
Science Division
Mathematics and Computer

Science Division
Mathematics and Computer

Science Division
Matliematics and Computer

Matliematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

iVlathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

ANL-95/49

Parallel Solution of the Time-
dependent Ginzburg-Landau

Equations and Other Experiences
Using BlockComm-Chameleon

andPCNonthelBMSP,
Intel iPSC/860, and Clusters

of Workstations

by E. Coskun and M. K. Kwong

Argonne National Laboratory, Argonne, Illinois 60439
operated by The University of Chicago
for the United States Department of Energy under Contract W-31-109-Eng-38

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States govemment, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER-
This report was prepared as an account of work sponsored by an agency of
the United States Govemment. Neither the United States Govemment nor
any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or pro
cess disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Govemment or any agency thereof The views
and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Govemment or any agency thereof.

Reproduced from the best available copy.

Available to DOE and DOE contractors from Ihe
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831

Prices available from (423) 576-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Road

Springfield, VA 22161

Distribution Category:
Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL-95/49

Parallel Solution of the Time-dependent Ginzburg-Landau
Equations and Other Experiences Using

BlockComm-Chameleon and PCN on the IBM SP,

Intel iPSC/860, and Clusters of Workstations

by

Erhan Coskurt} and Man Kam Kwonf'

Mathematics and Computer Science Division

September 1995

^Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115. Present ad
dress: Karadeniz Technical University, Department of Mathematics, Trabzon, 61080 Turkey. E-mail:
e r h a n f i o s f 0 1 . b i m . k t u . e d u . t r

^This author was supported by the Mathematical, Information, and Computational Sciences Dvision sub
program of the Office of Computational and Technology Research, U.S. Department of Energy, under C^ontract
W-31-109-Eng-38.

Contents

Abstract 1

1 Introduction 1

2 Preliminaries 2

3 Test Problems 4

4 Parallel Programs with BlockComm/Chameleon 6
4.1 ProgSumBC 6
4.2 ProgPiBC 9
4.3 ProgPdeBC 9
4.4 ProgTdglBC 11

5 Clusters of Workstations as a Parallel Computing Environment 13

6 Parallel Programs with PCN 14
6.1 ProgPiPCN 14

6.2 ProgPdePCN 16

7 Conclusion 19

Acknowledgments 20

Appendix: Program Listings 21

References 37

Parallel Solution of the T ime-dependent Ginzburg-Landau Equations and
Other Experiences Using B lockComm-Chameleon and P C N

on the I B M SP, Intel i P S C / 8 6 0 , and Clusters of Workstat ions

by

Erhan Coskun and Man Kam Kwong

Abstract
Time-dependent Ginzburg-Landau (TDGL) equations are considered for modeling a

thin-film finite size superconductor placed under magnetic field. Tlie problem tlien leads
to the use of so-called natural boundary conditions. Computational domain is partitioned
into subdomains and bond variables are used in obtaining the corresponding discrete system
of equations. An efficient time-differencing method based on the Forward Euler method is
developed. Finally, a variable strength magnetic field resulting in a vortex motion in Type
II High Tc superconducting films is introduced.

We tackled our problem using two different state-of-the-art parallel computing tools:
BlockComm/Chameleon and PCN. We had access to two high-performance distributed
memory supercomputers: the Intel iP,SC/860 and IBM .SPI. We also tested the codes
using, as a parallel computing environment, a cluster of Sun .Sparc workstations.

1 Introduction

In our study of the mathematical modeling of superconductivity, we have developed an efficient
algorithm to solve numerically the time-dependent Ginzburg-Landau (TDGL) equations in
two dimensions (see [3]). The corresponding problem in three dimensions is, however, very
computationally extensive. The study is impractical on a conventional uniprocessor computer,
even if the most efficient algorithm is used. The numerical simulation of such Grand Challenge
problems (the three-dimensional TDGL in its entire generality) depends on high-performance
computing techniques and resources.

We tacliled the 3D problem using two different state-of-the-art parallel computing tools:
BlockComm/Chameleon and PCN, the development of both involves Argonne scientists. Since
the completion of this work, a new tool, the Message Passing Interface (MPI) [9], has emerged.
It has an excellent prospect to become the standard message-passing tool. Future extension
of our work will definitely include MPI. We had access to two high-performance distributed-
memory supercomputers: the Intel iPSC/860 and IBM SP. We also tested the codes using,
as a paraUel computing environment, a cluster of Sun Sparc workstations in the Mathematics
and Computer Science Division of Argonne National Laboratory.

Although our main objective was to develop a parallel code for the forward Euler method
(see [3]) to solve the TDGL equations, we started with three simpler warm-up problems. Our
experience with these three problems is also described here; they are used as examples to
illustrate some of the concepts of parallel programming tools. More in-depth discussion of all
the problems considered in this report, together with aU complete parallel codes and running
procedures, is given in [3].

Dave Levine of Argonne National Laboratory has also developed parallel codes for solving
the TDGL using BlockComm, but with a different method of discretizing the equations; consult

[5], [10], and the forthcoming paper [16]. Earlier, two other coHeagues, Paul Plassmann and
Steve Wright, developed a parallel code for solving the static Ginzburg-Landau equations using
optimization techniques; their work is reported in [6].

2 Preliminaries

We begin by introducing some terminology that wiU be used throughout this report. We also
briefly describe the parallel programming tools and environments we used.

When a particular instance of a code or a part of a code is executed on a machine, aU of
the work needed to execute that portion of the program is referred as a single task, or process.
Parallel processing is information processing or numerical computation that emphasizes the
concurrent manipulation of data elements belonging to one or more processes in solving a
single problem.

Early supercomputers achieved concurrency with the method of pipelining, namely, by
dividing a computation into a number of steps that are processed in an assembly-line fashion.
More modern architectures use multiple CPUs, each capable of executing instructions entirely
independently of others.

How a processor accesses the computer memory (shared memory or distributed memory)
affects how a parallel program will be designed and coded. It is generally accepted [18] that
shared-memory parallel programming can usually be done through minor extensions to existing
programming languages, operating systems, and code libraries. On the other hand, distributed-
memory programming is a bit more involved, but it has the advantages of massive parallelism.
Our experiments were done exclusively on distributed-memory environments.

A parallel system [17] is the combination of an algorithm and the parallel architecture on
which it is implemented. As mentioned in [17], the performance of a parallel algorithm cannot
be evaluated in isolation from a parallel architecture. Therefore, it is more appropriate to talk
about performance of a paraUel system than performance of a parallel algorithm.

Various metrics are used to measure the performance of a parallel system. We mention
only a few of them below.

• The parallel run time is the elapsed time from the moment a parallel computation starts
to the moment the last processor finishes execution.

• The speedup is defined as

_ serial run time for the best sequential algorithm
parallel run time using p processors

The speedup 5p represents the benefit of solving a problem in parallel using p identical
processors. A more practical definition (since it is often difficult to determine the best
sequential algorithm) is obtained by replacing the expression in the numerator above by
"execution time of the same code using a single processor." We are using the second
definition to evaluate our numerical results.

• The efficiency is defined as

F - ^
P

In the ideal case of perfect speedup, Sp — p, and i?p = !•

• The cost of solving a problem on a parallel system is defined as the product of paraUel run
time and the number of processors used. It reflects the sum of time that each processor
spends solving the problem.

The generic goal in the development of paraUel algorithms is to achieve as high a speedup
as possible. The perfect speedup Sp = p, or optimal efficiency Ep = 1, is obtainable only for
essentiaUy trivial problems. AU causes of imperfect speedup of a paraUel system are coUectively
referred to as the otier/ieaii resulting from paraUel processing. Some factors that cause overhead
are as foUows (see [13], [17], and [18]):

• lack of a perfect degree of paraUeUsm in the algorithm,

• lack of perfect load balancing,

• communication or contention time, and

• extra computation.

In the ideal situation when each computational step of an algorithm can be done independently
of the other steps, we say that the algorithm has a perfect degree of paraUeUsm. In reaUty,
this rarely happens. A processor often must wait in the middle of a run until it has received
aU the data or information from other processors it needs to execute the next computational
step.

Load balancing is the assignment of tasks to the processors of the system so as to keep
each processor doing useful work for as much of the time as possible. The determination of
this optimal assignment is also caUed the mapping problem. Load balancing may be achieved
either staticaUy or dynamicaUy. In static load balancing, tasks are assigned to processors at
the beginning of a computation. In dynamic load balancing, tasks are assigned to processors
as the computation proceeds.

In distributed-memory system, each processor can address only its own local memory.
Communication between processors takes place by message passing, a process that takes rel
atively more time than direct access to local memory. In a shared-memory system, aU the
processors have access to a common memory. Each processor can also have its own local, but
Umited, memory for program code and intermediate results. Comnmnication between indi
vidual processors is through the common memory. A major advantage of a shared memory
system is the rapid communication of data between processors. A serious disadvantage is that
different processors may wish to use the common memory at about the same time (especiaUy
when new values are to be deposited), in which case there wiU be a delay until the memory is
free, or untU the proper order of access is estabUshed. This delay is caUed contention time.

An efficient serial algorithm may not lend itself to efficient paraUeUzation because of
the dependency of computational steps on results from previous steps. As a consequence, a
redesign of the algorithm necessitating extra computation may be required. In an extreme
situation, a better serial algorithm may have to be sacrificed in favor of an inferior one.

We close this section by introducing the paraUel programming tools Chameleon, Block
Comm, and PCN, used in our study.

Chameleon is a Ubrary of low-level, comprehensive, and very efficient message-passing
routines developed by W. Gropp and B. Smith [11].

BlockComm is a Ubrary of high-level message-passing routines designed by Gropp to
manage the efficient communication of blocks of data between processors. It provides short
cuts for many common message-passing tasks often found in the computational technique of

domain decomposition. Both packages are stiU under active development. One can consult
[7] for the most current documentation about BlockComm. Although the use BlockComm
greatly simplifies the coding of domain decomposition algorithms, it does not provide the data
reduction and broadcast routines that are needed in our case. Hence, we have used a combi
nation of Chameleon and BlockComm routines in the same program. Although both packages
have both Fortran and C versions, we have chosen Fortran as our programming language (see
Section 7).

