
Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Electrochemical

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

Technology
Program

ANL-98/8

GCtool for Fuel Cell Systems
Design and Analysis:
User Documentation

by H. K. Geyer and R. K. Ahluwalia

Technology Development Division

Argonne National Laboratory, Argonne, Illinois 60439
operated by The University of Chicago
for the United States Department of Energy under Contract W-31-109-Eng-38

Chemical Technology
Division

Chemical Technology
Division

Chemical Technology
Division

Chemical Technology
Division

Argonne National Laboratory, with facilities in the states of Ilhnois and Idaho, is
owned by the United States government, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER-
This report was prepared as an account of work sponsored by an agency of
the United States Goverrunent. Neither the United States Government nor
any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or pro­
cess disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

Reproduced from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831

Prices available from (423) 576-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Road

Springfield, VA 22161

ANL-98/8

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

GCtool FOR FUEL CELL SYSTEMS DESIGN AND ANALYSIS:
USER DOCUMENTATION

by

H. K. Geyer and R. K. Ahluwalia

Technology Development Division

March 1998

Work supported by the U.S. Department of Energy under Contract W-31-109-ENG-38.

Table of Contents
1.0 Introduction 1

2.0 Interpreted Language 2

2.1 GC Types 2
2.2 Expressions 4
2.3 Logical Statements 5
2.4 Looping Statements 5
2.5 Functions 5
2.6 Directive Statements 7
2.7 Comments 8
2.8 Statement Order 8

3.0 GCtool Environment 9

3.1 Main Window 9
3.2 Diagram Window 10
3.3 Farms Window 11

4.0 Tasks Involved in System Analysis 13

4.1 Task Model Class 13
4.2 Task Model Examples 16

4.2.1 Use of Vary and Cons to Solve a Single Equation 16
4.2.2 Use of Multiple Vary's and Cons's to Solve a System of Equations 17
4.2.3 Use of Multiple System Tasks 18
4.2.4 Use of Icons and Mini to Solve an Optimization Problem 19
4.2.5 Use of Diff to Solve a System of Differential Equations 20

5.0 Flow and Model Classes 21

5.1 Introduction 21
5.2 Flow Classes 21

5.2.1 Gastype Flow Class 21
5.2.2 Gasstack Class 22
5.2.3 Shfttype Flow Class 23
5.2.4 Shftstack Class 23

5.3 Basic Model Classes 24
5.3.1 Modstack Model Class 24
5.3.2 Gas (gas) Model Class 25
5.3.3 Mixer (mx) Model Class 28
5.3.4 Splitter (sp) Model Class 29
5.3.5 Heater (ht) Model Class 30
5.3.6 Compressor (cp) Model Class 31
5.3.7 Gas Turbine (gt) Model Class 33
5.3.8 Heat Exchanger (hx) Model Class 35
5.3.9 Pump (pump) Model Class 36
5.3.10 Pipe (pipe) Model Class 37
5.3.11 Diffuser (df) Model Class 38
5.3.12 Nozzle (nz) Model Class 39

ill

5.3.13 Steam Drum (sd) Model Class ^°
5.3.14 Feed Water Heater (fh) Model Class ^°
5.3.15 Combustor (cb) Model Class ^^
5.3.16 Condenser (cond) Model Class -̂̂
5.3.17 Dynamic Heater (dht) Model Class 44
5.3.18 Dynamic Heat Exchanger (dhx) Model Class ^^
5.3.19 Reformer (reform) Model Class 49
5.3.20 Generic Dynamic Flow Reactor (reac) Model Class 50
5.3.21 Proton Exchange Membrane (pem) Model Class 52
5.3.22 Solid Oxide Fuel Cell (sofc) Model Class 57
5.3.23 Molten Carbonate Fuel Cell (mcfc) Model Class 59
5.3.24 Phosphoric Acid Fuel Cell (pafc) Model Class 61
5.3.25 Shaft (shft) Model Class 62
5.3.26 Generator (gen) Model Class 63
5.3.27 Motor (mot) Model Class 63
5.3.28 Detailed Steam Reformer (refs) Model Class 63
5.3.29 Power Stack (pows) Model Class 71

6.0 Steady-State Examples 72

6.1 Gas Turbine System 72
6.2 Gas Turbine System with Fixed Net Power Constraint 73
6.3 Gas Turbine System with Parameter Study 74
6.4 Space Propulsive System 74
6.5 Coal-Fired Power Plant 78
6.6 PEM Fuel Cell System 81

7.0 Graphics 86

7.1 Two-dimensional Plot (plot) Model Class 86

7.2 Three-dimensional Plot (plot3) Model Class 89

8.0 Interfacing with Precompiled Models 91

8.1 Introduction 91
8.2 Model Structures and Functions 91
8.3 Linking C Functions to the GC Interpreter 92
8.4 Generating Model Header Files 93
8.5 Model Configuration Parameter 94
8.6 Summary of Model Interfacing 94
8.7 Additional Interfacing Information 94

8.7.1 Stacks and Flows 95
8.7.2 Property Functions 96
8.7.3 Mathematical Utilities 97

References 99

Appendix. Outputs from Examples 100

GCtool for Fuel Cell Systems Design and Analysis:
User Documentation

by

H. K. Geyer and R. K. Ahluwalia

Abstract

GCtool is a comprehensive system design and analysis tool for fuel cell and other power
systems. A user can analyze any configuration of component modules and flows under steady-state
or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication
and new models can be added easily by the user. GCtool also treats arbitrary system constraints
over part or all of the system, including the specification of nonlinear objective functions to be
minimized subject to nonlinear, equality or inequality constraints. This document describes the
essential features of the interpreted language and the window-based GCtool environment. The
system components incorporated into GCtool include a gas flow mixer, splitter, heater, compressor,
gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, com­
bustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric
acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several
examples of system analysis at various levels of complexity are presented. Also given are
instructions for generating two- and three-dimensional plots of data and the details of interfacing
new models to GCtool.

1.0 Introduction
GCtool is a system analysis package similar in scope to that of GPS[1] and GPSTool[2], but instead of using an

interpreted PostScripts-like language for setting up the system, GCtool makes use of a C-language interpreter. In ad­
dition, the interfacing of model libraries to GC has been greatly simplified over that within GPS. As within GPSTool,
GCtool has the following capabilities:

• Ability to handle arbitrary system configurations of component models interconnected by various

flows.

• Ability to decompose systems into nested or unnested subsystems.

• Ability to impose arbiorary, user-defined system consttaints, optimizations, or parameter sweeps

over any subsystem.

• Ability to handle components and flows of arbitrary sophistication.

• Ability to permit new components and flows to be added by the user.
GCtool is essentially a C-language interpreter, to which precompiled, user-supphed functions can be linked. The

user-supphed functions can represent component models, property codes, mathematical utilities, etc. This permits the
computationally intensive aspects of the modeling to be executed at the full speed of optimally compiled coding while
still maintaining the flexibihty to define problems and execute them using in an interpreter. The interpreted coding is
usually small compared with the precompiled code and thus, does not materially slow down the executions. Addition­
ally, the immediate turnaround afforded by the interpreter (i.e., without the need to compile and link as in preprocessor
techniques) promotes a rapid prototyping environment for system simulations.

This report discusses the C-like language that can be interpreted (there are a few restrictions as well as a few ex­
tensions over standard C), the use of the GCtool environment, the issues pertaining to the interfacing of precompiled
C-models to GCtool, the mathematical utilities, and a basic set of component models. The underlying philosophy be­
hind the system analysis is similar to that within GPSTool. Thus, to represent the components within an actual system,
one defines instances of the various component model classes. The system configuration is then represented by calling
the various functional entries of these component model instances. System tasks, such as executing parameter sweeps,
estabhshing system consttaints, or performing optimizations, are set up by defining iterative loops around the system
configurations. Each of these concepts will be discussed in more detail in later sections and, in general, is relatively
easy to implement. However, as the defining of systems and tasks is done with a C-!ike language, more effort is re­
quired on the part of the user than with a systems code with a fixed input structure. The advantage is that one obtains
more flexibility as to the type of problems that can be solved.

The actual type of system problem that can be analyzed with GCtool is dependent on the types of component
models that are linked to GCtool. Thus, as with GPSTool, steady-state, dynamic, or even discrete-event models can be
used. As part of the GCtool package, a basic set of power system components is suppUed along with a mathematical
utilities library. Additionally, curve and surface plotting models are fiimished.

Section two is a reference section that describes the interpreted language, while section three describes the GCtool
environment. The task class that is used to define mathematical tasks within the system simulations is discussed in
section four. In particular, section 4.2 shows some simple examples of inputs to GC for solving the basic types of
systems tasks upon which more complex simulations are based. Section five discusses the basic set of component
models, including the flows that are used, the model functional entries that are used in defining system configurations,
and the model parameters. Section six continues the examples started in section 4.2 but includes the use of the com­
ponent models. Section seven describes the two kinds of plot classes (two and three dimensional), and finally, section
eight discusses the model interfacing issues.

^PostScript is a registered trademark of Adobe Systems, Inc. PostScript is described in reference [3].

1

2.0 Interpreted Language
While many system simulations can be set up with only very elementary C coding^, more complete features are

available. The GC language interpreted by GCtool is die same as C in most respects with the changes described in the
following.

2.1 GC Types
The basic data types of i n t , d o u b l e , c h a r , and v o i d are available as are arrays of these types and pointers to

these types. At present the f l o a t type is not implemented. In addition, a FILE type has been added without die need
to include the s t d i o . h header file. Here are some examples,

i n t i , j , k ;
double X, y[25], z[5][10], w;
char str[23];
FILE * f p ;

The most important restriction concerns the use of pointers. While one can define pointer variables, such as the
f p FILE pointer above, the GC language has not implemented the indirection operator, *, or the address of operator,
&. Thus, the only real use of pointers within GC is where the pointer is used as a variable by itself. For example, the
above f p pointer is generally only used in opening and closing files, such as with the functions f open or f c l o s e ,
or in the printing or scanning of some file, such as with the functions p r i n t f or s c a n f , and is seldom used to ref­
erence elements of the FILE structure itself

An additional built-in type, denoted as CFUNC, is also available and is defined through the following C language:

t y p e d e f i n t {*CFltNC) () ;

Thus, CFtJNC is used to define a pointer to a function returning an integer. As will be discussed below, GC can directly
call precompiled C functions that return an integer. Such hinctions should be declared within the GC inputs as a
CFUNC type. The t y p e d e f statement, itself, is not supported within the GC language.

Variables can be initialized within their declarations by following the variable with an equal sign and the initial
value. The initial values may be expressions using any variables that have been previously declared and which have
been assigned values. For example,

i n t i = 5 , j = 6 * s i n (3 . 0 * i) ;
d o u b l e x = 5 . 5 , y [3] = { 5 . 0 , 4 . 0 , 3 . 0 } ;
c h a r s t r t l O] = " a s t r i n g " ;

Note that for artays the usual C syntax of placing the array values in Oisused. T h e b r a c e s are not required when
initiahzing an array of characters. Also, a null character is automatically added if the artay bounds are large enough.
At present, only one level of {} is permitted in array initialization; thus, for multidimensional arrays die initial values
will need to be laid out as a one-dimensional artay. The order used in this case is the same as witii C, with the last
array index changing the most rapidly. For example,

d o u b l e y [21 t 3] = { l , 2 , 3 , 4 , 5 , 6) ;
c h a r s t r 2 [3] [4] = { " a b c " , " d e f " , " g h i ") ;

would initialize y [0] [0] a s l , y [0] [1] a s 2 , y [l] [0] as 3,etc., and s t r 2 [0] a s " a b c " , s t r 2 [11 as
" de f", etc. If fewer initial values are provided than needed to initialize die enthe artay, flien die remaining artay
values are taken as zeros. Note that the initialization of the character an-ays is slightiy different, in that die last dimen­
sion defines the maximum length of an individual character stiing. Thus, s t r 2 above should be drought of as a single
diree-dimensional artay of character strings of a maximum length of four characters, each of which is dien initialized
by the three stiing values. Note that when arrays of stiings are defined, if an initializer value exceeds die last array
bound (i.e., the maximum string lengtii), then a type or size mismatch ertor message is printed. Note also diat if die

The casual user of GCtool can set up many problems wiUiout any real knowledge of C by simply following
the examples in the later sections. This section, however, will require a knowledge of C to be fully under­
stood.

string needs to be terminated with a null character, space must be provided for it. At present, one cannot initialize an
artay of characters using only character values. That is, the following

char str3[3]={'a','b','c'); // cannot do

is not permitted. Instead, one would have to put all three characters into a string, such as

c h a r s t r 3 [3] = " a b c " ;

In this case s t r 3 is not terminated by a null character since space was not provided for it. Note that due to this char­
acter array assignment and the limited use of pointers within GC, it is not possible to write

c h a r * s t r 3 = " a b c " ; / / n o t a l l o w e d

to define s t r 3 to be a pointer to the character string " a b c " .

Within GC the additional delimiters of s t a t i c , a u t o , or e x t e r n are not implemented. All variables should
simply be treated as if they were s t a t i c . In addition, variables can be only global or local to some function in scope.
File scope is not implemented within GC. Global variables are simply those defined outside of any function, and local
variables are those defined within a function. As in C, variables (and this includes functions to be discussed below)
must be defined before they are used. Within functions local variables must be declared before any executable state­
ment.

In addition to arrays of the basic types, one can also define structures of these types, for example,

s t r u c t a b c

(d o u b l e X, y , z [2 0 1 ;
i n t i , j ;

} ;

Variables to be defined as these structure types, however, must be defined in a separate statement without the s t r u e t
keyword. Thus, each structure must have a tag name, which is then used like a type to define variables. For example,
to define a b c l and abc2 to be of type s t r u c t abc , one would write

a b c a b c l , a b c 2 ;

Arrays of structures are handled similarly,

abc abcallO] ;

Structure definitions cannot be nested within other structures, but, elements within structures may be defined as
other structures. In this case the s t r u c t keyword is optional. For example, one may define a structure xyz using
the structure a b c as either

s t r u c t xyz o r s t r u c t xyz
(s t r u c t a b c a , b ; (a b c a , b ;

) ;) ;
Structure definitions must also be global in scope, and thus, should not be defined within a function.

The initialization of arrays of structures is not implemented, but one can initialize a single structure using a named
initialization as follows. The structure name is followed by an equal sign and then between {) braces each element
within the structure is initialized by specifying its name, an equal sign, and a value followed by a semicolon.* For
example,

a b c a b c l = (x = 4 . 5 * 6 . 5 / 3 . 2 ; z = (4 , 3 , 2 , l } ; i = 4 ;) ;

Note that only those elements that need to be initialized are specified, that the element names do not have to be in the
order of their appearance within the stiiicture, and that the values can be expressions. This named initialization replac­
es the usual C-language style, where the values of each element in the order that they appear within the sti^cture are
placed between the () .

One other aspect concerning structures needs to be mentioned, but is only used when structures are employed with
precompiled models. GC will lay a structure out in memory with each of its elements starting on either a byte, word,
or double word boundary (depending on Uie element type) and in the order of die appearance of these elements within

^For backward compatibiUty with older inputs to GC, comma separators between each initialized item are
also acceptable.

die sttucture This layout may not exactly match that of a stnicture that has been generated by a C compder. Thus, to
ensure conect alignment of the stmcture' s elements with that of a precompded C stnicture, each elemem of a stracture
can be followed (after any array references) by an 9 sign and a byte offset value from the start of die stiTicture. In
addition the total size of the sttucture in bytes can follow die stnicmre tag name preceded by an @ sign. This intor-
mation is usually not supplied by the user but is generated automatically with the interface generator (see section
eight).

GC also supports a simple fonn of the enum keyword, as follows.

enum (a , b , c , d, e) ;

Here a is defined as the integer 0, b to be 1, etc.

2.2 Expressions
Expressions within GC are written as in C but with the following precedent orders:

1 . (stiiicture element reference), [] , 0 (function reference)

2 * / = = , ! = / < = t <' -*-' ^' ^

3 +, - , =, ++. — ' &«" I I ' +=' - = ' * = ' / =
The grouping of operators is always from left to right; thus,

a*b*c

is equivalent to

((a * b) * c)

The precedent order is sUghtiy different from standard C. If in doubt about the precedent order, simply use parendiesis.

The following built-in fiinctions are available and work exacfly as their C language counterparts:

e x p O , p o w O , s i n O , c o s () , t a n () ,
l o g o , l o g l O O , a s i n O , a c o s () , a t a n O ,
a t a n 2 () , f a b s 0 , c e i l 0 , f l o o r O , f o p e n O ,
f c l o s e O , p r i n t f O , s c a n f () , s p r i n t f () , f p r i n t f O ,
f s c a n f ()

In the case of the s c a n f and f s c a n f functions, the & operator (since it is not available) is not required before the
variables that are being assigned values. At present, the format string within the p r i n t f functions can only use the
' d ' , ' s ' , ' c ' , ' f ' ,and'e 'conversioncharactersandwithinthe s c a n f functionsonly ' e ' , ' f , ' s ' ,
' c ' , and '] ' . These can be preceded by field width, precision, and the other optional modifiers as in C. In particular,
when scanning doub le ' s , the 1 (long) modifier must be used.

At present the ++ and — operations can only be used as postfix operators. As a convenience the assignment op­
erator, =, can also be use to assign anay or stiructure elements similar to the way a variable is initialized. For example,
if x is declared as d o u b l e x [5] , one could write the assignment statement as

x={0, 1, 2 , 3 , 4) ;

Similarly, if s t r is declared as c h a r s t r [4] , one could write

s t r = " a b c " ;

It is not possible, however, to use the pointer plus offset means of referencing artay elements. Thus, one cannot ref­
erence the second element of x above as *(x+l) since the indirection operator, *, is not available.

Assignments of a whole artay or structure can also be made, provided that the type and size of the arrays and struc­
tures are the same. Thus, using the stiiictures a b c l and a b c 2 defined previously, one could write,

a b c 2 = a b c l ;

Similarly, if y is declared as d o u b l e y [5] , similar to die declaration of x above, one could write

y=x;

The logical operators == and ! = can also be applied to character sttings. This extension, along with the above
artay assignment, permits one to dispense with the usually s t r c p y and s t r c m p functions. Note that the string com­
parisons need null-character terminated strings to work properly.

2.3 Logical Statements

The standard C language i f and e l s e statements are available; the s w i t c h statement is not available. For ex­
ample,

i f ((x==3) && (y==4))
{ z = s i n (4 * x) ; w = 6 . 0 * y ; }

e l s e
z = c o s (4 * e x p (- y)) ;

Thus, either a block of statements surtounded by {} or a single statement (which can be another i f) can be con­
ditionally executed.

2.4 Looping Statements

The C language f o r , w h i l e , and do statements are available. Thus, for example,

for (i=0; i<20; i++)

{ }

while (x<=sin(2.45))

(...)

do

{. . .}

while {i<=6*j);

where in each case the (. . . .) represents an arbittary block of statements. The (. . .) can also be replaced with a
single statement. The comma operator is not available; thus, for example, one cannot write

f o r (i = 0 , j = 0 ; i < 2 0 ; i + + , j + +) / / n o t a l l o w e d

The c o n t i n u e and b r e a k statements are available to either continue within the same loop or to break out of the

current loop as in C.

An additional looping operator, f o r a l l , has been added which is similar to the f o r operator, but used when the
loop counter needs to be incremented by unequal values. The f o r a l l operator is used as follows:

f o r a l l (v a r ; v a i l , v a l 2 , v a l 3 , v a l 4 , v a l 5 , v a l 5)

(. . .)
Here v a r will be defined in turn as v a i l , v a l 2 , etc.

2.5 Functions
Functions are defined using a return type, a name, and a parenthesis-enclosed argument list, followed by a proce­

dure block. GC always requires a return type to be explicitiy specified as there is no default return type. The v o i d
type can be used if no returned type is required. Each of the arguments within the argument list must also be preceded
by a type. Since the indirection operator is not available to provide for changing the values of passed arguments within
the calling function, the concept of a reference type argument, similar to that in C++, has been provided. Thus, argu­
ment names preceded by & will represent the actual parameter within the calling procedure. The r e t u r n statement
is also available and can be used both with or without some returned expression.

The following code fragments are some examples of functions:

v o i d f u n c K d o u b l e a , d o u b l e b)

(

double func2()
(double x;

return x;

)

int func3(int &i, double x, double &y)

(

i = i + l ; y=6.0*i ;
r e tu rn i ;

)
In the last example, func3 , not only is there a returned value, but the first and last arguments are taken as reference
arguments to the cortesponding parameters within the call to this function. Thus, any changes to their values in f unc3
will be refiected widiin the caUing program. When a reference argument is used, it must cortespond to some actual
variable in die calling program rather than some expression and match with the type of that variable. Thus, func3
should not be called as

j = f u n c 3 (3 * i , 6 . 0 , s i n (3 . 4)) ;

however, it could be called as

j= func3{ i , e x p (- 3 * s i n (2)) , w) ;

where i and w are known within the calling program and must be an i n t and d o u b l e , respectively.

In addition to functions that are coded in GC and interpreted, functions can also be called that have been precom­
piled and then linked to the GC interpreter. Such functions should be declared as pointers to functions and are declared
within the GC coding without any arguments using the built-in CFUNC type as

CFUNC f u n c ;

When caUing these precompiled fiinctions, the pointer to the function is simply called as if it were the function. Thus,
one would call func above as func (. . .) where ... stands for any arguments and not (* f u n c) (. . .) , as could
be done in C.

To limit the very large number of possible interfaces with different return types and different input argument
types, the actual coding of the precompiled functions can return, at most, an integer and can take either no arguments,
a single c h a r * argument, or an artay of c h a r * arguments. The actiial parameters that make up the arguments wifliin
the interpreted GC coding are automatically collected and put into this argument artay. Thus, for example, if die above
C function is called in GC as

f u n c (a , b , i , j , c , k) ;
where a and b are some stiiictures, c is a d o u b l e , and i , j , and k are integers, then die GC interpreter would form
an array, declared as c h a r * a r g s (] . This array would be filled with the addresses (typed cast to a c h a r *) of a,
b, i , j , c, k, and 0, and then the function called as func (a r g s) . Note diat a 0 pointer is passed as die last
element of the array for use with functions that are meant to take variable argument lists. When an argument is some
expression rather than an actual variable, GC will generate a dummy argument whose value is diat of die expression's.
At present, the maximum number of arguments tfiat GC will pass is 50. Witiiin die precompiled C function, tfie user
would be responsible for exttacting the arguments from the array and appropriately type casting tiiem. Note that since
the address of the parameters is passed, the developer of the function can then simulate eidier pass by value or pass by
location. In the case of a function with no arguments, no artay argument is passed.

A special case occurs with functions that are declared as members of a stiiicture, that is, using CFUNC within die
stracture. The fust argument of such a function will always be a pointer to the sttucture of which the function is a
member. When the function takes only this one argument, this pointer (typed cast to a c h a r *) is die only argument
passed to die C function. When die function takes multiple arguments, die pointer to die smicture will be the first
element of die argument array followed, in turn, by the oUier arguments as additional elements of the passed argument

artay. On the calling side, this pointer to the sttucture is never explicitly coded as an argument. Thus, after defining
a particular instance, say a b c 1 , of struct a b c in which fun is a member function, one can call fun as a b c 1. f u n .
The first argument to this function will be the pointer to the data stracture a b c l . When this is the only argument that
the member function requires, then no parentheses and arguments are required when calling the function; thus,
a b c l . f u n , not a b c l . f u n (a b c l) , is all diat is required. Note that this feature of calling a function widiout argu­
ment parentheses is only available for structure member functions, all other functions must have parentheses when
called, as in C. If fun requires other arguments, say x, y, and z, then it would be called as a b c l . f u n (x , y , z)
without suiicture a b c l as the first argument.

The actual precompiled C function that is called must be linked in some way to the name that is used for the func­
tion within the GC inputs. This is provided by a special function, denoted as c l i n k e r , which must be provided to
the GC interpreter by the user. This will be discussed in the section on model interfacing.

The GC interpreter also performs additional operations when using precompiled C stractures. These consist of
automatically calling i n i t and t e r m member functions whenever these are defined within the structure. The i n i t
function is called whenever an instance of the stracture is declared and takes two arguments (as the two elements of
the argument artay) consisting of the pointer to the stracture and the name of the structure specified as a character
string. On return, i n i t must return the size in bytes of the stracture. This size is then checked with the interpreted
stracture size, and if different, the GC interpreter terminates with a message indicating that the interpreted and com­
piled stractures are not compatible. The C stractures used by the precompiled C functions are placed within a header
file, which is then simply included within the GC inputs. This header file must reflect the cortect stractures as used
within the C functions. As a convenience to the user, a special interface generator code, GCintf, can be used to quickly
scan the C coding and produce this header file. The GCintf code will be discussed in the section on model interfacing.
Within the i n i t function, any of the elements of the structure can be given default values. The other function, t e rm,
is called whenever the model structure is deleted. Within the GCtool environment, this occurs right before a new input
problem is interpreted. The t e r m function can be used to perform any model cleanup functions, such as freeing up
space allocated by the model. The t e r m function requires only the pointer to the model stracture as an input argument.
Note that both the i n i t and t e r m functions are automatically called by the GC interpreter and, thus, generally are
never called directiy by the user. Essentially, these functions provide for some of the functionality of constructors and
destractors used in C++.

2.6 Directive Statements
AsinC, a number of statements such as # i n c l u d e are also available within GC. These also need to be inter­

preted, as no preprocessor is used with GC. These statements need not begin in column one as with the C preprocessor
and consist of the following:

ttinclude "file"

#debug i

#interrupt

#return

#resume

t d e l e t e
Note that the # should not be followed by any "white space". The # i n c l u d e is used exacdy like the C prepro­

cessor directive and simply includes die file, designated by 'Tile", into the inputs at that point. Included files may be
nested, but, at present, diere should be no more than 10 open files at any one time.

The #debug is followed by the number 0, I, or 2, and is used to turn on (1,2) or turn off (0) various levels of
debugging.

The # i n t e r r u p t will cause the GC interpreter to interrapt the current execution at the point where # i n t e r -
r u p t appears. At diat point, the user can input to the console any arbitrary GC coding. An interrapt can also be ef­
fected by typing a conttol-c. If this is done, the current statement being executed within GC is finished before the
interrupt takes place. An interrupt of an intenrapt results in the program termination.

The # r e t u r n is used to return to the program diat called Uie GC interpreter. Note that in the GCtool environ­
ment, discussed in the next section, t r e t u r n simply returns one to die GCtool program.

The #resume is used to resume execution of an interrupted program at the point where it was interrupted. Note
that any changes to variables within that program made while in the interrupt mode will still be in force.

The # d e l e t e is used to delete all variables and coding that have been interpreted. In the GCtool environment
d e l e t e is automatically executed before each new problem is ran, so it is seldom ever used directly in the inputs.

2.7 Comments

As in C, comments within GC are delimited by / * and * / . There is, however, one change over the standard C
comments, and that is, if the initial comment delimiter is / * / , then the comment delimiter is ignored. That is, the com­
ment is interpreted as if it were GC coding. The reason for this change is that, as will be described in a later section,
it is useful to have GC (or more specifically, GCintf) be able to read conventional C code to generate a model header
file for use in die GC inputs. Thus, one can use / * / and * / to delimh comments in a standard C file but still be
interpreted as coding by the GC interpreter. The single-line C++ comment style starting with a / / and ending with a
new-line symbol is also supported. Comments cannot be nested.

2.8 Statement Order

As in C, variables and functions must be declared before being used. If they are not, a message is printed, giving
the line number and file where the unknown variable occurred. Also, as in C the local variables within functions must
be declared before any executable statements within those functions. Unlike C however, one does not need a main
function or even any functions at all. Thus, besides the declaration of global variables, one can also include executable
statements outside of any function. This means that statements are simply executed as they are encountered by the GC
interpreter. These may be declarations of global variables or functions or executable statements. The GC interpreter
does not attempt to locate a main function to start the execution.

3.0 GCtool Environment
GCtool provides a convenient way of running the GC interpreter for performing system simulations. Additional­

ly, GCtool provides a means to quickly query model parameter values, to develop system configuration diagrams, and
to assist the user in setting up the GC inputs. At present, GCtool is designed to ran on a SUN workstation using Open-
Windows Version 3.0. In particular, the GUI makes use of XView. To start GCtool one simply types "gctool" in a
cmdtool window within the directory containing the executable at the UNIX prompt. There are three windows within
the GCtool environment: main, diagram, and parms.

3.1 Main Window

The main windowcontains the GCtool tide and a column of buttons. This window, shown below, is used to invoke
the other features of GCtool.

ZJ GCtool

Run 1^)

^ Rehash)

D̂raw)

Parms)

The first button, denoted as Run, is actually a menu button with two items, r u n and r u n s e l . These menu items
are displayed by pressing the right mouse button over the Run button. Inputs to GCtool are actually formed in any
conventional text editor window and are then selected (i.e., highlighted within the text editor window'). Either of the
two Run button menu items will then ran the selected inputs. The first menu item, run , reinitializes the GC environ­
ment, that is, deletes any old models previously run, and clears any previously allocated variables, before ranning the
inputs. The second menu item, r u n s e l , simply executes the selected text within the context of the last ran. That is,
the selected text is run without clearing the previous problem. By pressing the left mouse button over the Run button,
die r u n menu item will be executed without the menu appearing. The second button. Rehash, will partially execute
the cunrently selected inputs to determine which models have been used. The third button. Draw, will pop open a new
window and draw the configuration diagram associated with the currendy selected inputs. This window is described
in the next section. Finally, the fourth button, Parms, will pop open another window, which displays all of the model
classes and model parameters. This window also has some features that can be used to help set up new system prob­
lems. This window will be discussed in section 3.3.

When a problem is ran, the outputs will appear within the cmdtool window in which GCtool has been started. As
a means of separating outputs for different mns, if the selected inputs begin with single-line comments (i.e., comments
starting with //), each starting in column 0, then these comments will be automatically copied to the outputs at the start
of the ran.

The documentation that you are currendy reading is also available on-line and can be displayed using the standard
Open Windows pageview command by simply placing the mouse cursor within the GCtool window and pressing the
h (for help) key from the keyboard. The standard features of pageview can then be used to navigate arround the doc­
ument.

^Note that GCtool will acquire the selection to run die inputs. Thus, the text editor must have the ability to
set a selection and pass it to anodier application. The standard Open Windows' Text Editor will do this.

3.2 Diagram Window

The diagram window that appears when the Draw button is pressed will parse the currently selected inputs and
produce a diagram of the system. However, before the diagram will reflect the current inputs, a rehash (or run) needs
to be performed so that the models that are being used are known to the interpreter. The diagram is fully editable by
the user. The editing that can be done consists of

• Repositioning component models either individually, as a group, or all together,

• Resizing component models either as a group or all together,

• Displaying or hiding component models,

• Changing die layout of die interconnecting flows between models, and

• Displaying state-point information of the flows.

Repositioning, resizing, and hiding all work on groups of models. A model can be assigned to a group by simply
clicking the left mouse button on the model. When a model is in a group, a small"+" sign appears in the upper right-
hand comer of the model's icon. A model can be removed from the group by the same procedure. All models can be
removed from the group by clicking the left mouse button anywhere on the diagram's background, that is, not over
any models or flows. To reposition a group of models, press the middle mouse button over any model within the group,
drag it to a new location, and release the button. All models within the group will be ttanslated in the same direction
and distance that the mouse has been dragged. A single model, not within the model group, can also be repositioned
in exacdy the same way by using the middle mouse button. Additionally, all models within the diagram can be moved
by pressing the middle mouse button on the diagram's background (i.e., not over any model or flow), dragging the
mouse to a new location, and releasing the button.

Besides toggling models into or out of a model group, the left mouse button can be used to add or remove kinks
within the flow paths. These kinks are indicated by a small circle along the path and only show up on the console and
do not appear when the diagram is printed. The kinks can be placed within model groups and repositioned just like
any other model. To add a kink, press the left mouse button over the model (or previously generated kink), sUde die
mouse to the next model (or previously generated kink) along the direction of the flow path, and release the button.
The new kink will appear midway along the flow path. To remove a kink, press the left mouse button over the kink,
slide die mouse along the flow path to die previous model or kink in the padi, and release the button.

To resize models one must open the pop-up conttol panel. This is done by clicking the right mouse button over
die diagram's background away from any model. The conttol panel, shown below, has five buttons and two slider

GC Diagram Controls
1̂

Dala) ^Paint) Print) Hide)!

Scale: ̂ i = _ | 10

Spread: 10 5 « = J 20

Items. The first slider, denoted as s c a l e , can be move to resize all model icons. If no model group exists, tfiis action
will resize all the models within the diagram. If a model group exists, then only diose models widiin die group will be
resized. In the case of a model group, the sUder action is slighUy different, either increasing or decreasing die model
size by roughly 10% depending on whether the sUder values is greater or less than five. Thus, repeatedly clicking die
left mouse pointer over the slider will either enlarge or reduce the model sizes.

• h-^^'t '^T"'' ^^''^" * ' * ' " *^ '^°""'°' P''"^' '* "l^io'^d ^ s p r e a d and is used to spread apart or conttact all models
within the diagram. This can be useful when adding state-point information to die flows where more space might be
needed between the models. Note that die model icons themselves are not resized by diis action.

Models can be optionally hidden from the diagram by placing dien widiin a model group and clicking die hide
button. This option was provided to hide the less important models in a very complex system diagram. Models diat

10

are hidden still show the artowheads of the incoming flows. Thus, a hidden model can still be placed within a group
and then re-displayed by clicking the hide button.

The other buttons within the conttol panel are used to save the curtent configuration (s a v e) , display the
state-point information (da t a) , repaint the diagram (p a i n t , which also turns off die data display), and print the di­
agram (p r i n t) .

The save button makes use of the file name that appears within the diagram window's tide. This file name along
with several other variables used by the GCtool is defined by generating an instance of the m o d s t a c k model class
within the problem inputs. This instance must be named mods for GCtool to locate the file name. Note that this is
one of only several times that a model instance must have a specific name, the others being when specific stack classes
are used by the models and will be described later. The configuration file name is given by a variable within the mods
model, denoted as con f f i l e . The data button also makes use of a special variable within mods, denoted as r d a t -
f i l e , defining the name of the file in which the ran data or state point information is placed. The contents of this file
can be generated by calling the m o d s . r d a t function within the problem inputs. Another mods variable, denoted as
c a p t i o n , defines a caption that will appear within the configuration diagram whenever the d a t a button is pressed.
Note that conf f i l e , r d a t f i l e , and c a p t i o n are all declared as character arrays of length 128, which should be
sufficient to hold the corresponding file names or caption. The mods stracture also holds an array giving the names
of the system flow types, denoted as s y s f lows , and another array denoted as showf lows . The showf lows ar­
ray elements are simply I's or O's, indicating whether the corresponding flow type within the s y s f l o w s artay should
or should not be displayed within the system diagram. More information about the mods model will be presented in
a later section.

One final feature of the system diagram window is provided. By clicking the right mouse button over any model
within the diagram, the parms window, to be discribed in the next section, will pop open (if not already open) and dis­
play all of the model's parameters and functional entties. A second click over the model with the right mouse button
will hide the model parameters (as described below) but will not close the parm window.

3.3 Parms Window

The third GCtool window will appear when the Parms button is pressed or, as described above, when a model is
clicked on with the right mouse button within the system diagram window. This window will contain a scrolling list
of all model classes and model instances that are created for the current systems problem. As with the Draw button,
the currently selected inputs will need to be rehashed before the scrolling list will display the model instances.

Besides a scrolling list, the parms window, shown below , has fivebuttons, labeled i n s e r t , m .p=v , p=v,
c l o s e , and func . In addition, an editable text line appears below the buttons. These items are included so that the
user does not have to type model and parameter names when constructing inputs to GC. Thus, they are only a conve­
nience feature and will be described below. The scrolling list initially will display all of the model classes that are
available with this version of GCtool. These model classes are listed in bold type and are denoted as the model's class
name followed by the designation "= class type". After a rehash or ran has been made of any inputs, the scrolling list
will also show, after the model classes, all of the model instances that are defined within the inputs. The model in­
stances are shown in normal type followed by the designation " = (stiTicture)". When any of the models is selected,
the list will expand to show all of the model's parameters plus their current values. Any parameter that is, itself, a strac­
ture or an artay will initially display its value by the designation "=(stracture)" or "=(array)". By selection of these
parameters, the list will again expand, showing the stracture's or artay's elements. When expanded, the original line
previously showing the stracture or array designations will change to "= following items". When such a line is select­
ed, the scrolling list will conttact back to just the sttucture or array designation.

Although not associated with the parms window, an additional feature is available for obtaining the values of vari­
ables. By selecting any individual variable within the GC inputs and then moving the mouse cursor to the main GCtool
window and pressing the space bar on the keyboard, the user can obtain a printout of the variable's value in the cmd­
tool window in which GCtool was started.

In forming the inputs to GC, the parms window buttons and text item can be used as follows. If a class type item
is selected within the scrolling list, a new model instance will be displayed on the text line showing the class type and
a default model name. This model name can be edited, if desired, and then when i n s e r t is pressed, the text line will
change to reflect a GC input line necessary to define die model. This text line will also be highlighted so diat a simple
copy-paste operation^ can be performed to insert die line widiin die input text window. Note diat die cursor location

11

within the input text window should be set by the user before die paste operation. When the i n s e r t button is pressed,
the new model instance is also added to the bottom of the scrolling list of die partns window.

If a model parameter is selected within the scrolling list, it will also appear on die text item Une. Pressing the
i n s e r t button wdl sttip off the value part, leaving only the fully qualified parameter name (i.e., model name .
parameter name) highlighted. Again a simple copy-paste operation can be used to insert the parameter within the input
fex^window Alternatively, the m. p=v button can be used to insert the fully qualified parameter name along with its
value into the text window, or the p=v button can be used to insert only the parameter name (excludmg the model
name) along with its value into the text window. The later two options also include a tenninating semicolon since such
a line would generally not be in the inputs if not followed by a semicolon. The value of the parameter can be edited
before any of the panns buttons are pressed. Note that die short fonn, generated by the p=v button, is appropnate for
use in model sttucture initialization, while the longer fonn, generated by the m. p=v button, can be used to assign mod­
el parameter values at other places widiin die inputs.

^ Piraii

Jniirt ' mf-v p- i eipii

*

• *

z

ot - r' '••k 'Vl«'
to. - class t j ^ '
pafc • class tw
pee • class typ«
pipe - class t«)e
plot - class t«)B
plots - class tflje
[HiKstJK* - class t«te
puBp •• class t«(e
reac " class type
refora " class type
refs * class type
sd » class type
OTJ » class tflte
shft •• class t«je
shftstadt - class t^ie
Hifc • class type
sp • class t^je
sptmgfB • class t«>e
t a ^ • class tw«
gasfi » fstructurs)
pDWfi » tfitroctura)
shfts • (strucUire)
dyn • Cstfucttire)

"-:y;-<(V-j?^ y-jV'.4 .Ja^.^ ..¥<-*^>- ' t T ' t ^

ftiw'

!
1
1
1

! i 1

1
A
1

•1
•. i

^ -§• 1

'--1 J
, J
^ rM

T-e.-f- o / v 5 ^

The c l o s e button is used to conttact all of the expanded items within the scrolling list. Thus, after c l o s e is
pressed, only the model classes and any model instances will appear within the scrolling list The func button is ac­
tually a choice button that will toggle between a pressed or unpressed state and is used to conttol the information that
is displayed within the scrolling list when a model is expanded. When func is depressed, the parameter list will only
show the model's functional entries. These are listed exactly like they would be used within the system inputs. Thus,
selecting one of the entries will cause it to be highlighted on the text edit tine, and again, a simple copy-paste operation
can be used to insert the entry into the inputs. In this case no other buttons need be pressed. When func is not de­
pressed, both the model's parameters and functional entries are displayed within the scrolling list. Thus, func is sim­
ply used to reduce the number of items in the scrolling Ust when setting up a system configuration.

Note that this is done by putting die mouse pointer over the Parms window and pressing the Copy key and
then moving die mouse pointer over the text editor window and pressing the Paste key.

12

4.0 Tasks Involved in System Analysis

4.1 Task Model Class

System analysis involves a number of different tasks: performing parametiic studies, establishing system con­
sttaints, performing nonlinearly constrained optimizations, integrating sets of equations, etc. The "task model" is used,
along with several auxiliary functions, to define and conttol such tasks. In order to carry out the tasks, a number of
mathematical utihties are required, and the task model provides a common user interface to these utilities. The current
set of mathematical utiUties includes a steepest descent/quasi-Newton update technique for solving systems of non­
linear algebraic equations (partially based on die work in reference [4]), a sequential quadratic programming technique
for solving nonlinear consttained optimization problems (based on the work in reference[5]), and die Gear's mediod
for integrating systems of stiff and nonstiff ordinary differential equations [6].

Multiple tasks can be set up in a given systems problem. Each task requires a separate instance of the t a s k model
class. The task model makes use of auxiliary fiinctions to collect into separate stacks the problem data for the particular
task being solved. These data include the variables being varied using the v a r y function, the equality consttaints
using the c o n s function, the inequality consttaints using the i c o n s function, the objective functions using the m i n i
function, and the differential equations using the d i f f fiinction.

When the conttolling function of the task, denoted as c, is called, it determines the type of problem that has been
set up, allocates the appropriate work space, and then calls the appropriate mathematical utility. While the details of
the equation solvers, optimizers, and integrators are beyond the scope of this document, the task model parameters
should be understood to effectively use the task class within the GC input. These parameters are described below.

The various t a s k functions (v a r y , c o n s , i c o n s , m i n i , and d i f f) that are used to set up the task types
must lie within a loop conttoUed by the task's c function. This conttolling function should be called before any of the
auxiliary functions and returns the number 1 if the task is not yet satisfied (i.e., equations not yet solved, integration
output time not yet reached, etc.) and 0 when the task is finished. One way to use this function within the GC input is
to use the function within a w h i l e statement, as follows:

t a s k a ;
w h i l e (a . c)

{
" t a s k body"

}
Here the task instance is denoted as " a " , and "task body" will define the problem to be solved using v a r y , c o n s ,
m i n i , etc.

The first auxiliary function, v a r y , requires four arguments. The fust is the variable being varied, the second is
the starting value for this variable, the third and fourth are values for the lower and upper bounds between which the
variable will be consttained. The variable's starting value should be between these bounds. For example,

v a r y { x , 500 , 3 0 0 , 8 0 0) ;

would vary the parameter x between 300 and 800 with a starting value of 500. The exact way in which die parameter

is varied will, of course, depend on the equation solver or optimizer.

The second function, c o n s , is used to define algebraic consttaints or equations diat need to be solved. This fiinc­
tion requires two arguments. The first is only used to label the consttaint and should be a reference to some variable
that is not used within any other c o n s function call. Typically, one would use one of the variables within a v a r y
call. Note, die label need not have a value or even any meaning for the problem. Its only purpose is to provide a label
for the consttaint. The second argument is die value representing the residual of the equation to be solved. At die so­
lution this residual should become zero (to within a specified accuracy). Typically, one simply inputs die equation (or
radier die algebraic expression representing the equation residual) as this second argument For example, to define a

consttaint on x diat e'^'x = 0 . 1 , one could write

c o n s (x , e x p (- x) * x * x - 0 . 1) ;

The next function, i c o n s , is similar to die c o n s function but is used to define inequality consttaints. This func­
tion should only be used when one is defining an optimization problem, that is, when the m i n i function is also called

13

within the task body. Here, the second argument represents the inequality consttaint residual and at die solution will

be consttained to be greater dian or equal to zero. For example, to define an inequality consttaint on x that x^ -2x<0,

one would write

i c o n s (x , 2 * x - x * x) ;

The m i n i function is used to define objection functions for optimization problems. It requires only one argument

representing the objective function value for the optimization task. At the solution this value should represent a local
—X 2

minimum of the objective function. For example to minimize the expression 1 - e x , one would write
m i n (l - e x p (- x) * x * x) ;

Since only one objective fiinction can be defined for any one task, no delimiter label is required, as is the case for the
cons or i c o n s functions. Note that to maximize some expression simply minimize the negative of that expression.

The last function, d i f f, is used to define ordinary differential equations for the task. If this fiinction is called,
then va ry , c o n s , i c o n s , and m i n i should not be called for this task. It requires two arguments. The first argument
is the dependent variable for the differential equation being defined. This differential equation is of the form

d x / d t = f (x , t)

Thus, the first argument would be the X in this equation. The second argument is the value of f. As will be discussed
below, the independent variable t is represented by the task class variable, t i m e . Before entering the task loop, x

should be assigned a starting value for the integration. For example, if f is x - t and the task class instance is de­
fined as a, then one would write

d i f f (x , x * x - a . t i m e) ;

to define the differential equation.

A task body can also be used that does not call any of the auxiliary functions. In this case, the task body is iterated
until the maximum number of iterations as defined by the task model parameter, m a x i t , is reached. To terminate die
task loop at any time one would simply set the iteration counter, denoted by the model parameter i t , greater dian
maxi t . Altematively, for the special task, denoted as dyn, if no auxiliary functions are called, the t i m e parameter
is simply increased incrementally by the model parameter, d e l .

The task's c fiinction, in addition to conttolling the mathematical utilities, also resets flow stacks diat might be
used widiin a system simulation. While this will be discussed in more detail after the model and flows are described
in the next section, it essentially pemiits one to define iterations around any collection of models widiout having to
perfonn certain model flow initiations at the start of an iterative loop. Thus, if an iterative loop is needed around only
a part of the system inputs, it is best to use a loop conttolled by a task rather tiian coding a f o r , do, or w h i l e loop.
If the Iterative loop extends around all the component model calls widiin a system input, then a simple f o r , do, or
w h i l e loop will not cause any problems since no fiow stacks are used before die loop.

The complete list of user-definable variables for the task model is given below. For each variable we indicate
whedier the vanable is an input or output, along with its default value (in parendieses).

" • Integer defining die curtent iteration counter value (1000). Input. This parameter is
set to 0 widiin the fust call to the task's c fiinction and is changed incrementally by die
specific matiiematical procedures that are called for the task. For die equation solving
and optimization tasks, i t will have some value equal to or greater dian 1000 when
die task is finished. The final value is an indication of the type of task tennination, widi
normal tennination indicated by i t=1000. Except for die premature termination of a
task loop without any of die auxilary functions, i t is generally not changed by die us-

maxit- Integer defining the maximum number of iterations diat are allowed in solving equa­
tions and in performing optimizations (40). Input M a x i t should be less than 1000,
as Iteration counts greater than that have a special meaning to die equation solver and
optimizer.

