN ONE. 

CD 

CD 4 25-30 INITIAL FLUX GUESS SENTINEL. 

CD O...FLAT FLUX GUESS=1.0 (DEFAULT) 
CD 1...FLAT FLUX GUESS=0.0 
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c 
CN THE TYPE 08 CARD IS REQUIRED TO ACTIVATE AN ALTERNATE 
CN SPECIAL ACCELERATION SCHEME FOR NEAR CRITICAL 
CN SOURCE PROBLEMS, 
CN 
CN IF COLS. 13-24 ARE ZERO OR BLANK, THE HOMOGENEOUS 
CN PROBLEM EIGENVALUE WILL BE ESTIMATED. IN THIS CASE, IT 
CN IS RECOMMENDED TO INCREASE THE NUMBER OF ITERATIONS IN 
CN COLS. 7-12 TO AT LEAST 10. 
C 
c -

c - - -
CR SN TRANSPORT OPTIONS (TYPE 09) 
C 
CL FORMAT d2,4X,216,6X,EI2.4) 
C 
CD $ COLUMNS CONTENTS. .. IMPLICATIONS, IF ANY 

CD 1 1-2 09 
CD 
CD 2 7-12 SN ORDER. 
CD 
CD 3 13-18 MAXIMUM ALLOWED NUMBER OF LINE SWEEPS PER LINE PER 
CD INNER ITERATION (DEFAULT=10). 
CD 
CD 4 25-36 LINE SWEEP CONVERGENCE CRITERION (DEFAULT=1.OE-4). 
C 
CN TO INVOKE THE DIF3D TRANSPORT OPTION, THE TYPE 09 CARD 
CN MUST BE PRESENT WITH A NONZERO SN ORDER. FOR THE TIME 
CN BEING, USERS MUST ALSO CONTINUE TO 'PRELIB' TO 
CN DATASET 'C116.B99983.MODLIB' TO INVOKE THIS OPTION. 
C 
C 

c -
CR PARAMETERS FOR NODAL OPTION (TYPE 10) 
C 
CL FORMAT (I2,4X,7I6) 
C 
CD # COLUMNS CONTENTS ... IMPLICATIONS, IF ANY 

CD 1 1-2 10 
CD 
CD 2 7-12 NODAL APPROXIMATION IN XY-PLANE. 
CD ENTER 3 DIGIT NUMBER LMN WHERE 
CD 
CD L DETERMINES WHETHER THIS IS A DIFFUSION OR TRANSPORT 
CD CALCULATION. 
CD M IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE 
CD ONE-DIMENSIONAL FLUXES IN THE XY-PLANE. 
CD N IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE 
CD LEAKAGES TRANSVERSE TO THE X- AND Y-DIRECTIONS. 
CD 
CD HEXAGONAL GEOMETRY: 
CD L = 0...(ALWAYS - ONLY DIFFUSION THEORY IS AVAILABLE 
CD IN HEXAGONAL GEOMETRY). 
CD M = 2...NH2 FLUX APPROXIMATION. 
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CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 

M = 3...NH3 FLUX APPROXIMATION. 
M = 4. . .NH4 FLUX APPROXIMATION (DEFAULT) 

N = 0...(ALWAYS). 

CARTESIAN GEOMETRY: 

L 
L 
M 
M 
M 
N 
N 

DIFFUSION-THEORY OPTION (DEFAULT). 
.TRANSPORT-THEORY OPTION. 
.NX2 (QUADRATIC) FLUX APPROXIMATION. 
.NX3 (CUBIC ) FLUX APPROXIMATION (DEFAULT) 
.NX4 (QUARTIC ) FLUX APPROXIMATION. 
.CONSTANT LEAKAGE APPROXIMATION. 
.QUADRATIC LEAKAGE APPROXIMATION (DEFAULT). 

LEADING ZEROS ARE IRRELEVANT. 
THEREFORE, DEFAULT VALUES FOR MN ARE 40 (HEXAGONAL 
GEOMETRY) AND 3 2 (CARTESIAN GEOMETRY) . 