PCN {Program Composition Notation) is a paraUel programming language developed
jointly by Argonne (I. Foster), Caltech, and the Aerospace Corporation. It provides a paradigm
for composing paraUel programs out of modules of paraUel or sequential subroutines that may
be written either in PCN itself or in more conventional programming languages. The pro
grammer needs to specify only which modules are to be run concurrently and what data
communications are needed between modules. The actual assignment of tasks to specific pro
cessors and message passing are transparent to the programmer. See [4] for more information
and its use for various paraUel environments.

The two programming tools we used are highly portable over a wide variety of computer
architectures. We have used three different paraUel environments in our study: the Intel
iFSC/860, the IBM SP, and clusters of Sun Sparc workstations. AU of them are distributed-
memory multiple instruction multiple data (mImD) systems. For each problem, the same
program (recompiled with the appropriate makefiles) were used in the three systems. The Intel
iPSC/860 at Argonne has eight nodes. AU processor nodes are identical and are connected by
bidirectional links in a hypercube topology. See [1] for its hardware and software specifications.
We used this machine mainly for program development because it is freely accessible and there
is no limitation on the amount of time one can work on the machine. The Argonne IBM SP''
has 128 nodes. Each node is an RS/6000 model 370 and has 128 MBytes of memory per node,
1 GByte local disk per node, fuU Unix on each node, and a high-performance Omega switch.
The peak performance of each node is 125 MFlops. There are several transport layers on
the SP including EUI, EUIH, and p4. EUIH is the low-overhead implementation of the EUI
interface. EUI is IBM's message-passing interface to the high-performance switch. See [8] for
more current infonnation about the SP and how to use these transport layers.

3 Test Problems

In this section, we describe the four test problems in our experiments. Our ultimate goal is to
develop a paraUel code implementing the forward Euler algorithm for the TDGL equations. As
warm-up trials, we experimented with three simpler but computationaUy intensive problems.

The first two problems are examples of the partitioning technique known as functional
decomposition; the others use the domain decomposition technique.

Problem 1: We consider the slowly divergent harmonic series

~ 1
E 7- (3.1)

Mathematicians are interested in investigating its rate of divergence. The extremely slow rate
of divergence of the series means that a large number of terms wiU be needed in numerical

The work described in this report was done during the period of May 1993-May 1994. Since then, the SP
sy.stem at Argonne has been upgraded, and more efficient communication switches have been installed.

experiments, and this requirement makes the problem an interesting example for paraUel
programming. A paraUel code using BlockComm to compute the partial sums wiU be presented
together with some performance results. The code wiU be referred to as ProgStunBC.

Problem 2: Our second problem is a weU-known simple numerical integration problem.
It has been the arch-example used in the introduction of many paraUel programming tool
manuals. The objective is to approximate the integral

/ f(x)dx,
Jo

f(^) ^
where

l + a;2
by using the rectangular rule:

A.(/)=/^i:/(^o,

where h = Inumber and x, = (« — ^)h. One can easily modify ProgSumBC to obtain a paraUel
BlockComm code for this problem. A paraUel PCN code for this problem, named ProgPiPCN,
wiU also be presented.

Problem 3: We study the foUowing two-dimensional PDE:

-Ui i - Uyy -{- cu- xy{cy^ - 6) = 0 (3.2)

in (0,1) X (0,1) with the boundary conditions

u{x,Q) = 0, u(x, I) = X, u(0,y) = 0, u{l,y) = y ,

where c is a constant. The exact solution, as one can easily verify, is u = xy^. By approximating
the second derivatives in the PDE by the usual central difference formulas, we obtain the Unear
system of equations

U-2U + U\ / '{ / I -2f / -Hf/ l , ,̂ / 2 .^ n /Q-n
' -\-cU - Xiyj{cy^ - 6) = 0, {3.3) Ax^) \ Ay

for i = 1,. ..,iV - 1, j = 1, . . . ,M - 1, where Ax = l/N, Ay = Imethod, Xi =
iAx, yj = jAy. We use the notation f/' to denote the value of U at the point above
the current one, and so on.

By expanding the function u{x,y) as a Taylor series at the point {xi,yj), we see that
the truncation error involves only the fourth-order derivatives oiu{x,y). Since u{x,y) = xy^,
both u^:cxx aud Uyyyy &!& idcuticaUy zero. Therefore, the truncation error is identicaUy zero as
weU. When the parameter c is greater than approximately —27r̂ , the coefficient matrix in the
Unear system is positive definite (see [21]). The SOR (successive overrelaxation) method is,
therefore, guaranteed to converge if the relaxation parameter is chosen from the interval (0,2).
The paraUel codes for this problem with BlockComm and PCN, which we named ProgPdeBC
and ProgPdePCN, respectively, are given in the appendix.

Problem 4: Mathematical detaUs of the TDGL are given elsewhere (see [3], [14], [L5],
and the references cited therein). It suffices to say that we are solving a system of (partial
differential) evolution equations governing two unknown functions of time and space position: a

complex-valued scalar 0 (caUed the order parameter); and a three-dimensional vector A (caUed
the vector potential). We used an unconventional method (see [14]) to discretize the equations
with respect to the space variables. The resulting system is then solved using a forward Euler
method. A paraUel BlockComm code ProgTdglBC, for implementing this algorithm is given
in the Appendix. Since the code itself is rather compMcated and speciaUzed, we wiU present
in this report only the performance results, and refer the readers to [3] for a detail discussion
of the code. We note that we have also developed a paraUel PCN code for this problem, but
performance results were less complete. As a consequence, we have decided not to present the
code in this report.

4 Parallel Programs with BlockComm/Chameleon

4.1 ProgSumBC

ProgSumBC is the paraUel program for Problem 1 written with BlockComm and Chameleon.
We give the program listing below and explain its content. The Une numbers in the Usting
have been added for easy reference and are not part of the code. The subroutine caUs that
begin with the letters BC are BlockComm routines, while those that begin with PI are
Chameleon routines. The first five Unes of the program declare the appropriate function name
and variables.

1 integer function workerO

2 integer nbytes, Plmytid, myid, sx, ex, N

3 integer intsize, itisg_int, Psallprocs

4 parajneterCintsize=4,msg_int=l ,Psallprocs=0 ,nbytes =8)

5 double precision tl, t2, SYGetElapsedTime

Strictly speaking, the name ProgSumBC refers to the file PRofSumBC.f that contains a
Fortran subroutine, caUed worker(), as declared in Une 1 above. The worker() subroutine
looks very much Uke the corresponding sequential code for the same problem, consisting of
instructions for the numerical computations. In the actual execution of a paraUel program, the
computer needs some extra ouer/jead instructions, such as initial setup directives (to round up
the processors, to estabUsh communication Unks among them) and clean-up directives (needed
after aU the computations are finaUy completed). Many paraUel programming tools require
the programmer to expUcitly include these instructions in their programs. Chameleon also has
these instructions, such as PICall used to caU worker() in a paraUel execution mode, but it
provides a convenient alternative that frees a user from this extra effort. Overhead instructions
that are common to most programs have been coUected in a main subroutine and precompiled
into the object files fmain.o (for Fortran codes) and cmain.o (for C codes), the appropriate one
of which is to be Unked to the computational subroutine when compiling the program. The
moderate price to pay is that one no longer thinks in terms of writing a main Fortran code (or
amainO routine in C), but just a function, with the mandatory name workerO, as we have
done in Une 1.

6 myid = PImytidO
7 if(myid .eq. 0) then
8 print*,'Number of points'
9 readCB,*) N
10 endif
11 call PIbcastSrc(N,intsize,0,Psallprocs,msg_int)

When the code is executed on the computer, every processor is given the same set of in
structions contained in ProgSumBC, but not every processor wiU execute aU the steps contained
in the program. The program uses the ID number of the caUing processor (obtained in Une
6 using the Chameleon routine PImytidO and assigned to the variable myid) to determine
which segments of codes are appropriate for the processor. Lines 7 to 10 are an example of
such a segment. One of the processors, that with ID # 0, is given the responsibiUty to obtain
(interactively) the user's input of the number of terms in the harmonic series to be summed.

Line 11 caUs the Chameleon routine PIbcastSrc to broadcast the value N to aU processors.
Even though only processor # 0 is the sender, and aU other processors are receivers, this routine
must be caUed by aU the processors. Roughly speaking, PIbcastSrc is shorthand for processor
0 to send a message to aU other processors, and for aU other processors to wait for this
message to arrive. The arguments of PIbcastSrc are, respectively, the variable (buffer) that
contains the message, the size of the buffer, the ID of the processor that broadcast the message,
the set of processors that receive the message (by conventions, aU processor are involved when
this argument is 0), and the data type of the message. For more precise syntax definitions of
Chameleon routine caUs, consult the Chameleon manual [11].

12 call getindex(N,sx,ex)
13 call Plgsync(O)
14 tl=SYGetElapsedTime()
15 call compute(sx,ex,myid)
16 t2=SYGetElapsedTime() - tl

Now that each processor knows the value of N, the next step is to find out the range of
those terms in the harmonic series that it is responsible to work on. This is done in Une 12, by
caUing the subroutine getindex to compute the indices of the starting term sx and the last
term ex in the range. The subroutine getindex is given below.