14

prt - Integer specifying various amounts of output to be printed during the iterations diat the
task is performing (2). Input. The value 0 will turn off all printing, requiring diat any
output be generated explicitly by the GC input. Values greater dian zero will produce
greater and greater amounts of output. The actual output that is generated is dependent
on the task being solved and also requhes for its interpretation a greater understanding
of the mathematical utilities than can be quickly explained here. However, the default
value of 2 provides for a reasonable amount of output for most tasks, and as this is the
default, this level of output will be explained in some detail here.

For the equation-solving tasks, the following is obtained. For each iteration, the output
will consist of the task name (as furnished by the user within the GC input) labeled as
(t a s k :) , the iteration number labeled as (n=), and the square root of the sum of the
squares of the consttaint residuals labeled as (f=). Note that this last value should
gradually be reduced to zero as the iterations proceed. Following these values is the
list of independent-variable values, i.e., the unknowns of the problem, labeled as (x=)
and the list of consttaint-equation residuals labeled as (c =). This last list of numbers
should also gradually be reduced to zero as the iterations proceed. Following these
items is a line of output giving some values of Newton step norms, steepest descent
step norms, etc. Only one of these will be important in most cases, and that is the vari­
able labeled as (mu=). This variable gives some measure of the ratio of Newton step
versus steepest descent step and will generally be a small number (less than about 3) if
the equation solver is not having problems. If mu becomes larger (greater than 10),
then one should reconsider the problem being solved. For example, it might be singu­
lar or not even have a solution.

For the optimization tasks, the outputs give the task name (t a s k :) and the iteration
number (n=). The number of equality consttaints (meq=) and the objective function
value (f=) are then given. The next line (x=) gives the values of the independent vari­
ables. The (c=) line then gives the values for the consttaints, with the equality con­
sttaints specified first, followed by the inequaUty consttaints. Note that unlike the
equation solver tasks, the number of independent variables and consttaints may be dif­
ferent. A line labeled as (1=) gives the value of the termination function (a function
similar to the gradient of the Lagrangian only with absolute values within its sums).
When this value is less than the specified task accuracy, the problem is considered
solved. The value of 1 is only calculated after a quadratic subproblem has been solved
and, thus, does not appear on every iteration. Some of the iterations are line searches,
which include an output Une that gives the number of the Une searches (nf=) plus sev­
eral other parameters pertinent to the line search.

For integration tasks, again the task name labeled as (t a s k :) is given followed by the
cmrent time (t=) , the integrator state (s t a t e =) , and integration order (o r d e r =) .
The next line labeled as (x=) gives the dependent-variable values, and the last Une
gives the dependent-variable derivatives (d x / d t =) .

ace- Variable indicating the tennination accuracy criteria (10). Input. For equation solv­
ing tasks, whenever the square root of the sum of the squares of the consttaint residuals
becomes less than a c e , the iterations are terminated. For optimization tasks the value
of the termination function as specified by the output Une labeled as (1=) must become
smaller than a c e .

del - Variable indicating the amount of perturbation that the independent variables will un­
dergo when the equation solver or optimizer is calculating gradients of the consttaints
(10''). Input Theactualperturbationmadeineach variable is the maximum of d e l
or d e l times the distance between die upper and lower bounds for die variable. At

15

times an equation-solving task may be used within another iterative loop within the GC
inputs implying that die task wiU solve a similar problem again and again. In such
cases die d e l parameter can be set to a negative value, which infonns die equation
solver to make use of die lacobian that was built up while solving the problem previ­
ously. For some problems, this can save significant time. However, diis pprocedure
must be used with caution, since the cun-ent equation solver does not attempt to force
die lacobian approximations to converge to the tine lacobian of the problem at the so­
lution. For the integration tasks, d e l gives the starting integration step size. For die
Runge-Kutta integrations (see me th below) this step size should be adjusted to a rea­
sonable value for the problem.

medi - Mediod fiag used by die differential equation integrator, indicating diat the Ad-
ams-Bashford-Moulton method wdl be used if meth=0; Gear's backward differencing
method, if meth=l ; or a simple fixed-step-size, 4di-order Runge-Kutta method, if
meth=2 (1). Input.

state - Variable indicating the state of the integrator (0). Input. Initially, this variable is 0 in­
dicating that the integration should be started. On output, it is assigned a value from I
to 7, indicating the type of step that die integrator is performing. This variable should
be manually reset to zero at the start of an integration task if one is performing an iter­
ative loop around such a task. S t a t e values of 1 indicate that die integrator has
reached a specified output time. S t a t e values of 2 indicate that the integrator has
reached a time value for which the dependent variables are known to die requested ac­
curacy. These two values of s t a t e are the only ones for which it is guaranteed that
the time values reached will not become smaller. For all other state values, the inte­
grator may be performing iterations, lacobian evaluations, or other functions for which
a later step might actually be done for an earlier time value. This would be the case,
for instance, if the integrator could not maintain the requested accuracy for the curtent
integration step and had to reduce it. This is mentioned because it is often desirable to
print out some variables while an integration is being performed, and it is only when
s t a t e is 1 or 2 that the printout of such variables would make sense.

time- Independent variable used within the integrator (0). Input on the first call. On output,
t ime wdl contain the curtent time reached during the integration. This variable should
also be manuaUy reset if the integration task is repeated within some iterative loop.
Note that this variable is denoted as t i m e since, very often, time is the independent
variable for the integration. This, however, does not preclude using the integrator for
integrating over other variables. These variables must just be denoted as t i m e .

tout - Variable indicating the output value to which the integrations will continue (1.0). In­
put. If several output times are required, the integration task should simply be put with­
in an iterative loop over t o u t . Note that this loop does not repeat the integrations
from the starting time, so t i m e and s t a t e should not be reset to zero in this case.

4.2 Task Model Examples

In the following sections several examples are presented that make use of the task model class. The examples pre­
sented should give a flavor of the type of problems that can be set up and solved. They iUusttate how to solve purely
mafliematical problems, such as solving equations, performing optimizations, and integrating sets of differential equa­
tions. These basic techniques wiU then be used in later sections with actual systems models to form and solve system
consttaints, optimizations, etc.

4.2.1 Use of Vary and Cons to Solve a Single Equation

The first example sets up a purely mathematical problem of solving a single equation in a single unknown. The
equation is

2 - X „
X - e = 0

16

Problems such as this are solved by varying the value of x iteratively until the equation is satisfied. Thus, there are
three aspects to solving die problem. First, some iterative loop must be defined. This loop will be called the task loop;
die task, in diis case, is to solve the equation. The task loop wiU conttol die iterations and terminate when the task is
solved. The second aspect is to define the variable needed to carry out diis task and to define a starting value and
bounds for this variable. The third aspect is to define the equation to be solved. This equation will also be called the
consttaint for the task. To specify each of these aspects, the task class c function and one or more of the auxiUary
functions wdl be called. To specify the variable, the v a r y function is used. For specifying the consttaint equation, the
cons function is used. For defining task conttol, a t a s k class instance is defined, and die iterative task loop set up
using the GC w h i l e statement.

The complete GC input necessary to solve the problem is as foUows:
• i n c l u d e " i n t f . h "
t a s k a ;
d o u b l e X;
w h i l e (a . c)

(v a r y (x , 1 , 0, 2) ;
c o n s (x , x * x - e x p (- x)) ;

}

Here the first statement includes the interface header file that defines all of the currendy available model strac­
tures.^ After the header file is included, the task instance is defined as a. A task body procedure is then defined using
a whi l e loop. Within the loop the v a r y and c o n s functions are used to define the problem. As indicated previously,
the v a r y function takes the name of the variable to be varied, in this case x, followed by a starting value, and lower
and upper bounds, here taken as 1.0,0.0, and 2.0, respectively. The c o n s function takes a variable (for labeling the
consttaint), here specified as x, and the equation residual. Note that any variables used must be declared as with any
C coding. Thus, x is declared as a d o u b l e .

To run this example using GCtool, one would simply start GCtool, and then type the above inputs (minus the
• i n c l u d e line) into a text editor, select the inputs using the mouse, and then click the left mouse button on the GC-
tool's Run button. The outputs wiU appear within the window where GCtool was started. The outputs for this problem,
as well as others in this section, are shown in Appendix.

4.2.2 Use of Multiple Vaty's and Cons's to Solve a System of Equations

The second example extends the fust example to a system of algebraic equations to be solved. For illusttations,
suppose these equations are

(x - l) ^ - y = 0

y - 2 1 n (e ' ' + l) = 0

z ^ - x = 0

Here the GC input would again consist of a single equation-solving task but would include two additional v a r y
and c o n s operators to define two additional variables to be varied and two additional equation residuals. Thus, the
input is as follows:

t a s k a ;
d o u b l e x , y , z ;
w h i l e (a . c)

{ v a r y (x , 2 , - 2 0 , 2 0) ;
v a r y (y , 2 , - 2 0 , 2 0) ;
v a r y (z , 2 , - 2 0 , 2 0) ;
c o n s (x , p o w (x - l , 2) - y) ;

tThe inclusion of the interface file is only requhed when ranning GC. GCtool wiU automatically include this
file widiout it being specified within the inputs; thus, in later examples we will not show this line.

17

cons(y, y -2* log (exp (x)+ l)) ;
cons(z, z*z-x) ;

}
p r i n t f (" \ n x = % . 2 f y=%.2f z=%.2f", x , y , z) ;

As before, one must decide on some reasonable starting values for x , y, and z and on the upper and lower bounds for
these variables. At times diis can be difficult, and several values may have to be tried in order to ultimately find a
solution. This is especially tine if the problem at hand has several solutions, and one is seeking a particular one. In
diat case changing the bounds may be used to force the equation solver to search for a solution within a particular re­
gion. In this case, for lack of more information, die starting value for aU three unknowns was tiiken as 2, and the upper
and lower bounds taken as 20 and -20, respectively. Additionally, the p r i n t f statement was used to print out the
final values (however, like the previous example, the default printout at each iteration will also appear).

Since the task's a .acc parameter defining the termination criteria was not specified, the default value is used,
stopping the iterations when the square root of the sum of the squares of the equation residuals is less then 10 . If
additional accuracy is required, a .acc should be made smaller. If substantially greater accuracy is requhed for more
difficult problems, the default maximum number of allowed iterations, cunrently 40, defined by a . m a x i t will proba­
bly need to be made larger.

4.2.3 Use of Multiple System Tasks

The third example sets up precisely the same problem as example two, but in this case, splits the problem into two
nested equation-solving tasks. This is to show how complex problems might be decomposed into simpler tasks (al­
though this example is easily solved as a single task). In this case, two class t a s k objects, a and b, are defined, one
for each of the two equation-solving tasks.

In the example, z wiU be solved for within the inner task denoted as b , and x and y will be solved for within the
outer task denoted as a. To reduce the number of iterations to solve the problem, z is given the initial value 2 before
the task loops are entered. In this way z can be initialized to its current value each time that the inner b task loop is
started. This z value will generally be better than simply taking z with some fixed starting value. The complete input
would be as follows:

task a, b;

double x,y,z=2;

while (a.c)

(vary(x, 2, -20, 20);

vary(y, 2, -20, 20);

while (b.c)

{vary(z, z, -20, 20);

cons(z, z*z-x);

)

cons(x, pow(x-l,2)-y);

cons(y, y -2* log(exp(x)+ l)) ;
)

p r i n t f (" \ n x = % . 2 f y=%.2f z=%.2f", x , y , z) ;
As can be seen in the input, the only change compared to die previous example is the nesting of the inner task loop to
solve die equation in z wiUiin the loop used to solve x and y. Decomposing a problem into nested problems such as
this IS often an effective means of solving a problem diat seems to be infractable using only one task. Note diat, if such
a nesttng is done, it often helps to keep the tolerance wiUiin die inner loops tighter dian die outer loops. This is to
prevent the inner iterations from washing out die effects of small perturbations of the outer loop variables when gra­
dients of the consttaints are being calculated.

18

4.2.4 Use of Icons and Mini to Solve an Optimization Problem

As a fourth example we show how a nonlinear, consttained, optimization problem can be solved. The problem
for illusttation is as foUows,

minimize

with

such that

{x-l)2 +

X,

X-

Y, z

-y = 0

(y-2)2 +

in [0,

and

,10]

X- z > 0

Again a single task class can be used to solve the problem, along with the c o n s , i c o n s , and m i n i functions.
The complete input is as follows.

task a;
double x,y,z;
while (a.c)

{vary(x, 1,0,10);
vary(y, 2,0,10);
vary(z,3,0,10);
cons(x, x-y);
icons(y, x-z);
mini((x-1)*(x-l)+(y-2)*(y-2)+z*exp(z));
}

printf{"\nx=%.2f y=%.2f z=%.2f", x, y, z) ;

Here, die starting values were taken as 1,2, and 3 for the three variables. Like the c o n s function, die i c o n s function
takes a variable (used only to label or deUmit this constraint from others) and the constraint residual. For inequality
consttaints, this residual should be written such that it is greater than or equal to zero. InequaUty consttaints, of course,
wUl not necessarily be zero at the solution, although they might be. For such optimization problems more inequality
consttaints can be imposed than the dimension of the problem. The m i n i function is used to inform the optimizer
what the objective function is to be.

As with the decomposition used in the third example, additional nested tasks defining other equation-solving tasks
can be included to define arbittary problem types. The optimization tasks, however, should not be nested within other
optimization tasks.

Although this problem is relatively easy to solve, with the final solution being obtained in ten iterations, this cer­
tainly is not always the case, and several points about optimization problems should be mentioned. First, optimization
problems are inherently more difficult to solve than pure equation-solving problems; thus, at times one may need to
re-ran the problem with different starting points and adjustments in some of the parameters used by the optimizer.
One cannot just look at the potential solution and "see" that it is the solution. This is because, looking at the residuals
to the consttaint equations and noting that the equality and inequality consttaints are satisfied is only part of what needs
to be considered. At the solution the Kuhn-Tucker conditions should hold. These conditions can only be evaluated
by knowing the Lagrangian multipUers and gradients of the objective functions and constraints. Secondly, during the
iterations it is quite possible that the value of the objective function may need to increase, for example, when one needs
to go "uphill" in order to satisfy the consttaints. Thirdly, iterative techniques, like the one being used here, generally
only find local minimums. To find a global minimum often requires substantiaUy more work and sometimes requires
a priori estimates of the second derivatives of the objective functions and consttaints. These often are not available.
Fourthly, the problem posed may not even have a solution. This may occur, for example, when no feasible region
exists for all of the consttaints taken together.

With these and other potential problems, several termination messages may occur when defining optimization
tasks. The main ones are "initial Une search gradient positive", "convergence of independent variables", and "more
than 10 function calls in Une search". Some of these may indicate that the solution was not found, while in other cases,
they may signify that the solution was found but not to the level of accuracy requested. In some cases re-ranning the
problem from a different starting point can resolve die difficulty. At otiier times this may be the best that can be done
with the finite differencing used in calculating the gradients. Sometimes a smaller (or even larger) value of d e l might
be tried.

Finally, one may have to decompose die problem, for example, by putting die equality consttaints widiin an inner
nested task or even resorting to parameter sweeps rather than an optimization. Sometimes parameter sweeps will give

19

greater insight into the problem under consideration and will indicate that some variables might be eliminated from
the optimization problem, thus reducing the dimensionality of the problem.

4.2.5 Use of Diff to Solve a System of Differential Equations

As a final example we set up an integration of three differential equations:

d x / d t = -X

d y / d t = y / 2

d z / d t = x - y

Again a task is define and denoted as a. The default printout defined by the p r t variable for die task is also set
to 0 so that no printout wiU be generated. To generate several intermediate output values, a sweep is made on the vari­
able defining the output times, a . t o u t , using a f o r loop. Nested within this f o r loop is the task loop implemented
using the w h i l e statement as before. Within the task loop the three differential equations are defined using the d i f f
function to indicate the variables being integrated and to specify the right-hand side of the differential equations. Af-
terthe task the p r i n t f function is used to printout the values of the time and the three variables. Thecomplete
input is as follows:

task a={prt=0};
double x=l, y=2, z=0;

for (a.tout=0; a.tout<=5.0; a.tout+=1.0)
(while (a.c)

{diff(x, -x);
diff(y, y/2);
diff(z, x-y);
}

printf("\ntime=%.2f x=%.3e y=%.3e z=%.3e", a.time, x, y, z) ;
}

Note diat although the task's s t a t e variable would generally be reset to 0 for iterations around an integration task,
in this case, the iterations do not start a new task but simply continue the old one to a new t o u t value. Thus, s t a t e
does not need to be reset to 0. Unlike die arbittary nesting of equation-solving tasks, integration tasks cannot be nested
within each oflier. However, tiiese integration tasks can be nested within or outside of equation-solving or optimization
tasks.

20

5.0 Flow and Model Classes

5.1 Introduction

In this section, we discuss the detiiils of the flow and component model classes. Defined instances of diese model
classes represent the budding blocks of the system. Each of the model classes has a data sttucture containing the var­
ious model parameters. For example, the heat exchanger model class, hx, has parameters defining the heat load,
hot-and cold-side exit temperatures, heat ttansfer film coefficients, etc., not all of which would be assigned values or
even referted to in any particular systems problem. Additionally, each of the model classes has a number of functional
entries, sometimes referred to as "member functions". Most of these are used to process the various flows within the
system. Thus, the system configuration is defined through the order in which these model functions are called. For
example, the heat exchanger model has c and h functions used to process die flows on the cold and hot side of the
exchanger, respectively. Each of the models also has an i n i t function which is used to assign default values to the
model's parameters and most models have a p r i n t function, which is used to print out the results from the model's
calculations. Some models also have a t e r m function for freeing up space that may have been allocated within the
model. None of the model functions (i n i t , p r i n t , or t e rm) makes use of flows. As discussed in section 2.5, the
i n i t and t e r m functions are automatically caUed by the GC interpreter and never by the user.

5.2 Flow Classes

Before discussing the model classes within the next section, some understanding of the flow classes required by
the models is necessary. First, a flow class is nothing other than a C stiiicture that contains the information which
passes between the various models. These flows wiU usually represent the variables describing real physical fluids,
but can also represent most anything the modeler desires. In general, the user wiU manipulate the flows of a system
by caUing the model functions. In particular, for each flow class diere is a special model that is used to initialize the
flow and place it onto a flow stack. This flow stack is unique for each flow class and is the mechanism by which the
flows are passed between the models.

Practically aU of the models have as part of their data structure one or more instances of the flow classes. These
are used to store the values of the flows, usually at the exit of the model, and can be used in forming consttaints and/or
objective functions within the GC input. The basic component models make use of two flow classes, denoted as
g a s t y p e and s h f t t y p e . The special initializing model for the g a s t y p e flow is denoted as g a s and will be de­
scribed below. The flow stack used with the g a s t y p e flows is denoted as g a s s . The special initializing model for
the s h f t t y p e flow is denoted as s h f t , and its cortesponding stack as s h f t s . These also wiU be described below.
As the names suggest, the g a s t y p e flow is used to represent the flow of gases (or any fluid) between the models, and
s h f t t y p e is used to represent shafts that connect the models.

5.2.1 Gastype Flow Class

The g a s t y p e flow class is used for representing the flow of fluids (not necessarily a gaseous phase) and has
the following variables:

id - Pointer to the flow's identification

t - Temperature in K

p - Pressure in atm

h - Endialpy in J/kg

s - Enttopy in J/kg-K

r - Density in kg/m^

q - Quality

m - Mass flow rate in kg/s

V - Velocity in m/s

atoms - Array of atom fractions, kg-atoms/kg of flow, of each element within the flow

comp - Artay of species kg-moles per kg of flow

frozen - Flag indicating chemical equilibrium status: I for frozen chemistty, 0 for equilibrium

chemistry

The i d parameter is used to define which diermodynamic property code is used in calculating the A o ^ s proper­
ties There ^ e actually several thertnodynamic property codes available within GCtool. This vanable should be ^ -
signedone of the character stting values "GAS", "STM", "LIQ-species", or "THR-species . Here species is one of die
species defined in die l i g d a t a file for "LIQ" flows or t h r d a t a file for die "THR" flows. For example
id=" THR-H2 •• defines the properties for hydrogen, and id="THR-C8H18-2" defines the properties for 2-methyl-
heptane The i d of "GAS" is used to signify diat the flow stream is a mixture of gases in chemical equilibnum. The
i d of "STM" represents a flow of water/steam; the i d of "LIQ-species" is a flow of a pure liquid; and lastly, the i d
of "THR-species" is either a liquid, gas, or two-phase flow of the indicated species. In general flows with diff-erent
id ' s cannot be mixed together in those models which mix or combine flows; however, any number of flows widi dif­
ferent id ' s can be used in the same system analysis problem. Several of the models will pennit mixing of "STM" or
"THR" type flows widi diose of "GAS", provided each flow has similar species.

In the case where the i d pointer is assigned "GAS", the actual gas is further detennined by die contents of die
flows's comp artay. This artay contains the number of kg-moles of each species per kilogram of flow. The actual
species that can be used is defined within the p r o p . h file and presently consists of C, CO, COj, CH4, CgHig,
CH3OH, H, H2, HjO, O, O2, OH, Nj, NO, S, SOj, HjS, HjOc, CH3OHC. Here the last two species ending widi the
lower case c (for condensed liquid phase) represent any liquid water or methanol widiin the flow. For convenience,
die species names (in caps) are defined as a sequence of integers so that the user can refer to a particular species by
specifying its name. For example, the kg-moles of COj per kg of flow would be referenced widiin die gastype's comp
array as comp [C02] .

For use widi "GAS" type flows, die frozen parameter widiin the flow sti-ucture can be set to 1 to prevent the equi­
librium code from changing die concenttations. The frozen parameter is the only parameter that the user should ever
directly set in die flow sttucture; all odiers are deflned by the individual models processing the flow. "When frozen is
set to 1, no chemical reactions take place widiin the flow; however, phase equilibrium between liquid water or liquid
methanol and their vapor states is stiU permitted. If this phase equiUbrium is also not desired, then the gas stack's
no form parameter can be used (see below).

In addition to the variables, the g a s t y p e class has several auxiUary fiinctions for determining the properties of
the flows. These are generally only used within the model classes and, thus, reaUy don't need to be of any concern to
a GCtool user. They would be of concern, however, to a model developer and are discussed in the section on interfac­
ing models with GC. Briefly, diese functions consist of p r o p for determining the thermodynanuc properties of the
flow as a function of p and t , p and h, or p and s; s a t for determining the liquid and vapor saturation enthalpies;and
atom for determining the flow's a tom artay. Note that the properties calculations represent a large part of the mod-
eUng whhin many of the component models. For example, often a fluid flow wiU be taken to some new temperature,
enthalpy, or enttopy value, and then the properties code called to determine its other properties. When this is done,
depending on the flow, the new chemical equilibrium composition, molecular weight of the flow, density, quality, etc.,
are determined in addition to the temperature, enthalpy, and enttopy values. Thus, when discussing the modeUng em­
ployed, one can generally assume that quantities, such as the flow's molecular weight are known, and no indication is
given as to how these are determined since such calculations are performed within the property codes.

5.2.2 Gasstack Class

G a s s t a c k is the stack class used with the g a s t y p e flows. A specific instance of this class is required for any
of the models using a g a s t y p e flow. This instance must be denoted as g a s s . Since it must always be defined, it is
pre-defined within the interface header file used by die GC interpreter. In this way the user does not need to explicitly
define diis instance witiiin the inputs. The g a s s stack itself has several variables, and several member functions. The
variables are as follows:

prt - Print flag (0). Input. When set to one, p r t is used to print out values of the flow each
time the properties code is caUed. Its use is for debugging,

lowtemp - Lowest temperature permitted during iterations widun die gas properties code (250 K).
Input

22

tiirfsat - Flag (1). Input. When set to one, t h r f satwiU cause die THR properties code to pro­
duce a table of the saturation temperatures as a function of the pressure. This table is
dien used to calculate die saturation temperattire whenever it is needed by the THR
properties routines. This is only a performance issue to eliminate the iterations needed
to calculate the saturation temperature later on. Note, however, these iterations must be
done iiutially to generate the table.

noform[i]- Artay of integer flags specifying whether (0) or not (1) the i'th species wdl form when
the "GAS" property code is used to calculate chemical equUibrium. The default values
are aU zeros. No form is useful in eliminating from consideration those species diat
might exist diermodynamicaUy, but, usually don't appear due to very slow reaction
rates. Setting n o f orm [H20c] , nof orm [CH30Hc] , or noform[C8Hl 8c] equal
to one wdl prevent these condensed phases from occurring and, thus, eliminate phase
equUibrium calculations for gas stteams that have been frozen. Nof orm can also take
the value -1 , which implies that the species wUl be frozen during chemical equiUbrium
calculations. This is useful for freezing certain species but permiting others to react
during chemical equUibrium calculations, thus providing a more refined conttol than
the use of the f r o z e n parameter within a flow stteam.

The g a s s stack member functions include p r i n t , which is used to print out tables of variables related to the
flow state, and p r i n t m , which is used to print out tables of molar flow rates and mole fractions for individual species.
Pr i n t m is only useful when one or more of the flows have the "GAS" flow id. Gass also has thrwk, which takes
as an argument "RK" or "LK" for setting either the Rudlick-Kwong or Lee-Kesler equation of state, whenever the
"THR" property code is used. The default equation of state is the Lee-Kesler. Two other functions are also available
within the g a s s class, these are called as follows:

g a s s . s a t (f l , h i , hv)
g a s s . h v (f l , I h v , hhv)

where f l is a g a s t y p e flow; g a s s . s a t calculates the saturation liquid enthalpy, h i , and the saturation vapor
enthalpy, hv, at the f 1 ' s pressure; and g a s s . hv calculates the lower, I h v , and higher, hhv, heating values of the
flow. G a s s . s a t should only be used for condensable flows, "STM" or "THR", whUe g a s s . h v should only be used
for flows that can be converted lo a "GAS" type flow (i.e., the flow's comp array is defined). Note that for gas s .hv ,
the heating value is calculated at 298.15 K and 1 atm and only for gaseous flows. Thus, if one desires the heating value
for a liquid flow, the energy necessary to vaporize the fluid must to be subttacted from the I h v and hhv values.

5.2.3 Shfttype Flow Class

The s h f t t y p e flow class is used to represent physical shafts that enter and leave components. Thus, for exam­
ple, the compressor model, in addition to having a g a s t y p e flow representing the inlet and exit gas flows, has a
s h f t t y p e flow used to represent the inlet and exit shafts to the component. The s h f t t y p e class has the following
parameters:

rpm - Speed of rotation of the shaft, rpm

inertia - The total inertia of all components on the shaft up to this point within the shaft flow

power - The total power delivered to the shaft up to this point within the shaft flow

UnUke die g a s t y p e flow class, the s h f t t y p e class has no member fiinctions. AdditionaUy, the shaft flows
are generally used only when one is performing a dynamic analysis and, dius, may not even be used in many system
problems. Most of the models that have functions that deal with the shaft flows can also be run without calling these
functions. The s h f t model, discussed below, is used to initiate a s h f t t y p e flow.

5.2.4 Shftstack Class

The s h f t s t a c k class is used to define the shaft stack for holding the various s h f t t y p e flows. Like the g a s -
s t a c k class, a specific instance of this class is required for the basic components. This instance must be caUed
sh f t s and, as such, is pre-defined widun die interface header file. Thus, die user does not need to explicidy define
tills instance within the GC inputs. The s h f t s t a c k class has no parameters but does have a p r i n t member func­
tion. This function will print out a table of aU the s h f t t y p e flows used by a system, giving die model name, the

23

rpm, shaft inertia of all components on the same shaft up to the model's exit, and the power within the shaft up to the
model's exit. Note that the power is algebraic, with components along the shaft either adding or subttacting from die
shaft's power. Thus, turbines, motors, etc., would usually add to the shaft power, while compressors, pumps, genera­
tors, etc., would usually subttact from the shaft power. At the end of a shaft flow if the power is positive, then the rpm
(in a dynamic system ran) would tend to increase, and if the power is negative, the rpm would tend to decrease.

5.3 Basic Model Classes

The present collection of component model classes provides a basic thermodynamic description of the compo-
nent's behavior. Some, such as the steam reformer, provide for detailed calculations of the temperature and flow fields
tiirough the device. Models with more process detail can be added by die user if required. The basic classes consist of
the following:

Basic Component Model Classes

modstack-
gas-
sp-
mx-
ht-
hx-
cp-
gt-
pipe-
pump-
sd-
fli-
cond-
df-
nz-
cb-
pem-
sofc-
mcfe-
pafc-
reform-
reac-
shft-
gen-
mot-
dht-
dhx-
refs-
cnd-
pows-

model stack
gas flow initiator
gas flow splitter
gas flow mixer
gas flow heater/cooler
gas flow heat exchanger
compressor
gas turbine
fluid flow pipe
pump
steam dram
feed water heater
water condenser
difftiser
nozzle
combustor
proton exchange membrane fuel cell
sohd oxide fuel cell
molten carbonate fuel cell
phosphoric acid fuel cell
hydrocarbon fuel reformer
generic dynamic flow reactor
shaft flow initiator
electrical generator
electrical motor
dynamic heater/cooler
dynamic heat exchanger
detailed dynamic methanol steam reformer
PID controHer
system powers

5.3.1 Modstack Model Class

also us'ell'fn'nT'l'" T H ' " " " l^.' * ' •""'^^^ack class is used to store several global variables used by GCtool. It is
fnnuts m e C ^ H ? , *"°.K T^T ^' ^"=^^^^i™'y ^^"i"g ^ e p r i n t functions of all die models defined in die
mus berfined ,T T i t global vanables used by GCtool, a special instance of dus model class, denoted mods,

Te dlfined by the"ser ^ ^ ' ' ' ^""" '^ ' ' ' " ' ' * " ""^ ^'"^^^"""^ ™'*^" * ^ ' " ' ^ * ^ ^ ^^''^^ «'^' "°<^^ •""»'

The modstack class has the following parameters:

sysflows[*] - Array of character sttings used to store the names of aU the system flow types. Input.
This an-ay is used only by GCtool when dealing widi system diagrams.

showflows[*]- Array contiiining eidier O's or 1 's indicating whedier die cortesponding system flow
type as defined in die s y s f 1 ows array is to be shown on die system diagram. (Default
IS 1 tor the first flow, indicating the flow is to be shown, and 0 for all others.) Input.

24

conffile[128]- Character stiing holding the file name used in storing die system configuration diagram
("tmp/temp.conf'). Input.

rdatfile[128]- Character stiing holding die file name used to store state-point information for the sys­
tem configuration diagram (""). Input. Note that when r d a t f i l e is taken as "" (the
default) the r d a t f i l e name is made equal to the conf f i l e name only with die
".rdat" suffix replacing the ".conf suffix.

caption[128]- Character stiing holding a caption used on the system configuration diagram (""). In­
put. Muiti-Une captions can be created by using '\n' character within die caption stiing.
Each occurrence of '\n' starts a new line centered below the previous line.

printer[16]- Character stting defining the printer to be used when plotting the system diagram ("").
Input. A null character string defines the defauU printer for the workstation. This
stting defines the printer name as it would appear within die -P option of the UNIX Ipr
command.

The functional entries to the modstack class consist of r d a t and p r i n t . Neither of these functions requires ar­
guments and should only be caUed after aU the other models have been called. The r d a t function will print out to the
r d a t f i l e the state-point information to be placed on the configuration diagram. The p r i n t function will succes­
sively call the p r i n t fiinction of aU models used in the inputs. The order of these model outputs is the same order as
the models are defined within the GC inputs.

5.3.2 Gas (gas) Model Class

The g a s model class is used to initiate a g a s t y p e flow. Additionally the g a s model has a number of member
functions for saving and restoring flows from the g a s s stack, closing flow paths, and continuing flows with different
property functions. The member fiinction used to initiate a g a s t y p e flow is denoted as c. The c member function
does not require any input flows, but puts one output g a s t y p e flow onto the g a s s stack. The modeling begins by
simply assigning values to the flow variables as follows:

i d = i d i n

m= m^n

V = Vin

P = Pin

compi = compi in ^--^ • • • ^^

where i d is the flow id as discussed above; m, v, and p are the flow's mass flow rate, velocity, and pressure, respec­
tively; compi is the flow's i'th species mole fraction or molar flow rate, and NS is the total number of species. The
subscript i n represents input values. Note that NS is fixed by the property calculations procedures (NS is defined widi­
in the prop.h file) and is, thus, not directly input.

The g a s t y p e ' s a tom function is dien called to determine the contents of die flow's a tom array. As an option,
if the input mass flow rate is specified as zero, die input comp^ _ ^^ anay is taken as the molar flow rates rather than
the species mole fractions. The input mass flow rate is then calculated from

m =]£comPi^ ij^mw^

where mw^ is die molecular weight of the i'di species.

Next the variables t^^, qin, and h^n are exanuned to determine the flow's exit state point. This is done as fol­

lows. If die input value of temperature t ^ j , is specified as zero and die input value of die flow's quality is greater dian

-100, dien die s a t property function is called to determine die saturation Uquid and vapor enthalpies, h^ and h^,. The

flow's enthalpy, h is then determined from

h= h i + q^n (hv - h i)

25

where q,^ is an input value for the flow's quality. Here the input value of g^^ should be some reasonable value, usu­
ally between 0 and 1, but negative values can represent subcooling and values greater than 1, superheating. If the tem­
perature, t i „ is non-zero and q i ^ is less than -999, then the flow's enthalpy is simply assigned an input value

h = hin

The non-zero t i n value is then used only to give the property code some reasonable initial guess of the temperature

of the flow. If the temperature t i „ is non-zero and q^^ is greater than -999, then the flow's temperature is assigned

the input value

t = t i n

and the p r o p function is then called to determine the flow's enthalpy. In every case, die p r o p function is caUed one

more time with enthalpy as the input, along widi the flow's pressure, to determine the flow's density, enttopy, molec­

ular weight, etc.

When die flow's temperature is defined by die input value of t^n and is less tiian the critical temperature of water

and die flow's i d is diat of "GAS", the flow can be humidified by specifying a value of the relative humidity to as

follows. First die steam property code is called at the flow's temperature to determine the vapor pressure, F^^^p, of

water. Any water that was input using the comp artay is removed, and the total molar flow rate mol t^^ of the dry

flow is calculated. The moles of water, molh2o necessary to humidify the flow to CO is calculated from

: comol , f ^"^P ^ '^o.i^ P v a D '

This flow rate of water is then added to the flow. In this case the mass flow rate out of the model wiU not be die
specified input mi^ value (or the value determined from the input comp array), but something slightiy larger. The
min value wUl represent the flow of dry gases provided that no water was added when the gas composition was de­
fined.

An option is also provided to assign the velocity of the exit fiow by using an input flow area, a r e a ^ ^ . If a rea^^
is non-zero, then the exit velocity is given by

p a r e a ^ n

where p is the calculated density at the exit, and m is the mass flow rate.

The gas model also has a dynamic mode to simulate a liquid storage tank with both an inlet and an exit flow. This
is done by defining the differential equations for the total mass of liquid in the tank and the total enthalpy of die liquid
in the tank as follows.

da

J^ = m o " o - % h i

where M is die total mass of liquid in the tiink, H is the total enthalpy in die tank, m is the mass flow rate, h is die
specific endialpy, t is die time, and the subscripts 0 and 1 correspond to the inlet and exit, respectively. The inlet flow
quantities are obtained by calling the c y c l entty (see below) to the model. Once die total endialpy is known, die spe­
cific endialpy at die exit is determined from

h i = « .
^ M

This is then used in place of h^^ to define the specific enthalpy of die flow leaving die c entty. An initial value is given
to M directiy, while the initial value of H is defined by the above equation and die user's input specification of die exit
flow at die start of die simulation. Note diat no volume considerations are made. That is, it is assumed diat die tank

26

can handle any amount of net input flow. The simulations will tenninate, however, if the total mass becomes less than
or equal to zero.

The parameters to the gas model are as foUows, where die default values of the parameters are specified in paren­
theses, and an indication of whether the parameter is an input is also given:

id - Gas flow id ("STM"). Input.

m - Flow rate (1.0 kg/s). Input.

v - Flow velocity (10.0 m/s). Input

p - Flow pressure (1.0 atm). Input.

t - Flow temperature (298.16 K). Input.

h - Flow endialpy (0.0 I/kg). Input.

q - Flow quaUty (0.0). Input.

area - Flow area (0.0). Input.

comp[i] - Mole fraction of the i'th species, if m was input as a non-zero value. Pefault is an array
of 0.0's.) Input. If m was input as zero, comp [i] inputs the molar flow rate of the i'th
species.

humid - Relative humidity of the "GAS" flow (0.0). Input.

pvap - Vapor pressure of water at the input flow temperature.

dcompmax - Maximum of the absolute values of the differences between the inlet-species molar
flow rates into the dcomp enOy and outlet-species molar flow rates from the c entiy.
This value is calculated within the dcomp entiy (see below) and should become zero
for loop closure.

cyclall - Flag that, when set to 1, informs the dcomp function to force a fixed point closure it­
eration, not only on the comp artay, but also on t , p , and h (0). Input.

power - Power t y p e stracture, containing the variables h e a t and work. Only the h e a t pa­
rameter is important for this model (see the c y c l entry below).

mode - Character stting that when set to "dyn" will perform the calculations far a dynamic liq­
uid tank simulation (""). Input.

mass - Initial total mass of Uquid in the tank when using the "dyn" mode.

fl - Exit g a s t y p e flow structure from the model. Note diat f 1 needs to be further qual­
ified with one of the gastype parameters, such as, f 1 . t , when used within the GC in­
puts.

flcycl - Inlet g a s t y p e flow to the c y c l function.

d - Gas t y p e flow structure representing the difference between the flow entering the
c y c l function (see below) and that leaving the c function.

As noted above, if the temperature is specified as zero, then the model assumes that the flow is to start at the sat­
uration temperature corresponding to the input pressure. In this case the specified flow quality is used to determine
the inlet enthalpy, provided it is greater than -100. Thus, quaUty set to zero refers to the liquid saturation line, and set
to one, the vapor saturation line. Additionally, if quaUty is less than -999, then the code expects the enthalpy value to
be input directiy.

In developing system configurations, the various model functions that handle flows are called in the order that
the flows need to be processed. At times, it might be necessary to stop the processing of a flow, and at a later point
within the configuration restart the flow's processing. This is done by saving the flow and removing it from the flow
stack (g a s s in the case of g a s t y p e flows) and later recovering the flow to be placed back onto the stack. The mem­
ber function used to save a flow is denoted as sav , and the the member fiinction used to recover the flow is r e c . When
a gas model instance is defined for use in saving and recovering a flow, the p r i n t member function is automaticaUy
disabled. Also no input model parameters need to be specified. Note that most system configurations can be defined
without the use of the s a v and r e c functions, but they might be needed in some very special circumstances.

The member function c o n t is provided to continue a g a s t y p e flow, but witii its properties calculated using an-
otiier property's code. Con t takes one input flow from die g a s s stack and puts one g a s t y p e flow back onto this
stack. When c o n t is used, the model instance only needs input data concerning the new properties. Thus, if switching
from a "THR" flow to a "GAS" flow type, only die new i d of "GAS" and the comp array are needed. Cont will use

27

the input flow's temperature and pressure. Note diat when switching between property codes, the enthalpies, entto-
pies, and densities may not exacdy match between the inlet and outlet of c o n t . Thus, switching between property
codes should be done carefully, or an energy imbalance could arise within the system. The "GAS" properties code
assumes ideal gas states for the species and, as such, switching between property codes is best done at high tempera­
tures where the species behavior is closer to die ideal gas.

The member function c y c l is provided to help set up system consttaints when a flow forms a closed cycle. This
function requires one input flow from the g a s s stack and calculates the differences in die flow variables between this
input flow and the output flow from die corresponding c function. The differences are stored in die g a s t y p e flow
strachire denoted as d (e.g., d . t , d . p , d.m, etc.). This fiinction wiU also calculate die difference in power
(mass*enthalpy) between diese two flows and save this in the variable p o w e r . h e a t . Note that for a cortecdy formu­
lated closed path, dus variable should be zero. As discussed above, this fiinction is also used in the "dyn" mode to rep­
resent the inlet to a liquid storage tank.

One last member function is provided, denoted as dcomp, and can also be used to help form a closed flow padi.
This function will make changes to the model's comp anay in order to match flow rates for die input and output spe­
cies. The input flow used is that to the c y c l function; thus, the c y c l function must be called first. The dcomp func­
tion takes die input flow's comp artay and calculates the conesponding comp array used to define the oudet flow from
the model's c function. Within the GC inputs, one can simply form a task loop with no auxdiary function calls and
iterate around the system with dcomp called at the end of the task. In diis way, a simple fixed-point iteration scheme
is implemented to force compositional closure. Note that this function should not be used within a task loop that is
making use of the v a r y or d i f f functions. The dcompmax parameter can be examined on each iteration to terminate
the loop (i.e., setting the task's i t parameter greater than the m a x i t parameter) when sufficienfly close to conver­
gence. The c y c l a l l parameter can be set to one to tell dcomp to also do a fixed-point iteration on the mass, tem­
perature, pressure, and enthalpy, otherwise these parameters will need to be closed by some other means. Note that
more than one fiow can be closed in the task loop, however, since only a simple fixed point scheme is being used here,
one may need to experiment to close the flows.

5.3.3 Mixer (mx) Model Class

The mixer (mx) model class is used to mix together two g a s t y p e flows using the member function c. This func­
tion takes one input flow from the g a s s stack and puts one output flow back onto the stack. The other input flow is
obtained by calling the member function s. This function, which must be caUed before the c function, takes one input
flow from the g a s s stack, but generates no output flows. The model requires no input parameters.

Generally, the mixer model should only be used to mix flows that use die same property i d ' s . Thus, "GAS" flows
should not be mixed with flows of other i d types. However, when a "GAS" flow has a species that is die same as die
species widiin a "THR" or "STM" flow, die c o n t entty of the g a s model can be used to convert die flow to a "GAS"
flow for mixing within the mx model. Alternatively, the mixer model will permit mixing of flows of different id 's ,
provided that one flow is a "GAS" i d , and die other is either "STM" i d or a "THR-species" i d in which the species
is one of diose present within the "GAS" flow. In these cases die non-"GAS" flow must have its comp array defined
at the point where it enters the mixer. Note that die comp array is generally only used widi die "GAS" type flows, but
is required for the other flows in this special case.

In die case where one of die input flows is a "GAS", and the odier is a "STM" or "THR", die flow diat is a "STM"
or "THR" is essentially converted to a "GAS" before being mixed with die other flow. This is done by summing die
inlet enthalpies of die two flows and dien caUing the property code to estiiblish die temperature and odier state variables
of the exrt flow. Since die input "STM" or "THR" flow might have been in die subcooled or two-phase region, die
resulting endialpy of die mixed flow might be such diat the resulting temperature is very low, possibly lower tiian die
g a s s stack's lowtemp parameter. In diis case, the temperature output from the mixer model wdl be wrong, even
though the output enthalpy is con-ect, and any further heating of the flow by downstteam models will again produce
the con-ect temperature. Note diat this mixing of "GAS" and "STM" or "THR" flows reUes on die property codes using
he same reference values for die endialpies of die individual species widun die flows. This reference state is die en­

thalpy of fonnation of the individual species at 298.15 K and 1 atin. Using dus reference stiite for die individual species
also perauts the mixer to calculate die conect adiabatic flame temperature for various mixed flows.

The modeling within die mixer is dependent on whether tiie input flows are "GAS" flows. For such flows, die
output comp array must be first calculated from the two inlet comp artays, as follows:

28

comp, jm. + c o m p , -m,
c o m p i = i i i - i i ^ i - 3 i = i _ _ j js

mi + m2

where comp is the composition, m is the mass flow rate, and the subscripts 1 and 2 correspond to die two input flows.
Once die compi values of the output flow are known, the a tom function is then called to determine die flow's a tom
fractions.

For both "GAS" and non-"GAS" type flows, die following calculations are then made to determine the output
flow's pressure, enthalpy, and mass flow rate:

p = min (p i , P2)

h = (mi h i + m2 h2) / (mi + m2)

m = mi + m2

Finally, the p r o p function is caUed with enthalpy as an input to determine the flow's enttopy, density, and tempera­
ture.

The mixer model parameters are

fl - Exit g a s t y p e flow from the model. As widi all model flows, f 1 would need to be
further qualified, such as f 1 . t , when used within the GC input,

fls - Secondary input flow to the model.

5.3.4 Splitter (sp) Model Class

The spUtter (sp) model is used to split a g a s t y p e flow into two flows using die member function c. This func­
tion takes one input flow from the g a s s stack and places one output flow back onto the stack. The second output flow
can be obtained by calUng the member function s. This function places one output flow onto the g a s s stack but re­
quires no input flows. Since the second output flow can only be known after processing the input flow through the c
function, the s function should only be caUed after the c function is caUed.

The modeling done within the splitter is dependent on whether the splitter is being used to spUt off certain species
(only used for flows with an i d of "GAS") or to split the whole flow. If the spUt ratio value, s r , is less than zero, then
it is assumed that at least one element of the species split ratio array, s s r ^ , is non-zero. In this case the mass flow
rates of each species must be calculated to determine the split-off flow. This is done as follows:

m2 1 = ssr^ compin imwi m^^ i=0 . . . NS

m, . = (1 - ssr,.) comp. .mw- m.„ i=0 . . . NS l, 1 1 in, 1 1 in

where mi 1 and m2 ^ are the mass flow rates of flow 1 and 2 for individual species, compi^ is die species moles per
kg artay for inlet flow, mn^ are die molecular weights for individual species, and m ĵj is the mass flow rate for the inlet
flow. Once the mass flow rates are known for the individual species, the total flow rates for the two flows can be de­
termined:

•"1 = Z"* ! , i

™2 = X™2, i

The new species moles per kg artays for each flow can then be determined, as follows:

™1 i comp , J = '•— 1=0 . . . NS

c o m p , J = '-^ i =0 . . . NS
^' ^ mwim2

The a t o m function is dien called to determine the atom fraction artay for each flow, foUowed by a call to the
p r o p function widi the inlet temperature as input to determine theendialpy, enttopy, and density for each flow.

29

Note that when the splitter model separates one or more species from a flow, it is really niodeling a possibly com-
nlex ™ c e " ay not be simultaneously isodiertnal and isoenthalpic, which is what the splitter model is assuming.
I s ' w splUting'off species, one should be aware that it could give rise to an energy imbalance. When such is die
case'it may be more appropriate to model the spUt-off process by more than just a smgle sphtter.

When s r is non-negative, the above calculations are replaced by the following:

In diis ease there is no need to call the p r o p function as the state variables for the exit flow are die same as die inlet

flow.

