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FOREWORD

Argonne National Laboratory has been involved in several technical
aspects of ocean thermal energy conversion (OTEC) since 1976, including
research in the areas of power systems, biofouling and corrosion, and
environmental studies. With support from the U.S. Department of Energy,
Argonne was responsible for an activity known as OTEC Project Management
Support: Physical and Climatic Environmental Impact. Research focused on
problems related to the physical effects of OTEC plant operation on the ocean
and, conversely, of the ocean on OTEC plant operation.

The heat engines of OTEC plants are driven by the temperature
difference between the cold, deep water and the warm, surface water of
tropical and semitropical oceans. Thermodynamic limitations dictate that
large amounts of ocean water be withdrawn from and discharged to the ocean.
As the flow rates are an order of magnitude greater than those associated with
conventional steam-electric coastal power plants of equivalent power capacity,
no precedents had been established for the external flow fields generated by
operating such plants. ‘

Under Argonne's supervision, research was undertaken to address the
external flow field problems at scales ranging from those of plumes generated
near the effluent discharge from the plant to oceanograpﬁic scales as large as
the Gulf of Mexico. Analyses and numerical codes were developed and
laboratory hydraulic modeling was applied to predict external flow fields.
The studies were carried out by private firms, universities, and Argonne.

The study reported here -- numerical techniques for steady two-
dimensional transcritical stratified flow problems -- was carried out at
Cornell University under this program. It attempts to deal with what has been

known as intermediate-field plume behavior, or the gravity collapse of a



buoyant jet in a current. This aspect of the external fluid mechanics of OTEC
plant operation is important in terms of the potential environmental effects

of individual plants and the spacing of multiple plants in the same region.
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ABSTRACT

This study is concerned with the development of predictive techniques
for the predominantly horizontal, layered fluid motions that result when a
continuous buoyant source is discharged into an ambient fluid at a bounding
surface, interface or equilibrium level. In general, the ambient fluid will
have a cross—current which then leads to horizontal front formations which
delineate the density current.

A detailed knowledge of the properties of the resulting density current
is of great importance in a variety of environmental problems. Typical
applications are fresh river water discharges into coastal water, cooling
water discharges into rivers or oceans, and, in particular, the discharged
effluents from ocean thermal energy conversion (OTEC) plants.

Although the numerical techniques developed herein are applicable to
general discharge configurations, the model development is focused on the
particular case of a radial source of buoyancy and momentum discharged into a
uniform ambient crossflow, this case being of particular concern for the OTEC
geometry. The resulting demsity current is analyzed by application of the
depth-integrated hydrodynamic equations. The flow domain is divided into two
regions for individual study —— an entraining supercritical near field and a
nonentraining intermediate field region. The latter 1is further subdivided
into a transcritical region and a supercritical regionm, the latter allowing
for frictional effects. The two supercritical regions are modeled using a
MacCormack method (MacCormack, 1971), while the transcritical region, which
includes internal hydraulic jumps, is modeled using an extension of the
numerical techniques developed for inviscid transonic gas flows by Caughey and

Jameson (1979).

xxxix



The density current dynamics are shown to vary with the relative
intermediate- to near-field strengths, as characterized by the ratio of their
respective length scales. The complete range of this interaction, from small
near-field effects to large near-field effects, is investigated. Results are
presented as the depth integrated velocity and current thickness distributions
for different field strength values.

The model predictions are compared to two sets of laboratory data and
to limited field information, involving a river discharge and a submerged
outfall into the ocean. Good agreement {s obtained in all cases.

Finally, the model results are applied to the prediction of a river
plume into a coastal ocean current and to the continuous discharge from an
OTEC plant operating in the stratified ocean. In both cases, the results
indicate the significant horizontal extent (order of several kilometers) of
the resulting current, together with their limited vertical extent (order of
several meters). Their strong sensitivity to ambient current magnitude and

stratification strength is demonstrated.

XXXX



CHAPTER 1

INTRODUCTION

Density currents (or gravity currents) are formed when a mass
of one fluid is introduced into another fluid of different density.
The intruding fluid may spread horizontally along an ambient boundary,
an internal density interface, or at the equilibrium level if the
ambient fluid is continuously stratified. This vertical collapse
(horizontal spreading) tends to minimize the gravitational potential
energy of the system. The nature of the flow in the horizontal
plane can be one- or two-dimensional, depending on the physical
boundary conditions of the ambient domain. For example, if the
intruding fluid is discharged from a finite source into an ambient
fluid which is unrestricted horizontally, such as a lake, ocean, Or a
wide experimental basin, the density cufrent will be horizontally
two-dimensional. However, if the discharge is into a horizontally
bounded ambient fluid, such as a narrow river or laboratory flume,
the density current will be restricted to horizontally one-dimensional
flow.

Figure 1-1 shows a density current produced experimentally by
introducing dyed heated water through a "point" source into ambient
water which is moving with a constant velocity. The top view shows
the two-dimensional spreading of the density current, and in particular,

a region of upstream penetration, whereas the lateral view shows
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relatively small height variations. Figure 1-2, obtained from a
similar experiment, shows the approximate pathlines for floats
released near the source.

Both Figures 1-1 and 1-2 serve to emphasize the two-dimensional
nature of the flow produced by discharging a fluid into a horizontally
infinite environment. This can be understood as being due to the in-
trusion's freedom to spread out in both horizontal directions, subject
to the boundary conditions imposed on it by the ambient flow. This
two-dimensional density current exhibits a transcritical flow field,
comprising subcritical flow near the stagnation point (at which the
velocity must equal zero, Figure 1-1), supercritical flow downstream
(where the height tends to zero), and critical or supercritical flow
around the source. In this case, criticality statements are based on
an internal densimetric Froude number definition. No previous investi-
gations of such two-dimensional, transeritical, stratified flow
problems have been made.

In principle, one-dimensional flows also exhibit transcriti-
cality, but the transitions would only occur at channel transitionms,
making them easy to predict, in contrast to the two-dimensional case.
The dynamics of one-dimensional flow, comprising density currents and
wedges, has been investigated by many authors, a recent study being
that of Sargent (1983), while Simpson (1982) gives a detailed review
of previous work.

Various environmental occurrences of two-dimensional density

currents are discussed in Section 1.2. The major impetus for the
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present study, however, is given by the need for a complete under-
standing of the large scale fluid motions produced by Ocean Thermal
Energy gonversion (OTEC) plants in the surrounding stratified ocean.

This is discussed in Section 1.3.

akoal Environmental Occurrences of Two-Dimensional Density Currents

Examples of two-dimensional density currents that are at, or
near, steady-state conditions are discussed in the following:
Hydrospheric Occurrences:

- Cooling water carrying waste heat from fossil fueled
and nuclear power plants, discharged into lakes, rivers and oceans.
The analysis of the buoyant spreading motion of these discharges is
crucial for determining the recirculation potential (i.g., possible
return into the plant intake), and for a reliable thermal impact
evaluation, (Williams, 1973).

»

- Effluents from sewage treatment plants. These are dis-

charged into lakes and oceans through a single port discharge or

through multiport diffuser located on the bottom. The effluent forms

a buoyant plume which rises until the water surface, or its equilibrium
level, is reached. They will then behave as density currents, spreading
out horizontally, as previously described.

- River or estuarine inflow (fresh or brackish water) ,

into the ocean (salt). The lighter inflow forms a naturally occurring
surface density current, with convergence regions along its front,

frequently denoted by floating debris. Figure 1-3 shows the plan view
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Figure 1-3 The Connecticut River plume discharging into Long Island
Sound. The salinity field shown is at a depth of 0.5 m, the
readings being taken after flood tide. The ship track is

marked by arrows (after Garvine, 197L)



of the inflow of the Connecticut River into Long Island Sound, with
Figure 1-4 showing a corresponding vertical profile. Both figures
show a clearly defined frontal region along the leading edge of the
plume. An approximate depth to width ratio is 10’“. Similar con-
ditions are suggested by the photograph of a two-river discharge

plume in Fischer et al. (1979, Figure 9-29).

Atmospheric Occurrences:

- Spillages of liguefied gases (g.g., liquefied natural

gas, propane, butane and chlorine). These chemicals are being stored
and transported in ever increasing quantities. If released into air,
by the accidental rupture of storage tanks, for example, they form
negatively buoyant density currents. These chemicals, when mixed with
air, may be explosive, corrosive or poisonous. A detailed knowledge
of the likely spreading under the given wind conditions is very impor-
tant for determination of appropriate séorage or plant siting and
evacuation procedures. (Fay, 1980).

- Buoyant plumes from smoke stacks and cooling towers, or,

simply, the urban heat island effect, if trapped below an atmospheric
inversion. The inversion stops the buoyant ascent of these flows and
causes them to spread horizontally as density currents.

In summary, in all of these situationms, thin and horizontally
spread out layers are found. These layers, in turn, can become
carriers of significant amounts of physical, chemical or biological

wastes, or "pollutants" in general.
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1.2 Overview of Fluid Mechanical Aspects of Ocean Thermal Energy

Conversion (LT E))

The tropical ocean exhibits a temperature difference, AT, of
the order of 20°C between its surface and depths due to the upper
layers acting as large solar energy collectors, while the lover
depths are fed by cold water currents from the poles as part of the
global oceanic circulation. Ocean thermal energy conversion (OTEC)
plants utilize this temperature difference, taking in surface water
and pumping up water from a depth of between 500 and 1000 m, to
drive conventional heat engines. In a closed cycle engine these
alternately vaporize and liquefy a working fluid such as ammonia in
order to drive turbines which generate electricity. Thus OTEC
utilizes one of the renewable geophysical energy resources of the sea,
i.e., the thermal gradient, to generate useful energy.

It has been proposed by Richards‘(1979), that by the year 1995,
a total of several gigawatts of electricity could be generated for
use in the U.S. islands alone by OTEC, in particular as small OTEC
plants are ideal for the island market. He also estimated that
worldwide, more than 100 GW might be installed by the year 2010.

The warm and cold ocean waters, after use, have to be discharged
into the ocean, with care being taken that no recirculation occurs into
the plant intake, which would deplete the thermal resource. Various
methods of discharge have been investigated, including:

- Discharge of the effluents separately. However, the warm

water discharge might then be liable to recirculate with the warm
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water intake.

- Mixed discharge of warm and cold water effluents. This wvill
reduce the buoyancy of the warm water discharge so that the most
likely position for the resulting flow will be near the oceanic thermo-
cline (for details see Jirka et al., 1981).

In either of these schemes, the angle at which the water is
discharged has a further effect on both the recirculation potential
and on the location of the horizontal spreading layer.

For economic reasons, OTEC plants are likely to be grouped to-
gether in "parks". This requires a detailed knowledge of the shape
of the density current formed from the individual effluents, in
order to position the plants so as not to deplete the thermal resource.
A provisional Environmental Impact Assessment for these OTEC plants
is given in Friedman and Reitzel (1979). This lists some key environ-
mental issues as organism entrainment and impingement, chlorine
(used in biofouling control) releases and ammonia leakage to the sea.
For these processes to be evaluated adequately, an understanding of
the details of the two-dimensional density current formed by OTEC
effluents is required. A detailed summary of the historical and

future uses of OTEC is given in Appendix I.

n B Problem Statement and Summary

The objective of this study is the development of a comprehen-
sive technique for the prediction of the horizontal, two-dimensional

transcritical density current flow riel.d produced by the steady



=1

discharge of a finite fluid source into an ambient cross-flow of
infinite horizontal extent. The ambient stratification conditions
may be:

- one homogeneous layer with a surface source discharging a
positively buoyant fluid;

- two homogeneous layers separated by a density discontinuity
at which a source discharges a fluid of intermediate density;

- a linearly stratified region in which a source discharges a
fluid at its equilibrium density level.

This method is only applicable after the fluid has reached a
level at which it will expand horizontally; any prior vertical motion
after discharge from the source must be accounted for by other means.

Chapter 2 summarizes the basic hydrodynamic concepts, including
frontal boundary conditions, interfacial stability, and jet-like
entrainment concepts. Present two-dimensional theories, none of which
takes account of the transcritical nature of the flow, are discussed.
The analogy existing between two-dimensional density currents, shallow-
water free surface flow, and two-dimensional compressible gas flow, is
mentioned, as this suggests various applicable analytical and numerical
techniques.

The derivation of an appropriate set of governing equations is
presented in Chapter 3, together with scaling arguments suggesting the
division of the flow field into near and intermediate field regions.

Simplified equations for each flow region are then developed.



The solution of the near field flow by the application of the
MacCormack method - an explicit, stepping, numerical finite difference
technique - is described in Chapter 4, together with results obtained
for both a stagnant and moving ambient region.

The transcritical region of the intermediate field is predicted
using a finite difference technique developed by Caughey and Jameson
(1979). which takes automatic account of its transcritical nature.

The scheme and results are described in Chapter 5.

The supercritical region of the intermediate field is solved
by a second application of the MacCormack method. This application,
and the results obtained, are discussed in Chapter 6.

Chapter 7 collects the results of the separate regions for a
solution of the entire density current. This is compared with data

obtained using the Stratified Flow Facility at Cornell, (Jirka et al.,

1980; Hug, 1983),



CHAPTER 2

REVIEW OF PREVIOUS WORK ON TWO- AND ONE -DIMENSIONAL
DENSITY CURRENT DYNAMICS, INCLUDING ANALOGOUS

SHALLOW WATER AND GAS FLOW THEORIES

Section 2.1 addresses the problem of whether density currents
or wedges are to be expected for the two-dimensional intrusion under
consideration. Elements of one-dimensional theory applicable to
two-dimensional cases, such as force balances and drag coefficients
are also discussed. It concludes with a discussion of simple gen-
eralizations of one-dimensional dynamics to "pseudo" two-dimension-
al solutions.

More general stratified flow theory is discussed in Section
2.2, including internal hydraulic jump formation and energy losses.
These concepts are considered from the viewpoint of the analogous
free surface shallow water flow and canpressible gas flow cases in
Section 2.3. The former serves to illustrate the hydraulic jump
concepts, whereas the latter is useful for suggesting possible
numerical schemes applicable to the problem solution.

Section 2.4 discusses the stability and entrainment relations
occurring in density current theory.

Section 2.5 reviews the previous two-dimensional density
current solutions.

Sections 2.6 and 2.7 consider the various numerical schemes

S13-
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available for supercritical and transcritical flows.

3 Dynamics of One-Dimensional Density Intrusions and Amlications

to Two-Dimensional Problems.

2.1.1 The bulk shave: density currents versus density wedges

Many studies (mostly one-dimensional) of density intrusions
exist in the literature, with recent comprehensive reviews given by
Simpson (1982), and Chen (1980). Two major types of intrusions
have been investigated: density wedges and density currents. Both
of these exist for the various stratified flow conditions discussed
in Section 1.3. Little information is aveilable to enable prediction
of the intrusion type likely to occur under given flow conditions,
although a recent comparative study by Sargent (1983), attempts to
address the problem.

Density currents exhibit a marked "head" region as shown in
Figure 2-1. A localized drag force exerted by the ambient fluid at
this head is the main mechanism controlling their advance due to
internal buoyant forces.

Density wedges are characterized by a long, gradually sloping
profile (Figure 2-1). Their buoyant spreading is mainly counteracted
by interfacial shear effects.

Various experimental investigations of one-dimensional in-
trusions indicate that boundary conditions exert a strong influence
over the choice between currents and wedges. Keulegan (1966),

Riddell (1970) and Grubert (1980) obtained density wedges when steady
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Figure 2-1 Typical one-dimensional surface density intrusions
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intrusions were opposed by ambient currents passing over no-slip

boundaries. Ippen and Harleman (1952), Keulegan (1957, 1958),
Middleton (1966), Wilkinson and Wood (1972) and Simpson (1969,

1972) obtained density currents when the intrusion passed over a

no-slip boundary. Britter and Simpson (1978) extended the work of
Simpson (1972) by showing that steady-state currents were obtained
when & moving floor incorporated into their apparatus formed a

slip boundary, whereas steady-state wedges were obtained with the
resumption of the no-slip boundary. Thus, they concluded that the
reduced ambient flow in the close vicinity of a no-slip boundary pro-
vided insufficient drag to, alone, counteract the buoyant driving
force. Thus frictional forces contributed significantly, leading

to a wedge-shape.

The data and conclusions from Sargent (1983) uphold this
assumption. In particular, he suggested that even small localized
deficits in the ambient flow might cause density currents to convert
to wedges in the one-dimensional case.

It should be emphasized, however that the preceding experi-
ments have involved only one-dimensional flows. Two-dimensional
investigations were carried out by Jirka et al. (1980), and
Hug (1983). These involved surface (and some interface) intru-
sions, so that the possibility of no-slip boundary conditions
was minimized., (Surface-skimmers were used to reduce possible
surface pollution.) In all these experiments, density currents,

rather than wedges, were most often seen to occur. Sargent (1983)
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suggested that density current formation would be encouraged by the

extra degree of freedom available in the two-dimensional case.
Hence, in this study of two-dimensional density intrusions,

the frontal dynamics will be assumed to be of the density current

type.

2.1.2 Force balance of density currents

The buoyant spreading force (excess horizontal force), F. ,
for the density current is given as
o

] 2
Fb s & hity (2500)

computed by evaluating the hydrostatic forces within and upstream of
the density current, over the density current half height, h (see
Figure bl = %jL is the effective gravity or buoyancy, po is the
intrusion density ang Ap the density difference between the intrusion
and ambient. It should be noted that the height of the density
current, hh’ as shown in Figure 2-1, is greater than that of the
density current behind it. Sargent (1983) quotes velues of hy of

two or three times h. The added head height is attributable to the
more complicated flow dynamics within this region (Britter and
Simpson, 1978), which includes vertical accelerations and also a
moderate amount of entrainment, occuring in the lee of the head.

For density currents, as previously discussed, the buoyant

force is opposed by an ambient drag force,

F,=C.p —5 h (2.2)
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where u, is the ambient velocity and C_ a drag coefficient. This

D
drag force (pressure drag) is due to local vertical accelerations
which develop in the region around the head, causing perturbations
of the ambient hydrostatic pressure field in this region. Equating

the buoyant and drag forces, Equations (2.1) and (2.2), ylelds

;.‘? - V1= (2.3)
g'h Gy
as an expression relating the drag coefficient to the front velocity.
A more general analysis by Benjamin (1968) with limited ambient
fluid depth, H, showed that this drag coefficient should vary with
the relative depths of the intruding fluid, as a greater intrusion
would result in greater perturbations of the ambient, and hence
greater drag effects. He investigated flow past a one-dimensional
surface density current, using the classical flow force (momentum
flux plus pressure force) conservation across a control volume around

the current head. This yielded,

S - (2-Bq1/2
Vern

(2.4)
@+

Comparison with Equation (2.3) gives a general drag coefficient
expression.

a+d

c - —
T }_r:) @ - ﬁ) : (2.5)
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This relation between the drag coefficient and the relative
density current to ambient depth is shown in Figure 2-2. It pre-
dicts the drag coefficient as varying from 1/2 to 2 as the relative
depth increases from zero (infinite ambient depth) to 0.5.

Britter and Simpson (1978) extended Benjamin's (1968) study
by introducing an extra "internal flux" parameter, or entrainment

rate,

§ g 2l (2.6)

where u is the velocity of the density current behind the head.

Qe takes account of any entrainment of ambient fluid into the
density current, which may occur in the region directly behind the
head. Q_ = 0 corresponds to Benjamin's (1968) non-entraining theory.
Increasing the entrainment rate, had the effect of increasing the
front velocity, i.e., decreasing CD (équation 2.3), as they showed
both experimentally and theoretically, Figure 2-3. Britter and
Simpson's (1978) results regarding the role of entrainment, were
confirmed by Sargent (1983).

Jirka et al. (1980) also considered both homogeneous and
linear ambient stratification cases for an infinite ambient depth,
H. They obtained, using the previous force balance together with
use of a Beruoulli equation, a general value of

s+1

- (2.7)

where s = O for a homogeneous ambient and s = 1 for a linearly
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Figure 2-2 variation of drag coefficient, CD‘ with density current to

ambient depth ratio, h/H
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Figure 2-3 A comparison of theoretical and experimental relations

between the drag coefficient, CD, and the relative current

to ambient water depth, h/H, (after Sargent, 1983)
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stratified ambient. The homogeneous case compares with that obtained
by Benjamin (1968).

Kao (1977) also considered both ambient stratification cases.
His values are in agreement with those of Jirka et al. (1980), al-

though values of C_. are not given for the general case.

D
These theoretical drag coefficient values have been compared

with experimentally obtained values. Benjamin (1968) analyzed results

from Keulegan's (1958) study. Taking results least likely to be

affected by ambient depth restrictions, he obtained a value of CD of

about 0.7, which can be compared with a theoretical value of 0.5

discussed previously. Experiments by Wu (1969) on the linearly

stratified ambient case indicated an average cD of about 1.2,

compared with a value of 2/3 from Equation (2.7). The higher value

in the linearly stratified as opposed to homogeneous case seems to

be related to the radiation of internal wave energy away from the

front (Manins, 1976).

2.1.3 One-dimensional density current dynamics applied to two-

dimensional problems

a) Purely convective-buoyant spreading regimes

Larsen and Sorensen (1968) investigated the spreading of a
buoyant discharge at the surface of a homogeneous ambient crossflow.
Rather than a point source, they assumed that the discharge had an
initial finite width, bo (Figure 2-4). This approach is basically
one-dimensional, in that the density c‘urrent. was assumed to have a

constant velocity in the x-direction, equal to the ambient, u , and
a
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Figure 2-4 Larsen and Sorensen's (1968) density current schematization
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also a constant height, h, along its width (perpendicular to the
ambient flow). Thus the vertical profile at any point was as
shown in Figure 2-4, neglecting the frontal head shape. The
spreading or boundary velocity, Ugs (now no longer equal to the
local ambient velocity u, as in the purely one-dimensional case)

was given by

\lr = V'g-"ﬂ (2.8)

which can be compared with Equation (2.3) with the drag coefficient

set equal to one. Figure 2-4 shows that u, can be written in terms

¢
of u_ &nd the boundary angle, 8, as

u, = u, sin 8 (2.9)

The spreading rate, -:—2 , again from Figure 2-4 can be written as

db
& - tan 9. (2.10)

Larsen and Sorensen (1968) approximated tan © by sin © - without
explicitly stating so - (this being true only for small angles, i.e.,

far downstream). ‘With the simple continuity equation,

Q=2bhu, (2.11)
together with Equations (2.8) and (2.9) one can integrate Equation

(2.10) to give

(2.12)

which they approximate (for no clear x"eaaon) by
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The initial half width, bo of the density current, is evaluated by

taking the front velocity equal to the ambient, Uy, as

s - Ea (2i13)

o ou 3
a

Thus the analysis predicts an asymptotic 2/3 power law relationship
for the width as a function of x.

Bache (1976) suggested an alternative approach for two-dimen-
sional density current spreading in a cross-flow. He represented the
current dynamics as two "momentum blocks", shown in Figure 2-5,
which move dovnstream with the ambient velocity. Applying conser-
vation of volume and momentum equations, he calculated a spreading
rate for the current. However, as pointed out by Roberts (1977), the
blocks having subdivided once from the initial volume, have no reason
to stop doing so, and should thus continue to divide. However, this
analysis could be applied to shallow water flcws if the initial
current depth is equal to the ambient depth. This would then enable
the initial division to be accounted for with continuity arguments
within the restricted flow region.

Roberts (1977) applied Larsen and Sorensen's (1968) results
to the spreading of a diffuser plume, extending it to include some
entrainment, which, however, only alters the proportionality con-

stant, leaving their 2/3 power law intact.



Plan Sections

Figure 2-5 Schematic view of momentum block spreading applied to density currents

(after Bache, 1976)
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Jirka et al. (1980) investigated both homogeneous and linearly
stratified ambient flows. They equated expressions for the drag
force, FD, given in Equation (2.2), and buoyant force, Fb’ given in
Equation (2.1), the latter being generalized to include linear

stratification as

s+l s+2
e T (2.14)

where s and O are the stratification parameters such that:

Case A: Surface source on homogeneous ambient, and

Case B: Interface source with step-wise ambient stratification

P R (2.15)
pa

where AP is the density difference between the density current and
ambient. (In Case B the density current is assumed at an inter-

mediate density between the two layers.)