IF THE TRANSPORT OPTION {L=l) IS SPECIFIED, TRANSPORT 
THEORY IS USED IN BOTH THE XY-PLANE AND THE AXIAL 
DIRECTION IN THREE-DIMENSIONAL CARTESIAN GEOMETRY. 

NODAL APPROXIMATION IN Z-DIRECTION. 
ENTER 2 DIGIT NUMBER MN WHERE 

M IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE 
ONE-DIMENSIONAL FLUX IN THE Z-DIRECTION. 

N IS THE ORDER OF THE POLYNOMIAL APPROXIMATION TO THE 
LEAKAGE TRANSVERSE TO THE Z-DIRECTION. 

HEXAGONAL AND CARTESIAN GEOMETRIES: 
M 
M 
M 

N 
N 

= 
= 
= 

= 
= 

2 
3 
4 

0 
2 

FLUX APPROXIMATION. 
FLUX APPROXIMATION (DEFAULT). 
FLUX APPROXIMATION (CARTESIAN 

,.NZ2 (QUADRATIC) 
.NZ3 (CUBIC ) 
.NZ4 (QUARTIC ) 
GEOMETRY ONLY). 
.CONSTANT LEAKAGE APPROXIMATION. 
.QUADRATIC LEAKAGE APPROXIMATION (DEFAULT) 

LEADING ZEROS ARE IRRELEVANT. 
THEREFORE, DEFAULT VALUE FOR MN IS 32. 

19-24 COARSE-MESH REBALANCE ACCELERATION CONTROL. 
-1. . .NO COARSE-MESH REBALANCE ACCELERATION. 

.GT.O. . .NUMBER OF FINE MESH PER REBALANCE MESH IN X- AND 
Y-DIRECTIONS - CARTESIAN GEOMETRY ONLY (DEFAULT=4). 

25-30 NUMBER OF XY-PLANE PARTIAL CURRENT SWEEPS PER GROUP 
PER AXIAL MESH SWEEP PER OUTER ITERATION. 
(DEFAULT = 0 - LET CODE DECIDE). 

31-36 NUMBER OF AXIAL PARTIAL CURRENT SWEEPS PER GROUP 
PER AXIAL PARTIAL CURRENT SWEEP 
PER OUTER ITERATION (DEFAULT=2). 

37-42 HALF-DOMAIN SYMMETRY FLAG. 
-1...DO NOT USE 3 0 DEGREE (HEXAGONAL GEOMETRY) OR 4 5 

DEGREE (CARTESIAN GEOMETRY) PLANAR SYMMETRY EVEN 
IF SUCH SYMMETRY EXISTS. 

O...USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45 DEGREE 
(CARTESIAN GEOMETRY) PLANAR SYMMETRY IF SUCH 
SYMMETRY EXISTS (DEFAULT). 
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C 
CN THE NODAL OPTION IS INVOKED IN HEXAGONAL GEOMETRY BY 
CN SPECIFYING GEOMETRY-TYPE SENTINELS BETWEEN 110 AND 128 
CN ON THE A.NIP3 TYPE 03 CARD. 
CN 
CD 8 43-48 ASYMPTOTIC SOURCE EXTRAPOLATION SENTINEL. 
CD 0...PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION ON THE 
CD THE NODAL OUTER ITERATIONS. 
CD 1...D0 NOT PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION 
CD 
CN THE NODAL OPTION IS INVOKED IN CARTESIAN GEOMETRY BY 
CN SPECIFYING GEOMETRY-TYPE SENTINELS 40 OR 44 ON THE 
CN A.NIP3 TYPE 03 CARD AND PROVIDING ANY ACCEPTABLE 
CN (E.G. DEFAULT) VALUES ON A.DIF3D TYPE 10 CARD. 
CN 
CN •** THE CARTES IAN-GEOMETRY NODAL OPTION MAY NOT BE 
CN AVAILABLE IN ALL VERSIONS OF DIF3D. ••• 
C 
CN IT IS IMPORTANT THAT THE NUMBER OF FINE MESH PER 
CN REBALANCE MESH BE CHOSEN SUCH THAT THE AVERAGE 
CN REBALANCE MESH SPACING IS APPROXIMATELY 30 TO 40 CM IN 
CN THE XY-PLANE. THUS, FOR EXAMPLE, IF THE AVERAGE FINE 
CH MESH SPACING IS DELTA CM, THEN THE INTEGER INPUT IN 
C:N COLS. 19-24 SHOULD BE BETWEEN 30/DELTA AND 4 0/DELTA. 
C 
CN IF SLOW (OR DIVERGENT) ITERATIVE CONVERGENCE BEHAVIOR 
CN IS OBSERVED, THE NUMBER OF PARTIAL CURRENT SWEEPS 
CN SPECIFIED IN COLS. 25-30 AND 31-36 SHOULD BE INCREASED. 
C 
C 