The splitter model parameters are die following:
s r . Split ratio representing die fraction of input mass flow rate diat is split off to fonn die

second output flow (0.5). Input.
ssr[i] - The i'di species split ratio representing the fraction of the input mass flow rate of the

i'th species diat is split off to fonn the second output flow. Input. Actually, s s r is an
anay of values but, Uke the gastype comp anay, individual species are specified by
name, for example, s s r [C02] .

fl- Primary flow sttucture from the model. Output

fl2 - Secondary or split-off flow from the model. Output

The s s r artay is only used with flows having the "GAS" i d and only when die s r parameter is less than zero.
Since both s r and s s r represent fractions of die input flow mass, their values should be between 0 and 1. The s s r
anay elements should not be aU zeros or ones, as diis would make one of the output flows have a zero mass. Note diat
since the s r variable is by default greater dian zero, if s s r is to be used, s r must be expUcidy set to a negative num­
ber.

5.3.5 Heater (ht) Model Class

The heater (ht) model class is used to ttansfer heat into or out of a g a s t y p e flow. The model has one main
calculation fiinction c. The function takes one input flow from die ga s s stack and puts one output flow back onto die
stack.

The model first calculates die exit flow pressure (p) based on an input pressure fraction (f p), as follows:

P ~ P in pPin

where Pin is the inlet flow pressure. The model then calculates the enthalpy change based on one of three options. If
the exit flow temperature t is specified as non-zero, then the exit flow enthalpy is simply calculated using the p rop
function with p and t as inputs. If t is zero, then the model checks the exit flow quality, q, and if that variable is greater
than -100, then the s a t function is used to determine the saturation liquid and vapor enthalpies, h i and h^, at the exit
flow pressure. These values are then used to calculate the exit flow enthalpy from

h = h i + q (h ^ - h i)

FinaUy, if q is not greater than -100, the heat transfened, Q, is used to determine die exit flow enthalpy from

h = h i + °
^" m

where h i^ is the inlet flow enthalpy, and m is die mass flow rate through die heater. Once die endialpy of the flow
is known, p r o p is called to determine the temperature, enttopy, and density of die exit flow. In addition, the heat
ttansfened from either the input or from

m

is stored for later print out.

30

The heater model parameters are defined as follows:

temp - Temperature of the exiting gas flow (500 K). Input.

qual- Quality of the exiting gas flow (-1000). Input

pfi:ac - Fraction of the input pressure used as a pressure drop (0.0). Input.
heat - Heat input (W). Input.

power - The p o w e r t y p e stiuctiire, where p o w e r . h e a t represents the heat transfened

across the heater. Output

fl - Exit flow from the model. Output.

Only one of temp, q u a l , or h e a t should be input. Temp is used if not equal to zero. If temp is zero, then
q u a l is used if greater than -100 . In this case the exit temperature will be the saturation temperamre at the exit pres­
sure if q u a l is between zero and one. Note that q u a l can be set less than zero to represent subcooled flow, or greater
dian one for superheated flow. If eidier temp or q u a l is used to determine the exit flow temperature, dien h e a t is
an output variable. Finally, if temp and q u a l are not used (i.e., set to 0.0 and -1000, respectively), then h e a t is used
directly to determine the exit temperature. Note that h e a t can be a negative number, in which case this model will
act like a flow cooler.

5.3.6 Compressor (cp) Model Class

The compressor (cp)model class is used to model a multistage gas flow compression process. The model has both
a design and off-design mode. In the off-design mode the model makes use of performance maps. The performance
maps are obtained by caUing the i n member function, which will read the maps from a file. This i n function wdl be
called automatically in the off-design mode within the main calculational function. Altematively, the user can explic­
idy caU the i n function. The main fiinction is denoted as c and performs the gas compression process. This c function
takes one g a s t y p e input flow from the g a s s stack and puts one output flow back onto the stack. An additional entry
is provided, denoted as c o o l , which also takes one g a s t y p e flow from the g a s s stack and puts one output flow
back onto the stack. This fiinction is called to represent the cooling flow through intercoolers. The intercoolers are con­
sidered as part of the compressor model whenever the number of compressor stages is greater than one. For use in dy­
namic system studies, a s h f t fiinction can be caUed to obtain the input shaft flow to the compressor. If called this
function takes one s h f t t y p e flow on the s h f t s stack and should be caUed before the c function. The c function
will then put the exit s h f t t y p e flow onto the s h f t s stack. If the s h f t function is not called, then the model wiU
make use of the rpm with the model's input parameters rather than the rpm from the shaft flow.

The modeling used in the compressor is dependent on whether the model is being called in the design or off-de­

sign mode. If in the design mode, the model simply uses a specified exit pressure (p^-^) and input efficiency (ri). A

stage pressure ratio (pr) is then calculated from

1

p r = <Pex/Pin>"

where p i ^ is the inlet pressure, and n is the number of compressor stages. Rated (or design point) parameters are then

calculated for use in the off-design mode. These include a pressure ratio, efficiency, conected mass flow parameter

(cmasSj.3^gjj) and cortected rpm parameter (crpmj.^^g;j) and are obtained from

P i r a t e d = P ^

I r a t e d = 1

• P m

rpmi„
crmp^^t^a ^

where mi„ is the inlet mass flow rate, t i „ is the inlet flow temperature, and rpm^^ is the rotation speed of the inlet

shaft.

If the model is ran in the off-design mode, a con-ected mass flow parameter (cma s s) and conected rpm param­

eter (c rpm) are calculated from

m

Pi:
cmasSj.^^ga

rP"'in /(-ytm)

The performance maps are then called widi these two conected parameter values to obtain a stage pressure ratio

(p r) and an efficiency (T\^^„). In order to make use of the same performance maps for different-sized compres­

sors, these returned map values are further scaled as follows:

(p i r a t e d - 1)
p r = l - f (p r ^ ^ ^ - l) 7

Cra ted „
n = Z tlmap

' ra ted,map

where map refers to the quantity obtained from the map, r a t e d r e f e r s to the input rated quantity, and

r a t e d , map refers to the quantity from the map at the rated conditions.

The rest of the modeling is the same in both the design and off-design modes. For each compressor stage the p r
value is first used to determine the stage exit pressure

Pex = P r X P i n

Then a caU to die p r o p function is made with the inlet enttopy as input to detennine die enthalpy (h) of an isenttopic

compression to this exit pressure. The actual exit flow enthalpy (h) is then determined from

h = h i , - ^ (h ^ - h l „) / 1 ^

and another cad to p r o p with endialpy as die input wUl then determine the rest of the state points of die exit flow.

The power required by the compressor stage is calculated as

Pow = m (h i j j - h)

Between each stage intercooling is calculated by cooling the compressed flow down to an intercooler exit tem­
perature equal to die inlet temperature plus some d t value. The endialpy of die compressed flow is fu-st saved as h^^,
dien die p r o p function is called with temperature reassigned as die intercooler exit temperature. The stage intercool­
ing heat load is then calculated as

Q = m (h - h 3 ^)

where h is die enthalpy of the compressed gas but at die intercooler exit temperature. The values of die flow's endialpy,
enttopy, pressure, and temperature are dien saved as the inlet conditions for die next sUige, and die above calculations
are repeated for aU stages. The total power required is calculated as the sum of all stage powers, and die total inter­
cooling heat load, as the sum of all intercooling loads.

When the model is used in a dynamic system analysis, the above set of calculations is used, only now die input
rpm comes from die input shaft flow as obtained from die s h f t function. The exit shaft flow inertia and power are
men increased by the mertia and power of die compressor (note diat, in diis case, die power is negative).

32

There are two performance maps for the compressor, both stored in die same input file. The fust supplies a pres­
sure ratio as a function of die cort-ected mass and cortected speed, and die second gives the efficiency as a fiinction of
the cortected mass and cortected speed.

An approximate weight of the intercooler heat exchanger is calculated from

W = 0.5ATp

where W is the weight, A is the heat ttansfer surface area calculated from

n
u A t „

p is the material density, T is die thickness of the exchanger walls, u is die heat ttansfer coefficient, and A t

the log mean temperature difference across the exchanger.

The compressor model parameters are defined as foUows:

File containing die off-design performance maps ("cp.map"). Input.

Design("d") or off-design("o") mode specification("d"). Input.

Efficiency (0.85). Input in the design mode.

Exit pressure (5.0). Input in the design mode.

Pressure ratio across a compressor stage. Output.

Number of compressor stages (1). Input

Revolutions per minute (5000). Input.

Polar moment of inertia for the compressor (5.0). Input.

Inlet temperature to the first intercooler stage. Output.

Exit temperature from the intercooler. Output.

Approach temperature between an intercooler stage outlet temperature and the inlet gas
temperature to the compressor (5 K). Input

Log mean temperature difference across an intercooler stage (K). Output.

Rated or design-point value of the corrected mass flow parameter. This value is ob­
tained by ranning the model in the design mode; in which case, this parameter becomes
an output value.

Rated value of the conected rpm parameter. This value is obtained as with the
r a t _ c m parameter.

Rated value of the compressor pressure ratio (oudet to inlet) (5.0). Input

Rated value of the compressor efficiency (0.85). Input

Power (watts) required by the compression process. Note that die power is tteated al­
gebraically, with negative values representing power consumed by the model. Thus,

in a normal compressive process diis parameter wiU be negative.

cm - The conected mass parameter. Output

cipm - The conected rpm parameter. Output

u - Overall heat ttansfer coefficient within the intercoolers (30.0). Input,

area - Total heat ttansfer surface area within the intercooler. Output,

power - P o w e r t y p e stracture. Output,

fl - Exit gas flow from the model,

shftf - Exit shaft flow from the model.

file-

mode-

eff-

pres-

pr-

nstages -

rpm -

inertia -

tin-

tout-

dt-

Imtd-

rat_cm -

rat_crpm -

rat_pr -

rat_eff-

power -

5.3.7 Gas Turbine (gt) Model Class

The gas tarbine (g t) model class is used to model a gas-flow expansion process. Like the compressor model, g t
has both design and off-design modes, and in the off-design is based on performance maps. The performance maps
are obtained by calling the i n member fiinction, which will read the maps from a file. In the off-design mode this i n
function will automatically be called from within the main calculational function, provided the user has not previously

33

caUed i n The main function, calculating die gas expansion, is denoted as c and takes one g a s t y p e input flow from
die g a s s stack and puts one output flow back onto die stiick. A second function denoted as s is also available and is
used to obtain any exttacted or spUt-off flow. This entty requires no input flow but puts one output flow onto die g a s s
stack and should only be used after die c function has been caUed. For use in dynamic simulations, a s h f t entry may
be caUed If caUed, diis function requires one s h f t t y p e flow from the s h f t s and should be called before the c
function. The rpm used within die model is then obtained from the shaft flow rather than through the model parame­
ters. If the s h f t entty is called, the c function will also put one s h f t t y p e flow onto the s h f t s representing the
exit shaft flow.

The gas turbine model is very similar to a one-stage compressor model, the only difference being the calculation

of the exit flow endialpy, which for the turbine is given by

h = h i ^ - l K h i ^ - h ^)

and the calculation of the exit pressure

P i n

where die notation is the same as that used in the compressor model. Any exttacted flow that is requked is calculated
as follows.

^ext = f m

where f is an specified input fraction of mass in the exttacted flow. The exit mass flow rate of the main flow, m^^, is

then redefined as

™ex = (1 - f) m

The other state points for the exttacted flow are the same as for the exiting main flow. This exttacted flow is saved and
is placed on the g a s s stack by calling the s function.

As with the compressor model, the gas turbine model has are two performance maps, both stored in the same input
file. The first supplies a pressure ratio as a function of the conected mass and corrected speed, and the second gives
the efficiency as a function of the conected mass and conected speed.

The gas turbine model parameters are defined as follows:

file - File containing the off-design performance maps ("gt.map"). Input.

mode - Design ("d") or off-design ("o") mode specification ("d"). Input

eff - Efficiency (0.85). Input in the design mode.

pres- Exit pressure (1.0). Input in the design mode.

pr - Pressure ratio across the turbine. Output.

rpm - Revolutions per minute (5000). Input.

ext - Fraction of input mass flow rate split off into an exttaction flow (0.0). Input.

rat_cm - Rated or design point value of die corrected mass flow parameter. This value is ob­
tained by ranning the model in the design mode; in which case, this parameter becomes
an output value.

rat_crpm - Rated value of die conected rpm parameter. This value is obtained as widi die
r a t _ c m parameter.

rat_pr - Rated value of the turbine pressure ratio (inlet to oudet) (5.0). Input

rat_eff - Rated value of the ttirbine efficiency (0.85). Input.
power - Power stiiicture, where p o w e r . work represents die work generated by die expan­

sion process. Note that the power is tteated algebraically, with negative values repre­
senting power consumed by the model. Thus, in a normal expansion process diis
parameter wiU be positive.

'^™' The conected mass parameter. Output

crpm- The conected speed parameter. Output.

^ " Exit gas flow from the model.

34

5.3.8 Heat Exchanger (hx) Model Class

The heat exchanger (hx) models die ttansfer of heat from a hot g a s t y p e flow to a cold g a s t y p e flow. This
is done using two member functions, h for die hot side and c for die cold side of die exchanger. Both of these member
fiinctions take one input flow from g a s s stack and put one output flow back onto the stack.

As with the heater model, on entiry to either the hot- or cold-side functions, the model first calculates the exit flow
pressure (p) based on an input pressure fraction (fp) as follows:

P = P i n - f p P i n

where Pin is the inlet flow pressure. Here f p may be specified differentiy on either side of the heat exchanger.

The model has several options and makes use of either t; ,oia or t^ot to specify the exit flow temperahire (t) on
either the cold or hot sides. The particular variable that is specified should refer to the function that is called fttst widiin
the GC inputs, either h or c. Thus, one has either

t = tcold

Q = m (h - hij ,)

t - tho t

Q= m (hin - h)

where h i ^ in the inlet flow enthalpy on the appropriate hot or cold side, and die exit flow enthalpy h is determined
from a call to the p r o p function with the temperatiire as input. Once Q is known, it is used on the other side to calculate
die exit flow enthalpy, which, in turn, determines the other exit flow properties using a call to die p r o p function.

Altematively, one can make use of either q^oid or q^ot to specify the exit flow quaUty on either the cold or hot
sides. In this case t;,oi,j and tij,-,^ should both be set to zero. Again, the particular variable that is specified should
refer to the function, either h or c, that is called fust within die GC inputs. In this case the exit enthalpy is determined
from

h = h in + q (h^ - h i)

where h^ and h j are the vapor and Uquid saturation enthalpies at the flow's pressure, respectively, and q is either

"JcoidOrqhof The heat ttansferted, Q, is then determined as before.

As an additional option, Q can be input directiy. In this case, both t^oid ^nd ti^^t should be set to zero, and

q^iji^and qj^^j should be less than-100.

Once both sides of the heat exchanger model have been called, the log mean temperature difference is calculated
from stored values of the inlet and exit temperatures and the following equation:

l o g

where x and y are the inlet and exit fluid temperature differences of the heat exchanger. Note that for the purpose of

using At^g^jj in system consttaints, if eidier x or y or bodi become less dian zero, a fictitious value of At^^^j^ is

returned, aldiough one that still shows the cortect ttend as a function of x and y. Based on specified values of the heat
ttansfer coefficients on the hot and cold sides, u^^j and Ut,(,i(3, an overall heat ttansfer coefficient is determined from

L"hot "cold-l

The heat ttansfer area is determined by

Q

35

As a convenience to the user in setting up off-design calculations, the heat ttansfer area can also be input, with the

model calculating a consttaint residual as

c = Q - u A A t „ 3 ^ „

The c value would still need to be driven to zero by some outside interative loop.

An approximate heat exchanger weight is calculated using

W = D.SATp

where W is the weight, T is die wall thickness, and p is the wall material density.

The heat exchanger model parameters are defined as follows:

t_cold -

t_hot -

q_cold -

q_hot-

heat-

pf_cold -

pf_hot -

ufli-

ufc -

Imtd-

mode -

area-

cons -

thickwall -

denswall -

type-

flc-

flh-

Exit temperature of the cold side (0.0 K). Input.

Exit temperature of the hot side (0.0 K). Input.

Exh flow quaUty of the cold side (-1000). Input.

Exit flow quality of die hot side (-1000). Input.

Amount of heat transfened from die hot to die cold flows (0.0 watts). Input.

Pressure drop fraction on cold side (0.0). Input.

Pressure drop fraction on hot side (0.0). Input.

Heat ttansfer film coefficient for the hot side (0 watts/m^K). Input,

Heat ttansfer film coefficient for die cold side (0 watts/m^K). Input.

Log mean temperature difference across the exchanger.

Either 'd' or 'o ' , indicating that the model is to calculate the heat ttansfer area, or that
this area is to be input and the consttaint residual as defined above is to be calculated
('d'). Input.

Heat ttansfer surface area (m). Output.

Consttaint residual between the heat and that calculated from the input area.

Wall thickness (0.001 m). hiput.

Wall material density (7800 kg/m'). Input.

Character string indicating the type of heat exchanger, "count" for counter flow or
"paral" for parallel flow ("count"). Input.

Exit flow on cold side.

Exit flow on hot side.

Only one of t _ c o l d , t _ h o t , or h e a t should be input to the model. If eidier t _ c o l d or t _ h o t is used, Uien
diat side of die heat exchanger should be called first. These parameters are used to determine the value of h e a t , which
then becomes an output parameter. If both t _ c o l d and t _ h o t are zero, then the values of q _ h o t or q _ c o l d are
used to determine the heat load, provided they are greater than -100; odierwise the value of h e a t is used directly to
determine the exit conditions.

5.3.9 Pump (pump) Model Class

The pump model (pump)class represents a simple compression process of a liquid flow to a specified pressure at
a specified efficiency. Note diat this model assumes diat the liquid is almost incompressible (constant density) and,
tiius, should only be called where the flow is in the liquid region. The model has one calculational member function,
denoted c. This function takes one input flow from the g a s s stack and puts one output flow back onto die stack.

The modeling consists of die following equations:

Pow ^ P j n P e x i t '
P I

h = hijj - Pow / m

36

where Pow is the power required, p i „ is the inlet pressure, Pexi t is the specified exit pressure, p is die fluid density,
m is the mass flow rate, p is die exh flow pressure, h i „ is die inlet endialpy, h is die exit flow endialpy, and t) is die
specified efficiency. Once die exit flow pressure and enthalpy are known, a call to p r o p with enthalpy as die input
determines die exit flow temperature and enttopy.

The pump model parameters are defined as follows:

pres - Exit flow pressure (20.0 atm). Input.

eff - Efficiency of die compression process (0.85). Input.

power.work - The work required (watts) to accompUsh die pumping action. Output. Like the com­
pressor model, work consumed in the compression process will be indicated by a neg­
ative value of this parameter.

£1 - Exit flow from the model. Output.

5.3.10 Pipe (pipe) Model Class

The pipe model class represents fluid flow through a pipe. The model has one member function, c, which takes
one input flow from the g a s s stack and puts one output flow back onto the stack. The model can handle a simple
pressure drop or, by specification of a number of nodes, both a pressure drop and a diermal time delay for use in dy­
namic simulations.

On entry to the c function, the model calculates the pressure drop from a friction factor (f) given by Churchill:

(a + b)

where

2 . 4 5 7 1 o g

Ki&J + 0 . 2 7 e

and

b = [^Y
Here Re is the Reynolds number based on the hydraulic diameter of the pipe, and e is the equivalent sand grain rough­
ness height divided by the hydraulic diameter. In calculation of the Reynolds number, the fluid viscosity is obtained
from

where T is the fluid temperature, and Pj-^f, T -̂gf, and N^ef are specified input values. The pressure drop is obtained

from f using

Ap
2 f p v L

where p is the fluid density, v is the fluid velocity, L is die pipe length, and D is die hydraulic diameter.

If die pressure drop option is used, indicated by specifying the model's nnode parameter as zero, the exit pressure

is then calculated as

P i n l e t - ^ P

37

The other fluid properties are then calculated by using diis pressure and the inlet endialpy through a call to p r o p . If
die multi-node option is in effect, nnode>0, dien the above pressure drop is divided equally between the nnode
nodes In addition, the foUowing differential equation of the enthalpy balance is solved over each node:

p V g ^ " " ' " = rt(hin-hexit)

where hexit and h^^ are the exit and inlet enthalpy values for each node, m is the mass flow rate, and V is the node

volume.

The pipe model parameters are defined as foHows:

diam - Pipe diameter (0.1 m). Input.

area - Pipe flow area (m^). Output

vol - Pipe total volume (m^). Output

length - Pipe length (1 m). Input.

fric - Friction factor. Output.

re - Inlet pipe Reynold's number. Output.

mu - Fluid viscosity. Output.

muref - Fluid viscosity at the reference temperature (2.671x10"). Input

ttef - Reference temperature for visocity expression (500 K). Input.

nref - Exponent in the visocity expression (0.6364). Input.

rough - Sand grain roughness/hydraulic diameter for the pipe (0.0). Input.

nnode - Number of nodes used (0). Input. Nnode should be less than or equal to 9.

h[10] - Anay of node exit enthalpies. Output.

t[10] - /ta'ay of node exit temperatures. Output

fl- Exit flow from the model.

5.3.11 Diffuser (df) Model Class

The diffuser (df) model class represents a gaseous flow diffuser. The diffuser model has one calculational mem­
ber fiinction, denoted c. The model takes one input flow from the g a s s stack and puts one output flow back onto the
stack.

The model has both a design and an off-design mode. On entry to the model, the total pressure, p^, of die flow
is determined by iterating on the pressure at constant inlet enttopy until a value of the enthalpy equal to die total inlet
enthalpy (h^) is obtained, where

h t = hin + v^^/2

and h i„ and v^^ are the inlet enthalpy and velocity, respectively. In the design mode, once this total pressure at die

inlet is known, die exit values for die velocity, endialpy, and pressure are tiien determined from

V = V g j , ! , .

h = h i„ - v^ /2

P = Pin +(P t - Pin)Prec
where Vg^^ is some specified exit velocity, Pj-^^, is a specified pressure recovery coefficient, and die subscript i n
conesponds to die inlet values. A call to p r o p dien gives die exit values for die flow temperature, entropy, and density.
The exit flow area and diffuser area ratio are calculated as

A = i
s^' pv

38

A - ^
r a t i o T,

^ i n
In the off-design mode, the pressure recovery coefficient is stiU requked; however, the exit velocity is determined

based on a specified exit area. Thus, in the above equations, v^^i t is iterated untU the calculated exit area is the spec­
ified value.

The differser model parameters are defined as follows:

mode - Character string specifying either design,"d", or off-design,"o", modes ("d"). Input.

vel - Exit velocity (10.0 m/s) from the diffuser. Input.

presjec - pressure recovery coefficient (0.5). Input.

ain - Inlet flow area calculated based on inlet mass flow rate and inlet velocity. Output.

aex - Exit flow area. Output in the design mode and input in the off-design mode (1 m^).

aratio - Exit area divided by inlet area. Output.

fl - Exit flow from the model. Output

5.3.12 Nozzle (nz) Model Class

The nozzle (nz) model class represents a gaseous flow nozzle. The model has one calculational member function,
c, taking one input flow from the g a s s stack and putting one output flow back on the g a s s stack.

The model has both design and off-design modes. In the design mode, the model makes use of a specified exit
pressure p^xi t ^"^ ^ "̂ '̂l 'o ^^ p r o p function with the inlet enttopy value to determine the enthalpy h^ for an isen­
ttopic expansion to the exit pressure. The exit flow velocity is then determined from

v = 7vj„ + 2n(hi„-h,)

where the i n subscript denotes the inlet conditions and Ti is a specified nozzle efficiency. The exit flow enthalpy is
then found from

h = hin + (-in-v')/2

with the rest of the variables for the exit flow determined by a call to prop

with the exit enthalpy as input. The exit area is then calculated from

A = -2-
pv

For use as output variables die exit Mach number, thrast, and specific impulse are then calculated from

M a d =' = ' (l l
t h r u s t = mv + pA

i m p u l s e = (t h r u s t) / (9 . 8m)

where m is the mass flow rate, A is the exit flow area, and f?E"] is calculated via finite differences using caUs to

p r o p .
In the off-design mode, the efficiency is stiU input, but the exit pressure is now iterated over until the calculated

area is equal to the specified exit area.

The nozzle model parameters are defined as follows:

mode - Character stting representing, "d", design mode or "o", off-design mode ("d"). Input.

pres - Exit pressure of the nozzle (0.5 atm). Input

eff - Efficiency of the nozzle (0.85). Input.

39

areain - Inlet flow area (m^) of the nozzle. Output.

area - Exit flow area (m^) from the nozzle. Input in the off-design mode, output in die design

mode,

mach - Exit mach number form the nozzle,

thrast - Thrast (N) generated by the nozzle,

impulse - Specific impulse (s) of the nozzle,

fl - Exit flow from the model.

5.3.13 Steam Drum (sd) Model Class

The steam dram (sd) model class represents a conventional steam/water separator. The model makes use of two
member functions, c and s . The c function takes one g a s t y p e flow from g a s s , representing the entering
two-phase flow and, on exit from the model, puts one g a s t y p e flow representing the Uquid phase flow back on the
stack. The s function, which should only be called after the c function, requires no input flows and generates one
g a s t y p e flow representing the exit steam flow. Note that whUe the model is called a steam dram, it will also handle
fluids other than steam/water. It should not be called, however, with an input flow having an id of "GAS".

The modeling within sd consists of first calling the s a t property code to determine the liquid and vapor satura­
tion enthalpies, h i and h^, at the model's inlet. If the entering pressure is greater than the critical pressure, then a mes­
sage is printed and the ran is terminated.

The steam mass is calculated on the basis of the inlet flow's quality, q^^. If q^^ is less than zero, then the steam

mass, m ,̂ is zero. If qij , is greater than one, then the steam mass is set equal to the inlet flow's mass, m^^. If q^^ is

between 0 and 1, dien the steam mass is calculated as

'"s = <Jlninin •

In each case the mass of the exiting liquid phase, mi, is calculated from

% = ™in-™s •

The exit enthalpies for the liquid and steam flows are set to the Uquid and vapor saturation enthalpies, respectively,
then the p r o p code is called to determine die entropies, densities, etc., for both flows.

The steam dram model parameters are defined as:

fl - exit Uquid flow from die model.

fls - exit steam (vapor) flow from the model.

5.3.14 Feed Water Heater (fh) Model Class

The feed water heater (f h) model handles a conventional feed water heater; and, Uke die steam dram model it
will handle fluids other dian steam/water. This model makes use of three member functions, s , h, and c The h func­
tion represents the hot side flow, usually an exttaction flow from a turbine. This fiinction takes one flow from the gass
and puts back one flow representing die flow from the drain cooler. The s fiinction is used to pick up any cascade flow
from higher pressure feed water heaters. This function takes one flow from the g a s s , but generates no output flows.
The s function is only caUed if the feed water heater takes a cascade flow but, if used, must be caUed before die h
entty^The c entty represents die cold feed water flow and takes one flow from die g a s s and generates one flow on
exit This entty must only be called after die h entty has been caUed.

t h a n ? r i r 7 ' ° "'^ \ " i ; " " '™'V*" '* ' ' ' '""<'« •« "^ if * « entering flow is supercritical (i.e., inlet pressure greater
ran isTe^ n*̂ T ^ ' ^ - """*'' ' " ^ ' ' ' ^ * ' *"" '"'^^ « ° ^ ' " ^' ^"'"^ritical. If it is not, a message is printed and die
ran s temiinated. The s a t property code is then called to detertnine die saturation liquid and vapor enthalpies, h i and
n„. the entenng flow's enthalpy is greater than h , the flow is cooled to the sattiration Une widi die amount of cooling
necessary calculated from

"3o = ™h(hh-h^)

where h , is the enthalpy of the hot steam flow, and m, is its mass flow rate.

40

When used, the s function wiU set a flag, cascade, indicating that a cascade flow exists. This flag is checked,
and if a cascade flow exists, it is mixed with die hot steam flow. This is done by recalculating the mass flow rate and
enthalpy on the hot side, as follows:

'"h - "'cas-^"'h

Here the subscript cas refers to die cascade flow. At this point, if hĵ is greater than hi, the combined flow is cooled
to the liquid saturation Une with the amount of cooling calculated from

<3l = "h(l^h-hi)

The prop code is then called to determine the flow properties at this point.

If any subcooling has been specified in the feed water (such as in a drain cooler section), the hot flow temperature,
tjj, is dien reduced by the amount of subcooling desired. The prop code is then called to determine the new flow
properties after subcooling, and the cooling load during subcooUng is calculated from

where h^ef ore'S the enthalpy of the flow before subcooling. From a thermodynamic point of view, one could sim­
plify the above by calculating the amount of cooling to the saturation liquid line or to the degree of subcooling, directiy.
However, the three cooling loads, qo, qi, and q2, are calculated individually, as they conespond to the de-superheat­
ing, condensing, and drain cooler regions of the feed water heater.

In the cold-side function, c, the three values of qo, qi, and q2 are used to heat up the feed water. This is done by
redefining the cold-side enthalpy, h ,̂, through the three regions using

h = h +— i = 0, 1, 2
™o

where m;, is the mass flow rate on the cold side. The prop code is called after each region to detennine the flow's
state point. On both the c and h sides, the temperatures of the flows at the exit of each region are stored for later print­
out.

The model parameters for the feed water heater are defined as:

subcool - Degree of subcooUng desired within the drain cooler region (10 K). Input.
cascade - Flag indicating whether or not the s entry has been called.
q[3] - Artay of heat loads in the three regions of the feed water heater (w). Output.
htemp[4] - Artay of hot-side temperatures at die inlet and exits of the three regions of the feed wa­

ter heater (K). Output.
ctemp[4] - Anay of cold-side temperatures at the inlet and exits of the three regions of the feed

water heater (K). Output.
flh - Exit hot-side flow from the feed water heater or drain cooler.
fls - Inlet cascade flow.
flc - Exit cold-side flow from the feed water heater.

5.3.15 Combustor (cb) Model Class

The combustor (cb) model class is used to simulate the burning of a fuel with an oxidizing gas flow. The fuel is
described by the input parameters of the model while the oxidizing flow is taken from the gass stack, and must be a
flow with a "GAS" id. The model has one calculational member function denoted as c , which takes one input flow
from the gass stack and puts one output flow back on tiie stack.

On entry to the model a reference gas calculation is made to determine die heat of formation of die fuel. This is
done by first calculating the mass flow rate of oxygen necessary to bum the fuel at a stoichiometty of one from

41

m^ = (2.6641Wj, + 7.93645wjj + 0.99797w^-W;j)mf^gi

where w^,, w j , , W3 , and w,, are the weight fractions of carbon, hydrogen, sulfur, and oxygen in the fuel, and mj„gi
is the mass flow rate of the fuel. The molar flow rates for the carbon, hydrogen, sulfur, water, nittogen, and oxygen
(including m^) for a reference gas consisting of the fuel plus oxidizer (at stoichiometry of one) are then determined
from

molj^ = Wi(m£^gi/mwj^)

where the subscript i stands for either carbon, hydrogen, water, sulfur, nittogen, or oxygen, and mw^ is the correspond­
ing molecular weight for these species. By calling the p r o p function for this reference combustion gas at a tempera­
ture of 298.16 K and a pressure of 1.0 atm, and preventing any condensed phases from forming using the gass nof orm
anay, a reference enthalpy as weU as the equilibrium composition can be determined. If the lower heating value, LHV,
of the fuel is known, the heat of formation of die fuel (^h^^^^) can be determined from

Ahform = ((" ' f u e l + " o) h + m£„3lLHV)/mj^^l

where h is the reference enthalpy calculated above.

Once tills reference gas calculation is done, the actual oxidizing flow can be used to determine the stoichiometty
of the combustion from

,„^„ . , "'ox 3 1 . 9 9 8 8 s t o l e n = comp„ ,
™ox ™o

where compo2 is the mole fraction of Oj in the oxidizing flow, m,,,, is the mass flow rate of the oxidizing flow, and

mwox is its molecular weight. The molar flow rates of die actual combustion gas species consisting of the original fiiel

species and die actual oxidizing flow species can be detennined from

, "'ox
mol- =

"•"ox
= ° '"Pi + (™° l i) f „e l

Here (molj) f^^i is die same molarflow rate as fordie reference gas but without die mo moles of oxygen. The molar
rates can be nonnalized to yield die mole fractions for die combustion gas species and, dirough a caU to die atom
fonctton, die atom fractions for the combustion gas. The enthalpy and mass flow rate of this gas are then detennined
from

m = m _ + mj^^^

rivethe fl'alt,^''°''i^""r?K " ' ' * I " ' ' " * " P ^ ' ' * ' ' "P" ' ^""^ ^' * ^ P'^""'-^ °f "^« "^dizing flow) wUl dien
fwes '^•"P^"'"--^ of * e combustion products, as well as their equiUbrium composition and otiier state vari-

For use in power summaries, the input power to the combustor is stored as

Pow = nifueiLHV

The combustor model parameters are deflned as follows:

The mass flow rate of the fiiel (1.0 kg/s). Input.

The carbon weight fraction within die fuel (0.25). Input.

The hydrogen weight fraction within the fuel (0.75). Input.

The oxygen weight fraction within the fuel (0.0). Input.

The sulfur weight fraction widun die fuel (0.0). Input.

The nittogen weight fraction widiin die fuel (0.0), Input.

The water weight fraction within the fuel (0.0). Input.

42

mass-

carb

h -

n -
h2o

Ihv - The lower heating value (I/kg) of die fuel (lO'). Input.

stoich - Ratio of oxygen within die oxidizer to the amount of oxygen necessary for 100% fuel
oxidation.

power.heat - Total thermal power input equal to I h v times die fuel mass.
fl - Combustion gas flow from die model.

The combustor model should only be used widi oxidizing flows having the "GAS" id. Note that diis model re­
stricts die species diat must be included witii the gas properties code, diat is, the following species must be included:
C, CO, CO2, Hj , H2O, S, SO2, and Nj must be included.

5.3.16 Condenser (cond) Model Class

The condenser (cond) model represents the condensation of water from a hot gas flow. The model has two cal­
culational entries. The first, denoted as c, takes one g a s t y p e input flow with a "GAS" i d and generates one
g a s t y p e output flow. This entty processes the hot gas flow and must be called before the secondary, s entiy, which
generates one output g a s t y p e flow, with a "STM" i d representing die condensed water flow, A diird entiy, c o o l ,
which also must only be called after the c entry, is used to represent a coolant fluid flow and takes one g a s t y p e flow
from die g a s s stack and puts one g a s t y p e flow back onto the stack.

On entering the c function, the molar flow rates of condensed water and water vapor within the inlet flow are

saved as n^^^ jj2o, cond *"<̂ " i n , h2o • ^^^ S^ fl°w is dien brought down to the specified exit temperature, and die

p r o p code is called to determine die new equilibrium composition. The molar flow rate of water that is condensed

from die entering water vapor during this temperature change is then calculated from

"h2o, cond ~ " i n , h2o ~'^ex, h2o

where n^^^^^o '^ '' '^ "^w equUibrium molar flow rate of water vapor at the exit. If nj^j o cond '^ '^'^ *^n ^^^°'''

is set to zero. The total molar flow rate of condensed water removed from the flow is then calculated as

"cond, t o t ~ " i n , h2o, cond''""h2o, cond
The mass flow rate of the entering gas flow is reduced by this amount of con­
densed water,

where mi„ is the inlet flow rate of gas. Note that this procedure removes any inlet condensed water even if the exit
temperature were to increase and, theoretically, vaporize it. A secondary flow is then created with the property id of
"STM", a flow rate equal to the mass flow removed from the entering gas stteam, and a temperature and pressure of
the exiting gas stteam. The prop code is called for this new flow, which is saved for use in the s entry to the model.
The heat removed from the gas stream is calculated as the change in enthalpy from the inlet temperature to the new
exit temperature,

Q = " ' i n (h i n - h e x)

Within the c o o l entry the coolant flow's exit enthalpy is adjusted from its input value by die addition of die Q heat

h = h + 2
cool, ex cool, in j^cool

The property code then gives the exit temperature of the coolant flow. For use in sizing the condenser, a specified input

overall heat ttansfer rate, u(w/m^K), is used along with a calculated log-mean-temperature difference, AT, to give an

area. A, from

U A T

As with the heater and heat exchanger models, a rough condenser weight is calculated from

W = 0 .5ATp

43

where W is the weight T is the wall thickness, and p is the wall material density.

The condenser model parameters are defined as follows:

(exit - Exit temperature of the input gas flow (323 K). Input,
heat - Total heat removed from die input gas flow in cooling the flow to die exit temperature

(W). Output,
pvap- Vapor pressure of water at the exit temperature (atm). Output.

ph2o - Partial pressure of water in the gas flow at the exit (atm). Output.

h2ocond - Moles/s of water condensed from the gas flow. Output.

h2oout - Moles/s of water vapor leaving with the gas flow. Output.

h2oin - Moles/s of water vapor entering with the gas flow. Output.

u - Overall heat ttansfer coefficient (W/m^K) of die heat exchange process (300). Input,

area - Total heat ttansfer surface area (m^). Output.
Imtd - Log mean temperature difference (K) of the heat transfer process. Output,

tiiick - Wall thickness (0.001 m). Input,

dens - Wall material density (7800 kg/m'). Input,

fl - Main gas flow. Output,

fls - Condensate water. Output,

flcool - Coolant flow. Output.

5.3.17 Dynamic Heater (dht) Model Class

The dynamic heater/cooler (dht) model is a multi-nodal version of the heater/cooler (ht) model. The model is
very similar to die multi-nodal option of the pipe model, only here, heat exchanges with the wad are permitted. The
model has one calculational function denoted as c, which requires one g a s t y p e input flow and produces one
g a s t y p e exit flow.

On entry to the model, the pressure drop across the heater is determined by using the same friction factor cone-
lation as used within the pipe model. In doing this, the flow is divided into a number of equal flow passages, npass ,
each of die same flow height and width. The hydraulic diameter of each passage is then calculated as 4 times the flow
area divided by the perimeter of the flow. As with the pipe model, the total pressure drop is calculated based on the
heater's length, with each node taking 1/nnode times the total pressure drop. The exit enthalpy of each node is cal­
culated from

P^3 t = l"(hl _ 1 - h i) -f uA(TWi - T ^)

where p is the fluid density, V is die node volume per flow passage, rci is die flow rate per flow passage, h i_ i and
hi are the inlet and exit node enthalpies, u is the overaU heat ttansfer coefficient, A is the heat ttansfer surface area per
node per passage, Twi is die wall temperature at node i, and Ti is the fluid temperature at node i. The waU temperaftires
are determined from

=Pwal lM„a l l^TWi = Q - u A (T W i - T i)

where cp„j,ii is die specific heat of the wall material, M^^n is die mass of a wall node per flow passage, and Q is a
specified heat input per node per flow passage.

For die initial entty to the model, the above equations along widi the pressure drop equations are solved widi die
time derivatives set to zero to determine die initial values of T^i and hi .

The dynamic heater model parameters are defined as foUows:

heat - TotiU heat ttansfened to die wall (10^ W). Input. Note diat heat can be set to a negative

number to define a flow cooler.

' " ' " Endialpy change of the fluid across the heater (W). Output

44

surfarea - Total heat ttansfer surface area (m^). Output

u - OveraU heat ttansfer coefficient (30 W/m^K). Input.

length - Length of heater (1 m). Input.

width - Width of heater (0.5 m). Input.

heightpass - height of a flow passage (0.015 m). Input.

volpass - Volume of a flow passage (m^). Output.

thickwall - Thickness of the waU material (0.001 m). Input.

denswall - Density of the wall material (7800 kg/m'). Input.

masswall - Mass of the wall per flow passage (kg). Output.

cpwall - Specific heat of the wall material (6001/kg-K). Input.

re - Inlet flow Reynold's number. Output,

fric - Friction factor. Output

mu - Fluid viscosity. Output

muref - Fluid viscosity at reference temperature (2,671x10"'), Input.

ttef - Refence temperature for visocity expression (500 K). Input.

nref - Exponent in the visocity expression (0.6364). Input,

rough - Sand grain roughness/hydraulic diameter for the pipe (0,0), Input,

nnode - Number of nodes used (5). Input Nnode should be less than or equal to 9.

h[10] - Array of node exit enthalpies. Output

t[10] - Anay of node exit temperatures. Output.

twall[10] - Anay of node wall temperatures. Output

fl - Exit flow from the model. Output.

5.3.18 Dynamic Heat Exchanger (dhx) Model Class

The dynamic heat exchanger (dhx) model is a dynamic version of the heat exchanger (hx) model. Unlike the dy­
namic heater model, where multi-nodes are used the dhx model only makes use of a single node, but also makes use
of log mean temperature differences when the heat transfers between the walls and fluid flows are being calculated.
This was done to provide more accuracy when a counter flow device is being handled. A large number of nodes would
be required to accurately reflect the temperature distributions along a counter flow device. Note that while log mean
temperature differences might be used for each node of a multi-nodal technique, one often rans into stabUity problems
as well as the problems of defining a log mean temperature when the temperatures cross over. For these reasons and
for execution speed only a single node has been used in dhx. Log mean temperature differences, of course, really only
make sense when one is not in a two-phase region where the specific heats become infinite. However, in these regions
die limiting heat ttansfer is usually on the side of die single-phase heat ttansfer. Thus, provided one has at least one
side of the heat exchanger in single phase, the use of the log mean temperature differences is probably sufficient for
most system calculations.

The dynamic heat exchanger model is set up slightiy differently from the hx model in that both the hot and cold
inlet flows must be known before the model can calculate either of the exit flows. This makes die model a little more
difficult to use than the hx model. The dhx model has four member functions: c i n , processing the cold inlet flow;
h i n , processing the hot inlet flow; c o u t , processing the cold oudet flow; and h o u t , processing the hot side outiet
flow. The two inlet entries require one g a s t y p e input flow and generate no output flows, while the two oudet entiies
require no input flows but generate one g a s t y p e output flow. The two inlet entiies must be called before either one
of the oudet entries is called. It does not matter which outlet entry is called first.

Once bodi inlet flows are known, die model will calculate the state points for die exit fluid flow and the waU tem­
perature at each end of the heat exchanger. The differential equations used to represent die conservation of energy
within die fluid flows are as foUows:

PcV;
3hci
at

* c (h c O - h o l) + UoAAT„

45

P h V g ^ " = rr , i , (hho-hhi)-"hAAThw

In these equations, the subscripts c and h refer to die cold and hot flows, respectively; subscript w refers to the
wall subscripts 0 and 1 refer to die inlet and exit conditions; p is the density; V is the fluid flow volume; h is die
fluid enthalpy; m is the mass flow rate; A T is die log mean temperatiire difference; u is the effective heat transfer co­
efficient; A is the heat ttansfer surface area; and t is the time. Both V and A are taken to be equal for both fluids and,
thus do not need to have subscripts. These two equations represent the dynamic enthalpy balance. The first term
(left-hand side) represents die change in the totiil enthalpy within the fluid volume, which is balanced by the enthalpy
flow into and out of die fluid volume (fust temi on die right-hand side) and the heat ttansfers into or out of the fluid

ime.
For the waU temperatures at the two ends, T„o and T„i, die following equations are used to represent die energy

volume

Foi

conservation

^ C p „ ^ ' ' ° = U^AATj,„fho-u ,AAT„,f ,o

Y C P „ ^ " ^ = U^AATi^„f^i-u^AAT„^f , l

Here M„ is the total mass of the wall material, Cp„ is the specific heats of the wall, and the f s are discussed below.
These equations express the rate of change of the end-point wall temperatures as a function of die local heat ttansfer
into or out of the walls due to the fluid flows.

The above equations have been described with the fluid flows representing a co-flow heat exchanger. In the case
of a counter-flow exchanger, the subscripts 0 and 1 representing tiie two ends are adjusted accordingly.

In each of the equations, tiie log mean temperature difference is dependent on both end-point temperatures of one
of die fluid flows and the wall. For the normal case of the hot flow being hotter than the waU at both ends, the log mean
temperature is defined as

'^" , (ThO-T„o)
l o g (T h l - T „ i)

This cannot be used, however, for a temperature crossover situation which can occur in a dynamic situation due
to the changing inlet flow temperature. In such a situation die acmal heat ttansfer along the fluid flow padi is bodi pos­
itive and negative. However, such situations are generaUy ttansients, and thus ATj^^ is adjusted to approximately rep­
resent the driving temperature and to qualitatively represent the way the temperature fields would change in such a
crossover situation.

The adjustment to the expression for the log mean temperature difference is given by the foUowing algorithm. Let
X be the temperature difference between the entering flow and wall, and y be the same temperature difference at the
exit. Then, AT is defmed through the following equations.

s = s i g n (y)

. fmaxdxMYl) , „„„A
^ = "tJ-" •) ;. 1000

Vmin(x , y) J
Forr=l,

Otherwise,

AT = s|x|

A T = s m i n (| x | , | y |) i ^ - J 4 l o g (r)

46

Note that the sign of AT is deflned by die temperature difference at die exit. For die hot flow, a positive inlet and
a negative exit temperature difference would make AT negative, driving die heat transfer negative (i.e., from die waU
to the hot flow). Thus, the exit flow temperature would increase and/or the waU temperature would decrease until the
crossover condition is eliminated. A negative inlet temperature difference (waU hotter than die hot gas) and a positive
exit temperature difference would again drive the flow and wall temperattires closer together. The same expressions
can be used for the driving temperature difference between the waU and the cold flow. Note diat by factoring out die
minimum value of |x| or |y | , the above AT expression is Unearized as a function of die minimum temperature dif­
ference in regions where there is a pinching down of the flow and wall temperatures. In most cases, the above algorithm
gives the usual log mean temperature difference.

Along widi this adjustment to the log mean temperahire difference, an adjustment is also made as to how the heat
is distiibuted to or from the two wall nodes. This is accompUshed by the f factors in the wall energy equations. Nor­
mally, when no temperature crossover occurs, the factors are defined as follows:

|x|
"hO | x | + | y |

fh i = i - £ h o

with f oo and f oi defined simUarly. This gives a partitioning of the heat ttansfers proportional to the temperature dif­

ference. However, in a temperature crossover situation at the inlet (i,e,, T^ > Tj^), the f^g and f ̂ i factors become 0

and 1, respectively, causing the heat ttansfer to shift toward the exit region. This is done to more closely represent the
actual heat ttansfers in these ttansient conditions. When a crossover situation occurs, the flow is both heated and cooled
by the wall in such a way as to drive the exit temperatures closer together. This requires that the sign of the net heat
ttansfer be the same as that of the exit temperature difference. However, unless the f factors are readjusted as above,
this would tend to drive the inlet temperatures further apart. The f j . factors are adjusted simUarly when the cold inlet
flow exceeds that of the wall temperatures. In should be reiterated that the adjustments to these f factors are only done
during a temperature crossover.