Case C: Linearly stratified ambient

p=%eg=%N2,s=1 (2.16)

where € = - gL %% and N is the Brunt-Vaisala frequency of the system.
a
This yielded, with the additional approximation u sin 6 =~ Ue

the expression.
2

£ 3 2
(a4} cyhs+l B Cp (s+2) (2.17)

u

This could be combined with the mass continuity equation over the
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half width of the density current, as

u, hbd -% . (2-18)

including the approximation sin 8 =~ tan 8, as used in Larsen and

Sorensen (1977) which allows the relation u, = u, % , giving

bl;l a { L (%)ul 1 }1/2 (2.19)
ax 182 C el -19
D u,
On integration this yields

=3 s+l 2

b 2 -_— ¥ e

b ] s+ 2 X ] 5+3
7:1'={(z;) ke (z;'z;)} .

where bo and X, are the initial conditions for the spreading, and

LI is a length scale defined as

Y=z un (2.21)
a s
where 1
Cy 211
gab -0 }s
by = { 41 20 Ya (2.22)

The scales LI and h‘ will assume greater significance in Chapter 3.
For the homogeneous ambient case, the spreading relation is

the same 2/3 power law as arrived at by Larsen and Sorensen (1968).

b) The additional effect of interfacial friction

Both Roberts (1977) and Jirka et al. (1980) considered
regimes in which interfacial friction becomes more important than
the inertial forces as a balance for the buoyancy. These would
occur downstreﬁm of the convective . buoyant regimes previously

discussed.
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Roberts {1977) took an expression for the interfacial shear,

ri, which varied linearly with the boundary velocity as

i _ae
i

Q

v (2.23)

with @ a constant , € a constant "effective viscosity coefficient", and
db

v the lateral velocity such that v & U =u, 3o - Thus, equating the
buoyant and frictional forces, yielded

e e e D

= = u 8

S Bl am ol (2.24)

a
Using the previous assumptions allows Equation (2.24) to be

evaluated, giving
Fore s (2.25)

i.e., a % power law relation.
Jirka et al. (1980), however, adopted an interfacial shear

stress relation, quadratic in the velocity term, such that

e pi A . (2.26)
a

3

where )\i is an interfacial friction coefficient (= 10" °, Adams et al.,

1981). This allows the momentum equation to be written as

where s and 0 are the stratification parameters defined previously.

Again, using ue s % , together with a linear variation for the
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lateral velocity, v = “f % a uniform depth h, and a continuity

equation as Equation (2.18), gives

543 s+ 1/2
Z @ 30 84l (29 a)
g ) UhED
a

On integrating and nondimensionalizing as previously, one obtains

5+5 =
v.&E2 2. 0. 3le 45
b oc S+ 542 D
1;’((1;’) *—22(‘3") (—M"') (z' )
(2.28)
X,V
where G enters as a measure of the importance of the frictional
D

effect, (V' = Ll/hs, Equations (2.21) and (2.22), also Chapter 3),
and boc and Xy denote the initial conditions for the frictional

regime. Thus the power law is given as —r , which gives a value

+5 ’
of % for a homogeneous ambient.

Thus, comparing Roberts (1977) and Jirka et al. (1980),
shows that the former, using a linear frictional relation gets a
power law of % , whereas the latter, with a quadratic friction law
gets % , for the homogeneous ambient case. The former linear
relation is generally true for laminar density currents, having a
low Reynolds number value. This value would be more applicable under
experimental conditions. However, the quadratic friction law appears
more applicable to the turbulent, high Reynolds number flows encoun-
tered under field conditions. Equations (2.20) and (2.28) give the
exponent relations for convective and frictional regimes as —— ’3
and :%3 , respectively, thus showing a reduced spreading tendency in

the latter. It can also be seen that in both regimes the linearly
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stratified case (s=1) spreads less than the corresponding homo-
geneous ambient case (s=0). Both convective and frictional regimes

from this study are shown for s=0 and s=1 in Figures 2-6a and b,

25 e
respectively, for various values of é
D
2.2 The Transcritical Nature of Two-Dimensional Density Currents

In Section 1.3, mention was made of the transcritical nature
of the two-dimensional density current. This will be discussed

further in this section.

2.2.1 General Properties

The discussion is presented in a general form, covering all
three stratification cases (A to C) given in Section 2.1. The
general two-dimensional convective-buoyancy equations (derived in

Section 3.1) will be used, i.e.,

35 (wh) + 35 (v) = 0 (2.29)
8+l

2 () + & (uvn) = - on BB — (2. 300)
s+l

2 (um) + 3= () = - on e (2.300)

where u and v are the velocities in the x and y direction, respec-
tively, and s and g are stratification parameters defined in
Equations (2.15) and (2.16).

In addition, a Bernoulli or energy equation can be defined,
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Figure 2-6 Convective and frictional regimes for density current
spreading, (after Jirka et al., 1980)
a) Homogeneous or stepwise ambient stratification,

(Cases A and B, respectively), s = O .
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which, in the absence of rotational effects is valid for the whole
flow region. This can be obtained by substituting the condition for
irrotationality into the momentum equation, rearranging and inte-

grating (Daily and Harleman, 1966), to yield

e +1
L0 “aial Y (2.31)

where q =.’u2 + v2 is the flow speed, C is the Bernoulli constant,
and the term o hs"1 can be written in terms of & local critical
velocity, ¢, (speed of a small amplitude long wave) as

+1

2 » (s41) g 1® (2.32)

The Bernoulli constant, C, can be evaluated at any point of the flow
having known conditions, such as the stagnation point, (Figure 1-1),
where the speed, q, is zero, and the height can be defined as hs
(discussed in Chapter 3) so that the Bernoulli equation can be

written as

2
% +gh=g h (2.33)

An initially irrotational, barotropic fluid (P = p (p) only,
where p is the pressure), will remain irrotational, in the absence
of rotational effects (Bjerknes' theorem, Turner, 1973). This allows

the definition of a velocity potential, ﬂ, such that

g SR ; (2.34)



Substituting this definition into Equations (2.29) and
(2.30), yields the second order non-linear partial differential

equation

(- $y®) b - BB b + (P-4, -0 (23)

which is known as the potential equation. Examination of the
characteristics of Equation (2.35) shows that the equation changes
type depending on the flow properties, such that it is of elliptic
type if q is less than ¢, and hyperbolic if q is greater than c.

If the local densimetric Froude number, F, is defined as

o= % R (2.36)
B g
this shows the elliptic and hyperbolic regions to be subcritical and

supercritical, respectively. This is summarized in Table 2-1.

Speed Relative Froude
to ¢ Type Number Criticality
q<c elliptic F<1 subcritical
q”>c hyperbolic F>1 supercritical

Table 2-1. Classification of the type of different regions
of the potential Equation (2.35).
An additional appreciation of the flow differences in the super-
critical and subcritical regions can be obtained by considering the
variation of mass flow per unit width with the velocity, using the
Bernoulli equation, Equation (2.33). This allows the mass flux per

unit width, hq, to be defined as



s+l -f)m

hq = q(h' o (2.37)

which can be rearranged to

2 s+l
- . 1. by (2.38)
- ]# ]o——h—fﬁ( zah‘.u)

which is a function of q having a maximum value when

—L—-q = 55 (2.39)
On s+l . .
s

(Note that q -ﬁ;for s=0andq =1fors =1). A minimum value
of zero is obtained at = = 0 and = \2 (= qu) for both s
values. The latter two vglcés define the range of the problem. The
variation of ’hL with q from Equation (2.38) is shown in
[3 g'h‘

Figure 2-7 for both stratification cases. This shows that in the
subcritical region a decrease in mass flux per unit width is
accompanied by a decrease in velocity, whereas in the supercritical
region, a similar mass flux decrease must be accompanied by an
increase in q. Thus, if a subcritical flow is allowed to expand,
its velocity will decrease, whereas the velocity of a supercritical
flow will increase.

Transitions from one flow type to another occur in two ways:
(1) The flow passes smoothly from sub- to supercritical conditions
forming critical lines in the flow domain. (2) The reverse tran-
sition from super- to subcritical fléw may also occur smoothly (in

very special cases) but is more likely to occur ucross a discontinuity
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Figure 2-7

Variations of mass flux/unit width with velocity
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in the form of an internal hydraulic Jjump.

2.2.2 The internal hydraulic jump

Internal hydraulic jumps (similar to hydraulic jumps in
free-surface shallow water theory, discussed in Section 2.3.1)
occur as discontinuities in flow properties between super- and
sub-critical flow regions. As the flow passes through a jump, mass
and momentum are conserved, in physical reality whereas mechanical
energy is lost (due to dissipation or radiation, as discussed in
Section 2.3.1). This lost energy cannot be recovered by the fluid
(in constrast to the case of compressible gas flows, Section 2.3.2),
and hence the total mechanical energy of the flow is reduced.

The amount of specific energy lost, AE, in a jump normal to
the flow can be estimated by equating the Bernoulli equations up-

stream (subscript 1) and downstream (subscript 2) from the jump, as

2 2

q

N s Y s+l

< +0h;, =5 +0h, + AE (2.40)

Equation (2.40) together with the mass and momentum equations,
ylelds
- hl)3 s

bE = hm, (Mg +hy) .
The fractional loss of energy relative to its value upstream from

the jump, El , is given by

2
h h, s+l
1 2
F‘f (s+1) -h—a + z(h—l) .
AE _ y i 2 (2.42)
e ri(su) +2
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These losses for various upstream Froude number values are shown
in Figure 2-8. The ratio of the fluid depths upstream and down-
stream of the jump can be related in terms of the upstream Froude

number, Fl, making use of the mass and momentum equations, as:

s = O: E—i:%(}l+8}‘i-1) (2.143)

=2

s = 1: Solution of:
h, 3 h, (2 h
@+ () (@ - ¥ i

Equations (2.43) and (2.44) are represented graphically in Figures
2-9a and 2.9b, respectively. These equations are equivalent to the
"M-curves" in free surface shallow water theory, being calculated
using the Momentum conservation equations (Henderson, 1966) .

An alternative approach to modeking such a jump-like discon-
tinuity would be to assume energy conservation across the "jump",
rather than the actual momentum conservation. This is equivalent to
the "E-curves" in shallow water theory. Though obviously approxi-
mative, this approach has considerable computational advantage when
modeling two-dimensional flows and is therefore adopted in the
remainder of this study. The amount of momentum, AM > gained in a
"jump" normal to the flow can be estimated by applying the momentum

equation across the "jump" as
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Figure 2-8 The percentage energy loss across a Jump relative to the up-

stream energy, as a function of upstream Froude number.
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s+l s+2 2 s+l s+2
bug+ qihl =50 0 Sl i OBy (5]

This, together with the energy and continuity equations gives
s+l B s-1
=0 =
aM, 5 (h2 hl) (h2 + hl) : (2.146)

The upstream to downstream depth ratios for this approximation are

given by:
= 0: -h—z—Fl(F +~/F2+8) (2.47)
B e DRl N Lyee 4
h2
s = 1: 'h—l= Fl (2.48)

These equations are also graphed in Figures 2.9a and b. The errors

involved in adopting this approximation, defined as

h2 h2 h2

e P s

1E M 1E
are given for various initial Froude numbers in Table 2-2. It can
be seen that the deviations in the linear stratification case (s=1)
are roughly half those for the step-wise stratification case (s=0),
up to an upstream Froude number of 3.0. However, even for the step-
wise stratification case, the maximum deviation in this range was
only +30%.
The properties across the jump are further summarized in

Taeble 2-3 of the following section.
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Relative Deviation in Height Ratios

Fronds Buiver, for 'E' and 'M' Curves

F.

2 Stepwise Linear
Stratification Stratification
(s=0) (s=1)
1.0 % %
2.0 +13% +A
3.0 +29% +13%

Table 2-2. Deviation with upstream Froude number of
height ratios across a jump for the con-
servation of energy, (E curve), relative
to the conservation of momentum (M curve).

=3 Comparison of Density Current Theory with that for Free

Surface Shallow Water Flows and Compressible Gas Flows

The analogy between free surface shallow water flow and
compressible gas flow has been known for many years. Use has been
made of it, mainly ty conducting experiments on free surface flows,
in order to predict compressible gas flows. A brief historical

sketch of the usage of the analogy is given in Appendix II.

This section discusses free surface shallow water theory
(Section 2.3.1) and compressible gas flow theory (Section 2.3.2).
Both exhibit a mathematical analogy with each other and with the
density current dynamics. The basis of these analogies will be

discussed and summarized in Table 2-3.



Tnble 2-3n: Annlory between compre

essible gas flow and stratified fluid {shallow water) flow in the absence of flow discontinuities.

Stratified Fluid Fiow

Compressible Cas Flow

flow type

mass continuity

momentun conser-
vation

energy equation

resuirements for
analogy

wave speed

potential equation

definition of
criticality

flow regions

discontinuous
transition (see
Table 2-3b)

continuous
transition

layered system of 2-D, inviscid irrotional
homogeneous fluids, the upper layer being
shallow, and having negligible vertical
accelerations.

3o (un) + 55 () =0 (2.25)

s+l
g—x (u’n) + g—y (uvh) = - gh ?r:—— (2.308)

h s+l
27

2 ) v} () =-on I—  (2300)

mechanical energy:

2
A% + 4 (en®h =0 (2.55)

2-D flow of an irrotational inviscid, homogeneous, gas
having a constant ratio of specific heat capacities, Y
subject to the isentropic law p = kP

L) + 55 () =0 (2.51)
g—x (u3p) + ?Ty (uvp) = -kY%l o %(p”'l (2.52a)
:—x (uvp) + ?Ty (%) = kg 0 g—yo"'l (2.52b)
total energy:

aD) + atn) =0 (2.56)

height, h enalogous to density, P

Wb = Y

(s+1)o=kY

internal wave velocity

c =V (s41) ons* ¥ (2.32)

= 2 i 2

= = (I =

(-85 b -2 b4 + (-4, =0
(2.35)

Froude nuzber F =321 (2.36)

Supercritical flow, F > 1

Suberitical flow, F<1

Wave of elevation (hydraulic jump)

Wave of depression (hydraulic drop)

sound velocity

A =X inlE (2.63)

1/2
- (& (2.61)
(02 - 8206, - 2b by + (&8 - 4208 =0 (2.62)
Mach number, M = g =1 (2.64)

supersonic flow, M > 1
subsonic flow, M <1

compression wave (shock wave)

expansion wave
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2.3.1 Free Surface Shallow Water Theory

The governing equations for two-dimensional free surface,

shallow water theory are, in conservation form (Daily and Harleman,

1973).
2 (m) + g-;, (bv) =0 (2.149)
S (a®n) + 3‘5 (uvh) = - gn Q& (2.508)
2 () + g—y (Fn) = - gh g_; (2.500)

for flow along a frictionless channel. A comparison of Equations (2.49)
and (2.50) with those governing density current dynamics, Equations
(2.29) and (2.30) for the case of s=0 (corresponding to stratification
cases A and B, Section 2.1) shows that they are identical if g is
replaced by g'. This indicates the physical analogy that exists be-
tween these two situations, which enables the use of the well-known
theory of open channel flow to aid the understanding of density current
dynamics.

Hydraulic jumps are included in this analogy such that the up-
and downstream depth ratios for the M-curves and E-curves are as
given in Equations (2.43) and (2.47), respectively.

Much research has been undertaken, for shallow water flows, on
the nature of the energy losses occurring in the jump. Henderson
(1966), Chow (1959) and earlier Benjamin and Lighthill (195L4),

examined the types of energy loss for jumps of various strengths.
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Henderson and Chow classified jumps according to the value of the up-
stream Froude number, Fl, this being in accordance with the U.S.
Bureau of Reclamation Studies (1955) and those of Bradley and Peterka
(1957). Jumps having F values less than 1.7 are called "undular
Jumps". These differ from stronger jumps in that instead of the
breaking wave, they consist of a sequence of unbroken standing waves.
The energy loss, AE, in the latter case will be partially radiated
downstream by these waves (also partly dissipated by bottom friction),
whereas for breaking waves, the energy will be dissipated by the
turbulence generation. Benjamin and Lighthill (1954) showed that
theoretically, energy radiation alone could account for energy losses
only up to I-‘l = 1.25. However, the effects of bed roughness were
found to account for unbroken jumps up to F

» |
For jumps having Froude numbers greater than 1.7, the energy

=1.7.

losses are due to dissipative effects. The classification continues
from a "weak jump" for 1.7 < Fl < 2.5, through to a "strong jump"

for Fl > 9.0.

2.3.2 Compressible Gas Flow Theory

The two-dimensional flow of an inviscid, homogeneous, isentropic
gas of constant densitvy having a constant ratio of specific heats, vy,

may be described by the following equations (Shapiro, 1953):

3 (W) + 5 (ov) =0 (2.51)
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o) 3 -

%‘- (u20) + a—y- (uvp) = -k h 8} 5% pY » (2.52&)
3 &

%; (uvo) + %; (vzp) = -k ¥:i 0 o oY L (2.52p)

where 0 is the gas density, and k the coefficient in the isentropic

gas law

p=kp . (2.53)

A comparison of Equations (2.51) and (2.52) with Equations
(2.29) and (2.30) shows them to be similar, that is, that a mathematical
analogy exists between the two equation sets, provided n® is analogous

to DY'2 , or
Y=s5+2 (2.54)
together with

p analogous tc h.

This analogy could also have been arrived at by considering the
respective energy equations. For the hydraulic case, the energy
equation is given by Equation (2.31), which can also be written in the

form
2
d%) +a(on®h =0 (2.55)

while for the case of the compressible gas (Shapiro, 1953) it is

dn, + d(-‘!;) =0 (2.56)



where he is the enthalpy of the gas, such that
dn, = Car (2.57)

where CP is the specific heat capacity of the gas at constant pres-
sure, and T is its temperature. The enthalpy he or total energy per

unit mass of a gas is defined as
- b
h =u+ - (2.58)

where u is the internal energy of the gas. The perfect gas law is

p=FRT (2.59)

where R is the gas constant. The ratio of specific heats is defined
as

Y= cp/cv (2.60)
with Cv the specific heat capacity of the gas at constant volume.

The speed of sound, a is given by
2 )
a® = (gﬁ) (2.61)
s

vhere) denotes at constant entropy. Equations (2.53), (2.55),
s

(2.59), (2.60) and (2.61) combine to give the potential equation
(a2 - ¢x2)¢xx -2 p0 (a2 - ¢y2)¢yy g (2.62)

Since the flow is irrotational with the usual definition of a velocity
potential ¢. Equation (2.62) can be seen to be identical to that
for the hydraulic situation, Equation (2.35), provided the velocity

of sound, a, is analogous to the velocity of propagation of an
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infinitessimal disturbance, or the local internal wave speed, c. Thus
2 -1
8 = xyp' (2.63)

must be analogous to Equation (2.32), yielding & similar requirement
to Equation (2.54) and in addition, kY is analogous to (s+l)o .

A consideration of the characteristics of the potential equa-
tion, (2.62), as for the density current case in Section 2.2, shows
again elliptic (subsonic) and hyperbolic (supersonic) regions,
denoted by M < 1 and M > 1, respectively. M in this case is denoted

by

M= (2.6k4)

=

and is known as the Mach number of the flow, (analogous to the
hydraulic Froude number with sub- and supersonic regions analogous
to sub- and supercritical regions,vrespectively).

However, the transition from super to subsonic flows, the shock
wave, differs in nature from the hydraulic jump. In real gases (as
opposed to isentropic flow theory, which does not allow these dis-
continuities), discontinuities of pressure, density, temperature and
velocity occur at shock waves. These discontinuities are governed by
the Rankine-Hugoniot relations, which admit conservation of mass,
momentum, and total energy (mechanical and internal), whereas
hydraulic jumps while conserving mass and momentum, experience a loss

of mechanical energy. This difference is due to the mechanical energy
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in both cases (shock and jump) being converted into internal energy.
However, while for the hydraulic case this energy is irretrievably
lost to the system, for the gas flow, mechanical and internal energy
are interchangeable if the flow is adiabatic (zero heat transfer with
its surroundings), but the entropy, s, of the system will be increased.
Thus, for the Rankine-Hugoniot shock, mass, momentum and total energy
are conserved, whereas entropy is not.

An expression for the entropy loss is given (Shapiro, 1953)

to lowest order as

B

3
_!;_s 5 (%:_) (2.65)

<o

12

where AP = P2 - Pl, P being the pressure, and the subscripts 1 and

2 denoting upstream and downstream values, respectively. The ratio
_Abl is known as the "shock strength", and can be written in terms of

the upstream Mach numver, My» (Shapiro, 1953) as:

o) (2.66)

g

2Y
=Ty
The ratio of densities, 02/01 , for the Rankine-Hugoniot shock is

(Y+1)M12
(2.67)

L (y-1)u® 42
On the other hand, if, for computational purposes the gas flow
is idealized as satisfying conservation of mass, total adiabatic

energy and entropy, the momentum loss across this "computational Jump"



can be calculated as
3 Y-3
= k(p, - p;)° (py +0p) (2.68)

The corresponding density ratios are given by

p M. T

y=2: -p—i = -,% <Ml + \/Mlz + 8) (2.69)
)

y=3: v = (2.70)

These are also represented in Figure 2.9.

2.4 Stability and Entrainment of a Density Current

2.4.1 Interfacial Stability

The interface between the density current and ambient flow
region forms an interior shear layer, which may be stable or unstable.
Turner (1973) discusses the various types of instabilities which are
likely to occur along such an interface. He quotes experimental
results suggesting that the instabilities most likely to be observed
in a stably stratified environment are of Kelvin-Helmholtz (K-H)
type. These are inviscid in character and result in a "violent
breakdown at the interface and in a region on each side of it." The
K-H criterion means that for the case of an infinitely deep ambient,

short wavelength, A, disturbances will become unstable if

2
Nyt
_(?{_ z1 (2.71)

where AU is the velocity difference across the interface. The left-
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hand side of Equation (2.71) has the form of an inverse bulk Richardson

number, based on the wavelength of the disturbance. (The bulk Richard-

son number" is more generally defined as

R = &N (2.72)

(av)

where AU is the velocity change across an interface of finite depth, h).
Thus, the interfacial stability can be commonly expressed by a

Richardson number criterion. High Richardson number flows tend to be

stable with respect to long wave disturbances (i.e., of the order of the

depth), while some short wave instabilities may still exist. However,

over reasonably short distances, the interface can, for high Richardson

numbers (Ri > 1), for any practical purposes, be assumed as stable and
without mixing.

2.4,2 Turbulent Entrainment

In flows (whether buoyant or nonbuoyant) which are injected
into an ambient at high Reynolds number, the resulting turbulent zone
tends to entrain the non-turbulent ambient fluid, in a process that
is called "turbulent entrainment." The nature of turbulent entrain-
ment in buoyant and non-buoyant flows will be discussed in the follow-

ing.

2.4.2.1 Non-buoyant jet entrainment

Jirka (1982), on the basis of experimental evidence, deduced

that the turbulent energy required tor.entrainment to occur, was



produced by internal shearing processes within the density current,
accounting for about 10% of the mean flow energy. This is in agree-
ment with independent measurements by Heskestad (1965), and others
(see Rodi, 1975).

An expression for the entrainment velocity, We, is conven-
tionally obtained by setting it proportional to a characteristic

local jet velocity, such as its centerline velocity, u,, as
w =0 u (2.73)

where the constant of proportionality, @ , is known as the entrain-
ment coefficient. This basic proportionality concept was first in-
troduced by Taylor (1954), and further expounded by Morton, Taylor
and Turner (1956).
This entrainment coefficient for a two-dimensional non-buoyant

jet, can be related analytically to the observed spreading rate of

a jet, using an integral approach. The integral properties of the jet
are the mass flow, Q = I1 uch and the momentum, M =1, u 2h where I

m 2 ¢ ag

and 12 are integral coefficients obtained from integrating the jet

velocity and the jet momentum, respectively, over the current depth -
the velocity of any point being given as u = u, £(M) where f is a
given shape function and T a nondimensional variable. Then the mass
flux conservation, %% S %ﬂrc, (Equation (2.73)) together with

: m : .
the conservation of momentum, il 0, combine to give



3

1
=5k (2.74)

i
2

=

Q=

<1

where k is the spreading rate of the jet.