c -
CR AXIAL COARSE-MESH REBALANCE BOUNDARIES FOR NODAL 

CR OPTION (TYPE 11) 

C 

CL FORMAT (12 , lOX , 3 (16 , E12 . 5 ) ) 

C 

CD it COLUMNS CONTENTS. . .IMPLICATIONS, IF ANY 

CD 1 1-2 11 

CD 

CD 2 13-18 NUMBER OF AXIAL COARSE-MESH REBALANCE INTERVALS. 

CD 3 19-30 UPPER Z-COORDINATE OF THE COARSE-MESH REBALANCE 

CD BOUNDARY. 

CD 

CD 4 31-36 NUMBER OF AXIAL COARSE-MESH REBALANCE INTERVALS. 

CD 

CD 5 37-42 UPPER Z-C(X)RDINATE OF THE COARSE-MESH REBALANCE 

CD BOUNDARY. 

CD 

CD 6 49-54 NUMBER OF AXIAL COARSE-MESH REBALANCE INTERVALS. 

CD 

CD 7 55-66 UPPER Z-COORDINATE OF THE COARSE-MESH REBALANCE 

CD BOUNDARY. 

C 

CN THE TYPE 11 CARD IS PERTINENT ONLY WHEN THE THREE-

CN DIMENSIONAL NODAL OPTION (A.NIP3 TYPE 03 GEOMETRY-TYPE 

CN SENTINEL VALUE EQUAL TO 44 OR BETWEEN 120 AND 128) IS 
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CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
CN 
C 
C--

SPECIFIED. 

IF NO TYPE 11 CARDS ARE PRESENT, THE AXIAL COARSE-MESH -
REBALANCE BOUNDARIES ARE DEFINED BY THE AXIAL COARSE- -
MESH BOUNDARIES OBTAINED FROM THE GEODST FILE. THESE -
BOUNDARIES IN TURN ARE ANY BOUNDARY POSITIONS SPECIFIED-
ON THE DATASET A.NIP3 TYPE 09 OR 3 0 CARDS. 

AXIAL COARSE-MESH REBALANCE BOUNDARIES MUST BE SELECTED-
FROM THE SET OF COARSE-MESH BOUNDARIES CONTAINED IN THE-
GEODST FILE, AS DETERMINED BY THE COARSE-MESH 
BOUNDARIES WHICH ARE EXPLICITLY MENTIONED ON THE 
DATASET A.NIP TYPE 09 OR 30 CARDS. 

BOUNDARIES ARE SPECIFIED VIA NUMBER PAIRS. 
EACH NUMBER PAIR IS OF THE FORM (N(I), Zd)) . THERE 
ARE N d ) AXIAL COARSE-MESH REBALANCE INTERVALS BETWEEN -
Zd-l) AND Z(I), WHERE Z(0) IS THE LOWER REACTOR 
BOUNDARY IN THE Z-DIRECTION. NUMBER PAIRS MUST BE 
GIVEN IN ORDER OF INCREASING MESH COORDINATES. ALL 
AXIAL COARSE-MESH REBALANCE BOUNDARIES MUST COINCIDE 
WITH THE MESH LINES WHICH BOUND MESH INTERVALS. 

