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Parallel Solution of the T ime-dependent Ginzburg-Landau Equations and 
Other Experiences Using B lockComm-Chameleon and P C N 

on the I B M SP, Intel i P S C / 8 6 0 , and Clusters of Workstat ions 

by 

Erhan Coskun and Man Kam Kwong 

Abstract 
Time-dependent Ginzburg-Landau (TDGL) equations are considered for modeling a 

thin-film finite size superconductor placed under magnetic field. Tlie problem tlien leads 
to the use of so-called natural boundary conditions. Computational domain is partitioned 
into subdomains and bond variables are used in obtaining the corresponding discrete system 
of equations. An efficient time-differencing method based on the Forward Euler method is 
developed. Finally, a variable strength magnetic field resulting in a vortex motion in Type 
II High Tc superconducting films is introduced. 

We tackled our problem using two different state-of-the-art parallel computing tools: 
BlockComm/Chameleon and PCN. We had access to two high-performance distributed 
memory supercomputers: the Intel iP,SC/860 and IBM .SPI. We also tested the codes 
using, as a parallel computing environment, a cluster of Sun .Sparc workstations. 

1 Introduction 

In our study of the mathematical modeling of superconductivity, we have developed an efficient 
algorithm to solve numerically the time-dependent Ginzburg-Landau (TDGL) equations in 
two dimensions (see [3]). The corresponding problem in three dimensions is, however, very 
computationally extensive. The study is impractical on a conventional uniprocessor computer, 
even if the most efficient algorithm is used. The numerical simulation of such Grand Challenge 
problems (the three-dimensional TDGL in its entire generality) depends on high-performance 
computing techniques and resources. 

We tacliled the 3D problem using two different state-of-the-art parallel computing tools: 
BlockComm/Chameleon and PCN, the development of both involves Argonne scientists. Since 
the completion of this work, a new tool, the Message Passing Interface (MPI) [9], has emerged. 
It has an excellent prospect to become the standard message-passing tool. Future extension 
of our work will definitely include MPI. We had access to two high-performance distributed-
memory supercomputers: the Intel iPSC/860 and IBM SP. We also tested the codes using, 
as a paraUel computing environment, a cluster of Sun Sparc workstations in the Mathematics 
and Computer Science Division of Argonne National Laboratory. 

Although our main objective was to develop a parallel code for the forward Euler method 
(see [3]) to solve the TDGL equations, we started with three simpler warm-up problems. Our 
experience with these three problems is also described here; they are used as examples to 
illustrate some of the concepts of parallel programming tools. More in-depth discussion of all 
the problems considered in this report, together with aU complete parallel codes and running 
procedures, is given in [3]. 

Dave Levine of Argonne National Laboratory has also developed parallel codes for solving 
the TDGL using BlockComm, but with a different method of discretizing the equations; consult 



[5], [10], and the forthcoming paper [16]. Earlier, two other coHeagues, Paul Plassmann and 
Steve Wright, developed a parallel code for solving the static Ginzburg-Landau equations using 
optimization techniques; their work is reported in [6]. 

2 Preliminaries 

We begin by introducing some terminology that wiU be used throughout this report. We also 
briefly describe the parallel programming tools and environments we used. 

When a particular instance of a code or a part of a code is executed on a machine, aU of 
the work needed to execute that portion of the program is referred as a single task, or process. 
Parallel processing is information processing or numerical computation that emphasizes the 
concurrent manipulation of data elements belonging to one or more processes in solving a 
single problem. 

Early supercomputers achieved concurrency with the method of pipelining, namely, by 
dividing a computation into a number of steps that are processed in an assembly-line fashion. 
More modern architectures use multiple CPUs, each capable of executing instructions entirely 
independently of others. 

How a processor accesses the computer memory (shared memory or distributed memory) 
affects how a parallel program will be designed and coded. It is generally accepted [18] that 
shared-memory parallel programming can usually be done through minor extensions to existing 
programming languages, operating systems, and code libraries. On the other hand, distributed-
memory programming is a bit more involved, but it has the advantages of massive parallelism. 
Our experiments were done exclusively on distributed-memory environments. 

A parallel system [17] is the combination of an algorithm and the parallel architecture on 
which it is implemented. As mentioned in [17], the performance of a parallel algorithm cannot 
be evaluated in isolation from a parallel architecture. Therefore, it is more appropriate to talk 
about performance of a paraUel system than performance of a parallel algorithm. 

Various metrics are used to measure the performance of a parallel system. We mention 
only a few of them below. 

• The parallel run time is the elapsed time from the moment a parallel computation starts 
to the moment the last processor finishes execution. 

• The speedup is defined as 

_ serial run time for the best sequential algorithm 
parallel run time using p processors 

The speedup 5p represents the benefit of solving a problem in parallel using p identical 
processors. A more practical definition (since it is often difficult to determine the best 
sequential algorithm) is obtained by replacing the expression in the numerator above by 
"execution time of the same code using a single processor." We are using the second 
definition to evaluate our numerical results. 

• The efficiency is defined as 

F - ^ 
P 

In the ideal case of perfect speedup, Sp — p, and i?p = !• 



• The cost of solving a problem on a parallel system is defined as the product of paraUel run 
time and the number of processors used. It reflects the sum of time that each processor 
spends solving the problem. 

The generic goal in the development of paraUel algorithms is to achieve as high a speedup 
as possible. The perfect speedup Sp = p, or optimal efficiency Ep = 1, is obtainable only for 
essentiaUy trivial problems. AU causes of imperfect speedup of a paraUel system are coUectively 
referred to as the otier/ieaii resulting from paraUel processing. Some factors that cause overhead 
are as foUows (see [13], [17], and [18]): 

• lack of a perfect degree of paraUeUsm in the algorithm, 

• lack of perfect load balancing, 

• communication or contention time, and 

• extra computation. 

In the ideal situation when each computational step of an algorithm can be done independently 
of the other steps, we say that the algorithm has a perfect degree of paraUeUsm. In reaUty, 
this rarely happens. A processor often must wait in the middle of a run until it has received 
aU the data or information from other processors it needs to execute the next computational 
step. 

Load balancing is the assignment of tasks to the processors of the system so as to keep 
each processor doing useful work for as much of the time as possible. The determination of 
this optimal assignment is also caUed the mapping problem. Load balancing may be achieved 
either staticaUy or dynamicaUy. In static load balancing, tasks are assigned to processors at 
the beginning of a computation. In dynamic load balancing, tasks are assigned to processors 
as the computation proceeds. 

In distributed-memory system, each processor can address only its own local memory. 
Communication between processors takes place by message passing, a process that takes rel
atively more time than direct access to local memory. In a shared-memory system, aU the 
processors have access to a common memory. Each processor can also have its own local, but 
Umited, memory for program code and intermediate results. Comnmnication between indi
vidual processors is through the common memory. A major advantage of a shared memory 
system is the rapid communication of data between processors. A serious disadvantage is that 
different processors may wish to use the common memory at about the same time (especiaUy 
when new values are to be deposited), in which case there wiU be a delay until the memory is 
free, or untU the proper order of access is estabUshed. This delay is caUed contention time. 

An efficient serial algorithm may not lend itself to efficient paraUeUzation because of 
the dependency of computational steps on results from previous steps. As a consequence, a 
redesign of the algorithm necessitating extra computation may be required. In an extreme 
situation, a better serial algorithm may have to be sacrificed in favor of an inferior one. 

We close this section by introducing the paraUel programming tools Chameleon, Block
Comm, and PCN, used in our study. 

Chameleon is a Ubrary of low-level, comprehensive, and very efficient message-passing 
routines developed by W. Gropp and B. Smith [11]. 

BlockComm is a Ubrary of high-level message-passing routines designed by Gropp to 
manage the efficient communication of blocks of data between processors. It provides short
cuts for many common message-passing tasks often found in the computational technique of 



domain decomposition. Both packages are stiU under active development. One can consult 
[7] for the most current documentation about BlockComm. Although the use BlockComm 
greatly simplifies the coding of domain decomposition algorithms, it does not provide the data 
reduction and broadcast routines that are needed in our case. Hence, we have used a combi
nation of Chameleon and BlockComm routines in the same program. Although both packages 
have both Fortran and C versions, we have chosen Fortran as our programming language (see 
Section 7). 

PCN {Program Composition Notation) is a paraUel programming language developed 
jointly by Argonne (I. Foster), Caltech, and the Aerospace Corporation. It provides a paradigm 
for composing paraUel programs out of modules of paraUel or sequential subroutines that may 
be written either in PCN itself or in more conventional programming languages. The pro
grammer needs to specify only which modules are to be run concurrently and what data 
communications are needed between modules. The actual assignment of tasks to specific pro
cessors and message passing are transparent to the programmer. See [4] for more information 
and its use for various paraUel environments. 