The actual values for the spreading rate have to be taken
from experimental data, which show that k is a constant, (a linear
spreading rate) in conformance with the jet similarity properties.
Particular values of k have also been estimated. Using experimental
data (see Albertson et al., 1950, and Rodi, 1975), jet spreading
values for the assumption of top-hat profiles, Il = I2 = 1, can be

deduced as k = 0.165, and the associated entrainment coefficient is
a = 0.083 (2.75)

2.4.2.2 Buoyant density current entrainment

Horizontal turbulent density currents having a low buoyancy
(Ri + 0), behave similarly to non-buoyant jets. However, at high
Richardson numbers (I.i > 0), the effect of buoyancy will be to dampen
the turbulent kinetic energy which leads to entrainment. Estimates
of the amount and nature of this damping are obtained from experimental
evidence. Ellison and Turner (1959) conducted laboratory experiments
and found that the entrainment coefficient for a buoyant case, a.',
was a monotonic decreasing function of the local Richardson number,

R, . (Figure 2-10) defined as

(2.76)

:
u
"ol
o -
Nl
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Figure 2-10 Various buoyant entrainment functions in comparison with

the data of Ellison and Turner (1959)



where uc is the centerline velocity of the density current. Figure
2-10 indicates that for Ri > 1 the entrainment is strongly damped,
being practically stable.

Various buoyant entrainment formulae have been fitted through
the data, (Figure 2-10). The earliest was that of Koh and Fan

(1970) who fitted the relation

» 1.75
a_=(—§i-1) 0 <R <0.85
i® 6-8-5-
=0 otherwise (2.77)

Later, Stolzenbach and Harleman (1971) used the formula
a’
T = (- 5R). (2.78)

Both these expressions were empirically fitted to Ellison and Turner's
(1959) data. Equation (2.78) is to be preferred to (2.77) in that no
physical reason exists for the entrainment to stop at a Richardson
number of 0.85. Jirka (1982) attempted to obtain a relationship

based on theoretical arguments using the jet energy equation rather than

simple curve fitting. The formula obtained was

* R

=a(2- : (1+r)? (2.79)
& s it

where Ri' = 0.25. The first term on the right-hand side accounts for
buoyant damping, or "the modification of turbulence structure (intensity

reduction and profile distortion) by buoyancy," and the second term
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for,"” the additional pressure work that must be done by the buoyant
jet and therefore is not available for turbulent entrainment."

Applications

The previous entrainment relations have been applied in a num-
ber of different flow situations:

- Two-dimensional heated jet.

Koh and Fan (1970) investigated the surface heated jet by
assuming its velocity field was of the form

u(x,z) = uc(x) fz(z);

where f is a given function showing the dependence of
the vel8city variation in the z- direction (vertical)

on its centerline value, u , i.e., & similarity assump-
tion is used. He applied fhe entrainment relation given
in Equation (2.77).

- Three-dimensional heated jet.
Stolzenbach and Harleman (1971) investigated a heated

jet discharged at the surface of an ambient cross-flow
distribution as

u(x,y,2) = u (x)f ()£, (2)

i.e., with similarity profiles assumed over the horizontal
Ty) and vertical (z) directions. An additional lateral
momentum equation was introduced to predict the non-linear,
buoyant spreading in the y-direction. Equation (2.78) was
applied to evaluate the entrainment velocity.
Shirazi and Davis (1974) carried out a similar analysis.

= Radial buoyant jet.
Jirka et al. (1981) investigated a surface buoyant jet

discharged into a stagnant ambient. They assumed velocity
profiles of the type

u(r,2) = u (0)f,(z),

where r is the radial displacement, and applied Equation
(2.78) to evaluate the entrainment velocity.
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Both the expressions of Stolzenbach and Harleman (1971),
Equation (2.78) and Jirka (1982), Equation (2.79), will be used

later as described in Chapter 4 of this study.

2.5 Previous Two-Dimensional Density Current Solutions

Section 2.1.3 dealt with the "pseudo” two-dimensional density
current approximations obtained by the extension of one-dimensional
theory. This section discusses fully two-dimensional density current
theory.

In addition to the "pseudo" two-dimensional solution applicable
downstream from the source, Jirka et al. (1980), attempted to
account for the upstream intrusions likely to occur. They approximated
the full problem as a sequence of constant height solutions, which
thus reduces the potential Equation (2.35) (representing the convective-
buoyancy regime) to a Laplace equation at each step. (It should be
noted that this is equivalent, using the gas flow analogy, to
approximating a compressible gas flow by an incompressible one.)

Shen (1977) concluded that "the streamline pattern usually does not
greatly alter because of compressibility effects,” which indicates
that the constant height approximation is a reasonable first step
toward a full solution. The Laplace equation was then solved for a
given intrusion shape. The height required along this boundary was
obtained by equating drag and buoyant forces, as described in
Section 2.1, ylelding an expression for the boundary height, which

can be written for general stratification conditions as
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A
{s+2 % 2}s+1 80
hg =152 208 (2.80)

where the B subscript denotes boundary values. The velocity vari-

ation along the boundary obtained from the Laplace solution, was used

in the Bernoulli equation, Equation (2.33), to obtain a height vari-
ation which could be compared with Equation (2.80). Various boundary
shapes were examined until a height matching was obtained. They then
matched together this solution with the downstream convective and fric-
tional regimes, to obtain the complete solutions shown in Figures 2-11 a
and b for s=0 and s=1, respectively.

Although the approach of Jirka et al. (1980), considered up-
stream intrusions, it contained significant approximations. The
assumption of a constant height Laplace solution requires subcritical
velocities in this region, which although it may be applicable locally
does not necessarily hold overall. Alsp, the Schwarz-Christoffel
transformation (Kantorovich and Krylov, 1958) employed to solve the
Laplace equation requires the boundary to be approximated by a series
of straight lines. Due to complexities associated with many lines,
the boundary approximation was kept at three lines, which would lead
to inaccuracies.

Garvine (1982) examined the inflow of the Connecticut River
into Long Island Sound, as discussed in Section 1.2. He assumed that
the inflow was supercritical as was the whole of the subsequent flow.

This allowed him to use the method of characteristics in order to
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Figure 2-11 Geometry of combined density current upstream intrusion,
convective and frictional regimes, (after Jirka et al.,

1980) .
A)Homgeneoul or stepwise ambient stratification, s = 0 .
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-64-

determine the flow field. However, the continued supercriticality
after discharge required that the outlet channel inclination, ea,
(Figure 2-12) be limited to

o, < sin~t (:—:) (2.81)

where gz is the critical velocity of the system.

Garvine's treatment takes no account of upstream intrusion due
to the limitations of Equation (2.81). The front of the density
current is characterized by a frontal propagation Froude number
(defined as F = -:—° , where e is the speed of a small amplitude long
wave along the bouxfdary) value of 1.0, i.e., a frontal discontinuity,
(Garvine, 1982). Entrainment is assumed to occur only within these
frontal regions, but can be allowed to occur in an upward or down-
ward direction. Downward entrainment indicates a local flow towards
the density current front, indicating convergence, while upward
entrainment indicates the reverse. While both mass and momentum
exchange are accounted for at the front, the change in buoyancy, g°,
due to entrainment of less buoyant ambient fluid, is not. This will
introduce a source of rotationality in the flow, which appears incon-
sistent with the use of the Bernoulli equation.

Thus Garvine's model (1982) contains physical restrictions on

the discharge (as discussed above) and only considers a convective

buoyant regime. However, a complete solution (comprising the internal

flow field) is obtained (see typical solution, Figure 2.12), as opposed

to the previous solutions discussed.
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2.6 Numerical Techniques

2.6.1 The Characteristic Nature of Super- and Subcritical Flows i

The nature of supercritical and subcritical flows was dis-
cussed briefly in Section 2.2 with reference to the potential
Equation (2.35). It was shown that supercritical flows, as defined
by a local densimetric Froude number F (Equation 2.36) being greater
than one, are described by equations of hyperbolic type. Subcritical
flows have F less than one and are described by equations of elliptic
type.

Hyperbolic equation systems describing second order equations

in two variables possess two families of characteristic lines (Ames, 1965}
Courant and Friedrichs, 1948; Shapiro, 1953), which, for the stratified

flow equation system in Equations (2.29) and (2.30), can be described by

(%xx) ’|uv| +c hz-c2

(u® - ¢?)

(2.82)

where ¢ is the internal wave speed given by Equation (2.32), and
where (%9 and (% are known as the positive and negative char-
ncteristic+families,-respectively. These characteristics represent
the information boundaries for the problem, in that along each of
these lines, the equations governing the flow properties can be re-
duced to ordinary differential equations, rather than the partial
differential equations applicable in the general domain. Figure 2.13

shows the domain of dependence and region of influence of a point P

situated in a supercritical flow field. The former is the region
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Figure 2-13 Regions of influence and dependence in supercritical flow
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lying between the members of each family of characteristics, which
intersect at P. It denotes the region within which a change in flow
properties will have an effect on P. The region of influence of P is
bounded by two characteristics (again one from each family) originating
at P. This defines the region over which changes at P will be felt.

The elliptic equations describing subcritical flow, however,
possess no real characteristics (but two families of imaginary ones)
such that "the domain of dependence and range of influence for each
point covers the entire field of flow", (Shapiro, 1953).

If a small disturbance is introduced into either a super- or
subcritical flow field, its influence will travel with a velocity
¢ (Equation 2.32). For supercritical flows, qQ>c, i.e., information
of the disturbance will all be swept downstream, whereas for sub-
critical flows, q < ¢, its influence will be felt both up- and down-
stream of the initial disturbances.

As discussed in Section 1.1, the density current under con-
sideration is transcritical, i.e., made up of both supercritical
and subcritical regions. Numerical models of transcritical flows
(discussed in Section 2.6.3) are complicated in that they must
describe the flow properties in each region. Purely supercritical
flows are much more simply and inexpensively modeled, thus whenever
possible a purely supercritical scheme will be used. Available

supercritical schemes are discussed in Section 2.6.2.
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2.6.2 Numerical Techniques for Supercritical Flow

The existence of the two characteristic families in super-
critical flow suggests a possible method of solution known as the
Method of Characteristics solution (Courant and Friedrichs, 1948;
Owczarek, 1964, and applied to hydraulic problems, Mahmood and
Yevjevich, 1975). The solution procedure starts with the known
values on the upstream boundary. The grid points are determined as
the solution moves downstream, from the point of intersection of
characteristics from each family. The flow properties at these
points are also evaluated by a simultaneous solution of the
ordinary differential equations valid along each streamline. Thus
the solution at any point is determined from the upstream flow
conditions only, as is consistent with the previous physical
analysis. This marching downstream leads to its description as a
marching technique.

Another method of solution for ; hyperbolic equation system
is by means of finite difference tecnniques (Roache, 1976). In
particular, explicit marching finite difference techniques are a
more straightforward method to program than the Method of Character-
istics, the grid being definable in advance, and the flow proper-
ties at downstream points being simply evaluated from those preceed-
ing them. However, care must be taken in the choice of a step size,
such that the new point, S does not lie outside the zone of influence
of its predecessors, as would S3 in Figure 2.13, as opposed to Sl

and 52' In the case of S3, one is attempting to determine conditions
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without knowing certain data essential for those conditions and an
instability would result. This requirement is stated in the C-F-L
(Courant, Friedrichs and Lewy) condition for stability, and is
discussed in some detail in various texts such as Ames (1965), and
applied to hydraulic cases in Mahmood and Yevjevich (1975). Thus
the downstream step size must be small enough to satisfy the
stability bound but large enough to finish the computations without
excessive computation time. An estimate of this bound is obtained
from consideration of the Method of Characteristics, an approach
followed by Kutler and Lomax (1971) and Kutler, Warming and Lomax
(1973). The point S is chosen such that its upstream positive
characteristic passes between Q and R, and its negative character-
istic between P and Q, thus ensuring that the domain of dependence
of S contains no unknown information. A typical condition for

Figure 2-14 would be

.| (@),

where Ay and Ax are the grid sizes as shown in Figure 2-14 and

(2.83)

(%)‘ are the slopes of the families of characteristics as given
in E;untion (2.82).

Explicit stepping techniques are easier to program than
characteristic methods (Mahmood and Yevjevich, 1975). Many
explicit finite difference stepping techniques are available,

with two-step Lax-Wendroff methods being "currently the most popular
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given characteristic slope



methods for solving compressible flow problems” (Roache, 1976).
Section 2.3 has shown that certain types of compressible flow
problems are analogous to the density current flows under consider-
ation, thus these methods will be discussed more fully.

The basic two-step Lax-Wendroff method was suggested by

Richtmyer (1963). Applied to the equation

- - rx (2.8)

for simplicity, the initial step, using Lax's method, can be shown

|
to be "
L ey | isl © 1 1
% - 3[ +2, ]- e [Hgtia ] (2.65) !
while the second step uses the midpoint leapfrog method, as '
P+l |
ol (m)[ e ] (2.86)

vhere i and n denote x and t node positions, respectively. The

+1
values F’; +1

intermediate values obtained from the first step, Equation (2.85).

and F;':'i in Equation (2.86) are calculated from the

These intermediate values have mo physical significance, this only
being attached to results of the second step. Thus the two steps
may be thought of as a predictor-corrector couplet, with physical
significance only attached to the corrected values.

Another type of two-step Lax-Wendroff method, was suggested

by MacCormack (1969, 1971). Applied to Equation (2.84) for a
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comparison with the basic method, Equations (2.85) and (2.86), this

scheme can be written as

¥
v .l - s [_“_lm—l— (2.87)

e S 'At[ 11]} (2.88)

Tt can be seen that the first step, Equation (2.87) uses a forward
differencing technique, while the second, Equation (2.88) uses a
backward difference. Here the intermediate value, UB2+1 again has
no physical significance, but this time is calculated as a provisional
value at the same grid position as the final step. This method has
been used successfully by MacCormack (1969 and 1971); Kutler, (1969) ,
Lomax, et al., (1970) and Kutler and Lomax, (1971).

The dissipation introduced by the MacCormack scheme can be
investigated by appiying it to Equation' (2.84), with F = U = u for
simplicity. The combined steps, Equations (2.87) and (2.88) then

give the relation

un+l _un
i AP0 T i in vl o ( B g ogal oy
K Phw hivl o Nielieep ()2 Ui 41 s Ma

(2.89)

This can be rewritten as
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2 2 3
3u  du At Ax 3~ u
rt*s;"r(l'p)aj (2.90)

{ 1

dissipation term

It can be seen that the dissipation term introduced by the scheme
is of second order.

The method of characteristics, being an exact technique,
however, introduces no dissipative terms.

An additional finite difference technique is available for
hyperbolic equations-using implicit methods. These have the advan-
tage over explicit techniques of not being limited by the CFL con-
dition. As opposed to explicit techniques which solve for one down-
stream point at a time, in terms of known upstream points, implicit
schemes solve for a group of downstream points using simultaneous
equations including the unknowns at all points in the group.

Roache (1976) mentions that some implicit methods have been
applied to compressible fluid flows, such as Gourlay and Mitchell
(1966a and b) who developed & two-dimensional unconditionally stable
scheme. However, it had not been applied to nonlinear problems or
been proven for an actual fluid dynamics problem. Roache (1976)
felt that until the adaptation of these techniques to compressible
flow problems were more advanced, the proven explicit methods were
preferable.

A more recent investigation of' explicit and implicit methods

for compressible flow problems is given in Caughey (1980). He
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points out that implicit schemes are to be preferred, where as large

a step size as possible is required for the solution, i.e., if the
step size limitation (cFL condition) associated with explicit schemes
is unacceptable. Briley and McDonald (1975) and Beam and Warming
(1976), have developed implicit schemes (known as block alternating
direction impliecit - ADI - schemes) useful under these conditions.
However, Caughey (1980) again concludes that for cases where a

large step size is not a major requirement, explicit schemes, such

as those discussed previously, are to be preferred, being much

easier to program.

2.6.3 Numerical Techniques for Transcritical Flow

Any numerical scheme employed to model transcritical flows
should be able to model each equation type, elliptic and hyperbolic,
appropriately, i.e., be type-dependent. In addition, the continuous
transition from subcritical to supercritical flow, and discontinuous
transition from supercritical to suberitical flows, both of which
have been discussed in Section 2.2 must be accounted for.

The main solution techniques for transcritical problems are
the hodograph method and numerical techniques (finite difference

and finite element).

2.6.3.1 The Hodograph Method

This involves a linearization of the full potential

Equation (2.35), by transforming it into the velocity or hodograph plane
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Ames (1965). The latter has (q,0), the speed, q, and velocity angle,
©, as independent variables, whereas the independent variables in the
physical (x,y) plane, now become the dependent variables.

If a streamfunction, ¥, is defined in terms of the physical

mass fluxes, hu, and hv, as

hu = g% hv = - % (2.91)

then the linear hodograph equation, obtained from the nonlinear

potential Equation (2.35), can be written as

RPN ' TN SV I
aq,“*q(l 2)371 2(1 g ao o (2.92)

as derived in Jirka and Jones (1978), following that of von Mises
(1958) and von Karman (1940). Solutions of this equation can then
be obtained by means of hypergeometric functions. However, singu-
larities due to the hodograph transformation exist, known as limit
lines and branch lines, occurring when the Jacobian of the trans-

formation,

5 -5f (2.93)

takes on zero and infinite values, respectively. The former occur
near shocks. causing singularities in the physical plane, where none
exist in the hodograph plane. The latter are associated with singu-

larities in the hodograph plane, which in the physical plane are
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characteristics, at all points of which, a line of constant speed,
a line of constant direction, and a characteristic of the other
family touch each other. Their properties are discussed in detail
in Howarth (1953). The nature of the treatment of shocks (discon-
tinuous solutions) discourages their use for the physical problem
under consideration. In addition, difficulties in representing

curved boundaries exist, as will be discussed in Section 5.2.

2.6.3.2 Numerical Finite Difference and Finite Element Technigues

A major problem for numerical finite differencing techniques
when applied to the transceritical flow problem is the treatment of
the flow discontinuities associated with shocks, for gas flows,
and via the analogy discussed in Section 2.2, jumps in stratified
fluid flows. The methods employed for this feature may be separated
into two categories (Roache, 1976):

- shock patching methods

- shock-smearing or shock-capturing methods

Shock patching methods maintain the shock wave (jump) as a
discontinuity, the values of the variables on either side being
calculated using relations resulting from non-isentropic flow
theory, such as the Rankine-Hugoniot relations in compressible gas
flows, or the jump conditions in stratified fluid flows. The rest
of the flow can be modeled using methods applicable to shock-free

flows, of either super- or subsonic type.
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Shock-smearing or shock-capturing methods allow the calcula-

tion to proceed without any special treatment of shocks/jumps which
may develop. An artificial viscosity ™ Ax, the grid spacing, is
required to smear the shock over several grid spacings.

Explicit artificial viscosities are generally introduced in

the case of a strong shock. A term of the form - aB %-: is added

onto the pressure term in the momentum equation, where

du

5_xAx

3
G.B a

in the region of a compression wave (shock/hydraulic jump) (Roache,
1976), but zero near a rarefaction wave (hydraulic drop). Thus

the diffusion process is now driven by

2
5 G0
instead of

3
3x

3u
ox

causing dissipation over a shorter distance, and an artificially
smeared out shock such that 6 =3 to 5 (Ax). Thus details in the
region of the shock are lost while a correct jump in properties across

it are maintained.

Implicit artificial viscosities are sufficient if only a

weak shock is present, but problems involving strong shocks may

require the addition of explicit viscosities if more damping is
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required. Implicit damping can be introduced simply from the form
of the difference equations, i.e., & nonzero coefficient of the
second space derivative, or, as in the method of Courant, Isaacson
and Reis (1952), by using an upwind differencing scheme in the super-
critical region, where the effective "viscosity" is introduced through
the truncation error in the one-sided scheme.

The shock capturing methods are preferred to the patching
methods, since the latter require the position of the shock to be

known beforehand, or the use of an iterative approach.

Finite difference techniques

A recent review article, Caughey (1982), summarizes previous
and present work on transonic gas dynamics (which is analogous to
stratified flow problems as shown in Section 2.2). It considers the
problems of applying boundary conditions along curved boundaries,
such as found in curved wings in aerodyﬂémic applications, (or,
analogously, curved frontal regions in stratified flow theory).

This can be dealt with by adopting boundary-conforming co-ordinate
systems. These can be obtained by applying conformal transformations
to simple domains as in Jameson (1971 and 1974), or, if a suitably
exact transformation cannot be found easily, by taking a good approxi-
mation and subsequently applying weak shearing transformations as
applied to aerofoils in wind tunnels by Caughey and Jameson (1977a).
Caughey (1982) points out that the tedious nature of analytical

transformations of the full potential equation and also the lack of
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analytical transformation derivates for numerically generated grids
make the finite volume technique preferable, (Caughey and Jameson,
197Tb and Caughey and Jameson, 1979). The finite volume technique
comprises a local transformation within each mesh cell, evaluated
numerically using the Cartesian coordinates of the corner points.

A method of accounting for the appropriate type of the poten-
tial equation in super- and subsonic flows past thin aerofoils was
introduced by Murman and Cole (1971). They considered a simplified
form of the potential equation, known as the small-disturbance

equation, and given as
(K- (v + 186, +4, =0

where K is a similarity constant, dependent on M_, and the tendency
of the disturbance to spread laterally. This simplified equation
has the advantage of having characteristics locally symmetric around
the x-direction, such that the hyperbolic region can be appropriately
modeled by simply upwinding the differencing in the x-direction.
They applied centered difference approximations in the subsonic
region, to account for information flow both up- and downstream.
However, in the supersonic region they added an artificial viscosity
implicitly (proportional to the grid spacing Ax) by using an up-
winded difference approximation for ﬁn in supersonic zones. A
central difference approximation was used in subsonic regions,

which allows a sharp representation of the shock. Thus a
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type-dependent approximation to the small disturbance equation
was obtained.

However, in the full potential equation, the upwind direction
is not known in advance, being independent of the co-ordinate system.
Jameson (1974) introduced a method of rotating the upwinding to G
in the streamwise direction, i.e., a 'rotational difference scheme'.
This again involves adding artificial viscosities in a form to mimic
an upwinded difference approximation, only now this was aligned with
the local velocity direction.

A later refinement, introduced by Jameson and Caughey (1977p)
and Caughey and Jameson (1979) was to add the finite volume repre-
sentation to the scheme, and apply it to various wing and wing-
fuselage geometries.

Thus, the scheme can now capture the shock, automatically
difference the equations appropriately for their type, and account

for curved boundary geometry.

Finite element techniques

A recent review article by Shen (1977) summarizes the appli-
cation of finite element techniques to general fluid flows, while
Chung (1978a) presented a state-of-the-art review of finite
element applications to transonic flow or mixed-type equations.

The former emphasizes the flexibility of the finite element method,
in that the domain under consideration can be subéivided into

irregularly shaped elements, thus accounting for curved boundaries
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as long as they can be approximated by a number of linear segments.

When applied to supersonic flows, however, finite element
techniques encounter difficulties, there being no "counterpart of
the 5-point backward-difference formula in finite-difference schemes,
which is unconditionally stable for computation in the supersonic zone"
(Shen, 1977). When applied to regimes of mixed type, patched solutions
are frequently used (Chen, 1976), with supersonic solutions patched
onto subsonic finite element solutions.

Transonic flow techniques similar to those applied to finite
difference schemes by Murman and Cole (1971), discussed previously,
were applied by Chan et al. (1975). For supersonic elements they
jignored the contribution from downstream nodes in order to represent
the true physical situation and thence stabilize the scheme in super-
sonic regions.