At the start of the simulation, the model offers three options for setting the wad temperatures. The first option is
related to the design mode. In this option, an input value for exit flow temperature or exit flow quality (for condensable
flows)on the hot or cold side is specified. Assuming steady-state conditions at the design point and using the known
inlet flow conditions, the overaU heat ttansfer, Q, across the heat exchanger and exit flow conditions can then be de­
termined. The waU temperatures are then determined from the following steady-state values:

U,,T,,n + u„T„„

U^Tv,, +uT^

The heat ttansfer surface area can then be determined using the log mean temperature difference on either the hot or
cold side and the overall heat ttansfer:

u„AT,..

The second option is an off-design mode. Again steady-state conditions are assumed, only now die overaU heat
ttansfer, Q, is varied until die surface area calculated by die above equations is equal to a specified value.

Finally, the third option simply makes use of a specified input set of waU temperatures and a specified surface
area. In this case it is not assumed that the overall heat exchanger is in steady-state conditions, but diat die hot flow
and the cold flow each satisfy

47

ll„AT,,

where Q^ and Q^ are individually varied to satisfy diese equations. Thus, the heat ttansfened to/from the walls on either

side of the exchanger will not necessarily be equal.

Once the heat exchanger's area is known, the exchanger's length, L, is determined by using an input value for the
exchanger's width, W, and the number of parallel flow passages, N, from

2WN

The volume of the fluid flow passages is then determined from

V = NWHp

where Hp is the height of a single flow passage. Finally, the total wall mass is detennined from the surface area and

specified input values of the heat exchanger's wall thickness, H„, and the density, p^,,:

M = AH„p„

The model will work property if the flow passage height is set to zero. In this case, the time derivative terms are set to
zero in calculating the exit flow conditions, that is, the flows are tteated in a quasi-steady-state way. The wall temper­
ature equations, however, are solved just as before.

The parameters for the dynamic heat exchanger model are as follows:

Number of passages duough the heat exchanger (10). Input. Note diat a single passage
conesponds to one hot-side and one cold-side flow.
Print flag for generating intermediate results (0). Input.

Width of a flow passage (0.5 m). Input. Width is also die width of the entire heat ex­
changer since all flow passages are of equal width.

Height of a flow passage (0.0 m). Input, This is the height of either tfie hot- or cold-side
flow passage, as bodi are taken as equal, A zero value tteats the flows as being qua­
si-steady state.

Length of a flow passage and of the entire heat exchanger (m). Output.

Total heat ttansfer surface area (m^). Output for die design mode or input for die
off-design mode.

Volume of the hot- or cold-side flow passages (m^). Output. This is die volume of all
the flow passages.

Fraction of the inlet pressure used as a pressure drop through the cold-side passages
(0.0). Input. ^ ^

Fraction of die inlet hot flow pressure used as a pressure drop dttough die device (0,0).
Input.

Density of the wall material (7800 kg/m^). Input.

Specific heat of the wall material (6001/kg-K). Input,

Thickness of die walls (0.001 m). Input.

Total mass of die wall material (kg). Output.

Film heat ttansfer coefficient on die cold side (30 W/m^K). Input

Film heat ttansfer coefficient on the hot side (30 W/m^K). Input.

Initial cold side exit temperature (0.0 K). Input.

Initial hot side exit temperature (0.0 K), Input

Initial cold side exit quality (-1000). Input.

Initial hot side exit quaUty (-1000). Input.

npass -

prt-

width-

heightpass -

length -

surfarea -

volpass -

pf_cold -

pf_hot -

denswall -

cpwall -

thickwall -

masswall -

ufc -

uhc-

t_cold -

t_hot -

q_cold -

q_hot-

48

twall[2] - Initial wall temperatures at cold flow inlet and exit (300.0 K). Input when the mode is

set to "t".

tc[2] - Cold-side flow temperatures at the cold-side inlet and exit, respectively (K).

di[2] - Hot-side flow temperatures at die cold-side inlet and exit locations, respectively (K).
dhh - Total mass flow rate times enthalpy change from inlet to exit for the hot side flow (W).

dhc - Total mass flow rate times enthalpy change from inlet to exit for die cold side flow

(W).

Imtd - OveraU hot-flow to cold-flow log mean temperature difference (K).

mode[2] - Character string taking the values of either "d", "o", or "t" for design, off-design, or

specified wall temperature mode ("d"). Input.

type[8] - Character stting taking the values of "count" for a counter flow heat exchanger or
"paral" for a parallel flow heat exchanger ("count"). Input.

In the design mode, the dhx model is simUar to the hx model in that one of either t _ c o l d , t _ h o t , q_co ld ,
or q _ h o t needs to be specified. Thus, only one of these values should be specified, the others should be left at their
default values.

5.3.19 Reformer (reform) Model Class

The reformer (r e fo rm) model is used to simulate a hydrocarbon fuel reformer. The model has four functional
entries. The first (s) and is used to obtain an input water flow for steam reforming or an input oxidizing flow for partial
oxidation reforming. This entry must be called before the main calculational entry, c, and requires one g a s t y p e
flow on input and generates no output flows. This flow may have a property i d of either "GAS", "STM", or
"THR-species". The second entiy is denoted as a and can optionally be called to pick up an additional flow to be mixed
with that within the s entry. This entry must also be called before the c entry and requires one g a s t y p e flow on input
but generates no output flows. The flow in the a entry may also have a property id of either "GAS", "STM", or
"THR-species". This a entry might be used, for example, when both steam and air are combined within the reformer.
The third entry, c, represents the main calculational entry and requires one g a s t y p e flow representing the fuel as
input and generates one g a s t y p e flow on output. The input fuel flow may have either the "GAS", "STM", or
"THR-species" i d and will have the "GAS" i d on output. In aU of these entries, for the "STM" or "THR-species" type
flows, the comp artay needs to be defined (consistent with the flow) so that a "GAS" type flow can be generated. The
fourth entry, denoted as h, is used to represent any hot-side burner gas flow. This entiy requires one g a s t y p e flow
on input and generates one g a s t y p e flow on output. Entry h, which is optional, should only be called after the c
entry has been called.

The modeUng within the main calculational entry is very simUar to that of a mixer. First, the input flows are con­
verted to "GAS" type flows and theh input enthalpies saved. The resulting flows are then mixed together, and the
equilibrium chemical composition of die gas is calculated eidier at a specified exit temperature or at an endialpy equal
to die sum of the inlet endialpies, depending on the input option. The total heat required by die process is calculated
on the basis of die total enthalpy change of die entering and leaving flows. This heat is then exttacted from die burner
gas flow in the h entiy. Note that this entiy is only required when an exit temperature of the primary flow is specified;
otherwise, heat is zero. For sizing purposes, the heat ttansfer surface area times the effective heat ttansfer coefficient
is also calculated widiin die h entry, based on whedier the flow configuration is eidier counter flow or paraUel flow.
For use in this calculation, the inlet temperahire for the combined fiiel, ah, and water flows is calculated as a
mass-weighted value of the three input temperatures.

The reform model parameters are as follows:

texit - Specified exit temperature of the reformed gas (650 K). Input

heat - Total heat required by the reforming process (W). Output.

option - Character stiing specifying either "temp" or "endi", indicating that either a specified
exit temperature has been input, or that the exit temperature is the result of the sum of
the inlet flow enthalpies ("temp"). Input

type - Character string taking the values of either "count" or "paral", indicating the type of
flow configuration between the hot side and the reformate side ("paral"). Input.

49

Imtd - Log mean temperature difference across the device (K). Output when the h entty is

called,
tmix - Mass-weighted average of the inlet flow temperatures (K). Output

ua - Heat ttansfer coefficient times the heat ttansfer surface area. Output,

f l . Reformed gas output at exit,

flh - Burner gas output at exit,

fls - Water or oxidizing flow at inlet,

fla - Additional water or oxidizing flow at inlet.

5.3.20 Generic Dynamic Flow Reactor (reac) Model Class

The generic dynamic flow reactor (r e a c) model simulates a one-dimensional, time-dependent flow reactor. The
model can be used to represent fuel reformers, shift converters, preferential oxidizers, or other devices in which a flow
undergoes kinetic reactions along the flow direction. Since flow reactors usually represent some catalytic process, var­
ious options can be specified by the user to define the reaction rates along the device.

The model permits up to three input flows obtained by optionally caUing eidier an s or a entry, followed by the
main calculational entry, c, similar to the reform model. Each of these entries requires one g a s t y p e flow on input
For the s and a entties, no output flows are generated, and for the c entry, one g a s t y p e flow is generated, which
represents the exiting reacted flow stteam. Each of the input flows may have a property id of either "GAS", "STM",
or "THR-species". For the "STM" or "THR-species" type flows, the comp artay needs to be defined (consistent with
die flow) so that a "GAS" type flow can be generated. Normally, the s entry can be thought of as a steam flow and the
a entry as an air or oxidizer flow. Since this model makes use of reaction rates to calculate the speciation of the flow,
the flow to the main calculational entry should generally be frozen. This will be discussed further below.

The modeling within r e a c proceeds as foHows. On entry to the model the input flows are combined into a single
flow with the combined molar flow rates of the species from all flows as determined from the comp arrays. Addition­
ally, the enthalpy of the combined flow is detennined as the sum of the mass-weighted enthalpies of each flow. An
inlet pressure level is then determined on the bases of the lowest of die entering flow pressures. At present, the pressure
along the device then drops Unearly to a total pressure drop specified by the user.

For this simple model of a reactor, the approximation is made diat the time scale of interest is substantially larger
than the time scale of pressure or density fluctuations, which would propagate through the device with sonic velocity.
Because of die very large heat transfer rates between a porous catiilyst bed and the surtounding gases, it is assumed
fliat the temperamre of die bed material is essentially the same as that of the gas. It is also assumed that die device is
sufficiently insulated diat no heat is conducted to its sunoundings. Thus, the equations of conservation of mass, species
concenttations, and energy are defined as

3pg 3p
e^-^ + eu 5-? = 0

at 9dx

aci aci
3t sax 1

9h aT„ dh
ep ,5^^ + (l - E) p , C p , 5 ^ ^ + e p , u ^ g - - = 0

where E is the porosity of die reactor bed material, p^ is the gas density (kg/m^), p̂ ^ is die catalyst bed density

(kg/m^), Ug is the gas velocity (m/s), h^ is the gas endialpy (I/kg), C^ is die molar concenttations of species i witiiin

die flow (mol/m^), s ^ is die source terais of species i (mol/m^s), T^ is die gas temperature (K), and x and t are die

axial location along the reactor and time, respectively. The gas enthalpy is calculated on die basis of reference states

o me heat ot fonnation of tiie individual species; tiius, heats of reactions due to die reactions occuning do not expUc-

itly appear within die conservation of energy equation. Note diat die second of die above equations, when multiplied

by Uie molecular weights (MJ of die i species and dien summed over all species, gives die fttst equation since the

source temis must satisfy the consistency condition:

50

S^iS i = 0
i

Thus, the fust of the above equations is not actually used within the code. Instead, a steady-state fonn of the r
servation equation

is used, where A is the cross-sectional area of die reactor, and m is the inlet mass flow rate to the reactor. This equation
is then solved to give the gas velocity at each point along the device. Note that this assumes die inlet flow is only grad­
ually changing with time.

The S^ terms represent die chemical reactions tiiking place within the reactor and are optionally defined for a

specific device type or by means of a generic kinetics approach to equiUbrium. For tiie generic kinetics option, which

is activated by setting die input parameter, t y p e , equal to "generic", the S^ terms are defined as

S i = K (c J ' ' - C i)

where Ci is the chemical equUibrium concenttations for the flow at the cunent temperature and pressure, and K is

defmed as

^°ik~^)
K = e

where EQ and TQ are user-supplied inputs.

When S1 is specified for a device type, the t y p e parameter is set to a buUt-in device name. At present only one

device type is defined. It is for a preferential oxidizer, in which the kinetic reactions rates are defined for the following
reactions:

H 2 - f l / 2 0 2 - > H 2 0

The rates for these reactions are then suitably combined to produce the S i terms. This option is activated by setting

the input variable t y p e to "prox".

To integrate the above conservation equations, each is formulated by using a simple finite difference in both x and
t, with the time-step conttolled outside of the model as it is in all dynamic GCtool models. For a given user-supplied
reactor length and number of spacial nodes or conttol volumes, the conservation equations can be integrated over each
conttol volume. This results in a set of algebraic equations for the gas temperature and species concenttations at each
node. These are nonUnear equations and are solved using the default GCtool equation solver. At each iteration of this
process, the p r o p code is called with new values of Tg and C^ to obtain the cunent gas density and enthalpy. From
the steady-state form of the conservation of mass equation, the gas velocity is then calculated. The Si terms are then
evaluated based on the user-suppUed value of t y p e , and the residuals of the finite difference conservative equations
are evaluated. The equation solver then varies Tg and C^ until the residuals go to zero. This is then repeated for each
conttol volume along the reactor.

To start the integrations over time, initial conditions along the reactor must be known. These are obtained either
by assigning a user-input temperature along the reactor and then assuming that the flow compositions are in chemical
equilibrium at that temperature or by taking the temperature and composition along the reactor to be the same as the
inlet flow conditions to the reactor at time equal to zero. The first option is activated by setting the input parameter
t i n i t to the deshed reactor temperature. If t i n i t is zero, then the code takes the second option using die inlet flow
conditions.

51

Several other options are also provided within the model. If die model is used in a steady-state run, then die time
derivatives in the conservation equations are set to zero. Additionally, a chemical equilibrium option is available in
which die species compositions are detennined by using a caU to die p r o p code rather than being defined through a
set of kinetic reactions. In this case, it is not the species concentration equations diat are integrated along the device,
but the atom concenttation equations,

3b. 3bi

3E^^^S^ =°
where

bi = I - i j C j
j

and ai j represents the stoichiomettic coefficients of atom i in species j , This option, which essentially represents in­
finitely fast reaction rates, is activated by setting the t y p e input parameter to "equil". Note that when this equilibrium
option is in effect, die frozen parameter for the main input flow is automatically set to 0; otherwise, it is set to 1 to
prevent the p r o p code from reestablishing chemical equUibrium, Also, when t y p e is "equU", the combined inlet
flows are brought to equilibrium before integratiion of the flows along the device.

When the t y p e parameter is not "equil", the p r o p code is still called at the inlet with the combined input flows
by using the combined inlet enthalpy, but whether or not chemical equiUbrium is established for the combined flow
depends on the state of the frozen parameter for the main flow. GeneraUy, the main flow should be frozen for this mod­
el since it is performing the chemical reactions internally rather than through the p r o p code. At times it may be ap­
propriate to bring the inlet flows to a state of equilibrium before the integrations along the reactor to simulate some
pre-oxidation chamber. In this case, rather than changing the main flow's frozen parameter, the r e a c model has an
i g n i t e parameter that can be set to 1 to force the combined inlet flows to a state of equUibrium at the combined inlet
enthalpy. Note that the exit flow from the model has its f r o z e n parameter set to 0 or 1, depending on whether type
is set to "equil" or something else.

The parameters for die generic dynamic flow reactor model are defined as follows:

diam - Diameter of the reactor (0.2 m). Input.

length - length of die reactor (1.0 m). Input.

por - Porosity of the catalyst bed material (0.3), Input

dp - total overall pressure drop along the reactor (0.0 atm). Input.

nnode - Number of nodes or conttol volumes along the reactor (5), Input, Must be less than 10,

thickwall - Thickness of the wall sunounding the reactor (0,001 m). Input. Used along with rwall
(below) to determine the weight of the wall material. This parameter is not used in any

other calculations.

rwall - Density of tfie waU material (8000 kg/m'). Input,

rbed - Density of the catalyst bed material (1200 kg/m'). Input

cpbed - Specific heat of the catalyst bed material (5001/kg-K). Input

Ignite - Flag to tum on the ignite option to bring inlet flows to chemical equilibrium (0), Input

tinit - Initial bed temperature along the reactor if greater dian zero (0.0 K), Input,
'yP^' Reaction type used in the reactor ("generic"). Input. At present, type can take on die

values "generic", "prox", or "equil".

^ ' Parameter in the generic kinetics option (3000.0). Input if type is specifled as "gener­
ic".

' " " Parameter in the generic kinetics option (700.0). Input if type is specified as "generic".

5.3.21 Proton Exchange Membrane (pem) Model Class

The proton exchange membrane (pem) model simulates a PEM fuel cell for direct energy conversion. The model
nas tour entties: a i n , c, a, and c o o l . The a i n entty is used to obtain the input anode flow. This entty requires one
g a s t y p e flow and generates no output flows. This entty must be called before the cathode, or c entty, is called. The

52

c entiy requires one input g a s t y p e flow and generates one exit flow, representing the exit catiiode flow. The flow
i d in the a i n and c entiies must be "GAS". A durd entiy, a, can then be called to obtain die anode exit flow. This
entiy requires no input flows and generates one output g a s t y p e flow, FinaUy, a c o o l entty is used to process die
coolant flow through the ceU. This entiy requkes one g a s t y p e flow as input and generates one g a s t y p e flow as
output. The model has both a design and an off-design mode.

On entering the c function, the inlet enthalpies for each of tiie anode and cathode flows are saved as

i i a , i n (T a , i n) = n>aha

hc , in (To , in) = '^cK

where m is the mass flow rate, and h is the specific enthalpy. The subscript a represents the anode flow, c the cathode
flow, and i n the inlet values. The flows are then brought to the input ceU temperature value, Toeii, where the flow
enthalpies and enttopies are then calculated and saved as

h a , i n (T c e l l) = ^^K<i'^cslD

S a , i n (t c e l l) = ^3^3(^0611)

where s is the specific enttopy. A similar set of equations hold for the cathode flow. The molar flow rate for the anode
flow is calculated from its molecular weight and the species mole fractions:

" a , i n , i = (^a, in, i^aJ/CtoWa)

A simUar equation is used for the cathode flow. Here, i is the species index, n is the molar flow rate, x is the species
mole fraction, and mw is the flow's molecular weight.

The model has several modes for determining the amount of ceU reaction that takes place. In the design mode, an
input fuel (hydrogen) utilization, UIJ2 , is used to determine the total moles (per second) of hydrogen consumed by the
ceU:

"h2, cons ~ "h2"a , in, h2

The total cell surface area is then determined from

A = (2 " h 2 , c o n s F) / i

where F is the Faraday constant (Coulombs/kg-mole), and i is an input cell cunent density. In the off-design mode, it
is assumed that the cell area is input. The input cell cunent density can then be used to determine the total number of
moles of hydrogen consumed by

"h2,cons = (i A) / (2 F)

and the fuel utilization from

^h2 ~ " h 2 , c o n s ' " a , in,h2

A third mode, denoted as the utUization mode, makes use of an input fuel utilization and an input area to detennine the
total moles per second of hydrogen consumed and the cunent density.

Once die total moles of hydrogen consumed is known by one of the above three modes, the molar flow rates of
both tiie anode and cathode flows are then adjusted to reflect the loss in moles of hydrogen at the anode and the moles
of water produced and oxygen consumed at the cathode:

''a, in, h2 "h2,cons

n c, ex, h2o

_ ^^h2,cons
"c, ex, o2 ~ "c, in, o2 2

where the subscript ex denotes the exit value.

53

The enthalpies and enttopies of die anode and cathode flows at the cell's exit are then calculated from the prop­

erties code. Thus, the values analogous to die input values of h a , i n (T ^ g i i) , s^ i j^(T^3ii) , etc., can be obtained

with die subscript i n replaced by ex, for exit. The Ah, As , and Ag for the overaU cell reaction can then be deter­

mined from

Ag = A h - T A s

where all terms are at the T^-gu temperature, and the enthalpies and enttopies include the mass flow rates.

The model then makes use of one of three options for determining the actual voltage across the cell. In the table
lookup option, the cunent density is used along with the input values of the cathode pressure to determine the actual
ceU voltage, Vact- The tables are supplied to the model as inputs. In the model option, a simple representation of die
voltage-cunent density curves is used to determine the actual cell voltage as a function of cunent density, cell tem­
perature, cathode O2 and total pressures. This is done as follows. For cunent density, i, greater than 0.001 A/cm , and
Tceil greater dian 303,15 K,

•^act = 1 . 0 5 - 0 . 0 5 5 1 o g (1 0 ' ' i) - (l . 0 6 0 4 - 2 . 4 9 3 x l O " ' ' T ^ g l l) i +

0 . 0 5 5 1 o g (P „ 2 , i J

For Toeii less tiian 303.15K,

v^^^ = 1 . 0 5 - 0 . 0 5 5 1 o g (1 0 ^ i) - (8 . 9 6 6 - 2 . 8 5 7 x l 0 " ^) i +

0 .0551og(P„2 i J

For cunent density less than 0.001 A/cm^,

Vact = 1.0 + 0 . 0 5 5 1 o g (P „ 2 , i J

This actual cell voltage is then adjusted based on a UmU cunent deflned as

ilim = 1-4 + 3 .924C^^-0 .211+0.2(Pi„-3 .0)
^ in ^

If i is less than i n j , , then

Vact = V a o t + O . l l o g f l - ^ l
^ ^lim^

else Vact is taken as zero. Finally, in die voltiige option, the achial cell voltage is simply taken as an input.

The voltage at a ceU efficiency of 100% and at die ideal efficiency can dien be detennined from

^100 = - A h / (2 F)

^ i d e a i = - A g / (2 F)

and die ideal, voltiige, and actual efficiencies from

^ i d e a l = Ag/Ah

^ v o l t = ^ a c t / ' ^ i d e a l

l a c t = l i d e a l ^ v o l t

54

The proton exchange membrane must be kept wet for the cell to work properly; hence, die water balance widtin
die cell is an important part of die modeling. Water is basicaUy transported across die cell from die anode to the cadiode
through the passage of hydrated protons. A counter pressure gradient is often maintained across the cell from die cath­
ode to die anode to help reduce this flow. Additionally, the anode flow can act like a drying flow and cany away some
of the water. The cathode flow wUl also cany away the water fonned through die cell reactions. To accurately model
each of these mechanism would require more infonnation than what may be available for some of the preliminary cell
designs. Thus, we model aU of these effects by assuming that the anode exhaust flow is just saturated with the water
necessary to maintain tills condition coming from the anode and cathode flows.

First die anode exhaust flow is adjusted to the saturated conditions by

a, to t , dry I
r Pvi

Ipa-I

where na, to t , dry represents die total anode flow molar flow rate minus any water, Pa is the anode flow pressure,
and Pj,ap is the vapor pressure of water at Vi^gji- The water diat may be required, if the anode flow does not have
sufficient water within it to reach this saturated condition, wUl be obtiuned from the water vapor within the cathode
flow. Note that if there is insufficient water vapor within the cathode flow, then water wiU be added to die anode flow
only up to the extent that it is available from the cathode flow. In this case, the anode flow will not be fully saturated
at the exit.

Next the cathode flow is adj usted to account for the water that is either given up or required by the anode saturation
condition (note that the cathode flow has already been adjusted to include the water generated within the ceU reac­
tions):

" c , ex, h2o ~ " c , ex, h2o"' '"a, in, h2o~"a , ex, h2o
The properties of the adjusted anode and cathode flow are then calculated from the properties code. An energy balance
is then made over the cell from the inlet to the exit conditions. The total enthalpy change across the cell is calculated
from the saved inlet enthalpies and the final enthalpies just calculated:

where the enthalpies at the exit also include the mass flow rates. The actual electtical power generated by the cell can
then be calculated from

where Ah was calculated previously as the overall enthalpy change at the cell temperature. The heat absorbed by the
coolant flow then becomes

The model also has a bypass option, mainly for use in start-up calculations, in which aU of the above calculations
are bypassed with the exception of the enthalpy changes of the cathode flow across the cell and the calculations of the
heat absorbed by die coolant flow. Essentially, diis is equivalent to spUtting the anode around the cell but still letting
the cathode flow go through the cell.

Within the coolant flow entry of the model the exit conditions of tiie coolant flow are calculated from the above
calculated value of Q. If the model is being ran in the design mode, then the value of Q is simply added to the inlet
coolant flow enthalpy, and die p r o p code is called to determine the properties at coolant flow exit. Additionally, a log
mean temperature difference between the inlet and ext temperahires of die coolant flow and the cell temperature is
calculated; an effective overall heat ttansfer coefficient is calculated; and based on a weight-to-power input factor, die
fuel cell weight is calculated. If die cell is being run in an off-design mode, then die effective overall heat ttansfer co­
efficient as calculated in the design mode is used along with the ceU surface area to obtain die exit temperature of the
coolant flow. This is done by iterating the coolant flow enthalpy at the exit until the equation

™cool (hcool ,ex- l^cool , in) = ZuAAT^^an

is satisfied. Note that the same equation is used in tfie design mode, where die endialpy difference for the coolant flow
is obtained from die value of Q, to obtain the value of u, the effective overall heat ttansfer coeficient. Thus, one should

55

not place too much significience on the value of u as it is being defined relative to the anode and cathode surface areas

and not a heat ttansfer area.

Finally, for use in dynamic rans, the coolant flow entiy wUl calculate the cell temperature from the following:

dT„
CPc ,w„ ^ c e l l Q - " c o o l (' ^ c o o l , e x -t ' c e l l ' V e l l ^ t

where cpoeii and Woeii are the specific heat and weight of the fuel cell, respectively.

The parameters for the proton exchange membrane model are defined as follows:

mode-

option -

curden -

ceUtemp -

heat-

fuelutil -

o2util -

dh-

dg-

voltideal -

voltlOO -

voltact -

effideal -

effvolt -

effact -

pvap-

ph2o-

h2oain -

h2oaout-

h2odiff-

hdel-

heatgen -

area-

Imtd-

vtab[4][16] -

Character stting indicating either design ("d") mode, off-design ("o") mode, or ("u")
utilization mode (default is "d"). Input.

Two-character stiing giving several options for the code operation. The first character
signifies the option to use in calculating the cell voltage. If specified as a "t", the table
option is to be used, if "m", the model option will be used, and if "v", the voltage is
input. The second character signifies whether the exit flows are to be readjusted to
make the anode flow saturated if specified as "s", or not to make tills adjustment if
specified as anything else ("ms"). Input.

Cell cunent density in amperes/square centimeter (0.75). Input

Cell temperature (353K). Input.

Hheat added to the coolant flow (W). Output.

Fraction of input hydrogen in the anode flow consumed in the overall cell reaction
(0,8), Input in the design mode; output in the off-design modes.

Fraction of input oxygen in the cathode flow consumed in the overall ceU reaction.

Output,

AH of the cell reaction per mole of hydrogen input at the ceU temperature. Output.

AG of the cell reaction per mole of hydrogen input at the cell temperature. Output.

Theoretical thermodynamically reversible cell voltage (V). Output,

Theoretical ceU voltage based on AH rather than AG.

CeU voltage using the voltage/cunent density curves (V), Output.

AG over AH. Output.

Ratio of the actual voltage to the ideal voltage. Output.

Actual efficiency, ria^.^. Output

Vapor pressure of water at the ceU temperature (atm). Output.

Partial pressure of water within the anode flow at the exit (atm). Output.

Total moles/second of water in the anode inlet. Output.

Totiil moles/second of water in the anode exit flow. Output.

Total moles/second of water crossing from the anode to cathode. Output.

Total enthalpy change of bodi flows across cell (W). Output.

Total heat generated by the cell reactions (W). Output.

Total surface area of the cell (m^). Input in the off-design mode.

Log mean temperature difference between the ceU temperattire and the coolant inlet

and exit temperatures (T). Output.

Effective overall heat ttansfer coefficient based on Imtd, a r e a , and h e a t . Output.

Table of voltages (V) for four cell pressure levels (aUn) and sixteencunent densities

(A/cm) as defined by i t ab.Tnput. This is curtently set to a default table of values
generated by an actual fuel cell stack.

56

itab[4] [16]- Table of current densities (A/cm2) for die four cell pressure levels (atin) and die sixteen
votages conesponding to v t a b . Input. This is cunendy set to a default tiible of values
generated by an actual fuel cell stack.

ptab[4] - Table of pressure levels used by v t a b (atm). Input. This is set to values required by

the default v t a b .

power - Power stiiicture for the model; p o w e r . work contains the total electrical output from

tfie ceU (W). Output,

bypass - Flag used to bypass most of the cell calculations when set to 1 (default is 0). Input.

w_p - Ratio of weight (kg) to power (kW) for determining the fuel ceU weight (1.6). Input.

cpceU - Specific heat of the cell for use in dynamic mns (10001/kg-K), Input,

weight - Weight of the fuel cell (1kg). Input in dynamic rans.

fla - Anode gas flow at exit,

flc - Cathode gas flow at exit,

flcool - Coolant water flow at exit

5.3.22 Solid Oxide Fuel Cell (sofc) Model Class

The solid oxide fuel cell (so f c)model makes use of three member functions to process the anode and cathode
flows to the cell. The first function, a i n , is used to obtain the input anode flow. This entry, which should be called
first, requires one input g a s t y p e flow and generates no output flows. The next function is c and is used to obtain the
cathode flow and to perform the model calculations. This function requires one g a s t y p e flow on input and generates
one g a s t y p e flow on output. Finally, the a function can be used to obtain the output of the anode side of the fuel
ceU, This function requires no input flows but generates one g a s t y p e flow and should only be called after the c func­
tion has been called. The a i n and c functions require that a flow with the "GAS" id be used.

The modeling within the s o f c flrst saves the total enthalpies (mass times specific enthalpy) of the inlet anode
and cathode flows,

^a, in = ^BK

K. in = "c'^c

and then calls the p r o p fiinction to evaluate the state points of the inlet flows at the ceU temperature, Toeii- The re­

sulting total enthalpies and enttopies are then saved in ha_ in.Tceii- ^a, in,Tceii> he, in, Tceii ' and s^^ in.Tceii-

Next, the anode inlet species molar flow rates, n^^ i^ are calculated from die inlet flow's comp anay,

"a, in = <:°I"Pa,in"'a

with a simUar expression for n^ i^.

From a specified fiiel utiUzation, Vf^^i, the total number of moles of oxygen required for the ceU reaction is cal­

culated from

•^"a, i n , CH30H ^ ^ " a , in , CH4 + " a , in , H2 •*• " a , in , CO
" o 2 - ^ f u e l 2

This is compared with the available molar flow rate widiin die catiiode flow. If there is insufficient oxygen witiun die
flow, a message is printed, and the fuel utilization is reduced to that which die cathode flow could handle. In either
case, die species molar flow rates and the overaU mass flow rates for both the anode and cathode flows are readjusted
to reflect the ttansfer of oxygen across the cell:

"a , out, 02

" c o u t , 02 ~ " c , in, 0 2 ~ " 0 2

™a,out = n'a+MWo2"o2

™c^W02"02

57

The state points of both flows are now evaluated at the cell temperature. This first requfres calculating the comp
anay for both fiows using

with a similar expression for comp^, _ out. calling the a tom fiinction, and then calling the p r o p function. The call to
the properties code will result in the new equilibrium concenttations (i.e,, comp artays) reflecting the oxidation of the
fuel components on the anode side and the loss of oxygen on the cathode side. The resulting values for the total en­
thalpy and enttopy are then savedinha,out,Tceii . Sa,out ,Tcei i-hc, out,Tceii . and So, out,Toeii-The Ah and
Ag for the cell reaction can then be calculated as

~ a , o u t , T c e l l ~ ^ a , i n , T c e l l • ' •*^c,out ,Tcel l~ '^c, in ,Tcel l

Ag = An-Tj,gii(Sjj^j,^^^^j, ,^ll-Sa^ln T c e l l "•• ^c, out, T c e l l ~ ®c, in, Tce l l)

For use in calculating the Nernst potential, the partial pressures of the anode side Hj , HjO, and cathode side Oj

are calculated from the values of comPa_ out- ^ a , compo, out' " ^ c . Pa. and p^,

Pa,H2o = =°™Pa,out,H2oMWaPa

Pa,H2 = '=°™Pa,out,H2MWaPa

Pc,02 = =°™Pc,out,02™cPc

In these equations, MWaand MŴ, are tiie molecular weights of the anode and cathode flows, and Pa and p,, are the anode
and cathode flow pressures. The Nemst potential is then calculated from

Vnernst = ^o + 4 . 3 0 8 6 x l 0 - = k l o g f ^ 2 J i ^ l + T ^ l o g f p ' 0 ,
V ^a ,H20^ 1̂ '

where

e„ = 0 . 0 2 1 6 8 2 (5 7 . 9 3 9 - T ^ (1 1 . 5 2 7 x l O " ^ - f 0 . 5 x l O " ^ T j)

and T is the temperature. The actual cell voltage is determined from

Vact = V „ , ^ „ , , - A V

where Av is a specified cell overpotential and resistive loss. The cell current is calculated from

I = "02F

where F is Faraday's constiint. Then,he total electtical power is calculated from

^e lec - ^act-'^

Several measures of cell efficiency are then calculated for use in printout. These are defined as follows

^ i d e a l

' ' l ideal

I v o l t "

l lact =

- " g
I

_ Ag
Ah

. ^ a c t

^ i d e a l

^ideal'Hvo 1

58

At this point, an overaU energy balance is made by iterating the exit temperature from die cell until the total en­
thalpy change of both flows across the cell is equal to die total electrical power. It is assumed diat botii flows leave die
ceU at tfie same temperature. That is, Ta=To=T3xit is varied untU

a .ou t ,Tex i t a , in ,Tex i t -l-h
c, out, Texi t c, in, Texi t = P .

cunent -

celltemp

deltavolt

fuelutil -

imax-

The parameters for the solid oxide fuel ceU model are as follows:

CeU cunent (A/m^). Output.

Cell temperature at which die cell reactions are assumed to take place (1273 K), Input.
Voltage drop between die Nernst potential and the cell voltage (0.02 V). Input,
Specified fuel utilization (0.8). Input.

Maximum number of iterations allowed in calculating the overaU cell energy balance

(20). Input.

prt - Print switch for generating debugging output (0). Input.

Pf - Pressure factor representing the fraction of inlet flow pressure to be taken as a pressure
drop across the ceU (0.0). Input.

f" - Fuel UtUization used by die model when diere is insufflcient oxygen witiiin die cadiode
flow. Output.

o2utU - Oxygen utiUzation within the cathode flow. Output.

hdeltc - Ah of the cell reaction at the cell temperature. Output.

gdeltc - Ag of the cell reaction at die ceU temperature. Output

nemst - Nemst potential (V). Output.

voltideal - Ideal voltage of the cell (V). Output.

voltact - Actual voltage of the ceU (V). Output.

dheat - Difference in enthalpy changes across the cell and the output electrical power (W).

Output. Note that d h e a t should be zero for a conect overaU energy balance,

effideal - Ideal efficiency of the cell. Output,

effact - Actual efficiency of the cell. Output,

power - Power stiiicture. Power . work wiU have the net electiical power generated by the cell

(W), Output,

fla - Anode g a s t y p e stracture at exit. Output,

flc - Cathode g a s t y p e stracture at exit. Output.

5.3.23 Molten Carbonate Fuel Cell (mcfc) Model Class

The molten carbonate fuel cell (mc f c) model is very similar to the solid oxide fiiel cell model it that it makes use
of three functions to process the anode and cathode flows into and out of the model. The first is a i n , which picks up
the anode inlet flow. This function requires one g a s t y p e flow and generates no output flows and should be called
before the others. The second function, denoted c, obtains the cathode inlet flow and performs the cell calculations.
This function also requires one g a s t y p e flow on input and generates one g a s t y p e flow on output representing the
exit cathode flow. The third function is a, which requires no input flows but generates one g a s t y p e flow representing
flie anode exit stteam. This function should only be called after the c function has been called.

Since the modeling within the molten carbonate fuel cell is similar to that of the solid oxide cell, only the differ­
ences from that model wiU be discussed. Like the solid oxide cell, on entry to the calculational fiinction the inlet flow
enthalpies and enttopies are saved, and the molar flow rates of the inlet species are calculated from the inlet comp
arrays. The flows are then taken to the cell temperature, and the enthalpies and enttopies are recalculated. The number

of moles of CO, crossing the cell due to the cell reactions is calculated from

. i (3 n a ['^•"a, in,H2 ''""a, in.co)

59

where the notation is tiie same as in die soUd oxide model. The cadiode flow is then checked to make sure diat it has

sufficient COj and Oj to supply the npos moles of COJ" for the ceU reactions. If it is lacking in either COj or O2, a

message is printed and the fuel utilization is reduced to a level for which there is sufficient COj and O2. The species

flow rates and total mass flow rates within the anode and cathode flows are then adjusted to reflect the cell reaction:

"a, out, C02

"cout, 02 ~

"cout,€02

"a, in, C02 """"cos

c, in, 02

"cin, C02

/MW,

"co3
2

m a, out
r""o2 V
[-^+™(,o2J"c

[̂ _2_ + MWco2Jnco3

The state points for the flows are then calculated, stiU at the cell temperature, using calls to a t o m and p r o p . The
Ah and Ag for the cell reaction are calculated as in the solid oxide model, and the partial pressures for those species
involved in the Nernst potential expression are calculated based on the new molar flow rates. The Nernst potential in
this case is calculated from

e(, + 4 .3086x10 Talo^fl^^VT.log
^a .H20^

1
2

P c 0 2

Pc, C02

where

e„ = 0 . 0 2 1 6 8 2 (5 8 . 2 8 0 7 - T ^ (0 . 0 1 1 2 8 1 1 - 1 - 9 . 5 7 1 4 3 x 1 0 ^T^))

The rest of the cell calculations are the same as in the solid oxide ceU, that is, the various measures of cell effi­

ciency are calculated followed by an energy balance in which the exit flow temperatures are iterated.

The parameters for the molten carbonate fuel cell model are defined as follows:

Cell cunent (A/m^). Output

Cell temperature at which the ceU reactions are assumed to take place (900 K). Input.

Voltage drop between die Nernst potential and the cell voltage (0.2 V). Input
Specified fuel utilization (0.75). Input.

Maximum number of iterations allowed in calculating the overall ceU energy balance
(20). Input.

Print switch for generating debugging output (0). Input.

Fuel UtiUzation used by the model when there is insufficient oxygen witiiin tiie cathode

flow. Output

Oxygen utilization within the cathode flow. Output.

Ah of die ceU reaction at the ceU temperature. Output.

Ag of the ceU reaction at the cell temperature. Output

Nemst potential (V). Output.

Ideal voltage of the cell (V). Output.

Actual voltage of the cell (V). Output

cunent -

celltemp -

deltavolt -

fuelutil -

imax-

prt-

fu-

o2util -

hdeltc -

gdeltc -

nemst -

voltideal -

voltact -

60

dheat -

effideal -

effact-

power -

fla-

flc-

Difference in endialpy changes across the ceU and die output electiical power (W).
Output. Note that d h e a t should be zero for a conect overall energy balance.
Ideal efficiency of the cell. Output.
Actual efficiency of the cell. Output.

Power sti^cture. Power . work wUl have die net electiical power generated by the ceU
(W). Output.

Anode g a s t y p e stracture at exit. Output.

Cathode g a s t y p e structure at exit. Output.

5.3.24 Phosphoric Acid Fuel Cell (pafc) Model Class

The phosphoric acid fuel cell (pa fc) model is similar to the solid oxide fuel ceU model in diat it makes use of
tfuee functions to handle the anode and cathode flows. The fttst function is a i n , representing the inlet anode flow, and
requires one input g a s t y p e flow and generates no output flows. The second function is c and represents the inlet
cathode flow. This function also performs the cell calculations and generates one g a s t y p e flow representing the exit
cathode flow. The third function is a and represents the exit anode flow. This function requires no input flows, gener­
ates one exU g a s t y p e flow, and should only be called after the c function has been called. In addition to these three
functions, the p a f c model also has a c o o l function, which is used to represent the coolant flow to the cell. This entry
requhes one input and generates one output g a s t y p e flow, AdditionaUy, this function should also only be caUed after
the c function has been called.

The p a f c model is similar to that of the so f c model; thus only the differences from that model wUl be discussed.
As with the s o f c model, the inlet state points for both flows are saved, the species molar flow rates are calculated,
and the flows are brought to the ceU temperature, where the p r o p code is used to determine the new state points. At
this point, the number of moles of H2 consumed in the cell reaction is calculated based on an input fuel utiUzation,

" H 2 - Ufuel"a , in,H2

where the notation is the same as with the soUd oxide model. The cathode flow is then checked to ascertain whether
there is a sufflcient oxygen flow rate for this amount of cell reaction. If the oxygen rate is insufficient, a message is
printed, and the fuel utilization is reduced to a level for which there is sufficient oxygen. The species molar flow rates
and mass flow rates for both the anode and cathode flows are then readjusted to reflect the cell reaction, as follows:

•^a,out,H2 "a , in ,H2 '

•^c,out,H20 •'c,in,H20^

n„
n^ c o u t , 02 " ^^c,in, 02 2

m, -n„,MW„
"s, out "a""H2'""H2

V o u t = ' " C - ^ " H 2 M W H 2 0 - — ^ ^ 0 2

The p r o p code is then called to obtain die state points for the readjusted flows. The Nemst potential is calculated

Tal°9(Pa,H2) + To log

, 1
2

P c 0 2

Pc, H20

where

0 . 0 2 1 6 8 1 6 (5 1 . 1 4 7 - 0 . 0 1 1 8 9 8 4 (T a - 6 0 0))

The rest of the calculations are similar to those of the solid oxide model, with the exception that no iterations are per­
formed over the exit temperature. Instead, the difference in inlet minus exit enthalpies for both flows minus die elec-

ttical power generated is treated as a heat load. This heat is then added to the coolant flow when the c o o l entty is

called.
The parameters for the phosphoric acid fuel ceU model are defined as follows:

cunent - Cell cunent (A/m^). Output.
ceUtemp - CeU temperature at which the ceU reactions are assumed to take place (500 K). Input.

deltavolt - Voltage drop between the Nemst potential and the cell voltage (0.1 V). Input.

fuelutil - Specified fuel utilization (0.8). Input.
fu . Fuel utilization used by the model when there is insufficient oxygen widun the cathode

flow. Output.

o2util - Oxygen utilization within the cathode flow. Output,

hdeltc - Ah of the cell reaction at the cell temperature. Output.

gdeltc - Ag of the cell reaction at the cell temperature. Output,

nemst - Nemst potential (V), Output,

voltideal - Ideal voltage of the ceU (V), Output,

voltact - Actual voltage of the ceU (V). Output,
heat - Difference in enthalpy changes across the cell and die output electtical power (W).

Output,
effideal - Ideal efficiency of the cell. Output,

effact - Actual efficiency of the cell. Output,
power - Power stracture. Power .work wiU have the net electtical power generated by the cell

(W). Output,

fla - Anode g a s t y p e stracture at exit. Output,

flc - Cathode g a s t y p e stracture at exit. Output,

flcool - Coolant g a s t y p e stiiicture at exit. Output.

5.3.25 Shaft (shft) Model Class

The s h f t model class is used to initiate a s h f t t y p e flow. Like the g a s model, this model has c, sav , and
r e c fiinctions for initiating a s h f t t y p e flow, saving a flow from the s h f t s stack, and recovering a flow (i.e., plac­
ing the flow back onto the sh f t s stack). An additional function, denoted as end, is used to tenninate a shaft flow for
dynamic simulations.

Widiin the c function, the shaft flow's inertia and power are set to zero, while the rpm is set equal to a specified
input value. Within the end function, a new shaft rpm is calculated from the foUowing equation

m
da
3t m

where Q is the shaft rpm, PoWĵ t̂ is the net power delivered to the shaft, and I is the total moment of inertia of aU
the components on the shaft.

The shaft model parameters are defined as follows:

rpm - Revolutions per minute of the shaft (1.0). Input. This parameter is recalculated within
the end function for dynamic rans.

Time derivative of the rpm. Output

Net power delivered by all the components on the shaft. Output.

Net polar moment of inertia of all the components on the shaft. Output

Shaft flow from the model at the exit. Output.

drpm-

power -

inertia -

shftf-

62

5.3.26 Generator (gen) Model Class

The generator (gen) model class implements a very simple electiical generator. The model has one calculation

function, c, that takes a s h f t t y p e flow from the s h f t s stack and puts one s h f t t y p e flow back onto the stack.

The model simply defines the power consumed from die shaft (and hence, generated as electiical output) from

Pow = P O W „ ^ „ j | — ^ 2 2 — I

where PoWj-ated and rpm^-ated^Present some input rated power and rpm, and rpm is the input shaft rpm. This power
is then removed from the shaft and an additional moment of inertial is added to the shaft. As an option, the generator
model can be made to consume all of the power available within the shaft flow.

The generator model parameters are defined as follows:

inertia - Moment of inertia for the generator (0.2). Input,

rat_rpm - Rated rpm of the generator (3600), Input

rat_pow - Rated power of the generator (40 kW). Input,

Stat - Flag, if set to 1, wUl tell the generator to consume aU of the shaft power (0), Input,

5.3.27 Motor (mot) Model Class

The motor (mot) model class is used to simulate a very simple electrical motor. The model has one calculational
function, c, that takes one s h f t t y p e flow from the s h f t s stack and puts one s h f t t y p e flow back onto the stack.

Several options are provided for defining the power added to the shaft flow. The fust option, denoted as "zero",
simply adds to the shaft power a value equal to the negative of the power curtently within the shaft. This option simply
adds (or subttacts) the power necessary to prevent the rpm of the shaft from changing. The second option, denoted as
"level", wUl add additional power to the shaft to bring it up to a specified power level, PQ, if the input shaft power is
greater than zero but less than the specified power level. If the shaft already has a power of PQ , then no additional power
is added. If the shaft has a negative power level, then the model adds to the shaft a power of PQ . FinaUy, a third option
simply adds a specified power to the shaft flow. The model also adds to the shaft flow a specified moment of inertia.

The motor model parameters are defined as follows:

inertia - Moment of inertia for the motor (0.1). Input.

power - Input power (0.0). Input when option is "".

poweiO - Specified power level when option is "level" (10'*). Input,

option - Character stiing defining the option (""). Input.

5.3.28 Detailed Steam Reformer (refs) Model Class

The dynamic r e f s model class simulates a methanol steam reformer. The model is based on a detailed
stand-alone model that has been simpUfied slightly for use in the system simulations. The model calculates the tem­
peratures and species profiles, not only along the flow path, but also normal to the flow path. Thus, r e f s is a two-di­
mensional, time-dependent model. The model has several functions for processing die flows. The first is h i n ,
representing the input flow on the hot side, and takes one g a s t y p e flow from the g a s s stack. The second function
is c i n , representing die fuel/water input flow, which also takes one g a s t y p e flow. Neither h i n nor c i n generates
any output flows. Once bodi c i n and h i n have been called, die model wiU automatically call another function, de­
noted as wk. This function wiU perform the model calculations but, wUl not generate any output flows. The output
flows for die hot and cold sides are then obtained by caUing h o u t and c o u t , respectively. Botfi of these functions
generate one g a s t y p e flow. At present only one instance of the r e f s class can be used in any simulation due to the
large number of variables diat die coding uses. Since this model is more detailed dian die others we present the mod­
eling in a number of subsections.
Reformer aeotnetrv

The basic geometry used with the reformer model is either cyUndrical or cartesian. In the cylindrical geometry the

coordinates are (r , 9 , z) widi the flow passages parallel to die z axis. Thus, bodi die refomiate gas (initially tiie inlet

63

fueVwater mixture) and the hot gas passages are either circular or annular in cross section. At present, only one refor­
mate flow passage is pennitted dirough the reforaier, and its direction defines the direction of the z-coordinate. Rota­
tional symmetty about tiie z-coordinate axis is assumed. In the radial or r-coordinate dhection, a number of different
regions are present. These include the catalyst bed (which also represents the refomiate gas region), the hot gas, walls,
and/or void regions. The following figure shows a typical situation with die catalysf refonnate gas within a centtal cy­
lindrical tube sunounded by an annular hot gas flow. Note that the model can also handle the hot gas inside an annular

walls

fuel/water hot gas

Typical reformer geometry

tube of catalyst or both inside and outside the catalyst. Generally, the reformer would be made up of a number of such
catalyst tubes. It is assumed that all such tubes are the same.

