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FOREWORD 

Argonne National Laboratory has been Involved in several technical 

aspects of ocean thermal energy conversion (OTEC) since 1976, Including 

research in the areas of power systems, biofouling and corrosion, and 

environmental studies. With support from the U.S. Department of Energy, 

Argonne was responsible for an activity known as OTEC Pvojeat Management 

Support: Physioal and Climatio Environmental Impact, Research focused on 

problems related to the physical effects of OTEC plant operation on the ocean 

and, conversely, of the ocean on OTEC plant operation. 

The heat engines of OTEC plants are driven by the temperature 

difference between the cold, deep water and the warm, surface water of 

tropical and semitropical oceans. Thermodynamic limitations dictate that 

large amounts of ocean water be withdrawn from and discharged to the ocean. 

As the flow rates are an order of magnitude greater than those associated with 

conventional steam-electric coastal power plants of equivalent power capacity, 

no precedents had been established for the external flow fields generated by 
* 

operating such plants. 

Under Argonne's supervision, research was undei'taken to address the 

external flow field problems at scales ranging from those of plumes generated 

near the effluent discharge from the plant to oceanographic scales as large as 

the Gulf of Mexico. Analyses and numerical codes were developed and 

laboratory hydraulic modeling was applied to predict external flow fields. 

The studies were carried out by private firms, universities, and Argonne. 

The study reported here — numerical techniques for steady two-

dimensional transcritical stratified flow problems — was carried out at 

Cornell University under this program. It attempts to deal with what has been 

known as intermediate-field plume behavior, or the gravity collapse of a 

ill 



buoyant Jet In a current. This aspect of the external fluid mechanics of OTEC 

plant operation Is Important In terms of the potential environmental effects 

of Individual plants and the spacing of multiple plants In the same region. 
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ABSTRACT 

This study is concerned with the development of predictive techniques 

for the predominantly horizontal, layered fluid motions that result when a 

continuous buoyant source is discharged into an ambient fluid at a bounding 

surface, interface or equilibrium level. In general, the ambient fluid will 

have a cross-current which then leads to horizontal front formations which 

delineate the density current. 

A detailed knowledge of the properties of the resulting density current 

Is of great importance in a variety of environmental problems. Typical 

applications are fresh river water discharges into coastal water, cooling 

water discharges into rivers or oceans, and, in particular, the discharged 

effluents from ocean thermal energy conversion (OTEC) plants. 

Although the numerical techniques developed herein are applicable to 

general discharge configurations, the model development is focused on the 

particular case of a radial source of buoyancy and momentum discharged into a 

uniform ambient crossflow, this case being of particular concern for the OTEC 

geometry. The resulting density current is analyzed by application of the 

depth-integrated hydrodynamlc equations. The flow domain is divided into two 

regions for Individual study — an entraining supercritical near field and a 

nonentralning intermediate field region. The latter is further subdivided 

into a transcritical region and a supercritical region, the latter allowing 

for frictional effects. The two supercritical regions are modeled using a 

MacCormack method (MacCormack, 1971), while the transcritical region, which 

includes internal hydraulic jumps, is modeled using an extension of the 

numerical techniques developed for Inviscld transonic gas flows by Caughey and 

Jameson (1979). 
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The density current dynamics are shown to vary with the relative 

Intermediate- to near-field strengths, as characterized by the ratio of their 

respective length scales. The complete range of this Interaction, from small 

near-field effects to large near-field effects. Is Investigated. Results are 

presented as the depth Integrated velocity and current thickness distributions 

for different field strength values. 

The tsodel predictions are compared to two sets of laboratory data and 

to limited field Information, Involving a river discharge and a submerged 

outfall into the ocean. Good agreement Is obtained In all cages. 

Finally, the model results are applied to the prediction of a river 

plume Into a coastal ocean current and to the continuous discharge from an 

OTEC plant operating In the stratified ocean. In both cases, the results 

indicate the significant horizontal extent (order of several kilometers) of 

the resulting current, together with their limited vertical extent (order of 

•everal meters). Their strong sensitivity to ambient current magnitude and 

stratification strength Is demonstrated. 



CHAPTER 1 

INTRODUCTION 

Density currents (or gravity currents) are formed when a mass 

of one fluid is introduced into another fluid of different density. 

The intruding fluid may spread horizontally along an ambient boundary, 

an intemal density interface, or at the equilibrium level if the 

ambient fluid is continuously stratified. This vertical collapse 

(horizontal spreading) tends to minimize the gravitational potential 

energy of the system. The nature of the flow in the horizontal 

plane can be one- or two-dimensional, depending on the physical 

boundary conditions of the ambient domain. For example, if the 

intruding fluid is discharged from a finite source into an ambient 

fluid which is unrestricted horizontally, such as a lake, ocean, or a 

wide experimental basin, the density cut-rent will be horizontally 

two-dimensional. However, if the discharge is into a horizontally 

bounded ambient fluid, such as a narrow river or laboratory flume, 

the density current will be restricted to horizontally one-dimensional 

flow. 

Figure 1-1 shows a density current produced experimentally by 

introducing dyed heated water through a "point" source into ambient 

water which is moving \d.th a constant velocity. The top view shows 

the two-dimensional spreading of the density current, and in particular, 

a region of upstream penetration, whereas the lateral view shows 
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Figure 1-1 Top and l a t e r a l vi« 
lews of a hot water density current produced 

in the laboratory ( a f t e r J i r k a e t a l . , 1980) 



relatively small height variations. Figure 1-2, obtained from a 

similar experiment, shows the approximate pathlines for floats 

released near the source. 

Both Figures 1-1 and 1-2 serve to emphasize the two-dimensional 

nature of the flow produced by discharging a fluid into a horizontally 

infinite environment. This can be understood as being due to the in­

trusion's freedom to spread out in both horizontal directions, subject 

to the boundary conditions imposed on it by the ambient flow. This 

two-dimensional density current exhibits a transcritical flow field, 

comprising subcritical flow near the stagnation point (at which the 

velocity must equal zero, Figure l-l), supercritical flow downstream 

(where the height tends to zero), and critical or supercritical flow 

around the source. In this case, criticality statements are based on 

an internal densimetric Froude number definition. No previous investi­

gations of such two-dimensional, transcritical, stratified flow 

problems have been made. 

In principle, one-dimensional flows also exhibit transcriti-

cality, but the transitions would only occur at channel transitions, 

making them easy to predict, in contrast to the two-dimensional case. 

The dynamics of one-dimensional flow, comprising density currents and 

wedges, has been investigated by many authors, a recent study being 

that of Sargent (I983), while Simpson (1982) gives a detailed review 

of previous work. 

Various environmental occurrences of two-dimensional density 

currents are discussed in Section 1.2. The major impetus for the 



Direction of cross f low 

Scole: I '^0'="' . 

4 cm/s 

Front 

f \ 
Figure 1-2 Schematic representation of a density current similar to that in Figure 1-1, showing 

streamlines and surface velocity vectors (after Jirka et a l . , I980) . 



present study, however, is given by the need for a complete under­

standing of the large scale fluid motions produced by Ocean Thermal 

Energy Conversion (OTEC) plants in the surrounding stratified ocean. 

This is discussed in Section 1.3. 

1.1 Environmental Occurrences of T^ro-Dlnensional Density Current_s 

Examples of two-dimensional density currents that are at, or 

near, steady-state conditions are discussed in the following: 

Hydrospheric Occurrences: 

- Cooling water carrying waste heat from fossil fueled 

and nuclear power plants, discharged into lakes, rivers and oceans. 

The analysis of the buoyant spreading motion of these discharges is 

crucial for determining the recirculation potential (i.e. , possible 

return into the plant intake), and for a reliable thermal impact 

evaluation, (Williams, 1973). 

_ Effluents from sewage treatment plants. These are dis­

charged into lakes and oceans through a single port discharge or 

through raultiport diffuser located on the bottom. The effluent forms 

a buoyant plume which rises until the water surface, or its equilibrium 

level, is reached. They will then behave as density currents, spreading 

out horizontally, as previously described. 

. River or estuarine inflow (fresh or brackish water), 

into the ocean (salt). The lighter inflow forms a naturally occurring 

surface density current, with convergence regions along its front, 

frequently denoted by floating debris. Figure 1-3 shows the plan view 
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Figure 1-3 The Connecticut River plume discharging in to Long Island 

Sound. The s a l i n i t y f i e l d shown la at a depth of 0 .5 m, the 

readings being taken a f t er flood t ide . The ship track i s 

marked by arrows (af ter Garvine, 197U) 
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of the inflow of the Connecticut River into Long Island Sound, with 

Figure 1-U showing a corresponding vertical profile. Both figures 

show a clearly defined frontal region along the leading edge of the 

.U 

plume. An approximate depth to width ratio is 10 . Similar con­

ditions are suggested by the photograph of a two-river discharge 

plume in Fischer et al. (1979, Figure 9-29)-

Atmospheric Occurrences: 

. Spillages of liquefied gases (e.£., liquefied natural 

gas, propane, butane and chlorine). These chemicals are being stored 

and transported in ever increasing quantities. If released into air, 

by the accidental rupture of storage tanks, for example, they form 

negatively buoyant density currents. These chemicals, when mixed with 

air, may be explosive, corrosive or poisonous. A detailed knowledge 

of the likely spreading under the given wind conditions is very impor­

tant for determination of appropriate storage or plant siting and 

evacuation -orocedures. (Fay, I980). 

. Buoyant plumes from smoke stacks and cooling towers, or, 

simply, the urban heat island effect, if trapped below an atmospheric 

inversion. The inversion stops the buoyant ascent of these flows and 

causes them to spread horizontally as density currents. 

In summary, in all of these situations, thin and horizontally 

spread out layers are found. These layers, in turn, can become 

carriers of significant amounts of physical, chemical or biological 

wastes, or "pollutants" in general. 



Surface 
front Distance (km) 

2 3 

I 

Figure 1-U Vertical density section across the Connecticut River plume. , , r t n« ebb t ide 

(after Garvine, 1977). Sampling points are shown by solid dots. a„ units are 
used. T 



-9-

1.2 Overview of Fluid Mechanical A.-ipects of Ocean Thermal Energy 

Conversion (O.T.E.C.) 

The tropical ocean exhibits a temperature difference, AT , of 

the order of 20°C between its surface and depths due to the upper 

layers acting as large solar energy collectors, while the lower 

depths are fed by cold vrater currents from the poles as part of the 

global oceanic circulation. Ocean thermal energy conversion (OTEC) 

plants utilize this temperature difference, taking in surface water 

and pumping up vrater from a depth of between 500 and 1000 m, to 

drive conventional heat engines. In a closed cycle engine these 

alternately vaporize and liquefy a working fluid such as ammonia in 

order to drive turbines which generate electricity. Thus OTEC 

utilizes one of the renewable geophysical energy resources of the sea, 

i.e., the thermal gradient, to generate useful energy. 

It has been proposed by Richards^(1979), that by the year 1995, 

a total of several gigawatts of electricity could be generated for 

use in the U.S. islands alone by OTEC, in particular as small OTEC 

plants are ideal for the island market. He also estimated that 

worldwide, more than 100 GW might be installed by the year 2010. 

The vrarm and cold ocean waters, after use, have to be discharged 

into the ocean, with care being taken that no recirculation occurs into 

the plant intake, which would deplete the thermal resource. Various 

methods of discharge have been investigated, including: 

- Discharge of the effluents separately. However, the warm 

water discharge might then be liable to recirculate with the warm 



-10-

water intake. 

- Mixed discharge of warm and cold water effluents. This vdll 

reduce the buoyancy of the warm vmter disctiarge so that the most 

l ikely position for the resulting flow will be near the oceanic thermo­

cllne (for detai ls see Jirka et a l . , 1981). 

In ei ther of these schemes, the angle at which the water i s 

discharged has a further effect on both the recirculation potent ia l 

and on the location of the horizontal spreading layer. 

For economic reasons, OTEC plants are l ikely to be grouped to­

gether in "parks". This requires a detailed knowledge of the shape 

of the density current formed from the individual eff luents, in 

order to position the plants so as not to deplete the thermal resource. 

A provisional Environmental Impact Assessment for these OTEC plants 

i s given in Friedman and Reitzel (1979). This l i s t s some key environ­

mental issues as organism entrainment and impingement, chlorine 

(used in biofouling control) releases and ammonia leakage to the sea. 

For these processes to be evaluated adequately, an understanding of 

the detai ls of the two-dimensional density current formed by OTEC 

effluents i s required. A detailed sunmary of the h i s to r ica l and 

future uses of OTEC i s given in Appendix I . 

1.3 Problem Statement and Summary 

The objective of th is study i s the development of a comprehen­

sive technique for the prediction of the horizontal, two-dimensional 

t ranscr i t ica l density current flow field produced by the steady 
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discharge of a finite fluid source into an ambient cross-flow of 

infinite horizontal extent. The ambient stratification conditions 

may be: 

- one homogeneous layer with a surface source discharging a 

positively buoyant fluid; 

- two homogeneous layers separated by a density discontinuity 

at which a source discharges a fluid of intermediate density; 

- a linearly stratified region in which a source discharges a 

fluid at its equilibrium density level. 

This method is only applicable after the fluid has reached a 

level at which it will expand horizontally; any prior vertical motion 

after discharge from the source must be accounted for by other means. 

Chapter 2 summarizes the basic hydrodynamlc concepts, including 

frontal boundary conditions, interfacial stability, and jet-like 

entrainment concepts. Present two-dimensional theories, none of which 

takes account of the transcritical nature of the flow, are discussed. 

The analogy existing between two-dimensional density currents, shallow-

water free surface flow, and two-dimensional compressible gas flow, is 

mentioned, as this suggests various applicable analytical and numerical 

techniques. 

The derivation of an appropriate set of governing equations is 

presented in Chapter 3, together with scaling arguments suggesting the 

division of the flow field into near and intermediate field regions. 

Simplified equations for each flow region are then developed. 
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The solution of the near field flow by the application of the 

MacCormack method - an explicit, stepping, numerical finite difference 

technique - is described in Chapter U, together with results obtained 

for both a stagnant and moving ambient region. 

The transcritical region of the intermediate field is predicted 

using a finite difference technique developed by Caughey and Jameson 

(1979)- which takes automatic account of Its transcritical nature. 

The scheme and results arc described in Chapter 5-

The supercritical region of the intermediate field is solved 

by a second application of the y,acCormack method. This application, 

and the results obtained, are discussed in Chapter 6. 

Chapter 7 collects the results of the separate regions for a 

solution of the entire density current. This is compared with data 

obtained using the Stratified Flow Facility at Cornell, (Jirka et al. , 

i960; Huq, 1983). 



CHAPTER 2 

REVIEW OF PREVIOUS WORK ON TWO- AND ONE-DIMENSIONAL 

DENSITY CUKRENT DYHAi'lICS, INCLUDING ANALOGOUS 

SHALLOW WATER AND GAS FLOW THEORIES 

Section 2.1 addresses the problem of whether density currents 

or wedges are to be expected for the two-dimensional intrusion under 

consideration. Elements of one-dimensional theory applicable to 

two-dimensional cases, such as force balances and drag coefficients 

are also discussed. It concludes with a discussion of simple gen­

eralizations of one-dimensional dynamics to "pseudo" two-dimension­

al solutions. 

More general stratified flow theory is discussed in Section 

2.2, including intemal hydraulic jump formation and energy losses. 

These concepts are considered from th^ viewpoint of the analogous 

free surface shallow water flow and canpressible gas flow cases in 

Section 2.3. The former serves to illustrate the hydraxOic jump 

concepts, whereas the latter is useful for suggesting possible 

numerical schemes applicable to the problem solution. 

Section 2.U discusses the stability and entrainment relations 

occurring in density current theory. 

Section 2.5 reviews the previous two-dimensional density 

current solutions. 

Sections 2.6 and 2.7 consider the various numerical schemes 
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avai lab le for supercr i t i ca l and t r a n s c r i t i c a l flows. 

2 .1 Dynamics of One-Dimensional Density Intrusions and Appl icat ions 

to Two-Dimensional Problems. 

2 . 1 . 1 The bulk shape: density currents versus densi ty wedges 

Many studies (mostly one-dimensional) of densi ty in trus ions 

e x i s t in the l i t e r a t u r e , with recent comprehensive reviews given by 

Simpson ( I982) , and Chen (I98O). Two major types of in trus ions 

have been invest igated: density wedges and densi ty currents. Both 

of these e x i s t for the various s t r a t i f i e d flow condit ions discussed 

in Sect ion 1.3. L i t t l e information i s avai lable to enable predic t ion 

of the intrusion type l i k e l y to occur under given flow condi t ions , 

although a recent comparative study by Sargent ( I 9 8 3 ) . attempts to 

address the problem. 

Density currents exhibi t a marked "head" region as shown in 

Figure 2-1 . A l o c a l i z e d drag force exerted by the ambient f lu id at 

t h i s head i s the main mechanism contro l l ing t h e i r advance due to 

I n t e m a l buoyant forces . 

Density wedges are characterized by a long, gradually s loping 

p r o f i l e (Figure 2 -1 ) . Their buoyant spreading I s oa ln ly counteracted 

by i n t e r f a c i a l shear e f f e c t s . 

Various experimental inves t iga t ions of one-dimensional i n ­

trus ions indicate that boundary condit ions exert a strong Influence 

over the choice between currents an(^ wedges. Keulegan (I966) , 

Rlddell (1970) and Crubert (I98O) obtained density wedges when steady 
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intrus ions were opposed by ambient currents passing over n o - s l i p 

boundaries. Ippen and Harleraan (1952) , Keulegan (1957, 1958) , 

Middleton (1966) , Wilkinson and Wood (1972) and Simpson (I969i 

1972) obtained density currents when the intrusion passed over a 

n o - s l i p boundary. B r i t t e r and Simpson (1978) extended the work of 

Simpson (1972) by showing that s teady-s tate currents were obtained 

when a moving f loor incorporated in to t h e i r apparatus formed a 

s l i p boundary, whereas s teady-state wedges were obtained with the 

resumption of the no - s l ip boundary. Thus, they concluded that the 

reduced anibient flow in the c lose v i c i n i t y of a n o - s l i p boundary pro­

vided i n s u f f i c i e n t drag t o , alone, counteract the buoyant driving 

force. Thus f r i c t i o n a l forces contributed s i g n i f i c a n t l y , leading 

t o a wedge-shape. 

The data and conclusions from Sargent (I983) uphold t h i s 

assumption. In part i cu lar , he suggested that even giMll l o c a l i z e d 

d e f i c i t s in the ambient flow might cause density currents t o convert 

t o wedges in the one-dimensional case. 

I t should be emphasized, however that the preceding experi ­

ments have Involved only one-dimensional flows. Two-dimensional 

Invest igat ions were carried out by Jirka et^ al̂ . (I98O) , and 

Huq (1983)- These involved surface (and some in ter face ) in tru­

s ions , so that the p o s s i b i l i t y of no - s l ip boundary condit ions 

was minimized. (Surface-sklmners were used to reduce poss ib le 

surface p o l l u t i o n . ) In a l l these experiments, densi ty currents , 

rather than wedges, were most often seen to occur. Sargent (I983) 
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suggested that density current formation would be encouraged by the 

extra degree of freedom available in the two-dimensional case. 

Hence, in this study of two-dimensional density intrusions, 

the frontal dynamics will be assumed to be of the density current 

type. 

2.1.2 Force balance of density currents 

The buoyant spreading force (excess horizontal force), F^, 

for the density current is given as 

P 
F. = - ^ g ' h 2 , (2-1) o 
'b " T 

computed by evaluating the hydrostatic forces within and upstream of 

the density current, over the density current half height, h (see 

Figure 2-1). g' = g — is the effective gravity or buoyancy, p^ is the 
"̂o 

intmsion density and Ap the density difference between the intrusion 

and ambient. It should be noted that.the height of the density 

current, h, , as shown in Figure 2-1, is greater than that of the 

density current behind it. Sargent (1983) quotes values of ĥ ^ of 

two or three times h. The added head height is attributable to the 

more complicated flow dynamics within this region (Britter and 

Simpson, 1978), which includes vertical accelerations and also a 

moderate amount of entrainment, occuring in the lee of the head. 

For density currents, as previously discussed, the buoyant 

force is opposed by an ambient drag force, 

2 

D̂ = S°o-2- ̂  
"a . (2.2) 
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where u is the ambient velocity and Ĉ ^ a drag coefficient. This 

drag force (pressure drag) is due to local vertical accelerations 

wtiich develop in the region around the head, causing perturbations 

of the ambient hydrostatic pressure field in this region. Equating 

the buoyant and drag forces. Equations (2.1) and (2.2), yields 

J2= = ̂  (2.3) 

as an expression relating the drag coefficient to the front velocity. 

A more general analysis by Benjamin (I968) with limited ambient 

fluid depth, H, showed that this drag coefficient should vary with 

the relative depths of the intruding fluid, as a greater intrusion 

would result in greater perturbations of the ambient, and hence 

greater drag effects. He investigated flow past a one-dimensional 

surface density current, using the classical flow force (momentum 

flux plus pressure force) conservation across a control volume around 

the current head. This yielded, 

T=-l ^ J (2-'̂ ) 
'g'h ,, . h, •' a^p 

Comparison with Equation (2.3) gives a general drag coefficient 

expression. 

(1*5) 

^̂  = ( i . i ) ( . - S ) . ''•'' 
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This re lat ion between the drag coefficient and the re la t ive 

density current to ambient depth i s shown in Figure 2-2. I t pre­

dic ts the drag coefficient as varying from l /2 to 2 as the re la t ive 

depth increases from zero ( in f in i te ambient depth) to 0.5. 

Br i t t e r and Simpson (1978) extended Benjamin's (1968) study 

by introducing an extra " in temal flux" parameter, or entrainment 

r a t e , 

g' u h (2.6) 

^ ^ ' u 3 
a 

where u is the velocity of the density current behind the head. 

0 takes account of any entrainment of ambient fluid into the 

e 

density current, which may occur in the region directly behind the 

head. Q = 0 corresponds to Benjamin's (1968) non-entraining theory. 

Increasing the entrainment rate, had the effect of increasing the 

front velocity, i.e. , decreasing Ĉ ^ (Equation 2.3), as they showed 

both experimentally and theoretically, Figure 2-3. Britter and 

Simpson's (1978) results regarding the role of entrainment, were 

confirmed by Sargent (1983). 

Jirka et al. (I980) also considered both homogeneous and 

linear ambient stratification cases for an infinite ambient depth, 

H. They obtained, using the previous force balance together with 

use of a Beruoulli equation, a general value of 

r _ J+i (2.7) 
^D ~ s+2 

where s = 0 for a homogeneous ambient and s = 1 for a linearly 
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2.0 

h/H 

Figure 2-2 Variation of drag coefficient, Ĉ .̂ with density current to 

ambient depth ra t io , h/H 
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0.5 

0.0 

-Britter and Simpson (1978) 
Dota Range 

Sargent (1983) 
ta Range 

Q=0, Benjamin (1968) 

0.0 0.1 0.2 
ti /H 

0.3 

Figure 2-3 A comparison of theoretical and experimental relations 

between the drag coefficient, C-, and the relative current 

to ambient water depth, h/H, (after Sargent, I983) 
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s t r a t l f i e d ambient. The homogeneous case compares with that obtained 

by Benjamin (1968). 

Kao (1977) a l so considered both ambient s t r a t i f i c a t i o n cases . 

His values are in agreement with those of Jirka e t a l . (I98O), a l ­

though values of C^ are not given for the general case. 

These t h e o r e t i c a l drag c o e f f i c i e n t values have been compared 

with experimentally obtained values. Benjamin (I968) analyzed re su l t s 

from Keulegan's (1958) study. Taking re su l t s l e a s t l i k e l y to be 

af fected by ambient depth r e s t r i c t i o n s , he obtained a value of C of 

about 0 . 7 , which can be compared with a t h e o r e t i c a l value of 0 .5 

discussed previously. Experiments by Wu (I969) on the l i n e a r l y 

s t r a t i f i e d ambient case indicated an average C_ of about 1 . 2 , 

compared with a value of 2/3 from Equation ( 2 . 7 ) . The higher value 

in the l inear ly s t r a t i f i e d as opposed to homogeneous case seems to 

be related to the radiation of i n t e m a l wave energy away from the 

front (Manins, 1976). 

2 .1 . 3 One-dimensional density current dynamics applied to two-

dimensional problems 

a) Purely convective-buoyant spreading regimes 

Larsen and Sorensen (1968) inves t igated the spreading of a 

buoyant discharge at the surface of a homogeneous ambient crossflow. 