In Une 13, a global synchronization caU is use to make aU the processors begin timing at
the same time. Lines 14 and 16 return the elapsed time used by the subroutine compute in
Hne 15, which does the actual summing.

subroutine getindex(mx,sx,ex)
include */home/gropp/tools.n/blkcm/meshf.h'
integer mx, sx, ex, nd
integer sz(0:9,0:0)
integer myid, nproc, PInumtids, Plmytid

nd=l
sz(szmdim,0) = mx
sz(szisparallel,0) = 1
sz(szndim,0) = -1
myid = PImytidO
nproc = PlnumtidsC)
call BCGlobalToLocalArrayC nd, sz, nproc, myid)

sx = szCszstart,0) + 1
ex = sz(szend,0) + 1
return
end

The BlockComm subroutine BCGlobalToLocalArray determines the appropriate data
domain that a processor is responsible for, given the decomposition style nd, the number
of processors nproc, and the processor ID # myid. The BlockComm call stores its results in
the array sz. The precise definitions of each components of sz are given in the manual.

subroutine compute(sx,ex,myid)
integer sx, ex, i , myid
double precision sum, work
sum=0.0
do i=sx,ex

suin=sum+ldOintegral
enddo
call PIgdsum(sxun,1,work,0)
if (myid .eq. 0)then

print*,'sumall=',sum
endif
return
end

The first part of compute finds the partial sum of the series from the term with index
sx to the term with index ex, inclusively. The call PIgdsum finds the {gjlobal ({djouble
precision) sum, by adding up all the results stored in the local variable sum attached to each
processor. The other arguments of PIgdsum are, respectively, the length of the array sum (in
the current case, sum is a scalar and so the value of this argument is simply 1), a variable
work of the same size as sum to be use as a work area to compute the global sum, and the
set of processors involved (as mentioned earlier, a value of 0, by conventions, denotes that all
processors are to be included). The result of the computation, the global sum, overwrites the
local sum originally stored in the variable sum.

Some self-explanatory performance results are illustrated in Figure 1.

0 10 20
Number of Processors

0 10 20
Number of Processors

Figure 1: ParaUel run time and efficiency versus number of processors for ProgSumBC-SPl-EUIH
system with N=10,000,000 (Left), N=100,000,000 (Middle), N=200,000,000 (Right)

4.2 P r o g P i B C

One needs only to modify the computation routine compute in ProgSumBC to get a paraUel
code for Problem 2 in BlockComm. As a matter of fact, the only difference between Problem
1 and Problem 2 is the form of the terms in the series to be summed. In other words, the only
changes needed are in modifying the Une "sum=sum+ldOintegral."

We include this example to make the point that once a prototype paraUel program has
been written, most of it can be reused to write another program. Hence, the initial investment
is worthwhile.

4.3 P r o g P d e B C

Our method of solution for Problem 3 is to decompose the domain in which the partial differ
ential equation is defined into as many subdomains as the number of processors used. Each

processor is assigned the data of one of the subdomains, caUed a block, and a share of the com
putations that involves mainly data in the associated block. At each time step, each processor
also requires some extra information from processors associated with neighboring blocks in
order to complete the assigned computation. In most domain decomposition algorithms for
solving partial diff'erential equations, this extra information is typicaUy data carried by a set
of lattice points, the so-called ghost points, that borders the subdomain. The exchange of in
formation among processors is performed by message-passing lihr^Ty caUs. A two-dimensional
computational domain with a typical subdomain and its ghost points for a five-point stencil
is iUustrated below.

e ' I • . • ' I ©

o • • • o

o • • • o

o • • • o

e 1' • • • " ©

1 o o O II

Figure 2. A nine-processor decomposition of a 2D domain with ghost points (o)

If only a general-purpose, low-level message-passing tool, such as Chameleon, is used to
write a paraUel domain decomposition algorithm, one has to include expUcit code segments to

1. define each subdomain (i.e., determine the ranges of indices for the lattice points that
belongs to the subdomain),

2. map each subdomain to a processor,

3. determine the ghost points and the flow of messages, and

4. send and receive each message expUcitly.

BlockComm provides subroutine caUs to automate these steps for a wide class of common
domain decomposition algorithms for rectangular domains. For example, the caU
BCGlobalToLocalArray, used earUer in the subroutine compute in Section 4.1, takes care
of Steps 1-3. Another subroutine BCexecO can be used to automate Step 4.

The complete ProgPdeBC is given in the Appendix. Some performance results are pre
sented in Table 1. For this particular experiment, c = 20, J« (relaxation parameter) = 1, and
we have used .500 grid points and 1000 iteration steps.

10

Table 1. Performance results for the ProgPdeBC-SPl-EUIH system

Num. of Proc.

1

2

4

8

12

20-

ParaUel Run Time

1294.95

691.55

536.82

319.12

245.38

224.40

Speedup

1

1.8725

2.4123

4.0579

5.2773

5.7707

Efficiency

1

0.9363

0.6031

0.5072

0.4398

0.2885

4.4 P r o g T d g l B C

The code for ProgTdglBC is rather long and is given in the Appendix. It has been run on the
Intel iPSC/860, the IBM SP, and a cluster of Sun workstations without further modification.

Typical performance results for the ProgTdglBC-iPSC/860 and ProgTdglBC-SPl-P4 sys
tems are plotted in Figure 3. The latter uses the version of BlockComm that is based on the
p4 macro package, developed by E. L. Lusk at Argonne, and uses the Ethernet transport layer.

The graph suggests that the speedup for the first paraUel system is far better than that of
the second. This is due to the fact that our test problem has a rather low granularity for the
SP. As a result, SP nodes have to spend more time in communication than in computation.
This explanation is confirmed by the fact that when we switched to the more efficient transport
layer EUIH for the SP, the speedup curve shows a much better performance.

11

4 5
Number of Processors

Figure 3. Speedup for the ProgTdglBC-SPl-P4 and ProgTdglBC-iPSC system

12

5 10 15 20 25 30 35 40

10 15 20 25
Number of Processors

30 35 40

Figure 4. Some performance results for the ProgTdglBC-SPl-EUIH system

5 Clusters of W^orkstations as a Parallel Computing Environment

Due to the low access priority given to paraUel jobs running in the background, performance on
a cluster of workstations is not consistent, varying according to the demand of other users on
the workstations. This environment is, therefore, mainly used for test runs and for debugging.
Also, we observed that process creation on remote workstations takes a considerable amount

13

of time. Typical performance results obtained by running ProgPiBC with n = 10,000,000 on
a coUection of workstations are shown below. Here, the real and system times are obtained by
the Unix's time command and elapsed time is computed by the program.

Table 2. Performance results for ProgPiBC on a cluster of workstations
(time in sec)

Time

Real

System

Elapsed

Number of Workstations

1

19.0

0.2

17.8

2

29.1

0.6

22.17

3

57.2

0.9

43.84

4

59.8

1.1

32.03

5

58.0

1.4

25.4

6

60.3

1.5

21.1

7

60.6

1.6

18.7

8

71.0

1.8

14.9

6 Parallel Programs with PCN

6.1 ProgPiPCN

1

2

3

4

S

6

7

8

9

10

11

12

13

14

IS

mainCargc, argv, r e)
{ ? argv ?= [_ , n _ i n t e r v a l s , i n t e r v a l _ s i z e] ->

<;
sys : s t r ing_ to_ in teger (n_ i rL te rva l s , n i) ,
s y s : s t r i n g _ t o _ i n t e g e r (i n t e r v a l _ s i z e , l i) ,
n x = n i * l i ,
with=l.numberx,
main_body(i i i , l i ,wi th) in v t s : a r r a y (n i) ,
re = 0

} ,
defau l t ->
{; s t d i o : p r i n t f ("Usage : '/,s <n_in te rva l s> < in t_ s i ze> \n '

r e = 1
}

}

, { a rgv [0]> ,_) ,

The syntax of PCN is similar to that of C. The comma, however, is used as the command
terminator, whUe the semicolon is used to declare a sequential procedure. ProgPiPCN consists
of five PCN procedures and a Fortran procedure. The arguments argc and argv of mainO
have the usual meanings as in C, and r e is used for a return code. But unUke in C, the
arguments to mainO must be specified in the definition, whether we are planning to pass any
command Une arguments to the program or not. Line 2 serves a dual purpose: the number
of command Une arguments is checked, and if that is equal to two, the values of a rgv[l] and
argv[2] are assigned to n_intervals and in terval_s ize . In Unes 4-5, PCN's sys module
IS used to define ni and l i to be the integer values represented by the strings n . i n t e rva l s
and interval_si2e, respectively. In Unes 6-7, the total number of points and the width of

14

the intervals are computed. Line 8 is a caU to the procedure main_body; the infix operator
in is used to specify the map function v t s : array (n i) , which creates a virtual array topology
of size n i . This topology guarantees the portabiUty of the program across difi'erent computer
platforms. See [4] for more on virtual topologies and map functions. Line 9 sets the return
code variable to zero. Lines 11-13 print an error message in case the number of arguments
suppUed is wrong.

16 main_body(ni,li,width)
17 port globals[nodes()];

18 {II rectangle(ni,li,width,globals),
19 display(0,0,globals,ni)
20 }

The-built-in function nodesO determines the number of nodes present. In Une 17, a
port array globals with nodes() elements is created. This port array is used for the global
operations to be performed later. Lines 18-19 are two procedure caUs to be executed in paraUel
mode. The first procedure caU implements the rectangular rule to approximate the value of
•K, and the second displays the results. The role of the arguments passed to these procedures
is clear from the context of the program.

21 rectangle(ni,li,width,globals)
22 port globalsG;
23 fll i over 0 .. ni-1 :: /+ ni intervals */
24 start_interval(i,li,width,globals[i])Qnode(i)
25 }

Start_interval(i,li,width,globals)
double sum;
{;

compsum_(li,width,sum),
stdio:printf ("li='/,d width='/,f sujii='/,f\n'*,-Cli,width,sum},_),
globals=-Csiiin3-,
stdio: p r in t ! ("globals='/,f \n", {globals}, _) ,

}

The iterative construct in Une 23 creates n i instances of s t a r t _ i n t e r v a l () , each of which
caUs the Fortran procedure compsum to compute the local contribution to the value of ir. This
value is snapshot by the definitional variable globals for use in the procedure display.

display (count,globsmn,globals,ni)
port globals G;
{? count<ni ->

{; display(count-H,globsmn+globals[count] ,globals,ni) },
default ->
{; s td io :pr in t l (" sumall ='/,16. lOf \n",{globsuiii},_) }

15

We ran this program on the Intel iPSC/860 and on the IBM SP. The performance results
for ProgPiPCN are iUustrated below using gauge, an execution profiler for PCN programs. This
utiUty provides many options to analyze the performance of a paraUel PCN program. Among
these are the profile data for the time spent in each procedure on each node, the number of
times each procedure is caUed, idle times, internode message counts and volumes, and various
statistical results based on these profile data. The first graph pertains to ProgPiPCN run on
the Intel iPSC/860 with eight nodes.