Chung and Hooks (1976, 1977) and Chung (1978b) showed that
the method of discontinuous functions enables the global finite
element equations to find the location amd intensity of shocks.
Friedrichs (1958) showed how a symmetric positive definite system,
as obtained by using the least squares approximation, gave a compu-
tational algorithm which was the same for both the elliptic and
hyperbolic regions, being type-insensitive, while Chung (1978b)
discussed this in connection with the full potential equation. 1In
particular, Chung, in this article, shows how, in the full potential
equation, the discontinuous functionf can be used in the formation

of the finite element matrices combining the shock boundaries. The
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shock's position and intensity was found using an iterative numerical
technique in which convergence was obtained by means of a scheme
similar to artificial viscosity. This scheme was applied to a
symmetric aerofoil.
MwemwMawhwﬁmsMfmnedmmtmmMSthmmn
flow calculations have been made by Tatum (1982) and Bredif (1983).
These again incorporated artificial viscosity terms in order to
introduce the required upwind bias into the finite element formula-
tion in the supersonic regions. The technique they used was the
artificial compressibility method developed by Hafez et al. (1978).
Thus, finite element methods were again used in both super- and
subsonic regions, with an artificial viscosity concept automatically

modeling the shock position and correct equation type.



CHAPTER 3

PHYSICAL CONCEPTS

This chapter considers the physical concepts involved in the
investigation of the steady-state two-dimensional horizontal motion
of a shallow density current emanating from a radial source in a
moving stratified ocean. Although the mathematical framework
developed herein, is for the general case of horizontally two-
dimensional intrusions (see Chapter 1 for examples), it is applied,
in this particular study, to discharges from ocean thermal energy

conversion (OTEC) plants.

3.1 General OTEC-Ambient Ocean Schematization: Definition of Scales

The following basic schematization of the ambient ocean struc-
ture and its interaction with OTEC is adopted:

a) Velocity and Density Profiles

The general tropical or subtropical ocean exhibits nonuniform
velocity and density (mainly temperature influenced) profiles.
Density profiles for various locations are shown in Figure 3-1.
Velocity and temperature profiles for a Gulf of Mexico example are
shown in Figure 3-2. It can be seen that the density profile usually
exhibits a pycnocline zone, i.e., a region of strongest density
variation, which often lies between 50 and 150 m depth as shown in

Figure 3-1. It is in this zone that the intermediate field density
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Mexico (after Thomas et al., 1979)
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currents are most likely to occur. The essential feature of the
pycnocline zone, i.e., its sharp density variation, may be schematized
as shown in Figure 3-3.

Another possibility - certainly of strong interest for labor-
atory experimentation, but also for OTEC discharges as discussed be-
low - is an intermediate field generated by a buoyant source directly
at the free surface.

Thus, in general, three cases of discharge - ambient strati-
fication interaction are of interest, as shown in Figure 3-3. These
can be described as follows:

Case A: Surface Source with Homogeneous Ambient

This represents a buoyant source discharged at the free
surface of a homogeneous ambient flow. It should be
noted that if turbulent entrainment occurs, then the
density deficit, Ao, will be, in general, a function of

position. Outside the region of entrainment (near-field),

however, Ao should become constant.

Case B: Interface Source with Stepwise Stratification

The discharge is assumed to occur at the interface, with

a density that is just between those of the two individual
layers. The density difference, Ao, (and also the actual
density of the current) is constant in this case. Outside
the region of entrainment (near-field), the dynamics for

this case should be exactly equivalent to Case A.
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Case C: Equilibrium Source with Linear Stratification

The discharge is assumed to occur at its equilibrium

level, (equal density level, i.e., 0, = oa(z)) within the
linear stratification profile. In this case, as in Case B,

the actual current density, po, will remain constant both with-
in and without the region of entrainment (near-field).

It should be noted that Case A may also be an acceptable
approximation for an interface discharge. If the discharge density,
°o’ is much closer to that of one layer, say 02, so that (p2 - oo)
<< (o2 - pl), then the discharge will behave as if the interface
were a rigid 1lid, similar to the surface in Case A. This can be
understood by examining the local Richardson number, Ri of the current
(Equation 2.76), with respect to either of the two adjacent layers.

A small density difference, say (02 - oo) in this case leads to small
Richardson numbers and hence likely instabilities, as discussed in
Section 2.4 However, large density differences, say (pl - po),

lead to large Ri values and stable conditions without entrainment
from that layer. (An application of this type has been discussed by
Jirka et al., 1981). Thus, under such conditions Case A is quali-
tatively similar to an interface situation, and is also more easily
obtained experimentally - enabling verification of theoretical pre-
dictions. Therefore, although the equation set is derived for all
cases, the actual solutions in later chapters will be confined to

Cases A and B.



b) Unsteadiness

Long term temperature and velocity variations in the thermo-
cline do occur as illustrcted in Figure 3-4. A (volumetric) time
scale representing the OTEC discharge adjustment time for unsteady
conditions is

- (7

a

Using the values given in Section 3.1.1 gives '1‘1 % 15 mns. Thermo-
cline variations of shorter time scale than this will not affect the
final density current position, while those of longer time scale will
blend into the ambient background. Figure 3-4 shows that the major
variations are over about 12 hours, although much shorter and longer
time variations also occur. Thus the reasonable assumption of steady
ambient current conditions are considered in general, although the
stagnant case is analyzed for the near field.

Sudden stepwise current changes (equivalent to discharge

changes) were considered experimentally in Jirka et al. (1980)

¢) Shallow density current

This assumes that the ambient ocean motion is very little
affected by the presence of a shallow intermediate field current
and is, to a first order, unperturbed. This will be discussed further
in Section 3.3. Thus, referring to Figure 3-3, the discharge current

layer depths, h, are smaller than the ambient vertical domain (5.5. :

mixed layer depth).
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3.1.1 Definition of Scales

It is advantageous to consider the regions over which certain
physical quantities (such as momentum flux or frictional effects)
exert an influence. Various length scales, indicating the influence
of these quantities, can be derived, based on the following physical

variables typical of OTEC plant and oceanic considerations:

100 MW OTEC plant (Jirka et al., 1980)

Total discharge flow Qo = 1000 n3 s
Discharge velocity U, =2 m/s
Typical mixing factor S = 5 (near-field dilution)

Ambient ocean (Jirka et al., 1980; also Figure 3-1)

Typical velocity u, =0.15 m/s
Density stratification - -2.20 nt
Brunt-Vaisala frequency N = 0.015 s'l
Total buoyancy difference g ' = 0.002 m,/s2

between layers (Case B) e

(equivalent to the
density change over

a 10 m current height in
a stratification N)

-4 2

Ambient vertical diffu- K =10 m /s (Koh and
sivity £ Fan, 1970)

Interfacial friction cc- A~ 1073 (aAdams et al.,
efficient 1981)

Coriolis parameter f=20sing ~0.5. lo'h/s

(Q is angular velocity
of earth, ¢ is lati-
tude).

Length scales, based on dimensional analysis and simple physical

reasoning, can now be defined as:




Near-field length scale, LN:
This is based on the turbulent mixing action of the
discharge momentum flux, M0 = QoUo’ versus the stability

effect of buoyancy, N giving

1/3 /4

1 ‘,,Mo %

- ;—'m (Case B) or -N?é— (case C) (3.1)
0

Intermediate-field length scale, LI:
This is given by the interaction of a mass source,
SQO, within a flowing stratified ocean which causes hori-

zontal collapse and advection of the source flow, giving

ofo' 5Q.N
LI ~ (case B) or (case C) (3.2)
3 2
Y Ve

Coriolis length scale, (Rossby Radius), LR:

This is given by the Rossby radius, such that

-—slmc

L SR = (33)

R

o

Frictional length scale, LIF:
This is given by the interaction of a mass source,

SQo = hIF LIF within an ambient ocean. The dynamic

relation xi = hIF/LIF relates the frictional length scales

using the interfacial friction coefficient, Xi . These

expressions yield

5Q, 1/2
"IF’( )

v
xII. a

(3.4a)
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as a frictional length scale. It should be noted that
Equation (3.4a) can be rearranged to

L
L - I (3.4b)
S vz

where (XiV')l/2 is a parameter discussed in Section 2.1 as
a measure of the importance of the frictional effect, iy

being a parameter discussed more fully in Section 3.5.

Far-field length scale, LF:
This is given by the action of ambient diffusion over

a vertical disturbance height H' (caused by the near and

intermediate field processes and =~ 10 m (Jirka et al., 1980)

versus the simultaneous ambient advection

*°

Ly~ i (3.5)
z
Using the values of the physical quantities given previously,
typical length scale magnitudes are as shown in Table 3-1. Although
these are only typical values (for example, Section 3.6 discusses
cases when the near- and intermediate-field length scales are of the
same order), they still serve as an indication that the density current

may be modeled as subsequent flow regimes of increasing length scale:

(1) Near Field Region (Section 3.4):

This has a horizontal extent of order 1“ (100 m). Supercritical

velocities are expected, due to plant d.{scharge criteria, as discussed
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Table 3-1: Length scale values (in km) for typical OTEC and
oceanic conditions

Stratification Stratification
Case B Case C
LN 0(0.1) 0(0.1)
. 0(1) 0(1)
LR 0(10) 0(10)
LIF 0(10) 0(10)
L 0(100) 0(100)




further in Section 3.3. The importance of the destabilizing momen-
tum flux in this region compared with the stabilizing buoyancy leads
to low Richardson numbers, and entraining flow, as discussed in
Section 2. kL.

(2) Intermediate Field Region (Section 3.5)

The intermediate field region is modeled as stable non-
entraining flow.

a) The transcritical flow region is made up of super- and

subcritical flow regions, separated by internal hydraulic jumps and
critical lines, (Section 2.2). These phenomena occur in the region
of the intermediate field closest to the source, where frictional
effects are unlikely to be important. Thus it can be assumed a region
where the flow is convectively controlled.

b) The supercritical flow region occurs after the trans-

critical flow region and extends downstream until the diffusive
effects of the far field become dominant. Frictional effects become
increasingly important in this region.

(3) Far Field Region

The ambient stratified ocean is characterized by weak (and
often patchy) turbulence. This ambient diffusion (as indicated by
the LF values in Table 3-1) assumes importance at large distances
from the source, leading to a gradual diffusion of the mass and heat
contained in the density current.

It should be noted that the Coriolis length scale, LR, is

shown in Table 3-1 to be about an order of magnitude greater than
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the intermediate field length scale, LI’ i.e., the Coriolis in-
fluence may be felt several intermediate field length scales down-
stream. However, even then its effect would be global, i.e., it
would affect the entire ocean current structure rather than only the

internal hydrodynamics of the density current.

32 Governing Equations

The basic equations linking the spatial variations of velocity
uj, j =1, 2, 3, density, 0, pressure, p and temperature T, within a

fluid in steady-state, may be represented using tensor notation, as

du,
Mass Continuity 5—3 =0 (3.6)
X
J
Momentum . (u.u,) = - N 3131
5;5 fleg 2. p Bxi g 340 ij
convective ' pressure sgravi- turbulent
acceleration force tation- shear stress
al force
e & % (3.7
Coriolis
acceleration
Scalar Conservation - (u.,T) = - s (q .) (3.8)
WJ. . 3%, %3 .
convective turbulent
transport scalar transport
Linearized equation of State %% +a=0 (3.9)



for i, j, k = 1, 2, 3, with a Cartesian coordinate system, x3

pointing upwards against the action of gravity. ﬂd is the angular
velocity vector of the earth, 7“(- ui 3 W, 'u,') and th(- u,'T') are

the turbulent shear stress and turbulent transport tensors, respectively,
where ui and T' represent velocity and temperature fluctuations,

the overbar denoting averaging over a time scale greater than the
fluctuating time scale, 61‘1 is the Kronecker delta, 0:1.1k is the
alternating tensor, (the Einstein summation convention being used)

and a is the thermal expansion coefficient.

Incorporated into these equations are the assumptions of
incompressibility and neglect of both diffusion and shear molecular
transport terms. The Boussinesq assumption is adopted, requiring
that the actual density variations are small relative to the refer-
ence state apart from the pressure term.

Further assumptions include:

The density can be written as o(x3) = o.(x3) + p.(x3),
where oa(x3) is the ambient value and p.(x3) is a small
dynamic perturbation, which can be written as o’(x3) -
a'r'(x3) using the linearized equation of state, thus in-
corporating this into the other equations.

The adoption of a hydrostatic vertical momentum equation,
requiring that vertical accelerations, gradients of dynamic

pressure, rate of change of turbulence and the vertical

Coriolis force, are second order terms.
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The equation set, incorporating the above assumptions is:

du,
5;1 = 0. (3.10)
J
d ) 3
3
b L ’a?if P (xz)ax
o T ©
129
'-p.sx—j.rl.] - ejki QJU.K (311)
*
.. % (3.12)
3
3
g?j (ujT) = - a—xa' (th) (3.13)

i, =1,23 k =1,2,3

where the pressure teru in the horizontal momentum equation has been
obtained from the vertical momentum Equation (3.12). p* now indicates
the hydrostatic pressure deviation.

It should be noted at this point that the horizontal exchange
terms (both horizontal shear stress and diffusivity, these being
related via the Reynolds analogy) are negligible compared with other
terms in the equations, and will be neglected hereafter. In addition,
based on the scaling arguments in Section 3.1, the Coriolis term
will also be neglected from this point.

The equations can now be integrated vertically over the region
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of the density current, i.e., hl(xl,xa) < L) < hz(xl,xa), where h,
and h2 define the "interfaces" of the current as shown in Figure 3-5.
The assumption of constant vertical velocity (top-hat) profiles is
made for this integration. (Note, if non-constant values were assumed,
profile dependent constants would appear in the integrated equations,
these constants having values somewhat different from unity.)

Also incorporated into the equations at this point are turbu-
lence closure approximations and boundary conditions along the inter-

faces x, = hy, (k = 1,2). These are given as:

3
1) Kinematic Condition:
3y dn,
“1&I+“25_)(;'“3'-'ekntx3-bk (3.1k)

where Wk is the net velocity across the interface, i.e.,
a turbulent entrainment velocity. For Case A stratifi-
cation, W, = 0 at x3 = 0, its upper boundary.

2) Dynamic Conditions:

a) P’-Oatx3=l& (3.15)
2

®) 143 TAEF" PAy(ugy - “1)[(%1 - ug)uy, - “1)]1/
at x3 = r\( (3.16)

where u,, is the ambient velocity so that (u.i - “i) is
the velocity difference across the interface. This is a
generalization of the interfacial shear equation and has

been suggested in this form by Dronkers (1969) in order
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to provide the correct total energy dissipation in the
flow: the positive and negative signs refer to the upper
and lower boundaries, respectively. For Case A stratifi-
cation, ri = 0 at the upper boundary, x3 = 0.
c) a3 = 0 at %y = h (3.12)
This can be approximated as zero since, if entrainment
occurs, this term will be negligible in comparison,
whereas, if no entrainment occurs, there will be no
breaking waves along the essentially laminar interface.
The layer thickness integrated equation set, incorporating

the Boussinesq assumption is:

g_x; (uH) = vy - Y2 (3.17)
. : h2 x3
— ki *
3xJ (“iu:)H) 2 uai('el "ez) > g; EL J.h 2 d.x3dx3
1
h
2
o,
. * i $7 0 G "R
*po»rhlpdx3axi+po (T |2 T |1) (3.18)
-} hz
- - *
s 55 O Ihl Ay Y (3.29)

where the terms (wel - "ez) and u . ("el - 'ez) represent the
entrainment of outside fluid mass and momentum. respectively into
the internal flow. The pressure integrals in these equations have

to be evaluated for the various stratification cases (A, B and C).
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In the following, the definition sketch in Figure 3-5 is referred to
and symmetry of the current around the x3 ={0Faxis. e eh = h2 =
hl , is assumed (with the exception of Case A below) .

Case A: Surface Source on Homogeneous Ambient

The density distribution is defined as

p*(x3) =-0M S =0 (3.20)
where P is (oo - Da) and - h < X3 < 0 is the extent of the surface
current, i.e.. its upper boundary ii at x3 = 0. This gives the total

2
buoyancy, I of dx3 h and J. j p* dx3dx3 = Ap = The total

density current height, given by (h2 - h]_)’ becomes equal to h, in
this case, as h2 = 0. Also, the surface entrainment, we2 = 0, and
the interfacial shear stress at the surface, Ti‘g = 0.

Case B: Interface Source with Stepwise Stratification

The density profile is defined as

" + Do 0 < x, <h
p (x3) =
- b -h<x3<0 (3.21)
where fp = -0 )/2, i.e., half the total density difference be-

tween the layers. The total buoyancy, —hJ‘ D""(x:‘))dx3 is zero, as
expected for a neutrally buoyant Jet. The integral from the pressure
-h-[ _th o] dx dx becomes th In this case. symmetry
assumptions are made for the interfacial friction and entrainment
terms, such that Til = Ti\ = Ti and w =-W .= -V respectively
7 2 1L e2 el e’ :

Case C: Interface Source with Linear Stratification

The density profile is defined as:
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*
p (x3) =Py € Xy (3.22)
1a0 N
where € = - &= —— = — is the density gradient and N is the Brunt
Po dx3 -4
Vaisala frequency of the system. Again the total buoyancy is zero,
but the pressure integral becomes % oo € h3. Symmetry assumptions

for the interfacial friction and entrainment terms are made as for
Case B.

The equation set can now be written as:

?

g ) =¥, o
2 ah"‘l i

S"_i (“1“Jh) =V, Wy - oh 5— +L° (3.24)
%’3 (u 8" h) =0  (Case A only) (3.25)
0 = constant (Cases B and C) (3.26)

where the stratification parameters, s and o are defined as:
Case A, B. 0 =g' 3 s =0 (3.27)
Case C. 0-5 Cga—N2 : s =1 (3.28)
It should be noted that Equation (3.26) results from an

intermediate step of [u (cx “ll + (-1)% ox "ll )l =0.
e

As u‘1 and h are both arbitrary, this necessitates the relation

0 = constant. The equation set will now be divided into the separate

regions discussed in Section 3.1.
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1. Near-Field Region (Entraining Regime)

The equations for entraining stratified flow are: (i,j=1,2)

3

B o) =, (329
3 ahs+l

8;‘1- (uiujh) =, Uy - ch &?— (3.30)
-)

gx—:j (ujg'h) =80 (Case A) (3.31)
o = const (Cases B and C) (3.32)

These equations are applicable in the vicinity of the source
where interfacial friction is less important. In general, entrain-
ment will occur in the near field as discussed in Sections 2.4, 3.1,
and 3.3.

2. Intermediate Field Region

a) Transcritical Flow Region (Convective Regime)

The equations for non-entraining stratified flow are: (i,j=1,2)

g_; (ugh) = 0 (3.33)
=L
s+l
2 (uun) = - oh SE— (3.34)
al i
g;(; (u;e'h) = 0 (case 4) (3.35)

o = const. (Cases B and C) ) (3.36)
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b) Supercritical Region (Convective and Frictional Regimes)

The equation set becomes: (i,j=1,2)

3

5—,‘; (th) =0 (3.37)
2 ah”l - 3

5%, (ujush) = - oh r‘d +7‘§ (3.38)
gTJ (udg'h) =0 (Case A) (3.39)
0 = constant (Cases B and C) (3.40)

General Boundary Conditions

3.3.1 Ambient Fluid

The outside fluid is assumed unperturbed apart from a narrow

region bounding the density current. The ambient velocity field is

thus given by

u,; = const, i=1,2 (3.41)

This assumption requires that the thickness of the density current, h,

be much smaller than the typical vertical dimension of the ambient

fiuid layer, H. In oceanic conditions, typical values are h ~ 10

and H ® 100 m. However, this condition is occasionally difficult to

achieve experimentally, h sometimes approaching a significant fraction

(%) of H. Drag effects likely to occur under these conditions can

be dealt with as described in Section 2.1.

In a narrow region of the ambient flow along the front of the
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density current, significant local vertical accelerations are assumed
to occur, thus violating the hydrostatic pressure conditions applic-
able throughout the remaining ambient flow. Generalizing to two-
dimensions Benjamin's (1968) one-dimensional analysis of this
pressure deviation (discussed in Section 2.1), by taking the compon-
ent of the ambient velocity normal to the boundary (ua sin ©) rather
than u, results in a form drag FD’ normal to the front. The expres-
sion for FD is given as

(ua sin 9)2
Fp = Cp P, 5 hy (3-42)

where hB = half thickness along the front, Paas ambient density,
©® = local front angle and CD = drag coefficient. This drag force

acts as an arresting mechanism for the density current.

3.3.2 Density Current Interactions with Ambient Flow

i. Front Conditions:
The front between the density current and the outside

fluid is a streamline, giving

vy = U g% at y = b(x) (3.43)

where uB and VB are velocities along the front. A buoyant force,

Fb’ acts along the front of the density current, as discussed in a

one-dimensional context in Sections 2.1. Its magnitude is obtained

from the pressure term in the momentum Equation (3.24), which re-
JF.

arranged, yields 5§B where Fb is given by
i
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s+l 842
Fo =542 Po 7 Mg (3. 1k)

Along the front, a pressure equilibrium must exist between the acceler-
ating buoyant force, Pb, and arresting drag force, FD’ in steady-state.

Thus the two expressions, Equations (3.44) and (3.42) may be equated,

thereby relating the boundary thickness,
1 :
2 _|sa
hB (8+l %0 Ya sin e|* (3.45)

to the boundary angle © (see Figure 3-6). Equation (3.45) is a two-
dimensional generalization of Equation (2.80). For the special case of

the stagnation point, S, (Figure 3-6) © = 90°, giving the "stagnation

height",
c A
s+#2 D 2 s+l
hy= |31 20 Y (3.16)

ii) Source Conditions:

The conditions at the source must be specified in order to
give an inner boundary for the near field region. Thus an inner

velocity and height
E-Ei, h=h aty=b(x),

where bi(x) defines the inner boundary, are defined such that the
total flow, Q, is appropriate, and the overbar denotes the vector

representation.
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Figure 3-6 Schematized two-dimensional density current (OTEC) in an

ambient crossflow.
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3.4 Near-Field Region

This section deals with the physical processes involved in
the near field region of the density current, which comprises con-
vectively controlled, supercritical, entraining flow, moving at its
equilibrium level, i.e., its density, po, is equal to that of the
surrounding fluid at its centerline.

3.4.1 Governing Equations

The applicable governing equations are Equations (3.29),
(3.30), (3.31) ana (3.32).

It should be noted at this point, that the presence of entrain-
ment into the density current causes rotational effects to be present.
This can be seen by taking the curl of the momentum Equation (3.30),

which results, when using vector notation for simplicity, in
v S oy R o S &
v x(ax%xq) 5 v x (v, -q) ‘7(,1)x(u,l Q)

It can be seen that if the entrainment were zero, this expression
would be satisfied by YV x q = O, i.e., the flow would be irrotational,
as discussed in Section 2.3 in connection with the velocity potential.
However, the entrainment terms are such that, although V x ;‘ =0,
due to the ambient flow being approximately unperturbed, the gradient
V(-‘%’) is not zero. Thus Y x g = O does not satisfy the equation,
i.e., the flow is rotational. The presence of rotational effects will

be further discussed in Section 3.5.
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3.4.2 Boundary Conditions and Possible Downstream Controls

The radial discharge from the OTEC plant (or from any other
environmental source) is likely to be in a critical or supercritical
flow regime, (corresponding to a Froude number, F, of one or greater,
respectively, as discussed in Section 2.2). This may be either due
to the actual plant exit conditions, or - if the two-dimensional
horizontal spreading motion is preceded by vertically rising or
falling jets, see Section 1.2 - to the fact that the transition zone
from an fluid motion with a vertical component to a horizontal one
is always some form of critical condition.

The subsequent horizontal expansion (decrease of mass flux/
unit length) of a nonentraining flow would cause the velocity to
increase, and the flow to become increasingly supercritical, (Figure
2-7). However, the study of Jirka et al. (1981) on a radial entrain-
ing jet in a stagnant ambient, (Section 2;h) suggests that the entrain-
ment of ambient reverses this trend, such that the flow velocity and
Froude number decrease. The extent of this decrease will depend on
the downstream flow controls, which depend on the relative strengths
of the near- and intermediate fields, as will be discussed in
Section 3.6.