Rather ttian a point source, they assumed that the discharge had an 

I n i t i a l f i n i t e width, b (Figure 2-U). This approach i s b a s i c a l l y 

one-dimensional, in ttiat the density current was assumed to have a 

constant ve loc i ty in the x -d lrec t ion , equal to the ambient, u , and 
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a) Plan viev̂ ^ of one half of the density current 

- ^ '. I 

W ' ^ ' ^ ' ^ ' - ^ ' ^ ' - v ' ^ V V ^ . ^ . ) 

b) Section AB 

Figure 2-U Larsen and Sorensen's (I968) density current schematlzatlon 
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also a constant height, h, along i t s width (perpendicular to the 

ambient flow). Thus the vert ical profile at any point was as 

shown in Figure 2-U, neglecting the frontal head shape. The 

spreading or boundary velocity, u , (now no longer equal to the 

local ambient velocity u as in the purely one-dimensional case) 

was given by 

"f = V s ^ (2.8) 

which can be compared with Equation (2. 3) with the drag coefficient 

set equal to one. Figure 2-U shows that u can be written in terms 

of u and the boundary angle, 9, as 

u , = u sin 9 (2.9) 
f a 

The spreading ra te , -r- , again from Figure 2-U can be written as 

g = t^n 9 . (2.10) 

Larsen and Sorensen (I968) approximated tan 9 by sin 0 - without 

explicitly stating so - (this being true only for small angles, î .e. , 

far downstream). 'With the simple continuity equation, 

Q = 2b h u^, (2.11) 

together with Equations (2.8) and (2.9) one can integrate Equation 

(2.10) to give 

^ = ( l f - ^ (=.-) 
o o 

which they approximate (for no clear reason) by 
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^.(3.2Lf\l 
b \2 b / 
o o 

The initial half width, b of the density current, is evaluated by 

taking the front velocity equal to the ambient, u^, as 

b = £ ^ (2.13) 
° 2u3 

a 

Thus the analysis predicts an asymptotic 2/3 power law relationship 

for the width as a function of x. 

Bache (1976) suggested an alternative approach for two-dimen­

sional density current spreading in a cross-flow. He represented the 

current dynamics as two "momentum blocks", shown in Figure 2-5) 

which move downstream with the ambient velocity. Applying conser­

vation of volume and momentum equations, he calculated a spreading 

rate for the current. However, as pointed out by Roberts (1977), the 

blocks having subdivided once from the initial volume, have no reason 

to stop doing so, and should thus continue to divide. However, this 

analysis could be applied to shallow water flows if the initial 

current depth is equal to the ambient depth. This would then enable 

the initial division to be accounted for with continuity arguments 

within the restricted flow region. 

Roberts (1977) applied Larsen and Sorensen's (1968) results 

to the spreading of a diffuser plume, extending it to include some 

entrainment, which, however, only alters the proportionality con­

stant, leaving their 2/3 power law intact. 
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Figure 2-5 Schematic view of momentum block spreading applied to density currents 

(after Bache, 1976) 
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Jirka et al. (I980) investigated both homogeneous and linearly 

stratified ambient flows. They equated expressions for the drag 

force, F , given in Equation (2.2), and buoyant force, F^, given in 

Equation (2.1), the latter being generalized to include linear 

stratification as 

P l±i p ah=^2 (2.1U) 
b s-t-2 o 

where s and a are the stratification parameters such that: 

Case A: Surface source on homogeneous ambient, and 

Case B: Interface source with step-wise ambient stratification 

a = A P g , s = 0 (2.15) 
a 

where Ap is the density difference between the density current and 

ambient, (in Case B the density current is assumed at an inter­

mediate density between the two layers.) 

Case C: Linearly stratified ambient 

p = i e g = i N 2 , s = l (2.16) 

where e = - -^ — and N is the Brunt-Vaisala frequency of the system. 
p d z 
a 

This yielded, with the additional approximation u^ sin ^ '^ u^ 

the expression. 

2 

(2.17) '̂ f 2 

(s.Dah^*^^ ^ ^ ^ ^ 

This could be combined with the mass continuity equation over the 
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half width of the density current, as 

>, >, 3 (2.18) 
u h b = ̂  , ^ ' 
a 2 

including the approximation sin 6 - tan 6, as used in Larsen and 

db . . 
Sorensen (1977) which al lows the r e U t i o n ^^ " \ -^ < 8 i ^ " « 

8*1 B+1 , 1 / 2 

ri- db r s+i io.fsv - i _ r (2-19) 
* dSE ' I "iT2 Cjj W ^s*3i 

On integration this yields 

^ H i X - ^ 

I 1 I I 

where b and x are the initial conditions for the spreading, and 
0 o 

t i s a length scale defined as 

1 _ _ S (2 .21) 
I " 2n u^h 

a s 

where 1 

h _ | »12 S - u ^ l " * ^ (2 .22) 
"B ' I E-t-1 2 (J a J 

The sca les I and h w i l l assume greater s igni f icance in Chapter 3. 
I s 

For the homogeneous ambient case , the spreading re la t ion i s 

the same 2 /3 power law as arrived at by Larsen and Sorensen ( I968) . 

•b) The addit ional e f f e c t of i n t e r f a c i a l f r i c t i o n 

Both Roberts (1977) and Jirka e t a l . (I980) considered 

regimes in which i n t e r f a c i a l f r i c t i on becomes more important than 

the I n e r t i a l forces as a balance for the buoyancy. These would 

occur downstream of the convective - buoyant regimes previously 

discussed. 
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Roberts (1977) took an expression for the interfacial shear, 

/, which varied linearly with the boundary velocity as 

T ^ = | f v (2.23) 

with a a constant , e a constant "effective viscosity coefficient", and 

V the lateral velocity such that v " u^ = u^ ̂  . Thus, equating the 

buoyant and frictional forces, yielded 

1 , , 2 a e b ,, r? ?U1 
2g' h =T^rr ^f (2.2U; 

a 

Using the previous assumptions allows Equation (2.2U) to be 
evaluated, giving 

1 
^"x^ (2.25) 

i.e. , a -r power law relation. 

Jirka et al. (I980), however, adapted an interfacial shear 

stress relation, quadratic in the velocity term, such that 

,i=Ax^v2 (2.26) 

where X i s an in te r fac ia l f r ic t ion coefficient (« 10 , Adams et a l . , 

1981). This aU-Ows the momentum equation to be written as 

a h f h =*i - X, v2 = 0 
6y i 

vrtiere s and a are the s t r a t i f i ca t ion parameters defined previously. 

Again, using u . <« u -r- , together with a l inear variation for the 
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lateral velocity, v = u ^ a uniform depth h, and a continuity 

equation as Equation (2.l8), gives 

3-*-3 3+.0 1/2 

b 2 db ( 3 a H i f_2_) ] (2.27) 
dx \ 2 , st-2 ̂-2u / / 

u X. a 
a i 

On integrating and nondimensionalizing as previously, one obtains 

(2.28) 

ytiere _ i — enters as a measure of the importance of the f r i c t i o n a l 
'̂ D 

e f f e c t , ( V = t /h , Equations (2.21) and ( 2 . 2 2 ) , a l s o Chapter 3 ) . 

and b and x denote the i n i t i a l condit ions for the f r i c t i o n a l 
oc oc 

2 
regime. Thus the power law i s given as — r , which g ives a value 

s—p 
2 

of - for a homogeneous ambient. 

Thus, comparing Roberts (1977) and Jirka et al. (I98O), 

shows that the former, using a linear frictional relation gets a 

power law of T , whereas the latter, with a quadratic friction law 

gets - , for the homogeneous ambient case. The former linear 

relation is generally true for laminar density currents, liaving a 

low Reynolds number value. This value would be more applicable under 

experimental conditions. However, the quadratic friction law appears 

more applicable to the turbulent, high Reynolds number flows encoun­

tered under field conditions. Equations (2.20) and (2.28) give the 
2 

exponent relations for convective and frictional regimes as — -
2 

and — r , respectively, thus showing a reduced spreading tendency in 
S*5 

the latter. It can also be seen that in both regimes the linearly 
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s t r a t i f i ed case (s=l) spreads less than the corresponding homo­

geneous ambient case (s=0). Both convective and f r ic t ional regimes 

from t h i s study are shown for s=0 and s=l in Figures 2-6a and b , 
X^V 

respectively, for various values of —— . 

2.2 The Transcr i t ical Nature of Two-Dimensional Density Currents 

In Section 1.3, mention was made of the t r a n s c r i t i c a l nature 

of the two-dimensional density current. This wi l l be discussed 

further in t h i s section. 

2.2.1 General Properties 

The discussion i s presented in a general form, covering a l l 

three s t r a t i f i ca t ion cases (A to C) given in Section 2 .1 . The 

general two-dimensional convective-buoyancy equations (derived in 

Section 3.1) wi l l be used, i^.e. , 

| -^(uh) + | 3 ; (vh ) = 0 (2.29) 

J. - 8+1 
1^ (u^h) + 1^ (uvh) = - a h ^ (2.30a) 

| -^ (uvh) + l^ (v^h) = - a h | | ^ (2.30b) 

where u and v are the velocities in the x and y direction, respec­

tively, and s and g are stratification parameters defined in 

Equations (2.15) and (2.l6). 

In addition, a Bernoulli or energy equation can be defined. 
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Figure 2-6 Convective and frictional regimes for density current 

spreading, (after Jirka et al. , I980) 

a) Homogeneous or stepwise ambient stratification, 

(Cases A and B, respectively), s = 0 . 
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b) Linear ambient stratification, (Case C ), s = 1. 
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which, in the absence of rotational effects Is valid for the whole 

flow region. This can be obtained by substituting the condition for 

irrotationallty into the momentum equation, rearranging and Inte­

grating (Daily and Harleman, I966), to yield 

a ! . „ h ^ * ^ = c (2.31) 
2 " 

where q = J^FTT' i s the flow speed, C i s the Bernoull i constant , 

and the term a h^*^ can be written in terms of a l o c a l c r i t i c a l 

v e l o c i t y , c, (speed of a small ampUtude long wave) as 

c^ . ( s . l ) a h"*^ (2 .32) 

The Bernoulli constant, C, can be evaluated at any point of the flow 

having known condit ions , such as the stagnation po in t , (Figure 1 -1 ) , 

where the speed, q, i s zero, and the height can be defined as h^ 

(discussed in Chapter 3) so that the BemouUi equation can be 

written as 

^ + g'h = g' h^. (2 .33) 

An I n i t i a l l y i r r o t a t i o n a l , barotropic f lu id (P = P (p) only , 

where p i s the pressure) , w i l l remain i r r o t a t i o n a l , in the absence 

of rotat ional e f f e c t s (Bjerknes' theorem, Turner, 1973)- This al lows 

the de f in i t ion of a ve loc i ty p o t e n t i a l , ^, such that 

q - ' ^ (2-3'*) 
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Substituting tti is definition into Equations (2.29) and 

(2.30), yields the second order non-linear p a r t i a l d i f ferent ia l 

equation 

(c^ - K ' ) ^xx - ^ W x y * (= ' - '^y'^^yy = ° (^-35) 

which i s known as the potent ia l equation. Examination of the 

character is t ics of Equation (2.35) shows that the equation changes 

type depending on the flow propert ies , such that i t i s of e l l i p t i c 

type i f q i s less than c, and hyperbolic i f q i s greater than c. 

I f the local densimetric Froude number, F, i s defined as 

a = - _ _ ^ _ _ _ (2.36) 

^(s+1) a h ' 
= ' s+l 

this shows the elliptic and hyperbolic regions to be subcritical and 

supercritical, respectively. This is summarized in Table 2-1. 

Speed Relative Froude 
to c Type Number Criticality 

q < c 

q > c 

elliptic 

hyperbolic 

F < 1 

F > 1 

subcritical 

supercritical 

Table 2-1. Classification of the type of different regions 
of the potential Equation (2.35). 

An additional appreciation of the flow differences in the super­

critical and subcritical regions can be obtained by considering the 

variation of mass flow per unit width with the velocity, using the 

Bernoulli equation. Equation (2.33). This allows the mass flux per 

unit width, hq, to be defined as 



s+1 2 ^ 
h q = q ( h , . i - ) = * l (2 .37) 

20 

whiich can be rearranged to 
1 

2 s 6+1 
h_ q q { 1 3 ') (2 .38) 

which i s a funct ion of q having a maximum value when 

(Note 

i' 
that 

of zero i s 

' ^r 
h - ^ ' 

E 

"c^N/f 
obta ined 

— 

fo 

a t 

^ ( s + 1 l i i (2.39) 

0 and = V ^ ( = %„, ) f ° r both s 

va lues . The l a t t e r two values define the range of the problem. The 

v a r i a t i o n of r p 1 "̂  with q from Equation (2.38) i s shown in 

Figxire 2-7 for both s t r a t i f i c a t i o n cases . T h i s shows t h a t i n t he 

s u b c r i t i c a l region a decrease in mass f lux per u n i t width i s 

accompanied by a decrease in v e l o c i t y , whereas in the s u p e r c r i t i c a l 

reg ion , a s i m i l a r mass f lux decrease must be accompanied by an 

i nc rea se in q. Thus, i f a s u b c r i t i c a l flow i s allowed to expand. 

I t s v e l o c i t y w i l l dec rease , whereas the v e l o c i t y of a s u p e r c r i t i c a l 

flow w i l l i nc r ea se . 

T r a n s i t i o n s from one flow type t o another occur i n two ways: 

(1) The flow passes smoothly from sub- t o s u p e r c r i t i c a l c o n d i t i o n s 

forming c r i t i c a l l i n e s in the flow domain. (2) The r eve r se t r a n ­

s i t i o n from super- t o s u b c r i t i c a l fldw may a l s o occur smoothly ( i n 

very spec ia l cases) but I s more l i k e l y t o occur a c ro s s a d i s c o n t i n u i t y 
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velocity, q 
a) Homogeneous o r stepwise ambient s t r a t i f i c a t i o n , s = 0.. 
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Critical value 
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0,6 0,8 
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Linear ambient s t r a t i f i c a t i o n , s = 1 

1,0 1,2 1,̂  

Figure 2-7 Variations of mass flux/unit width with velocity 
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in the form of an internal hydraulic Jump, 

2.2.2 The internal hydraulic Jump 

Internal hydraulic jumps (similar to hydraulic Jumps in 

free-surface shallow water theory, discussed in Section 2.3-1) 

occur as discontinuit ies in flow properties between super- and 

sub-cri t ical flow regions. As the flow passes through a Jump, mass 

and momentum are conserved, in physical rea l i ty whereas mechanical 

energy i s los t (due to dissipation or radiation, as discussed in 

Section 2. 3.1)- This lost energy cannot be recovered by the fluid 

(in constrast to the case of compressible gas flows, Section 2.3-2) , 

and hence the to t a l mechanical energy of the flow i s reduced. 

The amount of specific energy los t , AE , in a Jump normal to 

the flow can be estimated by equating the Bernoulli equations up­

stream (subscript 1) and downstream (stibscript 2) from the Jump, as 

2 2 

^ + a h ^ * ^ = ^ • O h ^ * ^ + &E (2.U0) 

Equation (2.UO) together with the mass and momentum equations, 

yields 

The fractional loss of energy relative to i t s value upstream frcm 

the Jump, E, , is given by 

hf /h^-s+1 

-! <••') 3 • <S 
A l = 1 *'2 ^ (2.U2) 

^1 F^(3+l) + 2 
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These losses for various upstream Froude number values are shown 

in Figure 2-8. The ratio of the fluid depths upstream and down­

stream of the jump can be related in terms of the upstream Froude 

number, F^, making use of the mass and momentum equations, as: 

s = 0: ^ = i y i + 8F2 - l) (2.^3) 

s = 1: Solution of: 

Equations (2.U3) and (2.UU) are represented graphically in Figures 

2-9a and 2.9b, respectively. These equations are equivalent to the 

"M-curves" in free surface shallow water theory, being calculated 

using the Momentum conservation equations (Henderson, I966). 

An alternative approach to modeling such a jump-like discon­

tinuity would be to assume energy conservation across the "jump", 

rather than the actual momentum conservation. This is equivalent to 

the "E-curves" in shallow water theory. Though obviously approxi­

mative, this approach has considerable computational advantage when 

modeling two-dimensional flows and is therefore adopted in the 

remainder of this study. The amount of momentum, AM^, gained in a 

"jump" normal to the flow can be estimated by applying the momentum 

equation across the "jump" as 
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1.0 1.5 2,0 F̂  2.5 3,0 

i) Homogeneous or stepwise ambient stratification, s • o 
20r 

b) Linear ambient stratification, s = 1. 

Figure 2-8 The percentage energy loss across a Jump relative to the up­

stream energy, as a function of upstroun Froude number. 
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2,. s+1 v,s+2 2. ^ s+1 _v,s+2 /o 1,5) 
^«m* V l * i T 2 ^ ^ 1 ='^^2^i^°^2 ^̂ -̂ ^̂  

This, together with the energy and continuity equations gives 

^\=^M(^2-V'(^2*V^-'- ^'-''^ 
The upstream to downstream depth ratios for this approximation are 

given by: 

s=0: ^ = ̂ (F,+^;7T^) (2.'.7) 

s = l: ^ = F, (2.'̂ 8) 
''l ^ 

These equations are also graphed in Figures 2.9a and b. The errors 

involved in adopting this approximation, defined as 

[(^V(^)jM)J-* 
are given for various i n i t i a l Froude numbers in Table 2-2. I t can 

be seen that the deviations in the l inear s t r a t i f i ca t ion case (s=l) 

are roughly half those for the step-wise s t r a t i f i ca t ion case (s=0), 

up to an upstream Froude number of 3-0. However, even for the step­

wise s t r a t i f i ca t ion case, the maximum deviation in t h i s range was 

only +30^. 

The properties across the jump are further summarized in 

Table 2-3 of the following section. 



Froude Number, 
F, 

- U U -

Relative Deviation in Height Ratios 
for 'E* and 'M' Curves 

Stepwise Linear 
S t ra t i f ica t ion S t ra t i f ica t ion 

( s^ ) LifiJ . 

1.0 Of. <* 

2 . 0 +13% *6ll 

3.0 +29* • I ? * 

Table 2-2. Deviat ion with upstream Froude number of 
he igh t r a t i o s a c ro s s a Jump for the con­
se rva t ion of energy, (E cu rve ) , r e l a t i v e 
t o the conserva t ion of momentum (M curve ) . 

2. 3 Comparison of Densi ty Current Theory with t h a t for Free 

Surface Shallow Water Flows and Compressible Gas Flows 

The analogy between f ree surface shallow water flow and 

compressible gas flow has been known for many y e a r s . Use has been 

made of i t , mainly t y conducting experiments on free surface f lows, 

in order t o p r e d i c t compressible gas flows. A b r i e f h i s t o r i c a l 

sketch of the usage of the analogy i s given in Appendix I I . 

This sec t ion d i scusses free surface shallow water t h eo ry 

(Sec t ion 2 .3 .1 ) and cooipresslble gas flow theory (Sec t ion 2 . 3 . 2 ) . 

Both e x h i b i t a mathematical analogy with each o the r and with the 

dens i t y cu r r en t dynamics. The b a s i s of these ana log i e s w i l l be 

d iscussed and summarized in Table 2 -3 . 



T'lhl" r->-, Amlory bctwr^n comprcfisible p,n 
ible Rns riov and s t ra t i f ied fluid (chftUow water) flow in the absence of now discontinuit ies. 

TJiss continuity 

momentun conser­
vation 

energy equation 

reoulre.'nents for 
analogy 

potential equation 

definition of 
c r i t i c a l i t y 

discontinuous 
transi t ion {see 
Table 2-3b) 
continuous 
transi t ion 

Strat i f ied Fluid Flow Conrpreaslble Gas Flow 

layered system of 2-D, Inviscid i r rot ional 2-D flow of an i r rota t ional In-^scid homogeneous, gas 
homogeneous fluids, the u p p - layer being hartng a constant ra t io of specific y t capacities, Y homoccni-v-v.- ....-*—, — -r.— . , - . . . - , 
shallow, and ha^rine neeligi-ble vertical subject to the isentropic law p - kp 
accelerations. 

(uh) t ^ , (vh) = 0 (2.5S) | j (up) * Ip ('P) • 0 I.' '55" 

s t l 

(u h) + s - (uvh) = - o h 
V - 5 „V-1 

| j (uvh) * 1^ (v^) 

mechanical energy: 

d(%-) * d (Oh^*^) = 0 

in temal wave velocity 

(2. 30a) ^ (u P) * SP ("'" = -"7^ " rx " 

'— (2. 30h) 1-̂  (uvC) . 1-̂  (v^p) - - K ^ P |-y P' 

total energy: 
2 

(2.55) d(i-) t d(h^) - 0 

height, h analogous to density, p 

5 * 2 = Y 

(s -f 1) n - k 'V 

sound velocity 

e =v (s+l) o h * (2.32) 

1/2 

•m 

(2.35) 

Froude number r - 3 , 1 (2.36) Mach nujifter, M - | - 1 

Bupereonle flow, M > 1 

•uhaonlc flow, M < 1 

corapreBsion wave (shock wave) 

Supercritical flow, F * 1 

Subcritical flow, F < 1 

Wave of elevation (hydrwulic Jump) 

Wave of depression (hydraulic drop) expansion wave 

(2.51) 

(2.52a) 

(2.52b) 

(2.56) 

(2.63) 

(2.61) 

(2.62) 

(2.61.) 
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2.3.1 Free Surface Shallow Water Theory 

The governing equations for two-dimensional free surface, 

shallow water theory are, in conservation form (Daily and Harleman, 

1973). 

I- (hu) . 1-̂  (hv) = 0 (2.^9) 

|_(A).|^(uvh)=-gh|^ (2.50a) 

|_(„.,).|_(A)=-gh|| Ĉ -̂ Ob) 

for flow along a frictionless channel. A comparison of Equations (2.U9) 

and (2.50) with those governing density current dynamics, Equations 

(2.29) and (2.30) for the case of s=0 (corresponding to stratification 

cases A and B, Section 2.1) shows that they are identical if g is 

replaced by g'. This indicates the physical analogy that exists be­

tween these two situations, which enables the use of the well-known 

theory of open channel flow to aid the understanding of density current 

dynamics. 

Hydraulic jumps are included in this analogy such that the up-

and downstream depth ratios for the M-curves and E-curves are as 

given in Equations (2.U3) and (2.1+7), respectively. 

Much research has been undertaken, for shallow water flows, on 

the nature of the energy losses occurring in the jump. Henderson 

(1966), Chow (1959) and earlier Benjamin and Lighthill (195'*) > 

examined the types of energy loss for jumps of various strengths. 
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Henderson and Chow classified Jumps according to the value of the up­

stream Froude number, F,, this being in accordance with the U.S. 

Bureau of Reclamation Studies (1955) and those of Bradley and Peterka 

(1957). Jumps having F, values less than 1.7 are called "undular 

Jumps". These differ from stronger jumps in that instead of the 

breaking wave, they consist of a sequence of unbroken standing waves. 

The energy loss, fiE , in the latter case will be partially radiated 

downstream by these waves (also partly dissipated by bottom friction), 

whereas for breaking waves, the energy will be dissipated by the 

turbulence generation. Benjamin and Lighthill (195'*) showed that 

theoretically, energy radiation alone could account for energy losses 

only up to F = 1.25- However, the effects of bed roughness were 

found to account for unbroken Jumps up to F = 1.7. 

For jumps having Froude numbers greater than 1.7, the energy 

losses are due to dissipative effects. The classification continues 

from a "weak jamp" for 1.7 < F. < 2.5, through to a "strong Jump" 

for F > 9.0. 

2.3.2 Compressible Gas Flow Theory 

The two-dimensional flow of an inviscld, homogeneous, isentropic 

gas of constant density having a constant ratio of specific heats, >, 

may be described by the following equations (Shapiro, 1953): 

57 (ou) * ^ (ov) = 0 (2.51) 
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^ (,2.) . |_ (..p) = .. V _ , |_ pY-1 (2.52a) 

|_ (...). |_ (.2.) =.Kl:_o|_pV-l (2.52b) 

where 0 is the gas density, and k the coefficient in the isentropic 

gas law 

p = k p Y . (2.53) 

A comparison of Equations (2.51) and (2.52) with Equations 

(2.29) and (2.30) shows them to be similar, that is, that a mathematical 

analogy exists between the two equation sets, provided h is analogous 

V-2 
to p' , or 

Y = s + 2 (2.5'+) 

together with 

p analogous tc h. 

This analogy could also have been arrived at by considering the 

respective energy equations. For the hydraulic case, the energy 

equation is given by Equation (2.31), which can also be written in the 

form 

d(aj-) +d(ah=*^) = 0 (2.55) 

while for the case of the compressible gas (Shapiro, 1953) it is 

dhg + d ( ^ = 0 (2.56) 
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where h is the enthalpy of the gas, such that 

dh = C dT (2.57) 

where C i s the specific heat capacity of the gas at constant pres­

sure, and T is i t s temperature. The enthalpy h or to t a l energy per 

xinit mass of a gas i s defined as 

h^ = u + 2 (2.58) 

where u i s the in t ema l energy of the gas. The perfect gas law i s 

P = RPT (2.59) 

where R is the gas constant. The ratio of specific heats is defined 

as 

Y - Cp/C^ (2.60) 

with C^ the specific heat capacity of the gas at constant volume. 