C--
CR 
C 
CL 
C 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 

PARAMETERS FOR VARIATIONAL NODAL OPTION (TYPE 10) 

FORMAT (12, 4X, 1116) 

# COLUMNS CONTENTS. . .IMPLICATIONS, IF ANY 

1 1-2 12 

2 7-12 NODAL SPATIAL APPROXIMATION. 
ENTER 3 DIGIT NUMBER LMN WHERE 

L IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 
SOURCE WITHIN THE NODE. 

M IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 
FLUXES WITHIN THE NODE. 

N IS THE ORDER OF THE POLYNOMIAL APPROXIMATION OF THE 
LEAKAGES ON THE SURFACES OF THE NODES. 

HEXAGONAL AND CARTESIAN GEOMETRY: 
1... LINEAR SOURCE APPROXIMATION. 
2... QUADRATIC SOURCE APPROXIMATION. 
3... CUBIC SOURCE APPROXIMATION. 
4... QUARTIC SOURCE APPROXIMATION. 
5... 5TH ORDER SOURCE APPROXIMATION. 
6... 6TH ORDER SOURCE APPROXIMATION. 
(DEFAULT VALUE L=N+1). 
(L CANNOT BE GREATER THAN M). 

LINEAR FLUX APPROXIMATION. 
QUADRATIC FLUX APPROXIMATION 
CUBIC FLUX 
QUARTIC FLUX 
5TH ORDER FLUX 
6TH ORDER FLUX 

APPROXIMATION. 
APPROXIMATION 
APPROXIMATION. 
APPROXIMATION. 

(DEFAULT) 
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CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
CD 
C 
CN 
CN 
CN 
CN 
CD 
CD 

M 
M 
M 
N 
N 
N 

= 
= 
= 
= 
= 
= 

1 . 
3 . 
5 . 
1 . 
3 . 
5 . 

N . 0... FLAT LEAKAGE APPROXIMATION. 
N . 1... LINEAR LEAKAGE APPROXIMATION (DEFAULT) 
N • 2... QUADRATIC LEAKAGE APPROXIMATION. 

LEADING ZEROS ARE IRRELEVANT. 
THEREFORE, DEFAULT VALUES FOR LMN ARE 24 1 
M - 5 OR 6 ONLY FOR HEXAGONAL GEOMETRY. 
IN 3D HEXAGONAL GEOMETRY M = 5 OR 6 PROVIDES 
FULL EXPANSION IN THE X AND Y PLANE, Z DIRECTION 
IS EXPANDED TO 4TH ORDER. 

13-18 ANGULAR APPROXIMATION. 
ENTER 2 DIGIT NUMBER MN WHERE 

M IS THE ORDER OF THE PN EXPANSION OF THE FLUX. 
N IS THE ORDER OF THE PN EXPANSION OF THE LEAKAGE. 

HEXAGONAL AND CARTESIAN GEOMETRIES: 
PI FLUX EXPANSION. 
P3 FLUX EXPANSION (DEFAULT). 
P5 FLUX EXPANSION 
PI LEAKAGE EXPANSION. 
P3 LEAKAGE EXPANSION (DEFAULT). 
P5 LEAKAGE EXPANSION 

LEADING ZEROS ARE IRRELEVANT. 
THEREFORE, DEFAULT VALUE FOR MN IS 33. 
MN EQUAL TO 11 CORRESPONDS TO DIFFUSION CALCULATION. 
IF MN IS NEGATIVE, SIMPLIFIED SPHERICAL HARMONICS 
ARE USED. 

1-24 COARSE-MESH REBALANCE ACCELERATION CONTROL. 
-1...NO COARSE-MESH REBALANCE ACCELERATION. 

.GT.0...NUMBER OF FINE MESH PER REBALANCE MESH IN X- AND 
Y-DIRECTIONS - CARTESIAN GEOMETRY ONLY (DEFAULT=6), 

-30 NUMBER OF XY-PLANE PARTIAL CURRENT SWEEPS PER GROUP 
PER AXIAL MESH SWEEP PER OUTER ITERATION. 
(DEFAULT = 0 - LET CODE DECIDE). 