The flow will be symmetric with respect to the ambient flow
direction (x - axis), so that modeling efforts (Chapter 4) could con-

fine themselves to the positive (x, +y) half plane.
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3.4.3 Non-dimensionalization for the Near Field Eouations

The Boussinesqg-type flow under consideration takes place into an
infinite receiving fluid with an ambient velocity. This physical situ-

ation can be described by means of the ambient velocity, U, together
with the source variables, velocity, Uo’ buoyancy parameter, go', for
Case A or B and N for Case C, length parameter, Lo’ where Lo is obtained

in terms of the initial radius, Tos and discharge depth, ho’ as
Bao2nsn (3.18)
o o o

The source variables can be grouped into the integral quantities
of momentum flux, Mo, volume flux, Qo and a buoyancy conservation

parameter Zo, where, if top-hat profiles are taken,

MO = Uo LO (3' "9)
2
R0 & : (3.50)
A Ry Lo Case A
L =<8 Case B
N Case C (3.51)

Thus the initial conditions can now be characterized by the more
fundamental integral quantities, Mo’ Qo and zo , together with a
characteristic length, o Thus any flow property, ﬂ, such as
velocity, can be written in terms of position, x and y, and the

above variables, as
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¢ e f(x) Y MO’ Zo’ QO’ rO

> u). (3.52)
The momentum flux, Mo’ and the buoyancy related parameter 20
represent the two fundamental opposing mechanisms for the jet flow,
Mo causing instability, which is counteracted by the stabilizing
effects of buoyancy, Zo. Thus it appears appropriate to use these
as the two normalizing variables. Length, volume flux, velocity
and buoyancy scales are developed by dimensional arguments as shown
in Table 3-2, together with their relationships to the non-integral
conditions, U_, g} (), LO and the discharge Froude number F_.

Thus the nondimensionalized form of Equation (3.52) can be

written as

A 5 N y A Torta s
A= f(x=r’y=r’3~—’ro=r’“a=“aﬁ-) (3.53)
N N N o

where ~ denotes nondimensionalization using the quantities Mo and

20 and fﬁ denotes for all straification cases, the initial dis-
s

charge, Qo’ or initial slot height

Case A

h = —__7—___ﬂ7§ Case B
4 2mr F

- Case C (3.54)



Table 3-2: Near field scale definitions.
Frequency Discharge
Length Volume Flux Buoyancy Scale Froude
Conserved Scale Scale Scale Velocity Scale % Nusber
Quantities L“ q“ &'y W = r'
{ ¢ 2 2
Case A: “ 13 3 J T J v J
Surface Source » at P S _eqQr e W o L .—° Yy
e “J eg’ O Shaata $ 7 3=y o
Homogeneous T, R 3 2 ;3 2 " - u 1 » J Ay ‘o
fmbient o -] o -]
3 1 1
3 v B,"\& u
Case B: " w3 2 ué £ xS 3a0 (“L) °
A o o - o 3 ~ o % S
Interface Source ol 3 , gl Qor. 8, 3 ° =5
with 1 3 '3 ¥, & %
Stepwise Strati- L e * 3 )
fication %o = &
1
E SI::E "o “°: 2 lré uf- r% M%Ig “%'é-uo N —l-u"
quilibrius 2" g et ° 53 ° g N
Source with z = 2 ’
Linesr Strati- t° -N N .2 1 '.
fication L .Z' 2
o s

-"n-
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Thus the problem is defined by three parameters, Fs’ ;o and Ga,

for all stratification cases.
The governing equation set, Equations (3.2

written in nondimensional form as:

2GR+ BN =¥,

dx dF

T (s+1) ° 3

= (v h) += (Avh) =% 0 - —

3% 3y e Ya T (s+2) g
s

2 @ih 2 Pl --fe et

dx dy dy

CrRGe M TE R IIER T

== (et (g v) =0 (case A)

3% dy

g' = const (Case B)

N = const (case C) 5

The nondimensionalized initial conditions
Table 3-3.
The ~ notation will be retained hereafter

and in the text, where confusion would otherwise

35 Intermediate Field Region

3.5.1 Transcritical Flow Region

This comprises the inviscid, convectively

into which the fluid passes after the near field.

9) to (3.32) can be

(3.55)

a l-g as+2
i e s

h
(3.56)
Basteys aiag
(3.58)
(3.59)
(3.60)

are given in

only in the figures,

result.

controlled region

The inner



Table 3-3: Near field nondimensionalized initial conditions.
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boundary of the transcritical region is determined by conditions at
the end of the near field, and the exact transition conditions, which
will be discussed in Section 3.6.

The transcritical region, as indicated in Figure 3-6, comprises
the density current within and somewhat downstream of the head region.
It is characterized by a highly variable, two-dimensional velocity
field, q(x,y), with an internal jump occurring between its inner
boundary and the downstream stagnation point, S (Figure 3-6). The
outer boundary is as shown in Figure 3-6, which is controlled by the
balancing of drag and buoyant forces, as discussed in Section 3. 3.

The transcritical flow region does not have a downstream
boundary as such, in that it becomes supercritical, and may then be
said to pass into the purely supercritical region, which will be dis-
cussed in Section 3.5.2. No downstream boundary conditions need to
be defined as the flow conditions will bg self-determined by the flow,
it being described by a hyperbolic equation system (Section 2.2).

The governing equations are those given in Equations (3.33),
(3.34), (3.35) and (3.36), although the buoyancy conservation
Equations (3.35) and (3.36) are not required in this discussion (no

entrainment) and will not be addressed hereafter.

3.5.1.1 Nondimensionalization of the Transcritical Flow Region

The flow parameters involved in this description are: stratifi-
cation parameters, s and O, ambient velocity, U, drag coefficient,

CD’ and total flow, Q. These can be combined into two length scales
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and a parameter, as: A vertical length scale, the "stagnation

height", h, given by (section 3.3)

1
e —_—
n ={22 2,2]s4 (3.61)

A "volume flux parameter", which has the form

v ._9_2 , (3.62)
2Mu, b

and a horizontal length scale, the "intermediate field length scale",

LI’ given by

Lo=n V. (3.63)

hs’ V' and LI are summarized in general and for the particular
stratification configurations, in Table 3-4. Thus, the variables

can be nondimensionalized as

7,;.;‘;;1; x.:_;ﬁ,v,a.ﬁhk (3.64)
s on 5t

yielding:
(5% +2(E¥) =0 (3.65)
2% 2y
@)+ @VE) = - 5L (5 (3.66a)
3% 3y 3%
L @VH + 2 (Pw) = -5 (5 (3.660)
dx oy dy
w2
1
95 + ﬁs* sl o (3-67)

=2 (3.68)



Table 3.4: Intermediate field parameter and length scales.

Step-wise Linear

General Stratification Stratification
s, O g =0 s =1

c=g' o= 2 N2
2
Vertical Length 1
Scale c s+l u 2 1/2
h Lo c. 2 Be) %

s s+l 20 “a D g' 2 —N-
Volume Flux 2 2
Parameter Q Qg' QN

2 R i a8 3
b 2m uahs 24 CD u, 2 > CD u,
Horizontal Length
Scale Q Qg' QN
L_=V'h 2Tu h amce w3 3 1/2\12
I s a s D a am (—2- CD) a

_6-[-[_



-120-

Yid }(ul)?; (3.69)

B, &S A%Q 3 1ed (3.70)

¢
%L - J(sﬂ)ﬁc (3.71)

Again, the ~ will be dropped apart from in the figures, and
where both near and intermediate field nondimensionalized variables
occur together.

Thus the transcritical flow region can be seen to be governed
by two parameters only, i.e., the volume flux parameter, V', and the

drag coefficient, CD.

3.5.2 Supercritical Flow Region

The upstream boundary of this region comprises nonentraining,
supercritical flow, entering from the transcritical flow region. The
outer boundary is identical with that for the latter. Within this
region, frictional effects become increasingly important as the flow
passes downstream. Again, no downstream boundary is required, as for
the transcritical flow region.

The governing equations are Equations (3.37), (3.38), (3.39)
and (3.40), although again the buoyancy conservation Equations

(3.39) and (3.40) are not required.
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3.5.2.1 Nondimensionalization of Supercritical Flow Region

The equations governing the supercritical flow region are non-
dimensionalized using the same scales as for the transcritical flow

region. Thus, Equations (3.37) and (3.38) become

TR+ Em T =0 (3.72)
35 a5

L @R+ @FR= -5 SR v @ - DIE, -4
= - BE (3.732)
B e (P By B P DR (E 1)
3% ¥y 3y -

where ;a is taken as (ﬁa,o), where 'ﬁa is given by

~ 2 (s+l
L EI; s+2 (3.74)

Thus the frictional regime requires the "additional" parameter

)‘1'. V' as a measure of the importance of the frictional effect.

3.6 Transition Conditions for the Boundary Between the Near and

Intermediate Fields

This section considers the boundary conditions existing be-
tween the near and intermediate fields of the density current, as a
function of their relative field strengths. The field strength is
estimated by its respective length scale. which, for the near field

(section 3.3) is given from Table 3-2, as

f4 v Case A
TG

G 2/3
LN _L‘Lo Fs Case B
L Fsl/2 case C (8.75)

For the intermediate field (Section 3.5), Table 3-L gives the length
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scale as
3 - ; (3.76)
I 2n Uy h.
which can also be written as:
J
1 ]
— Case A
2TCh uy3
.
Qw
» )
PR Case B
u
a
T]T'- 11/2 QLZ Case C (3.77)
(6c) " “a

This boundary is particularily important as it defines the
inflow into, and hence characteristics of, the intermediate field.

An analysis is required, that relates the transition flow properties
to the relative field strength, LI/LN -

As shown in Equation (3.56), the flow is clearly rotational
due to the entrainment of ambient flow momentum. A precise discus-
sion of the transition conditions to the intermediate field, including
an evaluation of the degree of rotationality, must necessarily rely
on the complete results of the near field numerical model that will
be given in Chapter L.

At this point, however, it is possible to present an approxi-
mate and simplified treatment of the near-field and its transition
condition. This treatment is based on the notion that - at least for

weak cross-flows - the near field flow field is still predominately

-
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radial, as it would be exactly for the stagnant case. (Note that

in fact, one might expect the cross-flow to perturb the exactly
radial flow pattern by shifting successive circles of constant

flow properties in the downstream direction; this analogy to the true
cross-flow discharge condition is discussed in Chapter L).

Assuming then, in the first place, that the transition between
the near-field and intermediate field (modeled as irrotational)
occurs in the form of a circular geometry, the following additional
assumptions are made:

i) Assume the boundary shape is circular, although the circle

center will be downstream of the source.

ii) Assume that uniform conditions exist along this circle,

i.e., that they form equi-Froude number, equi-height,
equi-velocity, equi-buoyancy, etc. curves. Also the flow
must be normal to the curve, for consistency with these
underlying assumptions.

iii) The flow is assumed irrotational, i.e., any residual
rotationality still present in the near field solution
will be neglected. This assures that no entrainment will
be present along the interface. The assumptions contained
in (i), (ii) and (iii) will be justified in Chapter L.

iv) Along their interface, both the near and intermediate

field flows will be assumed to have equal energies. This

"Equi-Energy Transition" can be represented by equating
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the Bernoulli equation in dimensional units for the near and inter-

mediate field flow, as

2
7 s+l 542 cD 2
-ZTT + hT o ET uy at transition. (3.78)
pe i
Near Intermediate

Field Field

where the subscripted 'T' emphasizes the values of these quantities
at the transition line, and the Bernoulli constant for the inter-

C
mediate field, {%ﬁ%} 5%- “a2 is evaluated at the stagnation point,
T

$ (@ =0, h = h_, Equation 3. L6). It should be emphasized that this

equation is valid only along the 1rrot5tional, radial boundary

separating the two flows. The term T i 4 Be written, using the
t. m

radial continuity equation Q = 27 rhq, as TEE;T (2m nr)ahTz -

local Froude number, FL , is defined as

Q

Fy = (3.79)

(2m rh) (s+l)ohs+l
which allows Equation (3.78) to be written as

2 -
Ty N (s+2) Eg - = (s+2) Cp “12
5 ( 8'0'1) ( B¢1)2 P

o hTs’l ('¢1)2 ZOT ;ﬁ“’l
(3.80)

where, as previously, * denotes near field, non-dimensionalization.

1
20

The non-dimensionalized ambient velocity is given in Table 3-2.

Using Equations (3.75) and (3.77) gives
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v 13
(2 nch 'Ll:' ) Case A
I L .1/3
u, = (2T3CD ;2275 zg ) Case B
((g—>1/2 2 ;E )1/2 Case C (3.81)
i

s
where S denotes the mixing due to the entrainment, such that Q =
S Qo.

Substitution of Equation (3.81) into Equation (3.80) and

rearranging yields the relations

1/2

Q
o

1 Case A

1
ey ;;T)B/Z @ B 1)3/2

1/2
1 CD i
£ =< o7 5 - 2/3 = = B
5 (e’ hT> (1 2 1)
canl/2
e -:}— B poelos Case C
on (T) h'r2 Fsl72 (FLT2 iy
(3.82)

This equation describes the conditions along the transition. The
quantities o, ‘nT,S and F{,T are by virtue of the near-field
solution all unique functions of r_, the radius of the transition

circle, and thus Equation (3.82) effectively relates the relative
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field strength, LI/LN to the transition radius. The functions,
o (;), h (;), S(;) and FLT(;) require numerical evaluation,
(the results being presented in Section 4), which allows evaluation
of LI/LN = r(;,r). Thus, for field strength ratios appropriate to a
part:icu.lar problem, the inverse relation ;T = F(l—p, again given in
Chapter 4 can be used to estimate f., which in turn allows definition
of the flow conditions between the near and far fields.

The exact location of the transition "circle" and, in fact,
the relationship of this approximate treatment to the more general
near-field in a cross-flow requires the results of the near field

model that is given in the following chapter.




CHAPTER 4
THE NEAR FIELD SOLUTION

This chapter deals with the numerical solution of the near
field region for both a stagnant and moving ambient. Section 4.1
considers the adaptation of the finite difference scheme chosen (the
MacCormack scheme as discussed in Section 2.6) to the problem under
consideration. Section 4.2 deals with the case of a stagnant ambient
(ﬁ = 0.0), while the results for a moving ambient are presented in

a
Section L.3.

Section L.4 discusses a simplified model for the moving

ambient, which is of use in approximating the near-intermediate

field boundary.

4.1 Numerical Computations - MacCormack's Method

The near field consists of supercritical, entraining, convec-
tive flow, the nondimensionalized equations having been given by
Equations (3.29) to (3.32). However, throughout this chapter, only
the Case A stratification type will be considered, so that Equation
(3.32) will not be required.

The flow is supercritical, indicating that the equation system
is of hyperbolic type; i.e., the flow properties at any point are only
affected by changes upstream and can only affect points downstream.
Hyperbolic equation systems, their properties and general solution

methods have been discussed in Section 2.6. The solution method
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decided on is an explicit stepping technique rather than the Method
of Characteristics, due to ease of programming. As discussed in
Section 2.6, care must be taken in establishing an appropriate step
size for an explicit technique, so as not to introduce instabilities.
These instabilities are due to attempting to evaluate the solution
at a point for which all the information is not available. That this
is not the case here is checked by the approach discussed in Section
2.6, summarized by Equation (2.83).

The finite difference method chosen was the second order
method of MacCormack, which is a two-step Lax-Wendroff-type method
(Roache, 1976, Section 2.6). If the nondimensional controlling

Equations (3.29) to (3.32) are written in vector form as

3F 26 _ 3
& . s; = H ("-1)
hu hv w
e
u2h + % g'h uvh wu
vhere F 6 e
ere = = . -
uvh v2h #% g'h2 y 0
g'hu g'hv 0
then the basic MacCormack scheme can be defined by
i+l Ax (4 i i
i -y gy (05 - o) ¢ g tha

+1 1.0 141 Ax (.44l
EHURE AR (R R

$m
(k.2v)
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where the superscripts and subscripts refer to a spatial mesh of
points (x.l, yj) with spacing Ax and By and the vector notation for
F, G and H being dropped hereafter for convenience. Equations
(4.2a) and (4.2b) form a predictor-corrector set, with FB, GB and
HB denoting provisional values of F, G and H, respectively, with
significance only attached to the results from the corrector step.
The difference scheme, Equation (4.2) consists of a forward
differencing of G in the predictor and backward differencing in the
corrector, but MacCormack (1971) pointed out that the forward and
backward sequence could easily be reversed, or even used alternately
for each predictor-corrector couplet, in an attempt to produce
unbiased results. The effect of the various permutations was in-
vestigated by Kutler, Warming and Lomax (1973), who summarized the

various alternatives as

i+l _ i Ax % e g i i i
FBj = Fj T ((1 e)Gj+l (1 2e)Gj +-ecj_1) + Ax Hj
(4.32)
i#l 1 i i+l Ax il i+l
Fj =3 ((Fj + FBj ) T T (eGBj+l + (1 - 2e)GBj
ol 1)cB§fi) + Ax HB§+1> (4.3b)

where € = O reproduces Equations (4.2), and € = 1, its alternative.
This system introduces second order dissipative effects as

shown in Equation (2.90).
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where these velocities are estimated at the cell centers. Thus the
scheme involves a flux balance across the faces of "auxiliary cells",
which, as shown in Figure 4-1, are formed by joining cell centers

in the contravariant plane. The local relation within each cell is

€5

1
4+—

< —mesh points\

auxiliary cells

|
S
Lel

<—primary cells i

physical (Cartesian) plane computational (Contrava -

riant) plane

Figure 4-1. Relation between Cartesian and Contravariant
planes.

assumed given by a bilinear mapping
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4.1.1 Finite Volume Formulation

This formulation (mentioned in Section 2.6) is generally used
when complicated boundary shapes would normally require use of a
boundary-conforming coordinate system or special interpolation
formulae to be adopted in their vicinity. It has the additional
advantage of allowing efficient clustering of mesh points. These
advantages proved particularly useful for the transonic region of
the intermediate field, as will be discussed in Chapter 5. The
finite volume formulation is used in the near field for consistency
with the intermediate field scheme. This transformation is based
upon a purely local transformation of a mesh cell in a Cartesian
(x,y) grid into a cell in a transformed or contravariant (X,Y5 grid
i.e., no information is required regarding the global nature of the
transformation. If the Jacobian matrix, J, for an arbitrary, non-
‘singular, and not necessarily orthogonal, transformation from
Cartesian to contravariant coordinates, is defined as

i 5 A
J = and J = =

v Y%y : Y Xy

ol

(4. 1)

where D is the determinant of J and xx, xy, yx, yY are known as the
metric terms of the transformation. If the contravariant velocity
components are defined as U, V, then they can be related to their

Cartesian counterparts u,v as
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L
1 2
x-kX X (K+xix)(n+y1¥)
i=1
N
.1.2 Eex0E + vy (1.6)
y Yy GrANE T Y
i=1
where X;, y; are the coordinates of the cell corners in Cartesian
space, and X,, Y, those in contravariant space, which can be taken,

- L §
with no loss of generality as (- 1/2, - 1/2), (1/2, - 1/2), (- 1/2,
1/2), and (1/2, 1/2) respectively, giving AX = AY = 1. Equation

(4.6) can be differentiated to give formulae such as

Wy iy O
X =M byx (4.7)
on evaluation at the cell center (0,0), with similar expressions for

yx and Yy » where the averaging and differencing expressions ux and

bx, respectively, are defined as

1
Wl =3 W wase, 3 * T age, g

8fi,0= Ty wa/, 37 T4 - ape, 3 (4.8)

where i1, j are mesh indices in the X, Y direction.
Thus, the relations between Cartesian and contravariant

coordinates can be summarized by Equation (4.5) together with the

relation
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d/ox 1 el d/3x
D
33y Xy Xy 3 /3y
d3/3x
= @) (1.9)
3/aY

The nondimensionalized near field Equations (4.1) can then

be expressed in contravariant form as

o) o)
a—x'F+-a—YG—H ()4.10)
where
hDU ? hDV WD
hDUu + L v g'h2 hDVu - = V. g'h2 w_u_D
2°Y LD 4 e a
F = s G= siHa=
i s a 2
hDUv + > Xy g'h hDVv - > xxg h (0]
g*hDU g'hDV 0

4.1.2 Solution Details

The solution procedure, using the MacCormack method (Equation
4.3), for the present physical problem, defined by Equation (4.10),

can be summarized in the following points.

1) FB is calculated, using the 'predictor' Equation (4. 3a),
from values of F, G and H, at points already solved for, or known

from boundary conditions.
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2) ‘Predicted' values of the dependent variables, u, v, h, W,

and g', are calculated from FB, using the relations (obtained from

Equation 4.10).

v = ;f %%%%} + g%%%} -u ;5 (4.11)
u =y E%Q). * "y2 g{% *hy Ny %8%)/("’!2 y ’¥z>(h‘12)

, _ FB(4
&' = Bh (4.13)

0.58 -O,

(4.1k)

h3 (XY FB(3) . yY 0 PB(2)) FB(1)2
ot 2 2 Lt 2

X+ ¥y (g‘ +yy)
vhere the appropriate root of Equation (k.14) determines the height.

The entrainment relation,
Vg = Vo .. v Al u‘) (4.15)

must be defined, together with an appropriate ambient velocity, u,-
GB and HB are calculated from the 'predicted' dependent
variable values.
3) . Steps 1 and 2 are repeated using the 'corrector' Equation (4.3b),

yielding the final values at the node in question.

4,1.3 Initial and Boundary Conditions

The initial conditions of the problem (required at the inner
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boundary only, as a marching scheme is being used) can be obtained
from the parameters Fs, §° and ﬁa. Values of FS and ;o were selected
as FS = 100 and ?o =805 ¥ ive. HFa high Froude number value and small
radius to simulate a radial point source (as defined by Jirka et al.,
1981) and make the downstream results independent of the upstream
boundary. Parameter values of ﬁa were chosen as either zero (stagnant
ambient) or, as finite (ﬁa > 0) using Equation (3.81), to relate them
to the ratio of relative intermediate to near field length scales,
.

In principle, the problem should be solved in the entire x-y
plane (i.e., within a 360° sector around the source). Because the
solutions must be symmetric about the x-axis, however, the solution
only in the (x, +y) half-plane need be determined in general. In the
case of a stagnant ambient, the solution is radially symmetric, and
only a sector of the half-plane is used. 1In both cases the symmetry
boundaries introduced by computational subdivision are no-flux boun-
daries.

Inspection of Equation (4.3), which defines the MacCormack
solution method, shows that only values of the G fluxes are required
in order to define the boﬁndary conditions on these radial lines.

These G fluxes may be thought of as a combination of actual flux terms,
hDV, hDVg', hDVu and hDVv together with pressure terms % Yy g'h2
and % Xy g'h2 which can in turn be split into an actual pressure

force, p = % g'ha, together with the metric terms Yy and Xy All
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of these must be evaluated separately outside the boundary and then
recombined giving the required G fluxes.

Consider first the flux terms hDV, hDVg', hDVu and hDVv.
These comprise the actual contravariant V flux, and the buoyancy and
u and v physical velocities advected by this flux. If j =2 1s
used to denote a boundary line, then hDV at j = 1 and 2 must have
opposite signs and identical magnitudes, so that they exactly cancel

at the actual boundary. Thus the boundary conditions become
m>v|l = - mv|,
novg'|, = - novg'|,
hDVu| 15 - hDVu| 2
hDVvl1 = - hDVv|2 (4.16)

Consider estimation of the actual pressure term p outside the
boundary. Rearrangement of the horizontal and vertical momentum
equations in contravariant form, as given in Equation (4.10) yield

respectively,

e () + 35 (o) = 35 (ooun) o3y (o) - w, w0
= Rl (%.17)

32 (s - By () = 3 (o) + 3y (rom)

= RE F (4.18)
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which on expanding and rearranging yield
py=-5(x, BL+yy R2) (k4.19)

where D is the determinant of the Jacobian as defined earlier,
which can be evaluated using differencing techniques and a knowledge
that hDV at the boundary, is zero. The gradient of p in the Y
direction, yields the required Py value by extrapolation.

The metric terms Yy and Xy are evaluated, also by extrapolation,

as

Yx,1 = x,p " ¥x,2

1= P " Xx,2 (4.20)

where yx’b, the boundary value, is evaluated simply as = yi+1,2 -
¥ o ssapposed 10 ¥yl S¥pane 1 H 2 Waga 7,30 ans
similarly for xx,b.