The speed of sound, a, is given by 

a2 - © (2.61) 
s 

where J denotes at constant entropy. Equations (2.53), (2.55), 

s 
(2.59). (2.60) and (2.6l) combine to give the potential equation 

(a' - K'^^^ - ̂ W x y * ("' - ''y'̂'̂yy = « (2-62) 

Since the flow is Irrotational with the usual definition of a velocity 

potential ^. Equation (2.62) can be seen to be Identical to that 

for the hydraulic situation. Equation (5.35), provided the velocity 

of sound, a, is analogous to the velocity of propagation of an 
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infinitessimal disturbance, or the local internal wave speed, c. Thus 

a2 = kYP^-' (2-63) 

must be analogous to Equation (2.32), yielding a similar requirement 

to Equation (2.51+) and in addition, kY is analogous to (s+l)o . 

A consideration of the characteristics of the potential equa­

tion, (2.62), as for the density current case in Section 2.2, shows 

again elliptic (subsonic) and hyperbolic (supersonic) regions, 

denoted by M < 1 and M > 1, respectively. M in this case is denoted 

by 

M = a (2.61+) 
c 

and is known as the Mach number of the flow, (analogous to the 

hydraulic Froude number with sub- and supersonic regions analogous 

to sub- and supercritical regions, respectively). 

However, the transition from super to subsonic flows, the shock 

wave, differs in nature from the hydraulic jump. In real gases (as 

opposed to isentropic flow theory, -vrtiich does not allow these dis­

continuities), discontinuities of pressure, density, temgperature and 

velocity occur at shock waves. These discontinuities are governed by 

the Rankine-Hugoniot relations, \*ich admit conservation of mass, 

momentum, and total energy (mechanical and intemal), whereas 

hydraulic jumps while conserving mass and momentum, experience a loss 

of mechanical energy. This difference is due to the mechanical energy 
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In both cases (shock and Jump) being converted in to i n t e m a l energy. 

However, while for the hydraulic case t h i s energy i s i r r e t r i e v a b l y 

l o s t to the system, for the gas flow, mechanical and I n t e m a l energy 

are interchangeable i f the flow i s adiabat ic (zero heat transfer with 

i t s surroundings), but the entropy, s , of the system w i l l be increased. 

Thus, for the Rankine-Hugoniot shock, mass, momentum and t o t a l energy 

are conserved, whereas entropy i s not. 

An expression for the entropy l o s s i s given (Shapiro, 1953) 

t o lowest order as 

where 6P = P„ - P. , p being the pressure, and the subscirlpts 1 and 

2 denoting upstream and downstream values , respect ive ly . The ra t io 

-^ i s known as the "shock strength", and can be written in terms of 

the upstream Mach number, M.̂  , (Shapiro, 1953) as: 

P, - Y. l ( " l ' - ^) (2-66) 

The rat io of d e n s i t i e s , Pj/Pi . for the Rankine-Hugoniot shock i s 

0^ (Y+1)M^^ 

P 2 (2.67) 
1 ( Y - I ) I Y * 2 

On the other hand, i f , for computational purposes the gas flow 

l a idea l i zed as sa t i s fy ing conservation of mass, t o t a l adiabatic 

energy and entropy, the momentum l o s s across t h i s "computational jump" 
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can be calculated as 

m^=k(P2 - P^)^ (Pi + Pg)^ 

The corresponding density ratios are given by 

(2.68) 

These are also represented in Figure 2.9. 

2.1̂  Stability and Entrainment of a Density Current 

2.1+.1 Interfacial Stability 

The interface between the density current and ambient flow 

region foms an interior shear layer, which may be stable or unstable. 

Turner (1973) discusses the various types of instabilities which are 

likely to occur along such an interface. He quotes experimental 

results suggesting that the instabilities most likely to be observed 

in a stably stratified environment are of Kelvin-Helmholtz (K-H) 

type. These are inviscld in character and result in a "violent 

breakdown at the interface and in a region on each side of it." The 

K-H criterion means that for the case of an infinitely deep ambient, 

short wavelength, \, disturbances will become unstable if 

iAU)f>i (2.71) 

where AU is the velocity difference across the interface. The left-
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hand side of Equation (2.71) has the form of an inverse bulk Richardson 

number, based on the wavelength of the disturbance. (The bulk Richard­

son number" is more generally defined as 

Ri = - ^ ^ 2 (2-72) 

where AU is the velocity change across an interface of f in i te depth, h). 

Thus, the Interfacial s t ab i l i ty can be commonly expressed by a 

Richardson number cr i ter ion. High Richardson number flows tend to be 

stable with respect to long wave disturbances (i.e^. , of the order of the 

depth), while some short wave i n s t a b i l i t i e s may s t i l l exis t . However, 

over reasonably short distances, the interface can, for high Richardson 

numbers (R. > 1) , for any practical purposes, be assumed as stable and 

without mixing. 

2.U.2 Turbulent Entrainment 

In flows (whether buoyant or nonbuoyant) which are injected 

into an ambient at high Reynolds number, the resulting turbulent zone 

tends to entrain the non-turbulent ambient fluid, in a process that 

i s called "turbulent entrainment." The nature of turbulent entrain­

ment in buoyant and non-buoyant flows will be discussed in the follow­

ing. 

2. U.2.1 Non-buoyant Jet entrainment 

Jirka (1982), on the basis of experimental evidence, deduced 

that the turbulent energy required for entrainment to occur, was 
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produced by intemal shearing processes within the density current, 

accounting for about 10^ of the mean flow energy. This is in agree­

ment with independent measurements by Heskestad (I965), and others 

(see Rodi, 1975). 

An expression for the entrainment velocity, w^, is conven­

tionally obtained by setting it proportional to a characteristic 

local jet velocity, such as its centerline velocity, u^, as 

w =a u (2.73) 
e c 

where the constant of proportionality, a , is known as the entrain­

ment coefficient. This basic proportionality concept was first in­

troduced by Taylor (195't), and further expounded by Morton, Taylor 

and Turner (1956). 

This entrainment coefficient for a two-dimensional non-buoyant 

jet, can be related analytically to th^ observed spreading rate of 

a jet, using an integral approach. The integral properties of the jet 

are the mass flow, Q = Î ^ u^h and the momentum, H^= Ig u ^ ^ where Î ^ 

and I are integral coefficients obtained from integrating the jet 

velocity and the jet momentum, respectively, over the current depth -

the velocity of any point being given as u = u^ f(T|) where f is a 

given shape function and Tl a nondimensional variable. Then the mass 

flux conservation, |S = w = a u^, (Equation (2.73)) together with 
ax e ^ c 

the conservation of momentum, -^^ = 0, combine to give 
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-4rx=T^ (2.7U) 

where k i s the spreading rate of the j e t . 

The actual values for the spreading rate have to be taken 

from experimental data, which show that k is a constant, (a l inear 

spreading rate) in conformance with the Jet s imilari ty propert ies. 

Particular values of k have also been estimated. Using experimental 

data (see Albertson et a l . , 1950, and Rodi, 1975), Jet spreading 

values for the assumption of top-hat prof i les , I^ = I^ = 1, can be 

deduced as k •• 0.165, and the associated entrainment coefficient i s 

a = 0.083 (2.75) 

2.U.2.2 Buoyant density current entrainment 

Horizontal turbulent density currents having a low buoyancy 

(R -•0), behave similarly to non-buoyant Jets. However, at high 
i 

Richardson numbers (I.. > 0) , the effect of buoyancy will be to dasqjen 

the turbulent kinetic energy which leads to entrainment. Estimates 

of the amount and nature of this damping are obtained from experimental 

evidence. Ellison and Turner (1959) conducted laboratory experiments 

and found that the entrainment coefficient for a buoyant case, a , 

was a monotonlc decreasing function of the local Richardson number, 

R . (Figure 2-10) defined as 

R i = ^ (2.76) 
u 
c • 
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0,01 

Figure 2-10 Various buoyant entrainment functions in comparison with 

the data of Ellison and Turner (1959) 
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where u is the centerline velocity of the density current. Figure 

2-10 indicates that for R, ̂  1 the entrainment is strongly damped, 

being practically stable. 

Various buoyant entrainment formulae have been fitted through 

the data, (Figure 2-10). The earliest was that of Koh and Fan 

(1970) who fitted the relation 

* , 1-75 

'* 0 3 5 

0 i R̂  s 0.85 

= 0 otherwise (2.77) 

Later, Stolzenbach and Harleman (1971) used the formula 

^ = exp(- 5 R^). (2.78) 

Both these expressions were empirically f i t ted to Ellison and Turner's 

(1959) data. Equation (2.78) i s to be preferred to (2.77) in that no 

physical reason exists for the entrainment to stop at a Richardson 

number of O.85. Jirka (I982) attempted to obtain a relationship 

based on theoretical arguments using the je t energy equaUon rather than 

sijnple curve f i t t ing . The formula obtained was 

(2.79) ^ = (̂  - T = = ) ^' * "1) 

' * • " "l« ' °-25. The f i r s t term on the right-hand side accounts for 

buoyant damping, or "the modification of turbulence structure ( intensi ty 

reduction and profile distortion) by buoyancy," and the second term 
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for," the additional pressure work that must be done by the buoyant 

jet and therefore is not available for turbulent entrainment." 

Applications 

The previous entrainment relations have been applied in a num­

ber of different flow situations: 

Two-dimensional heated jet. 

Koh and Fan (1970) investigated the surface heated jet by 
assuming its velocity field was of the form 

u(x,z) = u (x) f (z), 

where f is a given function showing the dependence of 
the velScity variation in the z- direction (vertical) 
on its centerline value, u , i.e., a similarity assump­
tion is used. He applied She entrainment relation given 
in Equation (2.77). 

Three-dimensional heated jet. 

Stolzenbach and Harleman (1971) investigated a heated 
jet discharged at the surface of an ambient cross-flow 
distribution as 

u(x,y,z) = u^(x)f'y(y)f^(z) 

i . e . , with s imilar i ty prof i les assumed over the horizontal 
XyT and ver t ica l (z) directions. An additional l a t e r a l 
momentum equation was introduced to predict the non-linear, 
buoyant spreading in the y-direction. Equation (2.78) was 
applied to evaluate the entrainment velocity. 

Shirazi and Davis (197U) carried out a similar analysis. 

Radial buoyant j e t . 

J i rka et a l . (I981) investigated a surface buoyant j e t 
discharged into a stagnant ambient. They assumed velocity 
prof i les of the type 

u( r ,z ) = u^(r) f^(z) , 

where r is the radial displacement, and applied Equation 
(2.78) to evaluate the entrainment velocity. 
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Both the expressions of Stolzenbach and Harleman (1971) , 

Equation (2 .78) and Jirka (1982) , Equation ( 2 . 7 9 ) , w i l l be used 

l a t e r as described in Chapter U of t h i s study. 

2. 5 Previous Two-Di.Tiensional Density Current So lut ions 

Sect ion 2 . 1 . 3 deal t with the "pseudo" two-dimensiontil dens i ty 

current approximations obtained by the extension of one-dimensional 

theory. This sect ion d iscusses f u l l y two-dimensional dens i ty current 

theory. 

In addit ion to the "pseudo" two-dimensional so lut ion appl icable 

downstream from the source, Jirka e t a l . (198O), attempted to 

account for the upstream intrusions l i k e l y to occur. They approximated 

the f u l l problem as a sequence of constant height s o l u t i o n s , which 

thus reduces the potent ia l Equation (2.35) (representing the convect ive-

buoyancy regime) to a Laplace equation at each step. ( I t should be 

noted that t h i s i s equivalent , using the gas flow analogy, t o 

approximating a compressible gas flow by an incompressible one.) 

Shen (1977) concluded that "the streamline pattern usual ly does not 

great ly a l t e r because of compress ibi l i ty e f f e c t s , " which ind ica te s 

that the constant height approximation i s a reasonable f i r s t step 

toward a f u l l solut ion. The Laplace equation was then solved for a 

given intrusion shape. The height required along t h i s boundary was 

obtained by equating drag and buoyant forces , as described in 

Sect ion 2 . 1 , y ie ld ing an expression for the boundary he ight , which 

can be written for general s t r a t i f i c a t i o n conditions as 
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1 
s+1 

. = ( Big S 2-1 (2.80) 
'^ I s+1 2a ^ J 

where the B subscript denotes boundary values. The velocity vari­

ation along the boundary obtained from the Laplace solution, was used 

in the Bernoulli equation. Equation (2.33), to obtain a height vari­

ation which could be compared with Equation (2.80). Various boundary 

shapes were examined until a height matching was obtained. They then 

matched together this solution with the downstream convective and fric­

tional regimes, to obtain the complete solutions shown in Figures 2-11 a 

and b for s=0 and s=l, respectively. 

Although the approach of Jirka et al. (I98O), considered up­

stream intrusions, it contained significant approximations. The 

assumption of a constant height Laplace solution requires subcritical 

velocities in this region, which although it may be appUcable locally 

does not necessarily hold overall. Also, the Schwarz-Christoffel 

transformation (Kantorovich and Krylov, 1958) employed to solve the 

Laplace equation requires the boundary to be approximated by a series 

of straight lines. Due to conrplexities associated with many lines, 

the boundary approximation was kept at three lines, which would lead 

to inaccuracies. 

Garvine (I982) examined the inflow of the Connecticut River 

into Long Island Sound, as discussed in Section 1.2. He assumed that 

the inflow was supercritical as was the whole of the subsequent flow. 

This allowed him to use the method of characteristics in order to 
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Figure 2-11 Geometry of combined density current upstream intrusion, 

convective and frictional regimes, (after Jirka et al. . 

1980) 

a) Homogeneous or stepwise ambient stratification, s . 0 
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-3 0 5 

b) Linear ambient stratification, s = 1. 

10 
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de temlne the flow f i e l d . However, the continued s u p e r c r i t i c a l i t y 

a f t e r discharge required that the o u t l e t channel i n c l i n a t i o n , 9 , 
' a 

(Figure 2-12) be l imi ted to 

e. ^ s i n - ^ ( ^ ) (2 .81 ) 

where q i s the c r i t i c a l v e l o c i t y of the system. 

Garvine's treatment takes no account of upstream intrus ion due 

to the l i m i t a t i o n s of Equation ( 2 . 8 l ) . The front of the dens i ty 

current i s characterized by a frontal propagation Froude number 
u 

(defined as F = — , where c i s the speed of a small amplitude long 
Cj. 1 

wave along the boundary) value of 1.0, î .e. , a frontal discontinuity, 

(Carvlne, I982). Entrainment is assumed to occur only within these 

frontal regions, but can be allowed to occur in an upward or down­

ward direction. Downward entrainment indicates a local flow towards 

the density current front, indicating convergence, while upward 

entrainment indicates the reverse. While both mass and momentum 

exchange are accounted for at the front, the change in buoyancy, g" , 

due to entrainment of less buoyant ambient fluid, is not. This will 

introduce a source of rotatlonallty in the flow, which appears incon­

sistent with the use of the Bernoulli equation. 

Thus Garvine's model (1982) contains physical restrictions on 

the discharge (as discussed above) and only considers a convective 

buoyant regime. However, a complete solution (comprising the Intemal 

flow field) is obtained (see typical solution, Figure 2.12), as opposed 

to the previous solutions discussed. 



channel 

Figure 2-12 

12 U 
Shoreline 

The resulting flow field (after Garvine, I982), for a discharge at an angle of 39° 

and velocity of 1.0 units, into an ambient velocity of 0.68 units. The dashed lines 

show streamlines. No entrainment is assumed . 
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2.6 Numerical Techniques 

2 . 6 . 1 The Characterist ic Nature of Super- and Subcr i t i ca l Flows 

The nature of supercr i t i ca l and subcr i t i ca l flows was d i s ­

cussed br i e f l y in Section 2 .2 with reference to the po ten t ia l 

Equation (2 .35 ) . I t was shown that supercr i t i ca l f lows, as defined 

by a l oca l densimetric Froude number F (Equation 2.36) being greater 

than one, are described by equations of hyperbolic type. S u b c r i t i c a l 

flows have F l e s s than one and are described by equations of e l l i p t i c 

type. 

Hyperbolic equation systans describing second order equations 

in two variables possess two famil ies of charac ter i s t i c l i n e s (Ames, I965', 

Courant and Friedr lehs , I9U8; Shapiro, 1953), which, for the s t r a t i f i e d 

flow equation system in Equations (2 .29) and (2.3O), can be described by 

K^ - c2 
© ' 71 2 ;— (̂ -̂ 2) 

+ (u - c ) 

where c i s the internal wave speed given by Equation ( 2 . 3 2 ) , and 

^^ '̂"^ Vdx/ "̂"̂  Vdx) ^ " known as the pos i t i ve and negative char­

a c t e r i s t i c f a T l l i e s , respect ive ly . These charac ter i s t i c s represent 

the information boundaries for the problem, in that along each of 

these l i n e s , the equations governing the flow propert ies can be re­

duced to ordinary d i f f e r e n t i a l equations, rather than the p a r t i a l 

d i f f e r e n t i a l equations applicable in the general domain. Figure 2 .13 

shows the domain of dependence and region of influence of a point P 

s i tuated in a supercr i t ica l flow f i e l d . The former i s the region 
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lying between the members of each family of characteristics, which 

Intersect at P. It denotes the region within which a change in flow 

properties will have an effect on P. The region of influence of P is 

bounded by two characteristics (again one from each family) originating 

at P. This defines the region over which changes at P will be felt. 

The elliptic equations describing subcritical flow, however, 

possess no real characteristics (but two families of imaginary ones) 

such that "the domain of dependence and range of influence for each 

point covers the entire field of flow", (Shapiro, 1953). 

If a small disturbance is introduced into either a super- or 

subcritical flow field, its influence will travel with a velocity 

c (Equation 2.32). For supercritical flows, q > c, .i.e.. Information 

of the disturbance will all be swept downstream, whereas for sub-

critical flows, q < c, its Influence will be felt both up- and down­

stream of the initial disturbances. 

As discussed in Section 1.1, the density current under con­

sideration is transcritical. I.e. , made up of both supercritical 

and subcritical regions. Numerical models of transcritical flows 

(discussed in Section 2.6.3) are complicated in that thsy must 

describe th'- flow properties in each region. Purely supercritical 

flows are much more simply and inexpensively modeled, thus whenever 

possible a purely supercritical scheme will be used. Available 

supercritical schemes are discussed in Section 2.6.2. 
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2.6.2 Numerical Techniques for Supercritical Flow 

The existence of the two characteristic families in super­

critical flow suggests a possible method of solution known as the 

Method of Characteristics solution (Courant and Friedrlehs, I9U8; 

Owczarek, I96U, and applied to hydraulic problems, Mahmood and 

Yevjevich, 1975). The solution procedure starts with the known 

values on the upstream boundary. The grid points are determined as 

the solution moves downstream, from the point of intersection of 

characteristics from each family. The flow properties at these 

points are also evaluated by a simultaneous solution of the 

ordinary differential equations valid along each streamline. Thus 

the solution at any point is determined from the upstream flox 

conditions only, as is consistent with the previous physical 

analysis. This marching downstream leads to its description as a 

marching technique. 

Another method of solution for a hyperbolic equation system 

is by means of finite difference techniques (Roache, 1976). In 

particular, explicit marching finite difference techniques are a 

more straightforward method to program than the Method of Character­

istics, the grid being definable in advance, and the flow proper­

ties at downstream points being simply evaluated from those preceed-

ing them. However, care must be taken in the choice of a step size, 

such that the new point, S does not lie outside the zone of influence 

of its predecessors, as would S^ in Figure 2.13, as opposed to S^ 

and S . In the case of S , one is attempting to determine conditions 
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wlthout knowing certain data essential for those conditions and an 

instability would result. This requirement is stated in the C-F-L 

(Courant, Friedrlehs and Lewy) condition for stability, and is 

discussed in some detail in various texts such as Ames (I965), and 

applied to hydraulic coses in Mahmood and Yevjevich (1975). Thus 

the downstream step size must be small enough to satisfy the 

stability bound but large enough to finish the computations without 

excessive computation time. An estimate of this bound is obtained 

from consideration of the Method of Characteristics, an approach 

followed by Kutler and Lomax (1971) and Kutler, Warming and Lomax 

(1973)- The point S Is chosen such that its upstream positive 

characteristic passes between (J and R, and Its negative character­

istic between P and Q, thus ensuring that the domain of dependence 

of S contains no unknown information. A typical condition for 

Figure 2-lU would be 

^* I O^ I (2.83) 

where Ay and Ax are the grid s i ze s as shown in Figure 2-lU and 

\^^. """e the slopes of the famil ies of charac ter i s t i c s as given 

in Equation (2 .82 ) . 

Exp l i c i t stepping techniques are eas ier to program than 

character i s t i c methods (Mahmood and Yevjevich, 1975). Many 

e x p l i c i t f i n i t e difference stepping techniques are a v a i l a b l e , 

with two-step Lax-Wendroff methods being "currently the most popular 
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methods for solving compressible flow problems" (Roache, 1976). 

Section 2.3 has shown that certain types of compressible flow 

problems are analogous to the density current flows under consider­

ation, thus these methods will be discussed more fully. 

The basic two-step Lax-VJendroff method was suggested by 

Richtmyer (I963). Applied to the equation 

5t = - Sli (2.8U) 

for simplicity, the i n i t i a l step, using Lax's method, can be shown 

to be 

"r-lk+i-";-i]-^4%/""] (2.85) 
while the second step uses the midpoint leapfrog nethod, as 

_n+l n+1 

r = "i - (̂ t̂) [ ^ ^ ^ 7 ^ ] (2.86) 

where 1 and n denote x and t node posit ions, respectively. The 

values F^^^ and F"*^ in Equation (2.86) are calculated from the 

intermediate values obtained from the f i r s t step. Equation (2.85). 

These intermediate values have no physical significance, th is only 

being attached to resul ts of the second step. Thus the two steps 

may be thought of as a predictor-corrector couplet, with physical 

significance only attached to the corrected values. 

Another type of two-step Lax-Wendroff method, was suggested 

by MacCormack (I969. 1971). Applied "to Equation (2.8U) for a 
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comparison with the basic method. Equations (2.85) and (2.86), this 

scheme can be written as 

^n+l^,n.,,[!k_4-] (2.87) 

n̂+l ̂  1 { ̂n ̂  ̂ n+1 . ,, [_^_^_-l_] } ^^ gS) 

It can be seen that the first step, Equation (2.87) uses a forward 

differencing technique, while the second. Equation (2.88) uses a 

backward difference. Here the intermediate value, UB^*^ again has 

no physical significance, but this time is calculated as a provisional 

value at the same grid position as the final step. This method has 

been used successfully by MacComack (I969 and 1971); Kutler, (1969), 

Lomax, et al., (1970) and Kutler and Lomax, (l97l). 

The dissipation introduced by the MacCormack scheme can be 

investigated by applying it to Equation (2.8U), with F = U = u for 

simplicity. The combined steps. Equations (2.87) and (2.88) then 

give the relation 

(2.89) 

This can be rewritten as 
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au au &t^ ' "-^ ^ *̂' 
*5^ = 1 - ( ^ - f ^ ) H (2-9°) 

At ox 

dissipation term 

It can be seen that the dissipation term Introduced by the scheme 

is of second order. 

The method of characteristics, being an exact technique, 

however. Introduces no dissipative terms. 

An additional finite difference technique is available for 

hyperbolic equations-using implicit methods. These have the advan­

tage over explicit techniques of not being limited by the CFL con­

dition. As opposed to explicit techniques which solve for one down­

stream point at a time, in terms of known upstream points, iiqplicit 

schemes solve for a group of downstream points using simultaneous 

equations including the unknowns at B11 points in the group. 

Roache (1976) mentions that some implicit methods have been 

applied to compressible fluid flows, such as Gourlay and Mitchell 

(1966a and b) who developed a two-dimensional unconditionally stable 

scheme. However, it had not been applied to nonlinear problems or 

been proven for an actual fluid dynamics problem. Roache (I976) 

felt that until the adaptation of these techniques to compressible 

flow problems were more advanced, the proven explicit methods were 

preferable. 

A more recent investigation of explicit and implicit methods 

for compressible flow problems is given In Caughey (I98O). He 
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points out that implicit schemes are to be preferred, where as large 

a step size as possible is required for the solution, i.e., if the 

step size limitation (CFL condition) associated with explicit schemes 

is unacceptable. Briley and McDonald (1975) and Beam and Wanning 

(1976), have developed implicit schemes (known as block alternating 

direction implicit - ADI - schemes) useful under these conditions. 

However, Caughey (I98O) again concludes that for cases where a 

large step size is not a major requirement, explicit schemes, such 

as those discussed previously, are to be preferred, being much 

easier to program. 