In the cartesian geometry, a flat plate reformer is modeled. Here the coordinates are (x,y,z), with the z axis defin­
ing the flow direction. The x direction has three regions defining the reformate, wall, and hot gas flows. The y direction
represents the width of the reformer flow passages. The reformate and hot-gas flow regions are taken only to their cen­
ter lines. As with the cyUndrical geometiy, a number of pairs of reformate and hot gas flow paths make up the reformer,
with all such flow pairs assumed to be the same.

Gas properties

Due to the large number of calculations made within the r e f s model, the thermodynamic properties calculations
are performed internally, rather than by use of p r o p . The reformate flow is tteated as an ideal gas with varying com­
positions. The species considered are CH3OH, COj. CO, H2, HjO, O2, and N2. The last two are included for handling
the hot gas flow and would not, usually, be found within die fiiel/water reformate stteam. For die hot gas flow, frozen
chemistty is assumed. The thermodynamic properties of the reformate flow are calculated on the bases of the proper­
ties of die individual species. Each species, i , has an enthalpy, h i (l/kg), defined from

h i = c p i T + ho i

where c p i is die specific heat (I/kg-K), T is die temperature (K), and h m is a constant, such that at some reference
temperature, h i becomes equal to the enthalpy of fonnation of the species at that temperature. The specific heats and
enthalpies for the gas stteam are then calculated from

c p = X^l^^^Pi

h = cp Tf hf.

where

64

and y i represents die species mass fractions. The reference temperature chosen for defining c p i and h m is taken as
some intermediate temperature value widiin the gas stteams. For the hot gas fiow, the properties are calculated in a
similar way when the flow has die "GAS" property id. Otherwise, the p r o p function is called to get the value of cp
and density for the flow, which are then kept fixed along the flow path.

The thermal conductivity, K, of a flow stteam is calculated from the foUowing.

i E x i * i d

where x i is the species mole fraction, KI is the species thermal conductivity, and <1>. . are interaction coefficients

defined by

UJ */pj

M)
Here Mi is the molecular weight, and |Xi is the viscosity of species i . As with the specific heats, the species thermal

conductivity and viscosity are taken as constants at the reference temperature.

The density, p , is defined using the ideal gas equation of state

p = PRT
M

where R is the ideal gas constant and M is the molecular weight of the gas steam given by

M = S ^ i ^ i
For the flows on the hot gas side not having the "GAS" property id, the code makes use of input values of the flow's
conductivity, with the density being calculated from p r o p as indicated above.

Conservation of mass equation

Since the main thrast of the model is to examine the thermal response of the reformer, some simplifying assump­
tions have been made concerning the flow fields. Firsfly, it is assumed that the flow velocity is only in the +z direc­
tion, with no other component of velocity being calculated. Secondly, it is assumed that the pressure drops within the
flow fields are smaU relative to the inlet pressures. Thus, die pressures are taken as constant throughout the flow fields.
With these two assumptions, the velocity fields can be calculated using the overall conservation of mass equation alone
without the use of the conservation of momentum equation. It should be noted that these assumptions do no preclude
using the model to examine dynamic changes of die inlet flow conditions.The model wiU stiU conecfly foUow changes
within the inlet fuel/water compositions, which are propagated through tfie reformer essentiaUy with die velocity of
the flow. Changes within the inlet velocity field, however, wiU tend to propagate through the reformer witfi approxi­
mately the sonic velocity. Thus, only for exttemely short time scales (roughly on the order of L / s , where L is tfie re­
former length, and s is the sonic velocity) would a tteatment using the full conservation of momentum be needed.

The overaU conservation of mass equation for a time-dependent, three-dimensional flow field is given by

|e. + V.(pv) = 0

With the above assumption of a one-dimensional flow field, this equation is used to calculate, not the density, but the

axial component of velocity, v . The density is detemuned from the equation of state using the pressure, temperature

(determined from the energy equation), and composition (determined from the species conservation equations).

65

Species and atoms conservation equations

Some additional assumptions have been made with regards to the species conservation equations. Firstly, die fuU
multi-species convective-diffusion equations are not used. For the hot gas flow it has already been mentioned that fro­
zen chemistry is used. This stteam being of lesser importance in that it simply supplies the heat for die process, and
thus, its speciation is not all that important. For the reformate flow the convective terms are far more important than
the diffusion terms. Thus, a convective-diffusion equation is used with a single-species diffusion coefficient It is fur­
thermore assumed that the species mass flux can be written in terms of the gradient of species concentration. With
these assumptions, the species conservation equation takes the form

3Ci
^3E "" ^ ^ ' (^ C i) = V.(DVCi) + r iP j^^^d - E)

where C^ is the i'th species concentration (mol/m'), e is the porosity of the catalyst bed, p^^^ is the density of die

catalyst bed material,''' D is the species diffusion coefficient (m^/s), and r^ is the source term representing the per ki­
logram of catalyst times the rate of species creation (mol/kg-s). When integrated over a conttol volume, the terms on
the left-hand side of this equation represent the explicit time rate of change of species i and the net convection of spe­
cies into and out of the conttol volume. The terms on the right-hand side then represent the diffusion of species through
the conttol volume and the source of species i due to reactions. The r i terms wiU be discussed below. Within the com­
puter model, due to the much greater effect of convection over that of diffusion, the component of diffusion in the di­
rection of the flow has been ignored.

This species conservation equation is used for the medianol concenttation and optionally, for the water concen­
ttation, depending on whether or not the water/gas shift reaction is included and taken to be in equilibrium. Note that
some studies tend to indicate tfiat the water/gas shift reaction does not occur over the copper and zinc oxide catalyst
used when methanol is present. This option is included only for studying the importiince of the water/gas shift on tfie
conversion rates and final hydrogen concentrations when the catalyst reaction mechanism includes the water/gas shift.

To detennine the species concenttations that are in chemical equilibrium, an equation of atom conservation is
used. Defining a total atom concenttation (atoms/m^) from

^i = E - i i S
where a i j is tfie species stoichiometiic coefficient one obtains

3 B I
^dt +^^*(^Bi) = V . (D V B I)

Solving this equation for the Bi's, the equilibrium concenttations can be obtained. For the five species used within die

refomiate gas (CH3OH, COj, CO, H2, and HjO), two cases are considered depending on whether the water/gas shift

reaction is tteated kineticaUy or in equilibrium. If treated kinetically, dien only the COj, CO, and Hj species need to

be detenmned from Bi. Since there are three Bi's, one for each of carbon, hydrogen, and oxygen, diese diree concen­

ttations are directiy de.emiined from die three Bi's given the values for CCH3OH and 0^20 detemuned from die species

Z T d e Z ^ " ' . " " ' - T " ^"'"'^"! '^^' ' ' ' ' = ' ' ° " ' ' ' " ^q""ibrium, then the species conservation equation is not
used to detemune CH2O. However, in this case, one has the equiUbrium condition

j ^ _ ^Co'-H20
eg Q „

^C02^H2

Where K,, is tiie equilibrium constant, which depends on the local temperature. This equation along with die values
ot Bi can then be used to detennine the concenttations of COj, CO, H2, and H2O.

'^~£'>sr.:z^-£'£i;:z,t^'-^;^^^^'^'^'^---.,^.
66

Conservation of energy equation

The formulation of the energy conservation within r e f s makes an approximation based on the very high effec­
tive heat ttansfer between the reformate gas and the catalyst bed. The temperature difference between the gas and die
catalyst tends to be very smaU, and only within a short distiince of the fuel/water inlet is there usually any substantial
difference. Thus, a single temperature is used to represent both the reformate gas and that of the catalyst bed. This can
produce a reasonably accurate solution with much less computational time. Additionally, the single-temperature op­
tion eUminates the need to determine both the effective heat ttansfer between the gas and catalyst and the relative
amounts of heat that would be taken from the gas and catalyst in supplying the heats of reaction.

Due to the assumption of constant pressure, the time-dependent conservation of energy equation can be formulat­
ed as a conservation of enthalpy equation. When written in terms of the common gas and bed temperature, T, this
equation becomes

g^ [{ i -e)Pi ,3acPi ,3aT + ep^^f (cp^^ jT + h^)] + V.(v£p^^£(cp^^f T + h,,)) =

V » (K V T)

where E is the catalyst bed porosity as before, K is the effective bed thermal conductivity (W/m-K), cpj,g£ is the

specific heat of the reformate, cpj^g^ is the specific heat of the bed, and p-^^^ is the density of the bed material

(kg/m). In this equation the terms on the left-hand side represent the expUcit time-dependent changes to the enthalpy
and the convection of enthalpy within the bed. The term on the right-hand side represents the heat ttansfer within the
bed. Note that due to the way the enthalpy of the flow stteam is calculated, with the species referenced to their heats
of formation, heat of reaction terms do not explicitly appear within this equation.

For the hot gas flow, the energy equation is

^ [P (= P Tgas + h „)] + V . [p v (c p Tg^, -hh„)] = V.(K^^3VTg^,)

where cp and p refer to the specific heat and density of the hot gas flow, respectively.

For the walls sunounding the reformate and the hot gases the energy equation is

P w a l l ' = P w a l l ^ (T „ a i i) = V. (K„a i iVT„^ l l)

where c p „ a i i is the specific heat, K ^ ^ n is the thermal conductivity of the wall, and p „ a i i is the density of the

wall material.

Note that the thermal conductivity used in the above equations for the flow on the hot gas side is actually an ef­
fective conductivity enhanced by a factor to account for the fluid motion. This is done, presendy, by calculating an
effective Nusselt number for the flow and enhancing the thermal conductivity by that number. The Reynolds number
is based on the flow passage width. The skin friction and Nusselt number are calculated from die foUowing conela-
tions:

f-2\(±T. 12 1 V 2

Re J • ' r„ j .Hl i -=J (a + b)

where

[• 4 . 9 2 0 - 2 . 4 5 7 1 o g
('42 .683^16

Re •'-

p7530
L Re

and

67

, 0 . 1
Nu = b .

where

2 2 0 0 - R e ^-5
365 ,

3 , 1

3 .657

[!• 0 . 0 7 9 . - R e P r

|~

(1 + Pr°-V
For die plate geometiy or for flows not having the "GAS" property id, the code permits a dhect input of the Nusselt

number.

Reaction kinetics

The reaction rates r i appearing within the species conservation equations are taken from the experimental work
of Amphlettetal, [7-10] and liang et al. [ll],IntheworkofAmphlett, two reactions are assumed to form the primary
mechanisms of methanol conversion. These are die methanol decomposition reaction

and the water/gas shift reaction

CO + H 2 O O C O 2 + H2

For the methanol decomposition reaction using the G66B catalyst, the reaction rate r^^^j^j^, is defined by the

equation

2
'^Ch3oh(' -CH30H~'-Co'-H2"^^eq)

••̂ CHSOH ~

Here k,̂ h3oh and k^o are conelated from experimental data as

11568

kch3ch = 7 - 0 3 6 x l 0 ^ •̂

3038
4 T

k(,o = 10 e

and the equUibrium constant is given as
11160

Kgq = 4 . 2 7 5 x l 0 l ^ e ''

These values are in units such that given the compositions in g-moVm', die reaction rate rcH30H is in g-mol/kg-s. Note
that the reaction rate is per kilogram of catalyst material. The experimentiil work was done over a temperature range
of 423 to 523 K.

For the C18HC catalyst, the reaction rate is defined by the following equation:

~^CH30H = ' ^ c h 3 o h (^ C H 3 0 H - C c o C H 2 / K e q)

where

10100

'^ch3oh= 8 . 0 6 x l 0 ' e ''

The experimental data used to detennine this cortelation were obtained over a temperature range of 423 to 543 K.
For the water/gas shift reaction over the G66B catalyst, Amphlett et al. indicated some uncertainty in the data

above 453 K. Because of these uncertainties, the reaction rates are only tentative, until additional information is ob­
tained. The water/gas shift reaction rate (-rH2o) is thus defined by the following equation:

~''^H20 ~ '^h2o ' ' - -H2o ' - -CO~'-C02 ' -H2^^eq)

where

and the equilibrium constant for this reaction is

4880

^eq = 8 . 0 6 x 1 0 - ^ 6 "^

As with the methanol decomposition, the units are such that with compositions in g-mol/m^ the reaction rate is in
g-mol/kg-s. No information was given concerning the reaction rates of the water/gas shift using the C18HC catalyst;
tiius, at present, the same expressions for the G66B catalyst are being used within the model.

For use with another catalyst (BASF S3-85), Jiang et al.[l 1] proposed a different set of reaction mechanisms for
the reforming of medianol. In particular, their studies tend to suggest that the water/gas shift reaction does not occur
in the presence of methanol. In this work the overall methanol reformation was determined to follow the reaction rate
equation;

'^CH30H'^H20 '^H2

where Pi is the partial pressure in kPa. This expression was obtained experimentally over a temperature range of 443

to 533 K and at atmospheric pressure. The same rate expression is also used for -rH2o-

Note that all experimental work tended to show that, at least, for sufficiently small catalyst particles the reaction

rates were independent of the particle size. In thecaseof Amphlett's work the reaction rates were for the commercial

pellet size down to 20-24 mesh. For Jiang's work the particle size variation was between 150 and 590 \i m.

Boundary and initial conditions

The boundary conditions used for the above conservation equations consist of symmetry conditions along the cyl­
inder axis or the center line of the flow for plate geometties and a fuUy insulated condition along any outer-containing

wall. Thus, along r=0 (or x=0) and r=r^ax (or x=x„ax). *^ have 3 T _ We also assume that the wall regions
3 r

3 T
along the cyUnder ends are fully insulated, thus, =— = 0 overthesefaces. For the fluid flow regions, the temperature,

oz
as weU as pressure and compositions, are aU known along the inlet For the oudet, a high Pecklet number is assumed,

essentially yielding Hx. = o for (]) =T, Ci, Bi,and u. Note that no heat flux boundary conditions are imposed between
oz

the separate regions, such as between the waUs and the fluid flows, since the temperature field is calculated as a single
field over the entire reformer. The numerical technique employed, however, permits jumps widiin the effective thermal
conductivity of the materials, which essentially forms a condition diat the heat flux between regions is continuous. For
the species concenttations and the total atom concenttations, no diffusion occurs at the bounding walls, thus, for these

ac. 3BI
radial values, ^r- = 0 and =— = 0 and simiUar conditions for the plate geometiy. For the constant temperature

d r 3 r
mode of operation no boundary conditions are, of course, needed for the temperature fields, but the boundary condi­
tions on Ci and Bi are the same as described above.

For dynamic problems, the initial conditions are

set to zero.

Refs model parameters

obtained by solving die above equations with the time derivatives

lengtfi - Lengtfi of a flow passage along the reformer (1 m). Input.

width - 'Width of a flow passage when geom is "p" or 2;t when geom is "c" (1 m). Input in

when geom is "p".
ntubes - Number of reformer tubes or number of pairs of refonnate and hot gas flows (200). In­

put.
kbed - Effective tiiemial conductivity of the bed (0.7 W/m-K). Input.

kwaU - Thermal conductivity of the wall material (20 W/m-K). Input.

porbed - Porosity of the bed (0.3). Input.

cpbed - Specific heat of the bed material (1100 J/kg-K), Input,

cpwall - Specific heat of the wall material (500 J/kg-K). Input.

rbed - Density of die bed material (1930 kg/m'). Input.

rwall - Density of the wall material (8000 kg/m'). Input.

diff - Species diffusion coefficient (10"* m^/s). Input.

w_f - Catalyst weight to fuel flow rate (500 kg-s/g-mol). Input, but only used to determine a
reformate flow rate when the input mass flow rate is not set within the inlet flow.
Hot gas flow rate to reformate flow rate (3.2). Input, but only used to determine a hot
gas flow rate when the input mass flow rate is not set within the inlet flow.
Input value of the thermal conductivity of hot gas (20 W/m-K). Input, but only used
when die hot gas flow does not have the "GAS" property id.

Input value of the Nusselt number for hot gas flow (1,0), Input, but only used when die
hot gas flow does not have the "GAS" property id.

Character stting of either "p" for plate type geometiy or "c" for cyUndrical geometry
("c"). Input.
Character string defining the various kinetic equation options within the model. The
first character defines the kinetics of the methanol decomposition reaction and can be
eidier 'G' for the G66 catiilyst, ' C for die C18H8 catalyst, 'B ' for die BASF catalyst
or 'I ' for an input reaction rate constant. The second character represents the reaction
kinetics for the water/gas shift reaction and can be either 'S ' for using the same rate as
for the methanol decomposition reaction, 'A' for the reaction rate from Amphlett's
work,' r for using a specified input reaction rate constant or 'E ' to use the water/gas
shift at equUibrium ("CA"). Input,
Rate constant for the methanol decomposition reaction (0), Input when kinetics[0]='r.
Constant used in the methanol decomposition reaction (0). Input when k i n e t ­
i c s [0] = ' r .

Rate constant for the water/gas shift reaction (0). Input when k i n e t i c s [1] ='1'.
Region stiaicture defining the region types, thicknesses, and number of nodes for up to
six regions. Only the region parameters of t y p e , n, and t h i c k need to be input. The
parameter t y p e takes one of the values "R" for reformate," W" for waU, "G" for hot
gas, "V" for void space, "S" for symmetiy line; n defines the number of nodes to be
used within die region. The total number of nodes for all regions must be less than 20.
The parameter t h i c k defines the thickness of the region in meters. Input.
Total number of regions defined by the region anay (4). Input.

relax_t,relax_s - Relaxation factors used in solving the temperature and species equations respectively
(0.3 and 0.3), Input,

acc_t - Accuracy criteria for terminating the iterations on temperature (10"'). Input. The iter­
ations will terminate when die maximum temperature difference between iterations is
less than this parameter.

mg_nir-

hot_cond -

hot_nu -

geom -

kinetics -

kch3oh-

kco-

kh2o-

region[6]

noregions -

70

acc_s - Accuracy criteria for terminating the iterations on the species concenttations (10''").
Input.

Note that the basic geometiy is dictated by the geom, n o r e g i o n s , and the r e g i o n anay parameters. These
default to a cylindrical geometry with four regions consisting of a "R", "W", "G", and another "W", each with only a
single node and thicknesses of 0.01, 0,001, 0,01, 0,0001 m, respectively. The outer most region is automatically de­
fined as an "S" or symmetry line. This basically says, that no heat is ttansfened across the line. Note tiiat if a plate type
reformer is desired, dien one should define only three regions of "R","W", and "G", where the "R" and "G" region
thicknesses define the space from the wall to the center line of the region.

5.3.29 Power Stack (pows) Model Class

The power stack (pows) model class is somewhat different than the other models in that it does not process a par­
ticular fiow, but makes use of a power class used by the other models. Each model that produces work, such as the
gas turbine, or consumes work, such as the pump, wUl record this information in the work parameter of a power class.
Similarly, models that input heat, such as the combustor, or lose heat from the system, such as a h t model with a neg­
ative heat load, wiU record this information in the heat parameter of this power class. As with the other stack classes,
m o d s t a c k and g a s s t a c k , a special instance of the p o w s t a c k class is used by the models to store these power
stractures. This instance must be named pows and, like the mods and g a s s stacks, is pre-defined within the header
file so the user does not need to explicidy define it. Each model's power stracture is then put onto the pows by calling
the p u t member function of the s t a c k class with the model's power class as an argument. The pows model then
makes use of this stack to calculate the net work and heat associated with the entire system by calling its c member
function.

The model has no input parameters, but does calculate the foUowing output parameters,

prod - Sum of all the positive p o w e r . work variables of all models,

cons - Sum of the absolute values of all negative p o w e r . work variables of all models,

input - Sum of all positive p o w e r . h e a t variables of all models,

loss- Sum of the absolute values of aU negative power . l o s s variables of aU models.

netprod - Net power produced equal to p r o d - c o n s .

netinput - Net energy input equal to i n p u t - l o s s .

Note even if the pows,c function is not called, the pows stack is available for printing out tables of the models'
power classes via p o w s , p r i n t .

71

6.0 Steady-State Examples
In this section, six examples are given showing typical usages of the steady-state models defined in Section 5

The first three of these are veiy simple examples designed to show the use of flows, system consttaints, and parameter
studies The next two are slightiy more realistic but stUl relatively simple examples: a space power system and a con­
ventional coal-fned steam plant. Finally, the last example is of a proton exchange membrane fuel cell system with the
fuel supplied using a methanol steam reformer.

6.1 Gas Turbine System
Consider a system consisting of a hydrogen tank, a compressor, a heater, and a gas turbine connected togetfier in

that order. Such a system could be analyzed using the following input to GCtool.

modstack mods;

gas gasl = {id="THR-tH2",- t=300; p=l; m=l;};

cp cpl={pres=6.0; eff=0.88;};

ht htl={temp=1000;};

gt gtl={pres=1.0; eff=0.84;);

gasl.c; cpl.c; htl.c; gtl.c;

gass.print; mods.print;

First an instance of tfie m o d s t a c k class, mods, is defined. This model class instance wUl be used to call aU of
the other model print functions. To represent die hydrogen tank we use class g a s (gas flow initiator) and define a
specific instance of that class as g a s 1. Parameter values are then assigned to initialize the flow. These include defining
the flow as a hydrogen gas using "THR-tH2"1', and tfien defining the values of temperature, pressure, and mass flow
rate using t , p, and m, respectively. Instances of the compressor, heater, and gas turbine classes are then defined witii
their associated parameter values. Note that all input parameters have default values and, thus, could be left out if tiie
defaults are appropriate for the problem. Finally, the calculational functions for each model instance are caUed in die
order necessary for representing the system, and the g a s s stack and mods stack p r i n t functions are called to obtain
the results. As can be seen, the largest part of the coding is supplying the model parameter values, which is often the
case.

Before defining more complicated system configurations, we need to consider the mechanism for handling the
fluid flow (or for that matter any type of flow) between the models. BasicaUy, each model wdl take off of a flow stack
(for g a s t y p e flows this is the g a s s stack) die number of input flows that U requires and will put back onto the stack
the output flows that it generates. Actually, only die addresses of the flows are saved on this stack, but the concept is
the same. Thus, in this example, the g a s l . c model, being an initiator of a flow, simply puts one output flow onto the
stack; c p l . c then takes this flow off the stack and, on completion of its calculations, puts Us output flow back onto
the stack. Models h t l . c and g t l . c then do exactly as the c p l . c model, taking dieir single input flow off the stack
and putting their single output flow back onto the stack.

In order to handle arbittary system configurations, where some flows may not be used by the next model in the
flow path, one must be able to remove a flow from the stack, store it, and, at a later point, place that flow back on the
stack for further processing. This saving of a flow is usually done by the model that will require the fiow at a later point
by use of an additional entry point to the model. For example, a flow mixer model, mx, requires two flows for its cal­
culations. The fffst input flow is pulled from the stack and stored, using the model's secondary entry, rox.s. At a later
point witiiin the calculations, tiie model's calculational entiy, mx.c, would then be caUed. This entry wiU obtain from
the stack the second input flow and then calculate, using the first input flow which had previously been retrieved, die
resulting output flow. This output flow is then placed onto the stack for further downstteam components. Note that
the model specified directiy after the mx,s entry should be one that does not require an input flow, as the mx,s entry
does not generate one.

As an example where a model generates two output flows, die gas flow splitter model, sp , makes use of two en­
tiies. The calculation entiy sp.c would obtain from the g a s s stack the one input flow tiiat the model needs to perform

The "THR-tH2" represents a hydrogen gas flow; the smaU 't' before the H2 denotes a special version of the
hydrogen data valid for high temperatures,

72

its flow spUtting. Internally, the splitter model then calculates both flows but only puts one of these onto the g a s s
stack. At a later point within die system configuration, the splitter's secondary entry, sp . s , wiU put onto the g a s s
stack the second or spUt-off flow for use within the next model.

In addition to the g a s t y p e flow class, other types of flows may exist. For example, some of the dynamic models
make use of the s h f t t y p e flow class, representing die power extracted or delivered to a model by a shaft. The dif­
ferent flow stacks are entirely independent of each other. Thus, in determining the input flows to a model, consider­
ation must be given to the previous model generating an output flow of the cortect flow type. For example, a shaft flow
might be generated, and then many models might be called requiring only g a s t y p e flows before the model that re­
quires the s h f t t y p e flow is called.

In general this stack mechanism means that at any point where a model is caUed, one needs to look at the previous
models to detennine what the input flows are. There are no hard and fast mles here; thus, the user of a model must
have an understanding of what flows a model needs and what flows k generates. For example, one might have a col­
lection of models that requires two input flows of the same type, both of which are placed on the stack as outputs for
use in the next model.

Flows that are generated by a model and not used immediately by a subsequent model before other flows (of the
same type) are generated are effectively lost to further models downstteam. Thus, new models that are developed and
added to GCtool should be considered from the user's point of view with regard to flow usage in order that they are
not too difficult to use. Ultimately, however, it is the responsibility of the user to conecdy sequence the models to rep­
resent the system configuration. Note that within the GCtool environment, a rehash and draw can be done periodically
while the system inputs are being developed to "see" the system that is being constmcted.

6.2 Gas Turbine System with Fixed Net Power Constraint

The first example shows how to set up a very simple gas turbine system. Here we extend that system to include a
consttaint As an example we consttain the net power generated by the system to be fixed at some value, say 40 MW.
Consttaints, such as this one, which depend on more than one component within the system, will be caUed "system
consttaints", as opposed to "model consttaints", which can be handled intemally within a model. To keep the code gen­
eral, system consttaints are not automaticaUy estabUshed by some buUt-in procedure. Additionally, consttaints may
often be estabUshed in more than one way. For example, in this case, one might be able to estabUsh this power con­
straint by varying the pressure levels or by varying the mass flow rate. In any case, imposing die consttaint is not dif-
ficuU and amounts to adding an equation-solving task (see Section 4.2), where the consttaint equation is the system
power equal to 40 MW and the parameter to be varied must be defined by tiie user. In this case, we wiU take the pa­
rameter to be varied as the mass flow rate - g a s si,m. Adding this task to the input of the first example, gives the fol­
lowing:

modstack mods;
gas gasl=(id="THR-tH2"; t=300; p=l; m=l;};

cp cpl={pres=6.0; eff=0.88;);

ht htl={temp=1000;);
gt gtl=(pres=1.0; eff=0.84;};

task a;

while (a.c)
{vary(gasl.m, 1, 0.1, 100.);
gasl.c; cpl.c; htl.c; gtl.c;
cons(gasl.m, cpl.power.work+gtl.power.work-40e6);

}
gass.print; mods.print;

Here, die task added is denoted as a, and gas l .m (mass flow rate) is varied between 0.1 and 50.0 with an initial
value of 1. After the model calculational entries are caUed, die value of die power consumed by the compressor, which
is denoted as cp l .power .work , and die value of the power generated by die gas turbine, g t l . power .work , wiU be
known and die consttaint can tfien be specified. The net power produced is die sum of these power .work substiiic-

73

tures (remember that power.work is an algebraic quantity and hence wiU be negative for the compressor) Wien die
lasrhasTonverged!the consttaint wUl be equal to zero (to the default enor tolerance, since none was specified).

6.3 Gas Turbine System with Parameter Study
Continuing with the preceding example, one might desire a particular exit turbine temperature or some other con­

sttaint ^^esrproblems ^ e solved by sin^ply using additional v a r y and c o n s operators. Or one might want to op-
M z the system efficiency subject to various equality and inequality constraints. These problems aho are solved by
s Z l y using dditonal v a r y , i o n s , i c o n s , and m i n i operators as in the examples m Section 4 ^ . Here we add a
n « sweep to the prevtous problem. Suppose it is desired to look at the previous system for different heater exit
temZlmrerof say, 800,1000,1200, and 1400 K. This is accomplished by simply putting a f o r loop around the task
loop and the g a s s and mods print functions. The input in these case would be as follows:

modstack mods;

gas gasl=(id="THR-tH2"; t=300; p=l; m=l;);

cp cpl=(pres=6.0; eff=0.88;};

ht htl={temp=1000;};
gt gtl=(pres=1.0; eff=0.84;};

task a;
for (htl.temp=800; htl. temp<=1400; htl. temp-i-=200)

(while (a.c)
(vary(gasl.m, 1, 0.1, 100.);
gasl.c; cpl.c; htl.c; gtl.c;
cons(gasl.m, cpl .power .work-i-gtl .power .work-40e6) ;

}
gass.print; mods.print;

}

6.4 Space Propulsive System
Next we consider a somewhat more realistic example, a simple space propulsive system, a diagram of which is

shown in Fig. 1. System diagrams such as shown in die figure can be semi-automaticaUy generated dirough die use of
GCtool. First, we consider the system formulated without any consttaints.

In this example, a g a s t y p e flow is initialized by using an instance of die g a s model, which has been named
gas_h2. As a convention in naming the models, we wiU use the model class type, foUowed by an underscore and a
label. Although the flow being initialized is a g a s t y p e , as explained previously, tills really refers to the sti^cture of
the flow class type, not that the flow needs to be in the gas phase. In diis case, the g a s _ h 2 model parameters wiU be
defined to initialize a hydrogen flow witiiin tfie liquid region. This hydrogen flow is tiien passed through low- and
high-pressure pumps, denoted pump_lp and pump_hp. The flow dien passes through a heat exchanger hx_nz, rep­
resenting the nozzle cooling. Note, the cunent nozzle model does not include the provisions for a coolant flow; thus,
this heat exchanger is used to simulate these effects.

The flow is then spUt using sp_2 into a main flow and a secondary flow, which is further split using s p _ l . These
last two flows are then passed through two gas turbines, g t _ h p and g t _ l p , which are used to drive die low- and
high-pressure pumps. These gas turbine flows are then mixed together in mx_l and then mixed back into the main
flow in nix_2. The resulting flow is then passed through a heater model used to simulate a reactor, denoted as
h t _ r e a c and then through the hot side of the hx_nz model and out the main du^ster nozzle, n z _ l .

In formulating the inputs we will start with tfie model calls necessary to describe the system configuration. This
wiU be done exacdy like the simpler examples described above by simply listing the models in the order that they pro­
cess the g a s t y p e flows and using the secondary splitter and mixer functions where necessary. Note, depending on
which flows from the splitters are tteated as the primary flow and which are tteated as the spUt-off or secondary flow,
different system representations can be defined. Here we wUl assume that the primary flow from sp_2 passes through
s p _ l , and that the primary flow from s p _ l passes through the g t _ l p model. Thus, the system is described up to
the secondary function of the mx_l model by

74

g a s _ h 2 . c ; p u m p _ l p . c ; p u m p _ h p . c ; h x _ n z . c ; s p _ 2 . c ; s p _ l . c ; g t _ l p . c ; m x _ l . s ;

At diis point, die secondary function of the sp_2 model can be caUed to retiieve its spUt-off flow, which is then
processed into the secondary function of the mx_2 model using

sp_2 . s ; mx_2 . s ;

â s
HS

•• '
MX

1

/

PUMP

LP

GfT
LP

\

MX

2

1 •

HT
RE AC

FUHP
HP

'
GT

HP

—;r—^

SP

1

HX
NZ

—I

\

\

"
SP

2

NZ
1 ^

Fig. 1. Space Propulsive System

Then die secondary function of the s p _ l model can be called to retiieve its split-off flow. The rest of the models
can then be called in the order that they process the flows, as foUows:

s p _ l . s ; g t _ h p . c ; m x _ l . c ; m x _ 2 . c ; h t _ r e a c . c ; h x _ n z . h ; n z _ l . c ;

Note that here the mixer models wUl use the flows previously saved by their secondary functions. Also, note that
the hot side function is being called for the hx_nz model. The entire system configuration is thus represented by

g a s _ h 2 . c ; p u m p _ l p . c ; puinp_hp. c ; hx_nz . c ; sp_2 . c ; s p _ l . c ;
g t _ l p . c ; m x _ l . s ; s p _ 2 . s ; m x _ 2 . s ;
s p _ l . s ; g t _ h p . c ; m x _ l . c ; m x _ 2 . c ; h t _ r e a c . c ; h x _ n z . h ; n z _ l . c ;

For each of the models used within the system one will need to define an instance of the model and to assign the
appropriate parameter values. These are, of course, completely dependent on the problem. For example, the g a s _ h 2
model instance and its parameter values rrught be defined as follows:

g a s g a s _ h 2 = (i d = " T H R - t H 2 " ; t = 2 0 ; p = 1 . 2 9 ; m=7 .387 ; v = 2 0 0 ; } ;

Here we define the model with the name g a s _ h 2 and then assign its flow id parameter the value "THR-tH2".
The rest of the line then represents the chosen initial values for the temperature, pressure, mass flow rate, and velocity.
The other models used would need similar declarations and are shown in the final inputs to the problem. As we are
more concemed with showing how problems are set up, many of the input parameters are simply taken as their default
values, and are not representative of an actual space propulsion system.

The rest of the inputs to this problem is fonned by adding two additional fiinction caUs, one to print the gas flow
output and one to print the model parameter output. We also include in this example a call to the power stack print
function, p o w s . p r i n t . The final complete input for this problem is as follows:

75

modstack mods;
gas gas_h2 = (id="THR-tH2"; t=20; p=1.29; m=7.387, v=200;);

pump pump_lp = (eff=0.67; pres=7.9;);

pump pump_hp = {eff=0.81; pres=139.22;);

hx hx_nz = {t_cold=1050.0/1.8;);

sp sp_2 = (sr=0.3;};

sp sp_l = (sr=0.3;);

gt gt_lp = (eff=0.23; pres=85.91;);

gt gt_hp = (eff=0.75; pres=85.91;);

ht ht_reac = {temp=5274/l.8;);

nz n z _ l = (e f f = 0 . 8 5 ; p r e s = 0 . 1 ;) ;
mx mx_l , lTix_2 ;

g a s _ h 2 . c ; p u m p _ l p . c ; p u m p _ h p . c ; h x _ n z . c ; s p _ 2 . c ; s p _ l . c ;

g t _ l p . c ; m x _ l . s ; s p _ 2 . s ; m x _ 2 . s ; s p _ l . s ; g t _ h p . c ;
m x _ l . c ; m x _ 2 . c ; h t _ r e a c . c ; h x _ n z . h ; n z _ l . c ;
g a s s . p r i n t ; m o d s . p r i n t ; p o w s . p r i n t ;

The outputs for this example, shown in the Appendix, are the result of die g a s s . p r i n t , m o d s . p r i n t , and
p o w s . p r i n t function calls. The g a s s . p r i n t call displays the table of state points of exit flow from each model.
All units in this table are SI with the exception of that for pressure which is atmospheres. FoUowing the state-point
outputs are the parameter outputsfor individual models, which were generated by the m o d s . p r i n t call, FinaUy, the
table of model powers (input, loss, produced, and consumed) is generated by the p o w s , p r i n t function.

In looking at these outputs, one can see that if the pair of models g t _ l p and pump_lp were meant to form a
turbo-pump, then the power consumed by the pump would equal the power produced by the turbine, which is not the
case here. The same situation holds with the g t _ h p and pump_hp model pairs. Thus, U might be more appropriate
to consttain the power produced and power consumed in these two model pairs. This is only an equation-solving task,
similar to the second example. The first step is to determine what parameters could be varied to establish these con­
sttaints.

In general, many parameters can be varied within a system in order to establish consttaints. The only criterion is
that the consttaints be functionally dependent on the chosen parameters. In this problem the most obvious parameters
would be the pressure levels at the exit of the models concemed. For this problem, however, the pressure levels out of
the models represent the pressure leading to the reactor and the nozzle and, thus, are important parameters of the prob­
lem. It would be best to fix these at the appropriate design level and vary some other parameters.

Another set of parameters might be die split ratios at tfie two spUtters. 'Varying these spUt ratios alters the amounts
of mass fiow that can be directed to the two turbines generating more or less power. Using these spUt ratios, the v a r y
statements would then look like the following:

v a r y (s p _ 2 . s r , 0 . 3 , 0 . 1 , 0 . 9) ;
v a r y (s p _ l . s r , 0 . 3 , 0 . 1 , 0 . 9) ;

where the starting value, lower bound, and upper bound were taken as 0.3,0.1, and 0.9, respectively.

The consttaints can be taken as

cons (sp_2 . s r , g t _ l p . p o w e r . w o r k + p u m p _ l p . power .work) ;
cons (s p _ l . s r , g t _ h p . p o w e r . w o r k + p u m p _ h p . power .work) ;

Here the consttaint delimiters (the first argument) have been taken as the two spUt ratios and die acmal consttaint
expressions as the sum of the power . work variables for die respective models. This variable is algebraic, witii neg­
ative values meaning work consumed and positive values meaning work produced. Thus, the sum is used rather than
a difference to equate work consumed witfi work produced.

Including the declaration of the task and adding these v a r y and c o n s statements to a task loop around the model

caUs are all that needs to be done to establish these system consttaints. The new complete inputs are as follows:

mods tack mods;

g a s gas_h2 = (id="THR- tH2" ; t = 2 0 ; p = 1 . 2 9 ; m = 7 . 3 8 7 ; v = 2 0 0 ;) ;

76

hx
s p
s p

g t
g t
h t
nz
mx
t a sk

hx_nz
sp_2
sp_l
g t _ i p
gt_hp
h t_ reac
nz_l
mx_l, rn
a ;

pump pump_lp = (eff=0.67; pres=7.9;};

pump pump_hp = (eff=0.81; pres=139 . 22;);

{t_cold=1050.0/1.8;};

{sr=0.3;);

{sr=0.3;);

{eff=0.23; pres=85.91;};

(eff=0.75; pres=85.91;};

{temp=5274/1.8;};

(eff=0.85; pres=0.1;);

inx_2;

while (a.c)

(vary(sp_2.sr, 0.3, 0.1, 0.9);

vary(sp_l.sr, 0.3, 0.1, 0.9);

gas_h2.c; puinp_lp.c; pump_hp.c; hx_nz.c; sp_2.c; sp_l.c;

gt_lp.c; mx_l.s; sp_2.s; mx_2.s; sp_l.s; gt_hp.c;

cons (sp_2 . sr, gt_lp.power.work-t-pump_lp. power .work) ;

cons (sp_l. sr, gt_hp.power.work-(-pump_hp.power .work) ;

)
inx_l. c; mx_2 . c; ht_reac. c; hx_nz . h; nz_l. c;

gass.print; mods.print; pows.print;

Within these inputs, those models that appeared after the gas turbines which do not affect the consttaints were not
included within the task loop. This is only a computational performance issue, as all the models could be included if
desired. In fact the g a s _ h 2 , pump_lp , puinp_hp, and hx_nz models could be put before the loop, since varying
the split ratios wiU not affect any of their outputs. If that were done then, the system configuration and task loop would
look like the following:

gas_h2.c; pump_lp.c; pump_hp.c; hx_n2.c;

while (a.c)

i. c ;

0 . 3 ,
0 . 3 ,

pump_hp .c

0 . 1 , 0 . 9)
0 . 1 , 0 . 9)

(vary(sp_2 .sr,
vary(sp_l.sr,

sp_2.c; sp_l.c; gt_lp.c; mx_l.s; sp_2.s; mx_2.s; sp_l.s; gt_hp.c;

cons (sp_2 .sr, gt_lp.power.work-i-pump_lp.power .work) ;

cons(sp_l.sr, gt_hp.power.work-^pump_hp. power .work) ;

)
mx_l.c; inx_2.c; ht_reac. c; hx_nz.h; nz_l.c;

When a task loop, such as the above, is placed around only a part of the system configuration, as defined by the model
functional entiies, the flows that must exist on the stacks at the start of each iteration tiirough the task loop are cortecdy
set by the c function of the task model conttoUing the loop. Thus, in this example, the sp_2 .c, being the first model
diat is called within die loop, wiU always see the hx_nz .c model's flow on the stack even though die g t _ h p , c model
was the last model called during the previous iteration. In other words, as long as a task class is conttolling the loop,
the flow stacks wUl be conect This is not the case, for example, if one were to simply put an iterative loop around
some models using a f o r , w h i l e , or do loop.

The resulting output for this example is also shown in the Appendix. The only difference between this example
and die previous one is the inclusion of die task loop iterations and the resulting changes within the mass flow rates
through the system.

77

6.5 Coal-Fired Power Plant
This example involves a more realistic application for a coal-combustion steam power plant schematically rep­

resented in Fig. 2. This power generation system includes two physical consttaints, which wiU be discussed later.
First the model calls necessary to define the system configuration wiU be described.

HX
MR

i
*

GFtS
UAT

CB
GAS

HX
BOIL

SD
1

KX
FU

HX
SH

ST
HP

FH
HP

HX
RH

ST
LP

FH
LP

i—

PltlP
FU

HT
COND

MX
EXT

— O

Figure 2. Coal-Fired Power Plant.

An air flow is first generated using an instance of the gas model, g a s _ a i r . The air flow is then passed through
the cold side of an air heater, h x _ a i r , foUowed by a combustor, c b _ g a s , where the coal is combusted. The products
of combustion are then passed through the hot sides of three heat exchangers, denoted as h x _ b o i l , for the steam boU-
er, hx_sh, for the superheater, and hx_rh , for the reheater. The combustion gases are then retumed to tiie hot side
of the ak heater, h x _ a i r , before being exhausted from the system. The complete att and combustion gas cycle can
thus be modeled by the foUowing sequence of model calls.

g a s _ a i r . c ; h x _ a i r . c ; c b _ g a s . c ; h x _ b o i l . h ; h x _ s h . h ; h x _ r h . h ; h x _ a i r . h ;

For the water-steam cycle, the flow path actuaUy forms a closed loop. The method of handUng such a loop is to
"cut" the flow path at some point and initiate a flow at the cut point. Later, the flows entering and leaving that point
are iterated untU they are equal. To make this process easier, the g a s model, which is used to initiate the flow, has an
entry c y c l , which represents the "back door" to the model. The c y c l entry calculates the differences in the state vari­
ables between the flow entering the c y c l entry and that leaving the c entry. One can then vary parameters within the
system until these differences become zero. We wUl discuss how this is done in more detail later.

Additionally, one has to make a decision as to where to cut the flow path. To reduce the number of variables tfiat
one might have to iterate over, it is best to pick a point where some properties of the flow are known. For example,
after a pump, the flow's pressure is known or after a heat exchanger, the flow's temperature may be known. Altema­
tively, a flow path might be cut at a point to reduce the number of other closed loops over which additional variables
would need to be iterated. In the case of this steam plant, a number of closed loops actually exist due to the exttaction
of steam flow from the turbines leading into the feed water heaters. By cutting die flow path and initiating a water flow
upstteam of tiie steam boUer, however, only one cut point is needed. Thus, in this case we initiate a water flow at tills
point by using an instance of the gas model, ga s_wa t .

The water flow out of die g a s _ w a t model is passed through die cold side of the boiler, h x _ b o i l . c , foUowed
by the steam drum, s d _ l c . The water flow out of the steam drum is fed into the feed water mixer, mx_fw.s, and die
steam from the drum, generated by the s d _ l . s entiy, is passed through the cold side of the superheater, hx_sh,c ,
foUowed by the high-pressure steam turbine, s t _ h p . c. The main portion of tiie steam is dien passed through die
reheater, hx_rh,c , then to die low-pressure steam turbine, s t _ l p . c , followed by the steam condenser, h t_cond .c ,
and then to the secondary side of the steam exttaction mixture, mx_ex t . s . That part of the steam cycle is represented
as follows:

78

g a s _ w a t . c ; h x _ b o i l . c ; s d _ l . c ; rax_fw.s;

s d _ l . s ; h x _ s h . c ; s t _ h p . c ; h x _ r h . c ; s t _ l p . c ; h t _ c o n d . c ; m x _ e x t . s ;
At diis point, the secondary function of the high-pressure steam turbine model, s t _ h p , s , is caUed to retiieve

any exttaction steam, which is dien passed to the hot side of the high-pressure feed water heater, f h_hp.h. The output
flow from f h_hp.h, representing the drain cooler output, is then passed to the secondary side of the low-pressure feed
water heater, f h _ l p . s . Next the exttaction steam flow from the low-pressure steam turbine, s t _ l p , s , is fed into
the hot side of the low-pressure feed water heater, f h_ lp ,h , and then mixed with the condensate from the condenser
in mx_ext .c . The resulting feed water is then passed through the feed water pump, pump_f w.c. This part of the
steam cycle is represented as follows:

s t _ h p . s ; f h _ h p . h ; f h _ l p . s ; s t _ l p . s ; f h _ l p . h ; m x _ e x t . c ; puit ip_fw.c;
The water from the feed water pump is tiien passed through the cold sides of feed water heaters f h _ l p and

fw_hp , and dien through mx_fw.c, and finally into the "back door" c y c l entiy of die g a s _ w a t model, where the
water-steam cycle started. This part of the cycle is represented as follows:

f h _ l p . c ; f h _ h p . c ; mx_fw. c ; g a s _ w a t . c y c l ;

The rest of the inputs to this example is formed by adding four function calls, one to print tiie gas flow output one

to print the gas composition, one to print the model parameter output, and one to print the power input/output

The entire system configuration is, therefore, represented by die following sequence of calls to the different mod­
els.

For the air-gas cycle:

g a s _ a i r . c ; h x _ a i r . c ; c b _ g a s . c ; h x _ b o i l . h ; h x _ s h . h ; h x _ r h . h ; h x _ a i r . h ;

For the water-steam cycle:

g a s _ w a t . c ; h x _ b o i l . c ; s d _ l . c ; m x _ f w . s ;
s d _ l . s ; h x _ s h . c ; s t _ h p . c ; h x _ r h . c ; s t _ l p . c ; h t _ c o n d . c ; m x _ e x t . s ;
s t _ h p . s ; f h _ h p . h ; f h _ l p . s ; s t _ l p . s ; f h _ l p . h ; m x _ e x t . c ; pump_fw.c ;

f h _ l p . c ; f h _ h p . c ; mx_fw.c ; g a s _ w a t . c y c l ;

For the output:

m o d s . p r i n t ; g a s s . p r i n t ; g a s s . m p r i n t ; p o w s . p r i n t ;

As with the other examples, for each of the models used in the system, one will need to define an instance of the
model and to define the appropriate parameter values. For example, in the combustor model, c b _ g a s , the coal com­
position is defined, in weight fractions, as 0.7793 carbon (carb) , 0.054 hydrogen (h), 0.131 oxygen (o), 0.0073 sulfur
(s), and 0.0744 water (h2o). The lower heating value and the mass flow rate of fuel are also defined by using I h v
and mass . In the air flow initiator, the flow is identified as a "GAS" flow with a typical air composition, 79% nittogen
and 21% oxygen. For the water flow initiator, the flow is identified using "STM", followed by the appropriate values
for flow temperature, quality, pressure, mass flow rate, and velocity.