The two programming tools we used are highly portable over a wide variety of computer 
architectures. We have used three different paraUel environments in our study: the Intel 
iFSC/860, the IBM SP, and clusters of Sun Sparc workstations. AU of them are distributed-
memory multiple instruction multiple data (mImD) systems. For each problem, the same 
program (recompiled with the appropriate makefiles) were used in the three systems. The Intel 
iPSC/860 at Argonne has eight nodes. AU processor nodes are identical and are connected by 
bidirectional links in a hypercube topology. See [1] for its hardware and software specifications. 
We used this machine mainly for program development because it is freely accessible and there 
is no limitation on the amount of time one can work on the machine. The Argonne IBM SP'' 
has 128 nodes. Each node is an RS/6000 model 370 and has 128 MBytes of memory per node, 
1 GByte local disk per node, fuU Unix on each node, and a high-performance Omega switch. 
The peak performance of each node is 125 MFlops. There are several transport layers on 
the SP including EUI, EUIH, and p4. EUIH is the low-overhead implementation of the EUI 
interface. EUI is IBM's message-passing interface to the high-performance switch. See [8] for 
more current infonnation about the SP and how to use these transport layers. 

3 Test Problems 

In this section, we describe the four test problems in our experiments. Our ultimate goal is to 
develop a paraUel code implementing the forward Euler algorithm for the TDGL equations. As 
warm-up trials, we experimented with three simpler but computationaUy intensive problems. 

The first two problems are examples of the partitioning technique known as functional 
decomposition; the others use the domain decomposition technique. 

Problem 1: We consider the slowly divergent harmonic series 

~ 1 
E 7- (3.1) 

Mathematicians are interested in investigating its rate of divergence. The extremely slow rate 
of divergence of the series means that a large number of terms wiU be needed in numerical 

The work described in this report was done during the period of May 1993-May 1994. Since then, the SP 
sy.stem at Argonne has been upgraded, and more efficient communication switches have been installed. 



experiments, and this requirement makes the problem an interesting example for paraUel 
programming. A paraUel code using BlockComm to compute the partial sums wiU be presented 
together with some performance results. The code wiU be referred to as ProgStunBC. 

Problem 2: Our second problem is a weU-known simple numerical integration problem. 
It has been the arch-example used in the introduction of many paraUel programming tool 
manuals. The objective is to approximate the integral 

/ f(x)dx, 
Jo 

f(^) ^ 
where 

l + a;2 
by using the rectangular rule: 

A.(/)=/^i:/(^o, 

where h = Inumber and x, = (« — ^)h. One can easily modify ProgSumBC to obtain a paraUel 
BlockComm code for this problem. A paraUel PCN code for this problem, named ProgPiPCN, 
wiU also be presented. 

Problem 3: We study the foUowing two-dimensional PDE: 

-Ui i - Uyy -{- cu- xy{cy^ - 6) = 0 (3.2) 

in (0,1) X (0,1) with the boundary conditions 

u{x,Q) = 0, u(x, I) = X, u(0,y) = 0, u{l,y) = y , 

where c is a constant. The exact solution, as one can easily verify, is u = xy^. By approximating 
the second derivatives in the PDE by the usual central difference formulas, we obtain the Unear 
system of equations 

U-2U + U\ / '{ / I -2f / -Hf/ l , ,̂  / 2 .^ n /Q-n 
' -\-cU - Xiyj{cy^ - 6) = 0, {3.3) Ax^ ) \ Ay 

for i = 1,. ..,iV - 1, j = 1, . . . ,M - 1, where Ax = l/N, Ay = Imethod, Xi = 
iAx, yj = jAy. We use the notation f/' to denote the value of U at the point above 
the current one, and so on. 

By expanding the function u{x,y) as a Taylor series at the point {xi,yj), we see that 
the truncation error involves only the fourth-order derivatives oiu{x,y). Since u{x,y) = xy^, 
both u^:cxx aud Uyyyy &!& idcuticaUy zero. Therefore, the truncation error is identicaUy zero as 
weU. When the parameter c is greater than approximately —27r̂ , the coefficient matrix in the 
Unear system is positive definite (see [21]). The SOR (successive overrelaxation) method is, 
therefore, guaranteed to converge if the relaxation parameter is chosen from the interval (0,2). 
The paraUel codes for this problem with BlockComm and PCN, which we named ProgPdeBC 
and ProgPdePCN, respectively, are given in the appendix. 

Problem 4: Mathematical detaUs of the TDGL are given elsewhere (see [3], [14], [L5], 
and the references cited therein). It suffices to say that we are solving a system of (partial 
differential) evolution equations governing two unknown functions of time and space position: a 



complex-valued scalar 0 (caUed the order parameter); and a three-dimensional vector A (caUed 
the vector potential). We used an unconventional method (see [14]) to discretize the equations 
with respect to the space variables. The resulting system is then solved using a forward Euler 
method. A paraUel BlockComm code ProgTdglBC, for implementing this algorithm is given 
in the Appendix. Since the code itself is rather compMcated and speciaUzed, we wiU present 
in this report only the performance results, and refer the readers to [3] for a detail discussion 
of the code. We note that we have also developed a paraUel PCN code for this problem, but 
performance results were less complete. As a consequence, we have decided not to present the 
code in this report. 

4 Parallel Programs with BlockComm/Chameleon 

4.1 ProgSumBC 

ProgSumBC is the paraUel program for Problem 1 written with BlockComm and Chameleon. 
We give the program listing below and explain its content. The Une numbers in the Usting 
have been added for easy reference and are not part of the code. The subroutine caUs that 
begin with the letters BC are BlockComm routines, while those that begin with PI are 
Chameleon routines. The first five Unes of the program declare the appropriate function name 
and variables. 

1 integer function workerO 

2 integer nbytes, Plmytid, myid, sx, ex, N 

3 integer intsize, itisg_int, Psallprocs 

4 parajneterCintsize=4,msg_int=l ,Psallprocs=0 ,nbytes =8) 

5 double precision tl, t2, SYGetElapsedTime 

Strictly speaking, the name ProgSumBC refers to the file PRofSumBC.f that contains a 
Fortran subroutine, caUed worker(), as declared in Une 1 above. The worker() subroutine 
looks very much Uke the corresponding sequential code for the same problem, consisting of 
instructions for the numerical computations. In the actual execution of a paraUel program, the 
computer needs some extra ouer/jead instructions, such as initial setup directives (to round up 
the processors, to estabUsh communication Unks among them) and clean-up directives (needed 
after aU the computations are finaUy completed). Many paraUel programming tools require 
the programmer to expUcitly include these instructions in their programs. Chameleon also has 
these instructions, such as PICall used to caU worker() in a paraUel execution mode, but it 
provides a convenient alternative that frees a user from this extra effort. Overhead instructions 
that are common to most programs have been coUected in a main subroutine and precompiled 
into the object files fmain.o (for Fortran codes) and cmain.o (for C codes), the appropriate one 
of which is to be Unked to the computational subroutine when compiling the program. The 
moderate price to pay is that one no longer thinks in terms of writing a main Fortran code (or 
amainO routine in C), but just a function, with the mandatory name workerO, as we have 
done in Une 1. 



6 myid = PImytidO 
7 if(myid .eq. 0) then 
8 print*,'Number of points' 
9 readCB,*) N 
10 endif 
11 call PIbcastSrc(N,intsize,0,Psallprocs,msg_int) 

When the code is executed on the computer, every processor is given the same set of in
structions contained in ProgSumBC, but not every processor wiU execute aU the steps contained 
in the program. The program uses the ID number of the caUing processor (obtained in Une 
6 using the Chameleon routine PImytidO and assigned to the variable myid) to determine 
which segments of codes are appropriate for the processor. Lines 7 to 10 are an example of 
such a segment. One of the processors, that with ID # 0, is given the responsibiUty to obtain 
(interactively) the user's input of the number of terms in the harmonic series to be summed. 

Line 11 caUs the Chameleon routine PIbcastSrc to broadcast the value N to aU processors. 
Even though only processor # 0 is the sender, and aU other processors are receivers, this routine 
must be caUed by aU the processors. Roughly speaking, PIbcastSrc is shorthand for processor 
# 0 to send a message to aU other processors, and for aU other processors to wait for this 
message to arrive. The arguments of PIbcastSrc are, respectively, the variable (buffer) that 
contains the message, the size of the buffer, the ID of the processor that broadcast the message, 
the set of processors that receive the message (by conventions, aU processor are involved when 
this argument is 0), and the data type of the message. For more precise syntax definitions of 
Chameleon routine caUs, consult the Chameleon manual [11]. 

12 call getindex(N,sx,ex) 
13 call Plgsync(O) 
14 tl=SYGetElapsedTime() 
15 call compute(sx,ex,myid) 
16 t2=SYGetElapsedTime() - tl 

Now that each processor knows the value of N, the next step is to find out the range of 
those terms in the harmonic series that it is responsible to work on. This is done in Une 12, by 
caUing the subroutine getindex to compute the indices of the starting term sx and the last 
term ex in the range. The subroutine getindex is given below. 