2.6.3 Numerical Techniques for Transcritical Flow 

Any numerical scheme employed to model transcritical flows 

should be able to model each equation type, eUiptic and hyperbolic, 

appropriately, i.e., be type-dependent. In addition, the continuous 

transition from subcritical to supercritical flow, and discontinuous 

transition from supercritical to subcritical flows, both of which 

have been discussed in Section 2.2 must be accounted for. 

The main solution techniques for transcritical problems are 

the hodograph method and numerical techniques (finite difference 

and finite element). 

2.6.3.1 The Hodograph Method 

This involves a linearization of the full potential 

Equation (2.35), by transforming it into the velocity or hodograph plane 
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Ames (1965). The l a t t e r has ( q , e ) , the speed, q, and v e l o c i t y angle , 

6 , as independent var iab les , whereas the independent variables in the 

physicol (x ,y) plane, now become the dependent var iables . 

I f a streamfunction, • , i s defined In terms of the physical 

mass f luxes , hu, and hv, as 

h u = | i hv = - | l (2.91) 

then the linear hodograph equation, obtained from the nonlinear 

potential Equation (2.35), can be written as 

dq ^ c ^ q c ae 

as derived in Jirka and Jones (1978), following that of von Mlses 

(1958) and von Karman (I9U0). Solutions of this equation can then 

be obtained by means of hypergeometrlc functions. However, singu­

larities due to the hodograph transformation exist, known as limit 

lines and branch lines, occurring when the Jacobian of the trans­

formation, 

^=IM (2-93) 
takes on zero and infinite values, respectively. The former occur 

near shocks, causing singularities in the physical plane, whore none 

exist in the hodograph plane. The latter are associated with singu­

larities in the hodograph plane, which in the physical plane are 
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characteristics, at all points of which, a line of constant speed, 

a line of constant direction, and a characteristic of the other 

family touch each other. Their properties are discussed in detail 

in Howarth (1953). The nature of the treatment of shocks (discon­

tinuous solutions) discourages their use for the physical problem 

under consideration. In addition, difficulties in representing 

curved boundaries exist, as will be discussed in Section 5-2. 

2.6.3.2 Numerical Finite Difference and Finite Element Techniques 

A major problem for numerical finite differencing techniques 

when applied to the transcritical flow problem is the treatment of 

the flow discontinuities associated with shocks, for gas flows, 

and via the analogy discussed in Section 2.2, jumps in stratified 

fluid flows. The methods employed for this feature may be separated 

into two categories (Roache, 1976): 

shock patching methods 

shock-smearing or shock-capturing methods 

Shock patching methods maintain the shock wave (jump) as a 

discontinuity, the values of the variables on either side being 

calculated using relations resulting from non-isentropic flow 

theory, such as the Rankine-Hugoniot relations in compressible gas 

flows, or the jump conditions in stratified fluid flows. The rest 

of the flow can be modeled using methods applicable to shock-free 

flows, of either super- or subsonic type. 
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Shock-smearing or shock-capturing methods allow the c a l c u l a ­

t ion to proceed without any spec ia l treatment of shocks/jumps which 

may develop. An a r t i f i c i a l v i s c o s i t y ~ Ax, the grid spacing, i s 

required to smear the shock over several grid spaclngs. 

Exp l i c i t a r t i f i c i a l v i s c o s i t i e s are general ly introduced in 

the case of a strong shock. A term of the form - i g ^ i s added 

onto the pressure term in the momentum equation, where 

a " a 
B 

9u , 5 - Ax ox 

in the region of a compression wave (shock/hydraulic Jump) (Roache, 

1976), but zero near a rarefaction wave (hydraulic drop). Thus 

the dif fusion process i s now driven by 

instead of 

d 

' © • 

au 
3x 

causing d i s s ipat ion over a shorter d is tance , and an a r t i f i c i a l l y 

smeared out shock such that 6 = 3 to 5 (Ax). Thus d e t a i l s in the 

region of the shock are l o s t while a correct Jump in propert ies across 

i t are maintained. 

Impl ic i t a r t i f i c i a l v i s c o s i t i e s are s u f f i c i e n t I f only a 

weak shock i s present , but problems involving strong shocks may 

require the addition of e x p l i c i t v i s c o s i t i e s i f more damping i s 
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requlred. Implicit damping can be introduced simply from the form 

of the difference equations, î .e. , a nonzero coefficient of the 

second space derivative, or, as in the method of Courant, Isaacson 

and Reis (1952), by using an upwind differencing scheme in the super­

critical region, where the effective "viscosity" is introduced through 

the truncation error in the one-sided scheme. 

The shock capturing methods are preferred to the patching 

methods, since the latter require the position of the shock to be 

known beforehand, or the use of an iterative approach. 

Finite difference techniques 

A recent review article, Caughey (I982), summarizes previous 

and present work on transonic gas dynamics (which is analogous to 

stratified flow problems as shown in Section 2.2). It considers the 

problems of applying boundary conditions along curved boundaries, 

such as found in curved wings in aerodynamic applications, (or, 

analogously, curved frontal regions in stratified flow theory). 

This can be dealt with by adopting boundary-conforming co-ordinate 

systems. These can be obtained by applying confonnal transformations 

to simple domains as in Jameson (1971 and 197U), or, if a suitably 

exact transfomation cannot be found easily, by taking a good approxi­

mation and subsequently applying weak shearing transformations as 

applied to aerofoils in wind tunnels by Caughey and Jameson (l977a). 

Caughey (1982) points out that the tedious nature of analytical 

transformations of the full potential equation and also the lack of 
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ana ly t i ca l transformation der lvates for numerically generated gr ids 

make the f i n i t e volume technique preferable , (Caughey and Jameson, 

1977b and Caughey and Jameson, 1979). The f i n i t e volume technique 

comprises a l oca l transformation within each mesh c e l l , evaluated 

numerically using the Cartesian coordinates of the comer po int s . 

A method of accounting for the appropriate type of the poten­

t i a l equation in super- and subsonic flows past th in a e r o f o i l s was 

Introduced by Murman and Cole (1971). They considered a s impl i f i ed 

form of the potent ia l equation, known as the small-disturbance 

eqxiation, and given as 

(K - (Y + l)f( )>! * ^ = 0 
'^x XX y y 

where K i s a s imi lar i ty constant, dependent on M ,̂ and the tendency 

of the disturbance to spread l a t e r a l l y . This s impl i f i ed equation 

has the advantage of having charac ter i s t i c s l o c a l l y symmetric around 

the x -d irec t ion , such that the hyperbolic region can be appropriately 

modeled by simply upwindlng the differencing in the x -d irec t ion . 

They applied centered difference approximations in the subsonic 

region, to account for information flow both up- and downstreaa. 

However, in the supersonic region they added an a r t i f i c i a l v i s c o s i t y 

i a q j l i c i t l y (proportlorial to the grid spacing Ax) by using an up-

winded difference approximation for ^ in supersonic zones. A 

central difference approximation was used In subsonic regions , 

which al lows a sharp representation of the shock. Thus a 
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type-dependent approximation to the small disturbance equation 

was obtained. 

However, in the full potential equation, the upwind direction 

is not known in advance, being independent of the co-ordinate system. 

Jameson (197U) introduced a method of rotating the upwindlng to lie 

in the streamwise direction, i.e., a 'rotational difference scheme'. 

This again involves adding artificial viscosities in a form to mimic 

an upwinded difference approximation, only now this was aligned with 

the local velocity direction. 

A later refinement, introduced by Jameson and Caughey (1977b) 

and Caughey and Jameson (1979) was to add the finite volume repre­

sentation to the scheme, and apply it to various wing and wing-

fuselage geometries. 

Thus, the scheme can now capture the shock, automatically 

difference the equations appropriately for their type, and account 

for curved boundary geometry. 

Finite element techniques 

A recent review article by Shen (1977) summarizes the appli­

cation of finite element techniques to general fluid flows, while 

Chung (1978a) presented a state-of-the-art review of finite 

element applications to transonic flow or mixed-type equations. 

The former emphasizes the flexibility of the finite element method, 

in that the domain under consideration can be subdivided into 

irregularly shaped elements, thus accounting for curved boundaries 



-82-

as long as they can be approximated by a number of linear segments. 

When applied to supersonic flows, however, finite element 

techniques encounter difficulties, there being no "counterpart of 

the 5-polnt backward-difference formula in finite-difference schemes, 

which is unconditionally stable for computation in the supersonic zone" 

(Shen, 1977). When applied to regimes of mixed type, patched solutions 

are frequently used (Chen, 1976), with supersonic solutions patched 

onto subsonic finite element solutions. 

Transonic flow techniques similar to those applied to finite 

difference schemes by Murman and Cole (1971), discussed previously, 

were applied by Chan et al. (1975). For supersonic elements they 

Ignored the contribution from downstream nodes in order to represent 

the true physical situation and thence stabilize the scheme in super­

sonic regions. 

Chung and Hooks (1976, 1977) and Chung (1978b) showed that 

the method of discontinuous functions enables the global finite 

element equations to find the location and intensity of shocks. 

Friedrlehs (1958) showed how a symmetric positive definite system, 

as obtained by using the least squares approximation, gave a compu­

tational algorithm which was the same for both the elliptic and 

hyperbolic regions, being type-insensitive, while Chung (1978b) 

discussed this in connection with the full potential equation. In 

particular, Chung, in this article, shows how, in the full potential 

equation, the discontinuous functions can be used In the formation 

of the finite element matrices combining the shock boundaries. The 
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shock's position and intensity was found using an iterative numerical 

technique in which convergence was obtained by means of a scheme 

similar to artificial viscosity. This scheme was applied to a 

symmetric aerofoil. 

More recent applications of finite element methods to transonic 

flow calculations have been made by Tatum (1982) and Bredif (1983)-

These again incorporated artificial viscosity terms in order to 

introduce the required upwind bias into the finite element formula­

tion in the supersonic regions. The technique they used was the 

artificial compressibility method developed by Hafez et al. (1978). 

Thus, finite element methods were again used in both super- and 

subsonic regions, with an artificial viscosity concept automatically 

modeling the shock position and correct equation type. 



CHAPTER 3 

PHYSICAL CONCEPTS 

This chapter considers the physical concepts Involved in the 

Investigation of the steady-state two-dimensional horizontal motion 

of a shallow density current emanating from a radial source in a 

moving stratified ocean. Although the mathematical framework 

developed herein, is for the general case of horizontally two-

dimensional intrusions (see Chapter 1 for examples), it is applied, 

in this particular study, to discharges from ocean thermal energy 

conversion (OTEC) plants. 

3.1 General OTEC-Ambient Ocean Schenatization: Definition of Scales 

The following basic schematlzatlon of the ambient ocean struc­

ture and its interaction with OTEC is adopted: 

a) Velocity and Density Profiles 

The general tropical or subtropical ocean exhibits nonuniform 

velocity and density (mainly temperature influenced) profiles. 

Density profiles for various locations are shown in Figure 3-1-

Velocity and temperature profiles for a Gulf of Mexico example are 

shown in Figure 3-2. It can be seen that the density profile usually 

exhibits a pycnocline zone, ̂ .e., a region of strongest density 

variation, which often lies between 50 and I50 m depth as shown in 

Figure 3-1- It is in this zone that t̂he intermediate field density 
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currents are most likely to occur. The essential feature of the 

pycnocline zone, i.e., its sharp density variation, may be schematized 

as shown in Figure 3-3. 

Another possibility - certainly of strong interest for labor­

atory experimentation, but also for OTEC discharges as discussed be­

low - is an intermediate field generated by a buoyant source directly 

at the free surface. 

Thus, in general, three cases of discharge - ambient strati­

fication interaction are of interest, as shown in Figure 3-3. These 

can be described as follows: 

Case A: Surface Source with Homogeneous Ambient 

This represents a buoyant source discharged at the free 

surface of a homogeneous ambient flow. It should be 

noted that if turbulent entrainment occurs, then the 

density deficit, Ap, will be, in general, a function of 

position. Outside the region of entrainment (near-field), 

however, Ap should become constant. 

Case B: Interface Source with Stepwise Stratification 

The discharge is assumed to occur at the interface, with 

a density that is just between those of the two individual 

layers. The density difference, Ap, (and also the actual 

density of the current) is constant in this case. Outside 

the region of entrainment (near-field), the dynamics for 

this case should be exactly equivalent to Case A. 
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p«se C: Equilibrium Source with Linear Stratification 

The discharge is assumed to occur at its equilibrium 

level, (equal density level, i.e., P^ = pjz)) within the 

linear stratification profile. In this case, as in Case B, 

the actual current density, p^, will remain constant both with­

in and without the region of entrainment (near-field). 

It should be noted that Case A may also be an acceptable 

approximation for an interface discharge. If the discharge density, 

0 , is much closer to that of one layer, say Pg, so that (Pg - o^) 

o 
< < (0 - p ), then the discharge will behave as if the interface 

were a rigid lid, similar to the surface in Case A. This can be 

understood by examining the local Richardson number, R^ of the current 

(Equation 2.76), with respect to either of the two adjacent layers. 

A small density difference, say (p^ - o^) in this case leads to small 

Richardson numbers and hence likely instabilities, as discussed in 

Section 2.U. However, large density differences, say (Pĵ  - P^), 

lead to large R^ values and stable conditions without entrainment 

from that layer. (An application of this type has been discussed by 

Jirka et al., 198I). Thus, under such conditions Case A is quali­

tatively similar to an interface situation, and is also more easily 

obtained experimentally - enabling verification of theoretical pre­

dictions. Therefore, although the equation set is derived for all 

cases, the actual solutions in later chapters will be confined to 

Cases A and B. 
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b) Unsteodiness 

Long term temperature and velocity variations in the thermo­

cllne do occur as illustrated in Figure 3-U. A (volumetric) time 

scale representing the OTEC discharge adjustment time for unsteady 

conditions Is 

,1/2 

'. • {^^ 

Using the values given in Section 3.1.1 gives T "" 15 mns. Thermo­

cllne variations of shorter time scale than this will not affect the 

final density current position, while those of longer time scale will 

blend into the ambient background. Figure 3-U shows that the major 

variations are over about 12 hours, although much shorter and longer 

time variations also occur. Thus the reasonable assumption of steady 

ambient current conditions are considered in general, although the 

stagnant case is analyzed for the near field. 

Sudden stepwise current changes (equivalent to discharge 

changes) were considered experimentally in Jirka et al. (I98O) 

c) Shallow density current 

This assumes that the ambient ocean motion is very little 

affected by the presence of a shallow intermediate field current 

and is, to a first order, unperturbed. This will be discussed further 

In Section 3.3. Thus, referring to Figure 3-3. the discharge current 

layer depths, h, are smaller than the ambient vertical domain (£.£., 

mixed layer depth). 
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Figure 3-U Example of a longterm record of temperature and density within 

the thermocllne of the Gulf of Mexico (after Thomas et al.,1979) 
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3.1.1 Definition of Scales 

I t i s advantageous to consider the regions over which certain 

physical quanti t ies (such as momentum flux or f r ic t ional effects) 

exert an influence. Various length scales, indicating the influence 

of these quanti t ies , can be derived, based on the following physical 

variables typical of OTEC plant and oceanic considerations: 

100 HW OTEC plant (Jirka et a l . , I98O) 

Total discharge flow Q̂  = 1000 m^s 

Discharge velocity "o ~ ^ ° /^ 

Typical mixing factor S = 5 (near-field dilution) 

Ambient ocean (Jirka et a l . , I98O; also Figure 3-1) 

Typical velocity u__ = O.15 m/s 

Density s t ra t i f ica t ion 

Brunt-Vaisala frequency 

Total buoyancy difference 
between layers (Case B) 
(equivalent to the 
density change over 
a 10 m current height in 
a s t ra t i f ica t ion N) 

-U 2 Ambient vert ical diffu- K » 10 m / s (Koh and 
sivlty ^ Fan, I970) 

Interfacial friction cc- X » 10 (Adams et al. , 
efficient ^ I981) 

Corlolis parameter f « 2 O sin ̂  "0.5 • 10" /s 
(n is angular velocity 
of earth, ̂  is lati­
tude) . 

Length scales, based on dimensional analysis and simple physical 

reasoning, can now be defined as: 

c 

N 

Bo' 

=3 

3 

= 

-2.10' 

0.015 

0.002 

•5 m-

-1 s 

/ 2 
m/s 
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Near-field length scale, ^^: 

This is based on the turbulent mixing action of the 

discharge momentum flux, M^ = Q.^V^, versus the stability 

effect of buoyancy, N giving 

M ^^^ M ̂ /"̂  
. t ^ « _ o ^ (CaseB) or - ^ (Case C) (3.1) 

^o 

I n t e r m e d i a t e - f i e l d l e n g t h s c a l e , •tj.: 

Th is i s g iven by the i n t e r a c t i o n of a mass source , 

SQ , w i t h i n a flowing s t r a t i f i e d ocean which causes h o r i ­

z o n t a l c o l l a p s e and advec t ion of the source flow, g iv ing 

SO e • SQ N , 
t « _ ° r ° _ (Case B) o r - | - (Case C) ( 3 . 2 ) 

•'a a 

Coriolis length scale, (Rossby Radius), l^: 

This is given by the Rossby radius, such that 

t « R = / (3.3) 

^ ^o 

Frictional length scale, •1-̂ .̂ : 

This is given by the interaction of a mass source, 

<?0 = u h_ t within an ambient ocean. The dynamic 
^o a uF IF 

relation X^ = hj.j.Ajy relates the frictional length scales 

using the interfacial friction coefficient, \^ . These 

expressions yield 
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as a frictional length scale. It should be noted that 

Equation (3.Ua) can be rearranged to 

I = b: ^ (3.'^b) 
^' (X, W^ 

where (X.V) i s a parameter discussed in Section 2.1 as 

a measure of the importance of the f r ic t ional effect , V 

being a parameter discussed more fully in Section 3- 5-

Far-field length scale, -f-j,: 

This i s given by the action of ambient diffusion over 

a ver t ical disturbance height H (caused by the near and 

intermediate field processes and " 10 m (Jirka e t a l . , I98O) 

versus the simultaneous ambient advection 

1,-^,1- (3.5) 
z 

Using the values of the physical quantit ies given previously, 

typical length scale magnitudes are as shown in Table 3-1. Although 

these are only typical values (for example. Section 3-6 discusses 

cases when the near- and intermediate-field length scales are of the 

same order), they s t i l l serve as an indication that the density current 

may be modeled as subsequent flow regimes of Increasing length scale: 

(1) Near Field Region (Section 3.U): 

This has a horizontal extent of order t (100 m). Supercri t ical 

velocit ies arc expected, due to plant discharge c r i t e r i a , as discussed 
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Table 3-1: Length scale values (in km) for typical OTEC and 
oceanic conditions 

\ 

\ 

\ 

^IF 

^F 

Stratification 
Case B 

0(0.1) 

0(1) 

0(10) 

0(10) 

0(100) 

Stratification 
Case C 

0(0.1) 

0(1) 

0(10) 

0(10) 

0(100) 
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further in Section 3-3- The importance of the destabilizing momen­

tum flux in this region compared with the stabilizing buoyancy leads 

to low Richardson numbers, and entraining flow, as discussed in 

Section 2. U. 

(2) Intermediate Field Region (Section 3.5) 

The intermediate field region is modeled as stable non-

entraining flow. 

a) The transcritical flow region is made up of super- and 

subcritical flow regions, separated by Intemal hydraulic Jumps and 

critical lines, (Section 2.2). These phenomena occur in the region 

of the Intermediate field closest to the source, where frictional 

effects are unlikely to be impor.tant. Thus it can be assumed a region 

where the flow is convectively controlled. 

b) The supercritical flow region occurs after the trans­

critical flow region and extends downstream until the diffusive 

effects of the far field become dominant. Frictional effects become 

increasingly important in this region. 

(3) Far Field Region 

The ambient stratified ocean is characterized by weak (and 

often patchy) turbulence. This ambient diffusion (as indicated by 

the *„ values in Table 3-1) assumes importance at large distances 

from the source, leading to a gradual diffusion of the mass and heat 

contained in the density current. 

It should be noted thut the Corlolis length scale, ' , is 
H 

shown in Table 3-1 to be about an order of magnitude greater than 
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the intermediate field length scale, l^, i.e., the Coriolis in­

fluence may be felt several intermediate field length scales down­

stream. However, even then its effect would be global, i.^. , it 

would affect the entire ocean current structure rather than only the 

intemal hydrodynamics of the density current. 

3.2 Governing Equations 

The basic equations linking the spatial variations of velocity 

u , J = 1, 2, 3, density, P, pressure, p and temperature T, within a 

fluid in steady-state, may be represented using tensor notation, as 

3u. 
Mass Continuity ^ = 0 (3.6) 

Momentum §3^ (u^u^) = - p 3 ^ " 6*31 + p Sx 
J 1 J 

convective pressure -gravi- turbulent 
acceleration force tation- shear stress 

al force 

V ""i "K (3-^) 

Coriolis 
acceleration 

Scalar Conservation ^^ (U^T) = - g ^ {^^) (3.8) 
J J 

convective turbulent 
transport scalar transport 

Linearized equation of State jx * ̂  ° ° (3.9) 
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for 1, j, k = 1, 2, 3, with a Cartesian coordinate system, x^ 

pointing upwards against the action of gravity. 0 is the angular 

velocity vector of the earth, T ̂ A= û '̂ u ') and <i^^(= "j"^') ^''^ 

the turbulent shear stress and turbulent transport tensors, respectively, 

where u' and T' represent velocity and temperature fluctuations, 

the overbar denoting averaging over a time scale greater than the 

fluctuating time scale, & is the Kronecker delta, c is the 

alternating tensor, (the Einstein summation convention being used) 

and a is the thermal expansion coefficient. 

Incorporated into these equations are the assumptions of 

incompressibility and neglect of both diffusion and shear molecular 

transport terms. The Boussinesq assumption is adopted, requiring 

that the actual density variations are small relative to the refer­

ence state apart from the pressure term. 

Further assumptions Include: 

The density can be written as p(x ) = o (x.) + p (x,), 

J a J i 
where p (x.) is the ambient value and p (x ) Is a small 

a 3 3 

dynamic perturbation, which can be written as P (x.) = 

BT (X.) using the linearized equation of state, thus in­

corporating this into the other equations. 

The adoption of u hydrostatic vertical momentum equation, 

requiring that vertical accelerations, gradients of dynamic 

pressure, rate of change of turbulence and the vertical 

Coriolis force, are second order terms. 
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The equation set, incorporating the above assumptions is: 

(3-10) au. 

3 

"3 
9 l _ ( u.) = . ^ ^ r p*(xjdx 
3x. ^ i j' Pĵ x̂  3x^ J ^ 3 3 

Xg - - -

i !_,... e„. n.u^ (3.11) 
p 3x. '̂ ij Jl'i 0 IC 

0 

g!=.p*, (3.12) 

liT (V^ = - fe: (̂ hj) (̂ -̂ 3̂  

i,j = 1,2; k = 1,2,3 

where the pressure term in the horizontal momentum equation has been 

obtained from the vertical momentum Equation (3.12). p now indicates 

the hydrostatic pressure deviation. 

It should be noted at this point that the horizontal exchange 

terms (both horizontal shear stress and diffusivity, these being 

related via the Reynolds analogy) are negligible compared with other 

terms in the equations, and will be neglected hereafter. In addition, 

based on the scaling arguments in Section 3-1, the CorioUs term 

will also be neglected from this point. 

The equations can now be integrated vertically over the region 
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of the density current, i.e. , h^(x^,X2) < x^ < h2(x^,X2), where h^ 

and h define the "Interfaces" of the current as shown in Figure 3-5-

The assumption of constant vertical velocity (top-hat) profiles is 

made for this integration. (Note, if non-constant values were assumed, 

profile dependent constants would appear in the integrated equations, 

these constants having values somewhat different from unity.) 

Also incorporated into the equations at this point are turbu­

lence closure approximations and boundary conditions along the inter­

faces X = h^, (k =1,2). These are given as: 

1) Kinematic Condition: 

«i's^*"2'5^-"3--^'^^^^3 = ̂  ^'-''^ 

where w ^ i s the net velocity across the interface, i.e. , 

a turbulent entrainment velocity. For Case A s t r a t i f i ­

cation, Wgĵ  = 0 at X = 0, i t s upper boundary. 

2) Dynamic Conditions: 

a) p* = 0 at X = h^ (3.15) 

b) Ti3 - T^ = 1 PXi(u^i - "i)[(Uai - ^ ) ( ^ a i - " l ^ T 

3 = h, (3.16) at X 

where u is the ambient velocity so that (u , - û )̂ is 

the velocity difference across the interface. This is a 

generalization of the interfacial shear equation and has 

been suggested in this form by Dronkers (I969) in order 
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Upper interface 
for stratification 
Cases B and C 

er interface 
for Case A '̂ j 

/ i=1,2 

Lower interface 
for all cases 

Density 
disturbance Current 

Figure 3-5 Intermediate field flow and density structure 
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to provide the correct t o t a l energy d i s s i p a t i o n in the 

flow: the p o s i t i v e and negative s igns refer to the upper 

and lower boundaries, respec t ive ly . For Case A s t r a t i f i ­

cat ion , T = 0 a t the upper boundary, x . = 0. 

c) q^3 = 0 at x^ = h^ (3-12) 

This can be approximated as zero s ince , i f entrainment 

occurs, t h i s terra w i l l be n e g l i g i b l e in comparison, 

whereas, i f no entrainment occurs , there w i l l be no 

breaking waves along the e s s e n t i a l l y laminar in ter face . 