-36 NUMBER OF AXIAL PARTIAL CURRENT SWEEPS PER GROUP 
PER AXIAL PARTIAL CURRENT SWEEP 
PER OUTER ITERATION (DEFAULT=0 - LET CODE DECIDE) 

-42 HALF-DOMAIN SYMMETRY FLAG. 
-1.. DO NOT USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45 

DEGREE (CARTESIAN GEOMETRY) PLANAR SYMMETRY EVEN 
IF SUCH SYMMETRY EXISTS. 

0...USE 30 DEGREE (HEXAGONAL GEOMETRY) OR 45 DEGREE 
(CARTESIAN GEOMETRY) PLANAR SYMMETRY IF SUCH 
SYMMETRY EXISTS (DEFAULT). 

THE NODAL OPTION IS INVOKED IN HEXAGONAL GEOMETRY BY 
SPECIFYING GEOMETRY-TYPE SENTINELS BETWEEN 110 AND 128 
ON THE A.NIP3 TYPE 03 CARD. 

-48 AS"/MPTOTIC SOURCE EXTRAPOLATION SENTINEL. 
-1...PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION ON THE 
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CD NODAL OUTER ITERATIONS ONLY ON FISSION SOURCES. 
CD NO EXTRA-SPACE IS NEEDED TO STORE PREVIOUS OUTER 
CD ITERATION CURRENTS. 
CD 0 . . . PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION ON THE 
CD NODAL OUTER ITERATIONS ON FISSION SOURCES AND 
CD CURRENTS. 
CD 1... DO NOT PERFORM ASYMPTOTIC SOURCE EXTRAPOLATION 

CD 
CD 9 49-54 ANISOTROPIC SCATTERING APPROXIMATION NPNO. 
CD 0 ... ISOTROPIC SCATTERING (DEFAULT). 
CD N. . .ANISOTROPIC SCATTERING ORDER (.LE.3). 
CD N MUST BE LESS THAN OR EQUAL TO MAXORD, MAXIMUM 
CD ANISOTROPIC ORDER SPECIFIED IN ISOTXS OR COMPXS 
CD FILES. 
CD 
CD 10 55-60 EXTENDED TRANSPORT APPROXIMATION (NXTR) ON TOTAL 
CD CROSS SECTION. 
CD -1...IF NPNO .EQ. 0 USE TOTAL CROSS SECTION PROVIDED 
CD IN COMPXS FILE, OTHERWISE USE TRANSPORT CROSS 
CD SECTION INSTEAD OF TOTAL ONE. 
CD 0. . . (DEFAULT) . 
CD IF NPNO .EQ. 0 USE TRANSPORT CROSS SECTION 
CD PROVIDED IN COMPXS FILE. 
CD IF NPNO .GT. 0 AND NPNO . EQ. MAXORD USE TOTAL 
CD CROSS SECTION PROVIDED IN COMPXS FILE. 
CD IF NPNO .GT. 0 AND NPNO .LT. MAXORD CORRECT TOTAL 
CD CROSS SECTION PROVIDED IN COMPXS FILE WITH 
CD EXTENDED TRANSPORT APPROXIMATION TAKING INTO 
CD ACCOUNT THE NPNO + 1 ORDER SCATTERING CROSS 
CD SECTIONS (BHS APPROXIMATION) . 
CD N...IF NXTR .LE. NPNO USE TOTAL CROSS SECTION. 
CD IF NXTR .GT. NPNO PERFORM EXTENDED TRANSPORT 
CD APPROXIMATION ON TOTAL CROSS SECTION FROM NPNO + 1 
CD TO NXTR ORDER. 
CD 
CD 11 61-66 NODAL COUPLING COEFFICIENT PACKING OPTION. 
CD 0...NO PACKING WILL BE PERFORMED UNLESS NOT ENOUGH 
CD ECM MEMORY IS AVAILABLE (DEFAULT). 
CD 1...NODAL COUPLING COEFFICIENT WILL BE PACKED (ONLY 
CD UNIQUE ELEMENTS ARE STORED). THIS OPTION SHOULD 
CD BE USED, ESPECIALLY ON WORKSTATIONS, WHEN IT WILL 
CD ALLOW THE PROBLEM TO RUN WITH ALL GROUP FLUXES 
CD AND CURRENTS IN CORE. 
CD 
CD 12 67-72 RADIAL INNER ITERATION ALGORYTHM. 
CD 0 ... PARTITIONED MATRIX ALGORYTHM (DEFAULT). 
CD 1...FULL MATRIX ALGORYTHM. THIS ALGORYTHM IS SOMETIMES 
CD NECESSARY WITH VERY SMALL NODE MESH SIZE WHERE 
CD DIVERGENCE CAN OCCUR. THIS ALGORYTHM REQUIRES A 
CD SIGNIFICANTLY LARGER COMPUTATIONAL TIME. 
CD FULL MATRIX ALGORYTHM IS IMPOSED WHEN ONLY ONE 
CD OUTER ITERATION IS SPECIFIED (FIXED SOURCE 
CD PROBLEM). 
CD 
CN THE NODAL OPTION IS INVOKED IN CARTESIAN GEOMETRY BY 
CN SPECIFYING GEOMETRY-TYPE SENTINELS 40 OR 44 ON THE 
CN A.NIP3 TYPE 0 3 CARD AITO PROVIDING ANY ACCEPTABLE 
CN (E.G. DEFAULT) VALUES ON A.DIF3D TYPE 12 CARD. 
CN 
CN *** THE CARTES IAN-GEOMETRY NODAL OPTION MAY NOT BE 
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CN AVAILABLE IN ALL VERSIONS OF DIF3D. *** 