In Une 13, a global synchronization caU is use to make aU the processors begin timing at 
the same time. Lines 14 and 16 return the elapsed time used by the subroutine compute in 
Hne 15, which does the actual summing. 



subroutine getindex(mx,sx,ex) 
include */home/gropp/tools.n/blkcm/meshf.h' 
integer mx, sx, ex, nd 
integer sz(0:9,0:0) 
integer myid, nproc, PInumtids, Plmytid 

nd=l 
sz(szmdim,0) = mx 
sz(szisparallel,0) = 1 
sz(szndim,0) = -1 
myid = PImytidO 
nproc = PlnumtidsC) 
call BCGlobalToLocalArrayC nd, sz, nproc, myid ) 

sx = szCszstart,0) + 1 
ex = sz(szend,0) + 1 
return 
end 

The BlockComm subroutine BCGlobalToLocalArray determines the appropriate data 
domain that a processor is responsible for, given the decomposition style nd, the number 
of processors nproc, and the processor ID # myid. The BlockComm call stores its results in 
the array sz. The precise definitions of each components of sz are given in the manual. 

subroutine compute(sx,ex,myid) 
integer sx, ex, i , myid 
double precision sum, work 
sum=0.0 
do i=sx,ex 

suin=sum+ldOintegral 
enddo 
call PIgdsum(sxun,1,work,0) 
if (myid .eq. 0)then 

print*,'sumall=',sum 
endif 
return 
end 

The first part of compute finds the partial sum of the series from the term with index 
sx to the term with index ex, inclusively. The call PIgdsum finds the {gjlobal ({djouble 
precision) sum, by adding up all the results stored in the local variable sum attached to each 
processor. The other arguments of PIgdsum are, respectively, the length of the array sum (in 
the current case, sum is a scalar and so the value of this argument is simply 1), a variable 
work of the same size as sum to be use as a work area to compute the global sum, and the 
set of processors involved (as mentioned earlier, a value of 0, by conventions, denotes that all 
processors are to be included). The result of the computation, the global sum, overwrites the 
local sum originally stored in the variable sum. 

Some self-explanatory performance results are illustrated in Figure 1. 
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Figure 1: ParaUel run time and efficiency versus number of processors for ProgSumBC-SPl-EUIH 
system with N=10,000,000 (Left), N=100,000,000 (Middle), N=200,000,000 (Right) 

4.2 P r o g P i B C 

One needs only to modify the computation routine compute in ProgSumBC to get a paraUel 
code for Problem 2 in BlockComm. As a matter of fact, the only difference between Problem 
1 and Problem 2 is the form of the terms in the series to be summed. In other words, the only 
changes needed are in modifying the Une "sum=sum+ldOintegral." 

We include this example to make the point that once a prototype paraUel program has 
been written, most of it can be reused to write another program. Hence, the initial investment 
is worthwhile. 

4.3 P r o g P d e B C 

Our method of solution for Problem 3 is to decompose the domain in which the partial differ
ential equation is defined into as many subdomains as the number of processors used. Each 



processor is assigned the data of one of the subdomains, caUed a block, and a share of the com
putations that involves mainly data in the associated block. At each time step, each processor 
also requires some extra information from processors associated with neighboring blocks in 
order to complete the assigned computation. In most domain decomposition algorithms for 
solving partial diff'erential equations, this extra information is typicaUy data carried by a set 
of lattice points, the so-called ghost points, that borders the subdomain. The exchange of in
formation among processors is performed by message-passing lihr^Ty caUs. A two-dimensional 
computational domain with a typical subdomain and its ghost points for a five-point stencil 
is iUustrated below. 

e ' I • . • ' I © 

o • • • o 

o • • • o 

o • • • o 

e 1' • • • " © 

1 o o O II 

Figure 2. A nine-processor decomposition of a 2D domain with ghost points (o) 

If only a general-purpose, low-level message-passing tool, such as Chameleon, is used to 
write a paraUel domain decomposition algorithm, one has to include expUcit code segments to 

1. define each subdomain (i.e., determine the ranges of indices for the lattice points that 
belongs to the subdomain), 

2. map each subdomain to a processor, 

3. determine the ghost points and the flow of messages, and 

4. send and receive each message expUcitly. 

BlockComm provides subroutine caUs to automate these steps for a wide class of common 
domain decomposition algorithms for rectangular domains. For example, the caU 
BCGlobalToLocalArray, used earUer in the subroutine compute in Section 4.1, takes care 
of Steps 1-3. Another subroutine BCexecO can be used to automate Step 4. 

The complete ProgPdeBC is given in the Appendix. Some performance results are pre
sented in Table 1. For this particular experiment, c = 20, J« (relaxation parameter) = 1, and 
we have used .500 grid points and 1000 iteration steps. 

10 



Table 1. Performance results for the ProgPdeBC-SPl-EUIH system 

Num. of Proc. 

1 

2 

4 

8 

12 

20-

ParaUel Run Time 

1294.95 

691.55 

536.82 

319.12 

245.38 

224.40 

Speedup 

1 

1.8725 

2.4123 

4.0579 

5.2773 

5.7707 

Efficiency 

1 

0.9363 

0.6031 

0.5072 

0.4398 

0.2885 

4.4 P r o g T d g l B C 

The code for ProgTdglBC is rather long and is given in the Appendix. It has been run on the 
Intel iPSC/860, the IBM SP, and a cluster of Sun workstations without further modification. 

Typical performance results for the ProgTdglBC-iPSC/860 and ProgTdglBC-SPl-P4 sys
tems are plotted in Figure 3. The latter uses the version of BlockComm that is based on the 
p4 macro package, developed by E. L. Lusk at Argonne, and uses the Ethernet transport layer. 

The graph suggests that the speedup for the first paraUel system is far better than that of 
the second. This is due to the fact that our test problem has a rather low granularity for the 
SP. As a result, SP nodes have to spend more time in communication than in computation. 
This explanation is confirmed by the fact that when we switched to the more efficient transport 
layer EUIH for the SP, the speedup curve shows a much better performance. 
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Figure 3. Speedup for the ProgTdglBC-SPl-P4 and ProgTdglBC-iPSC system 
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Figure 4. Some performance results for the ProgTdglBC-SPl-EUIH system 

5 Clusters of W^orkstations as a Parallel Computing Environment 

Due to the low access priority given to paraUel jobs running in the background, performance on 
a cluster of workstations is not consistent, varying according to the demand of other users on 
the workstations. This environment is, therefore, mainly used for test runs and for debugging. 
Also, we observed that process creation on remote workstations takes a considerable amount 
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of time. Typical performance results obtained by running ProgPiBC with n = 10,000,000 on 
a coUection of workstations are shown below. Here, the real and system times are obtained by 
the Unix's time command and elapsed time is computed by the program. 

Table 2. Performance results for ProgPiBC on a cluster of workstations 
(time in sec) 

Time 

Real 

System 

Elapsed 

Number of Workstations 

1 

19.0 

0.2 

17.8 

2 

29.1 

0.6 

22.17 

3 

57.2 

0.9 

43.84 

4 

59.8 

1.1 

32.03 

5 

58.0 

1.4 

25.4 

6 

60.3 

1.5 

21.1 

7 

60.6 

1.6 

18.7 

8 

71.0 

1.8 

14.9 

6 Parallel Programs with PCN 

6.1 ProgPiPCN 

1 

2 

3 

4 

S 

6 

7 

8 

9 

10 

11 

12 

13 

14 

IS 

mainCargc, argv, r e ) 
{ ? argv ?= [ _ , n _ i n t e r v a l s , i n t e r v a l _ s i z e ] -> 

<; 
sys : s t r ing_ to_ in teger (n_ i rL te rva l s , n i ) , 
s y s : s t r i n g _ t o _ i n t e g e r ( i n t e r v a l _ s i z e , l i ) , 
n x = n i * l i , 
with=l.numberx, 
main_body( i i i , l i ,wi th) in v t s : a r r a y ( n i ) , 
re = 0 

} , 
defau l t -> 
{; s t d i o : p r i n t f ("Usage : '/,s <n_in te rva l s> < in t_ s i ze> \n ' 

r e = 1 
} 

} 

, { a rgv [0 ]> ,_ ) , 

The syntax of PCN is similar to that of C. The comma, however, is used as the command 
terminator, whUe the semicolon is used to declare a sequential procedure. ProgPiPCN consists 
of five PCN procedures and a Fortran procedure. The arguments argc and argv of mainO 
have the usual meanings as in C, and r e is used for a return code. But unUke in C, the 
arguments to mainO must be specified in the definition, whether we are planning to pass any 
command Une arguments to the program or not. Line 2 serves a dual purpose: the number 
of command Une arguments is checked, and if that is equal to two, the values of a rgv[ l ] and 
argv[2] are assigned to n_intervals and in terval_s ize . In Unes 4-5, PCN's sys module 
IS used to define ni and l i to be the integer values represented by the strings n . i n t e rva l s 
and interval_si2e, respectively. In Unes 6-7, the total number of points and the width of 
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the intervals are computed. Line 8 is a caU to the procedure main_body; the infix operator 
in is used to specify the map function v t s : array (n i ) , which creates a virtual array topology 
of size n i . This topology guarantees the portabiUty of the program across difi'erent computer 
platforms. See [4] for more on virtual topologies and map functions. Line 9 sets the return 
code variable to zero. Lines 11-13 print an error message in case the number of arguments 
suppUed is wrong. 