The layer thickness integrated equation s e t , incorporating 

the Boussinesq assumption i s : 

hr ("i") = V - "e2 (3.17) 
"J 

hg X3 

hr ("i"j«) = " a i ( " e l - -e2) - ^ ^ 7 J I °*'^3'^3 
J o 1 h , h -̂  

'kK ^*"^3^^ (̂̂ %-̂ \) (3.^8) 
1 

''2 

i s i r ("j J. ^*^3> =0 (3.19) 

where the terms (w^^ - w^ )̂ a"^ "^1 ("el - "e2^ represent the 

entrainment of outside f luid mass and momentum, re spec t ive ly into 

the internal flow. The pressure Integrals in these equations have 

to be evaluated for the various s t r a t i f i c a t i o n cases (A, B and C). 
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in the following, the definit ion sketch in Figure 3-5 i s referred to 

and symmetry of the current around the x^ = 0 axis , i . e . , h = h^ = 

h , i s assumed (with the exception of Case A below). 

Case A: Surface Source on Homogeneous Ambient 

The density dis t r ibut ion i s defined as 

p*(x3) = - ^ - h < X 3 < 0 (3.20) 

where AP i s (p^ - P^) and - h < X3 < 0 i s the extent of the surface 

current, i . e . , i t s upper boundary i s a t x^ = 0. This | i v e s the t o t a l 

buoyancy , 7 P* dx, = h and ° J I \ * ^^^^ = Ap ^ . The t o t a l 
-b ^ -h -h 

density current height, given by (hg - h^) , becomes equal to h, in 

t h i s case, as h^ = 0. Also, the surface entrainment, w^^ = ° ' ^"^ 

the in te r fac ia l shear s t ress a t the surface, T 1 2 = 0 -

Case B: Interface Source with Stepwise S t ra t i f i ca t ion 

The density profi le i s defined as 

0 < X < h 

- h < X 3 < 0 (3.21) 

where Ap = (p, - PJ/2, i.e. , half the total density difference be-

tween the layers. The total buoyancy, _^ J P*(x3)dX3 is zero, as 

expected for a neutraUy buoyant jet. The integral from the pressure 

term f [^ o*dx,dx- becomes W - In this case, symmetry 

-h J -h J 3 J 

assumptions are made for the interfacial friction and entrainment 

ter^s, such that T'I 2 = T^I 1 = r ̂  and w^^ = " V = '"e ' ̂ ^P^^i^^ly-

Case C: Interface Source with Linear Stratification 

The density profile is defined as: 
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P*(x3) = " 0 6 X 3 (3.22) 

where « = ^— « — is the density gradient and N is the Brunt 

P „ d x 3 g 

Vaisala frequency of the system. Again the t o t a l buoyancy i s zero, 

2 3 

but the pressure Integral becomes - P € h . Synnetry assumptions 

for the i n t e r f a c i a l f r i c t i o n and entrainment terms are made as for 

Case B. 

The equation set can now be written as: 

|-(ujh)=w^ (3.23) 
J 

d 

1 

a 

(V 

("J 

i . h 
J 

g' 

) = 

h) 

w u , e a l 

= 0 

- Oh 
?i>,s*l i 
TT * ^ 

(Case A only) 

(3.2U) 

(3.25) 

a " constant (Cases B and C) (3 .26) 

where the s t r a t i f i c a t i o n parameters, s and o are defined as: 

Case A, B. a = g" ; s = 0 (3-27) 

Case C. a = i € 6 = i N ^ ; s - l (3 .28 ) 

I t should be noted that Equation (3.26) r e s u l t s from an 

intermediate step of ^ [ u,(nx.^*-'-|, * ( -1)^ '̂x,̂ *-""! ) ] = 0 . 
ux< J J n 3 .h 

As u and h are both arbitrary, t h i s n e c e s s i t a t e s the re la t ion 

o = constant. The equation set w i l l now be divided into the separate 

regions discussed In Section 3.1-



-105-

1. Near-Field Region (Entraining Regime) 

The equations fnr Pntr-aining s t ra t i f i ed flow are: ( i , j = l , 2 ) 

| _ ( u . h ) = w (3-29) 

J 
- . S + 1 

| _ ( u , u . h ) = w ^ u , , - a h g - (3.30) 

I — (u.s'h) = 0 (Case A) (3.31) 

a = const (Cases B and C) (3.32) 

These equations are applicable in the vicinity of the source 

where interfacial friction is less important. In general, entrain­

ment will occur in the near field as discussed in Sections 2.U, 3.1, 

and 3.3-

2. Intermediate Field Region 

a) Transcritical Flow Region (Convective Regime) 

The equations for non-entraining stratified flow are: (i,j=l,2) 

| - ( u . h ) = 0 (3.33) 
dXĵ  J 

s+1 
l-(u.u.h) = - a h | ^ (3.3U) 

I — (u.g'h) = 0 (case A) (3.35) 
dXj J 

a = const. (Cases B and C) (3-36) 



-106-

b) Supercritical Region (Convective and Frictional Regimes) 

The equation set becomes: (i,J3l,2) 

(3.37) 

(3.38) 

(3.39) 

(3.U0) 

I - (u.uh) =- Oh 1 ^ + ^ 
axj 1 j axj p̂  

I — ( u . g ' h ) = 0 (Case A) 
axj j 

a - constant (Cases B and C) 

3.3 General Boundary Conditions 

3.3.1 Ambient Fluid 

The outside fluid is assumed unperturbed apart from a narrow 

region bounding the density current. The ambient velocity field is 

thus given by 

u . = const, 1 = 1,2 (3.UI) 
ai 

This assumption requires that the thickness of the density current, h, 

be much smaller than the typical vertical dimension of the ambient 

fluid layer, H. In oceanic conditions, typical values are h •*• 10 a 

and H ~ 100m. However, this condition is occasionally difficult to 

achieve experimentally, h sometimes approaching a significant fraction 

{T) of H. Drag effects likely to occur under these conditions can 

be dealt with as described in Section 2.1. 

In a narrow region of the ambient flow along the front of the 
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density current, significant local vertical accelerations are assumed 

to occur, thus violating the hydrostatic pressure conditions applic­

able throughout the remaining ambient flow. Generalizing to two-

dimensions Benjamin's (I968) one-dimensional analysis of this 

pressure deviation (discussed in Section 2.1), by taking the compon­

ent of the ambient velocity normal to the boundary (u^ sin 9) rather 

than u results in a form drag F , normal to the front. The expres-

a' 

sion for F_ is given as 

( u ^ i n e ) ^ 

where h^ = half thickness along the front, p^ = ambient density, 

6 = local front angle and C^ = drag coefficient. This drag force 

acts as an arresting mechanism for the density current. 

3.3.2 Density Current Interactions with Ambient Flow 

i. Front Conditions: 

The front between the density current and the outside 

fluid is a streamline, giving 

where u^ and v^ are velocities along the front. A buoyant force, 

F , acts along the front of the density current, as discussed in a 

one-dimensional context in Sections 2.1. Its magnitude is obtained 

from the pressure term in the momentum Equation (3.2U), which re-

3F 
arranged, yields 5 ^ where F^ is given by 

1 
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^-l^2'o'^"' (3-'*'̂ ) 

Along the front, a pressure equilibrium must exist between the acceler­

ating buoyant force, F , and arrest ing drag force, F , in steady-state. 

Thus the two expressions. Equations (3.UU) and (3. U2) may be equated, 

thereby relating the boundary thickness, 

' < 2 ^ • 

s+1 20 "a \ = ITTT ^ u," sin" e "* ' (3.U5) 

\ / 

to the boundary ar\gle 9 (see Figure 3-6). Equation (3.U5) i s a two-

dimensional generalization of Equation (2.8o). For the special case of 

the stagnation point, S, (Figure 3-6) 9 = 90°, giving the "stagnation 

height", 

/ C \ - ^ 
, ( s+2 D 2 s+1 / , ,^x 
^ = p a 25 "a (3.'*6) 

11) Source Conditions: 

The conditions at the source must be specified in order to 

give an inner boundary for the near field region. Thus an inner 

velocity and height 

q = q^, h = h^ at y = b^(x) , 

where b^(x) defines the inner boundary, are defined such that the 

total flow, Q, is appropriate, and the overbar denotes the vector 

representation. 
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F Drag force 

Figure 3-6 Schematized two-dimensional density current (OTEC) in an 

ambient crossflow. 
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3. U Near-Field Region 

This section deals with the physical processes Involved in 

the near field region of the density current, which comprises con­

vectively controlled, supercritical, entraining flow, moving at its 

equilibrium level, l.e^. , its density, P , is equal to that of the 

surrounding fluid at its centerline. 

3. U. 1 Governing Equations 

The applicable governing equations are Equations (3-29), 

(3.30), (3.31) and (3.32). 

It should be noted at this point, that the presence of entrain­

ment into the density current causes rotational effects to be present. 

This can be seen by taking the curl of the momentum Equation (3.30), 

which results, when using vector notation for simplicity, in 

V X (i X V X q) = - -^ ' X (u^ - q) - V (^) X (u^ - q) 

I t can be seen that If the entrainment were zero, this expression 

would be satisfied by ^ x q = 0, i^.e. , the flow would be i r ro t a t iona l , 

as discussed in Section 2.3 in connection with the velocity potent ia l . 

However, the entrairmient terms are such tha t , although " x u = 0 , 

due to the ambient flow being approximately unperturbed, the gradient 

'(^-j^) i s not zero. Thus ' x q = 0 does not satisfy the equation, 

I.e. , the flow is rotational. The presence of rotat ional effects will 

be further discussed in Section 3.5. 
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3.u.2 Boundary Conditions and Possible Downstream Controls 

The radial discharge from the OTEC plant (or from any other 

environmental source) is likely to be in a critical or supercritical 

flow regime, (corresponding to a Froude number, F, of one or greater, 

respectively, as discussed in Section 2.2). This may be either due 

to the actual plant exit conditions, or - if the two-dimensional 

horizontal spreading motion is preceded by vertically rising or 

falling jets, see Section 1.2 - to the fact that the transition zone 

from an fluid motion with a vertical component to a horizontal one 

is always some form of critical condition. 

The subsequent horizontal expansion (decrease of mass flux/ 

unit length) of a nonentralning flow would cause the velocity to 

increase, and the flow to become increasingly supercritical, (Figure 

2-7). However, the study of Jirka et al. (I981) on a radial entrain­

ing jet in a stagnant ambient, (Section 2.U) suggests that the entrain­

ment of ambient reverses this trend, such that the flow velocity and 

FiDude number decrease. The extent of this decrease will depend on 

the downstream flow controls, which depend on the relative strengths 

of the near- and inteiroediate fields, as will be discussed in 

Section 3-6. 

The flow will be symmetric with respect to the ambient flow 

direction (x - axis), so that modeling efforts (Chapter U) could con­

fine themselves to the positive (x, +y) half plane. 
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3-U.3 Non-dimcnslonalization for the Hear Field Enuations 

The Boussinesq-type flow under consideration takes place into an 

inf in i te receiving fluid with an ambient velocity. This physical s i tu­

ation can be described by means of the ambient velocity, u , together 

with the source variables, velocity, U , buoyancy parameter, g ' , for 

Case A or B and N for Case C, length parameter, -t , where t i s obtained 
o o 

in terms of the initial radius, r , and discharge depth, h , as 

*o = 2 " r ^ h ^ (3.U8) 

The source variables can be grouped into the integral quanti t ies 

of momentum flux, M , volume flux, Q and a buoyancy conservation 

parameter T. , where, if top-hat profiles are taken. 

(3.U9) 

(3.50) 

"o 80 ' ^l =''== A 

Case B 

Case C (3.51) 

Thus the initial conditions can now be characterized by the more 

fundamental integral quantities, M , (5 and ^ , together with a 

characteristic length, r . Thus any flow property, ^, such as 

velocity, can be written in terms of position, x and y, and the 

above variables, as 
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^ = f(x, y, M^, S^, Q„. r^, u^). (3.52) 

The momentum flux, M , and the buoyancy related parameter T.^ 

represent the two fundamental opposing mechanisms for the jet flow, 

M causing instability, which is counteracted by the stabilizing 

effects of buoyancy, T • Thus it appears appropriate to use these 

as the two normalizing variables. Length, volume flux, velocity 

and buoyancy scales are developed by dimensional arguments as sho^•m 

in Table 3-2, together with their relationships to the non-integral 

conditions, U , g' ( N ) , ^^ and the discharge Froude number F^. 

Thus the nondimensionallzed form of Equation (3-52) can be 

written as 

^ f(x = ̂ , y = f ,f >f„=^ = \ = u,^) (3.53) 
N N s N o 

where " denotes nondimensionalization using the quantities M^ and 

S and — denotes for all straification'cases, the initial dis-
o F 

s 
charge, Q , or initial slot height 

Case A 

h = < r" T T J Case B 

2rr 

2TT 

2 " 

r o 

1 

r 
0 

1 
A 

r 
0 

F ^ 
s 

F V 3 
s 

F s 

Case C (3. 51+) 



T«ble 3-2; N « r f i e l d ica le def in i t ion* . 

Conserved 
Quantit ies 

Length 
Scale 

Voluoe Flux 
S u l e 

S. 

Buoyancy 
S o l e Vi loc l ty S o l e 

Frequency Dtscnarge 
S o l e Froude 

1 NuBber 

Case A: 
Surface Source 

Kith 
HOBC^eneoua 
Aabient 

C>K B: M 
Interface' Source 

»ltB 
StepvlM S t n t l - T ' f 

f l ca t lon ° " 

Caw C: M 
t i u l l l b r l i a ° 
Source vltft 
Unear S t r a t i - T • * 

r i ca t loa ° 

- t F 

1 
I 

' - . • ^ F ' 
1 o ' a 

,5 

• « „ f . 

«„• 3 
«„' 

t H ^ F ^ 
o a 

1 F 

z 

k k " ^ C^)' 

i 1 It 
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Thus the problem is defined by three parameters, F^, r^ and u^, 

for all stratification cases. 

The governing equation set. Equations (3-29) to (3-32) can be 

written in nondLTiensional form as: 

?_(fiG) + ^ ( h O ) =0^ (3.55) 
3x ay 

a ,»2 »̂  a /- « s\ - - (s+1) a (t,^-^ f;s+2v 
^ u^ h) + 2- (u V h) - w u - -^j^^ — (g h ) 
a i ay « ^ ^ ax (3_56) 

a_ ( - £) , a_ (0^ h) = - 1 | ^ ' ^ (g'^-^ fi^*^) (3.57) 
ax ay ay 

i - (g' h u) + — (g- h 0) = 0 (Case A) (3.58) 
ax ay 

g' = const (case B) (3.59) 

N = const (case C) * (3-6o) 

The nondimensionallzed initial conditions are given in 

Table 3-3-

The * notation will be retained hereafter only in the figures, 

and in the text, where confusion would otherwise result. 

3.5 Intermediate Field Region 

3.5.1 Transcritical Flow Region 

This comprises the inviscld, convectively controlled region 

into which the fluid passes after the near field. The inner 



Table 3-3: Near f i e l d nondimensionallzed i n i t i a l condit ions . 

Case A 

V2rT r h 
o o 2 " r F o s 

a U. 

Case B 

V2n r h 2 n ? F 3 
o s 

2 
F 3 

a U 

Case C not 
appl icable 

V2n r h 2TT r F o s 

1 

a U 
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boundary of the transcritical region is determined by conditions at 

the end of the near field, and the exact transition conditions, which 

will be discussed in Section 3-6. 

The transcritical region, as indicated in Figure 3-6, comprises 

the density current within and somewhat downstream of the head region. 

It is characterized by a highly variable, two-dimensional velocity 

field, q(x,y), with an intemal jump occurring between its inner 

boundary and the downstream stagnation point, S (Figure 3-6). The 

outer boundary is as shown in Figure 3-6, which is controlled by the 

balancing of drag and buoyant forces, as discussed in Section 3.3-

The transcritical flow region does not have a downstream 

boundary as such, in that it becomes supercritical, and may then be 

said to pass into the purely supercritical region, which will be dis­

cussed in Section 3.5.2. No downstream boundary conditions need to 

be defined as the flow conditions will be self-determined by the flow, 

it being described by a hyperbolic equation system (Section 2.2). 

The governing equations are those given in Equations (3-33), 

(3.3'*), (3-35) and (3-36), although the buoyancy conservation 

Equations (3-35) and (3-36) are not required in this discussion (no 

entrainment) and will not be addressed hereafter. 

3.5.1.1 Nondimensionalization of the Transcritical Flow Region 

The flow parameters involved in this description are: stratifi­

cation parameters, s and a, ambient velocity, u^, drag coefficient, 

C , and total flow, Q. These can be combined into two length scales 
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and a parameter, as: A vert ical length scale, the "stagiuitlon 

height", h , given by (Section 3.3) 

. ( s+2 D 2 "ls+1 , . , ,v 
\ = I 171 25 "a ; (3.61) 

A "volume flux parameter", which has the form 

v = S 
2 ' 

2"u h 
a s 

(3.62) 

and a horizontal length scale, the "intermediate field length scale" 

•tj, given by 

\ ' \ V'. (3.63) 

h^, V and f- are summarized in general and for the par t icular 

s t ra t i f ica t ion configurations, in Table 3-U. Thus, the variables 

can be nondimensionallzed as 

^'y-T^' 1? = ^ ; - u , - v , - q = / i i i ^ (3.6U) 
^ • Voh "^^ 

— (H u) + ^ (R v) = 0 (3.65) 

yielding: 

ax 8y 

— ( u T i ) + — ^u V n; = - h — ( h - - ) (•> t ^ \ 
ax ay 3x VJ.w^; 
^ (u^) * ^ (a V K) = - H ^ (h" i ) 

a 2 - ( u v E ) + 5 - ( v ^ h ) = . K i . ( R S + l j 
dx Oy ay 

^ + fi=*^ 
2 

2 - * ^ " ^ = ^ . (3.67) 

'̂ s = ^ (3.68) 



Table 3.U: Intermediate field parameter and length scales. 

Veir t ica l Length 
Sca le 

h s 

Volume Flux 

V 

H o r i z o n t a l Length 

I = V h 
I s 

GenerELl 

s , a 

rs+2 S 2V 
l s + 1 2CT -^a J 

Q 

2TTU h 
a s 

ft 

2TTu h a s 

1 
3+1 

S tep-wise 
S t r a t i f i c a t i o n 

s = 0 

a = g ' 

2 
u 

D g ' 

Q g ' ^ 

2^S^ ^^ 

Q g" 
2TTCJJ U^3 

Linear 
S t r a t i f i c a t i o n 

s = 1 

1/2 

(i^l) 

Q N^ 

u a 
N 

3 3 

Q N 

2 " ( | S ) 
L/2 2 

P 
VO 

1 
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J(s+l)h (3.69) 

^ fh = + i ^ ) = 1 (3.70) 
C C <i 

= J(s^l)\ (3.71) 

Again, the ~ will be dropped apart from in the figures, and 

where both near and intermediate field nondimensionallzed variables 

occur together. 

Thus the transcritical flow region can be seen to be governed 

by two parameters only, i.£., the volume flux parameter, V , and the 

drag coefficient, C . 

3.5.2 Supercritical Flow Region 

The upstream boundary of this region comprises nonentralning, 

supercritical flow, entering from the transcritical flow region. The 

outer boundary is identical with that for the latter. Within this 

region, frictional effects become increasingly important as the flow 

passes downstream. Again, no downstream boundary is required, as for 

the transcritical flow region. 

The governing equations are Equations (3.37), (3.38), (3.39) 

and (3-UO), although again the buoyancy conservation Equations 

(3-39) and (3.U0) are not required. 
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3.5.2.1 Nondimensionalization of Supercritical Flow Region 

The equations governing the supercritical flow region are non­

dimensionallzed using the same scales as for the transcritical flow 

region. Thus, Equations (3.37) and (3-38) become 

^ (RS) + ^ (K v) = 0 (3.72) 

35 ay 

^ (û  K) + ̂  (u V K)- -E ̂  fi^*^ + \v' {\ - S)lu^ - n| 
3x ay Sx (3.73a) 

a_ (~ ̂  K) + 5- (v̂  E) = h ̂  K"-'̂  + X.V (-v)! -vl (3.73b) 
ax ay ajr 

where "v. is taken as (u ,0), where u is given by 
a a a 

~ =-2-il±U (3.7U) 
"a Cp (s+2) 

Thus the frictional regime requires the "additional" parameter 

X V as a measure of the importance of the frictional effect, 
i 

3.6 Transition Conditions for the Boundary Between the Near and 

Intermediate Fields 

This section considers the boundary conditions existing be­

tween the near and intermediate fields of the density current, as a 

function of their relative field strengths. The field strength is 

estimated by its respective length scale, which, for the near field 

(Section 3.3) is given from Table 3-2, as 

'̂ •t F Case A 
i o s 

I ={ I T ^^^ Case B 
n I o E 

I F 
o s 

^/2 Case C (3.75) 

For the intermediate field (Section 3-5), Table 3-'+ gives the length 
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scale as 

I 

which can 

A 

\ 

Q 
" 2 " u h ' a s 

a l so be written 

f l ô 
1 2 " C D U,.3 

J 1 ^0* 
- y - D û 3 

I " 1/2 

L (S) 

as: 

QN 
2 u a 

(3.76) 

Case A 

Case B 

Case C (3 .77 ) 

This boundary i s p a r t i c u l a r i l y iinportant as i t def ines the 

inflow i n t o , and hence charac ter i s t i c s of, the intermediate f i e l d . 

An analys i s i s required, that re la tes the t rans i t ion flow propert ies 

to the re la t ive f i e l d strength, '^.,/\ • 

As shown in Equation (3 -56 ) , the flow i s c l ear ly rotat ional 

due to the entrainment of ambient flow momentum. A prec i se d i scus ­

sion of the trans i t ion conditions to the intermediate f i e l d , including 

an evaluation of the degree of r o t a t l o n a l l t y , must necessar i ly rely 

on the complete resu l t s of the near f i e l d numerical model that w i l l 

be given in Chapter U. 

At t h i s point , however, i t i s poss ib le to present an approxi­

mate and s impl i f ied treatment of the near- f i e ld and i t s t rans i t i on 

condition. This treatment i s based on the notion that - at l e a s t for 

weak cross-f lows - the neur f i e l d flow f i e l d i s s t i l l predominately 



-123-

radial, as it would be exactly for the stagnant case. (Note that 

in fact, one might expect the cross-flow to perturb the exactly 

radial flow pattern by shifting successive circles of constant 

flow properties in the downstream direction; this analogy to the true 

cross-flow discharge condition is discussed in Chapter U). 

Assuming then, in the first place, that the transition between 

the near-field and intermediate field (modeled as irrotational) 

occurs in the form of a circular geometry, the following additional 

assuD^tions are made: 

i) Assume the boundary shape is circular, although the circle 

center will be downstream of the source, 

ii) Assume that uniform conditions exist along this circle, 

i.e., that they form equi-Froude number, equi-height, 

equi-velocity, equi-buoyancy, etc. curves. Also the flow 

must be normal to the curve, ̂ or consistency with these 

underlying assumptions. 

ill) The flow is assumed irrotational, î .̂ . , any residual 

rotatlonallty still present in the near field solution 

will be neglected. This assuires that no entrainment will 

be present along the interface. The assumptions contained 

in (i), (ii) and (iii) will be justified in Chapter U. 

iv) Along their interface, both the near and intermediate 

field flows will be assumed to have equal energies. This 

"Equi-Energy Transition" can be represented by equating 
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the Bernoulli equation in dimensional units for the near and in te r ­

mediate field flow, as 

2 J, 
^ ^ h!*^ = i ^ - ^ u ^ a t t ransi t ion. (3-78) 
2(J,j, ^ ( s + 1 ) 20.J, a 

I I I I 
Near Intermediate 
Field Field 

where the subscripted 'T' emphasizes the values of these quantities 

at the transition line, and the Bernoulli constant for the inter-
Q 

mediate field, y*^} - ^ u ̂  is evaluated at the stagnation point, 
(s+1) 20^ a 

S (q = 0, h = h , Equation 3.U6). It should be emphasized that this 

equation is valid only along the irrotational, radial boundary 

separating the two flows. The term ̂ — may be written, using the 

T Q.j,2 
radial continuity equation Q = 2nrhq, as j ^ ^ (2"r )^\j^ ' ^ 

local Froude number, F. , is defined as 

Ft '^ (3.79) 

( 2 " rh)V(s+l)oh^*-'-

which allows Equation (3-78) to be written as 

I f 2 1 (s+2) S "a _ (s+2) D̂ "a^ 

2 . T T I ^ - ( 3 , , ) 2 2 0 ^ s + 1 ( , , , ) 2 ^ ^ ;;^s+i 

(3.80) 

where, as previously, * denotes near f ield, non-dlmensionalization. 