C 

CN IT IS IMPORTANT THAT THE NUMBER OF FINE MESH PER 
CN REBALANCE MESH BE CHOSEN SUCH THAT THE AVERAGE 
CN REBALANCE MESH SPACING IS APPROXIMATELY 30 TO 40 CM IN 
CN THE XY-PLANE. THUS, FOR EXAMPLE, IF THE AVERAGE FINE 
CN MESH SPACING IS DELTA CM, THEN THE INTEGER INPUT IN 
CN COLS. 19-24 SHOULD BE BETWEEN 30/DELTA AND 40/DELTA. 
C 

CN IF SLOW (OR DIVERGENT) ITERATIVE CONVERGENCE BEHAVIOR 
CN IS OBSERVED, THE NUMBER OF PARTIAL CURRENT SWEEPS 
CN SPECIFIED IN COLS. 25-30 AND 31-36 SHOULD BE INCREASED. 
C 
C - -

CEOF 

137 



138 



Di.stiibuLiuii fur ANL-';.V4() 

lnlcni:i]: 

C 11 ..Xdain.s 
S K BhallachoT)) 
R. N. Bloinqui.'il 
M. M. BrcLvhcr 
L. L. Bngtis 
K .A. Buiidc 
J E. Calialan 
Y 1. (^laiig 
J. M Carpcmcr 
B R. OuuKllcr 
R, J Ci)mclla 

J R. Dccn 
K. L. Dcrslinc 
T Fanning 
E. K. Fujila 
E. M. Gclbard 
R W. Com 

G. L. Gra.sscschi 

Exicmal: 
DOE-OSTI. for di 
Manager. (Thicago 
A.\L-W Library 
A.VL-E Library 

•a 

suibulion 

K, N. Griinin 
M R ll.ilc 
N, A. H;uKUi 

ll. R. H.uichiillc 
D.J, Hill 
R. N. Hill 

R. N, Hwaiig 
G.R. Imcl 
K, Lauriii-Kovu/ 

H. .S. Khalil 
R. M. Lcll 
J. J. Liaw 
M. J. Lincberry 
D, M. Malcin 
J. E. Malo.s 
S. C. Mo 
R. D. Mc Knight 

per UC-534 (60) 
Operations Office 

A. P. Ol.son 
Y. Orcchwa 
G. Palmiolli (36) 
R B Pond 
E. A. Rhodes 
R. W. Schacfcr 
D. M.Smidi 
C. G. Slenbcrg 
J. A. Sullman 
C. E. Till 
B. J. Toppcl 
R. B. Turskj 
D. C. Wade 
D. P. Weber 
R. A. Wigeland 
W. L. Wcxxlruff 
A. M. Yacout 