Thus generation of all the G fluxes required for the boundary
conditions have been discussed. No downstream boundary condition is

required as this will be self-determined by the marching technique.

) Results for Stagnant Ambient (Ga = 0.0)

The stagnant ambient solution was investigated using a radial
grid, with 50 = 0.5, and FS = 100.0. Because of the radial symmetry,
only a radial sector of 50 was used, subdivided into 10 subsectors of

1/2o each. Solutions were obtained for two types of buoyant



-138-

entreinment functions, the model of Jirka (1982), Equation (2.79),
and the exponential function of Stolzenbach and Harleman (1971),
Equation (2.78).

The results obtained for both entrainment functions (Figures
4.2 and 4.3, respectively) show practically identical behavior. In
both cases, a rapid decrease in velocity, buoyancy and Froude number,
together with increase in height, occurs in the initially highly en-
training region in which the behavior is largely that of a non-buoyant
jet. Thereafter the entrainment is heavily damped, but still has a
significant effect due to the increasing surface area. After a Froude
number of about 1.25 is obtained, the rate of change becomes smaller
and smaller as the Froude number decreases slowly to 1.0. In this
region, a jump could occur very easily, depending on the downstream
conditions. (These are comparable with "undular jumps" in open
channel flow, as discussed in Section 2.3).

This solution can be compared with a somewhat similar stagnant
discharge investigation by Jirka et al. (1981). The latter treatment
assumed polynomial velocity and buoyancy profiles, compared with the
'top hat' or constant value profile assumed herein; also one
dimensional integral ordinary differential equations and the exponen-
tial entrainment function Equation (2.78) was used. The comparison
with the results of Jirka et al. (1981) is best made via the bulk
property, Q, which represents the overall flow rate, as this should

be relatively insensitive to the par{lcular profiles adopted. It
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can be seen in Figures L4-2 and L4-3 that good agreement is obtained
until a Q value of ~ 8 is reached. At this point, Jirka et al's
solution becomes constant, as the flow becomes critical at this
point and ceases to entrain. It should be noted that this occurs
in the region having a Froude number between 1.0 and 1.25 in which
such transitions have been postulated as being easily triggered by
any small disturbances (e.g., downstream effects) (see Section 2.3).
Jirka et al.'s model did begin to experience instabilities at this
point, which, together with the slightly different treatment of the
entrainment, would be quite sufficient to influence the transition
point. Even the two different entrainment functions used in the
MacCormack scheme were quite sufficient to alter the transition
position, (;c = 76 in Figure 4-2 and fc = 130 in Figure 4-3) with
the rest of the treatment being exactly similar. Due to the
‘essential similarity between the solutions for the different entrain-
ment relations, further results are limited to the entrainment model

of Jirka (1982), Equation (2.79).

4.3 Results for Moving Ambient (ﬁa > 0)

4.3.1 Computational Grid

Care must be taken in the selection of the grid for this case.
The stagnant solution (Section 4.2) has shown that the supercriti-
cality of the discharge will decrease with increasing distance from

the source until the critical point is reached, (Figures 4-2 and 4-3)
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or a jump occurs. The presence of an ambient flow introduces an
asymmetry around the source, such that the critical point is reached
closer to the source on the upstream and further away on the down-
stream side (this being verified by the results presented in this
section). The MacCormack scheme is only applicable to the super-
critical region (governed by hyperbolic equations), the solution
evolving as the scheme marches away from the source. Once a velocity
is encountered which is critical or less (in the direction of marching),
the solution can no longer continue. Thus it is advantageous to
arrange the step-size such that the critical point is reached at
approximately the same time at all points of the grid, in order to
obtain the maximum information possible regarding the supercritical
regime. In addition, it would be advantageous to have the grid
aligned with the (initially unknown) streamline direction in order

to have the velocity and the stepping direction aligned. Ideally,
such calculations should, therefore, be carried out iteratively,

that is, adjusting the computational grid after a model run.

The grid chosen was orthogonal (in order to decrease the
possibility of instabilities occurring). The flow pattern produced
by a source and sink of equal strength, W (=1), and separated by a
distance, a (=1), was calculated, with the grid taken as the inter-
section of potential lines, ¢, and streamlines, §. The potential

lines are given by the circles

(x - cotanh ¢)2 + y2 = (cosecé ‘)2 (4.21)
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and the streamlines by circles

2 4 (y + cotan $)2 = (cosech ¥)2 (1.22)

The maximum value of ¢ was chosen to satisfy the previously
described requirements of the criticality positions.

The grid used for all calculations is shown in Figure L-L.

4.3.2 Solution Properties

The results from three runs, having ﬁa values of 0.157, 0.25
and 0.50 (together with initial conditions of ;o = 0.5 and Fs = 100.0
as in the stagnant case) will be discussed in the following.

The entrainment relation used was that of Jirka (1982),
Equation (2.79), this being Richardson number dependent. Section 2.l,
Equation (2.76) gives the Richardson number as being dependent on
the velocity of the current. This involves the assumption that the
velocity of the density current, being much larger than the ambient,
is responsible for the entrainment. It could be argued that a
Richardson number dependent on the velocity difference between the
density current and ambient is more representative, notably if the
density current velocity is much closer to that of the ambient.

Some runs made using this alternmative relation were compared with
those made using a Richardson number dependent on the density
current velocity alone. The solution was found to exhibit no great
sensitivity to the choice of Richardson number definition, so that
hereafter one dependent on density current velocity alone will be

adopted.
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It should be noted at this point that, as discussed previously,
the marching solution stops when a local Froude number, based on a
velocity, 9 in the marching direction becomes close to one. This
frequently occurs in the (-x, y) quadrant some distance from the
x-exis, due to the velocity there pointing in the +x direction,
while the grid is algined more upstream in this region. Thus,
although the actual Froude number, q/c is greater than one, the
component along the marching direction, qm/c, has a value of one.

Figure 4-5 (a to c) shows equi-Froude number contours for
values 1.5, 2.0 and 2.5, and equi-buoyancy contours for values 0.3,
0.5 and 1.0. It can be seen that both Froude numbers and buoyancy
contours assume almost circular shapes, the former being displaced
downstream and the latter upstream. The Froude numbers decrease
much more quickly upstream of the source than downstream. This
‘could be expected as the upstream flow moves against the ambient,
entraining negative momentum flux, which wauld slow it down more
quickly than the positive momentum flux entrained by the downstream
flow.

Also, the buoyancy decreases more quickly downstream than
upstream. The buoyancy is dependent on the amount of entrainment
of ambient fluid of greater density. The entrainment, however,
is inversely proportional to the Richardson number (Equation 2.79),
which is itself inversely proportional to the density current

velocity upstream has just been discussed, this supports the



Figure

-146-

= T T T v r
v

4
= won
= 7
- 3

"
T

"
Poa0 o “0
= T
i
<~ =
= b
- - -
2 )
- -
2 e

20 0 .0
= T T T T v
i
er G q
=F .
2 - -
-

+
= 7 ’ ]
& i " n A

-20 10 o 20 "0 Ll

c) \.l‘ = 0.500.

4-5 Equi-Froude number and equi-buoyancy contours for a radial
source discharging into an ambient flow. Near-field non-
dimensionalization is used.



-147-

buoyancy results obtained. These effects grow more pronounced with
increasing ambient velocity as seen by the variations in Figure U-5
a through c. This effect can also be seen in Figure 4-6 which, for
the case of ﬁa = 0.157, shows the variations in the properties of
the density current up- and downstream along the +x and -x axes.
Figure 4-7 a to c shows equi-height contours of value 0. 30,
0.25, 0.20, 0.15 and 0.10, and equi-velocity contours 0.25, 0.5 and
1.0 again for the three ambient velocities considered. Also, Figure

4-6 sumarizes the variations along the x-axis. The velocity shows

distorted circles similar to the Froude numbers discussed previously.

The height, however, distorts from an initially circular profile
(h = 0.1), to non-circular profiles, this being seen in Figure L-6
from the height values upstream slightly decreasing after an initial

increase, whereas this decrease does not occur downstream.

4.4 A Simplified Model for Moving Ambient (Ga > 0)

The results presented in Section 4.2 indicate that some of
the density current properties, such as Froude number, velocity and
buoyancy, vary such that their contours are approﬁimately circular
(albeit with displaced centers). This circular behavior was also
obtained for the stagnant case (section 4,2), although in this case
the circles were centered on the origin.

This similarity suggests a simpler (though not accurate)

model, obtained by simply shifting downstream, in a Galilean
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transformation, the results for the stagnant case. The Galilean

transformation can be written as

x,=u t (k.23)

where X4 is the distance downstream that the ambient velocity, U,

shifts a particle after a travel time, t. x. can also be written

d
as

Xg = U, t T, (L4.24)

where T° is a near field time scale, taken as

2 =

° (4.25)

c.lo::

o

(Case A only being under consideration). Using Equation (3.77) and

the relations in Table 3-2 give

1

-t (i) (.20
I D

where £ (the dimensionless travel time) is a function of ?, obtained

by a numerical integration (€ = I %3) during the solution of the

stagnant case (included in Figuresuh-z and 4-3).

The variation of buoyancy and Froude numbers along the
centerline (up- and down-stream of the source) for the shifted
solution applied to the case of Ga = 0.157, is given in Figure 4-8.
A close agreement can be seen between the Froude number values in

this simplified shifted model and the solutions of the full equations

(Figure 4-6). The buoyancy values are not as close, as might be
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expected from the discussion in Section 4.3, regarding the upstream
and downstream entrainment.

A comparison of equi-Froude number and equi-buoyancy con-
tours for both models is given in Figure 4-9. The apparent agree-
ment between the two solutions decreases with increasing distance
from the source. However, in an averaged sense, the correspon-
dence is still close. As an example, this can be seen by averaging
the buoyancy and Froude number values for the accurage solution
along the shifted circle F = 1.5 and ' = 0.30. This ylelds average
values of F, = 1.55 and g = 0.29.

Thus, the shifted circle solution appears acceptable as an
averaged representation of the inner solution. This simpler approach
will be used in Chapter 5 to yield an inner boundary for the inter-

mediate field solution.

4.4, 1 Rotationality of the Flow

In Section 3.4 it has been shown that rotationality will be
introduced into the density current flow by the entrainment of
ambient fluid momentum. The degree of rotationality can be estimated
by evaluating the circulation ( § q + dr) around a closed contour,

T, of the grid (Figure 4-4), comprising a portion of the x-axis both
up- and downstream of the source, joined by (for convenience in
evaluation of the computed results) a line ¥ = constant (Equation
4,22), along the computational grid. T is shown as an insert in

Figure 4.10. The circulation (mass flux along the contour) was
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normalized by the total mass flux normal to the contour ( § q - ndr,
where n is a unit vector normal to r) in order to obtain an estimate
of its relative significance. Figure 4-10 shows the variation of this
normalized circulation versus the downstream xp value of the con-
tour intersection for the cases ﬁa = 0.157, 0.25 and 0.50. It can
be seen that after a more rapid increase in the initial strong
entrainment zone, the relative rotational effects increase rather
slowly with increasing distance from the source. For example, a
value of 18% is obtained at a downstream distance of T = 15.0 for
ﬁa = 0.157, indicating that the irrotational assumption that is made
in the subsequent intermediate field solution appears acceptable to
a first order. The relative rotationality is, of course, stronger
for the higher crossflow cases. However, in the present modeling
framework this limitation is not as severe as it appears, since

the transition to the intermediate field occurs at shorter distances
for these higher cross flow cases (this is‘discussed in more detail

in Section 5.5 ).



CHAPTER 5
THE INTERMEDIATE FIELD (TRANSCRITICAL FLOW REGION) SOLUTION

The basic problem definition and choice of solution technique
are dealt with in Section 5.1 and 5.2, respectively. The details of
the numerical scheme are discussed in Section 5.3.

In Section 5.4, several aspects of the solution scheme, such
as accuracy, stability and specification of boundary conditions, are
examined in & simple numerical experiment, namely transcritical flow
in a radially expanding channel.

Section 5.5 discusses the actual application to the problem
under consideration, namely the intermediate field region for a
buoyant source in an ambient crossflow.

Section 5.6 demonstrates the iterative technique involved in
the selection of different grids until one is found which has the
correct outer boundary shape (determined by comparing the ‘outer' and
‘inner' boundary height values).

Section 5.7 shows fully grid-iterated results for various flow
conditions, thus giving a basis for prediction of the boundary shape

for various relative intermediate to near field strengths.

- 1 Problem Definition

The equations governing the intermediate field transcritical
region are given in non-dimensional form in Equations (3.65) to (3.67),

together with the nonlinear potential Equation (2.35), which can be
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written in a nondimensional form as
= ~p = e = ~o ~
(h - ¢; )¢;§ = 2¢§¢§¢;§ + (h - ¢§ )¢§§ (5.1)

where é' = ———-JE———— . The problem can either be described using the
LI anss+l
mass and momentum conservation Equations (3.65) and (3.66), or, equiva-
lently, the energy and mass conservation Equations (3.67) and (3.65).
The potential Equation (5.1) is applicable whichever equation set is
used, provided the solutions are smooth.
The boundary conditions have been described as:
1) An inner boundary (of circular shape, using the simplified
near field model, Section L.k4).
The exact location and flow conditions along this boundary
will be known, using the arguments presented in Section 3.6.
2) An outer curved boundary, the "front", forming the hori-
zontal interface between the density current and the
ambient flow.
The height, hB’ along this boundary, can be determined
as a function of the boundary angle, 6, using Equation
(3.45), which can be written in nondimensional form as
2l
hy = (sin g1 (5.2)
However, the boundary shape, 6, is not known a priori,
and must be obtained by iteration. Each iteration con-

sists of taking an initial boundary estimate (which will
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be improved with each iteration), and solving for the
flow field within this boundary. Thusa value for the
height along the boundary is obtained, which can be
compared with BB(O) from Equation (5.2). Based on this
comparison, an alternative boundary shape is assumed,
its flow field solved for, and again the heights compared.
When agreement is reached, the converged boundary will
have been found.
3) Symmetry conditions elong the centerline of the flow.
4) A downstream boundary condition.
The flow will be supercritical on reaching this boun-
dary, and hence no boundary conditions need be defined

along it.

5.2 Choice of Solution Technique

The equations and boundary conditions defining the flow field
have been discussed in Section 5.1. The solution method chosen can
be seen to require the ability to:

1) Model nonlinear supercritical and subcritical flows.

2) Model unknown possible shock positions.

3) Obtain accurate solutions along unknown, curved boun-

daries.

various methods of solution are possible, as discussed in
general in Section 2.6. They are:

a) The hodograph method.
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b) Numerical approaches, using finite difference or finite

element schemes.

Method (a), the hodograph method, as discussed in Section 2.6,
applies the hodograph transformation to the nonlinear equation set
in the physical plane, to obtain a linear equation set in the hodo-
graph plane. This method appears to offer many advantages, in
particular as the linearity in the hodograph plane allows the use of
superposition. However, difficulties arise when the Jacobian, J
(Equation 2.93), of the transformation takes on zero or infinite
values, resulting in multivalued solutions. In practice, this is
a considerable obstacle, particularly as the case J = O occurs near
the shock lines which form an important part of the problem under
consideration.

Another severe difficulty with this method would be accounting
for the curved boundaries in the hodograph‘plane.

Method (b) comprises the many possible numerical approaches,

including shock patching and shock capturing methods, and finite
difference and finite element schemes, (Section 2.6).

Within the domain of finite difference methods, the papers of

Jameson (1971, 1974) and Caughey and Jameson (1977a, 1977b, 1979),

develop (as discussed in Section 2.6) a method of shock capturing by
adding an artificial viscosity to the equations describing the flow,
which also takes care of accurate type-differencing of the equations.

This results in a shock representation which conserves energy -
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described as "E-curves" in Section 2.2. In addition, they introduce
a finite volume formulation, the use of which allows an accurate
representation of such geometrical difficulties as the curved boun-
daries, without the difficulties involved with a global transfor-
mation.

Finite element methods would allow for flexibility in the

shape of the domain, and also for irregularly shaped elements, allow-
ing variable detail. However, any significant deviation in the
external boundary would result in errors due to possible greatly
enlarged sub-elements. The creation of extra elements to alleviate
this problem would require significant program changes. As in finite
difference methods, an artificial viscosity concept developed by Hafez
et al. (1978) has been used (Tatum, 1982 and Bredif, 1983) which
allows shock capturing and accounts for the appropriate equation type
in super- and subcritical regions. The resulting shock is also

energy conserving, as described above.

Choice of Solution Method

The hodograph method was determined unsuitable due to the dis-
advantages listed previously. Both finite element techniques and
Caughey and Jameson's finite difference (finite volume) technique
offered obvious possibilities, although both would have to be modi-
fied for the particular problem under consideration. In both
methods, computational time and costs would likely be large.

Due to the immediate availability at the time this
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investigation was begun (1980), the finite difference program of
Caughey and Jameson, was the favoured alternative. This method is

described in detail in the following, together with certain alter-

ations that pertain to the present hydraulic problem.

! Numerical Scheme

The equations used in this solution procedure are the conser-
vation of mass and energy Equations (3.65) and (3.67). The potential
Equation (5.1), will be referred to in this section as an aid to

understanding the flow properties.

5.3.1 Upwinding Considerations

If a local Cartesian co-ordinate system (s,n) is introduced,
such that the s-direction lies along the local flow direction, the

the potential Equation (5.1) can be rewritten as

(? - D)gg + < By = O, ' (5.2)
where

Bes q—l,,,_ (%, + 2uvf, + V) (5.3)

g = q—la 8, - 2uvd, + u2¢w). (5.4)

Teking the potential equation in the form of Equation (5.2) clarifies
the decision on which parts of the equation should be upwinded in a
supercritical regime to obtain an appropriate directional bias. Thus,

terms in ¢ss and ¢nn should be approximated using upwinded and central
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differences, respectively. The stencil used for each part is as shown

in Figure 5.1. The upwind difference formulae can be written as

¢ = ¢14J ¥ 2‘1'113 S ¢1'2)J (5.5)
xx Ax2
#1 by ‘ . ‘ + ‘
13 i‘lnj 11.1'1 1’1)\1'1
‘xy ey Ax Ay (5.6)
3o falg =Wy Py (5.7)
yy = 2 -
by

if u, v are positive. Thus these upwind formulae for ‘x.x’ ﬂxy and

‘yy can be though of as approximating the expressions ‘xx - Ax‘m .
Ax Ay
- (= +
b o WL e
the effect of using upwind differences for the ‘u term is to intro-

) and "yy - Ayg‘m, respectively. Thus,

duce, due to the truncation errors, a term of the form

2
£ .:.;E)(Ax (“2“30( + “wn:) + Ay(uvuw + vavn)) (5.8)

Because of the second order diffusion terms, this can be interpreted
as the addition of an artificial viscosity term, which will be referred

to later in this section.

5.3.2 Finite Volume Scheme and Associated Lumping Error

The finite volume scheme has been discussed in Section 4.1.
Applying this local transformation to the mass conservation Bquations

(3.65), yields
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Onn

Characteristic

Figure 5-1 The rotated difference stencil. Showing the points contrib-
uting to the upwinded “ss) and central differenced (ySnn)
parts of the potential Equation (5.2) when applied to a

supercritical region, (after Jameson, 1978) .
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gi (hDU) + g—Y (hDV) = 0 (5.9)

where D is the determinant of the Jacobian of the transformation,
given in Equation (4.4) and X and Y are the contravariant coordinates
(Section 4.1). It should be noted that this treatment has the advan-
tage that the quantities h, D, U and V have only to be evaluated at
the primary cell centers (point A in Figure Lel), i.e., only at one
point for each mesh point. This has the advantage of reducing comput-
ing time, but the disadvantage of producing & lumping error due to
the fluxes being evaluated at the corner, rather than the face-center
of the auxiliary cell. This may tend to decouple the solution at
odd- and even-numbered points.

A method of accounting for this lumping error is indicated by
considering the simplified case of constant height, which reduces the

problem to the solution of Ux + VY = 0, or, in potential fomm,

Hyyd *+ Hbyyf = 0 (5.10)

where the U, & notation is as defined in Section 4.1. Expansion of

Equation (5.10) yields the relation

1
$ 5% (¢1+1,J+1 e ‘1+1,J-1 s ‘1-1,3+1 o ‘1-1,3-1)

in which the decoupling is apparent. Adding a term of the form
-eAY GXY‘ effects a movement of the evaluation point from A to B as
€ changes from O to 1/2. Accounting similarly for cach face necessi-

tates adding a term -€ °xxYY‘ to Equation (5.10) (assuming AY = 1).
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The lumping error in the general case is treated analogously

to that above. The coefficient of the 6XY¢ term is taken as the sum

of the coefficients of the ¢XX and ¢YY terms, respectively. So that,

as
2
1. < U
~ - — =
(pDU)y = oD(e c2)¢xx Aoy (5.11)
and
y g
(pDV)y =~ PD(g"™" - :§)¢YY = Aybyy (5.12)
where giJ are the metric terms (Section 4.1), a lumping correction

term can be defined as

Qpy = (Ay * Ay)oyy® - (5.13)

Thus the final version of Equation (5.9) can be written as
i .
uYéx(hDU) + uXSY(hDV) =5 GXYQXY = 0.

5.3.3 Addition of Artificial Viscosity

As discussed in Section 5.2, the method chosen achieves
stability in the supercritical regions by explicitly adding an arti-
ficial viscosity in conservation form, such that the mass conservation

equation, Equation (5.9), can be written as

%i(mm +p)+§Y(mw +Q) = 0. (5.15)
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P and Q could also be interpreted as artificial mass fluxes, P is

defined as

P ~up|uls,0 (5.16a)

or, in finite difference form

-~

>
Pia/e,s = Py ifuU>o0
= 9“1,‘1 ifU<o0
where
upD . 2
p = ? (U8 + UVEy )6 (5.16b)

i.e., while the expression for P is defined using central differences,
the term be is effectively upwinded. A similar treatment is used for

Q, which is defined as

Q~ - w|Vv|&yp (5.17a)

and

G = 222 (uveyy + V38yy)8 (5.170)

In the above, u is a switching function of the form

2
c
M = max (0, 1 - -3) (5.18)
q
to ensure that artificial viscosities are only added if the Froude

number, F = % is greater than one. Two issues regarding the switching
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function are explored in Section 5.k

- how F should be represented (averaged) when used to
determine the shock position.

- whether an alternative value, Filt’ having a value
slightly different from unity, would aid stability s
used as an alternative cut-off value to unity itself.

It can be seen that the combined effects of GXP and GYQ,

give, in the supercritical region,

2
6P + 8,Q = !;% (e -Z—é)(AxU(Uy.SQO( + Vhory)

+ BYV(UALy + Vhry ) (5.19)

This is consistent with the contravariant form of Equation (5.8),
which was the term formed from summing the truncation errors intro-
duced by taking upwinded differences for the ¢ss term.

This shows that a central differencing scheme can be used
throughout, with just the addition of the term in Equation (5.19) in

the supercritical regions in order to introduce the correct direc-

tional bias.

5.3.4 sSolution of the Difference Equations

For a given geometry and boundary conditions, iterative methods
are required to solve the finite difference approximations to the highly
implicit equations describing the problem under consideration. In

Jameson and Caughey's work, quasi-time dependent iterations were used,



-168-

since successive iterative approximations to a solution of the
potential Equation (5.1), could be thought of as solutions of an

unsteady flow problem described by

(h - W), - 2uvh + (0 - VB, - 284,

-2§¢yt-§¢t-0 (5.20)

where the coefficients @, B and Y should be chosen to ensure fastest
convergence to the final (steady-state) solution. An analysis of the
values required for these coefficients was made by Caughey (1978).

Applying the transformation

T=t -

s+8n (5.21)
-1
to Equation (5.20), converts it to the diagonal form

2
(@ - Py + g + (F

— - 8 )by - Yy = 0 (5.22)

which can be seen to be a damped wave equation. The analysis of
Jameson (1974), indicated that for critical cases (F < 1), the damping
term, Y;ST, is required to remove dependence upon the arbitrary initial
conditions. In the supercritical case, damping is not required, due
to the orientation of the characteristic cone (Caughey, 1978). How-

ever, the relation

a2 > (2 - 1)p° ' (5.23)
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must be obeyed in order to ensure that the streamwise direction re-
mains timelike in the unsteady problem.