The non-dlmensionalized ambient velocity i s given In Table 3-2. 

Using Equations (3-75) and (3-77) gives 
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l 1/3 
f 1 NN 

D I 

u = a \ 2 T T C 

s %)V3 
D 7273^^1 

Case A 

Case B 

1 / ? .f- V 1 /2 
l ^ ^ ^ 1 _ § N^ ' CaseC (3.8l) ( ( l ^ ' 1 s HN 

where S denotes the mixing due to the entrainment, such that Q -

Substitution of Equation (3.8I) into Equation (3.80) and 

rearranging yields the relat ions 

(î  
1/2 

^ ( i 7^ W^TW' 
1/2 

^ = <- ^F^^(iF,^+l) 
3/2 

Case A 

Case B 

J^(%\^'^ 1 3 L_ 

'T 'S "^'^1 1) 
Case C 

(3.82) 

This equation describes the conditions along the transition. The 

quantities o^, h,j,,S and F^ ̂  are by virtue of the near-field 

solution all unique functions of T^, the radius of the transition 

circle, and thus Equation (3-82) effectively relates the relative 

file:///2TTC
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field strength, 'j/^\, to the transition radius. The functions, 

. . A A A A A 

O ( r ) , h ( r ) , S(r) and F. (r) require numerical evaluation, 

(the resul ts being presented in Section U), which allows evaluation 

of t / I = f(r ) . Thus, for field strength ratios appropriate to a 

particular problem, the inverse relation r = f\T-j . again given in 

Chapter U can be used to estimate f , which in turn allows definition 

of the flow conditions between the near and far f ields. 

The exact location of the t ransi t ion "c i rc le" and, in fact, 

the relationship of this approximate treatment to the more general 

near-field in a cross-flow requires the results of the near field 

model that i s given in the following chapter. 



CHAPTER U 

THE HEAR FIELD SOLUTION 

This chapter deals with the numerical solution of the near 

field region for both a stagnant and moving ambient. Section U.l 

considers the adaptation of the finite difference scheme chosen (the 

MacCormack scheme as discussed in Section 2.6) to the problem under 

consideration. Section U.2 deals with the case of a stagnant ambient 

(u - 0 0) while the results for a moving ambient are presented in 
^ a 

Section U. 3-

Section U.U discusses a simplified model for the moving 

ambient, which is of use in approximating the near-intermediate 

field boundary. 

li.l Numerical Computations - MacCormack's Method 

The near field consists of supercritical, entraining, convec­

tive flow, the nondimensionallzed equations having been given by 

Equations (3.29) to (3.32). However, throughout this chapter, only 

the Case A stratification type will be considered, so that Equation 

(3.32) will not be required. 

The flow is supercritical, indicating that the equation system 

is of hyperbolic type; i.e. , the flow properties at any point are only 

affected by changes upstream and can only affect points downstream. 

Hyperbolic equation systems, their properties and general solution 

methods have been discussed in Section 2.6. The solution method 

-127-
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decided on i s an e x p l i c i t stepping technique rather than the Method 

of Character i s t i c s , due to ease of programraing. As discussed in 

Sect ion 2 . 6 , care must be Uken in e s tab l i sh ing an appropriate step 

s i ze for an e x p l i c i t technique, so as not to introduce i n s t a b i U t l e s . 

These i n s t a b i l i t i e s are due to attempting t o evaluate the so lut ion 

at a point for which a l l the information i s not ava i lab le . That t h i s 

i s not the case here i s checked by the approach discussed in Sect ion 

2 . 6 , summarized by Equation ( 2 . 8 3 ) . 

The f i n i t e difference method chosen was the second order 

method of MacCormack, which i s a two-step Lax-Wendroff-type method 

(Roache, 1976, Section 2 .6 ) . I f the nondimensional contro l l ing 

Equations (3-29) to (3-32) are written in vector form as 

| ^ + | 5 = H (U.l) 
ax ay 

hu 

u h + - g'h 

where F = < > ; ' ^ = < 2 1 2 > ; " = 
uvh ( ^ v h + - g ' h 

g'hu \ / g'hv 

then the basic MacCormack scheme can be defined by 

„1+1 J. Ax (..i ^i\ . . „1 
^J ^ j - g ( ^ ; + i - ; ) * ^ » ; c*-^) 

(U.2b) 
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where the superscripts and subscripts refer to a spatial mesh of 

points (x., yj) with spacing Ax and Ay and the vector notation for 

F, G and H being dropped hereafter for convenience. Equations 

(U.2a) and (U.2b) fonn a predictor-corrector set, with JB, GB and 

HB denoting provisional values of F, G and H, respectively, with 

significance only attached to the results from the corrector step. 

The difference scheme. Equation (U.2) consists of a forward 

differencing of G in the predictor and backward differencing in the 

corrector, but MacCoimck (1971) pointed out that the forward and 

backward sequence could easily be reversed, or even used alternately 

for each predictor-corrector couplet, in an attempt to produce 

unbiased results. The effect of the various permutations was in­

vestigated by Kutler, Wanning and Lomax (1973), who sujmarized the 

various alternatives as 

(U.3a) 

i+l 

FB^^ 

, (e . D G B J : ^ + Ax HB^*^ ('*-3b) 

where c = 0 reproduces Equations (U.2), and e = 1, its alternative. 

This system introduces second order dissipative effects as 

shown in Equation (2.90). 
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(U.5) 

where these velocities are estimated at the cel l centers. Thus the 

scheme involves a flux balance across the faces of "auxiliary ce l l s " , 

which, as shown in Figure U-1, are formed by Joining cel l centers 

in the contravariant plane. The local relation within each cel l is 

mesh points-

auxiliary cells 

primary cells 

. ^ .. 

-L. - - u A 

H <> 
LB 

AY 
2_J. 

J 

physical (Cartesian) plane computational (Controva-
riant) plane 

Figure U-1. Relation between Cartesian and Contravariant 
planes. 

assumed given by a bilinear mapping 
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Ij.l.l Finite Volume Formulation 

This formulation (mentioned in Section 2.6) is generally used 

when complicated boundary shapes would nomally require use of a 

boundary-conforming coordinate system or special interpolation 

fomulae to be adopted in their vicinity. It has the additional 

advantage of allowing efficient clustering of mesh points. These 

advantages proved particularly useful for the transonic region of 

the intermediate field, as will be discussed in Chapter 5. The 

finite volume fonnulation is used in the near field for consistency 

with the intennediate field scheme. This transfon^ation is based 

upon a purely local transfomation of a mesh cell in a Cartesian 

(K,y) grid into a ceU in a transformed or contravariant (X,Y) grid 

i.e. , no infonnation is required regarding the global nature of the 

transfonnation. If the Jacobian matrix, J, for an arbitrary, non-

singular, and not necessarily orthogonal, transformation from 

Cartesian to contravariant coordinates, is defined as 

where D is the detemdnant of J and x̂ ,̂ x^, y^, Yy are known as the 

metric terms of the transformation. If the contravariant velocity 

components are defined as U, V, then they can be related to their 

Cartesian counterparts u.v as 
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•*! "i (̂  + V)(t * h^^ 
1=1 

u 
y = ''1 h (i* v>(t * v^ '̂*-̂^ 

1=1 

where x, , y. are the coordinates of the c e l l comers in Cartesian 
i 1 

space, and X., Y, those in contravariant space, which can be taken, 

with no l o s s of general i ty as (- 1 /2 , - l / 2 ) , ( l / 2 , - l / 2 ) , (- l / 2 , 

1 / 2 ) , and ( l / 2 , 1/2) respec t ive ly , g iving AX = AV = 1. Equation 

(U.6) can be d i f ferent ia ted to give formulae such as 

on evaluation at the c e l l center ( 0 , 0 ) , with s imilar express ions for 

y and y , where the averaging and differencing express ions u^ and 

&„, respect ive ly , are defined as 

^*X^i,J = 2 (^i + 1 / 2 , J * *•! - 1 /2 , j ^ 

V i , J = ( ^ 1 + 1 / 2 , J - ^ i - 1 / 2 , j ) ('••8) 

where 1, J are mesh indices in the X, Y direction. 

Thus, the relations between Cartesian and contravariant 

coordinates can be summarized by Equation (U. 5) together with the 

relation 
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Yy - ŷ ^ 

-Xy x^ I 

a/ax 

= (J-^)^ (U.9) 

\ a/aY / 

The nondimensionallzed near f ie ld Equations (U.l) can then 

be expressed in contravariant form as 

I X ^ ^ I Y ° = « 
(U. io ) 

•vrtiere 

F = 

'hDU 

1 „ „ . „ 2 .' 
hDUu + -g y^g 'h 

1 .v,2; 
hDUv + ^ x^ g ' h 

g'hDU 

'hDV /w D 
e 

hDVu - I yjjg'h^l IVa^' 

IhDVv - I x^g'h ' 

.g'hDV 

U.1.2 Solution Details 

The solution procedure, using the MacCormack method (Equation 

U.3), for the present physical problem, defined by Equation (U.IO), 

can be summarized in the following points. 

1) FB i s calculated, using the 'predictor ' Equation (U.3a), 

from values of F, G and H, a t points already solved for, or known 

from boundary conditions. 
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2) 'Fredicted' values of the dependent variables, u, v, h, w^ 

and g', are calculated from FB, using the relations (obtained from 

Equation U.IO). 

^-m ^'•''' 
x̂  FB(3) - yy • FB(2) FB(1)^ . 

0.5 g h^+( 2 2 ) ' ^ * 7 2 2 : = °' 
Xy + y^ (x^ + yy ) 

where the appropriate root of Equation (U.lU) determines the height . 

The entrainment r e l a t i o n . 

w = w (u, V, h, g ' , u ) (U.15) 
e e a 

must be defined, together with an appropriate ambient velocity, u . 

GB and HB are calculated from the 'predicted' dependent 

variable values. 

3) Steps 1 and 2 are repeated uslr\g the 'corrector' Equation (U. 3b), 

yielding the final values ut the node in question. 

U. 1.3 Initial and Boundary Conditions 

The initial conditions of the problem (required at the inner 
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boundary only, as a marching scheme is being used) can be obtained 

from the parameters F^, r^ and u^. Values of F^ and r^ were selected 

as F = 100 and r =0.5, i.e., a high Froude number value and small 

s o 

radius to simulate a radial point source (as defined by Jirka et al., 

1981) and make the downstream results independent of the upstream 

boundary. Parameter values of u^ were chosen as either zero (stagnant 

ambient) or, as finite (S^ > O) using Equation (3.8I), to relate them 

to the ratio of relative intermediate to near field length scales. 

In principle, the problem should be solved in the entire x-y 

plane (i.e. , within a 360° sector around the source). Because the 

solutions must be symmetric about the x-axis, however, the solution 

only in the (x, +y) half-plane need be determined in general. In the 

case of a stagnant ambient, the solution is radially symmetric, and 

only a sector of the half-plane is used., In both cases the symmetry 

boundaries introduced by computational subdivision are no-flux boun­

daries. 

Inspection of Equation (U.3), which defines the MacCormack 

solution method, shows that only values of the G fluxes are required 

in order to define the boundary conditions on these radial lines. 

These G fluxes may be thought of as a combination of actual flux terms, 
1 2 

hDV, hDVg', hDVu and hDVv together with pressure terms g ̂ x ̂ '^ 

and i x^ g'h^ which can in turn be split into an actual pressure 

force, p = - g'h^, together with the metric terms ŷ^ and x̂^̂. A U 



-136-

of these must be evaluated separately outside the boundary and then 

recomblned giving the required G fluxes. 

Consider first the flux terms hDV, hDVg', hDVu and hDVv. 

These comprise the actual contravariant V flux, and the buoyancy and 

u and V physical velocities advected by this flux. If J • 2 is 

used to denote a boundary line, then hDV at J = 1 and 2 must have 

opposite signs and identical magnitudes, so that they exactly cancel 

at the actual boundary. Thus the boundary conditions become 

hDv|^ = - hDVlg 

hDVg'l^ - - hDVg'l^ 

hDVu| = - hDVu] 

hDVvlĵ  = - hDVvlg ('•.16) 

Consider estimation of the actual pressure term p outside the 

boundary. Rearrangement of the horizontal and veii;ical momentum 

equations in contravariant form, as given in Equation (U.IO) yield 

respectively, 

- 5z (v) * SY ( V ) = 5x (̂ "") * 57 (̂''") - ̂  "a» 
- Rl (U.17) 

Ix (V) • 57 (v) ' 5x (̂ "̂ ) * h (̂ ^̂ ) 
- RE • (U.18) 
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which on expanding and rearranging yield 

= -i(xy R l + y , R2) ('*-i9) Pv 

where D is the determinant of the Jacobian as defined earlier, 

which can be evaluated using differencing techniques and a knowledge 

that hDV at the boundary, is zero. The gradient of p in the Y 

direction, yields the required p^ value by extrapolation. 

The metric terms ŷ^ and x^ are evaluated, also by extrapolation. 

as 

^X^l ~ ̂ X,b • ̂ X,2 

^ - 2X. - X. C^-^O) 

where y , the boundary value, is evaluated siinply as = yĵ .̂î 2 " 

y^^2 ̂ s opposed to ŷ ^̂ ^ = ̂ 1+1,2 ' ̂ 1,2 *• ̂ 1+1,3 ' ̂ i,3' ^ ° ^ 

similarly for x^ -jj' 

Thus generation of all the G fluxes required for the boundary 

conditions have been discussed. No downstream boundary condition is 

required as this will be self-determined by the marching technique. 

U.2 Results for Stagnant Ambient (u^ = O.O) 

The stagnant ambient solution was investigated using a radial 

grid with r =0.5, and F = 100.0. Because of the radial symmetry, 

only a radial sector of 5° was used, subdivided into 10 subsectors of 

1/2° each. Solutions were obtained for two types of buoyant 
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entrainment functions, the model of Jirka (I982), Equation (2.79), 

and the exponential function of Stolzenbach and Harleman (1971), 

Equation (2.78). 

The results obtained for both entrainment functions (Figures 

U. 2 and U. 3, respectively) show practically identical behavior. In 

both cases, a rapid decrease in velocity, buoyancy and Froude number, 

together with increase in height, occurs in the initially highly en­

training region in which the behavior is largely that of a non-buoyant 

jet. Thereafter the entrainment is heavily dainped, but still has a 

significant effect due to the increasing surface area. After a Froude 

number of about 1.25 is obtained, the rate of change becomes smaller 

and smaller as the Froude number decreases slowly to 1.0. In this 

region, a Jump could occur very easily, depending on the downstream 

conditions. (These are comparable with "undular jumps" in open 

channel flow, as discussed in Section 2.3)-

This solution can be compared with a somewhat similar stagnant 

discharge investigation by Jirka et al. (I98I). The latter treatment 

assumed polynomial velocity and buoyancy profiles, compared with the 

'top hat' or constant value profile assumed herein; also one 

dimensional integral ordinary differential equations and the exponen­

tial entrainment function Equation (2.78) was used. The comparison 

with the results of Jirka et al. (I98I) is best made via the bulk 

property, Q, which represents the overall flow rate, as this should 

be relatively insensitive to the particular profiles adopted. It 
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can be seen in Figures U-2 and U-3 that good agreement is obtained 

until a Q value of ~ 8 is reached. At this point, Jirka et al's 

solution becomes constant, as the flow becomes critical at this 

point and ceases to entrain. It should be noted that this occurs 

in the region having a Froude number between 1.0 and 1.25 in which 

such transitions have been postulated as being easily triggered by 

any small disturbances (e.£. , downstream effects) (see Section 2.3). 

Jirka et al.'s model did begin to experience instabilities at this 

point, which, together with the slightly different treatment of the 

entrainment, would be quite sufficient to influence the transition 

point. Even the two different entrainment functions used in the 

MacCormack scheme were quite sufficient to alter the transition 

position, (r^ = 76 in Figure U-2 and f̂  = 130 in Figure U-3) with 

the rest of the treatment being exactly similar. Due to the 

essential similarity between the solutions for the different entrain­

ment relations, further results are limited to the entrainment model 

of Jirka (I982), Equation (2.79)-

U.3 Results for Moving Ambient (u^ > O) 

U.3.1 Computational Grid 

Care must be taken in the selection of the grid for this case. 

The stagnant solution (Section U.2) has shown that the supercriti­

cality of the discharge will decrease with increasing distance from 

the source until the critical point is reached, (Figures U-2 and U-3) 
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or u Jump occurs. The presence of an ambient flow introduces an 

asymmetry at>ound the source, such that the critical point Is reached 

closer to the source on the upstream and further away on the down­

stream side (this being verified by the results presented in this 

section). The MacCormack scheme is only applicable tx3 the super­

critical region (governed by hyperbolic equations), the solution 

evolving as the scheme marches away from the source. Once a velocity 

is encountered which is critical or less (in the direction of marching), 

the solution can no longer continue. Thus it is advantageous to 

arrange the step-size such that the critical point is reached at 

approximately the same time at all points of the grid, in order to 

obtain the maxiimjm information possible regarding the s\q>ercritlcal 

regime. In addition, it would be advantageous to have the grid 

aligned with the (initially unkiK>wn) streamline direction in order 

to have the velocity and the stepping direction aligned. Ideally, 

such calculations should, therefore, be carried out iteratively, 

that is, adjusting the computational grid after a model run. 

The grid chosen was orthogonal (in order to decrease the 

possibility of instabilities occurring). The flow pattern produced 

by a source and sink of equal strength, u (=1), and separated by a 

distance, a (=1), was calciaated, with the grid taken as the inter­

section of potential lines, ^, and streamlines, •. The potential 

lines are given by the circles 

(x - cotonh ^) + y = (cosech ^ ) ^ (U. 21) 
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and the streamlines by circles 

x^ + (y + cotan ^f = (cosech ^f ^+.22) 

The maximum value of 4 was chosen to satisfy the previously 

described requirements of the criticality positions. 

The grid used for all calculations is shown in Figure U-U. 

U.3.2 Solution Properties 

The results from three runs, having u^ values of 0.157, 0.25 

and 0.50 (together with initial conditions of r^ = 0.5 and F^ = 100.0 

as in the stagnant case) will be discussed in the following. 

The entrainment relation used was that of Jirka (I982), 

Equation (2.79), this being Richardson number dependent. Section 2.U, 

Equation (2.76) gives the Richardson number as being dependent on 

the velocity of the current. This involves the assujnption that the 

velocity of the density current, being much larger than the ambient, 

is responsible for the entrainment. It could be argued that a 

Richardson number dependent on the velocity difference between the 

density current and ambient is more representative, notably if the 

density current velocity is much closer to that of the ambient. 

Some runs made using this alternative relation were compared with 

those made using a Richardson number dependent on the density 

current velocity alone. The solution was found to exhibit no great 

sensitivity to the choice of Richardson number definition, so that 

hereafter one dependent on density current velocity alone will be 

adopted. 
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Figure U-U The orthogonal grid used for the numerical computations of 

(\ > 0)-
a source in an ambient flow 
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It should be noted at this point that, as discussed previously, 

the marching solution stops when a local Froude number, based on a 

velocity, q^, in the marching direction becomes close to one. This 

frequently occurs in the (-x, y) quadrant some distance from the 

x-axis, due to the velocity there pointing in the +x direction, 

while the grid is algined more upstream in this region. Thus, 

although the actual Froude number, q/c is greater than one, the 

component along the marching direction, q^/c, has a value of one. 

Figure U-5 (a to c) shows equi-Froude number contours for 

values 1.5, 2.0 and 2.5, and equi-buoyancy contours for values 0.3, 

0.5 and 1.0. It can be seen that both F.roude numbers and buoyancy 

contours assume almost circular shapes, the former being displaced 

downstream and the latter upstream. The Froude numbers decrease 

much more quickly upstream of the source than downstream. This 

could be expected as the upstream flow moves against the ambient, 

entraining negative momentum flux, which waild slow it down more 

quickly than the positive momentum flux entrained by the downstream 

flow. 

Also, the buoyancy decreases more quickly downstream than 

upstream. The buoyancy is dependent on the amount of entrainment 

of ambient fluid of greater density. The entrainment, however, 

is inversely proportional to the Richardson number (Equation 2.79)j 

which is itself inversely proportional to the density current 

velocity upstream has just been discussed, this supports the 
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buoyancy results obtained. These effects grow more pronounced with 

increasing ambient velocity as seen by the variations in Figure U-5 

a through c. This effect can also be seen in Figure U-6 which, for 

the case of u = 0.157, shows the variations in the properties of 
a 

the density current up- and downstream along the +x and -x axes. 

Figure U-7 a to c shows equi-height contours of value O.3O, 

0.25, 0.20, 0.15 and 0.10, and equi-velocity contours 0.25, 0.5 and 

1.0 again for the three ambient velocities considered. Also, Figure 

U-6 summarizes the variations along the x-axis. The velocity shows 

distorted circles similar to the Froude numbers discussed previously. 

The height, however, distorts from an initially circular profile 

(h = 0.1), to non-circular profiles, this being seen in Figure U-6 

from the height values upstream slightly decreasing after an initial 

increase, whereas this decrease does not occur downstream. 

U.U A Simplified Model for Moving Ambient (u^ > O) 

The results presented in Section U.2 indicate that some of 

the density current properties, such as Froude number, velocity and 

buoyancy, vary such that their contours are approximately circular 

(albeit with displaced centers). This circular behavior was also 

obtained for the stagnant case (Section U.2), although in this case 

the circles were centered on the origin. 

This similarity suggests a simpler (though not accurate) 

model, obtained by simply shifting downstream, in a Galilean 
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c) u^ = 0.500. 

Figure U-7 Equi-velocity and equi-height contours for a radial source 

discharging into an ambient flow. Near-field nondimensional­

ization is used. 
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transformation, the results for the stagnant case. The Galilean 

transformation can be written as 

Xj = "« t (U.23) 

where x is the distance downstream that the ambient velocity, u , 

shifts a particle after a travel time, t. x can also be written 

X, = u^ £ T^ (4.2U) 
d a o 

where T is a near field time scale, taken as o ' 

To'f C^-^s) 

o 

(case A only being under consideration). Using Equation (3.77) and 

the relations in Table 3-2 give 

'^.^^>{jh-f' (U.26) 
I D 

where £ (the dimensionless travel time) is a function of r, obtained 

by a numerical integration ^t = ] — j during the solution of the 

u 
stagnant case (included in Figures U-2 and U-3). 

The variation of buoyancy and Froude numbers along the 

centerline (up- and down-stream of the source) for the shifted 

solution applied to the case of u^ = 0.157, is given in Figure U-8. 

A close agreement can be seen between the Froude number values in 

this simplified shifted model and the solutions of the fuU equations 

(Figure U-6). The buoyancy values are not as close, as might be 



1.0 

0,8 

0,6 

O.i 

0.2 

0.0 

-

-

u„=0.157 

Fj j = 100 <! 

F^ = 0,50 1 

1 
O 

/ 
/ 

0 

/ 

1 

o 

\ 
\ 
0 

\ 

o / \ 

/iy 
1 1 

\ 
o 

\ 

1 

o 

, 0 _ 

1 

F 
1̂ 

—0 r 

o ______ 

1 

• o 

1 

" •— 0 -

1 

— 0 

« 

-

10,0 

8.0 

- 6 , 0 

^,0 

2.0 

-20 -10 0 10 
Source 

20 30 40 50 60 , 70 80 
0.0 

Figure U-8 Centerline properties from the simplified model of a radial discharge into a moving 

ambient, u = 0.157. 



-152-

expected from the discussion in Section U.3, regarding the upstream 

and downstream entrairmient. 

A comiMirlson of equi-Froude number and equi-buoyancy con­

tours for both models is given in Figure U-9. The apparent agree­

ment between the two solutions decreases with increasing distance 

from the source. However, in an averaged sense, the correspon­

dence is still close. As an example, this can be seen by averaging 

the buoyancy and Froude number values for the accurage solution 

along the shifted circle F = 1.5 and g' = 0.30. This yields average 

values of F = 1.55 and g^^ = 0. 29. 

Thus, the shifted circle solution appears acceptable as an 

averaged representation of the inner solution. This simpler approach 

will be used in Chapter 5 to yield an inner boundary for the inter­

mediate field solution. 