Reactor Analysis and Safety Division Review Committee: 
R. O. Anderson. Norlliem States Power Company, Minneapolis 
M. L. Corradini. University of Wi.stonsin, Madi.s<jn 
A. F. Henry, Ma.ssachu.setLs Institute of Technology, Cambridge 
J. C. Lee. University of Michigan, Ann Arbor 
V. H. Ransom. Purdue University, West Lafayette 

D. T. Ingersoll, Leader. Nuclear Analysis & Shielding Sect.. Oak Ridge Natl. Lah.. Oak Ridge, TN 
Division Leader, N-Division. Los Alamos National Laboratory. NM 
A. E. Walter. Safety and Control Tecluiology. Westinghou.se Hanford Co., Richland, WA (2) 
Information .Manager. Nuclear Safety Library. Bniokhaven Nad. Lab.. Upton. NY (2) 
.Manager. Reactor Safety Re,search Department. Sandia NaU. Laboratories. Albuquerque. NM (2) 
R. S. Denning. Nuclear Facility Safety, Baltelle Memorial Institute. Columbu.s. OH 
Manager. Safety Engineering. Weslingliouse Electric Corporation ARD. Madison, PA (2) 
.Manager. L.VtFBR Physics and Safety, Rockwell International. Downey. CA (2) 
P, W. Magcc. Manager. Design Analysis. General Electric. San Jo.se. CA (2) 
Electric Power Research Institute, LMFBR Group. Palo Alto. CA 
Chief. Severe Accident Issues Branch. NRC/RES/SAIB. Rockville. MD (2) 
Chief. Accident Evaluation Branch. NRC/RI-..S/DSR. Rockville. MD 
Executive Secretary, NRC-ACRS. BeUiesda. MD (i) 
Informalion Services. Babcock & Wilcox Co., Lynchburg, VA 
X(t Group Leader, Mail Stop B22(), Los Alamos Natl. Lab., Los Alamos. NM 