The iterative approach adopted is a Successive Line Over
Relaxation (SLOR) scheme, which solves for a provisional potential
value, #i j over constant 'i' lines. In order to calculate this
provisional solution within a suberitical regime, the central differ-
enced equations can be written in a form

g u?) (¢n+l L )

i-1,] 1 v i+l,j
- 2uv ( n n n n 1)
L AxBy 7Si+l,j+l & ¢i+1,j-1 & ¢i-1,j+1 * ¢i-l,j-

S, ¢’i‘jal._ g (5.21)

_S.__l(,g

i,j+l

where the superscript n is such that t =nlt. The distribution of
updated (n+l) terms is determined to ensure diagonal dominance (that
the maximum contribution to, say, ¢i,j comes from ﬁi,j rather than
the total contribution from the neighbouring points, this being a
sufficient but not necessary condition for linear stability). The
new value, ¢2j§ is obtained from the provisional value via the

relation

giry = $i.5 * o

i,J i,J

Sl (5.22)

1,J
where w is the over-relaxation factor. If the correction at each

point is written as



-170-

n+l

n n
APEE AW (5.23)

then Equation (5.21) can be rearranged to the form

E_;st(c - 38 E_:st (-cC +2C -C )
( Ax2 1.3 1-1,3 ( sz i,j+1 i,J 1,5-1

» (5 5 1)(hh;2ua) €.3" 8,3 (5.24)

where R, ,'s is the residual, composed of a central difference form of

i,
Equation (5.1) evaluated at the ot

jteration. Noting that (:i 3 is a
’
discrete approximation to Atét, enables an evaluation of ¥ by comparing

Equations (5.20) and (5.24), as
g=(2-1) (-) ﬁ—:—a- : (5.25)

This shows that ® must be less than 2 for positive damping. A
von Neumann convergence test (Roache, 1976) can be applied for the case
of a rectangular domain and periodic boundary conditions. This involves
making a 'separation of variables' assumption, such that ¢n can be

written as
n Bl &
s, 0 sy, Bl (5.26)

where i in just this case represents the complex number \f-_l' , P and

q denote general x and y positions, and the growth factor,
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G = ¢n+1/¢n , the scheme being convergent if |G| < 1. It was

shown by Caughey that a sufficient condition for this to occur, is, if
the damping term is sufficiently large to counteract the destabil-
izing effects of the ¢xy term. Specific optimal values of w are
difficult to obtain for other than simple linear problems. However,
by experience, Caughey (1978) cites values of 1.5 to 1.8 as reasonable

for nonlinear problems.

A similar analysis can be carried out for the supercritical case.

Additional consideration when determining the updated terms must be
that Equation (5.23) is satisfied, together with the condition that
Y = 0, as indicated by a von Neumann analysis. Caughey (1978) used

upwinded formulae having the form

n+l n n+l m
bev's 2¢i,j = ¢i,j & ¢i-l,j = ¢i-2,3 (5.27)
XX Ax2
n+l n n+l n+l n
» i T e Y e LEWEN 8
¢xy < S (5.28)

These produce an approximation to Equation (5.23) as

(u ALY At) (5.29)

0.=(F-l) qu

An additional ¢st term, wsAt¢st’ is generally also added in the form

(u, v>0)

ng (% (€g,5~ Byoa,g) *o5 0,5 - ci,.‘]-l)) (5.30)
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where w_ is a parameter used to determine the amount of ﬁ.t to be
added, and is chosen as w2 0, taking the smallest value required to
ensure Equation (5.23) is satisfied.

Thus the final equation for describing subcritical and super-

critical flows (Y = 0, i.e., w = 2) can be written as

(€ 5= € g1) *%(C 5 - C4 ya)

+<:L3(cih1 - ci_l’d) +a) cih1 - ni'd (5.31)

where

2

a, = (h - ¥ +3uv2 ¢w’vAy)—1—

a2

o, =(h- v euvd) L
by

(13-(h-uz‘r3\‘|v.124\t.|)ubx)L
E Ax

n

o =(G-2) - L (5.32)

and Ri,J’ the residual, is now made up of centered differences for
the ‘nn terms and upwinded differences for the ¢" terms (in super-
critical regions, or centered differences in subcritical regions).

It can be seen that Equation (5.31) can be arranged to

a +a,_+0a_+0Q )C -Q -
@ 2% 2% 29 65,57 % S painty g

=03C 0,5 * Ry (5.33)
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where the right hand side is known. Equation (5.33) forms a tri-
diagonal matrix system which can be solved directly. The same approach
as that described above for a finite difference approximation can be
applied to the finite volume formulations of the governing Equation
(5.31), with only the @ coefficients assuming different values. This
was the approach adopted by Caughey (1978) for aerodynamic problems
having similar nonlinear governing equations (gas analogy, Section
2.3). However, the present hydraulic application contains much
stronger shocks (jumps), due to the flow being much more supercritical
than supersonic in the aerodynamic application. Thus, a pentadiagonal
matrix system was introduced, which added some extra stability to the
scheme. This pentadiagonal scheme allows the inclusion of contri-
butions from the viscosity terms over additional points, such that the
equation relating the correction terms (analogous to Equation (5.31) in

the tridiagonal system) can be written as_

8 (Gjmyic O, goad * 5 (8,5~ Oy gu} + 23 Biggaiangy!
200Gy il (ci,j - Ci,j-z)

o (CosciCo su) = Ry .34

6 ( 3] 1_2,3) i,J (5 3 )

where, for U, V> O,
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2
" -hp(zg’suV-v oo Lo (|UI,|V|))
1 . h

2 Mﬁ)
QZ-MS - B

n ypv? - o2 +w U (lul, |v])
u3:h,[(g - h )

o= () wle - )

Gsn-unvz

ag = - wpu? (5.35)

and Ri’d is the residua) of Equation (5.15).

The pentadiagonal solution can be solved as for the tridi-
agonal system.

It should be noted at this point that the residual, Ri,J’
gives a numerical evaluation of the left-hand side of Equation (5.15),
which, in the converged case, should equal zero, the right-hand side
of Equation (5.15). Thus the size of Ri,J gives an estimate of how
close or far from convergence the solution is at any point, and the
increase or decrease of say the maximum residual R shows whether

i,J
the solution procedure is diverging or converging, respectively.
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5.k Numerical Experiment: Flow in & Radially Expanding Channel

This section discusses the application of the transcritical
program to the flow of water in a radially expanding channel. This
simple application is used to investigate the stability, shock treat-
ment, and general accuracy of the program representation of the flow,
as for this radial case, a theoretical solution is available for

comparison. The latter is obtained from the continuity equation,
Q = ghr (5.36)

where r is the radial distance from the source, together with the

Beroulli Equation (3.66). These combine to give a cubic equation in

q,
3
CE Q_
2 q + r =0 (5-37)

solution of which gives the speeds at any point r. It should be
noted that, Equation (5.37) being cubic, three roots are available
for a given radial distance. Of these, one will be in the super-
eritical range, one subcritical, and one negative. The latter is
physically unrealistic, as speeds, having no directional properties,
must be positive.

For the case considered, theiinner boundary condition was
taken as Q = 0.50 at r = 1.0. If the initial velocity is super-
critical (q = 1.00), the theoretical solution can progress along

the supercritical arm of the solution, as shown in Figure 5-2,
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whereas an initially subcritical inflow (q = 0.62) will proceed
suberitically. At any point, the supercritical solution can under-
go a jump and become subcritical. Typical energy conserving jumps
‘E' curves are shown in Figure 5-2. Energy conserving rather than
momentum conserving jumps are shown, this being the type implicit in
the numerical model formulation.

The numerical results are obtained by using a radial grid
starting at r = 1, where a velocity, q = 1.00, is imposed as a
boundary condition, the grid increment, Ar, being = 0.025, as shown
in Figure 5-2. If the flow is to undergo a jump, i.e., the down-
stream flow is subcritical, a downstream boundary condition is
required - a given potential value, ﬁd. (If the flow downstream ans
supercritical, no boundary condition is required as the downstream
flow properties should be determined by the upstream conditions. )
The various computational solutions shown in Figure 5-2 are obtained
by imposing the various values of ¢d giveﬁ in the diagram.

The computational solution can be seen to predict higher
velocities than the theoretical solution for both the supercritical
and subcritical regimes. This can be explained as follows. Both
the theoretical and computational solutions start with a given
physical mass flux (Q = 0.50). However, the computational scheme
has an additional artificial mass flux, (viscosity related) as dis-
cussed in Section 5.3.1, and it is this total of physical and arti-

ficial mass flux which is conserved. As the supercritical solution

progresses, the increased velocity values lead to increased artificial
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fluxes and hence reduced physical mass fluxes. A reduced physical
mass flux, from Figure 2-7, results in a larger superciritical
velocity prediction, as is found in the supercritical region of
Figure 5-2.

However, Figure 5-2 shows that the computationally predicted
velocity is also larger than the theoretical value in the subcritical
region after the jump. This can be explained by realizing that the
mass flux, now entering the subcritical region, is the sum of the
initial physical mass flux, Q, defined, plus the initial artificial
mass flux defined within the program. Thus a mass flux is present,
which is slightly greater than that on which the theoretical solution
is based, leading to slightly larger calculated velocities from the
numerical scheme.

If the solution were to consist of the subcritical branch only

(i.e., 9 = 0.62) then no such error would have been introduced.

5.4.1 Shock Determination - Switching Function

Figure 5-2 shows that the scheme serves to average the shock
over about 3 grid spacings. Whether the flow at any point is treated
as supercritical or subcritical which, to some extent influences the
Jump width is dependent on the switching function, u (Equation 5.18),
i.e., on whether F is greater or less than one. In order to obtain
better stability, i.e., slightly more averaging across a jump, values
of F dependent on several neighbouring points rather than Just the

point (i,J) in question, can be used. In particular, if no F
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averaging is used, a feedback can sometimes occur between the
artificial and physical mass fluxes, leading to a velocity over-
shoot, (Points C and D in Figure 5-2), which can sometimes be
large enough to cause the program iterations to diverge. Various

averaging methods were tested for the radial case, such as

2 2
F. .+ F,
e L b i5d
B 2 (5.38)

and

2 2 2
Egih =415 T3 (5.39)

1t was found that Equation (5.38) gave most stability so that this
was adopted, and used to generate Figure 5-2.

An additional method of increasing stability, used for the
early iterations, when the overshoot is more likely to occur, due to
possibly poor initial conditions, can be used. This is to introduce
an artificial Froude number cut-off, Firt’ which is taken as less than
1.0, generally 0.9 or 0.8, or even as low ;s 0.5 if a very strong
jump is expected. Once the quasi-time-dependent solution approaches
convergence, this can gradually be increased back towards 1.0.

Lower values of Fart cause the solution to be treated as supercritical
(i.g., artificial viscosities added over more grid elements). This
appears to discourage the formation of overshoots, and hence enables

a better approximation to the solution to be obtained before the strong

jumps are allowed to occur.
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5.4.2 Values of the Coefficients w and w

In Section 5.3.3 mention was made of Caughey's (1978) original
recommendation, which, for his aerodynamic applications, was for over-
relaxation factor values, W, of 1.5 to 1.8, as mentioned in Section
5.3.3. Similar values were found useful for the present hydraulic
application, although values of 1.4 were sometimes used for initial
iterations, and values of 1.8 would only be used very close to con-
vergence. Values of 2.0 were automatically set in subcritical
regions.

Section 5. 3.3 pointed out that the coefficient, m', should be
greater than or equal to zero, but as small as possible. Values of
0.40 were generally used initially, decreasing to 0.35 in later

stages of convergence.

5.5 Application of the Transcritical Model to a Radial Discharge

Into a Moving Ambient: General Procedures

The following general steps need to be undertaken in construc-
ting an intermediate field transcritical solution:
For a given value of the ratio of intermediate to near field
strength, LI/LN:
1) Define the inner boundary conditions according to the
transition conditions obtained from the near-field
solution (Sections 3.6 and 5.7).
2) Assume an intermediate field solution domain and

generate an orthogonal grid.
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3) Carry out a transcritical solution for the domain.
L) Evaluate the frontal boundary conditions (neight match-

ing) and adjust the solution demain. Iterate to step

two.

5.5.1 Near-Intermediate Field Transition Conditions

In Section 5.5, solutions for the transcritical intermediate
field are presented for a full range of relative near-intermediate
field strength values, LI/LN' The determination of the boundary
conditions appropriate for these LI/LN values will be discussed
herein.

A simplified near field model for a moving ambient, involving
a Galilean transformation of the stagnant case solution (shifted
circles), was presented in Section 4.4, The latter model provides
a method of obtaining the type of boundary discussed in Section 3.6.
This assumes radial flow properties across it, together with an
"equi-energy transition", obtained by equa;ing the Bernoulli equations
for the near and intermediate flows as given in Equation (S5 eh)

In practice the boundary position (transition radius), T, secen
be evaluated from LI/LN using the numerical near field model; this
result is plotted in Figure 5-3. The flow properties at this tran-
sition, ﬁ(;T), aT(;T) and FLT(;T)’ can also be evaluated from the
numerical results given in Figure L-1. The radius ;T’ in the inter-

mediate field non-dimensionalization, is, by simple manipulation,
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a

4
I,F_=
1 4

a

(5.40)

i

=14
=l

Similarily the location of the center of the circle, obtained from
;d’ given by Equation (4.26), can be written in the intermediate

field non-dimensionalization as

“x'd = id (5.41)

1=

Thus a complete definition of the location and flow properties
of the equi-energy transition between the near and intermediate fields

is obtained as the upstream boundary condition for the transcritical

flow domain.

5.5.2 Generation of an Orthogonal Grid (Using a Boundary Integral

Equation Method)

A typical orthogonal grid used for this application is as
shown in Figure 5-4%. (An orthogonal grid is used due to it's
relative ease of generation.) The location of the inner displaced
circle C1C2 is determined by the relative near- and intermediate
field strengths as represented by the transition conditions, discussed
in Sections 3.6 and 5.7. The downstream boundary, D1D2, is located,
from experience, far enough downstream to ensure that the flow has
become everywhere supercritical, having passed through a shock and
critical line. The stagnation point, S, and the shape of the

boundary SD1 is determined by jteration, as described in Section 5.6.




Figure 5-4 An early grid, Gl, developed using the BIEM method, and used
program

for the transcritical

“ngt-
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The basic shape SD1, may initially be sketched by hand, and is then
specified by the quintic polynomial most closely matching their
shape, selected in order to obtain a more regular boundary.

Once the boundary has been specified in this manner (at any
stage of the iterative process), the internal orthogonal grid system
is generated as outlined in Figure 5-5. The first step (Figure 5-5a)

consists of solving the Laplace equation for é

¢xx + ¢w =0 (5.42)

within the proposed boundary, vwith the Neumann and Dirichlet boundary
conditions as shown in Figure 5-5a. This yields actual values of ¢
along the boundary between points Cl and D1 and C2 and D2. Step two

solves the Laplace equation for Y,

Vo ¥y =0 (5.13)

with the boundary coniitions of Figure 5-5b, to give values of ¥
along Cl to C2 and D1 to D2. It should be noted that the boundary
along C1D1 is taken as Y = KT, where K should be estimated from
equating the mass flux along ClC2, (calculated from the solution of
part a), with that through €1C2 in part b (KT). In general, for
these grids, ¥ was = 1. Thus, X, ¥, ¢ and § values are known all
around the proposed boundary. The object of this procedure is to

determine the x, y co-ordinates of the intersection of the "potential

lines" and "streamlines" which can now be defined. This will yield




Ygiven

km
C1 D1
Xgiven "¢¢ ¢ "¢ g0 Xgiven  Ygiven b Yy $-o Ygiven
¢ (]
0.0 D2 002 D2
1.0 ¢ Xgiven 2,0 10 ¢ Ygiven 20
(c) (d)

Figure 5-5 Definition sketches of the BIEM applications required for the grid generation,

-%‘t-
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an orthogonal grid with the point clustering being determined by the
values of "potential" and "streamlines" selected.

The method used to determine the intersection points (where
eliminates the need for interpolation) is to invert the problem,

and solve a Laplace equation for x,

(5.L44)

|
o

" L
and Yy,

Y¢¢ + Yy < 0 (5.45)

with the Dirichlet boundary conditions obtained from the first two
steps. The ¢-V domain of solution is as shown in Figures 5-5c and d,
respectively. Thus the complete set of grid points shown in the
example of Figure 5-4 can be obtained.

There remains the problem of actually solving the Laplace
equation. A computationally efficient Boundary zntegral Element
Method (BIEM) is used, the program, with minor modifications, being
given in Liggett and Liu (1983), in which it is denoted as GMS8.

The BIEM method is based on an expression for Green's second identity,
simplified by assuming the two functions U and V obey Laplace's

equation as

i(U%-V%&DdA:O’ (5.46)

where T is the boundary of a domain, D, having an area A, and a
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local normal direction n. U is chosen as a velocity potential and V,
as a "free space Green function", which, for two-dimensional problems,
is taken as

Vainr (5.47)

vhere r is the distance between a singular point P (r=0) and a
point Q on the boundary. The potential at any point, P, can be

expressed in terms of a boundary integral as

2m4(e) = (4@ 35 Gnr) - r I ga)as (5.18)
&

where the variables are defined in Figure 5-6.

Figure 5-6. Definition diagram for boundary integration used in
B.I.E.M. method. The arrows indicate the direction
of integration around the boundary curve, I, of the
domain D. P is a singularity separated from D by the
circle 0, radius T (after Liggett and Liu, 1983).



-189-

-}
However, only one of ¢ and 5% will be defined at any boundary point,
for a well posed problem. The unknown values can be obtained from

taking P as a boundary point, when Equation (5.48) can be written as
o) )
ag(p) -f (é - a—é) ds (5.19)

where @ is the angle between the boundary segments at P. The integral
on the right-hand side can be discretized, with ¢ and %é evaluated at
each boundary node, a linear variation being assumed between nodes.

If P is taken as each of N boundary points, a system of N equations
in N unknowns will be obtained, allowing evaluation of the unknown ¢
or gg values, and hence allowing evaluation of any internal point P

within the domain.

It was found that the transcritical program was sensitive to
slight nonuniformities in the grid. Thus the grid generation was
carried out using double precision arithmetic on a 32-bit computer.

In addition, a large aumber of points was ;sed along each boundary,

in particular, along C2 to D2 in an attempt to eliminate irregularities
due to insufficient points. The grid generation procedure can thus be
summarized as:

1) Decide on the required domain shape either initially, or

from previous iterations. In particular, the distribution
of points along C2 to D2 has to be chosen with care in

order to minimize later interpolations: sufficient density

near C2 to ensure a reasonable distribution between O and




-190-

S, and sufficient density near D2 to avoid overly large
artificial viscosities while keeping the overall number
as small as possible, generally about 130. The boundary
SD1 is approximated by a quintic polynomial to eliminate
irregularities.

2) The first BIEM application is made to obtain g¢(x,y), for
that portion of the boundary for which ‘n = 0 had been
specified.

3) The second BIEM application is made to obtain ¥(x,y) for
that position of the boundary for which 'n = 0 had been
specified.

L)  Values of # corresponding to points along C2D2 are selec-
ted, and the locations of these § values interpolated for
along C1D1.

5) Similarly, values of ¥ corresponding to points along
C1C2 are selected and interpolated for along D1D2.

The boundaries are now specified completely in terms of # and

¥. The problem is inverted to calculate all internal points.

6) The third BIEM application is made to calculate the x
coordinates corresponding to the required ¢ and ¥
intersections.

7) The fourth BIEM application is made to calculate the y
coordinates.

Thus the final grid is obtained. An example of an early grid,

Gl, is given in Figure 5-U4, while Figure 5-7 shows one, G5, at the
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Figure 5-7 A typical grid, G5, developed using the BIEM method, and ysed for th
or the

transcritical program .
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end of the boundary height matching process, i.e., a fully iterated

grid for a given value of tI/LN (= 41.2).

5.5.3 Obtaining a Transcritical Flow Solution for & Given Grid

The application of the transcritical model, described in
Section 5.3, for the present domain needs the following data:
a) Grid points as specified by the preceeding discussion,
(Section 5.5.1).

b) Boundary conditions

- conditions at the near-field transition circle
(Section 5.5.1).

- no-flux boundary conditions at the lateral boun-
daries.

- extrapolation boundary conditions for downstream
supercritical boundaries.

¢) Initiel Conditions

Due to the quasi-time dependent nature of the solution
algorithm, an initial distribution of the velocity potential needs
to be specified.

It was found on actual model application that a "good"
specification of the initial potentials was crucial to the success
of any particular computation. Specifications that differed sub-
stantially from the desired solution often yielded a diverging be-
havior. This difficulty is overcome by initially working with a
limited domain (only a few gridlines (J = constant)), and then

gradually enlarging the domain by adding a few additional gridlines



at a time.

1)

2)

3)

k)
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This is carried out as follows:

A ficticious radial grid is constructed, having four grid
lines with points along the positive x axis having values
corresponding to C2D2. The initial potentials along each
radius are taken equal to those along C2D2. Values of
converged potentials along this radial grid, obtained by
applying the transcritical solution, are then obtained.
The potential values from Step 1 are used as an initial
condition for the first four (3= 14 to 17) of the actual
grid. The transcritical program is then run on this sub-
domain for 200-300 iterations, until a moderate level of
convergence is obtained.

Two or three extra gridlines are then added - with
initial approximate potential values, and another reason-
ably converged solution obtained.

Step three is repeated until a*fully converged solution
for the whole domain has been obtained. The entire con-
vergence procedure requires about 1200 CPU seconds on

an IBM 370 computer, for a typical grid of (130 x 16)

points.

The values of parameter such as W, ws and Fart used at various

stages of the convergence procedure have been discussed in Section 5.k,

Convergence Estimation

One method of estimating convergence has been discussed in
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Section 5.3.L, i.e., the rate of decrease of the maximum residual
within the solution domain. In addition, a more globally averaged
estimate can be obtained from comparing values of the total physical
and artificial mass flux input into the domain through C1C2 and output
through D1D2. In general, when these values differed by less than

%~ 0.1% of the input mass flow, the solution obtained was regarded as
being well converged. Another method of applying this mass flow
continuity consideration as an estimate of convergence is to split
the entire domain into, say, 9 sub-regions (using increments in both
the i and j directions), and examine the flux differences across their
boundaries, which should again be zero for a converged solution.
Values of 0.5% of the input mass flow were the largest obtained in a

solution considered as converged.

5.5.4 Successive Grid Modification Until Full liatching at Frontal

Boundary
The solution obtained using the grid, G1, shown in Figure 5-4

(corresponding to I’I/LN = 41.2) is shown in terms of height (thickness)
contours in Figure 5-8. The upstream boundary conditions, determined
by the transition conditions between the near and intermediate fields
(Section 5.5.1), for LI/LN = 11.2, are a normal flow (Froude number of
1.05, i.e., just slightly supercritical) out of a circular boundary,
radius 1.8k, with a center displaced from the origin to @ = 1,54

(due to developments in the early stages of this work the inner

boundary of Gl does not exactly conform to the circular shape). The
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Figure 5-8 Height contours for the non-matched solution for LI/Ln = 41,2,
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height contour marked by a dotted line represent;s the jump location
and/or critical line, depending on whether the flow across it moves
from supercritical to subcritical or suberitical to supercritical,
respectively, as discussed in Section 2.2. The supercritical flow
emerging in an upstream direction can be seen to decelerate, passing
through the jump into the suberitical region where it continues to
decelerate as it moves towards the stagnation point, S. It grad-
ually becomes diverted to a downstream motion, beginning to accel-
erate under the influence of the ambient flow, until it passes
through the critical line and again becomes supercritical. The flow
emerging in a downstream direction continues to accelerate downstream
until the downstream boundary is reached.

The boundary of the grid Gl is shown in Figure 5-9al, while
Figure 5-9 a2 shows the matching of the "internal" boundary height,
hb’ obtained from the flow dynamics to the "outer" boundary height,
hy, as defined in Equations (5-2). It can be seen that h is much
greater than hB over much of the boundary, indicating (using the
Bernoulli Equation (3.67)) that the velocity is lower than required,
or, that the grid boundary allows too much spreading of the flow to
allow a height matching.