I Usage I [calls II SlaUstics II Subset] [Delete II Clear II Color Scale j | Help] [infoj | Quit j

Zoom [^ i ^ ^ 3 Bucket ^ f f l ThreeD

ByHodes

1 Current Snapshot Selection II ShovrAU 1
E x e c u t i o n T i m e

_P_st£ jo _d u rop_frtiU 3
sys; merger 1/5
rysimerger2,_15/3
_p_stdio _fp J1 nt_» rg/7
sysir •ri2JB

..i; display. _
eompi: display. _lS/3
compt; stflrl_ii\te rval , _ 1. _22/1
coimpi;iwer_block._0._20/3
oofopi: rtflrt_iriterv«l, _ 1. _23/3
oompi: m«, in _bo dy. .S/a
_p_syi_str i ng_to_i nte ger /2
sysiclos*/^
iysido_hash._y<]
sys;rill_tuple/6

T o t a l E x e c u t i o n T i m e < m i n s ; s e c s : m s e o s) ; 0;1;879
T o t a l R e d u c t i o n s : 7283
To ta l S u s p e n s i o n s : 2770

Execution Time by Procedures

Figure 5. Execution time metric of ProgPiPCN

The graph shows the execution time metric of ProgPiPCN by procedures. Those procedure
names with the prefix compi belong to our code, and the other procedures are in the built-in
PCN modules sys and s td io . Notice that the time spent by the Fortran procedure compsum is
much greater than that of other procedures. Displayed below the graph is the total execution
tunes, the mmiber of reductions, and the number of suspensions. A reduction is one completed
execution of a process, and a suspension occurs when a process requires value of an undefined
definitional variable. A process suspends until the definitional variable is given a value.

6.2 P r o g P d e P C N

For the code ProgPdePCN we discuss only the procedure named square, which maps each block
to a node in a virtual array topology. The other procedures are similar to those of ProgPiPCN.
The complete code is given in the Appendix.

16

square (iiiax_it e r , g l o b a l s)
p o r t NCnodesO] .ECnodesO] .globalsC] ;

-CM i over 0 . . i s i z e - 1 : :
{I I j over 0 . . j s i z e - 1 : :

•Cme=id(i , j) ,
s t a r t _ b l o c k (m a x _ i t e r , i , j ,

N [m e] , N [i d (i , j - l)] ,
E [m e] , E [i d (i - l , j)] ,
g loba l s [me])<anode(me)

>
>

>
s t a r t _ b l o c k (m a x _ i t e r , i , j , N , S , E , W , g l o b a l _ s)

The domain is decomposed into i s i z e horizontal and j s i z e vertical blocks. Each block is
assigned an ID number by the function i d and mapped to the member node (me) of the array
node. The por t arrays N [n o d e s ()] and E [n o d e s ()] are used to communicate da t a on the
ghost points (which form the edge) . Notice that the north ghost points of b l o c k (i d (i , j - 1))
are the south ghost points of b l o c k (i d (i , j)) . And the north input of a block is the south
output of its nor th neighbor. The procedures send_edge and r e c e i v e _ e d g e in the Appendix
send and receive d a t a on the edge.

Figures 6-8 give the performance results of ProgPdePCN run on the IBM SP with nine
nodes. The first graph shows the execution time by procedures. Notice tha t the time used by
the computat ional procedure compute is about one hundred times those by the communication
procedures ge t_edge and r e c e i v e _ e d g e .

The second graph shows the time breakdown by nodes. The gray bars represent idle time
while the black ones represent the execution t ime. Notice that each node spends a considerable
amount of t ime waiting for da t a from other nodes. To improve performance, one must find
ways to reduce this idle t ime.

17

U s a g e 11 C a l l s | [S t aUs t JcT] | S u b s e t 11 De le t e [| C l e a r j j C o l o r S c a l e 11 H e l p] | I n f o] [o i l i t]

gauge Help]
Zoom PHaBia B u c k e t ^ Q T h r e e D

L i n e a r S c a l e ^ ^ ^ ^ Q U n S o r t

B y Wo d e s

L C u r r e n t S n a p s h o t S e l e c t i o n

E x e c u t i o n T i m e

i e - 0 3 l e - 0 6 0.0001 O.Ot

.JO/Z

Bomput*_/6
geted8»_/3
getedge_/3
geled8e_/3
getpd8e_/3

_*dse.
n;block._ie/10

3_edsE/9
r.:block.._17/16

E_.d8e._26/5
e_edge._2e/5
e_edge,_27i'S
a_edsa._29/5

n:setid_tdse/7
n:block/12
ltd 1 o_d uxnp_fm.t/ 3

T o t a l E x e c u t i o n T i m e (m i n s : s e c s i w i s e c s) : 1:19:592
T o t a l R e d u c t i o n s : 530282
T o t a l S u s p e n s i o n s ; 195137

Execution Time by Procedures

Figure 6. Performance of ProgPdePCN on the SP

I U s a g e I [c a l l s 11 S t a t i s t i c s 11 S u b s e t 11 De le t e | f c i e a r 11 C o l o r S c a l e 11 H e l p 11 In fo 11 Q u i t |

L o g S c a l e B u c k e t ^ f l H | T h r e e D

U n S o r t B y P r o c e d u r e s

C u r r e n t S n a p s h o t S e l e c t i o n

T i m e B r e a k d o w n

3D 35 40 45 50 55 60

T o t a l E x e c u t i o n T i m e (m i n s : s e c s : m s e c s) ? 1:19:592
To ta l R e d u c t i o n s : 530282
To ta l S u s p e n s i o n s : 195137

Time Breakdown by Nodes

Figure 7. Time breakdown by nodes

18

The third graph shows the execution time by procedure and nodes. The time is represented
by the color (unfortunately, the color cannot be reproduced in this report) of the square that
corresponds to the procedure and node.

1 Usage 11 CaUs | j Statistics 11 Subset 11 Delete 11 Clear 11 Color Scale 11 Help

Zoom ^ ^ S S S 9 Bucket ^ Q ^ ^ ^ Q

^ ^ ^ ^ ^ g Linear Scale ^ ^ ^ ^ ^ ^ Q UnSort BjrProcedures

ByNodes

Info II Quit 1

1 Current Snapshot Selection 11 ShowAU 1

comp ute /8
getcdge /3
zetcds^ /3
getedge /3
getedgf /Z
pd«r.
pd.n
pden
p d w
pd«n
pden

icceivc cdse- 30/5
block. 16/10
receive edge/9
block. 17/16
receiv«_edse._26/5
receiTre edse. 26/5

pdeniieceiv« edse. 27/5
pdeniiecelve edje . 29/5
pd«n;3«nd edgc/7
pd.r. blook/12

0

a
a
E
i

ih
IT

M

t
B

1

• • • •
H
X
H
I

•

2

• • •
M •

•

3

•
i • •

•
•
H
I

•
E

4

•
•
B
I

•
•

•

Execution Tims
5 6 7 6

••
••

UB
SB

bjh

•
•
• •
B

11

r
I
B
B
I

B
I
B

B
B

;:secs:msecs); 1:19:592

Total Suspensions; 195137

Execution Time by Procedures and Nodes

Figure 8. Execution time by procedures and nodes

7 Conclusion

The observations given below are based on our limited experience with the tools, and may
even be outdated.

• PCN is a programming language, whereas BlockComm is a library of routines. From
a user's point of view, this means that to use PCN, one has to master the language
syntax, whereas to use BlockComm/Chameleon, one has to learn how and where to use
the BlockComm/Chameleon subroutines to modify a sequential code. The new MPI tool
is more like the latter.

• For more complicated applications, BlockComm must be supplemented by Chameleon
routines (for paraUel I/O, data reduction, broadcasting, etc.).

• Although BlockComm has versions for both Fortran and C, writing a domain decompo
sition code in C is not as convenient, because C arrays cannot be declared with arbitrary
index ranges. Indeed, our original sequential TDGL code was written in C, and we have
to convert it to Fortran to take advantage of the BlockComm package.

• The current BlockComm documentation is written for Fortran users, whereas that of
Chameleon is for C users. Since we need to use Chameleon routines in our Fortran

19

program, we have to sometimes guess the Fortran syntax for some Chameleon routine
calls. It would be of great help to the users if both Fortran and C documentations for
the two packages were available.

• To use PCN to rewrite a sequential code in general involves relatively more effort than
to use a message-passing tool.

• Since the compilation technology for PCN is stiU in its infancy (and so is not as good
as that of Fortran or C), a program written entirely in PCN usually do not produce
the most efficient code. The approach of multilingual programming permits us to take
advantage of the unique features of PCN, such as mapping, communication, and schedul
ing, to complement the proven efficiency of Fortran and C programming for sequential
computation [4]. This approach calls for dividing up a sequential program into some con
venient parts and converting these pieces to procedures to be called by PCN. A Fortran
sequential subroutine can be called from PCN directly, except that the suffix "_" has to
be appended to the subroutine name to form the correspond PCN procedure name. In
the case of C subroutines, arguments (except arrays) passed to a C procedure from PCN
must be declared as pointers in the C procedure.

Acknowledgments

We thank our colleagues who have made their work on the various parallel programming tools
available to us and helped us with many of our questions. This list includes Ian Foster, William
Gropp, Ewing L. Lusk, and Steve Tuecke. We also thank Dave Levine for sharing with us his
version of parallel TDGL code and Paul Plassmann for his paraUel GL code; both provided
valuable assistance to get us started in learning BlockComm.