16 main_body(ni,li,width) 
17 port globals[nodes()]; 

18 {II rectangle(ni,li,width,globals), 
19 display(0,0,globals,ni) 
20 } 

The-built-in function nodesO determines the number of nodes present. In Une 17, a 
port array globals with nodes() elements is created. This port array is used for the global 
operations to be performed later. Lines 18-19 are two procedure caUs to be executed in paraUel 
mode. The first procedure caU implements the rectangular rule to approximate the value of 
•K, and the second displays the results. The role of the arguments passed to these procedures 
is clear from the context of the program. 

21 rectangle(ni,li,width,globals) 
22 port globalsG; 
23 fll i over 0 .. ni-1 :: /+ ni intervals */ 
24 start_interval(i,li,width,globals[i])Qnode(i) 
25 } 

Start_interval(i,li,width,globals) 
double sum; 
{; 

compsum_(li,width,sum), 
stdio:printf ("li='/,d width='/,f sujii='/,f\n'*,-Cli,width,sum},_), 
globals=-Csiiin3-, 
stdio: p r in t ! ("globals='/,f \n", {globals}, _) , 

} 

The iterative construct in Une 23 creates n i instances of s t a r t _ i n t e r v a l ( ) , each of which 
caUs the Fortran procedure compsum to compute the local contribution to the value of ir. This 
value is snapshot by the definitional variable globals for use in the procedure display. 

display (count,globsmn,globals,ni) 
port globals G; 
{? count<ni -> 

{; display(count-H,globsmn+globals[count] ,globals,ni) }, 
default -> 
{; s td io :pr in t l ( " sumall ='/,16. lOf \n",{globsuiii},_) } 
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We ran this program on the Intel iPSC/860 and on the IBM SP. The performance results 
for ProgPiPCN are iUustrated below using gauge, an execution profiler for PCN programs. This 
utiUty provides many options to analyze the performance of a paraUel PCN program. Among 
these are the profile data for the time spent in each procedure on each node, the number of 
times each procedure is caUed, idle times, internode message counts and volumes, and various 
statistical results based on these profile data. The first graph pertains to ProgPiPCN run on 
the Intel iPSC/860 with eight nodes. 
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Figure 5. Execution time metric of ProgPiPCN 

The graph shows the execution time metric of ProgPiPCN by procedures. Those procedure 
names with the prefix compi belong to our code, and the other procedures are in the built-in 
PCN modules sys and s td io . Notice that the time spent by the Fortran procedure compsum is 
much greater than that of other procedures. Displayed below the graph is the total execution 
tunes, the mmiber of reductions, and the number of suspensions. A reduction is one completed 
execution of a process, and a suspension occurs when a process requires value of an undefined 
definitional variable. A process suspends until the definitional variable is given a value. 

6.2 P r o g P d e P C N 

For the code ProgPdePCN we discuss only the procedure named square, which maps each block 
to a node in a virtual array topology. The other procedures are similar to those of ProgPiPCN. 
The complete code is given in the Appendix. 
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square (iiiax_it e r , g l o b a l s ) 
p o r t NCnodesO] .ECnodesO] .globalsC] ; 

-CM i over 0 . . i s i z e - 1 : : 
{I I j over 0 . . j s i z e - 1 : : 

•Cme=id(i , j ) , 
s t a r t _ b l o c k ( m a x _ i t e r , i , j , 

N [ m e ] , N [ i d ( i , j - l ) ] , 
E [ m e ] , E [ i d ( i - l , j ) ] , 
g loba l s [me] )<anode(me) 

> 
> 

> 
s t a r t _ b l o c k ( m a x _ i t e r , i , j , N , S , E , W , g l o b a l _ s ) 

The domain is decomposed into i s i z e horizontal and j s i z e vertical blocks. Each block is 
assigned an ID number by the function i d and mapped to the member node (me) of the array 
node. The por t arrays N [ n o d e s ( ) ] and E [ n o d e s ( ) ] are used to communicate da t a on the 
ghost points (which form the edge) . Notice that the north ghost points of b l o c k ( i d ( i , j - 1 ) ) 
are the south ghost points of b l o c k ( i d ( i , j ) ) . And the north input of a block is the south 
output of its nor th neighbor. The procedures send_edge and r e c e i v e _ e d g e in the Appendix 
send and receive d a t a on the edge. 

Figures 6-8 give the performance results of ProgPdePCN run on the IBM SP with nine 
nodes. The first graph shows the execution time by procedures. Notice tha t the time used by 
the computat ional procedure compute is about one hundred times those by the communication 
procedures ge t_edge and r e c e i v e _ e d g e . 

The second graph shows the time breakdown by nodes. The gray bars represent idle time 
while the black ones represent the execution t ime. Notice that each node spends a considerable 
amount of t ime waiting for da t a from other nodes. To improve performance, one must find 
ways to reduce this idle t ime. 
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Figure 6. Performance of ProgPdePCN on the SP 
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Figure 7. Time breakdown by nodes 
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The third graph shows the execution time by procedure and nodes. The time is represented 
by the color (unfortunately, the color cannot be reproduced in this report) of the square that 
corresponds to the procedure and node. 
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Figure 8. Execution time by procedures and nodes 

7 Conclusion 

The observations given below are based on our limited experience with the tools, and may 
even be outdated. 

• PCN is a programming language, whereas BlockComm is a library of routines. From 
a user's point of view, this means that to use PCN, one has to master the language 
syntax, whereas to use BlockComm/Chameleon, one has to learn how and where to use 
the BlockComm/Chameleon subroutines to modify a sequential code. The new MPI tool 
is more like the latter. 

• For more complicated applications, BlockComm must be supplemented by Chameleon 
routines (for paraUel I/O, data reduction, broadcasting, etc.). 

• Although BlockComm has versions for both Fortran and C, writing a domain decompo
sition code in C is not as convenient, because C arrays cannot be declared with arbitrary 
index ranges. Indeed, our original sequential TDGL code was written in C, and we have 
to convert it to Fortran to take advantage of the BlockComm package. 

• The current BlockComm documentation is written for Fortran users, whereas that of 
Chameleon is for C users. Since we need to use Chameleon routines in our Fortran 
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program, we have to sometimes guess the Fortran syntax for some Chameleon routine 
calls. It would be of great help to the users if both Fortran and C documentations for 
the two packages were available. 

• To use PCN to rewrite a sequential code in general involves relatively more effort than 
to use a message-passing tool. 

• Since the compilation technology for PCN is stiU in its infancy (and so is not as good 
as that of Fortran or C), a program written entirely in PCN usually do not produce 
the most efficient code. The approach of multilingual programming permits us to take 
advantage of the unique features of PCN, such as mapping, communication, and schedul
ing, to complement the proven efficiency of Fortran and C programming for sequential 
computation [4]. This approach calls for dividing up a sequential program into some con
venient parts and converting these pieces to procedures to be called by PCN. A Fortran 
sequential subroutine can be called from PCN directly, except that the suffix "_" has to 
be appended to the subroutine name to form the correspond PCN procedure name. In 
the case of C subroutines, arguments (except arrays) passed to a C procedure from PCN 
must be declared as pointers in the C procedure. 
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APPENDIX: Program Listings 

ProgPdePCN: A PCN Program for Problem 3 

vi:i,vm.vi.%vi;avavi,v.xaxi:i.%vi.%xi:i.vm 

#include "grid.h" 
tdefine i d ( i , j ) C((i+isize)7,isize) + CCj+jsize)7,jsize)*isize) 
mainCargc,argv,re) 

{? argv ?=[_,maxnum.of i te ra t ions] -> 
t; 

sys:string_to_integerCniaxnui[i_of_iterations,max_iter), 
main_body(max_iter) in vts:arrayCisize*jsize) , 
rc=0 

}, 
default -> 
fi 
stdio : printf ("usage :7,s <max_iter>\n",{argv[0]}-,_), 
rc=l 

} 
} 
main_bo<iy(niax_iter) 
port globals[nodes()] ; 
{I I squareCmax_iter.globals), 

display(0,0,globals) 
} 
square(max_iter,globals) 
port N[nodes()],ECnodesO],globalsD ; 

{II i over 0 . . i s ize -1 : : 
{II j over 0 . . j s i ze -1 :: 

{me=idCi,j), 
start_blockCmax_iter, i , j , 

Mime],n[id( i , j -1)] , 
E[ iue] ,E[ id( i - l , j ) ] , 
globals[me])Snode(me) 

> 
} 

} 
start.block(max_iter,i , j ,N,S,E,W,global_s) 
double square[bsz*bsz],edge[bsz]; 
{|I N={Ni,Mo},E={Ei,Eo}, 

{ ? S?={So,Si}, W?={Wo,Wi} 
-> { ; 

i n i t i a l i z e _ ( i , j . s q u a r e ) , 
start_clockC), 

block(max_iter,i,j.square,edge,{Ni,Si,Ei,Wi}, 
{No.So,Eo.Wo},global_s,0) 
} 

> 
} 
block Cmax_iter.i.j,square.edge.Is.Os.global_s.count) 
double squared .edge[] .error; 
{; 
send_edge(square.edge,Os,Os1), 
receive_edge(ni,si,ei.wi,ls.Isl) , 
compute_(i,j.square,ni,si,ei.wi.error), 

{? count <max_iter -> 

{II 
block(max_iter,i.j.square.edge,Isl.Dsl,global_s,count+l) 

}, 
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default -> 
{:stop„clock(), 

global_s=error. 
stdio:printf("dane\n".{}._) 

} 
} 

send_edge(square,edge.Os,Dsl) 
double square [] , edge [] ; 

{ ? as7={N.S.E.W} 
-> 
{; getedge_(NORTH,square.edge). 