Two consttaints are imposed on this system. First, the exhaust flow temperature of the products of combustion
through the air heat exchanger is set to be 700 K. In general, many parameters can be varied within a system in order
to satisfy tills consttaint. The only criterion is tiiat the consttaint be functionally dependent on the chosen parameter.
In this problem, we take the parameter to be the combustor's (coal) mass flow rate, cb_gas .mass . The v a r y state­
ment, in this case would then look Uke the foUowing:

v a r y (c b _ g a s . m a s s , 1 5 , 1 2 , 2 5) ;

where the starting value, the lower bound, and upper bound are taken as 15,12, and 25, respectively. The consttaint

in this case is written as:

c o n s (c b _ g a s . m a s s , h x _ a i r . f I h . t - 7 0 0) ;

Here the consttaint delimiter has been taken as the combustor mass flow rate and the actual consttaint expression
as the difference between the temperature of the hot side of the air heat exchanger, h x _ a i r . f I h . t , and the required
temperature value of 700 K.

This task is achieved by including a definition of the task itself, here taken as b, and adding the v a r y and c o n s
statements to a task loop around the air-gas cycle models, as wiU be shown later. The d e l parameter for this t a s k
has been set to 0.01, rather than using the default value, as the larger value tends to converge faster for this problem,

79

The second constraint is for die water loop closure. Assuming for simplicity that there are negligible pressure
drops through the feed water heater, the pressure of the flow at the g a s _ w a t initiator will be the same as at die feed
water pump, which has been taken as 180 atm. Thus, die pressure of the initiated flow is known. However, the tem­
perature of the flow is not known; thus, closing the water loop requires iterating over the initiated water temperature.
It is better, however, to iterate over the value of the water's enthalpy, since enthalpy along with pressure will always
uniquely define die state of water (note that temperature and pressure are related to each other in the two-phase region
and, thus, are not independent variables). To do this without having to know reasonable enthalpy values, we use the
gas model's option of inputting the water quality. Thus, within the g a s _ w a t definition, we set t to be zero and then
vary gas_wat ,q in order to close the loop. Since the water should be subcooled at this point we take quality to be
between 0 and -2.5 starting at -0.5. The v a r y statement in this case would then look like the following:

v a r y (g a s _ w a t . q , - 0 . 5 , - 2 . 5 , 0 . 0) ;

The value of the enthalpy difference (i.e., the difference in the water enthalpy between the start and end of the
water-steam cycle) is contained within the variable g a s _ w a t . d . h, so the consttaint in this case can be written as:

c o n s (g a s _ w a t . q , g a s _ w a t . d . h) ;

Here again the constraint delimiter has been taken as the water quaUty.

This task is also achieved by including a definition of the task itself, here taken as a, and adding the v a r y and
cons statements to a task loop around the water-steam cycle models, as shown below.

Following all the steps discussed, the complete input to this example is as follows:

modstack mods={conf f ile="tmp/splant .conf"; rdatf ile="tmp/splant.rdat";);
gas gas_air={id="GAS"; t=300; p=1.0; m=206.6979; v=20.0;

comp[N21=0.79; comp[02]=0.21;);
cb cb_gas=(carb=0.7793; h=0.054; o=0.131; s=0.0073; h2o=0.0744;

lhv=3.214e7; mass=20.22;);
gas gas_wat={id="STM"; t=0.0; q=0.0; p=180; m=500; v=10;);
pump pump_fw={eff = 0 . 85; pres=180;);
sd sd_l;
mx mx_fw,mx_ext;
hx hx_boil=(q_cold=0.25;) ,

hx_sh=(t_cold=811;),

hx_rh={t_cold=811;),

hx_air={t_cold=600;);
gt st_hp=(eff=0.84; pres=50; ext=0.1;},

st_lp=(eff=0.86; pres=0.066; ext=0.1;};
fh fh_hp, fh_lp;

ht ht_cond=(temp=0.0; qual=0.0;};
task a, b={del=le-2;);

while (a.c)

{vary(gas_wat.q, -0.5, -2.5, 0.0);

gas_wat.c; hx_boil.c; sd_l.c; mx_fw.s;

sd_l.s; hx_sh.c; st_hp.c; hx_rh.c; st_lp.c; ht_cond.c; mx_ext.s;
st_hp.s; fh_hp.h; fh_lp.s; st_lp.s; fh_lp.h; mx_ext.c; pump_fw.c;
fh_lp.c; fh_hp.c; mx_fw.c; gas_wat.cycl;
cons(gas_wat.q, gas_wat.d.h);
)

while (b.c)

(vary(cb_gas.mass, 15,12,25);
gas_air.c; hx_air.c; cb_gas.c; hx_boil.h; hx_sh.h; hx_rh.h; hx_air.h;
cons(cb_gas.mass, hx_air.flh.t-700) •
}

80

mods.print; gass.print; gass.mprint; pows.print;
mods.rdat;

Also added to this example was a cad to the mods . r d a t function. As discussed within the mods t a c k class, this
function wUl store on the r d a t f i l e file the state-point information for displaying on the system diagrams (see Sec­
tion 3). Thus, the mods parameters now include the file names, con f f i l e , and the r d a t f i l e . The resulting output
for tills example is shown in Appendix. As with the previous example, many of the input parameters of die models
have simply been taken as thefr defaults, which are not representative of an actual coal-fired power plant. This results
in inaccurate values for many of the component size parameters, such as, heat exchanger surface areas or weights.
Again, our objective here is to show the steps in setting up problems.

6.6 PEM Fuel Cell System

In this example, we show a system making use of a PEM fuel ceU for vehicle power. This example requires some­
what more sophistication on the part of the user than die previous ones in that some understanding of fuel cell systems
is required. To make the system realistic, we designed it to ran on methanol, making use of a steam reformer, and to
operate at anode and cathode pressure levels of 2 atm and 3 atm, respectively. Thus, in addition to the pem model, a
reformer, a compressor, a gas turbine, and a number of heat exchanger models will also be needed. Also, PEM fuel
ceUs require tailoring of the input fuel flow to remove as much CO as possible; thus, the reformed fuel flow path wUl
need some additional mixing with water to promote the water/gas shift reaction and some mixing with fresh air to pro­
mote the preferential oxidation of any remaining CO before entering the fuel cell. The PEM cell also needs to be cooled
by a water flow that is supplied from a tank in which the water level is maintained. Thus, some scrabbing of the cathode
and anode flows will be needed, with the exttacted water being remixed with the coolant water loop. Additionally,
some conttol needs to be placed on the reformer burner so that appropriate reformate temperature (as well as reformer
catalyst temperatures) is maintained.

Figure 3 shows the PEM system configuration. The methanol fuel flow originates from a g a s model, labeled as
f u e l , is pumped to the anode pressure level (pump_f u e l) , pre-heated (hx_preh), and then split into two flows
(sp_f u e l) . The primary fuel flow goes into the reformer (form), and the secondary flow goes to a fiiel/air mixer
(mx_f u e l) for use in the reformer bumer. The refonnate from the reformer is then passed through a mixer
(mx_shi f) representing the shift converter, another mixer (mx_pr ox) representing the preferential oxidizer, and a
final flow cooler (h x _ c o o l) , and into the anode inlet entry of the PEM model, here labeled as p e f c . The cathode
flow starts from a g a s model, denoted as a i r , is then compressed (c p _ a i r) and spUt into two flows (s p _ a i r) ,
one for the reformer bumer and the other for the main cathode flow. This main cathode flow is fiirther spUt
(sp_prox) to generate a flow for use in the preferential oxidizer (mx_prox) , with the rest flowing into the cathode
side of the p e f c model.

The cathode exhaust from the fuel ceU is first scrabbed of any water (sp_h2 o) and then mixed with the reformer
burner exhaust (mx_cath) . The anode exhaust from the fuel cell is fust compressed to the cathode pressure level
(cp_anode) , and then split into two flows in s p _ a n o d e . The fust of these flows is mixed with additional ah
(mx_burn) and then with die extta fuel flow (mx_f u e l) for use in the reformer bumer. The rest of die flow from
s p _ a n o d e is then mixed with the cathode/reformer burner flow (mx_anode), before it enters the gas turbine (g t _ l)
and a final flow condenser (cond_ l) . The condensate flow from the condenser is later mixed (mx_cond) with the
coolant water loop.

The water loop starts at the water tank (w a t e r _ t a n k) , is pumped up to pressure (pump_water) , cools the
pef c, is mixed with water scrubbed from the cathode exhaust (mx_h2o), and is spUt (sp_wat) into two flows. The
flrst of these is further split (s p _ s h i f) to provide process water to tiie shift converter (iitx_shi f) and the secondary
entiy of the reformer (form). In forming the inputs to the system, dus water flow wUl be needed before processing
die fuel flow through the reformer; thus, the water loop is actually cut before die s p _ s h i f model using another g a s
model labeled as wa t . This water loop wiU then be closed by die appropriate system consttaints. The rest of tfie water
from tfie s p _ w a t model is used on die hot side of the fuel preheater (hx_preh) , passed dirough die main heat rejec­
tion radiator (h x _ r e j) , mixed with any condensate from the anode exhaust stteam (nix_cond), and finally, reenters
the water tank.

The only other components shown in the diagram are the coolant flows for die condenser, the main heat-rejection
radiator, and the main-air compressor intercooler. Each of these minor flows is an ah flow initiated using a g a s model
and then compressed using a cp model labeled as a fan.

HK
REJ

,

/
HEJ REJ

AIR

^ 1

lUlK
COMD

PUMP
FUEL

FUEL

? \ tsv \

HX
PREH

•

"HFUEL »— 1 1

SP
FUEL

CP
AIR

FAN
INT

AIR
INT

SP
AIR

1 '

MX
BURN

/ /
/

FORM

.

WATER
TANK

MX
SHIP

SHIP

PUMP
WATER

/
MX

PROX

WAT

7
^ SP

PROX

HX

coa

SP
WAT

,

4 r
PEFG

7

\

AIR
COND

MX
CATH

* SP
H20

L J r

MX
H 2 0

SP
ANODE

1

MX
ANODE

CP
ANODE

FAN
COND

QT
1

X ••
COND

/

Fig. 3. PEM Fuel CeU System

In forming the system inputs, one starts with a component that generates a flow, following the flow path through
those components processing this flow until a component is reached that terminates the flow. This is repeated for all
flows, taking into account that some component functions need to be called before others, such as the mixer's second­
ary function before the mixer's calculational function. Using these mles, one can represent the above system config­
uration as follows:

a i r . c ; c p _ a i r . c ; s p _ a i r . c ; s p _ p r o x . c ; i n x _ p r o x . s ;
w a t . c ; s p _ s h i f . c ; f o r m . s ;
f u e l . c ; p u m p _ f u e l . c ; h x _ p r e h . c ; s p _ f u e l . c ; f o r m . c ; m x _ s h i f . s ;
s p _ s h i f . s ; m x _ s h i f . c ; m x _ p r o x . c ; h x _ c o o l . h ; p e f c . a i n ;
s p _ p r o x . s ; p e f c . c ; s p _ h 2 o . c ; m x _ c a t h . s ;
sp_a i r . s ; iTtx_burn. s ;
s p _ f u e l . s ; m x _ f u e l . s ;

p e f c . a ; c p _ a n o d e . c ; s p _ a n o d e . c ; m x _ b u r n . c ; m x _ f u e l . c ;
f o r m . h ; i n x _ c a t h . c ; mx_anode . s ;

s p _ a n o d e . s ; m x _ a n o d e . c ; g t _ l . c ; c o n d _ l . c ;
sp_h2 o . s ; h2 o . c o n t ; mx_h2 o . s ;

w a t e r _ t a n k . c ; p u m p _ w a t e r . c ; p e f c . c o o l ; m x _ h 2 o . c ;
h x _ p r e h . h ; h x _ r e j . h ; m x _ c o n d . s ;

c o n d _ l . s ; rax_cond.c; w a t e r _ t a n k . c y c l ;
s p _ w a t . s ; h x _ c o o l . c ; w a t . c y c l ;
s i r - i n t . c ; f a n _ i n t . c ; c p _ a i r . c o o l ;
a i r _ c o n d . c ; f a n _ c o n d . c ; c o n d _ l . c o o l ;
a i r _ r e j . c ; f a n _ r e j . c ; h x _ r e j . c ;

In the above each non-indented Une represents one flow from its origin to its termination as defined by a model
function not generating an output flow (die two indented Unes are continuations of tiie previous Unes). Thus, most of
die lines start with eidier a g a s model or a secondary entiy of a s p model, and many of die lines end widi a secondary

82

entty of a mx model. The only exception for initiating flows is die c o n d _ l .s function, which originates the conden­
sate flow leaving the condenser.

As indicated above, the coolant flow loop was cut at die wa t model, and dius, some system consttaints will need
to be applied to form the loop closure. Additionally, the flows of water into the w a t e r _ t a n k model also form a loop
which wiU requhe some closure. Starting widi the water loop beginning and ending at die wa t model, die only vari­
ables that need to be matched are the mass flow rate and temperature. The pressure wUl be whatever pressure the water
pump has taken die flow to, neglecting the pressure drops through the fuel cell. Thus, one could vary the mass flow
rate and temperature (or better yet enthalpy) out of die wa t . c function until they are equal to tiiose entering die
w a t . c y c l function. This wiU be done for the endialpy using the g a s model's option of specifying the flow's quality
to define the model's exiting enthalpy. Thus, for the first consttaint we have

v a r y (w a t . q , 0 . 6 , - 0 . 2 , 1 . 5) ;
c o n s (w a t . q , w a t . d . h) ;

For the mass flow rate, we can do something more direct. The mass flow rate generated by the wa t model is used
to supply process water to the reformer and the shift converter. Given a fuel flow rate, the amount of process water
sufficient to provide the appropriate stoichiometiy for these processes can be calculated once, and the w a t . m param­
eter assigned this value. Then, since the sp_wat ,c function is generating the flow that enters the w a t , c y c l function,
we simply define the split ratio to give the flow rate

s p _ w a t . s r = w a t .m/mx_h2o. f 1 .m;

where mx_h2 o.fl .mis the flow rate into the splitter. If this statement is placed in the inputs after die mx_h2 o. c func­
tion and before the sp_wa t . c function, then the mass flow rates wiU be closed without use of the v a r y and c o n s
functions. The actual value assigned to the w a t ,m parameter is, of course, dependent on how much process water one
desires to include. The methanol reformer model does not specify this but generates outputs based on equiUbrium
chemistry and thermodynamics of the amounts of flows entering it. Generally, one uses 30%-50% excess water over
fuel in a methanol/steam reforming process. Thus, if m r a t e is the molar flow rate of fuel, then the value of wat.m
could be written as

w a t . m = l . 3 * m r a t e * 1 8 . 0 1 5 * (l - s p _ f u e l . s r) / (l - s p _ s h i f . s r) ;

taking into account that not aU of the fiiel is used in the reformer and not aU of the water from the wa t model is used
in the reformer. If this appears complicated, one could add the v a r y / c o n s functions to close the water mass flows
and then add another v a r y / c o n s , probably varying s p _ w a t . s r to consttain the appropriate process water stoichi­
ometry.

The loop closure on the water tank also requires that the mass flow rates and temperatures be matched. However,
the amount of mass flow rate within the whole water loop is really not defined by the loop closure. One could equally
have loop closure for a large mass flow rate as for a smaU rate. Thus, the flow rate needs to be set by some other criteria.
Since the water loop cools the fuel ceU, we chose to vary the water mass flow rate such that the exit coolant flow from
the ceU is 5 K less than the ceU temperature, which is taken as 353 K. Thus,

v a r y (w a t e r _ t a n k . m , 1 . 1 , 0 . 0 5 , 2 . 0) ;
c o n s (w a t e r _ t a n k . m , p e f c . f l c o o l . t - 3 4 8) ;

Here, the starting value, lowe rbound, and upper bound are estimated and might have to be readjusted later to obtain a
converged solution. One still needs to close the loop in terms of the temperature. Since the flows entering the tank
come from a nuxing of tfie condensate from the c o n d _ l model and from the h x _ r e j .h function, both of which have
model parameters that permit specifying their exit temperatures, we chose to set these exit temperatures to the
w a t e r _ t a n k . t a s f o l l o w s :

h x _ r e j . t _ h o t = w a t e r _ t a n k . t ;
c o n d _ l . t e x i t = w a t e r _ t a n k . t ;

This wUl automatically close the loop in terms of temperature matching. However, even though die water mass flow
rates have been set to a level for appropriate cooUng of the fuel cell, it may still not be the case that the water entering
the water tank is equal to that leaving. This is due to some of the coolant water being used as process water. Thus, one
uses the condenser and the cathode scrabber to recover diat process water. The amount that is recovered, however, wiU
depend on the condenser's temperature. Thus, in order to ensure a closure on the mass flow rate, we vary the water
tank's (and hence, condenser's) temperature,

v a r y (w a t e r _ t a n k . t , 3 2 5 , 3 0 5 , 3 4 0) ;

83

cons(water_tank. t , water_tank.d.m) ;
The complete input for this problem with typical values for many of the input model parameters is as follows:

modstack mods;

gas air=(id="GAS"; t=300; p=1.0; m=4.989e-3*28.0; v=20.0;

comp [021=0. 21; comp [tJ2] =0 . 79; humid=0.5;};

gas fuel=(id="THR-CH40"; t=300.0; p=1.0; m=0.33e-3*32.042; v=20.0;
comp[CH30H]=1.0; frozen=l;};

gas air_cond=(id="GAS"; t=300; p=1.0; m=1.0; v=5.0;
comp[02]=0.21; comp[N2]=0.79; humid=0.5;);

gas air_rej=(id="GAS"; t=300; p=1.0; m=5.0; v=5.0;

comp[02]=0.21; comp[N2]=0.79; humid=0.5;);
gas air_int={id="GAS"; t=300; p=1.0; m=1.0; v=5.0;

comp[O2]=0.21; comp[N2]=0.79; huraid=0.5;);
pump pump_fuel={pres=3.0; eff=0.75;);
pump pump_water=(pres=2.0; eff=0.75;);
gas wat={id="STM"; t=0.0; q=0.45; p=2.0; m=0.4e-3*18; v=5.0;

comp[H20]=1.0;);
gas water_tank={id="STM"; t=323; p=1.0; m=0.627; v=5.0;

comp[H20]=1.0;};
gas h2o=(id="STM"; comp[H20]=1.0;);
hx hx_preh=(t_cold=343; ufc=30; ufh=50; thickwall=le-4;);
hx hx_rej={t_hot=323; ufc=30; ufh=50; thickwall=le-4;);
hx hx_cool={t_hot=353; ufc=30; ufh=50; thickwall=le-4;};
sp sp_air=(sr=1.333/5 .0;);
sp sp_prox=(sr=l.0-0.0 63/3.656;);
sp sp_wat;

sp sp_shif={sr=0.0256/1.0256;);
sp sp_fuel=(sr=0.1;};
sp sp_anode={sr=0.0;};
sp sp_h2o=(sr=-l; ssr[H20c]=1.0;};
mx mx_burn, mx_fuel, mx_cath, mx_shif, mx_prox, mx_cond, mx_anode,

mx_h2o;
cond cond_l={texit=323.0; u=30.0; thick=5e-4;);
gt gt_l=(mode="d"; pres=1.0; eff=0.80;);
cp cp_air=(mode="d"; pres=3.0; eff=0.80; nstages=2;};
cp fan_cond={pres=1.005; eff=0.80;);
cp fan_int=(pres=1.005; eff=0.80;};
cp fan_rej=(pres=1.005; eff=0.80;);
cp cp_anode=(pres=3.0; eff=0.80;);
reform form=(texit=473.15;};
pem pefc=(mode="d"; option='t'; curden=0.575; celltemp=353;

fuelutil=0.85;);
task task_l=(acc=le-3; prt=2; del=-le-5; maxit=20;);

gass.noform[CH4]=1; gass.noform[CH30H]=1; gass.noform[C8H18]=1;

while (task_l.c)

(vary(wat.q,0.6,-0.20,1.5);

vary(water_tank.m, 1.1, 0.05,2.0);

vary(water_tank.t, 325, 305, 340);

84

fuel.m=0.33e-3*32.042;

air.m=5.0e-3*28.0;

wat.m=0.33e-3*l.3*18.0153*(l-sp_fuel.sr)/(1.0-sp_shif.sr) ;
cond_l.texit=water_tank.t;
hx_rej.t_hot=water_tank.t;

air.c; cp_air.c; sp_air.c;

sp_prox.c; mx_prox.s;

wat.c; sp_shi f.c; form.s;

fuel.c; pump_fuel.c; hx_preh.c; sp_fuel.c; form.c; mx_shif.s;

sp_shif.s; mx_shif.c; mx_prox.c; hx_cool.h; pefc.ain;

sp_prox.s; pefc.c; sp_h2o.c; mx_cath.s;

sp_air.s; inx_burn.s;

sp_fuel.s; mx_fuel.s;

pefc.a; cp_anode.c;

sp_anode.c; mx__burn.c; mx_fuel.c;

form.h; mx_cath.c; mx_anode.s;

sp_anode.s; mx_anode.c; gt_l.c; cond_l.c;

sp_h2o.s; h2o.cont; mx_h2o.s;

water_tank.c; pump_water.c; pefc.cool; mx_h2o.c;

sp_wat .sr=wat.m/mx_h2o. fl.m; sp_wat .c;

hx_preh.h; hx_rej.h; mx_cond.s;

cond_l.s; mx_cond.c; water_tank.cycl;

sp_wat.s; hx_cool.c; wat.cycl;

air_int.c; fan_int.c; cp_air.cool;

air_cond.c; fan_cond.c; cond_l.cool;

air_rej.c; fan_rej.c; hx_rej.c;

pows. c;

cons (wat .q,wat .d.h/wat. f 1 .h) ;

cons(water_tank.m, pefc.flcool.t-348.0);

cons(water_tank.t, water_tank.d.m);

}

mods.print; gass.print; gass.mprint; pows.print;

In these inputs we have also turned off the formation of methane and methanol within the gas property code. This
was done with the gass . nof orm[CH4]=gass . nof orm[CH30H]=gass . nof orm[C8H18]=l line. The reason
for this step is that one would expect that these species would not form due to the slow reaction kinetics, but would
thermodynamically form from equUibrium chemistry alone, which is what the gas property code employs. Also we
have defined the amount of fuel and air as expressions within the task loop in terms of molar flow rate and molecular
weights. The outputs generated by the above inputs are given in Appendix.

85

7.0 Graphics
The graphics cunendy available within GCtool are simple but are sufficient to generate reasonable looking two-

and three-dimensional plots.

7.1 Two-dimensional Plot (plot) IModel Class
Two-dimensional plots of user-selected independent (x values) and dependent (y values) variables are generated

by using a model class denoted as p l o t . For each plot desired, an instance of diis plot class should be defined. When
flie plot is generated, a new window wUl pop open on the screen to display die curves. At present, up to eight curves
can be generated widun each plot.

The variables that can be defined for the plot model are as follows:

Character stiing that is up to 256 characters long, representing the title to the plot. In­
put. For each occunence of '\n' within the tide stiing, a new line wiU be generated
within the title. The title Unes are centered above the plot. The default font used on
the plots is Helvetica-Bold, The default plot window when opened is designed to ac­
commodate only one line of tide, the window wiU need to be resized to see all the tide
lines, if more than one.
Point size for the tide characters (14). Input,
Point size used for the axis labels and legends (12), Input.
Height of the plot window when first popped open (4.5 inches). Input.
Width of the plot window when first popped open (5.0 inches). Input
Width of the plot area in inches (3.5), Input.
Height of the plot area in inches (2.5). Input.

Character string indicating the type of scales to be used on the plot. At present, the fol­
lowing values are recognized: "Unear" for both x- and y-axis being Unear scales,
"xlog" for die X-axis being a log scale, "ylog" for die y-axis being a log scale, and "lo-
glog" for both axes being log scales.
Character stting representing the x-axis label (""). Input.
Lower bound of the independent variables (0.0). Input.
Upper bound of the independent variables (1.0). Input.

Increment to be used for labeled x-axis values (0.2). Input. The value x i n c is only
used for Unear scale plots. For the log scale modes, only the xmin and xmax values
are used to detennine the scale, and in this case xmin should not be zero.
X position in inches from the lower left-hand comer of the plot window (1.0). Input.
Note that this value is increased by 1.0 inch when the print menu button is pressed for
producing plots on the printer The default values for x p o s and y p o s were chosen so
that the initial plot window wUl show a complete plot when initially popped open with­
out too much empty space within the window.
Number of tick marks between x increment values (5). Input. For log scales this value
is ignored as the tick marks are calculated to represent the nonlinear log scale.
Location in inches from the origin where the left side of the legend is to appear (4.0).
Input. The legend location defaults to the right side of the plot. Initially, when the plot
window opens, the legend may be too far to die right to appear within die window. The
window can be easUy resized to see die legend. At the time the window is opened, it
is not known whether or not the plot wUl actually have a legend; thus, tiie plot window
has been kept small in order to accommodate just die plot.
X location in inches from the origin where a character stiing note is to be written.
Character stting representing the y-axis label (""). Input.
Lower bound of the dependent variables (0.0). Input.
Upper bound of die dependent variables (1.0). Input.

title[256] •

titleps -

labps-

hid-

wid-

width-

hiddi-

mode[8] -

xlab[48] -

xmin-

xmax-

xinc -

xpos-

xleg-

xnote -

ylab[48] -

ymin-

ymax-

yinc - Increment to be used for the labeled y-axis values (0,2). Input, The same comments
made about the x-axis concerning log scales are also tme for the y-axis,

ypos - y position in inches from the lower left-hand corner of the plot window (0,75), Input.
Like the x p o s value, this too is increased by an inch when the print menu button is
pressed.

ytic - Number of tick marks between y increment values (5). Input.

yleg - Location in inches from the origin where the top side of die legend is to appear (1.75).
Input.

ynote - y location in inches from the origin where a character stting note is to be written.

grid - Flag indicating whetiier or not a background grid should be displayed on the plot. One
turns on the grid and zero turns U off (1). Input.

rot - Angle of rotation in degrees in die counterclockwise direction that the entire plot will
make with the horizontal (0.0). This parameter is only effective for plots when printed
on the printer.

selfscale - Flag indicating whether or not the plot should make use of self-scaling (1). See the dis­
cussion on self-scaUng below. Input.

leg[8][32] - Character sttings used as the legend for each curve on the plot.

note[1024] - Character stting value used to display a note on the plot.

The data for each plot are obtained by using the c function for the model. This function requires three arguments
consisting of the curve number from 0 to 7, representing one of up to eight curves on each plot and the x,y pairs of data
to be plotted. Thus, one would write

p l o t _ l . c (0 , x , y) ;

to plot the x,y pair in the 0-di curve widiin p l o t _ l . The plots generated use sttaight line segments between the plotted
points. Multiple curves can be generated by extending the input anay with additional curve numbers, and x,y pairs as
follows:

p l o t _ l . c (0 , x , y , l , x , z , 2 , x , t) ;

To provide the legends for each curve, the l e g anay can be assigned character string values representing the leg­
end for each curve within the plot. The legend character sttings are preceded by a short length of the type of Une (solid,
dash, etc.) used to represent the curve. Each curve, by default, has a slightly different type of line. The location of the
legend can be adjusted by using the x l e g and y l e g values.

The note capability was provided so that brief, but possibly multi-Une, notes could be written somewhere on the
plot. The parameter n o t e takes a single character string representing the note to be displayed. As with the plot's tide
string, a new line is generated for each occunence of the '\n' character within the string. The upper left corner of the
note is at the location (x n o t e , y n o t e) .

At present, there is a little delay between popping open a window and continuing the execution of the GC input.
Thus, since the act of popping open a window may take some time, it is possible for very simple problems that the
entire GC input may have been executed before the plot window has been opened. No data are lost in this case, as the
data going to the plot window are stored and simply plotted when the window becomes open. At present, only 400
x,y pairs are stored per curve. A check is made when doing the plotting that the new x,y pah is at least one pixel dif­
ferent from the previous x,y pair. Thus, 400 values are usuaUy sufflcient for most plots. Data are also properly stored
if a plot window is closed. If damage has been done to the plot that does not get automatically repaired, then a sUght
resizing of the window will usually fix the damage.

As die plot windows are based on die OpenLook windows, these plot windows can be moved, resized, closed, and
opened. The resizing, however, does not resize the plot itself The plot can be resized by changing the plot parameters,
w i d t h and h i d t h , and then using the a x i s function. Any damage to the window is automatically repafred from the
data stored for the plot. Plot windows wiU not be terminated until the GCtool session is terminated or the user expUcitly
terminates the plot by using its window frame menu item, q u i t .

The foUowing GC input is an example of the use of the plot class:

plot a={title="a long title \nwith a second line \nand a third",
xlab="x label", ylab="y", xmax=2.0, xinc=0.4, ymax=200,

87

file:///nwith
file:///nand

yinc=50);

plot b={title="b title", xlab="x label", ylab="y label", mode="ylog",

xmax=2, xinc=0.4, ymin=1.0, ymax=10000, yinc=1000

leg={"curve 1", "curve 2"));

plot c={title="c title", xlab="x stuff", ylab="y stuff",

xmin=l, xmax=100, ymin=1.0, ymax=1000, mode="loglog");

double x,y,z;

for (x=0.0; x<=2.0; x+=0.1)

{y=10*exp(x+l); z=1000*x*exp(-x)+1.0;

a.c(0,x,y); b.c(0,x,15*pow{x+l.0,6.0)); b.c(l,x,z);

)
for (x=1.0; x<=100; x-^=5.0)

c.c(0,x,5*x);

(x + 1)
Here three plot windows wUl be popped open. Window "a" is a plot of 10 e ' versus x from 0 to 2.0. In

window "b" two curves are generated on a semi-log plot, the first of 15(x + 1) versus x and the second of

1 0 0 0 x e " + 1 versus X, In window "c" a plot of 5x versus x is plotted on a log-log scale. The "b" plot window is
shown below.

Besides the c functions, there is an a x i s function that can redraw the plot. This function is useful as new values
for the plots parameters can be defined, and then when this function is caUed, the plots will reflect these new parameter
values. For example, after executing the above input, one could change the scale values or even go from Unear to
log-log and then replot the data without remnning the example.

â

10*-

in°

f in'
> •

in<

1(1°

K

btitli

ODD 040 030 120 IJGO SDO
xbtel

The background of the plot window has one menu item when the right mouse button is pressed. This item is la­
beled "print" and wiU send die plot to the laser printer and generate a file labeled as die plot name concatenated with
".tinp". This file contains tiie postscript code for die plot and can be manually edited or inserted into otiier documents.

To generate plots without too much input being required for their setup, a self-scale option is also provided. This
option works in several different ways, depending on the value of die s e l f s c a l e parameter and only provides
self-scaling for linear axis. A zero value tums off all self-scaling. Witii a non-zero value for s e l f s c a l e , tiie mini­
mum, increment, and maximum axis parameters are detennined as tiie plot data are obtiuned.

The value of the s e l f s c a l e parameter determines how and also when die plot axis are changed. As die data for
the plot are obtained, the plot may need to replot all the previous data with new scales to accommodate die incoming
new data. To prevent this replotting for each new data point t h e s e l f s c a l e parameter can be given a negative val­
ue. After aU the datii have been obtained, s e l f s c a l e can dien be set to a positive value and replotted by caUing die
a x i s function.

88

The absolute value of the s e l f s c a l e parameter is used to determine how the bounds and increments are to be
calculated. A s e l f s c a l e value of I (or-1) indicates that any input bounds are to be used if possible. Note tfiat this
does not preclude an automatic readjusting of these bounds to accommodate a reasonable increment value, even if the
data do not exceed the specified bounds. For example, if the lower bound were set at -1 and the upper at +1 but the
incoming data to be plotted went from 0 to 50, the lower bound would also be adjusted lower so that each increment
would be the same. Of course, if no bounds were specified, the default values wiU be die starting point for the bounds,
A s e l f s c a l e value of 2 (or -2) wUl basically set all of the initial bounds to zero, ignoring any input values. This
has the effect tiiat if aU the data are of the same sign, zero will be one of the bounds. For many plots this is often what
is desired; however, if all the data are between, say, 800 and 900, then one may want to give the axis a lower bound of
800 and use s e l f s c a l e of one.

7.2 Three-dimensional Plot (plotS) Model Class

T h e p l o t 3 model is used to generate three-dimensional plots within a pop-up window of a function z=z (x , y) .
The model has two functional entries. The first denoted as d a t a is used to store the data for the surface. This entry
is called first with two arguments, nx and ny (in double precision), representing the number of x intervals and the
number of y intervals. The number of data points along each axis is one more than the number of intervals. The data
are assumed to be equally spaced along each axis from xmin to xmax and ymin to ymax. The subsequent calls to
d a t a require three arguments, i , j , and Zi ^, where i andj are indices along the x andy axis fromO tonx and 0 to
ny, respectively. Thus, the d a t a entry is called many times. Once the data have been defined, the second entry, c, is
called to actuaUy make the plot. As with the two-dimensional plots, a number of additional parameters can be assigned
to provide the plot size and window size, as well as to rotate and tilt the plot to any viewpoint

The variables that can be defined for the p l o t 3 model are as follows:

title[256] -

tifleps -

labps -

hid-

wid-

width-

hiddi-

xlab[48]-

xnun-

xmax -

xnote -

ylab[48] -

ymin-

ymax-

zlab[48] -

zmin -

zmax-

rota-

tilt-

Character stting that is up to 256 characters long, representing the titie to the plot. In­
put For each occunence of '\n' within the titie string a new line wdl be generated
within the title. The tide lines are centered above the plot. The default font used on
the plots is Helvetica-Bold. The defauU plot window when opened is designed to ac­
commodate only one line of title; the window will need to be resized to see all the title
lines, if more than one.
Point size for the tide characters (14). Input.
Point size used for any notes (12), Input

Height of the plot window when first popped open (4,5 inches). Input

Width of the plot window when first popped open (5.0 inches). Input.

Width of the plot area in inches (4.0), Input.

Height of the plot area in inches (4.0), Input.

Character stiing giving the x-axis label ("X"). Input,

Lower bound of the x variables (0.0). Input,

Upper bound of the x variables (1,0), Input,

X location in inches from the origin where a character stiing note is to be written (1.0).

Input

Character stting giving the y-axis label ("Y"). Input.

Lower bound of the y variables (0.0). Input.

Upper bound of the y variables (1.0). Input.

Character stting giving the z-axis label ("Z"). Input

Lower bound of the z variable. This is obtained from the input data.

Upper bound of the z variable.
Angle of rotation in degrees in tiie counterclockwise direction that tiie entire plot wiU
make widi die x-axis (45.0). A zero angle places the x-axis directly to die left in tfie
plot.
Angle of rotation in degrees that the view point makes with the horizontal plane (30.0).
Input. A zero angle places the view point in the x-y axis plane.

Number of x intervals. The x values are equally spaced between xmin and xmax.
Number of y intervals, the y values are equally spaced between ymin and ymax.
Character stting value used to display a note on the plot (""). Input
Flag to remove (1) all hidden lines from the surface or keep (0) the hidden lines (1).
Input.

The number of lines in the x-direction used to display the surface (20). Input.
The number of Unes in the y-direction used to display the surface (20). Input. If both
x l i n e s and y l i n e s are zero, the surface will not be displayed.
Increment between data values within the x direction.

Increment between data values within the y direction. Note that after the d a t a func­
tion has been called to convey the number of x and y intervals, dx and dy are defined
by using the cunent setting for xmin, xmax, ymin, and ymax.

As an example of a three-dimensional plot, we present the following:

plot3 plot3_l={xmin=-2, xmax=2, ymin=-2, ymax=2, tilt=20, rota=30,

xlines=20, ylines=20};
double i,j,x,y,z;

nx-

ny-

note[1024]

hide-

xlines -

ylines -

dx-

dy-

p l o t 3 _ l . d a t a (1 0 , 1 0) ;
f o r (i = 0; i < = 1 0 ; i+-i-)

{x=plot3_l .xmin+i*plot3_l. dx;
for (j=0; j<=10; j++)

(y=plot3_l.ymin+j *plot3_l.
z=exp (- (x*x+y*y) /3) ;
plot3_l.data(i, j , z) ;
)

)
plot3_l.c;

This wUl generate a plot window as foUows:

dy ;

â plot3_1

Z

-I

^ S . Y

90

8.0 Interfacing with Precompiled Models

8.1 Introduction

For fast execution of a system problem, it is best to precompile the component models using a conventional C
compUer rather than to interpret them. This requires linking the models to the GC interpreter. For GC this is quite
simple and consists of defining an i n i t function for the model, including the i n i t function in a special c l i n k e r
procedure, and adding the model's data sttucture (enhance with size and off-set information) to the usual header file
included with the GC inputs. The details of the model interfacing will be shown by way of an example.

8.2 l\/Iodel Structures and Functions

A model, or more specificaUy, a model class, in GC is nothing more than C data stmcture and a collection of func­
tions. As an example of a model, suppose that we have a generic heat exchanger that includes two functions that pro­
cess the hot and cold fluid flows of the model. These functions wUl be denoted as h() and c(), respectively. The
structure of the model might be as follows (here we wiU not actually show the coding of the model equations, only the
overall stiiicture):

s t r u c t hx
(char name[16],config[16];
double heat,... ;
CFtMC init, h, c;
};

int hx_c(z)
struct hx *z;
{)

int hx_h(z)
struct hx *z;
(...)

int hx_init(args)
char *args[];
(struct hx *z;
z=(struct hx*)args[0];
z->c=hx_c; z->h=hx_h;
z->heat=0.0;

s t r c p y (z - > c o n f i g , " c ; l 0,p h ; l 0 , p ") ;
s t r c p y (z - > n a m e , a r g s [1]) ;
r e t u r n s i zeof *z;

)
In addition to the flow processing entties, a model must also have an i n i t function to conectly interface with

GC, The i n i t function is used to define initial values for the elements of die model's datii stiucture. The functions of
the model are referred to widun the data stiucture as pointers by using the CFUNC type. Note tiiat tiie CFUNC type
was defined as a pointer to a function returning an integer; thus, all of the model functions tiiat are to be called directly
from widiin the GC inputs need to be of that type. These pointers are used to locate tfie fiinctions when referted to
within tiie GC inputs and must be assigned values within the i n i t function. Thus, the C functions that are executed
when the hx members hx.c and hx.h are caUed within the GC inputs are defined within die h x _ i n i t fiinction as
hx_c and hx_h, respectively. Note that the actual function names do not have to match the name referted to by the
CFUNC type, but it is useful to have some convention; for example, we always name the function as the model name,
followed by an '_' and the function name defined within the model stiucture.

As explained in Section 2, such member functions always take as dieir fust argument a pointer to die stiucture of
which they are a member. In the case of die i n i t member function, diis pointer is die fttst element of an a rgs anay.
The second element of die a rgs anay is a character string containing tfie name of the stmcture as used within the GC
inputs. GeneraUy, this second argument is stored within a char anay within the stiucture (name in this example) and

can be used for labelling the model variables during printout. Besides assigning the model function pointers to then-
appropriate functions, the i n i t function should also return the size of the model's stiucture. These two tilings are
technically die only requirements for the i n i t function, although it is useful to include the initialization of any other
model parameters, such as the initialization of tiie name parameter, tiie h e a t parameter, and the c o n f i g parameter
in the above example. The conf i g parameter wiU be discussed below.

While this simple example uses only two member functions (not counting the i n i t function), a model may have
any number of additional member functions. Each should be defined within the model's structure as a CFUNC type
and given a value within the i n i t function if it is to be called from the GC interpreter. For example, most models will
have a p r i n t entiy for printing out the model parameters. When models have a function defined as p r i n t , they will
automatically be called whenever the m o d s . p r i n t function is caUed, Additionally, some models may need to allocate
additional variables (which should be referenced by pointers within the model stracture). These variables would need
to be freed when the model is deleted by the GC interpreter. This can be accompUshed by defining a termination func­
tion denoted as te rm. This function, if it exists for a model, is automatically called by the GC interpreter just before
it deletes the model stiucture. This function only requires as an argument the pointer to the model structure. Note diat
the model stiucture itself is botii aUocated and freed by the GC interpreter and never within one of the model's func­
tions,

8.3 Linking C Functions to the GC Interpreter

The linking of the model function names and the actual procedure that is called is accomplished within the mod­
el's i n i t function, as discussed above. However, the model i n i t functions themselves must be located so that they
may be called to perform this linking process. Additionally, other functions may be defined that are not member func­
tions of some model and that need to be caUed from within the GC inputs. An auxiliary function, denoted as c l i n k e r ,
linkes a function name as used in the GC inputs to the actual precompiled function that is called. C l i n k e r takes as
an argument a character string name of the function and returns the pointer to the function that wUl be called. This
pointer is then saved by the GC interpreter and used to locate the function when it is called. Thus, c l i n k e r links
precompiled fiinctions to their character stting representations and must be supplied to the GC interpreter as an extemal
function. C l i n k e r and the model header file, to be described below, are the only Unks between the GC interpreter
and the models. In the case of the i n i t functions, the argument to c l i n k e r is the model stmcture type name fol­
lowed by ",init". For example, in the hx model above, this would be a stting such as " h x . i n i t " . Thus, given
" h x . i n i t " , c l i n k e r would return a pointer to the h x _ i n i t function.

As an example of a simple c l i n k e r function, we present the following:

void* clinker(char *name)

(if {strcmp("hx.init",name)==0) return (void*)hx_init;

else if (strcmp ("task, init", name) ==0) return (void*) task_init;

e l se r e tu rn (void*)0;
)

If the c 1 i n k e r does not recognize the input name, it should return a null pointer. In this way the GC interpreter is
informed that an unknown function is being caUed, and it can put out an appropriate message to the user. Note that for
the above code to compile, each of die model functions would need to be declared. Altematively, c l i n k e r could caU
secondary linker functions, one for each model file, placed within the model files themselves, and then only tiiese sec­
ondary linker functions would need to be declared. As an example,

extern void *clinker_modO(), •clinker_modl(), *clinker_mod2();

void* clinker(name)

char *name;

(void *ptr;

if ((ptr=clinker_modO(name))!=0)

return ptr;

else if ((ptr=clinker_modl(name))!=0)

return ptr;
else

r e t u r n clinker_mod2(name);
}

Besides the model i n i t functions, other C functions can also be included. Thus, if one has some function, say
xfunc , that is not a member of some C stracture, it may also be included by simply including the Une,

e l s e i f (s t r c m p (" x f u n c " , n a m e) = = 0) r e t u r n (v o i d *) x f u n c ;

within die c l i n k e r function. Note that in this case x f u n c would also need to be declared within the GC inputs as

CFUNC x f u n c ;

which could be put into the interface file, as discussed below.

8.4 Generating iVlodel Header Files

As was mentioned within the Section 2, the layout in computer memory of compUed model stractures might differ
from the layout imposed by the GC interpreter. Thus, for stractures diat might be passed to precompded functions, one
should include die layout information widiin the stiuctures themselves. As this could be difficult to do by hand, an
additional code, designated as GCintf can be used to generate this infonnation. GCintf takes as inputs a list of model
source or header files and exttacts aU of the stiuctures. It then generates a code that when compUed and executed,
wUl generate an interface file that includes the information needed by the GC interpreter. In practice, this procedure
is automated within a makefile, so that one needs only type "make intf' to generate die header file. The foUowing is
an example of the makefile.

i n t f :

gcintf ../modO.h modl.c sub/mod2.c clinker.c >gctemp.c

CC -o gctemp gctemp.c

gctemp >intf.h

rm gctemp. c gctemp

Here one model header file (. . /mod. h) and two model files (modi . c and sub/mod2 . c) in several directories
along with the c l i n k e r . c file wUl be scanned to locate the model stractures and to generate the file g c t e m p . c.
This last file, which contains the coding necessary to generate the header file, is then compUed and executed to gener­
ate the new header file. In listing the models or other files that need to be scanned, the files should be put in the order
tfiat any files containing model stractures that depend on the stractures within another file are listed after the other file.
If the gcintf code cannot make sense of the dependencies, the g c t e m p . c file itself wiU simply Ust the error and the
file the in which enor occuned, as weU as the stractures that were scanned.

This interface file, here denoted as "intf.h", is nothing more dian a standard header file of stracture definitions but
with the additional offset and size information that wiU be interpreted by the GC interpreter. This header file can be
included within the GC inputs, defining aU of the model types that are available for use in the system simulations.
When solving problems with GCtool, the interface file is automatically included and does not have to be explicidy
included within the inputs.

The "intf.h" file may also include other information for the GC code to properly handle the models. For example,
as discussed in the Section 5, most models requtte several stacks, such as the g a s s and s h f t s , to be defined before
diey are used. Such additional declarations can also be added to die interface file by using the special / * / and * /
comment deUmiter and the word INTERFACE at the end of a model's file. Only the last of these special interface
comments is actually used; thus, a good place to put tfiem is in the c l i n k e r . c file and include it as one of die files
to be scanned. As an example, to include these stacks witfiin "intf h" for use by GC one would put the foUowing com­
ment at the end of the c l i n k e r . c file diat is fed to the GCintf generator:

/*/ INTERFACE

gasstack gass;

shftstack shfts;

*/
Lines between / * / INTERFACE and * / wiU simply be copied exacdy as tfiey appear into the "intf.h" file. This
would be the place to include the declarations of other variables or functions, such as the x f u n c defined in the previ­
ous section so that diey are also known witfiin tfie GC inputs.

93

The i n t f . h file that is generated should conespond to the model library that is linked to GCtool. So that GCtool
can locate this interface file, one additional external variable besides the c l i n k e r function is required. This variable,
denoted as i n t e r f a c e , is defined as follows:

c h a r * i n t e r f a c e = " / . . . / i n t f . h "

where.,, refers to any other directory information necessary to locate i n t f. h. While this definition of interface can
be put within any of the model files that are linked to GCtool, a good place for this declaration is within the c l i n ­
k e r . c file.