20

APPENDIX: Program Listings

ProgPdePCN: A PCN Program for Problem 3

vi:i,vm.vi.%vi;avavi,v.xaxi:i.%vi.%xi:i.vm

#include "grid.h"
tdefine i d (i , j) C((i+isize)7,isize) + CCj+jsize)7,jsize)*isize)
mainCargc,argv,re)

{? argv ?=[_,maxnum.of i te ra t ions] ->
t;

sys:string_to_integerCniaxnui[i_of_iterations,max_iter),
main_body(max_iter) in vts:arrayCisize*jsize) ,
rc=0

},
default ->
fi
stdio : printf ("usage :7,s <max_iter>\n",{argv[0]}-,_),
rc=l

}
}
main_bo<iy(niax_iter)
port globals[nodes()] ;
{I I squareCmax_iter.globals),

display(0,0,globals)
}
square(max_iter,globals)
port N[nodes()],ECnodesO],globalsD ;

{II i over 0 . . i s ize -1 : :
{II j over 0 . . j s i ze -1 ::

{me=idCi,j),
start_blockCmax_iter, i , j ,

Mime],n[id(i , j -1)] ,
E[iue] ,E[id(i - l , j)] ,
globals[me])Snode(me)

>
}

}
start.block(max_iter,i , j ,N,S,E,W,global_s)
double square[bsz*bsz],edge[bsz];
{|I N={Ni,Mo},E={Ei,Eo},

{ ? S?={So,Si}, W?={Wo,Wi}
-> { ;

i n i t i a l i z e _ (i , j . s q u a r e) ,
start_clockC),

block(max_iter,i,j.square,edge,{Ni,Si,Ei,Wi},
{No.So,Eo.Wo},global_s,0)
}

>
}
block Cmax_iter.i.j,square.edge.Is.Os.global_s.count)
double squared .edge[] .error;
{;
send_edge(square.edge,Os,Os1),
receive_edge(ni,si,ei.wi,ls.Isl) ,
compute_(i,j.square,ni,si,ei.wi.error),

{? count <max_iter ->

{II
block(max_iter,i.j.square.edge,Isl.Dsl,global_s,count+l)

},

21

default ->
{:stop„clock(),

global_s=error.
stdio:printf("dane\n".{}._)

}
}

send_edge(square,edge.Os,Dsl)
double square [] , edge [] ;

{ ? as7={N.S.E.W}
->
{; getedge_(NORTH,square.edge).

N=[{edge}INI].

getedge_(SOUTH,square.edge).
S=[{edge}|Sl].

getedge_(EAST.square,edge),

E= [{edge} I El].

getedge_(WEST.square,edge).
W=[{edge}|Wl],

Dsl={Nl,Sl,El.Hl}
}

}
receive_edge(ni ,s i .e i .wi . Is . Is l)
{ ? Is?={n.S.E.W} ->

{II
{? N?=[{im}|Nl_tmp] ->{;ni=nn,Nl=Nl_tmp}},
{? S?=[{ss}|Sl_tmp] ->{;si=ss.Sl=Sl_tmp}},
{? E7=[{ee}!El_tmp] ->{;ei=ee.El=El_tmp}}.
{? W?=[{HH}IMl_tmp] ->{;wi=ww.Wl=Wl_tmp}}.
Isl={Nl.Sl.El.Wl}

}
}

display(count.globmax.globals)
port globals[];
{? count<isize*jsize ->

{;temp_max=globals[count],
getmax(globmax.terap_max.new_max).
display(count+l.new„max.globals)

}.
default ->{;

stdio:printf ("Max_error=*/.f\n" .{globmax},.) ,
stdio:printf("done\n".{}._)

}

getmax(x.y.z)
{? x>y ->z=x,

default ->z=y
}

#include ''grid.h''

subroutine initialize(i,j.block)
integer i. j
double precision block(BSIZE.BSIZE)
integer ii. jj

do ii=l. BSIZE

22

do jj=l. BSIZE
blockdi. jj) = 0.0

enddo
enddo
return
end

subroutine compute(i.j,v.ned,sed,eed.¥ed.errmax)
integer i.j.ii.jj
double precision v(BSIZE.BSIZE).u(0:BSIZE+l,0:BSIZE+l)
double precision ned(BSIZE).sed(BSIZE)
double precision eed(BSIZE).wed(BSIZE)
double precision dx.dy.errmax.err.w.a.x(BSIZE).y(BSIZE)
errmax=0.0
dx=l.d0/(isize«BSIZE-l.dO)
dy=dx
B=l.dO
a=20.d0
do ii = 1.BSIZE

do jj = 1.BSIZE
u(ii.jj)=v(ii,jj)

enddo
enddo
do ii=l.BSIZE
u(0.ii)=wed(ii)
u(BSIZE+l.ii)=eed(ii)
u(ii.BSIZE+l)=ned(ii)
u(ii.O)=sed(ii)

enddo
do ii =1.BSIZE

x(ii)=(BSIZE*i+(ii-l))*dx
y(ii)=(BSIZE*j+(ii-l))»dy
if (i .eq. 0) u(0.ii)=0.0
if (i .eq. isize-l)u(BSIZE+l.ii)=y(ii)**3

0) u(ii.O)=0.0
jsize-l)u(ii.BSIZE+l)=x(ii)

do kk=l,20
errmax=0.0
do jj=l.BSIZE
do ii=l.BSIZE
u(ii.jj)=u(ii.jj)-¥»((-u(ii+l.jj)+2*u(ii.jj)-u(ii-l.jj))/dx**2
/ +(-u(ii.jj+l)+2*u(ii.jj)-u(ii,jj-l))/dy**2
/ + a*u(ii.jj)-x(ii)*y(jj)*(a*y(jj)**2-6))/(4/dx**2+a)
err=abs(u(ii.jj)-x(ii)*y(jj)**3)

errmax=max(errmax.err)
enddo
enddo
enddo
do ii = 1.BSIZE
do jj=l.BSIZE
v(ii.jj)=u(ii.jj)
enddo
enddo
return
end

subroutine getedge(id,block.edge)
double precision block(BSIZE.BSIZE), edge(BSIZE)

integer i,id

i f CJ
i l (j

enddo

. eq

.eq

C North face
if(id .eq. NORTH) then

23

do i=l,BSIZE
edge(i) = blockCi,BSIZE)

enddo
endif
South face
if (id .eq. SOUTH) then

do i=l,BSIZE
edge(i) = blockCi.l)

enddo
endif

East face
if (id .eq. EAST) then

do i=l,BSIZE
edge(i) = block(BSIZE,i)

enddo
endif
West face
if (id .eq. WEST) then
do i=l,BSIZE

edge(i) = block(l,i)
enddo

endif
return
end

24

vi:i:i:i:i:i:i:i:i:i:i:m^^^^^^

P r o g P d e B C : A BlockComm Program for Problem 3

vi:!:i:i:i:i:i:i:i:m^^^^^^^^

integer function norkerO

double precision errmax,work,dx,dy,H
integer nx.ny
parameter (nx=501, ny=501,a=20)
double precision u((nx+2)*(ny+2)),x(nx+2),y(ny+2)
double precision v((nx+2)*(ny+2))
double precision tl, t2, SYGetElapsedTime
integer plmytid, pgm,myid, nstep
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp

myid=pimytid()
call indexcomp(nx,ny,sx,ex,sxgp,exgp,

+sy,ey,sygp,eygp,pgm)
errmax=0.0
w=l.dO
call InitDomain(u,nx,ny,SK,sxgp,ex,exgp,sy,sygp,ey,eygp)
call InitDomainC v,nx,ny,sx,sxgp,ex,exgp,sy,sygp,ey,eygp)

call Plgsync(O)
tl = SYGetElapsedTime0

dx=l.dO/(nx-l)
dy=l.dO/(ny-l)

call bound(u, x,y ,nx ,ny, dx, dy, sx,sxgp, ex,exgp, sy,sygp,ey, eygp)
call bound(v,x,y,nx,ny,dx,dy,sx,sxgp,ex,exgp,sy,sygp,ey,eygp)

c begin iteration
nstep=2000
do 20 iter=0,nstep-l,2
call BCexec(pgiii,u,u)
call comput e(u,v,x,y,nx,ny,dx,dy,H,errmax,a,

+SX,sxgp,ex,exgp,sy,sygp,ey,eygp)

call BCexec(pgm,v,v)

call compute(v,u,x,y,nx,ny,dx,dy,H,errmax,a,
+sx,sxgp,ex,exgp,sy,sygp,ey,eygp)
call PIgdmax(errinax,l ,¥ork,0)
if (myid .eq. 0)print 30,w,IFIX(iter/2.0),errmax

20 continue
30 formatC5x,f8.2,ilO,fl6.12)

t2 = SYGetElapsedTimeO - tl
print *, 'Total time = ', t2, ' on ', pimytidO
call BCfree(pgm)
¥orker=0
return
end

SUBROUTINE indexcomp(nx,ny,sx,ex,sxgp,exgp,
+ sy.ey,sygp,eygp,pgm)

integer pimytid, pinumtids,iper(2)
include '/home/gropp/tools.n/blkcm/meshf.h'
integer myid, nproc,nx,ny,nd,NBYTES
integer pgm, sz(0:9,0:l)
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp

nd=2

25

NBYTES=8
sz(szmdim,0) = nx
sz(szisparallel,0) = 1
sz(szndim,0) = -1
sz(szmdim,l) = ny
szCszisparallel,1) = 1
szCszndim,1) = -1

call BCFindGhostFromStenciK nd, sz, 0, 0,1)
myid = pimytidO
nproc = pinumtidsC)
if(myid .eq. 0) print*,'nproc=',nproc
call BCGlobalToLocalArrayC nd, sz, nproc, myid)
iper(l)=0
iper(2)=0
call BCSetGhostWidths(nd,sz,iper)

pgm = BCBuildArrayPGM(nd, sz, nproc, myid, NBYTES)

call BCArrayCompileC pgm, 0)

sx = sz(szstart,0) + 1

ex = sz(szend,0) + 1
sxgp = sz(szsg,0)
exgp = sz(szeg,0)
sy = sz(szstart,1) + 1
ey = sz(szend,l) + 1
sygp = sz(szsg,1)
eygp = sz(szeg,l)

return
end

subroutine InitDomainC u,nx,ny,sx,sxgp,ex,exgp,sy,sygp,ey,eygp)
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp
double precision u(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
integer i,j,nx,ny
do j = sy-sygp,ey+eygp

do i = sx-sxgp,ex+exgp
u(i,j) = O.OdO

enddo
enddo
return
end

subroutine boundCu,x,y,nx,ny,dx,dy,
+ sx,sxgp,ex,exgp,sy,sygp,ey,eygp)
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp,i,j
double precision uCsx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision xCsx:ex)
double precision yCsy:ey)
double precision dx,dy
integer nx,ny
do i=sx,ex

x(i)=Ci-l)*dx
enddo

do j=sy,ey
yCj)=(j-l)*dy

enddo
Bottom (sy = 1)
if (sy .eq. 1) then

do i=sx,ex
u(i,sy) = 0.0

enddo
endif
Top (ey = ny)