Thus it can be seen that a transcritical flow solution for an
arbitrarily specified frontal boundary shape will not meet the specific
frontal boundary height matching condition that governs the interplay

between the ambient flow and the density current intermediate field
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in the present problem. Out of all possible boundary shapes, there
is, in principle, only one shape that will provide a fully matched
solution. This solution is understood as one that simultaneously
represents a solution to the governing transcritical equations with
specified inflow, outflow and no-flux boundary conditims, and to
the frontal pressure boundary conditions.

An iterative approach consisting of successive adjustments of
the frontal boundary, i.e., of the location Xg of the upstream stag-
nation point, S, together with the boundary curvature, is described
in the following specific example.

This example related to five successive grid changes Gl
(Figure 5-L4, with a flow field shown in Figures 5-8 and 5-9 al and a2,
and already discussed) to grid G5 (shown in Figure 5-7), until a
frontal boundary matching is obtained. The upstream boundary con-
ditions are those described earlier for Gl. The progression of the
successive grid shape adjustment and the resultant boundary behaviour
is shown in Figures 5-9 a through e.

It has been pointed out that the initial domain shape, Gl,
assumed too large a stagnation length, Xg» while overestimating the
width. This was somewhat corrected for in G2, although not suffic-
jently. The stagnation distance was under-estimated in G3, resulting
in internal heights which were too large in this region. In G4, the
stagnation length has been decreased while the downstream spreading

has been increased, resulting in a _much better fit which is again
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improved on in G5, such that the relative maximum deviation between
the heights is now less than 2%.

In this fashion, it can be demonstrated that an accurate,
unigue boundary shape can be predicted, with only a relatively small
number of iterations. In fact, subsequent cases (for alternative
values of LI/LN) could be based on the previous fully matched
solutions, such that the number of iterations was reduced even

further, to about 2 in several cases.

5.6 Fully-matched Solutions

Fully matched solutions were obtained over a range of relative
field strengths, with LI/LN values varying from 4.1 (very weak near
field) to 0.9 (very strong near field). Table 5-1 summarizes the
inner boundary conditions, frontal boundary shape, and results shown
for various LI/&N conditions. An example of the various iterations
required to obtain a boundary matched solu?ion for grid G5, applying
an inner boundary Froude number of 1.05 have already been discussed
in Section 5.6. Height variations and boundary profiles for further
cases of fully matched grids corresponding to various &I/LN values,
are shown in Figure 5-10 (a through e). It can be seen that the
stagnation distance and boundary width all increase with increasing
near field influence (decreasing LI/LN values).

The internal flow dynamics for solutions having selected
LI/LN values are shown in Figure 5-11, (LI/LN = 1.2, grid G5),

Figure 5-12, (&I/&N = 14.1, grid G6) and Figure 5-13 (£I/LN = 3.0,




Table 5-1

Summary Table of the Results Presented for the Intermediate Field Transcritical Region.

Grid G5 6 cl1 c8 612 610
L
ll n.2 1.1 7.0 3.0 1.5 0.83
N
'i'd 1.54 1.0 b 1R ] 1.32 1.34 1.45
(displacement
of circle center)
5 1.84 1.9 2.03 2.25 2.67 3.05
(redius of
circle)
Vo 1.05 1.25 1.43 1.70 2.00 2.3 :
3 0.82 0.94 1.01 1.09 1.16 121 ?
Ii'.l 1.43 1.66 1.94 2.28 2.8y 3.5
(o) 5.18 5.k 6.12 6.38 7.76 9.0
alry) 10.80 5.65 3.84 2.55 1.85 142
Figures
boundary 5-9 (e1)  5-10(al)  S5-10(b1)  5-10(e1)  S-l0(d1) 5-10(e1)
height
boundary 5-9 (e2) 5-10(a2) 5-10(b2) 5-10(c2) 5-10(d) 5-10(e2)
shape and and and and and and
5-15 5-15 5-15 5-15 5-15 5-15
internal 5-11(a) 5-12(a) - 5-13(a) - -
height
internal 5-11(b 5-12(b) - 5-13(b) - -
velocity and ¢)
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Figure 5-10 Internal and boundary heights and the boundary profile for

matched grids corresponding to various LI/LN values.
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c)

Velocity vectors, every 2nd point plotted.
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Figure 5-13 Results for the transcritical region of the intermediate

field, for LI/cN = 3.0 (Grid G8).
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grid, G8). Consider Figure 5-11: In Figure 5-lla, the line

(R = 0.66) shows the location of the jump (if the flow is passing
from super- to subcritical) or critical line (if the flow is passing
from sub- to supercritical). Figures 5-1la and b viewed together,
indicate that the velocity vectors change discontinuously in magni-
tude, and, - less conspicuously from the plot - also in direction,
across this line, from Sh; to 5h, (indicating a jump region),

but pass continuously across it from Sh2 to Cl’ (indicating that this
region is a critical line). The shock line is very close to the
inner boundary.along its upstream portim, indicating the very rapid
deceleration of the flow in this region. After the influence of the
stagnation point is passed, the flow starts to accelerate, eventually
passing through the critical line, and then continues to accelerate
supercritically. The velocity vectors in Figure 5-10b are only
plotted out at every 10th grid point. Figure 5-10c shows them plotted
for every other point, which gives a good indication of the velocity
variation.

In Figure 5-13 the jump is somewhat stronger than in the others,
due to more supercritical initial conditions. Slight oscillations are
seen around the shock position (probably due to some lack of conver-
gence). In addition, slight oscillations emerge in the supercritical
region, radiating from the shock. These appear to be due to insta-
bilities introduced by the shock, and are very constant in fomrm,

being only slowly damped out with increasing iteration. These




oscillations do not appear in the suberitical region. Experience
with the model for even higher velocity cases (i.e., decreasing
values of ’.I/LN) showed that these oscillations tended to become
stronger. Ultimately, for even lower values of I,I/l,N (€ 1.0), this
tendency for oscillation and instabilities proved to be an apparent

limit of the model applicability.

ST Summary of (Fully HMatched) Intermediate Field Solutions

The preceding results, in graphical form, show clearly the
influence of the near-field dynamics on the overall shape and
internal flow dynamics of the intermediate field transcritical
domain. Probably the single most meaningful measure of this in-
fluence is the upstream stagnation length, l;sl = |x'|/¢ » Plotted
as a function of l-I/‘Lu (see Figure 5-14). The data show a signifi-
cant dependence upon LI/LN for the range LI/{N between 1 and 4O,
However, outside this range, i.e., LI/"N = 0 and LI/LN *e
asymptotic regions are reached. This can be understood from the
following considerations: The ratio LI/LH can be expanded in terms
of the initial momentum and buoyant fluxes, Mo and Jo’ respectively,
and ambient velocity, as
Jo3/2

(5.50)
3 Ve

4y

. 2"CD u,
Thus, when the initial momentum flux is very large compared with the
buoyancy flux, the ratio l'I/l'H tends to 0, ang, inversely a relatively

large buoyancy flux results in ('I/"N tending to ®.  In general, the
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Figure 5-14 The stagnation length as a function of the relative
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stagnation length, Xgs is a function of Jo’ Mo and u, , or, if non-
dimensionalized by LI 5 x/LI = f(l'I/LN)' However, for the two
limiting cases, the relationship simplifies to x/l-I = constant, for

LI/LN tending to ® (only Jy» and u, are important), and to

L. -2/3
i‘- = const. (l—I-) (5.51)
I N

for LI/L“ tending to 0 (only M, and u_ are important). Thus it can
be seen that in the limit as the momentum effects dominate the
buoyancy effects, an asymptotic relation exists, relating xa/LI to
LI/LN to the negative two thirds power. This relation is drawn on
Figure 5-1k4, as a continuation of the relation in the asymptotic
limit. The numerical results indicate that these asymptotic limits
hold for LI/LN € 1 and LI/LN AL respectively. The associated tran-
sition Froude number, er, is marked for the several computational
cases that yielded Figure 5-14. Thus, low LI/LN are linked to high
transition Froude numbers and subsequent strong Jump conditions in
the intermediate field. High LI/LN, on the other hand, have a
transition Froude number that asymptotically approaches unity, the
critical value. The minimum FLT value for the present computation
was 1.05 (LI/L" = L1.2, grid G5), and is very close to theoretical
criticality (see also the discussion on the volatility of the near-
critical flow behavior in Sections 2.3 and 4.2). The next lower

case modeled (LI/LN = 1k.1, grid G6) 1s associated with only a
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slightly higher Froude number, F{'T = 1.25, giving an indication
that an asymptotic regime in the LI/LN range is indeed approached.
The various boundary shapes corresponding to the LI/LN
values solved for and summarized in Figure 5-1L, have been shown in
Figure 5-8 and Figure 5-10 (see Table 5-1 for details). These are
now brought together in Figure 5-15 to emphasize the growth in
boundary width which goes along with the growth in 3; as summarized

in Figure 5-1k.




-222-

b B
-~ w
©
N—~ogQuno 1
I 3N <~o

Figure 5-15 Variation of transcritical region boundary shape with
LI/LN.
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CHAPTER 6

THE INTERVMEDIATE FIELD (SUPERCRITICAL FLOW REGION) SOLUTION

The intermediate field supercritical region occurs downstream
of the transcritical flow region and extends to the far field region,
as discussed in Section 3.1. A numerical model is formulated that
solves the governing Equations (3.72) and (3.73) (in nondimension-
alized form, assuming a Case A stratification type). These equations
include interfacial friction, which plays an increasingly important
role within this region - depending on the governing non-dimensional
parameters (see Section 3.5.2). The limiting case of zero friction
is of fundamental interest for comparison to elementary theories

(Section 2.1.3).

6.1 Numerical Computations - MacCormack's Method

The flow in this region is supercritical (i.g., it is of
hyperbolic type, all information passing downstream) and non- |
entraining. Various numerical solution methods applicable to hyper-

bolic equations were discussed in Section 2.6. These were further

summarized in Section 4.1, where the MacCormack scheme (an explicit
stepping technique) was chosen as the most suitable method for
modeling of the entraining supercritical flow in the near field. The
same method can be applied in this case, with the entrainment set to ‘
zero, and, instead, a frictional term appearing in the equations.
|
|

Thus, the non-dimensional controlling Equations (3.72) and (3.73)

=293
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are written in vector form as

- 6.1
5§+5—y H ( )
where
hu hv 0
F={ v’h + % n2 3 G=¢ uvh s H= ‘1V'(“a - “)'“"“|
uvh veh + % n® XiV'(-v)l-v|)

where V' is the volume flux parameter defined in Equation (3.62).
The MacCormack scheme can then be applied in the form summarized in
Equation (L.3).

The finite volume scheme (Section 4.1.1) is applied, for
consistency with the near and transcritical intermediate field approa-
ches, particularly to simplify its boundary condition with the latter)
and also to facilitate the application of the boundary conditions
along the curved outer boundary. The non-dimensionalized equations

(Equation 6.1) in contravariant form can be written as

sx *sy = H (6.2)

vhere



=025

hDU hDV 0
5 T Lo B\ Bduned i , . ;
F =¢ hDUu + 3 yuh 5 G =¢ hDVu - 3 y,h 3 H=¢ LV D(u, u)|ua ul
_]_' 2 l ' 2 ]
DUV + 5 x/h hDVv - 5 x.g'h X D(-v)| -v]|

6.1.1 Solution Details

The solution procedure is as listed in Section 4.1.2, apart
from the calculation of the dependent variables, u, v, h. This differ-
ence is due to the lack of entrainment in this supercritical regionm,
which eliminates the need for a buoyancy equation, as g' will be
constant, and thus no longer one of the dependent variables. The

modified relations are written as

Xy FB(2) . FB(3 Xy
V=y_YFB§l; *FB§1§ 'uy_Y (6.3)

“=(Yy%l+ﬁ2%+yyxy%%> (YY2 "xya) (6ol

2 2 e #8720 2
SE ok (" +vy)

gis h3+( =4 (6.5)

where FB(i), i = 1,2,3 are the intermediate predictions of the F Sl

values.

6.1.2 Initial and Boundary Conditions

Initial conditions are required at the upstream boundary only,

as this is a marching scheme. This upstream boundary is taken
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directly from the transcritical solution. The converged potential
and grid values from all points in the transcritical solution are
retained, so that once the point 'i' at which the supercritical
solution is required to start has been decided upon, the appropriate
potential and grid values can be obtained.

The treatment of the "no-flux" centerline and the outer
(frontal) boundary is similar to that used in the near field model,
apart from small modifications due to the constant buoyancy and
presence of a frictional rather than entrainment terms. As for the
transcritical regime, no downstream boundary is required, as this

will be self-determined by the marching scheme.

6.1.3 Automatic Grid Generation and Matching of the Frontal Boundary

A significant feature of the model formulation is the auto-
matic step-wise generation of the computational grid during the down-
stream march. This is carried out such that the frontal boundary
shape simultaneously meets the inner and outer pressure matching.

The location of the first two lines (i = 1 and 2) of grid
points are determined as part of the upstream boundary, as discussed
in Section 6.1.2. Thereafter the grid must be generated so as to
effect a height matching, as discussed for the transcritical region
(i.g., the "inner" boundary height, hb’ obtained from the flow
dynamics matched to the "outer" boundary height, hB' as defined by
Equation 5.2). This matching could be obtained by iteration on

possible boundary positions, a method used for the transcritical
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region (Chapter 5). However, due to the marching nature of the
solution procedure in the totally supercritical region, a more direct
method of boundary determination is available. This involves, if

the flow has been calculated up to a point 'i', choosing a boundary

angle, ei+l as

8. = sin-l(hb,i> (6.6)

where it should be remembered that hb is the internal boundary

height. This effectively sets

T - B (6.7)

i.e., the external boundary height at the new point is equal to the
internal boundary height already calculated at the previous point.
This involves an "explicit" approximation. The accuracy of this
formulation (Equation 6.7) was checked by using an alternative

specification,

Dy Bl sy _ (6.8)

e 2

This gave very little change in the final boundary shape, which
indicates that either expression is sufficiently accurate. It should
be noted that at the upstream boundary, hb and hB must be equal, as
this is obtained from the converged transcritical solution.

Once the boundary angle has been defined, and hence the boun-

dary point (i,j=2), the remaining grid points (i,j=3...16) are
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determined by keeping the ratios of the angles of the 'j = constant'
lines to the local boundary angle as the same as in the grid line
forming the upstream boundary (i=1).

Figure 6-1 shows a typical grid generated using this method -
in fact this figures shows the "cell-averaged" grid values, i.e.,
each point drawn represents the center of each actual grid cell.
This shows the points of evaluation of the flow variables using the

finite volume scheme.

6.2 Numerical Experiment: Application of the MacCommack

Supercritical Scheme to an Initially Uniform Grid

The purpose of this experiment was to model the lateral plume
spread from an initially uniform buoyant inflow from a source of
finite width, into an ambient stream. Solutions for this case can be
compared to those from the "one-~dimensional theories" discussed in
Section 2.1.

The initial conditions taken were those of an uniform hori-
zontal supercritical velocity, q = 1.03 (F = 1.51) applied on a grid

defined as:

x(1; #;) = 1.0; x(2,¥;) = 1.0k ;
y(1; 3) =1.0 - (3-1) 0.2, J = 1,6 ;

y(2;3) = 1.02 - (j-1) 0.204, j = 1,6;

The variation of the calculated width, b, with downstream distance,

x, is shown in Figure 6-2, for values of the parameter X1V' of 0.0
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Figure 6-2 Boundary variation with downstream distance for the one-
dimensional model of Jirke et al., 1980, and the numerical

simulation for 'uniform' initial conditions
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and 0.1. Also shown in Figure 6.2 is the boundary width variation
with x for the elementary one-dimensional theories of Jirka et al.
(1980) (see Section 2.1); for the case of zero frictional effects,
XiV' = 0.0, this general theoretical model, Equation (2.20), can be
written in non-dimensional coordinates, for stratification Case A
(s =0), as

2/3
)

b= (b2 + 3 (x-x) (6.9)

while that including friction, Equation (2.28), can be simplified

to
2 — 2 2
2 c 5
3 2 L )
b=(b,, +2.,32 o (x - %) (6.10)
al
It can be seen that once the effects of the initial conditions
(xo =1,b =13 x,.=1,b = 1) are overcome, the boundary width

2/5, respectively. Two aspects are evident

increases as xz/3 and x
from the comparison of the predictions of the one-dimensional ele-
mentary theories and of the present two-dimensional calculations:
First, for large x, both methods predict the same asymptotic
behavior, namely an x‘2/3 spreading for the inviscid case and an x2/5
spreading for the frictional case. This validates the treatment of
the frontal boundary condition in the two-dimensional formulation.

Second, the degree of spreading in the two-dimensional calcula-

tion is significantly lower (factor of about 2). The main reason
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for this mismatch appears to lie in the omission of the lateral (y)
acceleration terms from the simple one-dimensional theories. In

reality, these reaction terms seem to play an important role in the
spreading process. The error, thus introduced, is carried over in

the entire downstream domain!

6.3 Application to the Intermediate Field Supercritical Domain

6.3.1 Typical Values of the Frictional Parameter, \1\1'

Using the expression for V', Equation (3.62), for stratifi-
cation Case A (s = 0), evaluated for the "typical" oceanic conditions
given in Section 3.1.1, yields a value of V' = LO. For the labor-
atory experiments carried out by Jirka et al. (1980), a range of
V' values typically between 1 and 20 was obtained. Adams et al.
(1981) indicate values of )‘1 for fully turbulent oceanic conditions
as 10-3, whereas for the less turbulent laboratory conditions
(Re ~5 x 10'3), a Ay value of 5 x 1073 15 more applicable. These
values give X1V' values for oceanic conditions (V' between 10 and
50), of between 0.0l and 0.05, and XiV' laboratory values of between
0.05 and 0.10. Therefore, XiV' values of 0.1, 0.05 and 0.0l were
investigated, together with the frictionless case (xiv- = 0.0), which

is of interest from a fundamental viewpoint.

6.3.2 Results
The MacCormack scheme was applied as a downstream continuation

of several of the transcritical flow computations that have been



Table 6-1

A Summary of the Results Presented for the Intermediate Field Supercritical Region.

o
MO 1.2 1.1 7.0 3.0
Fig. Fig. Fig. Fig.
0.0 6-3a (i,ii) 6-Ta (i,ii) 6-8 (i,ii) 6-9a(i,ii)
6-5a (i,ii)
66 (iii)
0.01 6-3b (i,ii) - Z x
660 (3419
0.05 6-3¢ (1,11) E k 3
6-6 (iii)
0.10 6-3d (i,ii) 6-Tb (i,ii) = 6-9b(i,1ii)
66 (iii)

(1) denotes a graph of velocity vectors
(ii) denotes a graph of height contours
(iii) denotes a plot of frontal boundary shape

“eEes
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summarized in Table 5-1 and associated figures. Results of the Mac
Cormack computations for various LI/LN and 7\1V' values, as summarized
in Table 6-1, are given.

In some of these cases the upstream boundary for the MacCormack
scheme was equal to the curved downstream boundary of the trans-
critical calculation and corresponding flux boundary conditions were
applied. In other cases, a certain degree of overlapping between
the two computational domains was adopted.

First the complete results for LI/LN = b1, i.e., the asymptotic
case of negligible near field effect (see Figure 5-14) are discussed,
the respective velocity vectors and height contours being shown in
Figure 6-3a to d. It can be seen that the increasing frictional
effects cause the (self-determined) outer (frontal) boundary to in-
crease in width much more slowly [as would be expected from the
theoretical formulae predictions, Equations (6.9) and (6.10)]. 1In
addition, this effect is felt throughout the flow (as can be seen
from a comparison of the velocity vectors), as might be expected from
the interfacial friction acting over the whole of the horizontal inter-
face (bottom) of the density current. The frictional effects can also
be seen to decrease the velocity magnitude in general. This however,
does not neccessarily increase the heights in the entire flow domain,
as the simple Bernoulli Equation (3.67), no longer holds, due to the
frictional effects. For the most part the heights do, in fact,

increase apart from a small region near the outer boundary (see
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Figure 6-3d) where they actually decrease slightly. Also note that
for increasing friction the velocity vectors in the downstream section
become more and more parallel to, and approach in magnitude, the
ambient velocity,

e (\n:;— , o) :

D

This phenomenon is clearly caused by the interfacial momentum transfer
between the internal and ambient flows.

In order to estimate how well these MacCormack solutions match
the (one-dimensional) theoretical solutions given by Equations (6.9)
and (6.10) for no friction and frictional effects, respectively, the
boundary increase with downstream distance is compared in the log-log
plot given in Figure 6-L4. Only the extreme cases of no friction and
XiV' = 0.1 are shown, for clarity. The one-dimensional theoretical
values shown are calculated using approximate initial values of X (=
176, b *~ 7.2 and x  ~ 1.6, AR 7.2, obtained from G5 as shown in
Figure 6.1. The limiting coefficients of the power laws, 2/3 and 2/5
(for convective and frictional treatment, respectively) are also drawn.
It can be seen that although both the convective and frictional
numerical solutions appear to be converging to these values, they
have not yet obtained them - however, at this point downstream,
neither has the value from the one-dimensional theory! This is due
to the initial conditions still having a large effect on the solution.

The fact that in Section 6.2 the density current, which has small
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Figure 6-4 Boundary variation with downstream distance for one-dimen-
sional model of Jirka et al., 1980, together with numerical
simulation for the supercritical region of the intermediate

field corresponding to LI/LN = 41,2,
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initial dimensions has easily obtained these values, indicates that
they would be attained eventually. In order to check this, Figure
6-5 shows the supercritical region extended to larger distances
downstream, and in this additional region the current spreading
approaches the behavior predicted from the one-dimensional theory as
predicted.

Figure 6-6 forms a summary plot showing the frontal boundary
shape for the various friction cases (including zero friction),
corresponding to LI/LN = 41. This emphasizes the decrease in boundary

spreading brought about by frictional effects.

6.3.3 Additional Comments

Mention should be made at this point of various limits of
applicability of the MacCormack solution.

High velocities: These occur particularily for downstream
extensions for the frictionless cases of l;w LI/LN solutions, and
are the reason that the solution for LI/LN = 3 (Figure 6-9) was
terminated earlier than the other supercritical regions. These
extremely high speeds cause the solution to become unrealistic
(i.g., exceeding the maximum possible velocity for frictionless
cases) - a phenomenon also encountered by Garvine (1982), who used

a different numerical scheme on a similar problem. This will be

discussed further in Chapter 7.
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Figure 6-6 Variation of matched boundary curves with friction

coefficient for the case of LI/LN = 1.2,
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Non-orthogonality of grid: The initial upstream grid is

orthogonal (Chapter 5), but the frontal boundary generation destroys
this orthogonality, especially in its close vicinity. This lack of
orthogonality leads to a lack of diagonal dominance (Section 5.3)
within the numerical scheme, and, eventually a divergence.

In summary, the MacCormack scheme has been used to obtain
solutions to the supercritical region, with an autouatic boundary
(and grid) generating facility, and also the option of including the
effects of friction.

The complete intermediate field solution, obtained by combining
the solutions for the transcritical and supercritical regions will be

discussed in Chapter T.




CHAPTER 7

SUMMARY OF PREDICTIONS, COMPARISON WITH EXPERIMENTAL DATA
AND ENVIRONMENTAL APPLICATIONS

7.1 Complete Predictions

7.1.1 Summary of Intermediate Field Results

The results for the intermediate field transcritical region
(with inner boundary determined by the relative near-intermediate
field strengths, ‘CI/L" » Section 5.5.1) and its downstream super-
critical extension have been discussed in Chapters 5 and 6, respec-
tively. These are now combined, to obtain a complete description
of the intermediate field, in the figures summarized in Table 7.1.

Figures 7-1, 7-2 and 7-3 show the full intermediate field
solutions, (both velocity field (1) and current thickness (ii)),
for their various LI/LN values. The delineation between the trans-
critical and supercritical regions is indicated as a solig line.
These figures serve to illustrate the small changes which occur
between LI/LN values of 41.2, 14,1 ang 3.0, respectively. The
first serves to illustrate the behavior of a discharge withi