1.39 

http://Westinghou.se
http://Jo.se


External: (Cont'd.) 
Manager, ARP Nuclear Engineering, Knolls Atomic Power Laboratory, Schenectady, NY 
M. Natelson. Manager, Reactor Technology, Bettis Atomic Power Laboratory, West Miffin, PA 
B. Worley, Reactor Analysis, Engineering Physics and Mathematics Div., ORNL, Oak Ridge, TN 
C. Cowan, General Electric, San Jose, CA 
J. W. Daughtry, Westinghouse Hanford Co., Richland, WA 
P. W. Dickson, Westinghouse Savarmah River Laboratory, Aiken, SC 
R. Doncals, Westinghouse Electric C!orp., Madison, PA 
J. J. Donung, University of Virginia, Charlottesville, VA 
L. D. Felten, Rockwell International Corp., Canoga Park, CA 
N. C. Francis, Knolls Atomic Power Laboratory, Schenectady, NY 
J. Kallfelz, PSI, Switzerland 
T. S. Kress, Oak Ridge National Laboratory, Oak Ridge, TN 
J. Lake, EG&G Idaho, Inc., Idaho Falls, ID 
E. Lewis, Northwestern University, Evanston, BL (5) 
M. R. Mendelson, Knolls Atomic Power Laboratory, Schenectady, NY 
W. F. Miller, Jr., Los Alamos National Laboratory, Los /Uamos, NM 
K. Ott, Purdue University, West Lafayette, IN 
S. Pearlstein, Brookhaven National Laboratory, Upton, NY 
Tom Downar, Dept. of Nuclear Engineering, Purdue University, West Lafayette, IN 
Joel Rhodes, Studsvik, of America, Idaho Falls, ID 
C. Apperson, Reactor Physics Group, Westinghouse Savannah River Co., Aiken, SC 
Wesley Davis, Babcock & Wilcox, Space and Defense Systems, Lynchburg, VA 
Salim Jahsham, EG&G Idaho, Inc./INEL, Idaho Falls, ID 
Wm. Martin, Dept. of Nucl. Eng., Univ. of Michigan, Cooley Bldg., No. Campus, Arm Aibor, MI 
James R. Thomas, Mechanical Engineering Dept., VPI&SU, Blacksburg, VA 
Steven Rowe, Illinois Power Company, Clinton Power Station, Qinton, IL 
Del Pallotta, Commonwealth Edison Co., Downers Grove, IL 
Jasmina Vujic, University of California, Dept. of Nucl. Eng., Berkeley, CA 
A. J. H. Goddard, Imperial College, University of London, UK 
T. Takeda, Osaka University, Osaka, Japan 
E. H. Mund, Universite' Libre De Bruxelles, Belgium 
Edward Larsen, University of Michigan, Ann Arbor, MI 
Paul Nelson, Texas A&M University, College Station, TX 
Marvin Adams, Texas A&M University, College Station, TX 
/Uireza Haghighat, Pennsylvania State University, University Park, PA 
Paul Turinsky, North Carolma State University, Raleigh, NC 
Y. Ronen, Ben Gurion University, Beer-Sheva, Israel 
T. A. Germogenova, Keldysh Institute, Moscow, Russia 
H. L. Dodds, University of Tennessee, Knoxville, TN 
D. G. Cacuci, KfK, Karlsruhe, Germany 
H. Wider, European Research Center, Ispra, Italy 
H. Finnemann, Siemens/KWTJ, Erlangen, Germany 
1. K. Abu-Shumays, Bettis Atomic Power Laboratory, West Mifflin, PA 
R. Alcouffe, Los Alamos National Laboratory, Los Alamos, NM 
J. E. Morel, Los /\lamos National Laboratory, Los Alamos, NM 
Y. Y. Azmy. Oak Ridge National Laboratory, Oak Ridge, TN 
R. Abboud, Commonwealth Edison Co., Chicago, IL 
D. Nigg, INEL, Idaho Falls, ID 
R. Lawrence, IBM, Kingston, NY 

140 



External: (Cont'd.) 
K S Smith. Studsvik USA, Idalio Falls, ID 
C. B. C;irrico. BARRA, Berkeley, CA (2) 
M. Salvatorcs. CEA. Cadrachc. France 
P. J. Finck. CEA. CiKlrachc. I-riuicc 
R. Jacqmin. CEA. Cadrachc. F'rancc 
A G.uidini. ENEA. Cxsaccia. Italy 
A. Diuigclo. ENEA, C;Ls;iccia, Italy 
J. P West. EDF-DER. Cl;uiKin. Fnuicc 
T, Wu. General Electric. S;ui Jose. CA 
P Ravctto. University of Turin. Turin. Italy 
W Gudowsky. Royal Institute of Tcchnoliigy. StiKkholin. Sweden 
J. J. Lautard. CEA. Saclay. Fr;uicc 
R. S;UICIKV. CEA. Saclay. Fnuicc 
D. Biron. EDFSEPTEN. Lyon. France 
P. J. Collins. PNC. Tsurtiga-Shi. Japan 
L. Agce. EPRI. Palo Alto. CA 
Y. A. Chao. Wcstinghou.se Electric Corp.. Pittsburgh. PA 
N. Tsoulfanidis. Univ. of Mi.s.s<iuri-Rolla. Rolla. MO 
W, S, Yang. Chosun Ihiivcrsily. SouUi Korea 

141 

http://Wcstinghou.se




HBOONNt NAIONAl LAO Wl 

\^ 