26

if Cey .eq. ny) then
do i=sx,ex

uCi,ey) = xCi)
enddo

endif

Left (sx = 1)
if (sx .eq. 1) then

do j=sy,ey
uCsx,j) = 0.0

enddo
endif
Right Csx = nx)
if (ex .eq. nx) then

do j=sy,ey
u(ex,j) = y(j)*yCj)*yCj)

enddo
endif
return
end

subrout ine c omput e(u,v,x,y,nx,ny,dx,dy,¥,errmax,a,
+ sx,sxgp,ex,exgp,sy,sygp,ey,eygp)
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp
double precision u(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision v(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision x(sx:ex)
double precision y(sy:ey)
double precision dx,dy,errmax,err,w
integer ssx,ssy,eex,eey,i,j,nx,ny

ssx=sx
eex=ex
eey=ey
ssy=sy

if (sx .eq. l)ssx=2
if(sy .eq. l)ssy=2
if(ex .eq. nx)eex=nx-l
if(ey .eq. ny)eey=ny-l
errmax=0.0

do 15 j=ssy,eey
do 15 i=ssx,eex
v(i,j)=u(i,j)-w*((-u(i+l,j)+2*uCi,j)-uCi-l,j))/dx**2
/ +C-uCi,j+l)+2*uCi,j)-u(i,j-l))/dy**2
/ + a*u(i,j)-x(i)*y(j)*Ca*yCj)+*2-6))/C4/dx**2+a)

err=absCvCi,j)-xCi)*yCj)**3)
errmax=max Cerrmax,err)
continue
return
end

27

P r o g T d g l B C : A BlockComm Program for Problem 4

integer function workerC)

INTEGER sx,ex,sy,ey,sxgp,exgp,sygp,eygp
INTEGER nproc,myid,pimytid,pgm, szC0:9,0:l)
INTEGER nx,ny,nd,np,nr,ns,nsxC2),nsyC2),nxm,nym,count
parameterCnx = 52, ny = 52, nd=2)
double precision aCnx*ny),bCnx*ny)
double precision da(nx*ny),db(nx*ny)
double precision pi(nx*ny),p2(nx*ny)
double precision dpi(nx+ny),dp2(nx*ny)
double precision hh(nx*ny),seed(2)
double precision time,SYGetElapsedTime
double precision dx,dt0,dxy,dt,t,dy,rky,tp,h,rk
double precision dx2,rkx,rk2,dy2

myid=pimytid()
CALL get index(nx,ny,nd,sz,sx,ex,sy,ey,sxgp,sygp,exgp,eygp,pgm)

CALL checkindex(sz,sx,ex,sxgp,exgp,sy,ey,sygp,eygp,
+ nx.ny,myid,nproc)

if (myid.eq.O) print*, 'Reading parameters.'

CALL main_input(rk,h,tp,nx,ny,np,nr,ns,
+ dx2,dy2,rk2,rkx,rky,dxy,nxm,nym,
+ dtO,dx,dy,nsx,nsy,seed,myid)

if (myid.eq.O) print*, 'Initializing.'

CALL initializeCpl,p2,a,b,h,dx,
+SX,ex,sxgp,exgp,sy,ey,sygp,eygp,
+nsx,nsy,seed,ns,myid,nx.ny)

t=0
count=0
dt=0

c **+++**+*+ Main loop **********
if (myid .eq. 0) print*,'Start time=',SYGetElapsedTimeO

10 IF (t.lt.tp)THEN

CALL bound(p1,p2,a,b,h,rk,nx,ny,dx,dy,nxm,nym,
+ sx,ex,sxgp,exgp,sy,ey,sygp,eygp,rkx,rky)

CALL compf(pl,p2,a,b,da,db,dpl,dp2,dxy,
+nx,ny,dx,dy,nxm,nym,dx2,dy2,rkx,rky,rk2,rk,h,dt,count,
+SX,ex,sxgp,exgp,sy,ey,sygp,eygp,pgm)

if ((HOD(count,np).eq.O)) then

CALL compsum(pi,p2,a,b,hh,myid,count,pgm,
+ dx,dx2,dy,dy2,rkx,rky,rk2,nx,ny,nxm,nym,h,rk,t,
+ sx»ex,sxgp,exgp,sy,ey,sygp,eygp)
endif
dt=min(tp-t,dtO)
t =t+dt
count=count+1
GO TO 10
ENDIF

28

c End of main loop
if(myid .eq. 0)then
time=SYGetElapsedTime()
print*,' Elapsed time : *,time
print*,' Average Time : ',time/coimt
endif
porker=0
RETURN
END

SUBROUTINE get index(nx,ny,nd,sz,sx,ex,sy,ey,
+sxgp,sygp,exgp,eygp,pgm)

integer pimytid, pinumtids,iper(2)
include '/home/gropp/tools.n/blkcm/meshf.h'
integer myid, nproc,nx,ny,nd,NBYTES
integer pgm, sz(0:9,0:l)
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp
NBYTES=8
sz(szmdim,0) = nx
szCszisparallel,0) = 1
szCszndim,0) = -1
szCszmdim,1) = ny
szCszisparallel,!) = 1
szCszndim,1) = -1
call BCFindGhostFromStencilC nd, sz, 0, 0,1)
myid = pimytidO
nproc = pinumtidsC)
if(myid .eq. 0) print*,'nproc=',nproc
call BCGlobalToLocalArray(nd, sz, nproc, myid)
iper(l)=0
iper(2)=0

call BCSetGhostWidths(nd,sz,iper)

pgm = BCBuildArrayPGM(nd, sz, nproc, myid, NBYTES)

call BCArrayCompileC pgni) 0)

sx =
ex =
sxgp =
exgp =
sy
ey

sygp =
eygp =
return
end

szCszstart,0)
szCszend.O) +
sz(szsg,0)
szCszeg,0)
sz(szstart,1)
sz(szend,l) +
sz(szsg,1)

sz(szeg,1)

+
1

+
1

#include ''tools.h''
tinclude ''comm/comm.h''
#include <stdio.h>
#include ''blkcm/bc.h''
#include ''blkcm/mesh.h''
#include ''comm/io/pio.h*'
#ifdef rs6000
#define checkindex_ checkindex
ttendif
void checkindex_(size,sx,ex,sxgp,exgp,sy,ey,sygp,eygp,

nx,ny,myid,nproc)
BCArrayPart size[10];
int *sx, *ex, *sxgp, *exgp;
int *sy, *ey, *sygp, *eygp;
int *nx,*ny;

29

int *myid, *nproc;

{

FILE *pH;

static char filenameG = ''blk_rep'';

int i, Ix, ly;

int glx, gly; /*dimension of blocks with ghosts*/

if (*myid == 0) {

printf(''Writing report\n'');

if ((pw = fopen(filename, ' ' H ' ')) == NULL) {

printf (''cannot open '/.s\n'' ,f ilename) ;

exit(O);

}

fprintf(pw, '' Decomposition Report\n'');

fprintf(pw, ''****************************+*********+***\n\n'');

fprintf(pw, ''Total processors : Xd\n'', *nproc) ;

fprintf(pw, ''Global size (x,y) : */.d 7.d\n' ' ,

*nx, * n y) ;

fprintf(pH, ''Block Decomposition : ' ') ;

fprintf(pw, ''Processor Distribution (x, y) : 7,d 7,d\n\n'',

size[0].ndim, size[l].ndim);

fprintf(pw, ''node\tblock size\tblock endpoints\t'');

fprintf(pw, ''block w/ghosts points\n'');

for Ci=l;i<=70;i++) f printf (pw,''-") ;

fprintf(pH, ' ' \ n ' ') ;

fclose(pw);

}

Ix = *ex-*sx+l;

ly = *ey-*sy+l;

glx = *ex+*exgp-*sx+*sxgp+l;

gly = *ey+*eygp-*sy+*sygp+l;

for (i=0; i<=*nproc; i++) {

if (GTOKEN(0,i)) {

pw = fopenCfilename, ' ' a ' ') ;

fprintf (pw, ' ' 7.d\t(7.d 7.d) ' ' ,*myid,lx,ly) ;

fprintf (pw, ' '\tC7.d:7.d, 7.d:7.d) ' ' ,*sx,*ex,*sy,*ey) ;

fprintf Cpw,' '\t(7.d:7.d, 7.d:y.d)\n",

*sx-*sxgp,*ex+*exgp,*sy-*sygp,*ey++eygp);

/* fprintf(pw,''done\n'');*/

fclose(pw);

}

>

c The input file is read by processor 0 and then the data is

c scattered to the other processors

SUBROUTINE main_input(rk,h,tp,nx,ny,np,nr,ns,

+ dx2,dy2,rk2,rkx,rky,dxy,nxm,nym,

+ dtO,dx,dy,nsx,nsy,seed,myid)

integer isz,msg_int,msg_dbl,all ,dsz

parameter(isz=4,msg_int=l,all=0)

parameter(ds2=8,msg_dbl=4)

real*8 dx,dt0,dxy,dy,cf1,ylength,xlength

real*8 rk2,dy2,rky,rkx,h,rk,dx2,tp

integer np,nr,ns,nsxC2),nsyC2)

integer i, nx,ny,myid,nxra,nym

double precision seed(2)

CHARACTER*79 discrp

if Cmyid.eq.O) then

0PENCunit=9,file='defaults',

+status='old')