N=[{edge}INI]. 

getedge_(SOUTH,square.edge). 
S=[{edge}|Sl]. 

getedge_(EAST.square,edge), 

E= [{edge} I El]. 

getedge_(WEST.square,edge). 
W=[{edge}|Wl], 

Dsl={Nl,Sl,El.Hl} 
} 

} 
receive_edge(ni ,s i .e i .wi . Is . Is l ) 
{ ? Is?={n.S.E.W} -> 

{II 
{? N?=[{im}|Nl_tmp] ->{;ni=nn,Nl=Nl_tmp}}, 
{? S?=[{ss}|Sl_tmp] ->{;si=ss.Sl=Sl_tmp}}, 
{? E7=[{ee}!El_tmp] ->{;ei=ee.El=El_tmp}}. 
{? W?=[{HH}IMl_tmp] ->{;wi=ww.Wl=Wl_tmp}}. 
Isl={Nl.Sl.El.Wl} 

} 
} 

display(count.globmax.globals) 
port globals[]; 
{? count<isize*jsize -> 

{;temp_max=globals[count], 
getmax(globmax.terap_max.new_max). 
display(count+l.new„max.globals) 

}. 
default ->{; 

stdio:printf ("Max_error=*/.f\n" .{globmax},.) , 
stdio:printf("done\n".{}._) 

} 

getmax(x.y.z) 
{? x>y ->z=x, 

default ->z=y 
} 

#include ''grid.h'' 

subroutine initialize(i,j.block) 
integer i. j 
double precision block(BSIZE.BSIZE) 
integer ii. jj 

do ii=l. BSIZE 
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do jj=l. BSIZE 
blockdi. jj) = 0.0 

enddo 
enddo 
return 
end 

subroutine compute(i.j,v.ned,sed,eed.¥ed.errmax) 
integer i.j.ii.jj 
double precision v(BSIZE.BSIZE).u(0:BSIZE+l,0:BSIZE+l) 
double precision ned(BSIZE).sed(BSIZE) 
double precision eed(BSIZE).wed(BSIZE) 
double precision dx.dy.errmax.err.w.a.x(BSIZE).y(BSIZE) 
errmax=0.0 
dx=l.d0/(isize«BSIZE-l.dO) 
dy=dx 
B=l.dO 
a=20.d0 
do ii = 1.BSIZE 

do jj = 1.BSIZE 
u(ii.jj)=v(ii,jj) 

enddo 
enddo 
do ii=l.BSIZE 
u(0.ii)=wed(ii) 
u(BSIZE+l.ii)=eed(ii) 
u(ii.BSIZE+l)=ned(ii) 
u(ii.O)=sed(ii) 

enddo 
do ii =1.BSIZE 

x(ii)=(BSIZE*i+(ii-l))*dx 
y(ii)=(BSIZE*j+(ii-l))»dy 
if (i .eq. 0) u(0.ii)=0.0 
if (i .eq. isize-l)u(BSIZE+l.ii)=y(ii)**3 

0) u(ii.O)=0.0 
jsize-l)u(ii.BSIZE+l)=x(ii) 

do kk=l,20 
errmax=0.0 
do jj=l.BSIZE 
do ii=l.BSIZE 
u(ii.jj)=u(ii.jj)-¥»((-u(ii+l.jj)+2*u(ii.jj)-u(ii-l.jj))/dx**2 
/ +(-u(ii.jj+l)+2*u(ii.jj)-u(ii,jj-l))/dy**2 
/ + a*u(ii.jj)-x(ii)*y(jj)*(a*y(jj)**2-6))/(4/dx**2+a) 
err=abs(u(ii.jj)-x(ii)*y(jj)**3) 

errmax=max(errmax.err) 
enddo 
enddo 
enddo 
do ii = 1.BSIZE 
do jj=l.BSIZE 
v(ii.jj)=u(ii.jj) 
enddo 
enddo 
return 
end 

subroutine getedge(id,block.edge) 
double precision block(BSIZE.BSIZE), edge(BSIZE) 

integer i,id 

i f CJ 
i l (j 

enddo 

. eq 

.eq 

C North face 
if(id .eq. NORTH) then 
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do i=l,BSIZE 
edge(i) = blockCi,BSIZE) 

enddo 
endif 
South face 
if (id .eq. SOUTH) then 

do i=l,BSIZE 
edge(i) = blockCi.l) 

enddo 
endif 

East face 
if (id .eq. EAST) then 

do i=l,BSIZE 
edge(i) = block(BSIZE,i) 

enddo 
endif 
West face 
if (id .eq. WEST) then 
do i=l,BSIZE 

edge(i) = block(l,i) 
enddo 

endif 
return 
end 
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vi:i:i:i:i:i:i:i:i:i:i:m^^^^^^ 

P r o g P d e B C : A BlockComm Program for Problem 3 

vi:!:i:i:i:i:i:i:i:m^^^^^^^^ 

integer function norkerO 

double precision errmax,work,dx,dy,H 
integer nx.ny 
parameter (nx=501, ny=501,a=20) 
double precision u((nx+2)*(ny+2)),x(nx+2),y(ny+2) 
double precision v((nx+2)*(ny+2)) 
double precision tl, t2, SYGetElapsedTime 
integer plmytid, pgm,myid, nstep 
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp 

myid=pimytid() 
call indexcomp(nx,ny,sx,ex,sxgp,exgp, 

+sy,ey,sygp,eygp,pgm) 
errmax=0.0 
w=l.dO 
call InitDomain( u,nx,ny,SK,sxgp,ex,exgp,sy,sygp,ey,eygp) 
call InitDomainC v,nx,ny,sx,sxgp,ex,exgp,sy,sygp,ey,eygp) 

call Plgsync(O) 
tl = SYGetElapsedTime0 

dx=l.dO/(nx-l) 
dy=l.dO/(ny-l) 

call bound(u, x,y ,nx ,ny, dx, dy, sx,sxgp, ex,exgp, sy,sygp,ey, eygp) 
call bound(v,x,y,nx,ny,dx,dy,sx,sxgp,ex,exgp,sy,sygp,ey,eygp) 

c begin iteration 
nstep=2000 
do 20 iter=0,nstep-l,2 
call BCexec(pgiii,u,u) 
call comput e(u,v,x,y,nx,ny,dx,dy,H,errmax,a, 

+SX,sxgp,ex,exgp,sy,sygp,ey,eygp) 

call BCexec(pgm,v,v) 

call compute(v,u,x,y,nx,ny,dx,dy,H,errmax,a, 
+sx,sxgp,ex,exgp,sy,sygp,ey,eygp) 
call PIgdmax(errinax,l ,¥ork,0) 
if (myid .eq. 0)print 30,w,IFIX(iter/2.0),errmax 

20 continue 
30 formatC5x,f8.2,ilO,fl6.12) 

t2 = SYGetElapsedTimeO - tl 
print *, 'Total time = ', t2, ' on ', pimytidO 
call BCfree(pgm) 
¥orker=0 
return 
end 

SUBROUTINE indexcomp(nx,ny,sx,ex,sxgp,exgp, 
+ sy.ey,sygp,eygp,pgm) 

integer pimytid, pinumtids,iper(2) 
include '/home/gropp/tools.n/blkcm/meshf.h' 
integer myid, nproc,nx,ny,nd,NBYTES 
integer pgm, sz(0:9,0:l) 
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp 

nd=2 
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NBYTES=8 
sz(szmdim,0) = nx 
sz(szisparallel,0) = 1 
sz(szndim,0) = -1 
sz(szmdim,l) = ny 
szCszisparallel,1) = 1 
szCszndim,1) = -1 

call BCFindGhostFromStenciK nd, sz, 0, 0,1) 
myid = pimytidO 
nproc = pinumtidsC) 
if(myid .eq. 0) print*,'nproc=',nproc 
call BCGlobalToLocalArrayC nd, sz, nproc, myid ) 
iper(l)=0 
iper(2)=0 
call BCSetGhostWidths(nd,sz,iper) 

pgm = BCBuildArrayPGM( nd, sz, nproc, myid, NBYTES ) 

call BCArrayCompileC pgm, 0 ) 

sx = sz(szstart,0) + 1 

ex = sz(szend,0) + 1 
sxgp = sz(szsg,0) 
exgp = sz(szeg,0) 
sy = sz(szstart,1) + 1 
ey = sz(szend,l) + 1 
sygp = sz(szsg,1) 
eygp = sz(szeg,l) 

return 
end 

subroutine InitDomainC u,nx,ny,sx,sxgp,ex,exgp,sy,sygp,ey,eygp) 
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp 
double precision u(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
integer i,j,nx,ny 
do j = sy-sygp,ey+eygp 