8.5 Model Configuration Parameter

The conf i g model parameter, while not actually necessary for ranning a model, is necessary for the model to be
properly displayed within a system's diagram when the GCtool's d raw button is pressed. This model parameter gives
information to GCtool conceming which model functions processes which flows. The information is supplied as a
character stting containing a set of entties for each model function that process a flow. This information is laid out
within the stting as follows. First the model function name is listed, followed directly by a semicolon and the number
of flows processed by this model function. Then, for each of the flows processed by this function, the flow number, a
comma, and either 'p ' , ' i ' , or 'o ' is specified. The fiow number conesponds to the anay elements used in the
mods . s y s f lows anay. Thus, presendy, 0 stands for the g a s t y p e flows, and 1 stands for the s h f t t y p e flows.
The 'p', ' i ' , or 'o' letter is then used to identify whether the flow is a pass-through flow (i.e,, one that both enters and
exits the model), and input flow (one that enters but does not exit a model) or an output flow (one that only exits a
model). Each of these flow specifications should be separated from each other by at least one blank.

As an example, take the heat exchanger example above. Since the c and h fiinctions each process only a single
gastype flow we have conf ig="c;l 0,p h;l 0,p". As another example, the gas turbine model discussed previously
(Section 5), has c, s, and s h f t functional entties. The s h f t function processes a s h f t t y p e flow as an input, the
s function has only a single g a s t y p e as an output flow, and the c function processes both a g a s t y p e as a
pass-through flow and a s h f t t y p e as an output flow. Thus, in this case, con f ig="c;2 0,p l,o s;l 0,o shft;l 1,1".

8.6 Summary of Model Interfacing

In summary, the details of interfacing a model with GCtool consist of the following.

• Develop an i n i t function for the model, in which all of the pointers to the model member func­
tions are defined, as are any initial values to model parameters (including the c o n f i g parameter),
and the size of the model's C stracture is returned,

• Add the model's i n i t function to the clinker procedure.

• Add any special variables that the model needs, such as flow stacks, to the interface file, usually
through the use of the special / * / INTERFACE comment with the clinker's source file.

• Define the name of the interface file by using the global i n t e r f a c e variable.

• Remake the i n t f. h header file by using the GCintf code.

Usually, when adding a new model to an existing collection, no additional stacks or variables are needed within
the INTERFACE comment and die i n t e r f a c e variable, itself, will probably not have been changed; thus, only die
first, second, and last of the above need to be done,

8.7 Additional Interfacing Information

The previous sections have defined the steps necessary to interface a model with the GC interpreter; however, they
have not defined those aspects of using a model to represent some component within a system. Thus, one needs to
develop models that interact with other models by means of the flows between them. The reason that diis has not been
discussed IS that the GC code is independent of the flows that are used within a system. All aspects of the flow manip­
ulations are handled within the models. Thus, it is possible to replace the existing mediod of handUng flows with some
other technique. However, the stack-based method discussed below has worked very well and the tools for using it are
all available within the GC package. In addition, tiie models will generally need to make calls to property procedures

94

and possibly to various mathematical utiUties. The GC package provides user interfaces to a number of property and
utility procedures.

8.7.1 Stacks and Flows

As indicated within the Section 5, a flow is deflned as nothing other than a C stiucture. This sttucture can be as
large or as small as is needed to convey the information between the component models. All of the flows within a sys­
tem are stored as substractures within the model stiuctures. Thus, for example, the heat exchanger model might have
two flows stored within its data stracture representing the fluid flows on the hot and cold sides. When a model is called,
a mechanism is needed for obtaining a flow from the previous model or making a flow known to any succeeding mod­
els. This mechanism is based on stacks. Thus, for each flow type there is a stack upon which the flows or, more prop­
erly, the address of the flows is placed. A coUection of functions has been defined for placing flows on the stack,
removing flow from the stack, iterating over aU the flows on the stack, etc. These functions all start with the word
s t a c k and are defined as follows:

stackjn - Used to initialize a stack and takes apointer to the stack's data stracture and a character
stting. The character stting should be a name for the stack. This function is used to set
the pointers to the top, bottom, and cunent stack elements to NULL, indicating that the
stack is initially empty.

stack_put - Used to put a new item on the stack. It takes three arguments. The first is a pointer to
the stack's data stracture to define which stack is to be used. The second is a pointer
(typed cast to a v o i d * pointer) to the item that is to be stored on the stack. The last
argument is also a v o i d * pointer and is used to define an alternative pointer variable
used to locate this item. If this pointer is NULL, then the item will be found on the
stack, using the second argument. The use of this alternative pointer will become clear­
er after the discussion of the s t a c k _ f i n d and s t a c k _ f n a m e functions. This
s tack__put function will always attempt to locate the item on the stack before at­
tempting to place it on the stack again. If it is found, a cunent item pointer is reset to
that element. This cunent item pointer is used by the s t a c k _ g e t function. If the item
was not found on the stack, the item is put on top of the stack, and the cunent item
pointer is reset to this item.

stack_get - Used to refrieve from the stack the item pointed to by the cunent item pointer. It takes
only one argument, a pointer to the stack's data stracture, and returns the pointer (typed
cast to a v o i d * pointer) of the item. The cunent item pointer is readjusted to the pre­
vious item on the stack before returning. Note that the cunent item pointer will cycle
to the end of the stack once the first element is rettieved. That is, the element previous
to the first element is taken as the last element, giving rise to a circular stack,

stack_find - Used to find an item on the stack. It takes two arguments, die first being the pointer to
the stack's data stracture, and the second being an input pointer associated with the
item to be found. If the item was originally put onto the stack using the alternative
pointer (see s t a c k _ p u t above), dien the pointer to the item associated with this al-
temative pointer is returned if the input pointer is the same as this alternative pointer.
In this way, the alternative pointer is just another way of labeling the item. If the item
was placed on the stack with no altemative pointer, then the input pointer is assumed
to be that of an item on the stack and, if found, retums the pointer to that item. In either
case, if the item is not found on the stack, a NULL pointer is retumed,

stack_fname - Used to find an item on the stack by means of a character stiing name. In this case, the
items must be placed on the stack using the alternative pointer (see s t a c k _ p u t
above), which, in this case, must be a pointer to a character stiing (still typed cast to a
v o i d * pointer). S t a c k _ f name takes two arguments, the first being the pointer to
the stack's data stiucture and the second being a character string of the item's name to
be found. If found, the pointer to the item is returned; if not, a NULL pointer is re­
tumed.

95

stack_next - Used to iteratively cycle over all items on a stack. It takes two arguments: the first is
the pointer to the stack's data stiucture, and the second is an address of a pointer to a
s t a c k l i n k stiucture. This stiucture is used to hold the stack together in a Unked list.
InitiaUy, this second argument should point to a NULL value, and thereafter will be re­
assigned by die s t a c k _ n e x t function. Basically, this second argument is used as a
counter to locate the next item on the stack. Each call to s t a c k _ n e x t will either re­
turn the pointer to an item, or if no more items are on the stack, a NULL pointer.

stack_del - Takes two arguments, a pointer to this stack's data stiucture and a pointer to an item.
The stack is searched for die item and, if found, is deleted from tfie stack. Note that
since only pointers to the items and not the actual items are stored on the stack, deletion
of an item from the stack only deletes the links that hold the item to the stack and does
not delete the actual item,

stackjerm - Takes only one argument, a pointer to the stack's data stiructure, and deletes the entire
stack. As with the s t a c k _ d e l function, it is only the stiick and not the actually items
that are deleted.

These functions pennit one to easily handle the passage of flows between the models. Before exiting a model that
generates a flow, die s t a c k _ p u t function is caUed to place the flow on a stack, and on entry to a model that requires
a flow, the s t a c k _ g e t function is caUed to retiieve a flow from the stack. For example, the g a s t y p e flows are all
placed on a stack whose address is denoted as g a s s . If within a model this gas flow is denoted as z - > f 1 , where z
is the address of the model stracture containing this flow, the call

s t a c k _ p u t (g a s s , (v o i d *) S;Z->f 1 , 0) ;

would place the flow onto the g a s s to be retrieved by the next model. Similarly, the call

2->fl=*(struct gasstype*)stack_get(gass);

would retiieve the last flow placed on the stack and assign it to z -> f 1. Additionally, one can iterate over aU values
that have been placed on the stack, such as in printing them out, by using the s t a c k _ n e x t function. In this case one
needs to define a pointer to the s t a c k l i n k stiucture to iterate through the stack. For example, the code fragment

struct gastype *gp; struct stacklink *1=0;
while (gp=(struct gastype*)stack_next(gass,&1)

would sequentially return a pointer, gp, to each g a s t y p e fiow placed on g a s s .

8.7.2 Property Functions

A number of property functions are available for use with a model's g a s t y p e flows. These are used for calcu­
lating the thermodynamic properties (tiansport properties are not currently available) for a flow given the flow's pres­
sure and one of either temperature, enthalpy, or entropy. If these functions are caUed in lieu of individual coding within
a model for calculating the properties, a more self-consistent thermodynamics can be obtained for a systems analysis
problem.

The first of these functions is p r o p and is the calculational procedure for the general thermodynamci properties.
For any instance of tiie g a s t y p e class, p r o p can be called to determine the thermodynamic properties of the flow
either as a function of p and t , p and h, or p and s by using as its second argument die letter't', 'h', o r ' s ' , respectively.
The first argument of p r o p is the address of the flow. If the name of the flow is f 1 and is pointed to by the model's
structure pointer labeled as z, the call to the property code would look like,

p r o p (& z - > f l , ' t ') ;

ThiswouldcalculatethevaluesofaUoftheflow'sthermodynamicparameters(Section5.2.1),h, s , r , q.andfor
id="GAS", also the comp anay as a function of the flow's t and p. The calls where't' is replaced by 'h' o r ' s ' would
be similar.

Another fiinction, s a t , is used to determine the saturation properties of the flow at the flow's pressure. This func­
tion only retums values for flows with die "THR" or "STM" i d ' s as die "GAS" flows are not considered condensable,
aldiough they may contain liquid water or medianol, and the "LIQ" flows are purely liquids and, tiius, do not have tiie

vapor saturation properties included. If called with a "GAS" or "LIQ" flow, an enor message is displayed and the ran
is terminated. S a t requires four arguments, the first is the address of the flow, and the rest are pointers to double-pre­
cision variables representing the retumed values of critical pressure (atm), the saturation liquid enthalpy, and the sat­
uration vapor enthalpy (J/kg), A call to s a t looks as follows:

s a t (& z - > f l , &pc, &hl , Sihs) ;

where S;Z->f 1 is a pointer to the flow, and p c is the critical pressure, and h i and h s are the saturation enthalpies.
Note that if one needs the saturation temperature for a given pressure, a caU would have to be made to p r o p after s a t
is called.

Another function, atom, is only needed for flows with the "GAS" id and is used to calculate the kg-atom/kg of
flow of the individual atoms making up the flow. This function requires one argument of the flow's address and uses
the flow's comp artay to determine the values of the flow's a t o m s anay. A call to a tom would look like

a t o m (& z - > f l) ;

The a toms anay should be updated whenever a "GAS" type flow undergoes a change in which chemical species are
either added or removed from the flow. Note that for "GAS" type flows it is die a toms artay that actually determines
the chemical make-up of the flow. This anay remains constant untU the flow either has new species added to it or re­
moved from it. The flow's comp anay, on the other hand, will change just like the flow's temperature or pressure and
reflects only the cunent values of the species moles per kilogram of flow.

8.7.3 Mathematical Utilities

In addition to making use of the GCtool mathematical utilities (equation solver, optimizer, and integrator) from
within the GCtool inputs, one can also caU these utilities from within the models. In this section, we consider the in­
terfaces to these utUities.

Each of the mathematical utilities is iterative and, thus, requires some sort of iterative loop. When defining some
task that is localized to a model, this loop would be coded within the model itself It is possible that the loop would be
coded outside of the model, such as that used by the dyn tasks for the dynamic models. Here we show examples of
the iterative loops within the models themselves.

For the solution of a set of algebraic equations, the typical stracture for solving the problem is as follows:

struct task taskl;
char *args[2];
args[0]=(char*)&taskl; args[1]="taskl";
task_init (args) ;
while (task_c(&taskl))

{ vary(&xl, si, Ibl, ubl, Sitaskl);
vary(&x2, s2, lb2, ub2, &taskl);

cons(&xl, fl, &taskl);
cons(S;x2, f2, Sttaskl);

}
t a s k _ t e r m (S i t a s k l) ;

Here a s t r u c t t a s k is declared, denoted as t a s k l . The t a s k _ i n i t function is then called to obtain the default
values for many of the task parameters, such as a c e , d e l , a n d m a x i t . As described above, aU model i n i t func­
tions take an argument anay with the stiiicture address and its name as die elements of the anay. Alternatively, the
initial values of the various task parameters, a c e , d e l , m a x i t , etc, can be defined by using assignment statements,
for example, t a s k l , a c c = l e - 3 , A w h i l e loop is then started to define the iterations over the task body. The v a r y
and c o n s functions are also similar to their use in GCtool, only here, tiie addresses of the variables need to be specified
The other arguments to the v a r y function are the starting value, lower bound, and upper bound. One additional argu­
ment is required by the v a r y function, which is not present using the GC v a r y operator and is simply a pointer to
the task class for tills problem, which, in this case, was defined as t a s k l . The c o n s function arguments are the ad-

97

dress of some variable; this is just the delimiter for the consttaint, the equation residual, and again the pointer to the
task stiucture.

For optimizations, the same task class generation and loop sttucture as with the equation-solving task are gener­
ated. Only now, in addition to the v a r y and c o n s functions, the i c o n s function can be used to define inequality
consttaints, such as

i c o n s (Scxn, f n , & t a s k l) ;

The min i function must be caUed to define the objective function, o b j , to be minimized, such as

m i n i (o b j , & t a s k l) ;

Again, these functions are similar to those used in the GC inputs but with the first arguments replaced by the addresses
of the variables and with an additional argument consisting of the task pointer. Of course, for optimization problems
the number of equality constraints as specified by the c o n s functions should be fewer than the number of variables.
Note that at present, optimization tasks should not be nested; thus, the use of an optimization task within a model
would preclude use of the model within an optimization task set up within the GC inputs.

For integrating a set of first-order differential equations, again the same task class generation and loop stiucture
as the above are used; however, the only function that can appear within the loop is the function d i f f . This function
is used to define the dependent variable being integrated and its derivative value for each value of the independent
variable, which is denoted as t a s k l , t i m e . For example,

d i f f (SIX, d x d t , S i t a s k l) ;

Here d x d t would be defined within the loop as the derivative x with respect to time (i.e., the right-hand side of the
differential equation). The initial values for the dependent variables being integrated would be assigned before the loop
is started. As with the use of integration tasks within GC, the integration loops cannot be nested.

The final call to t a s k _ t e r m in the above is used to clean up any variables used by the task in solving the prob­
lem.

References

1, H. Geyer, "GPS Language and Utility Classes Documentation," unpublished report (1994).

2, H, Geyer, "GPSTool User's Manual," unpublished report (1994),

3, PostScript Language Reference Manual, Addison-Wesley Publishing, New York (1987),

4, M. J. D. Powell, "A Hybrid Method for Nonlinear Equations," in Numerical Methods for Nonlinear
Algebraic Equations, Gordon and Breach Science Publishers, New York (1970),

5, M, I, D, PoweU, "A Fast Algorithm for Nonlinearly Consttained Calculations," 1977 Dundee
Conference on Numerical Analysis, Dundee, United IQngdom (1977),

6, C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall,
Englewood Cliffs, NJ (1971),

7, J, C, Amphlett, M, J, Evans, R. A. Jones, R, F, Mann, and R, D. Weir, "Hydrogen Production by the
Catalytic Steam Reforming of Methanol. Part 1: The Thermodynamics," Can. J. Chem. Eng. 59, 720-
727 (1981).

8, J. C. Amphlett, M. J. Evans, R, F, Mann, and R, D, Weir, "Hydrogen Production by the Catalytic
Steam Reforming of Methanol, Part 1: Kinetics of Methanol Decomposition Using Girdler G66B
Catalyst," Can, J, Chem, Eng. 63, 605-611 (1985),

9, J, C. Amphlett, R. F. Mann, and R, D, Weir, "Hydrogen Production by the Catalytic Steam
Reforming of Methanol, Part 3: Kinetics of Methanol Decomposition Using C18HC Catalyst" Can, J.
Chem. Eng. 66, 950-956 (1988),

10, J. C. Amphlett R. F, Mann, C. McKnight, and R. D. Weir, "Production of Hydrogen Rich Gas by
Steam Reforming of Methanol over Copper Oxide-Zinc Oxide Catalysts," Proc. 20" lECEC, Miami
Beach, FL, 772-780 (1985).

11, C, J, Jiang, D. L. Trimm, and M. S. Wainwright, "Kinetic Study of Steam Reforming of Methanol
over Copper-Based Catalysts," Appl. Catal. A: General 93, 245-255 (1993).

99

Appendix. Outputs from Examples

\lRp, of Vary and Cons to Solve a Single Equation

task; a n=0 f=6.321206e-01
x= l.OOOOOOe+00
c= 6.3212068-01
h= 7.1266e-02 hs= 7.1266e-02 mu=0.00e+00 n=7.13e-02 s=7.13e-02 a=1.00e+00

task: a n=l f=5.690847e-02
x= 7.330436e-01
o= 5.690847e-02
h= 5.7761e-04 hs= 5.7761e-04 mu=0.00e+O0 n=6.98e-04 s=6.98e-04 a=1.00e+00

task: a n=2 f=6.026605e-03
x= 7.0663246-01
c- 6.026605e-03
h= 6.4778e-06 hs= 6.4778e-06 mu=0.00e+00 n=9.79e-06 s=9.79e-06 a=l.Q0e+0O

task: a n=3 f=6.978994e-05

x= 7.035041e-01

c= 6.973994e-05

Use of Multiple Varv's and Cons's to Solve a System of Equations

task: a n=0 f=3.174881e+00

x= 2.000000e+00 2.000000e+00 2.000000e+00
c=-1.000000e+00 -2,253856e+C0 2.000000e+00
h= 2.1370e+00 hs= 2.1370e+00 mu=7.61e+0C n=4.18e+02 s=1.44e-01 a=8.89e-02

task: a n=l f=3.134960e+00

x= 2.061622e+00 2.153135e+00 2.008621e+00

c=-1.026095e+00 -2.209666e+00 1.972937e+00

h= 2.0799e+00 hs= 2.0799e+00 mu=6.61e+00 n=2.92e+02 s=1.37e-01 a=1.08e-01

task: a n=2 f=3.060456e+00

x= 2.1637278+00 2.411827e+00 2.0215468+00

c=-l.0575668+00 -2.133150e+00 1.9229198+00

h= 1.97708+00 hs= 1.9770e+00 ltiu=5 . 61e+00 n=1.41e+02 s=l.288-01 a=1.58e-01

task: a n=3 f=2.927054e+00

x= 2.2992668+00 2.7875308+00 2.0321318+00

c=-l.0994398+00 -2.0022268+00 1.8302928+00

h= 1.8034e+00 hs= 1.80348+00 mu=4.61e+00 n=6.948+01 s=1.17e-01 a=2.30e-01

task: a n=4 f=2.693334e+00

x= 2.4819478+00 3.336961e+00 2.0353238+00

c=-l.1407968+00 -1.787473e+00 1.660593e+00

h= 1.5273e+00 hs= 1.5273e+00 mu=3.618+00 n=3.41e+01 3=1.068-01 a=3.378-01

task: a n=5 f=2.2892598+00

x= 2,733308e+00 4.135351e+00 2.0221428+00

c=-l.1309968+00 -1.457221e+00 1.3557518+00

h= 1.1190e+00 hs= 1.1190e+00 mu=2.61e+00 n=1.46e+01 s=1.14e-01 a=5.11e-01

task: a n=6 f=l.6071208+00

x= 3.0668688+00 5.237910e+00 1.9720488+00

100

c=-9.6596708-01 -9.8685578-01 8.2210508-01

h= 5.8934e-01 hs= 5.8934e-01 mu=1.61e+00 n=4.59e+00 s=2.31e-01 a=7.51e-01

task: a n=7 f=5.876752e-01

x= 3.4938648+00 6.6344448+00 1.8561008+00

c=-4.1508448-01 -4.1314628-01 -4.8757198-02

h= 9.8227e-02 hs= 9.8227e-02 mu=6.10e-01 n=4.568-01 s=6.49e-02 a=9.44e-01

task: a n=8 £=8.4320758-02

x= 3.7228388+00 7.487833e+00 1.9190588+00

c=-7.3988428-02 -5.598153e-03 -4.005451e-02

h= 1.47898-03 hs= 1.47898-03 mu=0.008+00 n=3.53e-03 s=2.178-04 a=5.50e-01

task: a n=9 £=5.2754898-02

x= 3.759556e+00 7.562479e+00 1.938630e+00

c= 5.2671108-02 -2.6874198-03 -1.2696958-03

h= 6.95998-04 hs= 6.95998-04 mu=Q.00e+00 n=5.06e-04 s=1.40e-04 a=7.00e-01

task: a n=10 £=5.9445568-03

x= 3.7438958+00 7.534873e+00 1.9347768+00

c=-5.9120068-03 3.103616e-04 -5.381605e-04

h= 8.78718-06 hs= 8.78718-06 mu=0.00e+00 n=5.20e-06 s=1.75e-06 a=7.38e-01

task: a n=ll £=6.2404708-05

x= 3.745464e+00 7.5376298+00 1.9353158+00

c=-5.920530e-05 2.3786318-06 -1.9581158-05

x=3.75 y=7.54 z=1.94

Use of Multiple Svslem Tasks

task: b n=0 £=2.OOOOOOe+00

x= 2.0000008+00

c= 2.0000008+00

h= 2.50008-01 hs= 2.5000e-01 mu=0.008+00 n=2.508-01 s=2.50e-01 a=1.00e+00

task: b n=l f=2.5000018-01
x= 1.5000008+00
c= 2.5000018-01
h= 3.90638-03 hs= 3.9063e-03 mu=0.008+00 n=5.108-03 s=5.108-03 a=l.008+00

task: b n=2 £=4.0816348-02
x= 1.4285718+00
c= 4.0816348-02
h= 1.04128-04 hs= 1.04128-04 mu=O.O0e+O0 n=l.948-04 s=1.94e-04 a=1.00e+00

task: b n=3 £=1.1897698-03
x= 1.4146348+00
c= 1.1897698-03
h= 8.84728-08 hs= 8.84728-08 mu=0.00e+00 n=1.75e-07 s=1.75e-07 a=1.00e+00

task: b n=4 £=6.0073108-06

x= 1.4142168+00

c= 6.0073106-06

task: a n=0 f=2.465739e+00

x= 2.0000006+00 2.0000006+00

c=-1.000000e+00 -2.253856e+00

task: b n=0 f=5 . 8073106-06

101

x= 1.4142168+00

c= 5.8073108-06

task: b n=0 £=6.0073108-06

x= 1.4142168+00

c= 6.0073108-06

h= 1.88706+00 hs= 1.88708+00 mu=7.768+00 n=4.098+02 s=9.308-02 a=8.15e-02

task: b n=0 f=5.5515288-02

x= 1.4142166+00

c=-5.5515286-02

h= 3.85248-04 hs= 3.85248-04 mu=0.00e+00 n=3.856-04 s=3.858-04 a=l.006+00

task: b n=l £=3.8523938-04
x= 1.4338438+00
c= 3,8523938-04

Cask: a n=l £=2.4405528+00

x= 2.0555216+00 2.1353766+00

c=-l.0212508+00 -2.2166058+00

h= 1.84406+00 hs= 1.84406+00 mu=6.76e+00 n=2.958+02 s=8.686-02 a=9.73e-02

task: b n=0 £=9.3216216-02

x= 1.4338436+00

c=-9.3216216-02

h= 1.05668-03 hs= 1.0566e-03 mu=0.008+00 n=l.068-03 s=1.06e-03 a=1.00e+00

task: b n=l £=1.0566178-03

x= 1.4663498+00

c= 1.0566178-03

h= 1.35768-07 hs= 1.35768-07 mu=0.008+00 n=l.336-07 3=1.338-07 a=l.006+00

task: b n=2 f=1.170996e-05
x= 1.4659858+00
c=-l.1709966-05

task: a n=2 £=2.392801e+00

x= 2.1491236+00 2.3669718+00

c=-l.0464886+00 -2.151826e+00

h= 1.76598+00 h3= 1.76596+00 mu=5.766+00 n=1.49e+02 s=7.87e-02 a=1.39e-01

task: b n=0 £=1.2728478-01

x= 1.4659858+00

c=-l.2728478-01

h= 1.88478-03 h3= 1.88478-03 mu=0.00e+00 n=l.886-03 s=1.88e-03 a=1.00e+00

task: b n=l £=1.8846566-03

x= 1.5093978+00

c= 1.8846568-03

h= 4.13198-07 h3= 4.13196-07 ltiu=0 .006+00 n=4. 018-07 3=4.01e-07 a=l. 006+00

task: b n=2 f=2.7097108-05
x= 1.5087646+00
c=-2.7097106-05

task: a n=3 f=2.308036e+00

x= 2.2763968+00 2.7076616+00

c=-l.0784758+00 -2.0405696+00

h= 1.63266+00 hs= 1.6326e+00 mu=4.768+00 n=7.478+01 3=6.686-02 a=2.02e-01

102

task: b n=0 £=1.7214838-01

x= 1.5087646+00

c=-l.7214838-01

h= 3.25468-03 h3= 3.25468-03 mu=0.006+00 n=3.258-03 3=3.25e-03 a=1.00e+00

task: b n=l £=3.2546298-03

x= 1.5658136+00

c= 3.2546296-03

h= 1.16338-06 hs= 1.16338-06 mu=0.00e+00 n=1.12e-06 s=1.12e-06 a=1.00e+00

task: b n=2 £=5.9269788-05

x= 1.5647556+00

c=-5.9269786-05

task: a n=4 f=2.1621968+00

x= 2.4485178+00 3.205920e+00

c=-l.1077198+00 -1.8568938+00

h= 1.41796+00 hs= 1.41798+00 mu=3.76e+00 n=3.728+01 3=5.178-02 a=2.978-01

task: b n=0 £=2.354908e-01

x= 1.5647556+00

c=-2.3549088-01

h= 5.66238-03 hs= 5.6623e-03 mu=0.006+00 n=5.668-03 s=5.666-03 a=1.00e+00

task: b n=l £=5.662317e-03

x= 1.6400038+00

c= 5.6623176-03

h= 3.27378-06 hs= 3.27378-06 mu=0.006+00 n=3.126-06 3=3.126-06 a=l.006+00

task: b n=2 f=l.2983076-04

x= 1.6332366+00

c=-l.2983078-04

task: a n=5 f=1.914216e+00

x= 2.6839488+00 3.928191e+00

c=-l.0925098+00 -1.5718296+00

h= 1.09466+00 hs= 1.09468+00 mu=2.766+00 n=1.67e+01 3=3.838-02 a=4.548-01

task: b n=0 £=3.081942e-01

x= 1.6382366+00

c=-3.0819426-01

h= 8.84788-03 hs= 8.8478e-03 mu=0.006+00 n=8.856-03 s=8.856-03 a=1.00e+00

task: b n=l £=8.8477938-03
x= 1.7322998+00
c= 8.8477938-03
h= 7.29228-06 h3= 7.2922e-06 mu=0.008+00 n=6.89e-06 s=6.898-06 a=1.00e+00

task: b n=2 f=2 . 400278e-04

x= 1.7296748+00

c=-2.4002788-04

t a s k : a n=6 £=1.5018858+00
x= 2.9920136+00 4.9213916+00
c=-9.5327588-01 -1.1605708+00
h= 6.61228-01 h3= 6.61228-01 niu=1.76e+00 n=5.89e+00 3=3.666-02 a=6.898-01

task: b n=0 £=3.6119146-01

x= 1.7296746+00

c=-3.6119148-01

103

h=' 1,09018-02 h3= 1.09018-02 mu=0.008+00 n=l.098-02 3=1.098-02 a=l.008+00

task: b n=l £=1.0901488-02
x= 1.8340846+00
c= 1.0901488-02
h= 9.93088-06 hs= 9.93088-06 mu=0.008+00 n=9.36e-06 3=9.368-06 a=l.008+00

task: b n=2 £=3.1003186-04

x= 1.8310256+00

c=-3.1003188-04

task: a n=7 £=8.7557736-01
x= 3.3529648+00 6.1556498+00
c=-6.1920908-01 -6.1904438-01
h= 2.19346-01 hs= 2.19346-01 mu=7.608-01 n=l.226+00 s=1.03e-01 a=9.346-01

task: b n=0 £=3.5158758-01
x= 1.8310258+00
c=-3.5158758-01
h= 9.21768-03 h3= 9.21768-03 mu=0.00e+00 n=9.226-03 s=9.22e-03 a=1.00e+00

task: b n=l £=9.2175858-03
x= 1.9270348+00
c= 9.2175858-03
h= 6.33566-06 h3= 6.33568-06 mu=0.006+00 n=6.02e-06 s=6.028-06 a=l.008+00

task: b n=2 f=2 .294686e-04
x= 1.9245818+00
c=-2.2946866-04

task: a n=8 £=1.033512e-01
x= 3.7042426+00 7.396947e+00
c=-8.4024418-02 -6.0177848-02
h= 2.93208-03 h3= 2.93208-03 mu=0.008+00 n=1.06e-02 s=2.74e-03 a=9.626-01

task: b n=0 £=5.0863426-02
x= 1.9245816+00
c=-5.0863428-02
h= 1.74618-04 h3= 1.74616-04 mu=0.006+00 n=l.756-04 s=l.756-04 a=l.006+00

task: b n=l £=1.7461136-04

x= 1.9377956+00

c= 1.7461136-04

task: a n=9 £=3.471529e-02
x= 3.7548756+00 7.5546518+00
c= 3.4688336-02 -1.3677758-03
h= 3.01426-04 hs= 3.01428-04 mu=0.008+00 n=3.75e-04 s=5.948-05 a=6.08e-01

task: b n=0 £=1.3761068-02

x= 1.9377956+00

c= 1.3761066-02

h= 1.26078-05 hs= 1.26076-05 mu=0.00e+00 n=1.26e-05 3=1.268-05 a=l.008+00

task: b n=l f=l.260816e-05

x= 1.9342448+00

c= 1.2608168-05

task: a n=10 £=1.5670396-02

x= 3.7412898+00 7.5303138+00

104

c=-l.5647748-02 8.4228478-04
h= 6.14428-05 hs= 6.1442e-05 mu=0.00e+00 n=3.56e-05 3=1.268-05 a=7.458-01

task: b n=0 £=4.2184628-03
x= 1.9342448+00
c=-4.2184626-03
h= 1.18918-06 h3= 1.18918-06 niu=0.006+00 n=l.196-06 s=l.198-06 a=l,008+0O

task: b n=l f=l. 188908e-06
x= 1.9353356+00
c= 1.1889088-06

task: a n=ll £=1.5308478-04
x= 3.7455206+00 7.5377286+00
c= 1.5278308-04 -9.6065828-06

x=3.75 y=7.54 z=1.94

Use of Icons and IVIini to Solve an Optimization Problem

task a n=l meq=l £= 6.02576+01
x= 1.00008+00 2.00006+00 3.00006+00
c=-l.00008+00 -2.00008+00
1= 4.73558+02

task a n=2 m8q=l f= 4.9995e-01
x= 1.50006+00 1.50008+00 O.OOOOe+00
c=-4.99988-05 1.50008+00
1= 9.99918-05

task a n=3 meq=l f= 4.9995e-01
x= 1.50008+00 1.50008+00 0.00008+00
c=-4.99986-05 1.50006+00

x=1.50 y=1.50 z=0.00

Use of Diff to Solve a Svstem of Differential Equations

tlm8=0.00 x=l.0008+00 y=2.000e+00 2=0.0008+00
Cime=1.00 x=3.6806-01 y=3.2988+00 z=-l.9646+00
tim6=2.00 x=1.355e-01 y=5.438e+00 z=-6.0116+00
tim6=3.00 x=4.983e-02 y=8.9668+00 z=-l.2988+01
time=4.00 x=1.826e-02 y=1.478e+01 z=-2.4588+01
tim8=5.00 x=6.7178-03 y=2.438e+01 z=-4.3768+01

Gas Turbine Svstem

thermodynamic data for HYDROGEN with flow id = THR-tH2
pc=12.800000, tc=33.200000, tb=20.400000, molwt=2.016000

output of model gastyp6 flows

temp
(K)

pres
(atm)

mass
(kg/s)

enth
(J/kg)

entr
(J/kg-K)

dens
(kg/m^3)

vol
(m'3/s)

qual

gasl
cpl
htl
gti

300.0 1.00 l.OOOe+00 2.4998+04
544.4 6.00 l.OOOe+00 3.3766+06
1000.0 6.00 1.0006+00 9.9766+06
666.4 1.00 l.OOOe+OO 5.0978+06

l,32e+04 8.198-02 1.228+01 1.00
1.396+04 2.706-01 3.70e+00 1.00
2.27e+04 1.47e-01 6.798+00 1,00
2.426+04 3.696-02 2.718+01 1.00

105

output o£ model parameters

gasl id=THR-tH2 area=0.0006+00 dt=0.008+00 dp=O.O0e+00 dm=0.008+00 dh=0,006

cpl rpm=l.0008+00 pow6r=-3.351e+06 heat=0.OOOe+00 nstage3=l

rat_cm=l.73218+01 rat_crpm=5.77358-02 rat_pr=6.0000 rat_6££=0.8800

cm=1.0000e+00 crpm=l.OOOOe+OO pr=6,0000 8££=0.8800

htl h8at=6,59958+06

gtl rpm=1.0008+00 pow6r=4.8798+06

rat_cm=5.27058+00 rat_crpm=3.1623e-02 rat_pr=6.0000 rat_e£f=0 . 8400

cm=l.00006+00 crpm=l.OOOOe+OO pr=6.0000 ef£=0.8400

Gas Turbine Svstem witfi Fixed Net Power Constraint

task: a n=0 £=3.8472188+07

x= 1.OOOOOOe+00

c=-3.8472188+07

h= 6.34096+02 h3= 6.3409e+02 mu=0.008+00 n=6.34e+02 3=6.346+02 a=1.00e+00

task: a n=l £=3.9624988-01

x= 2.6181128+01

c= 3.9624988-01

h= 6.72668-14 hs= 6.72668-14 mu=0.006+00 n=6,736-14 3=6.736-14 a=1.00e+00

task: a n=2 £=1.4901168-08
x= 2.6181128+01
c=-l.4901166-08

output of model gastype flows

mod6l temp pres mass enth entr dens vol qual

(K) (atm) (kg/s) (J/kg) (J/kg-K) (kg/m"3) (m"3/s)

gasl 300.0 1,00 2.618e+01 2.499e+04 1.326+04 8.19e-02 3.206+02 1.00

cpl 544.4 6.00 2.6186+01 3.3768+06 1.398+04 2.70e-01 9.688+01 1.00

htl 1000.0 6.00 2.6188+01 9,976e+06 2.27e+04 1.47e-01 1.78e+02 1.00

gtl 666.4 1.00 2.6188+01 5.097e+06 2.428+04 3.696-02 7.108+02 1.00

output of model parameters

gasl id=THR-tH2 ar8a=0.0006+00 dt=0.008+00 dp=0.008+00 dm=0.00e+00 dh=0.00e+00

cpl rpm=l.0006+00 power=-8.7746+07 h6at=0.OOOe+OO nstage3=l

rat_cm=4,5347e+02 rat_crpm=5,7735e-02 rat_pr=6.0000 rat_6££=0.8800

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=6.0000 6££=0.8800

htl heat=l.72786+08

3tl rpm=l.OOOe+00 pow6r=l.277e+08

rat_cm=l. 37998+02 rat_crpm=3 .1623e-02 rat_pr=6 . 0000 rat_8f f=0 . 8400

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=6.0000 6££=0.8400

Gas Turbine Svstem with Parameter Study

task: a n=0 £=3.9471716+07

x= l.OOOOOOe+OO

c=-3.9471718+07

h= 5.5825e+03 hs= 5.58256+03 mu=0.00e+00 n=5.58e+03 3=5.586+03 a=1.00e+00

106

task: a n=l £=1.560657e+00

x= 7.571580e+01

c=-l.5606576+00

h= 8.7271e-12 hs= 8.7271e-12 mu=

task: a n=2 £=2.9802326-08

x= 7.571580e+01

c= 2.980232e-08

.006+00 n=8.73e-12 s=8,73e-12 a= l.OOe+00

gasl

cpl

htl

gtl

output of model gastype flows

temp pres mass enth

(K) (atm) (kg/s) (J/kg)

300.0 1.00 7.572e+01 2.499e+04

544.4 6.00 7.5726+01 3.3766+06

800.0 6.00 7.5728+01 7.0236+06

527.8 1.00 7.5728+01 3.1438+06

entr dens

(J/kg-K) (kg/m"3)
vol

(m'-3/s)

qual

1.32e+04 8.19e-02 9.256+02 1.00

1.39e+04 2.706-01 2.80e+02 1.00

1.94e+04 1.84e-01 4.11e+02 1.00

2.098+04 4.65e-02 1.638+03 1.00

gasl

cpl

htl

gtl

output of model parameters

id=THR-tH2 area=0.OOOe+OO dt=0.006+00 dp=0.00e+00 dm=0.00e+00 dh=0,00e+00

rpm=l.0008+00 power=-2.5378+08 h8at=0.OOOe+OO nstag63=l

rat_cm=l.31148+03 rat_crpm=5.77356-02 rat_pr=6.0000 rat_e££=0.8800

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=6.0000 e££=0.8800

heat=2.76096+08

rpm=l.OOOe+OO power=2.937e+08

rat_cm=3 .56938+02 rat_crpm=3 . 5355e-02 rat_pr=6 . 0000 rat_8f £=0 . 8400

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=6.0000 e££=0.8400

task: a n=0 f=3.847218e+07

x= l.OOOOOOe+00

c=-3.847218e+07

h= 6.3409e+02 hs= 6.34098+02 mu=0.008+00 n=6.34e+02 s=6.34e+02 a=1.00e+00

task: a n=l £=7.231588e-01

x= 2.6181106+01

c=-7.231588e-01

h= 2.2404e-13 h3= 2.24046-13 mu=0.00e+00 n=2.24e-13 3=2.246-13 a=1.006+00

task: a n=2 £=2.9802326-08

x= 2.6181108+01

c= 2.9802328-08

output of model gastype flows

gasl

cpl

htl

gtl

temp

(K)
pres mass

(atm) (kg/s)

300.0 1.00 2.6188+01

544.4 6.00 2.6188+01

1000.0 6.00 2.618e+01

666.4 1.00 2.618e+01

enth

(J/kg)

2.499e+04

3.376e+06

9.9766+06

5.0976+06

entr

(J/kg-K)

dens

(kg/m"3)

vol

(m''3/s)

qual

1.326+04 8.196-02 3.20e+02 1.00

1.396+04 2.706-01 9.68e+01 1.00

2.27e+04 1.47e-01 1.78e+02 1.00

2.42e+04 3.69e-02 7.10e+02 1.00

gasl

output of model parameters

id=THR-tH2 area=0.OOOe+00 dt=0.O0e+0O dp=0.00e+00 dm=0.006+00 dh=0.006+00

107

cpl rpm=l.OOOe+OO power=-8.774e+07 h6at=0.OOOe+OO nstag8s=l

rat_cm=4.5347e+02 rat_crpm=5.7735e-02 rat_pr=6.0000 rat_6ff=0.8800

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=6.0000 ef£=0.8800

htl h6at=l.72786+08

gtl rpm=l.OOOe+OO pow6r=l.2778+08

rat_cm=l.37996+02 rat_crpm=3.1623e-02 rat_pr=6.0000 rat_6ff=0.8400

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=6.0000 eff=0.8400

task: a n=0 £=3.7462478+07
x= 1.0000006+00
c=-3.7462476+07
h= 2.17968+02 hs= 2.17966+02 mu=0.00e+00 n=2.18e+02 s=2.18e+02 a=1.00e+00

task: a n=l £=1.8514366-01
x= 1.5763366+01
c= 1.8514368-01
h= 5.32356-15 hs= 5.3235e-15 mu=0.00e+00 n=5.32e-15 3=5.32e-15 a=1.00e+00

task: a n=2 £=0.0000006+00

x= 1.5763366+01

c= O.OOOOOOe+00

output of model gastype flows

model temp pres mass enth entr dens vol qual
(J/kg-K) (kg/m^3) (m"3/s)

temp
(K)

300.0

544.4

.200.0
807.3

pres mass

(atm) (kg/s)

1.00 1.5768+01

6.00 1.5768+01

6.00 1.5768+01
1.00 1.5766+01

enth

(J/kg)

2.4998+04

3.3768+06

1.3028+07
7.1276+06

gasl 300.0 1.00 1.576e+01 2.499e+04 1.328+04 8.19e-02 1.936+02 1.00
cpl 544.4 6.00 1.5768+01 3.3768+06 1.398+04 2.70e-01 5.836+01 1.00

htl 1200.0 6.00 1.5768+01 1.3028+07 2.558+04 1.23e-01 1.28e+02 1.00
gtl 807.3 1.00 1.5766+01 7.127e+06 2.706+04 3.04e-02 5.18e+02 1.00

output of model parameters

gasl id=THR-tH2 ar6a=0.OOOe+00 dt=0.00e+00 dp=0.00e+00 dm=0.O0e+00 dh=0.006+00
cpl rpm=l.OOOe+00 power=-5.2836+07 heat=0.OOOe+00 nstages=l

rat_cm=2.73036+02 rat_crpm=5.7735e-02 rat_pr=6.0000 rat_e££=0.8800
cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=6.0000 ef£=0.8800

htl h6at=1.5195e+08

gtl rpm=l.OOOe+OO power=9.283e+07

rat_cm=9.10108+01 rat_crpm=2.8868e-02 rat_pr=6.0000 rat_6££=0.8400

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=6.0000 e££=0.8400

task: a n=0 f=3.644363e+07

x= l.OOOOOOe+00

c=-3.6443636+07

h= 1.0501e+02 h3= 1.05016+02 mu=0.00e+00 n=l.056+02 s=1.05e+02 a=1.00e+00

task: a n=l £=5.0549146-01

x= 1.1247416+01

c= 5.0549148-01

h= 2.0203e-14 hs= 2.0203e-14 mu=0.00e+00 n=2.02e-14 s=2.02e-14 a=1.00e+00

task: a n=2 £=7.450581e-09
x= 1.124741e+01
c=-7.4505816-09

108

output of model gastype flows

model

gasl

cpl

htl

gtl

temp pres mass enth
(K) (atm) (kg/s) (J/kg)

300.0 1.00 1.125e+01 2.499e+04

544.4 6.00 1.125e+01 3.3766+06

1400.0 6.00 1.125e+01 1.614e+07

950.4 1.00 1.125e+01 9.232e+06

entr dens vol

(J/kg-K) (kg/m^3) (m"3/s)
qual

1.32e+04 8.19e-02 1.376+02 1.00

1.39e+04 2.70e-01 4.16e+01 1.00

2.79e+04 1.05e-01 1.07e+02 1.00

2.94e+04 2.586-02 4.356+02 1.00

gasl

cpl

htl

gtl

output of model parameters

id=THR-tH2 area=0.0006+00 dt=O.00e+00 dp=0.00e+00 dm=0.006+00 dh=0.00e+

rpm=l.OOOe+00 power=-3.769e+07 heat=0.OOOe+00 nstages=i

rat_cm=1.9481e+02 rat_crpm=5.7735e-02 rat_pr=6.0000

pr=6.0000 6££=0.8800

rat_crpm=5.7735e-02 rat_pr=6

cm=l.OOOOe+OO orpm=l.OOOOe+OO

h6at=1.4356e+08

rpm=l.OOOe+OO power=7.769e+07

rat_cm=7.0140e+01 rat_crpm=2.67266-02 rat_pr=6

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=6.0000 e££=0

00

rat_ef£=0.8800

0000

8400
rac_e££=0,8400

Space Propulsive System

thermodynamic data for HYDROGEN with flow id =

pc=12.800000, tc=33.200000, tb=20.400000,
THR-tH2

molwt=2.016000

output of model gastype flows

gas_h2

pump_lp

pump_hp

hx_nz

sp_2

sp_l

3t_lp

mx_l.s

sp_2. s

rox_2.s

sp_l.s

gt_hp

mx_l

mx_2

ht^reac

hx_nz.h

nz 1

temp

(K)

20.0

20.6

28.2

583.3

583.3

533.3

567.5

567.5

583.3

583.3

533.3

526.0

555.1

564.3

2930.0

2492.0

842.2

pres

(atm:

1.29

7.90

139.22

139.22

139.22

139.22

85.91

85.91

139.22

139.22

139.22

85.91

85.91

85.91

85.91

85.91

0.10

)

7

7

7

7

5

3

3

3

2

2

1

1

5

7

7,

7,

7.

mass

(kg/s)

.3376+00

.387e+00

.3876+00

.387e+00

.1716+00

.6206+00

.620e+00

.6206+00

.216e+00

.2166+00

.5516+00

.551e+00

,1716+00

,387e+00

,3876+00

.3876+00

.387e+00

-4

-4

-3

4

4

4

3

3
4

4

4

3

3

3

4

3,

6,

enth

(J/kg)

.1306+06

.1176+06

.9036+06

.002e+06

.0026+06

.0026+06

.744e+06

.7446+06

.0026+06

.0026+06

.002e+06

.161e+06

.5696+06

.6996+06

.2496+07

.459e+07

.7666+06

entr

(J/kg-K)

-4.51e+04

-4.49e+04

-4.34e+04

1.93e+03

1.936+03

1.936+03

3.546+03

3.54e+03

1.93e+03

1.93e+03

1.93e+03

2.476+03

3.23e+03

3.466+03

2.956+04

2.66e+04

3.60e+04

dens

(kg/m'S)

7
7

7

5

5

5

3

3

5

5

5

3,

3,

3,
7,

3,

3.