REWIND 9

READ (9,25) discrp

30

READ (9,*) rk
READ (9.25) discrp
READ (9,*) h
READ (9.25) discrp
READ (9,*) tp
READ (9,25) discrp
READ (9,*) xlength
READ (9,25) discrp
READ (9,*) ylength
READ (9,25) discrp
READ (9.*) np
READ (9.25) discrp
READ (9.*) nr
READ (9.25) discrp
READ (9.*) cfl
READ (9.25) discrp
READ (9.*) ns

do i=l.ns
READ (9.26) discrp
READ (9.*) nsx(i).nsy(i),seed(i)
end do
CLCISE(9)
FORMAT(A72)
dx = xlength/(nx-2)
dy = ylength/(ny-2)
dxy=dx*dy
dx2 = dx*dx
dy2 = dy*dy
rk2=rk*rk
rkx=rk*dx
rky=rk*dy

dt0=rk*cfl/max(l./dx2/rk2+l./dy2/rk2+(h*xlength)*t2,
+ l./dx2+l./dy2+l.)
nxm=nx-l
nym=ny-l
endif

scatter the data
call PIbcastSrc(np,isz.0.all,msg_int)
call PIbcastSrc(nr,isz,0.all,msg_int)
call PIbcastSrc(ns,isz.0.all.msg_int)
call PIbcastSrc(nxm.isz.0,all.msg_int)
call PIbcastSrc(nym.isz.0,all.msg_int)
call PIbcastSrc(h,dsz,0.all.msg.dbl)
call PIbcastSrc(dtO.dsz.0,all.msg.dbl)
call PIbcastSrc(tp,dsz,0.all.msg_dbl)
call PIbcastSrc(dx.dsz.0.all,msg_dbl)
call PIbcastSrc (dy. dsz. 0 .all ,msg_dbl)
call PIbcastSrc(dx2,dsz,0.all.msg_int)
call PIbcastSrc(dy2,dsz,0.all,msg_int)
call PIbcastSrc(rk,dsz.0.all.msg_int)
call PIbcastSrc(rkx.dsz,0.all,msg_dbl)
call PIbcastSrc(rky.dsz.0.all,msg_dbl)
call PIbcastSrc(rk2,dsz.0.all,msg_dbl)
call PIbcastSrc(dxy.dsz.0.all.msg.dbl)

do i=l,ns
call PIbcastSrc(nsx(i).isz.O,all,msg_int)
call PIbcastSrc(nsy(i),isz,0,all,msg_int)
call PIbcastSrc(seed(i).dsz.O,all.msg_dbl)

enddo
RETURN
END

31

SUBROUTINE initialize(pi,p2,a,b,h,dx,
+SX,ex,sxgp,exgp,sy,ey,sygp,eygp,
+nsx,nsy,se ed,ns,ray id,nx,ny)

INTEGER sx,ex,sy,ey,sxgp,exgp,sygp,eygp,ns
INTEGER nsx(ns),nsyCns)
double precision seedCns),dx,h
double precision pl(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision p2Csx-sxgp:ex+exgp,sy-sygp;ey+eygp)
double precision a(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision b(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
INTEGER ix,iy,myid,nx,ny

DO iy = sy-sygp, ey+eygp
DO ix = sx-sxgp, ex+exgp

plCix,iy)=0
p2(ix,iy)=0 '
aCix,iy)=0
bCix,iy)=(ix-l)*dx*h

END DO
END DO
CALL reinit(pi,sx,ex,sy,ey,sxgp,exgp,sygp,eygp,
+nsx,nsy,seed,ns,myid)
RETURN
END
SUBROUTINE reinit(pi,sx,ex,sy,ey,sxgp,exgp,

+ sygp,eygp,nsx,nsy,seed,ns,myid)
INTEGER ns,royid
INTEGER sx,ex,sy,ey,sxgp,eygp,exgp,sygp
double precision pi(sx-sxgp:ex+exgp,sy-sygp:ey+eygp),seed(ns)
INTEGER nsx(ns),nsy(ns),i,ix,iy
DO i = l,ns
DO ix = sx,ex
IF (CnsxCi) -ge. sx) .and. Cnsx(i) .le. ex)) then
DO iy = sy,ey
IF ((nsy(i) .ge. sy) .and. Cnsy(i) .le. ey)) then

plCnsx(i),nsy(i))=seed(i)
ENDIF

ENDDO
ENDIF

ENDDO
ENDDO
RETURN
END

SUBROUTINE boundCpl,p2,a,b,h,k,nx,ny,dx,dy,nxm,nym,
+ sx,ex,sxgp,exgp,sy,ey,sygp,eygp,kx,ky)

INTEGER nx, ny,i,nym,j,nxm
INTEGER sx, ex, sy, ey
INTEGER ssx,ssy,eex,eey
INTEGER sxgp, exgp, sygp, eygp
double precision pi(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision p2(sx-sxgp:ex+exgp,£y-sygp:ey+eygp)
double precision a(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision b(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision dx, dy, kx, ky,h,k
ssx=sx
ssy=sy
eex=ex
eey=ey
i f (e x . e q . nx) eex=nxm
if (ey .eq .ny)eey=nym

32

Bottom (sy=l)

if (sy .eq. 1) then
do i=ssx,eex

pl(i,l)=pl(i,2)*cos(b(i,l)*ky)
/ +p2Ci,2)*sinCb(i,l)*ky)

p2Ci,l)=p2(i,2)*cos(bCi,l)*ky)
/ -pi(i,2)*sin(b(i,1)*ky)

a(i,l)=a(i,2)+Ch-(b(i+l,l)-b(i,l))/dx)*dy
enddo

endif

Top (sy=ny)

if(sy .eq. ny) then
do i=ssx,eex

pl(i,ny)=plCi,nym)*cos(b(i,nym)*ky)
/ -p2Ci,nym)*sin(b(i,nym)*ky)

p2(i,ny)=p2(i,nym)*cosCbCi,nym)*ky)
/ +pl(i,nym)*sin(b(i,nym)*ky)

a(i,ny)=a(i,nym)-(h-Cb(i+l,nym)-b(i,nym))/dx)*dy
enddo

endif

left (sx=l)

if (sx .eq. 1) then
do j=ssy,eey

plCl,j)=plC2,j)*cos(a(l,j)*kx)
/ +p2(2,j)*sin(a(l,j)*kx)

p2Cl,j)=p2(2,j)*cosCa(l,j)*kx)
/ -pl(2,j)*sin(a(l,j)*kx)

b(l,j)=b(2,j)-Ch+(a(l,j+l)-a(l,j))/dy)*dx
enddo

endif

right (ex=nx)

if (ex .eq. nx) then
do j=ssy,eey

p1(nx,j)=pl(nxm,j)*cos(a(nxra,j)*kx)
/ -p2(nxm,j)*sin(a(nxm,j)*kx)

p2(nx,j)=p2(nxm,j)*cos(a(nxm,j)•kx)
/ +p1(nxm,j)*sinCa(nxm,j)*kx)

b (nx,j)=b(nxra,j) + (h+(a(nxm,j+1)
/ -a(nxm,j))/dy)*dx

enddo
endif
RETURN
END

SUBROUTINE compf(phi,ph2,al,a2,fgl,fg2,hgl,hg2,dxy,
+nx, ny, dx, dy, nxm, nym, dx2, dy 2, rkx, rky, rk2, rk, h, dt, count,
+SX,ex,sxgp,exgp,sy,ey,sygp,eygp,pgm)

INTEGER sx,ex,sy,ey,ssy,ssx^ eey,eex
INTEGER sxgp,exgp,sygp,eygp,pgm
INTEGER nx, ny,count,i,j,nxm,nym
double precision phi(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision ph2 (sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision al(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision a2(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision fgl(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision fg2(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)

33

double precision hgl(sx-sxgp:ex+exgp.sy-sygp:ey+eygp)
double precision hg2(sx-sxgp:ex+exgp.sy-sygp:ey+eygp)
double precision ¥m(60.60)
double precision rk.h.dt.c21.s21
double precision dx.dy.dx2.dy2.clO,sl0.c20.s20.cll.sll
double precision rk2.rkx.rky,dxy
ssy=sy
ssx=sx
eex=ex
eey=ey
call BCexec(pgm.phl.phi)
call BCexec(pgm.ph2.ph2)
call BCexec(pgm,al,al)
call BCexec(pgm,a2.a2)
if (sy .eq. 1) ssy=2
if (sx .eq. 1) ssx=2
if (ey .eq. ny) eey=riym
if (ex .eq. nx) eex=nxm
do j=ssy,eey
do i=ssx.Gex
clO = cos(al(i-l.j)*rkx)
slO = sin(al(i-l.j)*rkx)
c20 = cos(a2(i,j-l)*rky)
s20 = sin(a2(i,j-l)*rky)
ell = cos(al(i,j)+rkx)
sll = sin(al(i,j)*rkx)
c21 = cos(a2(i.j)*rky)
s21 = sin(a2(i.j)*rky)
wm(i.j)=phl(i.j)**2+ph2(i.j)**2
hgl(i,j)=phl(i.j)*(l.-om(i,j))
/ +((clO*phl(i-l.j) -sl0*ph2(i-l,j) - 2*phl(i.j)
/ +cll»phl(i+l,j) +sll*ph2(i+l.j))/dx2
/ +(c20*phl(i,j-l) -s20*ph2(i,j-l) - 2*phl(i,j)
/ +c21*phl(i,j+l) +S21tph2(i.j+l))/dy2)/rk2

hg2(i.j)=ph2(i.j)*(l.-m(i,j))
/ +((cl0*ph2(i-l,j) +slO*phl(i-l.j) - 2*ph2(i.j)
/ +cll*ph2(i+l,j) -sll*phl(i+l.j))/dx2
/ +(c20*ph2(i,j-l) +s20«phl(i.j-l) - 2*ph2(i,j)
/ +c21*ph2(i,j+l) -s21tphl(i.j+l))/dy2)/rk2

if (j.eq.2) then
fgl(i,j)= (al(i,j+l)-al(i.j))/dy2 + h/dy
/ +(a2(i.j)-a2(i+l,j))/(dxy)
/ +((phl(i,j)«ph2(i+l.j)-ph2(i,j)*phl(i+l.j))*cll
/ -(phl(l.j)*phl(i+l.j)+ph2(i.j)«ph2(i+l,j))*sll)/rkx

else if (j.eq.nym) then
fgl(i,j)= (-al(i,j)+al(i.j-l))/dy2 - h/dy
/ +(-a2(i.j-l)+a2(i+l.j-l))/(dxy)
/ +((phl(i.j)*ph2(i+l.j)-ph2(i.j)tphl(i+l,j))tcll
/ -(phl(i.j)«phl(i+l,j)+ph2(i,j)*ph2(i+l.j))*sll)/rkx
else

fgl(i,j)= (al(i,j+l)-2.tal(i,j)+al(i.j-l))/dy2
/ +(a2(i.j)-a2(i+l.j)-a2(i,j-l)+a2(i+l.j-l))/(dxy)
/ +((phl(i.j)«ph2(i+l,j)-ph2(i,j)«phl(i+l.j))*cll
/ -(phl(i.j)tphl(i+l.j)+ph2(i,j)*ph2(i+l.j))*sll)/rkx

end if »

if (i.eq.2) then
lg2(i.j)= (a2(i+l,j)-a2(i.j))/dx2 - h/dx
/ +(al(i.j)-al(i.j+l))/(dxy)
/ +(Cphl(i.j)»ph2(i.j+l)-ph2(i.j)*phl(i.j+l))*c21