U.U.I Rotatlonallty of the Flow 

In Section 3.U it has been shown that rotatlonallty will be 

Introduced into the density current flow by the entrainment of 

ambient fluid momentum. The degree of rotatlonallty can be estimated 

by evaluating the circulation ( 0 q • dr) around a closed contour, 

r, of the grid (Figure U-U), comprising a portion of the x-axis both 

up- and downstream of the source. Joined by (for convenience in 

evaluation of the computed results) a line • = constant (Equation 

U. 22), along the computational grid. T Is shown as an Insert in 

Figure U.IO. The circulation (mass flux along the contour) was 
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Figure U-9 A comparison of the buoyancy and Froude numbers from the simplified and accurate 

models for a radial discharge into a moving ambient, u = 0.157. 
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normalized by the total mass flux normal to the contour ( ̂  q • ndr, 

^ere S is a unit vector normal to r) in order to obtain an estimate 

of its relative significance. Figure U-10 shows the variation of this 

normalized circulation versus the downstream Xp value of the con­

tour intersection for the cases u^ = 0.157, 0.25 and 0.50. It can 

be seen that after a more rapid increase in the initial strong 

entrainment zone, the relative rotational effects increase rather 

slowly with increasing distance from the source. For example, a 

value of 18^ is obtained at a downstream distance of ? = 15-0 for 

G = 0.157, indicating that the irrotational assumption that is made 
a 
in the subsequent intermediate field solution appears acceptable to 

a first order. The relative rotationality is, of course, stronger 

for the higher crossflow cases. However, in the present modeling 

framework this limitation is not as severe as it appears, since 

the transition to the intemediate field occurs at shorter distances 

for these higher cross flow cases (this is'discussed in more detail 

in Section 5.5 ). 



CHAPTER 5 

THE INTERMEDIATE FIELD (TRANSCRITICAL FU)W REGIOH) SOLITTION 

The basic problem definition and choice of solution technique 

are dealt with in Section 5-1 and 5-2, respectively. The details of 

the numerical scheme are discussed in Section 5.3-

In Section 5.U, several aspects of the solution scheme, such 

as accuracy, stability and specification of boundary conditions, are 

examined in a simple numerical experiment, namely transcriUcal flow 

in a radially expanding channel. 

Section 5.5 discusses the actual application to the problem 

under consideration, namely the Intermediate field region for a 

buoyant source in an ambient crossflow. 

Section 5.6 demonstrates the iterative technique Involved in 

the selection of different grids until one Is found which has the 

correct outer boundary shape (determined by comparing the 'outer' and 

•iiuier' boundary height values). 

Section 5.7 shows fully grid-iterated results for various flow 

conditions, thus giving a basis for prediction of the boundary shape 

for various relative intermediate to near field strengths. 

5.1 Problem Definition 

The equat ions governing the intermediate f i e l d t r a n s c r i t i c a l 

region are given in non-dimensional form in Equations (3 .65) to ( 3 - 6 7 ) , 

together with the nonl inear po tent ia l Equation ( 2 . 3 5 ) , which can be 

-156-
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written in a nondimensional form as 

• 2 < 
(h - ̂ / ) 4 J - 2^/-^~ + (h - ,«-̂  ) ^ ^ (5.1) 

^gj.g ^ = f . The problem can either be described using the 

IV s 

mass and momentum conservation Equations (3.65) and (3.66), or, equiva-

lently, the energy and mass conservation Equations (3-67) and (3-65). 

The potential Equation (5.1) is applicable whichever equation set is 

used, provided the solutions are smooth. 

The boundary conditions have been described as: 

1) An inner boundary (of circular shape, using the simplified 

near field model. Section U. U). 

The exact location and flow conditions along this boundary 

. will be known, using the arguments presented in Section 3.6. 

2) An outer curved boundary, the "front", forming the hori­

zontal interface between the density current and the 

ambient flow. 

The height, h^, along this boundary, can be determined 

as a function of the boundary angle, 6, using Equation 

(3.'t5)> which can be written in nondimensional form as 

1 

^ = (sin 9)=*^ , , (5.2) 

However, the boundary shape, 6, is not known a priori, 

and must be obtained by iteration. Each iteration con­

sists of taking an initial boundary estimate (which will 
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be improved with each Iteration), and solving for the 

flow field within this boundary. Thus a value for the 

height along the boundary is obtained, which can be 

compared with hg(e) from Equation (5-2). Based on this 

comparison, an alternative boundary shape is assumed, 

its flow field solved for, and again the heights compared. 

When agreement is reached, the converged boundary will 

have been found. 

3) Symmetry conditions along the centerline of the flow. 

U) A downstream boundary condition. 

The flow will be supercritical on reaching this boun­

dary, and hence no boundary conditions need be defined 

along it. 

5.2 Choice of Solution Technique 

The equations and boundary conditions defining the flow field 

have been discussed in Section 5.1. The solution method chosen can 

be seen to require the ability to: 

1) Model nonlinear supercritical and subcritical flows. 

2) Model unknown possible shock positions. 

3) Obtain accurate solutirns along unknown, curved boun­

daries. 

Various methods of solution arc possible, as discussed in 

general In Section 2.6. They are: 

a) The hodograph method. 
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b) Numerical approaches, using finite difference or finite 

element schemes. 

Method (a), the hodograph method, as discussed in Section 2.6, 

applies the hodograph transformation to the nonlinear equation set 

in the physical plane, to obtain a linear equation set in the hodo­

graph plane. This method appears to offer many advantages, in 

particular as the linearity in the hodograph plane allows the use of 

superposition. However, difficulties arise when the Jacobian, J 

(Equation 2.93), of the transformation takes on zero or infinite 

values, resulting in multivalued solutions. In practice, this is 

a considerable obstacle, particularly as the case J = 0 occurs near 

the shock lines which form an important part of the problem under 

consideration. 

Another severe difficulty with this method would be accounting 

for the curved boundaries in the hodograph^plane. 

Method (b) comprises the many possible numerical approaches, 

including shock patching and shock capturing methods, and finite 

difference and finite element schemes, (Section 2.6). 

Within the domain of finite difference methods, the papers of 

Jameson (1971, 197U) and Caughey and Jameson (l977a, 1977b, 1979), 

develop (as discussed in Section 2.6) a method of shock capturing by 

adding an artificial viscosity to the equations describing the flow, 

which also takes care of accurate type-differencing of the equations. 

This results in a shock representation which conserves energy -
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descrlbed as "E-curves" in Section 2.2. In addition, they introduce 

a finite volume formulation, the use of which allows an accurate 

representation of such geometrical difficulties as the curved boun­

daries, without the difficulties Involved with a global transfor­

mation. 

Finite element methods would allow for flexibility in the 

shape of the domain, and also for irregularly shaped elements, allow­

ing variable detail. However, any significant deviation in the 

external boundary would result in errors due to possible greatly 

enlarged sub-elements. The creation of extra elements to alleviate 

this problem would require significant program changes. As in finite 

difference methods, an artificial viscosity concept developed by Hafez 

et al. (1978) has been used (Tatum, 1982 and Bredif, I983) which 

allows shock capturing and accounts for the appropriate equation type 

in super- and subcritical regions. The resulting shock is also 

energy conserving, as described above. 

Choice of Solution Method 

The hodograph method was determined unsuitable due to the dis­

advantages listed previously. Both finite element techniques and 

Caughey and Jameson's finite difference (finite volume) technique 

offered obvious possibilities, although both would have to be modi­

fied for the particular problem under consideration. In both 

methods, computational time and costs would likely be large. 

Due to the Immedlnte ovallability at the time this 
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investigation was begun (I980), the finite difference program of 

Caughey and Jameson, was the favoured alternative. This method is 

described in detail in the following, together with certain alter­

ations that pertain to the present hydraulic problem. 

5. 3 Numerical Scheme 

The equations used in this solution procedure are the conser­

vation of mass and energy Equations (3.65) and (3.67). The potential 

Equation (5.1), will be referred to in this section as an aid to 

understanding the flow properties. 

5.3.1 Upwindlng Considerations 

If a local Cartesian co-ordinate system (s,n) is introduced, 

such that the s-direction lies along the local flow direction, the 

the potential Equation (5.1) can be rewritten as 

(c^ . q2)^^^ + c^ ̂ ^^ = 0, ' (5.2) 

•vrtiere 

^ss = 4 (-'̂ xx ̂  2-^xy * ̂ '^yy) (5-3) 
q 

J =i(v^«$ - 2UV)!( +Û jl! ). (5.U) 
"nn 2 ^ '̂ xx ^xy '̂ yy 

q 

Taking the potential equation in the form of Equation (5.2) clarifies 

the decision on which parts of the equation should be upwinded in a 

supercritical regime to obtain an appropriate directional bias. Thus, 

terms in i and i should be approximated using upwinded and central 
'̂ ss nn 
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d l f f e r e n c e s , r e s p e c t i v e l y . The s t e n c i l used for each p a r t i s a s shown 

in Figure 5 . 1 . The upwind d i f fe rence formulae can be w r i t t e n a s 

^ ^ ^ i , J - ^ > ' l - l , J - > ^ l - 2 , J (3.5) 

Ax^ 

^ ^i .J - " ^ i - l J - > ' i , J - l * > ' l - l , J - l (5.6) 
xy Ax Ay 

1 .tlAl^tl^llIlAll (5 7) 
yy A y 2 

i f u, V a re p o s i t i v e . Thus these upwind formulae for >$ , ^ and 

4 can be though of as approximating the express ions ^ - A x ^ , 

i - (—r- i *—t- «! ) and (! - A y«! , r e s p e c t i v e l y . Thus, "̂ xy 2 '^xxy 2 '^xyy' '^yy ' '^yyy' *^ ^ ' 

the e f f ec t of using upwind d i f f e rences for the i terra i s t o i n t r o -
ss 

duce, due t o the t r u n c a t i o n e r i i a r s , a term of the form 

_2 
i A x ( u u + u w ) * Avfuvi. . . . 

yy yy 
(1 ^ ) ( A X ( U U + u w ) + Ay(uvu + v v )) ( 5 .8 ) 

2 \ XX XX yy yy'/ v.'."/ 

Because of the second order d i f fus ion te rms , t t i i s can be i n t e r p r e t e d 

as the add i t ion of an a r t i f i c i a l v i s c o s i t y term, which w i l l be r e f e r r e d 

t o l a t e r in t h i s s ec t ion . 

5 .3-2 F i n i t e Volume Scheme and Associated Lumping E r r o r 

The f i n i t e volume scheme has been d iscussed in Sec t ion U. l . 

Applying t h i s l o c a l t ransformat ion t o the mass conserva t ion Equat ions 

( 3 . 6 5 ) , y i e l d s 
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Figure 5-1 The rotated difference stencil. Showing the points contrib­

uting to the upwinded (ji! ) and central differenced U ) 

ss '̂ nn 

parts of the potential Equation (5.2) when applied to a 

supercritical region, (after Jameson, I978) . 
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IJJ (hDU) + | Y (hEv) = 0 (5.9) 

where D i s the determinant of the Jacobian of the transformation, 

given In Equation (U.U) ond X and Y are the contravariant coordinates 

(Section U . l ) . I t should be noted that t h i s treatment has the advan­

tage that the quant i t i e s h, D, U and V have only to be evaluated at 

the primary c e l l centers (point A in Figure U.-1) , l . .e. , only at one 

point for each mesh point . This has the advantage of reducing comput­

ing time, but the disadvantage of producing a lumping error due t o 

the f luxes being evaluated at the comer , rather than the face-center 

of the auxi l iary c e l l . This may tend to decouple the so lut ion at 

odd- and even-numbered points . 

A method of accounting for t h i s lumping error i s indicated by 

considering the s impli f ied case of constant height , which reduces the 

problem to the so lut ion of ^y * ^v " ^' °'"' ^" potent ia l form, 

'^Y'XX'' * "XX'YY'* = ° ' (5-10) 

where the u, 6 notation i s as defined in Section U.l . Expansion of 

Equation (5 .10) y i e l d s the re lat ion 

'*i , j = u (' ' i+l,J+1 * ^1+1,J-1 * '^ i - i . j+ i * * * i - i , j - i ) 

in which the decoupling i s apparent. Adding a term of the form 

- C A Y S„„»5 e f f e c t s a movement of the evaluation point from A to B as 

€ changes from 0 to 1/2. Accounting s imi lar ly for each face n e c e s s i ­

t a t e s adding a term "* ' jncvv^ ' ° Equation (5.10) (assuming AY« 1) . 
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The lumping error in the general case is treated analogously 

to that above. The coefficient of the 6̂ ^̂ ^ term is taken as the sura 

of the coefficients of the ^ and ^ ^ tenns, respectively. So that, 

(pDU)^-cD(g^-4)^XX=VxX ^ -̂""^ 
•*• c 

and 

(pDV)., «- pD(g^^ - - 2 ) / Y Y = •'̂ Y'̂  
f.\A = ^A.. (5.12) 

where ĝ ^ are the metric tenns (Section U.l), a lumping correction 

term can be defined as 

0 = (A + A )S (ii . (5-13) 

Thus the final version of Equation (5.9) can be written as 

Ĥ 5ĵ (hDU) + Ux5Y(hDV) - | f>^^ = 0. 

5.3.3 Addition of Artificial Viscosity 

As discussed in Section 5-2, the method chosen achieves 

stabiUty in the supercritical regions by explicitly adding an arti­

ficial viscosity in conservation for^, such that the mass conservation 

equation. Equation (5.9), can be written as 

|3f (hDU + p) + 5Y (W3V + Q) - 0. (5.15) 
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P and Q could also be interpreted as art i f ic ia l mass fluxes, P i s 

defined as 

P-UDIU!8J^0 (5.l6a) 

or, in f ini te difference form 

^ + 1 / 2 , J = ^ . J ^ f " " ° 

- f,^,_j i f U < 0 

where 

P ~ (U^8^ + UV6^)^ (5.16b) 
c 

l^.e. , while the expression for P i s defined using central differences, 

the term 6 P i s effectively upwinded. A similar treatment i s used for 

Q, which is defined as 

Q '=' - UDUIJ^P (5.17a) 

and 

Q = ^ (UV6j„ + v^6^)^ (5.17b) 
c 

In the above, u is a switching function of the form 

2 
W = max (0, 1 - ^) (5.18) 

q 

to ensure that a r t i f i c i a l viscosi t ies are only added if the Froude 

number, F = ^ i s greater than one. Two issues regarding the switching 
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function are explored in Section 5.U. 

how F should be represented (averaged) when used to 

determine the shock position. 

whether an alternative value, F^^^, having a value 

slightly different from unity, would aid stability if 

used as an alternative cut-off value to unity itself. 

It can be seen that the combined effects of 5^P and S^Q, 

give, in the supercritical region, 

6^P + 6^Q = ̂  (1 - •^)(AxU(U^ + V ^ ) 
c q 

+ m { v ^ + v^)). (5.19) 

This is consistent with the contravariant form of Equation (5.8), 

which was the term formed from summing the truncation errors intro­

duced by taking i5>winded differences for l^e ^^^ term. 

This shows that a central differencing scheme can be used 

throughout, with just the addition of the term in Equation (5.19) in 

the supercritical regions in order to introduce the correct direc­

tional bias. 

5.3.U Solution of the Difference Equations 

For a given geometry and boundary conditions, iterative methods 

are required to solve the finite difference approximations to the highly 

implicit equations describing the problem under consideration. In 

Jameson and Caughey's work, quasi-time dependent iterations were used, 
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since success ive i t e r a t i v e approximations to a so lut ion of the 

p o t e n t i a l Equation ( 5 . 1 ) , could be thought of as so lu t ions of an 

unsteady flow problem described by 

(h - u ^ ) ^ ^ - 2uv^^ + (h - y^H^ - 2^4^ 

- 28>!y^ - Y ^ ^ = 0 (5-20) 

where the c o e f f i c i e n t s a , P and Y should be chosen to ensure f a s t e s t 

convergence to the f ina l ( s teady-s ta te ) so lut ion . An ana lys i s of the 

values required for these c o e f f i c i e n t s was made by Caughey (1978). 

Applying the transformation 

a 
t s 

F - 1 
+ 9 n (5 .21) 

to Equation (5.20), converts it to the diagonal form 

ss n n (1 - ^') ' 'ss * ''nn * ( : r — - O ' S r r - '̂«T = ° ^^'^^^ 
F - 1 

which can be seen to be a damped wave equation. The ana lys i s of 

Jameson (197U), Indicated that for c r i t i c a l cases (F < l ) , the damping 

term, y^ . i s required to remove dependence upon the arbitrary i n i t i a l 

condit ions. In the supercr i t i ca l case , damping i s not required, due 

to the or ientat ion of the character i s t i c cone (Caughey, 1978). How­

ever, the re lat ion 

a ^ > (F^ - 1)P^ * (5 .23) 
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must be obeyed in order to ensure that the streamwise direction re­

mains timelike in the unsteady problem. 

The iterative approach adopted is a Successive Line Over 

Relaxation (SLOR) scheme, which solves for a provisional potential 

value, si' over constant 'i' lines. In order to calculate this 

i,j 

provisional solution within a subcritical regime, the central differ­

enced equations can be written in a form 

(h - ^^} (d"^^ . - 2^'. . + î " ̂  ,) 
. 2 V'̂ i-ljj '̂ i,J '̂ 1+1,0'' 

- 2uv 
UAxAy (?'i+l,J+l • ''i+l,j-l " ̂ i-l,j+l •" ^i-l,0-l) 

±i2lZl!i fj!" - 2«i"-̂ i + î "?*̂  ,) = 0 (5.21) 
^ 2 V'̂ i,j+1 "̂ 1,0 ^^,3-^ 

where the superscript n is such that t = nAt. The distribution of 

updated (n+l) terms is determined to ensure diagonal dominance (that 

the maximum contribution to, say, jli' . comes from ĵS. . rather than 

the total contribution from the neighbouring points, this being a 

sufficient but not necessary condition for linear stability). The 

new value, 4^*^ is obtained from the provisional value via the 
1,0 

relation 

C = ^i , j*^(^i , j -0 ^'-''^ 

where m is the over-relaxation factor. If the correction at each 

point is written as 
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„n /n+l jn (5-23) 
'̂ i.J = '̂ i.J • ''i.J 

then Equation (5-21) can be rearranged to the form 

(^)( = i,J -l-l,j) * (V^") ̂  -=̂ .Ĵ ^ * "i.J - ̂ .̂̂ -̂  

* ( i - ^ X ^ V i , j = «i,j (5-̂ )̂ 

where R ' s i s the residual, composed of a central difference form of 
i . J 

Equation (5.1) evaluated a t the n*^ i tera t ion . Noting tha t Ĉ  ^ is a 

discrete approximation to At^^, enables an evaluation of Y by comparing 

Equations (5-20) and (5.2U), as 

v = (|-)(-"')^- ^'-''^ 

This shows that lu must be less than 2 for positive damping. A 

von Neumann convergence test (Roache, 1976) can be applied for the case 

of a rectangular domain and periodic boundary conditions. This involves 

making a 'separation of variables' assumption, such that ̂  can be 

written as 

4" = G" e^P" e^"^ (5.26) 

where 1 in just this case represents the complex number \i^ , p and 

q denote general x and y positions, and the growth factor. 



-171-

G = '^^^^l^^ , the scheme being convergent if |G| < 1. It was 

shown by Caughey that a sufficient condition for this to occur, is, if 

the damping term is sufficiently large to counteract the destabil­

izing effects of the jii term. Specific optimal values of lu are 

xy 

difficult to obtain for other than simple linear problems. However, 

by experience, Caughey (1978) cites values of 1.5 to 1.8 as reasonable 

for nonlinear problems. 

A similar analysis can be carried out for the supercritical case. 

Additional consideration when determining the updated terms must be 

that Equation (5.23) is satisfied, together with the condition that 

Y = 0, as indicated by a von Neumann analysis. Caughey (1978) used 

upwinded formulae having the form 

J '''°i,j '̂ i,,T "̂ 1-1,.1 "^1-2,0 (5 27) 

^«'" Ax̂  

„/n+l /n /n+l /n+l /n 
Ji '^i .^ - ^ i , j ; ^ i , j - i - ^ - i , j - ^ ^ - i , j - i (5^8) 
Pyy Ax Ay 

These produce an approximation to Equation (5.23) as 

- ( - ' - ^ ) ( - q t ^ i | ) - ^'-''^ 

An additional ^ term, uj^At^^^, i s generally also added in the form 

(u, v > 0) 

\ ( H ( = i , j - = i - l , j ) * ^ ( = i , J - ' ^ i , J - l ) ) (5-30) 
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where uj is a parameter used to determine the amount of ^ . to be 

added, and i s chosen as ui i 0, taking the smallest value required to 

ensure Equation (5-23) i s sat isf ied. 

Thus the final equation for describing subcri t ical and super­

c r i t i c a l flows (Y = 0, l..e. , ;u - 2) can be written as 

^ ( ^ i , J - = i , J - l ) * '^2«^l, j - ' i . J + l ^ 

*' '3<'=i,j - V l . j ) * % < ^ i . j = ' ' i , J (5-31) 

where 

a = ( h - v +3MV + u ) v A y ) — ^ 
Ay 

a = (h - v^ + U v ^ ) - ^ 5 

2 2 1 
a = ( h - u + 3 u u + ID uAx) — -

3 ^ Ax'̂  

% = ( i - i ) ( ^ - - ' ) 7 a (5.32) 
Ax 

and R , the residual, i s now made up of centered differences for 
i IJ 

the i terms and upwinded differences for the i terras (in super-nn ss '̂  

c r i t i c a l regions, or centered differences in subcri t ical regions). 

I t can be seen that Equation (5.31) can be arranged to 

( ^ * ^ * ^ * V ^ i , J - ^ = i , J - l - ^ 2 ' = i , j + l 

• ^ ' ^ l - l , j * « i , j (5-33) 
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where the right hand side is known. Equation (5.33) forms a tri-

diagonal matrix system which can be solved directly. The same approach 

as that described above for a finite difference approximation can be 

applied to the finite volume formulations of the governing Equation 

(5.31), with only the a coefficients assuming different values. This 

was the approach adopted by Caughey (1978) for aerodynamic problems 

having similar nonlinear governing equations (gas analogy. Section 

2.3). However, the present hydraulic application contains much 

stronger shocks (jumps), due to the flow being much more supercritical 

than supersonic in the aerodynamic application. Thus, a pentadiagonal 

matrix system was introduced, which added some extra stability to the 

scheme. This pentadiagonal scheme allows the inclusion of contri­

butions from the viscosity terms over additional points, such that the 

equation relating the correction terms (analogous to Equation (5.31) in 

the tridiagonal system) can be written as. 

^X e^i.j - =i,j-l) ̂ ^^2 (=i,j - ̂ i,j*l) ̂ ^^3 ('̂i,J - '̂ i-l,Ĵ  

+ a^C^^. +a5(c,^. -C,^..2) 

* «6 (=i,j - ̂ i-2,j) = «i,j (5.3^) 

where, for U, V > 0, 
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« v,T.r 2? 3UV - v^ *^^ v ^ ^ ( | u | , | v | ) 

°i = Ks * z J 

a^ = hDl̂ g + j 
UuU^ - U^ + II) u ( | u | , I v | ) , 

% 

a = - uDv^ 

a^ = - ViDÛ  (5.35) 

and R i s the residua'' of Equation (5.15). 

The pentadiagonal solution can be solved as for the t r i d i ­

agonal system. 

I t should be noted at th is point ttiat the residual, R 
i , J 

gives a numerical evaluation of the left-hand side of Equation (5.15), 

which, in the converged case, should equal zero, the right-hand side 

of Equation (5.15). Thus the size of R gives an estimate of how 
^, J 

close or fur from convergence the solution Is at any point, and the 

increose or decrease of suy the maximum residual R shows whether 

1»J 

the solution procedure is diverging or converging, respectively. 



-175-

5.U Numerical Experiment: Flow in a Radially Expanding Channel 

This section discusses the application of the transcritical 

program to the flow of water in a radially expanding channel. This 

simple application is used to investigate the stability, shock treat­

ment, and general accuracy of the program representation of the flow, 

as for this radial case, a theoretical solution is available for 

comparison. The latter is obtained from the continuity equation, 

Q = qhr (5-36) 

where r is the radial distance from the source, together with the 

Beroulli Equation (3.66). These combine to give a cubic equation in 

q, 

^ - q + a = 0 (5-37) 
2 r 

solution of which gives the speeds at any point r. It should be 

noted that. Equation (5-37) being cubic, three roots are available 

for a given radial distance. Of these, one will be in the super­

critical range, one subcritical, and one negative. The latter is 

physically unrealistic, as speeds, having no directional properties, 

must be positive. 

For the case considered, theiinner boundary condition was 

taken as Q = 0.50 at r = 1.0. If the initial velocity is super­

critical (q = 1.00), the theoretical solution can progress along 

the supercritical arm of the solution, as shown in Figure 5-2, 
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b) Ratio of artificial mass flux, P, to contravariant mass flux, hDU . 

Figure 5-2 Velocity and artificial mass flux as a function of distance 

for a radial channel, using the transcritical p , ^ g ^ . 
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whereas an initially subcritical inflow (q = 0.62) will proceed 

subcritically. At any point, the supercritical solution can under­

go a jump and become subcritical. Typical energy conserving jumps 

'E' curves are shown in Figure 5-2. Energy conserving rather than 

momentum conserving jumps are shown, this being the type in^iUcit in 

the numerical model formulation. 