do i = sx-sxgp,ex+exgp 
u(i,j) = O.OdO 

enddo 
enddo 
return 
end 

subroutine boundCu,x,y,nx,ny,dx,dy, 
+ sx,sxgp,ex,exgp,sy,sygp,ey,eygp) 
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp,i,j 
double precision uCsx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision xCsx:ex) 
double precision yCsy:ey) 
double precision dx,dy 
integer nx,ny 
do i=sx,ex 

x(i)=Ci-l)*dx 
enddo 

do j=sy,ey 
yCj)=(j-l)*dy 

enddo 
Bottom (sy = 1) 
if (sy .eq. 1) then 

do i=sx,ex 
u(i,sy) = 0.0 

enddo 
endif 
Top (ey = ny) 
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if Cey .eq. ny) then 
do i=sx,ex 

uCi,ey) = xCi) 
enddo 

endif 

Left (sx = 1) 
if (sx .eq. 1) then 

do j=sy,ey 
uCsx,j) = 0.0 

enddo 
endif 
Right Csx = nx) 
if (ex .eq. nx) then 

do j=sy,ey 
u(ex,j) = y(j)*yCj)*yCj) 

enddo 
endif 
return 
end 

subrout ine c omput e(u,v,x,y,nx,ny,dx,dy,¥,errmax,a, 
+ sx,sxgp,ex,exgp,sy,sygp,ey,eygp) 
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp 
double precision u(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision v(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision x(sx:ex) 
double precision y(sy:ey) 
double precision dx,dy,errmax,err,w 
integer ssx,ssy,eex,eey,i,j,nx,ny 

ssx=sx 
eex=ex 
eey=ey 
ssy=sy 

if (sx .eq. l)ssx=2 
if(sy .eq. l)ssy=2 
if(ex .eq. nx)eex=nx-l 
if(ey .eq. ny)eey=ny-l 
errmax=0.0 

do 15 j=ssy,eey 
do 15 i=ssx,eex 
v(i,j)=u(i,j)-w*((-u(i+l,j)+2*uCi,j)-uCi-l,j))/dx**2 
/ +C-uCi,j+l)+2*uCi,j)-u(i,j-l))/dy**2 
/ + a*u(i,j)-x(i)*y(j)*Ca*yCj)+*2-6))/C4/dx**2+a) 

err=absCvCi,j)-xCi)*yCj)**3) 
errmax=max Cerrmax,err) 
continue 
return 
end 
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P r o g T d g l B C : A BlockComm Program for Problem 4 

integer function workerC) 

INTEGER sx,ex,sy,ey,sxgp,exgp,sygp,eygp 
INTEGER nproc,myid,pimytid,pgm, szC0:9,0:l) 
INTEGER nx,ny,nd,np,nr,ns,nsxC2),nsyC2),nxm,nym,count 
parameterCnx = 52, ny = 52, nd=2) 
double precision aCnx*ny),bCnx*ny) 
double precision da(nx*ny),db(nx*ny) 
double precision pi(nx*ny),p2(nx*ny) 
double precision dpi(nx+ny),dp2(nx*ny) 
double precision hh(nx*ny),seed(2) 
double precision time,SYGetElapsedTime 
double precision dx,dt0,dxy,dt,t,dy,rky,tp,h,rk 
double precision dx2,rkx,rk2,dy2 

myid=pimytid() 
CALL get index(nx,ny,nd,sz,sx,ex,sy,ey,sxgp,sygp,exgp,eygp,pgm) 

CALL checkindex(sz,sx,ex,sxgp,exgp,sy,ey,sygp,eygp, 
+ nx.ny,myid,nproc) 

if (myid.eq.O) print*, 'Reading parameters.' 

CALL main_input(rk,h,tp,nx,ny,np,nr,ns, 
+ dx2,dy2,rk2,rkx,rky,dxy,nxm,nym, 
+ dtO,dx,dy,nsx,nsy,seed,myid) 

if (myid.eq.O) print*, 'Initializing.' 

CALL initializeCpl,p2,a,b,h,dx, 
+SX,ex,sxgp,exgp,sy,ey,sygp,eygp, 
+nsx,nsy,seed,ns,myid,nx.ny) 

t=0 
count=0 
dt=0 

c **+++**+*+ Main loop ********** 
if (myid .eq. 0) print*,'Start time=',SYGetElapsedTimeO 

10 IF (t.lt.tp)THEN 

CALL bound(p1,p2,a,b,h,rk,nx,ny,dx,dy,nxm,nym, 
+ sx,ex,sxgp,exgp,sy,ey,sygp,eygp,rkx,rky) 

CALL compf(pl,p2,a,b,da,db,dpl,dp2,dxy, 
+nx,ny,dx,dy,nxm,nym,dx2,dy2,rkx,rky,rk2,rk,h,dt,count, 
+SX,ex,sxgp,exgp,sy,ey,sygp,eygp,pgm) 

if ((HOD(count,np).eq.O)) then 

CALL compsum(pi,p2,a,b,hh,myid,count,pgm, 
+ dx,dx2,dy,dy2,rkx,rky,rk2,nx,ny,nxm,nym,h,rk,t, 
+ sx»ex,sxgp,exgp,sy,ey,sygp,eygp) 
endif 
dt=min(tp-t,dtO) 
t =t+dt 
count=count+1 
GO TO 10 
ENDIF 
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c End of main loop 
if(myid .eq. 0)then 
time=SYGetElapsedTime() 
print*,' Elapsed time : *,time 
print*,' Average Time : ',time/coimt 
endif 
porker=0 
RETURN 
END 

SUBROUTINE get index(nx,ny,nd,sz,sx,ex,sy,ey, 
+sxgp,sygp,exgp,eygp,pgm) 

integer pimytid, pinumtids,iper(2) 
include '/home/gropp/tools.n/blkcm/meshf.h' 
integer myid, nproc,nx,ny,nd,NBYTES 
integer pgm, sz(0:9,0:l) 
integer sx,sxgp,ex,exgp,sy,sygp,ey,eygp 
NBYTES=8 
sz(szmdim,0) = nx 
szCszisparallel,0) = 1 
szCszndim,0) = -1 
szCszmdim,1) = ny 
szCszisparallel,!) = 1 
szCszndim,1) = -1 
call BCFindGhostFromStencilC nd, sz, 0, 0,1) 
myid = pimytidO 
nproc = pinumtidsC) 
if(myid .eq. 0) print*,'nproc=',nproc 
call BCGlobalToLocalArray( nd, sz, nproc, myid ) 
iper(l)=0 
iper(2)=0 

call BCSetGhostWidths(nd,sz,iper) 

pgm = BCBuildArrayPGM( nd, sz, nproc, myid, NBYTES ) 

call BCArrayCompileC pgni) 0 ) 

sx = 
ex = 
sxgp = 
exgp = 
sy 
ey 

sygp = 
eygp = 
return 
end 

szCszstart,0) 
szCszend.O) + 
sz(szsg,0) 
szCszeg,0) 
sz(szstart,1) 
sz(szend,l) + 
sz(szsg,1) 

sz(szeg,1) 

+ 
1 

+ 
1 

#include ''tools.h'' 
tinclude ''comm/comm.h'' 
#include <stdio.h> 
#include ''blkcm/bc.h'' 
#include ''blkcm/mesh.h'' 
#include ''comm/io/pio.h*' 
#ifdef rs6000 
#define checkindex_ checkindex 
ttendif 
void checkindex_(size,sx,ex,sxgp,exgp,sy,ey,sygp,eygp, 

nx,ny,myid,nproc) 
BCArrayPart size[10]; 
int *sx, *ex, *sxgp, *exgp; 
int *sy, *ey, *sygp, *eygp; 
int *nx,*ny; 
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int *myid, *nproc; 

{ 

FILE *pH; 

static char filenameG = ''blk_rep''; 

int i, Ix, ly; 

int glx, gly; /*dimension of blocks with ghosts*/ 

if ( *myid == 0 ) { 

printf(''Writing report\n''); 

if ((pw = fopen(filename, ' ' H ' ' )) == NULL) { 

printf (''cannot open '/.s\n'' ,f ilename) ; 

exit(O); 

} 

fprintf(pw, '' Decomposition Report\n''); 

fprintf(pw, ''****************************+*********+***\n\n''); 

fprintf(pw, ''Total processors : Xd\n'', *nproc) ; 

fprintf(pw, ''Global size (x,y) : */.d 7.d\n' ' , 

*nx, * n y ) ; 

fprintf(pH, ''Block Decomposition : ' ' ) ; 

fprintf(pw, ''Processor Distribution (x, y) : 7,d 7,d\n\n'', 

size[0].ndim, size[l].ndim); 

fprintf(pw, ''node\tblock size\tblock endpoints\t''); 

fprintf(pw, ''block w/ghosts points\n''); 

for Ci=l;i<=70;i++) f printf (pw,''-") ; 

fprintf(pH, ' ' \ n ' ' ) ; 

fclose(pw); 