34

/ -(phl(i,j)*phl(i,j+l)+ph2(i,j)*ph2(i,j+l)>*s21)/rky

else if (i.eq.nxm) then
fg2(i,j)= C-a2Ci,j)+a2Ci-l,j))/dx2 + h/dx

/ +C-alCi-l,j)+alCi-l,j+l))/Cdxy)
/ +CCphl(i,j)*ph2Ci,j+l)-ph2Ci,j)*phl(i,j+l))*c21
/ -CphlCi,j)*phlCi,j+l)+ph2Ci,j)*ph2Ci,j+l))*s21)/rky
else
fg2Ci,j)= Ca2Ci+l,j)-2.*a2Ci,j)+a2Ci-l,j))/dx2
/ +(al(i,j)-al(i,j+l)-alCi-l,j)+al(i-l,j+l))/(dxy)
/ +((phl(i,j)*ph2(i,j+l)-ph2(i,j)*phl(i,j+l))*c21
/ -(phl(i,j)*phl(i,j+l)+ph2(i,j)*ph2(i,j+l))*s21)/rky

end if
enddo
enddo

do j=ssy,eey
do i=ssx,eex
phlCi,j)=phl(i,j)+dt*hglCi,j)
ph2 Ci,j)=ph2 Ci,j)+dt*hg2 C i,j)
if (i.It.nxm) al(i,j)=alCi,j)+dt*fgl(i,j)*dx
if (j.It.nym) a2(i,j)=a2Ci,j)+dt*fg2(i,j)*dy

enddo
enddo
RETURN
END

SUBROUTINE compsum(pi,p2,a,b,hh,myid,count,pgm,
+ dx,dx2,dy,dy2,kx,ky,k2,nx,ny,nxm,nym,h,k,t,
+ sx,ex,sxgp,exgp,sy.ey,sygp,eygp)

INTEGER sx, ex, sy, ey,i ,j,pgm
INTEGER sxgp, exgp, sygp, eygp,nym,nxm
INTEGER myid,count,nx,ny,ssx,ssy,eex,eey
double precision pi (sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision p2 (sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision a (sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision b (sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision hh(sx-sxgp:ex+exgp,sy-sygp:ey+eygp)
double precision h,k,t
double precision sum,p2max,work
double precision dx, dy, dx2, dy2,k2, kx, ky,p2m
double precision cl,sl,c2,s2,s

ssy=sy
ssx=sx
eex=ex
eey=ey
call BCexec(pgm,pl,pl)
call BCexec(pgm,p2,p2)
c a l l BCexecCpgm,a,a)
c a l l BCexecCpgrci,b,b)

i f (sy . e q . 1) ssy=2
i f (sx . e q . 1) ssx=2
i f (ey . e q . ny) eey=nym
i f (ex . e q . nx) eex=nxm
sum=0
p2max=0
do j=ssy,GGy
do i = s s x , e e x
p 2 m = p l (i , j) * * 2 + p 2 (i , j) * * 2
p2max=max(p2max,p2m)
h h C i , j) = (b (i + l , j) - b (i , j)) / C d x)

35

/ -(a(i.j+l)-a(i.j))/(dy)
cl = cos(a(i.j)*kx)
si = sin(a(i.j)*kx)
c2 = cos(b(i.j)*ky)
s2 = sin(b(i,j)*ky)
s=(((pl(i+l,j)-(cl*pl(i,j)-sl*p2(i,j)))**2

/ +(p2(i+l,j)-(cl*p2(i,j)+sl*pl(i.j)))**2)/dx2
/ +((pl(i.j+l)-(c2*pl(i.j)-s2*p2(i.j)))**2
/ +(p2(i.j+l)-(c2*p2(i.j)+s2*pl(i.j)))**2)/dy2)/k2
/ - p2m + 0.5*p2m**2

sum= sum+s+(hh(i.j)-h)**2
end do
end do
sum=sujn*dx*dy
p2max=sqrt(p2max)
call PIgdsm[i(smii.l.¥ork.O)
call PIgdjnax(p2max, l.Hork.O)
if (myid .eq. 0) then
write(6.991) t,p2max.smn
format('t= '.flO.6.'. max(phi) = '.fl2.8,

/ '. energy =',f16.10)
endif
RETURN
END

36

References

[1] R. G. Babb II, Programming Parallel Processors, Addison-Wesley Publishing Company,
New York, 1988.

[2] K. M. Chandy and Stephen Taylor, An Introduction to Parallel Programming, Jones and
Barlett Publishers, Boston, 1992.

[3] Erhan Coskun, Numerical Analysis of Ginzburg-Landau Models for Superconductivity,
Ph.D. dissertation, 1994, Northern Illinois University, DeKalb, DI.

[4] I. Foster and S. Tuecke, Parallel Programming with PCN, Technical Report ANL-91/32,
Revision 1, Argonne National Laboratory, 1991.

[5] N. Galbreath, W. Gropp, D. Gunter, G. Leaf, and D. Levine, Parallel Solution of
the Three-Dimensional, Time-Dependent Ginzburg-Landau Equation, Proceedings of the
SIAM ParaUel Processing for Scientific Computing Conference, 1993, 160-164.

[6] J. Garner, M. Spanbauer, R. Benedek, K. Strandburg, S. Wright, and P. Plassmann,
Critical Fields of Josephson-coupled Superconducting Multilayers, Physical Review B, 45
(1992), 7973-7983.

[7] W. D. Gropp, Unpublished information, Argonne National Laboratory, Argonne, IU.
(1993).

[8] W. Gropp and E. Lusk, Users Guide for the ANL IBM SP, Mathematics and Computer
Science Division, Argonne National Laboratory, Technical Report ANL/MCS-TM-199.
See also ht tp: / /www.mcs.anl .gov/Projects /sp/ index.html.

[9] William Gropp, Ewing Lusk, and Anthony SkjeUum, Using MPI, MIT Press, 1995.
See also ht tp: / /www.mcs.anl .gov/Projects/mpi/ index.html.

[10] W. D. Gropp, H. Kaper, G. Leaf, D. Levine, M. Palumbo, and V. Vinokur, Numerical
Simulation of Vortex Dynamics in Type-II Superconductors, Preprint MCS-P476-1094,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne,
111., 1994.

[11] W. D. Gropp and B. Smith, Chameleon Parallel Programming Tools User Manual, Tech
nical Report ANL-93/23, Argonne National Laboratory, Argonne, DI., 1993.
See also f tp: / / info.mcs.anl .gov/pub/ tech_reports / reports /ANL9323.ps .Z.

[12] R. W. Hockey, Parallel Computers, Adam Hilger Ltd., Bristol, 1981.

[13] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing,
B. C. Publishing Company, New York, 1994.

[14] Man K. Kwong, Sweeping Algorithm for Inverting the Discrete Ginzburg-Landau Operator,
Applied Math, and Computations, 53 (1993), 129-150.

[15] Man K. Kwong, Numerical Experiments on the G-L Equations, Proceedings of the First
World Congress of Nonlinear Analysts, Tampa, Florida, Aug. 1992 (to appear). Also
Mathematics and Computer Science Division Preprint MCS-P371-0793, Argonne National
Laboratory, Argonne, DI., July 1993.

37

http://www.mcs.anl.gov/Projects/sp/index.html
http://www.mcs.anl.gov/Projects/mpi/index.html
ftp://info.mcs.anl.gov/pub/tech_reports/reports/ANL9323.ps.Z

[16] D. Levine, Unpubhshed information, Argonne National Laboratory, 1995.

[17] T. G. Lewis and H. El-Rewini, Introduction to Parallel Computing, Prentice HaU, Engle
wood cuffs, New Jersey, 1992.

[18] P. Messina and A. Murh, Parallel Computing: Problems, Methods and Applications, El
sevier, New York, 1988.

[19] J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum
Press, New York, 1988.

[20] M. J. Quinn, Designing Efficient Algorithms for Parallel Computers, McGraw-HiU Book
Company, New York, 1987.

[21] G. SeweU, The Numerical Solution of Ordinary and Partial Differential Equations, Aca
demic Press, CA, 1988.

38

Distr ibut ion for ANL-95/49

I n t e r n a l :

J . M. Beumer (5)
F. Y. Fradin
M. K. Kwong (10)
G. W. Pieper
R. L. Stevens
C. L. Wilkinson
TIS F i l e

Ex te rna l :

DOE-OSTI, for distribution per UC-405 (52)

ANL-E Library

ANL-W Library

Manager, Chicago Operations Office, DOE

Mathematics and Computer Science Division Review Committee:

F. Berman, University of California at LaJolla

G. Cybenko, Dartmouth College

T. DuPont, The University of Chicago

J. G. Glimm, State University of New York at Stony Brook

M. T. Heath, University of Illinois, Urbana

E. F. Infante, University of Minnesota

K. Kunen, University of Wisconsin at Madison

R. E. D'Malley, University of Washington

L. R. Petzold, University of Minnesota

E. Coskun, Karadeniz Technical University (10)

D. Nelson, DOE - Office of Computational and Technology Research

F. Howes, DOE - Office of Computational and Technology Research

39