.746+01

.686+01

.556+01

.626+00

.62e+00

.626+00

.636+00

.636+00

,626+00

,62e+00

,626+00

,916+00

,71e+00

,656+00
,176-01

.42e-01

.89e-03

vol

(m-3/s)

9

9

9

1

9
6

9

9

3

3
2

3

1

2

1

8

1

.556-02

.62e-02

.78e-02

.316+00

.206-01

.44e-01

.986-01

.986-01

.94e-01

,946-01
,766-01

,976-01

,40e+00

,03e+00

,03e+01

,736+00

,906+03

qual

0.00

0.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

output of model parameters

gas_h2 id=THR-tH2 ar6a=0.OOOe+00 dt=0.006+00 dp=0.O0e+O0 dm=0.00e+00

dh=0.00e+00
pump_lp mod6=d rpm=0.OOOOe+OO dp=6.61006+00 eff=0.6700 power=-9.54526+04

109

pump_hp

sp_2

sp_l

gt_ip

gt_hp

ht_r8ac

nz 1

rat_rpm=0.OOOOe+OO rat_m=7.38706+00 rat_eff=0.6700

e££=0.8100 pow6r=-l.58106+06

rat_m=7.38706+00 rat_6££=0.8100

rat_dp=6.61006+00

inertia=0.OOOOe+OO

mode=d rpm=0.OOOOe+OO dp=l.31326+02

rat_dp=l.31326+02 rat_rpm=0.OOOOe+OO

inertia=0. OOOOe+OO

type=count mode=d

heat=5.8393e+07 lmtd=2404.778 p£_cold=0.00 p£_hot=0.00

ufc=30.000 ufh=30.000 u=15.000 surfarea=1618.800

denswall=7800.00 thickwall=l.0006-03 W8ight=6313.321

3r=3.0000e-01

sr=3.0000e-01

rpm=l.OOOe+OO power=9.330e+05

rat_cm=6.27946-01 rat_crpm=4.1404e-02 rat_pr=l

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=1.6205 eff=0

rpm=l.OOOe+00 power=l.304e+06

rat_cm=2.69126-01 rat_crpm=4.1404e-02 rat_pr=l

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=1.6205 8ff=0

h6at=2.8658e+08

mode=d eff=8.5000e-01 areain=4.3883e-02 area=3.2540e-01

mach=3.84676+00 thru3t=6.1166e+04 impul3e=8.4493e+02

.6205

.2300

.6205

.7500

rat_eff=0.2300

rat_e£f=0.7500

output of model powers

model

pump_lp
pump_hp

gt_lp
gt_hp
ht_r6ac

totals

netprod
netinput

input

(W)

0.OOOOe+OO

0.OOOOe+OO
0.00006+00

0.OOOOe+OO
2.86586+08

2.86586+08

5.60406+05

2.36536+08

loss

(W)

0.OOOOe+OO
0.OOOOe+OO

0.OOOOe+OO

0.OOOOe+OO

0.OOOOe+OO

0.OOOOe+OO

prod

(W)

0.OOOOe+OO
0.OOOOe+OO

9.3300e+05

1.3039e+06
0.OOOOe+OO

2.2369e+06

9
1

0

0

0

1

cons

(W)

.54526+04

.53106+06

.OOOOe+OO

.OOOOe+OO

.OOOOe+OO

.67656+06

Space Propulsive System with Constraints

task: a n=0 £=8.822084e+05

x= 3.0000006-01 3.0000006-01

c= 8.375455e+05 -2.7714486+05

h= 3.9893e-01 hs= 3.98936-01 mu=0.O0e+00 n=2.11e-01 s=1.71e-01 a=9.436-01

task: a n=l f=5.984499e+05

x= 6.9523336-01 5.331519e-01

c= 1.7545956+05 -5.721506e+05

h= 3.46596-02 hs= 3.46596-02 mu=0.00e+00 n=2.37e-02 s=2.36e-02 a=9.996-01

task: a n=2 £=2.9343756+05

x= 6.952333e-01 6.872562e-01

0= 8.6032936+04 -2.8054226+05

h= 8.33296-03 hs= 8.3329e-03 mu=0.00e+00 n=2.20' 6-02 s=2.09e-02 a=9.96e-01

task: a n=3 £=1.9743496-04

x= 6.9S2333e-01 3.355123e-01

c=-5.7900506-05 1.8880636-04

110

output of model gastype flows

model

ga3_h2

pump_lp

pump_hp

hx_nz

sp_2

sp_l

gt_ip
mx_l .s

sp_2.s

mx_2. s

SP_1. 3
gt_hp

mx_l

mx_2

ht_reac

hx_nz. h

nz_l

temp

(K)

20.0

20.6

28.2

583.3

583.3

583.3

567.5

567.5

583.3

583.3

583.3

526.0

532.8

569.7

2930.0

2492.0

842.2

pres

(atm)

1.29

7.90

139.22

139.22

139.22

139.22

85.91

85.91

139.22

139.22

139.22

85.91

85.91

85.91

85.91

85.91

0.10

7

7

7

7

2

3

3

3

5

5

1

1

2

7

7

7

7

mass

(kg/s)

.387e+00

.387e+00

.3876+00

.3876+00

.2516+00

.7036-01

.7038-01

.703e-01

.1366+00

.1366+00

.8816+00

.8816+00

.251e+00

.3876+00

.387e+00

.387e+00

.3376+00

-4,

-4,

-3

4

4

4

3

3

4

4

4

3

3

3

4

3

6

enth

(J/kg)

.130e+06

.1176+06

.9036+06

.0026+06

.0028+06

.0026+06

,744e+06

.7446+06

.002e+06

.002e+06

.002e+06

.1616+06

.2576+06

.7756+06

.2496+07

.459e+07

.7666+06

entr

(J/kg-K)

-4.516+04

-4.496+04

-4.34e+04

1.936+03

1.936+03

1.93e+03

3.546+03

3.54e+03

1.93e+03

1.936+03

1.93e+03

2.47e+03

2.65e+03

3.59e+03

2.95e+04

2.666+04

3.606+04

dens

(kg/m"3)

7.746+01

7.688+01

7.558+01

5.626+00

5.62e+00

5.62e+00

3.63e+00

3.63e+00

5.62e+00

5.62e+00

5.626+00

3.916+00

3.866+00

3.616+00

7.176-01

8.426-01

3.89e-03

vol

(m"3/s)

9,

9.

9,

1,

4,

6,

1,

1,

9

9

3

4

5

2

1

8

1

,55e-02

.626-02

.78e-02

.316+00

.006-01

.596-02

.02e-01

.026-01

.136-01

.136-01

.346-01

.826-01

.348-01

.048+00

.038+01

.786+00

.906+03

qual

0.00

0.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

gaE_h2
pump_lp

pump_hp

sp_2
sp_l
gt_ip

gt_hp

ht_reac
nz 1

output of model parameters

id=THR-tH2 area=0.OOOe+00 dt=0.00e+00 dp=0.006+00 dm=0.00e+O0 dh=0.00e+00
.61006+00
.00006+00

eff=0.6700 pow6r=-9.54526+04
rat_ra=7.38706+00 rat_e££=0.6700

.31326+02

.OOOOe+OO
eff=0.8100 pow6r=-1.5810e+06
rat_m=7.3870e+00 rat_e££=0.8100

mode=d rpm=0.OOOOe+OO dp=6
rat_dp=6.6100e+00 rat_rpm=0
inertia=0.OOOOe+OO
mode=d rpm=0.OOOOe+OO dp=l
rat_dp=l.31326+02 rat_rpm=0
inertia=0. OOOOe+OO
typ6=count mode=d
heat=5.8393e+07 lmtd=2404.778 pf_cold=0.00 pf_hot=0.00
ufc=30.000 ufh=30.000 u=15.000 surfarea=1618.800
denswall=7800.00 thickwall=l.OOOe-03 weight=6313.321
sr=6.95236-01
sr=8.35516-01
rpm=l.OOOe+OO power=9.545e+04
rat_cm=6.4243e-02 rat_crpm=4.1404e-02 rat_pr=l
cm=l. OOOOe+OO crpm=l. OOOOe+OO pr=1.6205 6ff=0
rpm=l.OOOe+OO power=l.581e+06
rat_cm=3.26326-01 rat_crpm=4.1404e-02 rat_pr=l.6205 rat_ef£=0.7500
cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=1.6205
heat=2.86026+08
mode=d e£f=3.5000e-01 areain=4.38836-02 area
mach=3.84676+00 thrust=6.1166e+04 impulse=8.4493e+02

.6205

.2300
rat ef£=0.2300

e££=0.7500

=3.25406-01

output of model powers

input
(W)

loss
(W)

prod
(W)

cons
(W)

pump_lp
pump_hp
gt_lp
gt_hp
ht_reac

0.OOOOe+OO 0.OOOOe+OO
0.OOOOe+OO 0.00006+00
0.OOOOe+OO 0.OOOOe+OO
0.OOOOe+OO 0.OOOOe+OO
2.86026+08 0.OOOOe+OO

0.OOOOe+OO 9.5452e+04
0.OOOOe+OO 1.58106+06
9.54526+04 0.OOOOe+OO
1.53106+06 0.00006+00
0.OOOOe+OO 0.OOOOe+OO

111

2.36028+08 0.00008+00 1.6765e+06 1.67656+06

netprod 1.30916-04

netinput 2.8602e+08

Coal-Fired Power Plant

task: a n=0 £=1.106367e+05
x=-5.000000e-01
c=-l.1063676+05
h= 2.14626-02 hs= 2.14626-02 mu=0.00e+00 n=2.15e-02 s=2.15e-02 a=1.00e+00

task: a n=l £=1.015648e-03
x=-3.5350236-01
c= 1.0156486-03
h= 1.80866-18 hs= 1.3086e-18 mu=0.00e+00 n=1.81e-18 s=1.81e-18 a=1.00e+00

task: a n=2 £=0.OOOOOOe+00

x=-3.5350236-01

0= O.OOOOOOe+00

task: b n=0 £=1.0820366+01

x= 1.500000e+01

c= 1.082036e+01

h= 7.46736-03 hs= 7.46736-03 mu=0.00e+00 n=7.47e-03 s=7.47e-03 a=1.006+00

task: b n=l f=5.665290e-02
x= 1.491359e+01
c=-5.665290e-02
h= 2.04708-07 hs= 2.04708-07 mu=0.00e+00 n=2.03e-07 s=2.036-07 a=1.00e+00

task: b n=2 £=3.433942e-04

x= 1.4914046+01

c=-3.4339426-04

output of model parameters

gas_air id=GAS ar6a=0.OOOe+OO dt=0.006+00 dp=0.006+00 dm=0.00e+00 dh=0.006+00

cb_gas stoich=l.35586+00 mass=l.49146+01 lhv=3.2140e+07

gas_wat id=STM area=0.OOOe+OO dt=2.09e-10 dp=0.006+00 dm=0.00e+0O dh=0.00e+00

pump_£w mod6=d rpm=0.OOOOe+OO dp=l.7993e+02 eff=0.8500 power=-2.6984e+06

rat_dp=1.7993e+02 rat_rpm=0.OOOOe+OO rat_m=l.2500e+02 rat_ef£=0.8500

inertia=0. OOOOe+OO

hx_boil typ6=count mode=d

heat=2.2789e+08 lmtd=1225.646 pf_cold=0.00 p£_hot=0.00

ufc=30.000 ufh=30.000 u=15.000 sur£ar6a=12395.415

denswall=7800.00 thickwall=l.OOOe-03 weight=43342.120

hx_sh type=count mode=d

h6at=l.10316+08 lmtd=599.386 p£_cold=0.00 pf_hot=0.00

u£c=30.000 u£h=30.000 u=15.000 surfarea=12268.939

denswall=7800.00 thickwall=l.0006-03 weight=47848.862

hx_rh type=count mode=d

heat=5.06506+07 lmtd=321.331 pf_cold=0.00 p£_hot=0.00

u£c=30.000 u£h=30.000 u=15.000 sur£area=10506.795

denswall=7800.00 thickwall=l.0006-03 weight=40976.501
hx_air tYpe=count mode=d

heat=6.38646+07 lmtd=372.380 pf_cold=0.00 pf_hot=0.00

u£c=30.000 ufh=30.000 u=15.000 surfarea=11433.548

112

rat_pr=757.5758 rat_eff=0.
pr=757.5758 eff=0.8600

d6nswall=7800.00 thlckwall=l. OOOe-03 weight=44590 . 838
st_hp rpm=l. OOOe+OO pow6r=3 . 835e+07

rat_cm=l.97766+01 rat_crpm=3.5115e-02 rat_pr=3.6000

cm=l.00006+00 crpm=l.OOOOe+OO pr=3.6000 eff=0.8400
st_lp rpm=l.OOOe+OO power=l.284e+08

rat_cm=6.40766+01 rat_crpm=3.5115e-02

cm=l.OOOOe+OO crpm=l.OOOOe+OO
fh_hp cascade=0 subcool=l.OOOOe+01

htemp=6.2478e+02 5.3788e+02 5.3738e+02 5.2788e+02

ct6mp=3.8353e+02 3.8471e+02 4.2345e+02 4.29966+02

q=3.4713e+06 2.0443e+07 6.1983e+05

fh_lp cascade=l subcool=l.OOOOe+01

htemp=3.1132e+02 3.1132e+02 3.11326+02 3.01326+02

ctemp=3.10726+02 3.12646+02 3.8353e+02 3.83536+02

q=0.OOOOe+OO 3.63286+07 9.92196+05

ht_cond heat=-2.24756+08

rat_eff=0.8400

!600

output of model gastype flows

model temp

(K)
pres mass

(atm) (kg/s)

enth

(J/kg)
entr dens

(J/kg-K) (kg/m"3)
vol qual

(m"3/s)

gas_wat

hx_boil

sd_l

mx_£w.s

sd_l. s

hx_sh

st_hp

hx_rh

st_lp

ht_cond

mx_ext. s

st_hp.s

fh_hp.h

st_lp.s

fh_lp.h

nix_6xt

pump_fw

fh_lp

fh_hp

mx_£w

gas_wat. eye

gas_air

hx_air

cb_gas

hx_boil.h

hx_sh.h

hx_rh.h

hx_air.h

597.4
631.1
631.1
631.1
631

811

624

811

311

311

311

624

527

311

301

309

310

383

430

597

597

300.0

600.0

2219.3

1520.5

1132.5

946.1

700.0

180.

130.

130.

180.

180.

180.

50.

50.

0.

0.

0.

50.

50.

0.

0.

0.

180.

180.

130.

180.

180.

1.

1.

1.

1.

1.

1.

1.

.0006+02

.OOOe+02

.7506+02

.750e+02

.2506+02

.2506+02

.125e+02

.1256+02

.0136+02

.0136+02

.0136+02

.2506+01

.2506+01

.1256+01

.3756+01

.2506+02

.2506+02

.250e+02

.2506+02

.OOOe+02

.OOOe+02

.0676+02

.067e+02

.216e+02

.216e+02

.2166+02

.216e+02

.216e+02

-1.4506+07

-1.4046+07

-1.4236+07

-1.4236+07

-1.3486+07

-1.2596+07

-1.290e+07

-1.245e+07

.3596+07

.581e+07

.5816+07

.2906+07

.4866+07

.3596+07

.5856+07

.5826+07

.5306+07

.550e+07

.5306+07

.4506+07

-1.4506+07

1.8616+03

3.1086+05

2.5686+05

-7.7156+05

-1.2696+06

-1.4986+06

-1.7866+06

6.976+03

7.70e+03

7.40e+03

7.40e+03

8.60e+03

9.87e+03

966+03

066+04

12e+04

068+03

066+03

966+03

35e+03

126+04

936+03

4.04e+03

4.056+03

4.926+03

5.41e+03

6.97e+03

6.97e+03

6.896+03

7.606+03

9.216+03

8.65e+03

8.28e+03

8.066+03

7.70e+03

6.77e+02

3.12e+02

5.39e+02

5.39e+02

1.38e+02

5.576+01

1.95e+01

1.40e+01

5.07e-02

9.936+02

9.93e+02

1.956+01

7.93e+02

5.076-02

9.96e+02

9.94e+02

l.OOe+03

9.596+02

9.216+02

776+02

776+02

17e+00

86e-01

62e-01

38e-01

206-01

826-01

17e-01

38e-01

60e+00

956-01

956-01

06e-01

256+00

786+00

8.046+00

2.00e+03

1.02e-01

1.02e-01

426-01

536-02

22e+02

3Se-02

266-01

256-01

306-01

36e-01

38e-01

386-01

76e+02

53e+02

366+03

316+02

94e+02

79e+02

296+02

0.92

0.00

output of species molar flow rates(gmol/s) and mole fractions(%)

gas_wat

hx_boil

sd_l

mx_fw.s

sd_l.s

H2O=0.00e+00 H20c= 27754

H20=6938.5 H20c= 20816

H2O=0.00e+00 H20c= 20816

H2O=0.00e+00 H20c= 20816

H20=6938.5 H2Oc=0.006+00

113

hx_sh
st_hp
hx_rh
st_lp
ht_cond
mx_ext.s
st_hp.s
£h_hp.h
st_lp.s
£h_lp.h
mx_6Xt
piimp_fw
fh_lp
fh_hp
mx_fw
gas_wat.eye
gas_air
hx_air
cb_gas

hx_boil .h

hx_sh.h

hx_rh.h

hx_air. h

H20=6938.5
H20=6244.7
H20=6244.7
H20=5174.2

H2Oc=0.00e+00
H2Oc=0.006+00
H2Oc=0.006+00
H2Oc=446.02

H2O=0.00e+00 H2Oc=5620.2
H2O=0.00e+00 H2Oc=5620.2
H20=693.85 H2Oc=0.OOe+00
H2O=0.00e+00 H20c=693.85
H20=574.91 H20c=49.558
H2O=0,
H2O=0.
H2O=0
H2O=0
H2O=0

OOe+OO
OOe+OO
OOe+00
OOe+OO
OOe+00

H20=0.OOe+OO
H2O=0.OOe+OO
02=1504.5 21
02=1504.5 21

H20c=1318.
H20c=6938.
H20c=6938.
H20c=6938.
H20c=6938.
H20c= 27754
H20c= 27754
N2=5659.9 79
N2=5659.9 79

total=7164.5
NO=0.0002 0 total=7164.5

CO=34.468 0 CO2=930.19 12 H=1.1717 0 H2=3.1276 0 H20=444.13 6 0=6.2708 0
02=378.71 5 0H=23.638 0 N2=5617.5 75 N0=49.861 1 302=3.385 0 total=7492.5
CO=0.0339 0 C02=964.62 13 H=0.0002 0 H2=0.0061 0 H20=459.45 6 0=0.0111 0

02=390.84 5 OH=0.4151 0 N2=5639.8 76 N0=5.3282 0 302=3.335 0 total=7463.9
C02=964.66 13 H20=459.66 6 02=393.36 5 OH=0.0050 0 N2=5642.2 76 NO=0.4603 0

302=3.3850 0 total=7463.8
002=964.66 13 H20=459.66 6 02=393.56 5 OH=0.0002 0 N2=5642.4 76 NO=0.0694 0

302=3.3850 0 total=7463.8
002=964.66 13 H20=459.66 6 02=393.59 5 N2=5642.5 76 NO=0.0012 0 302=3.335 0

total=7463.8

output of model powers

st_hp
st_lp
ht_cond
pump_fw
gas_wat
cb_gas
totals

netprod
netinput

input

(W)

0.OOOOe+OO

0.OOOOe+OO
0.00006+00

0.OOOOe+OO

0.OOOOe+OO
4.79346+08

4.79346+08

1.64096+08

2.54596+08

loss

0

0
2

0

0

0
2

(W)

.OOOOe+OO

.OOOOe+OO

.24756+08

.OOOOe+OO

.00006+00

.OOOOe+OO

.2475e+08

prod

(W)

3.83536+07

1.28446+08

0.OOOOe+OO

0.OOOOe+OO

0.OOOOe+OO

0.OOOOe+OO
1.66796+08

0.
0.

0,

2,

0,

0,

2.

cons

(W)

,OOOOe+OO

,0000e+00

.OOOOe+OO

.69846+06

.00006+00

.00006+00

.69846+06

PEM Fuel Cell Svstem

task: task_l n=0
x= 6.000000e-01
c= 5.9739796-03 -
h= 4.92676-01 hs=

task: task_l n=l
x= 6.4660056-01
c= 5.2025006-04
h= 1.12736-02 hs=

f=4.0456766+00
l.lOOOOOe+00 3.2500006+02
4.0456728+00 -4.6654136-04
4.9267e-01 mu=0.OOe+OO n=4.63e-01 s=3.64e-01 a=9.616-01

f=l.4116646+00
8.7663146-01 3.2564116+02
1.4116636+00 1.3381976-05
1.12736-02 mu=0.OOe+OO n=9.60e-03 s=6.00e-03 a=8.99e-01

114

task: task_l n=2 £=9.389739e-01

x= 6.4803626-01 9.7205236-01 3.2561886+02

c=-3.9848946-04 -9.389738e-01 -3.5449086-06

h= 4.8663e-03 hs= 4.86636-03 mu=0.OOe+00 n=1.55e-03 s=1.33e-03 a=9.536-01

task: task_l n=3 £=3.728309e-02

x= 6.4723756-01 9.3293666-01 3.2562356+02

c=-8.0888046-06 -3.7283096-02 1.9902786-08

h= 7.62776-06 hs= 7.6277e-06 mu=0.OOe+OO n=2.73e-06 s=2.216-06 a=9 39e-01

task: task_l n=4 f=2.2316536-03

x= 6.4725806-01 9.3128446-01 3.256235e+02

c= 5.2833986-07 2.2316536-03 -3.6826676-09

h= 2.7353e-08 hs= 2.73536-08 mu=0.OOe+OO n=8.87e-09 s=7.26e-09 a=9.40e-01

task: task_l n=5 f=1.826387e-05

x= 6.4725726-01 9.3137846-01 3.2562356+02

c=-8.1441178-09 -1.3263378-05 -2.691953e-ll

output of model parameters

fuel

air_cond

air_rej

air_int

pump_fuel

pimip_water

wat

water_tank

h2o

hx_preh

hx_rej

hx_cool

sp_air

sp__prox

sp_wat

sp_shif

sp_fuel

sp_anode

sp_h2o

id=GAS area=0.OOOe+00 dt=0

humid=0.500 pvap=0.035

id=THR-CH40 area=0.OOOe+00 dt

id=GA3 area=0. OOOe+00 dt=0.

humid=0.500 pvap=0.035

id=GAS area=0.OOOe+OO dt=0.

humid=0.500 pvap=0.035

id=GAS area=0. OOOe+00 dt=0.

humid=0.500 pvap=0.035

mod6=d rpm=0.OOOOe+OO dp=2

rat_dp=2.OOOOe+OO rat_rpm=0

inertla=0.OOOOe+OO

mode=d rpm=0.OOOOe+OO dp=l

rat_dp=l.OOOOe+OO rat_rpm=0

inertia=0. OOOOe+OO

id=STM area=0.OOOe+00 dt=0

id=STM area=0. OOOe+OO dt=-2

id=STM area=0.OOOe+00 dt=0

type=count mode=d

heat=1.8212e+03 lmtd=18.902

ufc=30.000 ufh=50.000 u=18

denswall=7800.00 thickwall=

type=count mod6=d

heat=8.51276+04 lmtd=27.722

•ufc=30.000 ufh=50.000 u=13

d6nswall=7800.00 thickwall=:

type=count mode=d

heat=l.15386+04 lmtd=50.570

uf0=30.000 u£h=50.000 u=18

d6nswall=7800.00 thickwall=:

sr=2.6660e-01

sr=9.82776-01

sr=7.62886-03

sr=2.49616-02

sr=l.00006-01

sr=0.OOOOe+OO

sr=-l.OOOOe+OO

ssr[H20c]=l.0006+00

OOe+OO dp=0.OOe+00 dm=0.OOe+OO dh=0.OOe+00

=0.006+00 dp=0.OOe+OO dm=0.OOe+00 dh=0.OOe+OO
OOe+OO dp=0.006+00 dm=0.OOe+OO dh=0.OOe+00

OOe+OO dp=0.006+00 dm=0.006+00 dh=0.OOe+OO

OOe+00 dp=0.006+00 dm=0.OOe+OO dh=0.OOe+OO

.00006+00 8££=0.7500 power=-3.8913e+00

.OOOOe+OO rat_m=l.05746-02 rat_6£f=0.7500

.00006+00 eff=0.7500 power=-l.27506+02

.OOOOe+OO rat_m=9.31336-01 rat_e££=0.7500

OOe+00 dp=0.OOe+00 dm=0.OOe+00 dh=l.146-01

076-02 dp=0.OOe+00 dm=-2.696-11 dh=-8.63e+01

OOe+OO dp=0.OOe+00 dm=0.OOe+OO dh=0.OOe+00

pf_cold=0.00 pf_hot=0.00

750 surfar6a=5.139

1.0006-04 weight=2.004

pf_cold=0.00 pf_hot=0.00

.750 surfarea=163.773

1.0006-04 weight=63.872

pf_cold=0.00 pf_hot=0.00

.750 sur£ar6a=12.169

l.OOOe-04 W6ight=4.746

115

cond_l

gt_i

fan_cond

fan_int

fan_rej

cp_anode

form

pefc

h2oin=9.367e-04 h2oout=7.4776-04 h2ocond=l.891e-04

heat=1.383e+04 pvap=l.376e-01 ph2o=l.3766-01

lmtd=3.4086+01 u=3.000e+01 area=l.353e+01

dens=7800.00 thick=5.OOOe-04 weight=26.382

rpm=l.OOOe+00 power=l.606e+04

+00 rat_crpm=4.70726-02 rat_pr=3.0000

crpm=l.OOOOe+OO pr=3.0000 e£f=0.8000

pow6r=-1.847e+04 heat=-8.4356+03 nstag6s=2

dt=2.0016+01 u=5.OOOe+OO area=30.000

thlck=1.000e-03 W6lght=18.971

rat_cm=2.45226+00 rat_crpm=5.77356-02 rat_pr=l

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=1.7321 6ff=0

rat_cm=1.1016e+

cm=l.OOOOe+OO

rpm=l.OOOe+OO

lmtd=l.4056+01

d6ns=2700.000

rat_eff=0.8000

rat_6£f=0.8000

rpm=l.OOOe+00

7321

8000

nstages=l

0050 rat_6ff=0.

8000

nstages=l

0050 rat_eff=0.

8000

nstag6s=l

0050 rat_eff=0.

8000

nstages=l

5000 rat_6ff=0.

power=-5.511e+02 heat=0.OOOe+OO

rat_cm=l.75166+01 rat_crpm=5.7735e-02 rat_pr=l.

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=1.0050 6£f=0.

rpm=l.OOOe+OO power=-5.5116+02 heat=0.OOOe+OO

rat_cm=1.7516e+01 rat_crpm=5.77356-02 rat_pr=l.

cm=l.OOOOe+OO orpm=l.OOOOe+OO pr=1.0050 eff=0.

rpm=l.OOOe+00 pow6r=-2.756e+03 heat=0.OOOe+00

rat_cm=8.75806+01 rat_crpm=5.7735e-02 rat_pr=l.

cm=l.OOOOe+OO crpm=l.OOOOe+OO pr=1.0050 eff=0.

rpm=l.OOOe+OO power=-9.6606+02 h6at=0.OOOe+OO

rat_cm=l.62306-01 rat_crpm=5.32256-02 rat_pr=l.

cm=l.00006+00 crpm=l.OOOOe+OO pr=1.5000 eff=0.8000

h6at=3.706e+04 lmtd=3.7866+02 tmix=3.645e+02 ua=9.788e+01 type=paral

mod6=d celltemp=353.00 dtc6ll=0.OOOe+OO

h2r6ac=7.3526-04 h2odi££=-l.774e-05

h2oain=1.261e-04 h2oaout=l.4396-04 lncrease=l.7746-05

h2ocin=6.3196-05 h2ocout=7.807e-04 increas6=7.175e-04

pvap=0.46b ph2oa=0.464 ph2oc=0.465

dh=-2.424e+08 dg=-2.283e+08 hd6l=-l.886e+05

option=ts curd6n=0.575 voltid6al=l.183 voltact=0.715

fu6lutil=0.850 o2util=0.500 loadr=5.038e-02

lmtd=13.157 u=1.342e+02 area=2.4675e+01 w_p=1.600 weight=162.254

power=1.014e+05 heatg6n=7.679e+04 h6at=8.714e+04

effid6al=0.942 ef£volt=0.604 effact=0.569

output of model gastype flows

air
cp_air
sp_air
sp_prox
mx_prox. s
wat
sp_shi£

form, s

fuel

pump_£u6l
hx_pr6h

Sp_fU6l

form
mx_shif.s
sp_shif.s
mx_shi£
inx_prox

temp

(K)

300.0

369.3

369.3

369.3
369.3

393.8

393.8

393.8

300.0

300.1

343.0

343.0

473.1

473.1

393.8

470.4

532.6

pres

(atm;

1.00

3.00

3.00

3.00

3.00

2.00
2.00

2.00

1.00

3.00

3.00

3.00

2.00

2.00

2.00
2.00

2.00

mass

1 (kg/s)

1.4166-01

1.4166-01

1.0336-01

1.7396-03

1.739e-03

7.1346-03
6.956e-03

6.956e-03

1.0576-02

1.0576-02

1.0576-02

9.516e-03

1.647e-02

1.647e-02

1.7816-04

1.6656-02

1.844e-02

-1

-7

-7

-7

-7

-1

-1

-1

-7

-7

-7

-7

-7

-7

-1

-8

-7,

enth

(J/kg)

.4796+05

.700e+04

.7006+04

.7006+04

.7006+04

.404e+07

.4046+07

.4046+07

.5498+06

.5498+06

.3776+06

.3776+06

.9416+06

.941e+06

.4046+07

.006e+06

.2376+06

entr

(J/kg-K)

6.96e+03

6.856+03

6.856+03

6.85e+03

6.85e+03

8.67e+03

8.676+03

8.67e+03

1.436+04

1.436+04

1.48e+04

1.48e+04

1.32e+04

1.326+04

8.67e+03

1.32e+04

1.336+04

dens

(kg/m"3)

1.16e+00

2.846+00

2.346+00

2.34e+00

2.34e+00

1.766+00
1.766+00

1.76e+00

7.34e+02

7.34e+02

6.346+02

6.34e+02

6.64e-01

6.64e-01

1.766+00
6.70e-01

5.776-01

vol

(m-3/s)

1

4

3

6

6

4

3

3

1

1

1

1

2

2

1

2

3

.226-01

.99e-02

.666-02

.316-04

.316-04

.04e-03

.946-03

.946-03

.44e-05

.44e-05

.556-05

.396-05

.48e-02

.436-02

.Ole-04

.48e-02

.196-02

qual

1.00

1.00

1.00

1.00

1.00

0.65

0.65

0.65

0.00

0.00

0.00

0.00

0.00

0.00

0.65

1.00

1.00

116

hx_cool.h

sp_prox. s

pefc

sp_h2 0

mx_cath. s

sp_air. s

mx_burn. s

sp_fuel.s

mx_fuel.s

pefc.a

cp_anod6

sp_anod6

mx_burn

mx_fuel

form.h

mx_cath

mx_anode.s

sp_anod6.s

mx_anode

gt_i
cond_l

sp_h2o.s

h2o

rax_h2o.s

water_tank

pump_wat6r

pefc.cool

rax_h2o

sp_wat

hx_preh. h

hx_rej.h

mx_cond.s

cond_l.s

rnx_cond

wat6r_tank. eye

sp_wat.s

hx_cool

wat.eye

air_int

fan_int

cp_air .cool

air_eond

fan_cond

cond_l.cool

air_rej

fan_rej

hx_rej

353

369

353

353

353

369

369

343

343

353

396

396

871

1140

620

451

451

396

451

358

325

353

353

353

325

325

348

348

348

347

325

325

325

325

325

348

393

393

300,

300,

308,

300,

300

313

300

300

317

.0

.3

.0

.0

.0

.3

.3

.0

.0

.0

.5

.5

.0

.7

.7

.3

.3

.5

.3

.9

.6

.0

.0

.0

.6

.6

.0

.0

.0

.6

.6

.6

.6

.6

.6

.0

.8

.8

.0

.5

.7

.0

.5

.9

.0

.5

.0

2,

3,

3,

3,

3,

3,

3,

3,

3,

2.

3,

3,

3,

3,

3,

3.

3,

3,

3,

1

1

3

3

3

1,

2,

2,

2,

2,

2,

2,

2,

1,

1,

1,

2,

2,

2,

1,

1,

1,

1,

1,

1,

1,

1,

1

,00

,00

,00

,00

,00

,00

,00

,00

,00

,00

.00

,00

,00

,00

,00

,00

,00

,00

,00

,00

,00

,00

,00

.00

.00

.00

.00

.00

.00

.00

.00

.00

,00

,00

.00

,00

,00

.00

,00

.00

.00

.00

,00

,00

,00

,00

,00

1

1

1

9

9

3

3

1

1

1

1

1

5

5

5

1

1

0

1

1

1

3

3

3

9

9

9

9

9

9

9

9

3,

9,

9,

7,

7,

7,

1,

1,

1,

1,

1,

1,

5,

5

5

,844e-02

,020e-01

,0326-01

,9486-02

,9436-02

,7756-02

,7756-02

,0576-03

,0576-03

,7286-02

,7286-02

,7286-02

,5026-02

,608e-02

,608e-02

,5566-01

,5566-01

,0006+00

,5566-01

,5566-01

,522e-01

.7276-03

.7276-03

.7276-03

.3146-01

.3146-01

.314e-01

.3516-01

.2306-01

.2806-01

.280e-01

.280e-01

.4066-03

.3146-01

.3146-01

.1346-03

.1346-03

.1346-03

.0116+00

.Olle+00

.Olle+00

.Olle+00

.Olle+00

.Olle+00

.0566+00

.056e+00

.0566+00

-7

-7

-1

-1

-1

-7

-7

-7

-7

-8

-8

-8

-2

-2

-3

-2

-2

-8

-2

-2

-2

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

.8636+06

.700e+04

.3506+06

.334e+06

.3346+06

.7006+04

.700e+04

.3776+06

.3776+06

.7076+06

.6516+06

.651e+06

.7696+06

.8566+06

.5176+06

.1216+06

.1216+06

.6516+06

.1216+06

.2246+06

.0126+06

.564e+07

.5646+07

.564e+07

.575e+07

.5756+07

.5666+07

.5666+07

.566e+07

.5666+07

.5756+07

.5756+07

.5756+07

.575e+07

.5756+07

.5666+07

.4046+07

.4046+07

.4796+05

.4736+05

.3906+05

.479e+05

.4736+05

.3366+05

.4796+05

.4736+05

.3056+05

1.

6.

7,

7,

7,

6,

6,

1,

1,

7,

7,

7,

7,

3.

7,

7

7

7

7

7

7

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

8

3

6

6

6

6

6

7

6

6

7

.19e+04

,85e+03

.14e+03

,24e+03

.246+03

,856+03

, 85e+03

.436+04

.436+04

,136+03

,166+03

.166+03

.90e+03

,31e+03

,556+03

,416+03

,416+03

,16e+03

,416+03

,496+03

,29e+03

,59e+03

,59e+03

.59e+03

,25e+03

.25e+03

.536+03

.536+03

.536+03

.526+03

.256+03

.25e+03

.256+03

.25e+03

.256+03

.536+03

.676+03

.676+03

.96e+03

.966+03

.986+03

.96e+03

.966+03

.OOe+03

.966+03

.96e+03

.Ole+03

9.

2.

2.

2.

2.

2.

2.

6.

6.

1.

2.

2.

1.

9.

1,

2,

2,

2,

2,

9,

1

1

9

9

9

9

9

9

9

9

9

9

9

9

9

9

1

1

1

1

1

1

1

1

1

1

1

536-01

846+00

896+00

786+00

78e+00

84e+00

84e+00

846+02

84e+02

936+00

57e+00

576+00

236+00

,366-01

,726+00

,24e+00

.246+00

,576+00

,246+00

,396-01

,056+00

,006+03

,726+02

,726+02

,876+02

,876+02

.756+02

.756+02

.756+02

.756+02

.876+02

.876+02

.376+02

.87e+02

.876+02

.756+02

.76e+00

.766+00

.166+00

.176+00

.146+00

.166+00

.176+00

.126+00

.166+00

.176+00

.lle+00

1.

3.

3.

3.

3.

1.

1.

1.

1.

8.

6.

6.

4.

5.

3.

6,

6.

0,

6.

1,

1

3

3

3

9

9

9

9

9

9

9

9

3

9

9

7

4

4

8

8

8

8

8

9

4

4

4

94e-02

606-02

536-02

53e-02

536-02

336-02

33e-02

55e-06

55e-06

976-03

71e-03

716-03

466-02

99e-02

266-02

,946-02

,946-02

,OOe+00

,946-02

,666-01

,45e-01

,73e-06

,846-06

.846-06

.446-04

.446-04

.556-04

.596-04

.526-04

.526-04

.406-04

.40e-04

.456-06

.448-04

.446-04

.326-06

.046-03

.046-03

.696-01

.666-01

.896-01

.69e-01

.666-01

.056-01

.346+00

.336+00

.576+00

1.

1.

1.

1.

1.

1.

1.

0.

0.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1.

1,

0,

0

-0

-0

-0

-0

-0

-0

-0

-0

0

-0

-0

-0

0

0

1

1

1

1

1

1

1

1

1

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

.00

,00

,00

,00

,09

,13

.09

.09

.09

.09

.13

.13

.00

.09

.09

.09

.65

.65

.00

.00

.00

.00

.00

.00

.00

.00

.00

output of species molar flow rates(gmol/s) and mole fractions(%)

air
ep_air
sp_air
sp_prox
mx_prox. s
wat
sp_shif
form.s
fuel

H2O=0.0877 2 02=1.0191 21 N2=3.8336 78 total=4.9403
H2O=0.0377 2 02=1.0191 21 N2=3.8336 78 total=4.9403
H2O=0.0643 2 02=0.7474 21
H20=0.0011 2 02=0.0129 21

H2O=0.0011 2 02=0.0129 21
H2O=0.2563 H2Oc=0.1397
H2O=0.2499 H2Oc=0.1362
H2O=0.2499 H2Oc=0.1362
CH4O=0.3300

N2=2.8115 78

N2=0.0484 78

N2=0.0484 78

total=3.6232

total=0.0624

total=0.0624

117

pump_fU6l

hx__pr8h

sp_fuel

form

mx_shif.s

sp_shif.s

mx^shif

mx_prox

hx_cool.h

sp_prox.s

pefc

sp_h2o

mx_cath.s

sp_air .s

mx_burn.s

sp_fuel.s

mx_fu6l.s

pefc.a

cp_anod6

sp_anode

mx_burn

mx_fuel

form.h

mx_cath

mx_anode. s
sp_anod6. s

mx_anode

gt_l
cond_l
sp_h2o.s
h2o

mx_h2 o.s

water_tank

pump_water
pefc.cool

mx_h2o

sp_wat

hx_pr6h.h

hx_rej.h

mx_cond.s
eond_l.s

mx_cond

water_tank.eye

sp_wat.s

hx_cool

wat.eye

air_int

fan_int

ep_air.cool

air_cond

£an_cond
cond_l.cool

air_rej
£an_r6j

hx__rej

CO2=0.2864 22

002=0.2864 22

H2Oc=0.0035

CO2=0.2877 22

CO2=0.2601 19

002=0.2967 22 H2=0.8650 65 H2O=0.1261 9 N2=0.0484 4

CH4O=0.3300

CH4O=0.3300

CH4O=0.2970

CO=0.0106 1

CO=0.0106 1

H2O=0.0064

CO=0.0093 1

00=0.0369 3

total=1.3365

CO=0.0003 0

total=1.3365

H2O=0.0632 2

H2O=0.5738 15

H2O=0.5738 15

H2O=0.5738 15

H2O=0.0234 2

H2O=0.0234 2

CH4O=0.0330

CH3OH=0.0330 100 total=0.03

002=0.2970 48 H2=0.1300 21

CO=0.0002 0 CO2=0.2963 48

total=0.6190

CO=0.0002 0 CO2=0.2963 48

total=0.6190

H2=0.8804 69

H2=0.3804 69

H2=0.8817 69

H2=0.8284 62

H2O=0.0997 8

H2O=0.0997 8

H2O=0.1083 8
H2O=0.1627 12

total=1.2771

total=1.2771

total=1.2870
N2=0.0484 4

02=0.7345 21

02=0.3669 9

02=0.3669 10

02=0.3669 10

02=0.2717 21

02=0.2717 21

N2=2.7631 78

N2=2.7631 71

N2=2.7631 75

N2=2.7631 75

N2=1.0220 78

N2=1.0220 78

30 :F

H2O=0.1436 23

H2=0.1298 21

total=3.5608

H2Oc=0.2069 5

total=3.7038

total=3.7038

total=1.3171

total=1.3171

N2=0.0434 8

H2O=0.1437 23

total=3.9107

total=0.6190

N2=0.0484 8

H2=0.1298 21 H2O=0.1437 23 N2=0.0434 8

CO2=0.2970 16
CO2=0.3300 17
total=1.9206
002=0.3300 17
002=0.3300 6
002=0.3300 6
total=0.OOe+OO
002=0.3300 6
002=0.3300 6
002=0.3300 6
H2Oc=0.2069 100 total=0.206<
H2O=0.OOe+00 H2Oo=0.2069

H2O=0.2970 16

H2O=0.3630 19

H2O=0.3630 19
H2O=0.9367 17
H2O=0.9367 17

H2O=0.9367 17

H2O=0.9367 17

H2O=0.7477 14

02=0.2067 11
02=0.1571 8

02=0.1572 8
02=0.5241 9
02=0.5241 9

02=0.5241 9

02=0.5241 9

02=0.5241 10

N2=1.0705 57

N2=1.0704 56

N2=1.0705 56
N2=3.8336 68

N2=3.8336 68

N2=3.8336 68

N2=3.8336 63

N2=3.8336 71

total=1.8711

NO=0.0001 0

total=1.9206
total=5.6244
total=5.6244

total=5.6244

total=5.6244

total=5.4353

H2O=0.OOe+00

H2O=0.OOe+00

H2O=0.OOe+00
H2O=0,

H2O=0,

H2O=0,

H2O=0,

H2O=0,

H2O=0.

006+00

OOe+OO

OOe+00

OOe+00

OOe+OO

008+00

H20=0.008+00

H2O=0.008+00

H2O=0.008+00

H2O=0.006+00

H2O=0.2563

H2O=0.2563

H2O=0.6262

H2O=0.6262

H2O=0

H20=

H2O=0.6262

H2O=0.6262

H20=3

H20=3

.6262

.6262

.1309

.1309

H2O=3.1309

H2Oc=0.2069

H20c=51.699

H20c=51.699

H20c=51.699

H2Oe=51.906

H2Oc=51.510

H2Oe=51.510

H2Oc=51.510

H2Oc=51.510

H2Oc=0.1391

H20c=51.699

H20c=51.699

H2Oe=0.3960

H2Oc=0.1397

H2Oc=0.1397

2 02=7.2739 21

02=7.2789 21

02=7.2789 21

02=7.2789 21

02=7.2789 21

02=7.2789 21

02=36.395 21

02=36.395 21

02=36.395 21

N2=27.383 73

N2=27.383 73

N2=27.383 78

N2=27.383 78

N2=27.383 78

N2=27.383 78

N2=136.91 78

N2=136.91 78

N2=136.91 78

total=35.288

total=35.238

total=35.288

total=35.288

total=35.283

total=35.283

total=176.44

total=176.44

total=176.44

output o£ mod8l powers

input

(W)

loss

(W)

prod

(W)
eons

(W)

cp_air

pump_fuel

pefc

ep_anode

gt_i
pump_water
water_tank

wat

fan_int

fan_cond

fan_rej

totals

000

000

000

000

000

000

000

157

000

000

000

157

Oe+OO

Oe+OO

Oe+OO

Oe+OO

Oe+OO

06+00

Oe+OO

76-04

Oe+OO

Oe+OO

Oe+OO

7e-04

.00006+00

.00006+00

.OOOOe+OO

.OOOOe+OO

.OOOOe+OO

.OOOOe+OO

.04136+01

.OOOOe+OO

.OOOOe+OO

0.OOOOe+OO

0.OOOOe+OO

3.0413e+01

OOOOe+OO

OOOOe+OO

01416+05

OOOOe+OO

6062e+04

OOOOe+OO

OOOOe+OO

OOOOe+OO

OOOOe+OO

OOOOe+OO

OOOOe+OO

1.17476+05

1.8467e+04

3.89136+00

0.OOOOe+OO

.65976+02

.OOOOe+OO

.27506+02

.00006+00

.OOOOe+OO

.51136+02

.51136+02

.75566+03

.34226+04

netprod

netinput

9.40498+04

-8.04126+01

119

Distribution for /\NL-98/8

Internal:

R. K. Ahluwalia (10) L. R. Johnson K. M. Myles
S. K. Bhattacharyya M. Krumpelt V. J. Novick
M. K. Butler R. Kumar (10) M. Q. Wang
E. D. Doss J. J. Laidler T. B. Yafe
P. J. Finck R. P. Larsen TIS Files
H. K. Geyer (10) J. F. Miller

Extemal:

DOE-OSTI (2)
ANL-E Library
ANL-W Library
J, M. Bentley, Arthur D. Little, Inc., Cambridge, MA
L. Cataquiz, USDOE, Office of Transportation Technologies, Washington, DC
S. G. Chalk, USDOE, Office of Transportation Technologies, Washington, DC
P. Davis, USDOE, Office of Transportation Technologies, Washington, DC
W. D. Ernst, Plug Power L.L.C., Latham, NY
J. Ferrell, USDOE, Office of Transportation Technologies, Washington, DC
R. J. Fiskum, USDOE, Office of Building Energy Research, Washington, DC
J. Garbak, USDOE, Office of Transportation Technologies, Washington, DC
S. Gionich, USDOE, Office of Solar Energy Conversion, Washington, DC
T. J. Gross, USDOE, Office of Transportation Technologies, Washington, DC
H. J. Hale, USDOE, Office of Transportation Technologies, Washington, DC
K. L. Heitner, USDOE, Office of Transportation Technologies, Washington, DC
D. L. Ho, USDOE, Office of Transportation Technologies, Washington, DC
G. Joy, U.S. Department of Commerce, Washington, DC
K. Kinoshita, Lawrence Berkeley Laboratory, Berkeley, CA
R. S. Kirk, USDOE, Office of Transportation Technologies, Washington, DC
R. A. Kost, USDOE, Office of Transportation Technologies, Washington, DC
J. Larkins, Georgetown Energy Programs, Washington, DC
J. Milliken, USDOE, Office of Transportation Technologies, Washington, DC
D. J. Nelson, Virginia Polytechnic Institute and State University, Blacksburg, VA
J. M. Ohi, National Renewable Energy Laboratory, Golden, CO
P. G. Patil, USDOE, Office of Transportation Technologies, Washington, DC
T. Rehg, Allied-Signal, Torrance, CA
V. P. Roan, University of Florida, Palm Beach Gardens, FL
R. Ross, Energy Partners, West Palm Beach, FL
C. Sloane, GM Research and Development Center, Warren, MI
S. Swathirajan, General Motors Research Laboratories, Warren, MI
C. E. Thomas, Directed Technologies, Inc., Arlington, VA
N. E. Vanderborgh, Los Alamos National Laboratory, Los Alamos, NM
R. White, University of South Carolina, Columbia, SC
K. Wipke, National Renewable Energy Laboratory, Golden, CO

120