} 

Ix = *ex-*sx+l; 

ly = *ey-*sy+l; 

glx = *ex+*exgp-*sx+*sxgp+l; 

gly = *ey+*eygp-*sy+*sygp+l; 

for (i=0; i<=*nproc; i++) { 

if (GTOKEN(0,i)) { 

pw = fopenCfilename, ' ' a ' ' ) ; 

fprintf (pw, ' ' 7.d\t( 7.d 7.d) ' ' ,*myid,lx,ly) ; 

fprintf (pw, ' '\tC7.d:7.d, 7.d:7.d) ' ' ,*sx,*ex,*sy,*ey) ; 

fprintf Cpw,' '\t(7.d:7.d, 7.d:y.d)\n", 

*sx-*sxgp,*ex+*exgp,*sy-*sygp,*ey++eygp); 

/* fprintf(pw,''done\n'');*/ 

fclose(pw); 

} 

> 

c The input file is read by processor 0 and then the data is 

c scattered to the other processors 

SUBROUTINE main_input(rk,h,tp,nx,ny,np,nr,ns, 

+ dx2,dy2,rk2,rkx,rky,dxy,nxm,nym, 

+ dtO,dx,dy,nsx,nsy,seed,myid) 

integer isz,msg_int,msg_dbl,all ,dsz 

parameter(isz=4,msg_int=l,all=0) 

parameter(ds2=8,msg_dbl=4) 

real*8 dx,dt0,dxy,dy,cf1,ylength,xlength 

real*8 rk2,dy2,rky,rkx,h,rk,dx2,tp 

integer np,nr,ns,nsxC2),nsyC2) 

integer i, nx,ny,myid,nxra,nym 

double precision seed(2) 

CHARACTER*79 discrp 

if Cmyid.eq.O) then 

0PENCunit=9,file='defaults', 

+status='old') 

REWIND 9 

READ (9,25) discrp 
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READ (9,*) rk 
READ (9.25) discrp 
READ (9,*) h 
READ (9.25) discrp 
READ (9,*) tp 
READ (9,25) discrp 
READ (9,*) xlength 
READ (9,25) discrp 
READ (9,*) ylength 
READ (9,25) discrp 
READ (9.*) np 
READ (9.25) discrp 
READ (9.*) nr 
READ (9.25) discrp 
READ (9.*) cfl 
READ (9.25) discrp 
READ (9.*) ns 

do i=l.ns 
READ (9.26) discrp 
READ (9.*) nsx(i).nsy(i),seed(i) 
end do 
CLCISE(9) 
FORMAT(A72) 
dx = xlength/(nx-2) 
dy = ylength/(ny-2) 
dxy=dx*dy 
dx2 = dx*dx 
dy2 = dy*dy 
rk2=rk*rk 
rkx=rk*dx 
rky=rk*dy 

dt0=rk*cfl/max(l./dx2/rk2+l./dy2/rk2+(h*xlength)*t2, 
+ l./dx2+l./dy2+l.) 
nxm=nx-l 
nym=ny-l 
endif 

scatter the data 
call PIbcastSrc(np,isz.0.all,msg_int) 
call PIbcastSrc(nr,isz,0.all,msg_int) 
call PIbcastSrc(ns,isz.0.all.msg_int) 
call PIbcastSrc(nxm.isz.0,all.msg_int) 
call PIbcastSrc(nym.isz.0,all.msg_int) 
call PIbcastSrc(h,dsz,0.all.msg.dbl) 
call PIbcastSrc(dtO.dsz.0,all.msg.dbl) 
call PIbcastSrc(tp,dsz,0.all.msg_dbl) 
call PIbcastSrc(dx.dsz.0.all,msg_dbl) 
call PIbcastSrc (dy. dsz. 0 .all ,msg_dbl) 
call PIbcastSrc(dx2,dsz,0.all.msg_int) 
call PIbcastSrc(dy2,dsz,0.all,msg_int) 
call PIbcastSrc(rk,dsz.0.all.msg_int) 
call PIbcastSrc(rkx.dsz,0.all,msg_dbl) 
call PIbcastSrc(rky.dsz.0.all,msg_dbl) 
call PIbcastSrc(rk2,dsz.0.all,msg_dbl) 
call PIbcastSrc(dxy.dsz.0.all.msg.dbl) 

do i=l,ns 
call PIbcastSrc(nsx(i).isz.O,all,msg_int) 
call PIbcastSrc(nsy(i),isz,0,all,msg_int) 
call PIbcastSrc(seed(i).dsz.O,all.msg_dbl) 

enddo 
RETURN 
END 
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SUBROUTINE initialize(pi,p2,a,b,h,dx, 
+SX,ex,sxgp,exgp,sy,ey,sygp,eygp, 
+nsx,nsy,se ed,ns,ray id,nx,ny) 

INTEGER sx,ex,sy,ey,sxgp,exgp,sygp,eygp,ns 
INTEGER nsx(ns),nsyCns) 
double precision seedCns),dx,h 
double precision pl(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision p2Csx-sxgp:ex+exgp,sy-sygp;ey+eygp) 
double precision a(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision b(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
INTEGER ix,iy,myid,nx,ny 

DO iy = sy-sygp, ey+eygp 
DO ix = sx-sxgp, ex+exgp 

plCix,iy)=0 
p2(ix,iy)=0 ' 
aCix,iy)=0 
bCix,iy)=(ix-l)*dx*h 

END DO 
END DO 
CALL reinit(pi,sx,ex,sy,ey,sxgp,exgp,sygp,eygp, 
+nsx,nsy,seed,ns,myid) 
RETURN 
END 
SUBROUTINE reinit(pi,sx,ex,sy,ey,sxgp,exgp, 

+ sygp,eygp,nsx,nsy,seed,ns,myid) 
INTEGER ns,royid 
INTEGER sx,ex,sy,ey,sxgp,eygp,exgp,sygp 
double precision pi(sx-sxgp:ex+exgp,sy-sygp:ey+eygp),seed(ns) 
INTEGER nsx(ns),nsy(ns),i,ix,iy 
DO i = l,ns 
DO ix = sx,ex 
IF (CnsxCi) -ge. sx) .and. Cnsx(i) .le. ex)) then 
DO iy = sy,ey 
IF ((nsy(i) .ge. sy) .and. Cnsy(i) .le. ey)) then 

plCnsx(i),nsy(i))=seed(i) 
ENDIF 

ENDDO 
ENDIF 

ENDDO 
ENDDO 
RETURN 
END 

SUBROUTINE boundCpl,p2,a,b,h,k,nx,ny,dx,dy,nxm,nym, 
+ sx,ex,sxgp,exgp,sy,ey,sygp,eygp,kx,ky) 

INTEGER nx, ny,i,nym,j,nxm 
INTEGER sx, ex, sy, ey 
INTEGER ssx,ssy,eex,eey 
INTEGER sxgp, exgp, sygp, eygp 
double precision pi(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision p2(sx-sxgp:ex+exgp,£y-sygp:ey+eygp) 
double precision a(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision b(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision dx, dy, kx, ky,h,k 
ssx=sx 
ssy=sy 
eex=ex 
eey=ey 
i f ( e x . e q . nx) eex=nxm 
if (ey .eq .ny)eey=nym 
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Bottom (sy=l) 

if (sy .eq. 1) then 
do i=ssx,eex 

pl(i,l)=pl(i,2)*cos(b(i,l)*ky) 
/ +p2Ci,2)*sinCb(i,l)*ky) 

p2Ci,l)=p2(i,2)*cos(bCi,l)*ky) 
/ -pi(i,2)*sin(b(i,1)*ky) 

a(i,l)=a(i,2)+Ch-(b(i+l,l)-b(i,l))/dx)*dy 
enddo 

endif 

Top (sy=ny) 

if(sy .eq. ny) then 
do i=ssx,eex 

pl(i,ny)=plCi,nym)*cos(b(i,nym)*ky) 
/ -p2Ci,nym)*sin(b(i,nym)*ky) 

p2(i,ny)=p2(i,nym)*cosCbCi,nym)*ky) 
/ +pl(i,nym)*sin(b(i,nym)*ky) 

a(i,ny)=a(i,nym)-(h-Cb(i+l,nym)-b(i,nym))/dx)*dy 
enddo 

endif 

left (sx=l) 

if (sx .eq. 1) then 
do j=ssy,eey 

plCl,j)=plC2,j)*cos(a(l,j)*kx) 
/ +p2(2,j)*sin(a(l,j)*kx) 

p2Cl,j)=p2(2,j)*cosCa(l,j)*kx) 
/ -pl(2,j)*sin(a(l,j)*kx) 

b(l,j)=b(2,j)-Ch+(a(l,j+l)-a(l,j))/dy)*dx 
enddo 

endif 

right (ex=nx) 

if (ex .eq. nx) then 
do j=ssy,eey 

p1(nx,j)=pl(nxm,j)*cos(a(nxra,j)*kx) 
/ -p2(nxm,j)*sin(a(nxm,j)*kx) 

p2(nx,j)=p2(nxm,j)*cos(a(nxm,j)•kx) 
/ +p1(nxm,j)*sinCa(nxm,j)*kx) 

b (nx,j)=b(nxra,j) + (h+(a(nxm,j+1) 
/ -a(nxm,j))/dy)*dx 

enddo 
endif 
RETURN 
END 

SUBROUTINE compf(phi,ph2,al,a2,fgl,fg2,hgl,hg2,dxy, 
+nx, ny, dx, dy, nxm, nym, dx2, dy 2, rkx, rky, rk2, rk, h, dt, count, 
+SX,ex,sxgp,exgp,sy,ey,sygp,eygp,pgm) 

INTEGER sx,ex,sy,ey,ssy,ssx^ eey,eex 
INTEGER sxgp,exgp,sygp,eygp,pgm 
INTEGER nx, ny,count,i,j,nxm,nym 
double precision phi(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision ph2 (sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision al(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision a2(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision fgl(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision fg2(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
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double precision hgl(sx-sxgp:ex+exgp.sy-sygp:ey+eygp) 
double precision hg2(sx-sxgp:ex+exgp.sy-sygp:ey+eygp) 
double precision ¥m(60.60) 
double precision rk.h.dt.c21.s21 
double precision dx.dy.dx2.dy2.clO,sl0.c20.s20.cll.sll 
double precision rk2.rkx.rky,dxy 
ssy=sy 
ssx=sx 
eex=ex 
eey=ey 
call BCexec(pgm.phl.phi) 
call BCexec(pgm.ph2.ph2) 
call BCexec(pgm,al,al) 
call BCexec(pgm,a2.a2) 
if (sy .eq. 1) ssy=2 
if (sx .eq. 1) ssx=2 
if (ey .eq. ny) eey=riym 
if (ex .eq. nx) eex=nxm 
do j=ssy,eey 
do i=ssx.Gex 
clO = cos(al(i-l.j)*rkx) 
slO = sin(al(i-l.j)*rkx) 
c20 = cos(a2(i,j-l)*rky) 
s20 = sin(a2(i,j-l)*rky) 
ell = cos(al(i,j)+rkx) 
sll = sin(al(i,j)*rkx) 
c21 = cos(a2(i.j)*rky) 
s21 = sin(a2(i.j)*rky) 
wm(i.j)=phl(i.j)**2+ph2(i.j)**2 
hgl(i,j)=phl(i.j)*(l.-om(i,j)) 
/ +((clO*phl(i-l.j) -sl0*ph2(i-l,j) - 2*phl(i.j) 
/ +cll»phl(i+l,j) +sll*ph2(i+l.j))/dx2 
/ +(c20*phl(i,j-l) -s20*ph2(i,j-l) - 2*phl(i,j) 
/ +c21*phl(i,j+l) +S21tph2(i.j+l))/dy2)/rk2 

hg2(i.j)=ph2(i.j)*(l.-m(i,j)) 
/ +((cl0*ph2(i-l,j) +slO*phl(i-l.j) - 2*ph2(i.j) 
/ +cll*ph2(i+l,j) -sll*phl(i+l.j))/dx2 
/ +(c20*ph2(i,j-l) +s20«phl(i.j-l) - 2*ph2(i,j) 
/ +c21*ph2(i,j+l) -s21tphl(i.j+l))/dy2)/rk2 

if (j.eq.2) then 
fgl(i,j)= (al(i,j+l)-al(i.j))/dy2 + h/dy 
/ +(a2(i.j)-a2(i+l,j))/(dxy) 
/ +((phl(i,j)«ph2(i+l.j)-ph2(i,j)*phl(i+l.j))*cll 
/ -(phl(l.j)*phl(i+l.j)+ph2(i.j)«ph2(i+l,j))*sll)/rkx 

else if (j.eq.nym) then 
fgl(i,j)= (-al(i,j)+al(i.j-l))/dy2 - h/dy 
/ +(-a2(i.j-l)+a2(i+l.j-l))/(dxy) 
/ +((phl(i.j)*ph2(i+l.j)-ph2(i.j)tphl(i+l,j))tcll 
/ -(phl(i.j)«phl(i+l,j)+ph2(i,j)*ph2(i+l.j))*sll)/rkx 
else 

fgl(i,j)= (al(i,j+l)-2.tal(i,j)+al(i.j-l))/dy2 
/ +(a2(i.j)-a2(i+l.j)-a2(i,j-l)+a2(i+l.j-l))/(dxy) 
/ +((phl(i.j)«ph2(i+l,j)-ph2(i,j)«phl(i+l.j))*cll 
/ -(phl(i.j)tphl(i+l.j)+ph2(i,j)*ph2(i+l.j))*sll)/rkx 

end if » 

if (i.eq.2) then 
lg2(i.j)= (a2(i+l,j)-a2(i.j))/dx2 - h/dx 
/ +(al(i.j)-al(i.j+l))/(dxy) 
/ +(Cphl(i.j)»ph2(i.j+l)-ph2(i.j)*phl(i.j+l))*c21 
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/ -(phl(i,j)*phl(i,j+l)+ph2(i,j)*ph2(i,j+l)>*s21)/rky 

else if (i.eq.nxm) then 
fg2(i,j)= C-a2Ci,j)+a2Ci-l,j))/dx2 + h/dx 

/ +C-alCi-l,j)+alCi-l,j+l))/Cdxy) 
/ +CCphl(i,j)*ph2Ci,j+l)-ph2Ci,j)*phl(i,j+l))*c21 
/ -CphlCi,j)*phlCi,j+l)+ph2Ci,j)*ph2Ci,j+l))*s21)/rky 
else 
fg2Ci,j)= Ca2Ci+l,j)-2.*a2Ci,j)+a2Ci-l,j))/dx2 
/ +(al(i,j)-al(i,j+l)-alCi-l,j)+al(i-l,j+l))/(dxy) 
/ +((phl(i,j)*ph2(i,j+l)-ph2(i,j)*phl(i,j+l))*c21 
/ -(phl(i,j)*phl(i,j+l)+ph2(i,j)*ph2(i,j+l))*s21)/rky 

end if 
enddo 
enddo 

do j=ssy,eey 
do i=ssx,eex 
phlCi,j)=phl(i,j)+dt*hglCi,j) 
ph2 Ci,j)=ph2 Ci,j)+dt*hg2 C i,j) 
if (i.It.nxm) al(i,j)=alCi,j)+dt*fgl(i,j)*dx 
if (j.It.nym) a2(i,j)=a2Ci,j)+dt*fg2(i,j)*dy 

enddo 
enddo 
RETURN 
END 

SUBROUTINE compsum(pi,p2,a,b,hh,myid,count,pgm, 
+ dx,dx2,dy,dy2,kx,ky,k2,nx,ny,nxm,nym,h,k,t, 
+ sx,ex,sxgp,exgp,sy.ey,sygp,eygp) 

INTEGER sx, ex, sy, ey,i ,j,pgm 
INTEGER sxgp, exgp, sygp, eygp,nym,nxm 
INTEGER myid,count,nx,ny,ssx,ssy,eex,eey 
double precision pi (sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision p2 (sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision a (sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision b (sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision hh(sx-sxgp:ex+exgp,sy-sygp:ey+eygp) 
double precision h,k,t 
double precision sum,p2max,work 
double precision dx, dy, dx2, dy2,k2, kx, ky,p2m 
double precision cl,sl,c2,s2,s 

ssy=sy 
ssx=sx 
eex=ex 
eey=ey 
call BCexec(pgm,pl,pl) 
call BCexec(pgm,p2,p2) 
c a l l BCexecCpgm,a,a) 
c a l l BCexecCpgrci,b,b) 

i f (sy . e q . 1) ssy=2 
i f (sx . e q . 1) ssx=2 
i f (ey . e q . ny) eey=nym 
i f (ex . e q . nx) eex=nxm 
sum=0 
p2max=0 
do j=ssy,GGy 
do i = s s x , e e x 
p 2 m = p l ( i , j ) * * 2 + p 2 ( i , j ) * * 2 
p2max=max(p2max,p2m) 
h h C i , j ) = ( b ( i + l , j ) - b ( i , j ) ) / C d x ) 
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/ -(a(i.j+l)-a(i.j))/(dy) 
cl = cos(a(i.j)*kx) 
si = sin(a(i.j)*kx) 
c2 = cos(b(i.j)*ky) 
s2 = sin(b(i,j)*ky) 
s=(((pl(i+l,j)-(cl*pl(i,j)-sl*p2(i,j)))**2 

/ +(p2(i+l,j)-(cl*p2(i,j)+sl*pl(i.j)))**2)/dx2 
/ +((pl(i.j+l)-(c2*pl(i.j)-s2*p2(i.j)))**2 
/ +(p2(i.j+l)-(c2*p2(i.j)+s2*pl(i.j)))**2)/dy2)/k2 
/ - p2m + 0.5*p2m**2 

sum= sum+s+(hh(i.j)-h)**2 
end do 
end do 
sum=sujn*dx*dy 
p2max=sqrt(p2max) 
call PIgdsm[i(smii.l.¥ork.O) 
call PIgdjnax(p2max, l.Hork.O) 
if (myid .eq. 0) then 
write(6.991) t,p2max.smn 
format('t= '.flO.6.'. max(phi) = '.fl2.8, 

/ '. energy =',f16.10) 
endif 
RETURN 
END 
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