The numerical results are obtained by using a radial grid 

starting at r = 1, where a velocity, q = 1.00, is imposed as a 

boundary condition, the grid increment, Ar, being - 0.025, as shown 

in Figure 5-2. If the flow is to undergo a jump, i.e., the down­

stream flow is subcritical, a dovmstream boundary condition is 

required - a given potential value, ̂ ^. (if the flow downstream is 

supercritical, no boundary condition is required as the downstream 

flow properties should be determined by the upstream conditions.) 

The various computational solutions shown in Figure 5-2 are obtained 

by imposing the various values of ̂ ^ given in the diagram. 

The computational solution can be seen to predict higher 

velocities than the theoretical solution for both the supercritical 

and subcritical regimes. This can be explained as follows. Both 

the theoretical and computational solutions start with a given 

physical mass flux (Q = 0.50). However, the computational scheme 

has an additional artificial mass flux, (viscosity related) as dis­

cussed in Section 5.3.1, and it is this total of physical and arti­

ficial mass flux which is conserved. As the supercritical solution 

progresses, the increased velocity values lead to increased artificial 
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fluxes and hence reduced physical mass fluxes. A reduced physical 

mass flux, from Figure 2-7, results in a larger aupercirltlcal 

velocity prediction, as is found In the supercritical region of 

Figure 5-2. 

However, Figure 5-2 shows that the computationally predicted 

velocity is also larger than the theoretical value in the subcritical 

region after the Jump. This can be explained by realizing that the 

mass flux, now entering the subcritical region, is the sum of the 

initial physical mass flux, Q, defined, plus the Initial artificial 

mass flux defined within the program. Thus a mass flux Is present, 

which is slightly greater than that on which the theoretical solution 

Is based, leading to slightly larger calculated velocities from the 

numerical scheme. 

If the solution were to consist of the subcritical branch only 

(î .e. , q = 0.62) then no such error would have been Introduced. 

5.U.l Shock Determination - Switching Function 

Figure 5-2 shows that the scheme serves to average the shock 

over about 3 grid spaclngs. Whether the flow at any point is treated 

as supercritical or subcritical which, to some extent influences the 

Jump width is dependent on the switching function, u (Equation 5.18), 

i.e., on whether F is greater or less than one. In order to obtain 

better stability, i.e., slightly more averaging across a Jump, values 

of F dependent on several neighbouring points rather than Just the 

point (i,j) in question, can be used. In particular, if no F 
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averaging is used, a feedback can sometimes occur between the 

artificial and physical mass fluxes, leading to a velocity over­

shoot, (Points C and D in Figure 5-2), which can sometimes be 

large enough to cause the program iterations to diverge. Various 

averaging methods were tested for the radial case, such as 

2 2 

„2 '̂ i-l..i ̂ ^i,3 (5.38) 
^i,j " 2 

and 

p2 _ P ^ 2 — (5.39) 
*i,j V i-l,j i,j 

It was found that Equation (5-38) gave most stability so that this 

was adopted, and used to generate Figure 5-2. 

An additional method of increasing stability, used for the 

early iterations, when the overshoot is more likely to occur, due to 

possibly poor initial conditions, can be used. This is to introduce 

an artificial Froude number cut-off, F^^^, which is taken as less than 

1.0, generally 0.9 or 0.8, or even as low as 0.5 if a very strong 

jump is expected. Once the quasi-time-dependent solution approaches 

convergence, this can gradually be increased back towards 1.0. 

Lower values of F _. cause the solution to be treated as supercritical 

(i.e., artificial viscosities added over more grid elements). This 

appears to discourage the formation of overshoots, and hence enables 

a better approximation to the solution to be obtained before the strong 

jun5>s are allowed to occur. 
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5. U.2 Values of the Coefficients lU and ui 

In Section 5.3.3 mention was made of Caughey's (1978) original 

recommendation, which, for his aerodynamic applications, was for over-

relaxation factor values, (JU, of 1.5 to 1.8, as mentioned in Section 

5.3.3. Similar values were found useful for the present hydraulic 

application, although values of 1. U were sometimes used for initial 

iterations, and values of 1.8 would only be used very close to con­

vergence. Values of 2.0 were automatically set in subcritical 

regions. 

Section 5.3.3 pointed out that the coefficient, w , should be 

greater than or equal to zero, but os small as possible. Values of 

O.UO were generally used inltitilly, decreasing to 0.35 in later 

stages of convergence. 

5.5 Application of the Transcritical Model to a Radial Discharge 

Into a Moving Ambient: General Procedures 

The following general steps need to be undertaken in construc­

ting an intermediate field transcritical solution: 

For a given value of the ratio of intermediate to near field 

strength, ^^/\: 

1) Define the iruier boundary conditions according to the 

transition conditions obtained from the near-field 

solution (Sections 3.6 and 5.7). 

2) Assume on intermediate field solution domain and 

generate an orthogonal grid. 
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3) Carry out a transcritical solution for the domain. 

U) Evaluate the frontal boundary conditions (height match­

ing) and adjust the solution demain. Iterate to step 

two. 

5.5.1 Near-Intermediate Field Transition Conditions 

In Section 5.5, solutions for the transcritical intermediate 

field are presented for a full range of relative near-intermediate 

field strength values, \ / \ - The deteimnation of the boundary 

conditions appropriate for these \ / \ values will be discussed 

herein. 

A simplified near field model for a moving ambient, involving 

a Galilean transformation of the stagnant case solution (shifted 

circles), was presented in Section U.U. The latter model provides 

a method of obtaining the type of boundary discussed in Section 3.6. 

This assumes radial flow properties across it, together with an 

"equi-energy transition", obtained by equating the Bernoulli equations 

for the near and intermediate flows as given in Equation (3.78). 

In practice the boundary position (transition radius), r,j,, can 

be evaluated from l ^ / \ using the numerical near field model; this 

result is plotted in Figure 5-3- The flow properties at this tran­

sition, h(;^), 'q^Cr^) and F^^(?^), can also be evaluated from the 

numerical results given in Figure U-1. The radius r,̂ , in the inter­

mediate field non-dimensionalization, is, by simple manipulation. 
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Flgure 5-3 The v a r i a t i o n of the t r a n s i t ! 

re la t ive in te rmedia te t o near-Held 

on r a d i u s , r^, with the 

strengths , IIK. 
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r 4 , •?-. ! T N _ J, N (5.U0) 

Similar i ly the location of the center of the c i r c l e , obtained frcm 

X , given by Equation (U.26), can be written in the intermediate 

f ie ld non-dimensionalization as 

~ - S (5.U1) 
^d = ""d t;^ 

Thus a complete definition of the location and flow properties 

of the equi-energy transition between the near and intermediate fields 

is obtained as the upstream boundary condition for the transcritical 

flow domain. 

5.5.2 Generation of an Orthogonal Grid (Using a Boundary Integral 

Equation Method) 

A typical orthogonal grid used for this application is as 

shown in Figure 5-^- (An orthogonal grid ik used due to it's 

relative ease of generation.) The location of the inner displaced 

circle C1C2 is determined by the relative near- and intermediate 

field strengths as represented by the transition conditions, discussed 

in Sections 3.6 and 5.7. The downstream boundary, D1D2, is located, 

from experience, far enough downstream to ensure that the flow has 

become everywhere supercritical, having passed through a shock and 

critical line. The stagnation point, S, and the shape of the 

boundary SDl is determined by iteration, as described in Section 5.6. 
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The basic shape SDl, may initially be sketched by hand, and is then 

specified by the quintic polynomial most closely matching their 

shape, selected in order to obtain a more regular boundary. 

Once the boundary has been specified in this manner (at any 

stage of the iterative process), the intemal orthogonal grid system 

is generated as outlined in Figure 5-5- The first step (Figure 5-5a) 

consists of solving the Laplace equation for jii 

^ + ^ = 0 ^^-^'^ 

"̂ xx ^yy 

within the proposed boundary, vdth the Neumann and Dirichlet boundaiT 

conditions as shown in Figure 5-5a. This yields actual values of ̂  
along the boundary between points CI and Dl and C2 and D2. Step two 

solves the Laplace equation for *, 

• +• =0 (5-̂ 3) 
'xx yy 

with the boundary conlitions of Figure 5-5t, to give values of * 

along CI to C2 and Dl to D2. It should be noted that the boundary 

along ClDl is taken as * = KTT , where K should be estimated from 

equating the mass flux along C1C2, (calculated from the solution of 

part a), with that through C1C2 in part b (KTT ). In general, for 

these grids, K ,«s - 1. Thus, x, y, ^ and * values are known all 

around the proposed boundary. The object of this procedure is to 

detennine the x, y co-ordinates of the intersection of the "potential 

lines" and "streamlines" which can now be defined. This will yield 
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Wgure 5-5 Def in i t ion sketches o f the BIEM appUcatlons 
required for the grid generation. 
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an orthogonal grid vdth the point clustering being determned by the 

values of "potential" and "streamlines" selected. 

The method used to detennine the intersection points (where 

eliminates the need for interpolation) is to invert the problem, 

and solve a Laplace equation for x, 

= 0 (5-'̂ '') 

and y, 
(5.U5) 

with the Dirichlet boundary conditions obtained from the first two 

steps. The j>-% domain of solution is as sho™ in Figures 5-5c and d, 

respectively. Thus the complete set of grid points shown in the 

example of Figure 5-"+ can be obtained. 

There remains the problem of actually solving the Laplace 

equation. A computationally efficient Boundary Integral Element 

Method (BIEM) is used, the program, with minor modifications, being 

given in Liggett and Liu (1983), in which it is denoted as GM8. 

The BIEM method is based on an expression for Green's second identity, 

simplified by assuming the two functions U and V obey Laplace's 

equation as 

r 
where T i s the boundary of a domain, D, having an area A, and a 



-188-

l o c a l normal d irect ion n. U i s chosen as a v e l o c i t y po ten t ia l and V, 

as a "free space Green function", which, for two-dimensional problems, 

i s taken as 

^ • * " ^ (5.U7) 

where r is the distance between a singular point P (r=0) and a 

point Q on the boundary. The potential at any point, P, can be 

expressed in terms of a boundary Integral as 

2"><(P) =f (^(Q)^(*,r) -•nr^^(Q))d. (5.U8) 

where the variables are defined in Figure 5-6. 

Figure 5-6. Def ini t ion diagram for boundary integrat ion used in 
B.I E.M. nethod. The arrows indicate the d irect ion 
of Integration around the boundary curve T of the 
domain D. P i s a s ingular i ty separated froii D by the 
c i r c l e 0, radius r ( . r t e r U g g e t t and U u , I983) 
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However, only one of ̂  and |^ will be defined at any boundary point, 

for a weU posed problem. The unknown values can be obtained from 

taking P as a boundary point, when Equation (5-"+8) can be written as 

<^^(P)=f,(f^--M)- ''•''' 
where a is the angle between the boundary segments at P. The integral 

on the right-hand side can be discretized, with |li and |^ evaluated at 

each boundary node, a linear variation being assumed between nodes. 

If P is taken as each of N boundary points, a system of N equations 

in N unknowns will be obtained, allowing evaluation of the unknown ^ 

or 1^ values, and hence allowing evaluation of any intemal point P 
on 

within the domain. 

It was found that the transcritical program was sensitive to 

slight nonunifoimties in the grid. Thus the grid generation was 

carried out using double precision arithmetic on a 32-bit computer. 

In addition, a large number of points was used along each boundary, 

in particular, along C2 to D2 in an attempt to eliminate irregularities 

due to insufficient points. The grid generation procedure can thus be 

summarized as: 

1) Decide on the required domain shape either initially, or 

from previous iterations. In particular, the distribution 

of points along C2 to D2 has to be chosen with care in 

order to minimize later interpolations: sufficient density 

near C2 to ensure a reasonable distribution between 0 and 
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S, and sufficient density near D2 to avoid overly large 

artificial viscosities while keeping the overall number 

as small as possible, generally about 130. The boundary 

SDl is approximated by a quintic polynomial to eliminate 

irregularities. 

2) The first BIEM application is made to obtain >i(x,y) , for 

that portion of the boundary for which ^ » 0 had been 

specified. 

3) The second BIEM application is made to obtain •(x,y) for 

that position of the boundary for which • - 0 had been 
n 

specified. 

U) Values of ̂  corresponding to points along C2D2 are selec­

ted, and the locations of these ^ values interpolated for 

along ClDl. 

5) Similarly, values of t corresponding to points along 

C1C2 are selected and interpolated for along D1D2. 

The boundaries are now specified completely in terms of ̂  and 

•. The problem is inverted to calculate all inte-nal points. 

6) The third BIEM application is made to calculate the x 

coordinates corresponding to the required ^ and • 

intersections. 

7) The fourth BIEM application is made to calculate the y 

coordinates. 

Thus the final grid is obtained. An example of an early grid, 

Gl, Is given in Figure 5-U, while Figure 5-7 shows one, G5, at the 
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Figure 5-7 A typical grid, G5, developed using the BIEM method, and used for the 

transcritical program . 
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end of the boundary height matching process , i.e. , a f u l l y I terated 

grid for a given value of './^^ (= Ul .2 ) . 
1 ii 

5.5.3 Obtaining a Transcritical Flow Solution for a Given Grid 

The application of the transcritical model, described in 

Section 5.3, for the present domain needs the following data: 

a) Grid points as specified by the preceedlng discussion, 

(Section 5.5.1). 

b) Boundary condit ions 

conditions at the near- f i e ld t r a n s i t i o n c i r c l e 

(Section 5 . 5 . 1 ) . 

no-flux boundary conditions at the l a t e r a l boun­

daries . 

extrapolation boundary condit ions for downstream 

supercr i t i ca l boundaries. 

c) I n i t i a l Conditions 

Due to the quasi-time dependent nature of the so lut ion 

algorithm, an i n i t i a l d is tr ibut ion of the ve loc i ty po ten t ia l needs 

to be speci f ied . 

I t was found on actual model appl icat ion that a "good" 

spec i f i ca t ion of the i n i t i a l po tent ia l s was cruc ia l to the success 

of any part icular computation. Spec i f i cat ions that d i f fered sub­

s t a n t i a l l y from the desired solut ion often y ie lded a diverging be­

havior. This d i f f i c u l t y Is overcome by I n i t i a l l y wrklng with a 

l imited domain (only a few gr ld l ines ( j » cons tant ) ) , and then 

gradually enlarging the domain by adding a few addit ional g r l d l i n e s 
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at a time. This is carried out as follows: 

1) A ficticious radial grid is constructed, having four grid 

lines with points along the positive x axis having values 

corresponding to C2D2. The initial potentials along each 

radius are taken equal to those along C2D2. Values of 

converged potentials along this radial grid, obtained by 

applying the transcritical solution, are then obtained. 

2) The potential values from Step 1 are used as an initial 

condition for the first four (j= lU to 17) of the actual 

grid. The transcritical program is then run on this sub-

domain for 200-300 iterations, until a moderate level of 

convergence is obtained. 

3) Two or three extra grldlines are then added - with 

initial approximate potential values, and another reason­

ably converged solution obtained. 

U) Step three is repeated until a-fully converged solution 

for the whole domain has been obtained. The entire con­

vergence procedure requires about 1200 CPU seconds on 

an IBM 370 computer, for a typical grid of (130 x l6) 

points. 

The values of parameter such as w, a'̂  and F^^^ used at various 

stages of the convergence procedure have been discussed in Section 5.U. 

Convergence Estimation 

One method of estimating convergence has been discussed in 
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Sectlon 5.3.U, i.e^. , the rate of decrease of the maximum residual 

within the solution domain. In addition, a more globally averaged 

estimate can be obtained from comparing values of the total physical 

and artificial mass flux input into the domain through C1C2 and output 

through D1D2. In general, when these values differed by less than 

"• 0.1^ of the input mass flow, the solution obtained was regarded as 

being well converged. Another method of applying this mass flow 

continuity consideration as an estimate of convergence is to split 

the entire domain into, say, 9 sub-regions (using increments in both 

the 1 and j directions), and examine the flux differences across their 

boundaries, which should again be zero for a converged solution. 

Values of 0.% of the input mass flow were the largest obtained in a 

solution considered os converged. 

5.5.U Successive Grid I'.odiflcatlon Until Full Matching at Frontal 

Boundar;/ 

The solution obtained using the grid, Gl, shown in Figure 5-U 

(corresponding to t j / t j^ = Ul.2) i s shown in tems of height (thickness) 

contours in Figure 5-8. The upstream boundary conditions, determined 

by the transit ion conditions between the near and intermediate fields 

(Section 5.5.1), for -tj/tj^ = Ul.2, are a nonm»l How (Froude namber of 

1.05, i . e . . Just sl ightly supercrit ical) out of a circular boundary, 

radius 1.8U, with a center displaced from the origin to a = 1. 5U 

(due to developments In the early stages of th i s work the inner 

boundary of Gl does not exactly confgnn to the circular shape). The 



10 

i-0.66lcritical height) 

Figure 5-8 Height contours for the non-matched solution for I Jl = Ul.2. Calculated 
using grid Gl, Figure 5-U. 
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helght contour marked by a dotted line represents the jump location 

and/or critical lino, depending on whether the flow across it moves 

from supercritical to subcritical or subcritical to supercritical, 

respectively, us discussed in Section 2.2. The supercritical flow 

emerging in an upstream direction can be seen to decelerate, passing 

through the jump into the subcritical region where it continues to 

decelerate as it moves towards the stagnation point, S. It grad­

ually becomes diverted to a downstream motion, beginning to accel­

erate under the influence of the ambient flow, until it passes 

through the critical line and again becomes supercritical. The flow 

emerging in a downstream direction continues to accelerate downstream 

until the downstream boundary is reached. 

The boundary of the grid Gl is shown in Figure 5-9al, while 

Figure 5-9 a2 shows the matching of the "intemal" boundary height, 

h^, obtained from the Qow dynamics to the "outer" boundary height, 

hg, as defined in Equations (5-2). It can be seen that h^ is much 

greater than h^ over much of the boundary, indicating (using the 

Bernoulli Equation (3.67)) that the velocity is lower than required, 

or, that the grid boundary allows too much spreading of the flow to 

allow a height matching. 

Thus it can be seen that a transcritical flow solution for an 

arbitrarily specified frontal boundary shape will not meet the specific 

frontal boundary height matching condition that governs the interplay 

between the ambient flow and the density current intennediate field 
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a) Grid Gl, (l) boundary 

(2) height variation. 

Figure 5-9 The stages involved in obtaining a fully matched frontal 

boundary shape. 



b) Grid G2, (l) boundary 

(2) height variation. 
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c) Grid G3, ( l ) boundary 

(2) height variation. 
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~1 T- I r 

' ', • 

d) Grid GU, (1) boundary 

(2) height variat ion. 
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e) Grid G5, ( l ) boundary 

(2) height variation. 
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in the present problem. Out of a l l possible boundary shapes, there 

i s , in principle, only one sliape thot will provide a fully matched 

solution. This solution is understood as one that simultaneously 

represents a solution to the governing t r ansc r i t i ca l equations with 

specified inflow, outflow and no-flux boundary conditions, and to 

the frontal pressure boundary conditions. 

An I terat ive approach consisting of successive adjustments of 

the frontal boundary, i,.e. , of the location x^ of the upstream stag­

nation point, S, together irith the boundary curvature, i s described 

in the fo i ledng specific example. 

This example related to five successive grid changes Gl 

(Figure 5-U, -rfith a flow field shown in Figures 5-8 and 5-9 a l and a2, 

and already discussed) to grid G5 (shown in Figure 5-7), un t i l a 

frontal boundary matching i s obtained. The upstream boundary con­

ditions are those described ear l ie r for Gl. The progression of the 

successive grid shape adjustment and the resultant boundary behaviour 

i s shown in Figures 5-9 a through e. 

I t has been pointed out that the i n i t i a l dooaln shape, 01 , 

assumed too large a stagnation length, x^, while overestimating the 

width. This was somewhat corrected for in G2, although not suffic­

iently. The stagnation distance was under-estimated in G3, result ing 

in Intemal heights which were too large in this region. In CU, the 

stagnation length has been decreased while the downstream spreading 

has been increased, resulting in a much bet ter f i t which i s again 
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improved on in G5, such that the relative maximum deviation between 

the heights is now less than 2^. 

In this fashion, it can be demonstrated that an accurate, 

unique boundary shape can be predicted, with only a relatively small 

number of iterations. In fact, subsequent cases (for alternative 

values of -f. /-t- ) could be based on the previous fully matched 

solutions, such that the number of iterations was reduced even 

further, to about 2 in several cases. 

5.6 Fully-matched Solutions 

Fully matched solutions were obtained over a range of relative 

field strengths, with l ^ / \ values varying from U.l (very weak near 

field) to 0.9 (very strong near field). Table 5-1 summarizes the 

inner boundary conditions, frontal boundary shape, and results shown 

for various l.^/^ conditions. An example of the various iterations 

required to obtain a boundary matched solution for grid G5, applying 

an inner boundary Froude number of 1.05 have already been discussed 

in Section 5.6. Height variations and boundary profiles for further 

cases of fully matched grids corresponding to various l j \ values, 

are shown in Figure 5-10 (a through e). It can be seen that the 

stagnation distance and boundary width a U increase with increasing 

near field influence (decreasing \ / \ values). 

The intemal flow dynamics for solutions having selected 

L /I values are sho™ in Figure 5-11, { \ l \ = "tl-S, grid G5), 

Figure 5-12, { \ / \ = lU.l, grid G6) and Figure 5-13 { . \ / \ = 3.0, 
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a) Grid G6, ^-r/^ = I'+.l (l) boundary shape 

-

-

-

-

1 I 1 

^^'^v*,,^^ 

1 . . . 1 1 

-

-

-

(2) height variation. 

Figure 5-10 Intemal and boundary heights and the boundary profile for 

matched grids corresponding to various ^j/^„ values. 
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b) Grid Gi l , •'-̂ /'f-f, = 7.0 ( l ) boundary shape 

(2) height variat ion. 
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c) Grid G8, \ I \ = 3.0 ( l ) boundary shape 

(2) height variation. 
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d) Grid G12, t j / t j j - 1.5 (1) boundary shape 

t*Ott Solulon not tutty 

f»9on (Jut lo 

Culoll 

(2) height variat ic 
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(e) Grid GIO, \ / \ = 0.88 ( l ) boundary shape 

• 

-

-

8 ^ -̂̂ i.*. 

• 

1 . . . 1 . . . 1 . 

^>r~ -̂ ^ 
^̂  

-

-

(2) height variation. 
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a) Height contours. 

^ ^ r e 5-11 resul ts for the transcritical „ ^ o n of the intermediate 

f ield, f o r i j / t ^ ,1,1.2 (Grid 05). 
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b) Velocity vectors, every 10th point plotted 
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c) Velocity vectors, 
every 2nd point plotted. 
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a) Height contours 

Figure 5-12 Results for the transcritical region of the intemediate 

field, for ^.^/^'^ = lU.l (Grid G 6 ) . 
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a) Height contours 

Figure 5-13 Results for the transcritical region of the Intermediate 

field, for \ l \ = 3-0 (Grid G8). 



-216-

b) Velocity vectors, every 10th point 
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grid, G8). Consider Figure 5-U: In Figure 5-lla, the line 

(h = 0.66) shows the location of the jump (if the flow is passing 

from super- to subcritical) or critical line (if the flow is passing 

from sub- to supercritical). Figures 5-lla and b viewed together, 

indicate that the velocity vectors change discontinuously in magni­

tude, and, - less conspicuously from the plot - also in direction, 

across this line, from Sh^ to Sh^ (indicating a jump region), 

but pass continuously across it from Sh^ to C^, (indicating that this 

region is a critical line). The shock line is very close to the 

inner boundary.along its upstream portion, indicating the very rapid 

deceleration of the flow in this region. After the influence of the 

stagnation point is passed, the flow starts to accelerate, eventually 

passing through the critical line, and then continues to accelerate 

supercritically. The velocity vectors in Figure 5-lOb are only 

plotted out at every 10*'' grid point. Figure 5-lOc shows them plotted 

for every other point, which gives a good indication of the velocity 

variation. 

In Figure 5-13 the jump is somewhat stronger than in the others, 

due to more supercritical initial conditions. Slight oscillations are 

seen around the shock position (probably due to some lack of conver­

gence). In addition, slight oscillations emerge in the supercritical 

region, radiating from the shock. These appear to be due to insta­

bilities introduced by the shock, and are very constant in foim, 

being only slo-rfly damped out with increasing iteration. These 
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osci l la t ions do not appear in the subcri t ical region. Experience 

with the model for even higher velocity cases ( i . e . , decreasing 

values of '.^/l^) showed that these osc i l la t ions tended to become 

stronger. Ultimately, for even lower values of I //,, («; i . o ) , th is 

tendency for osci l lat ion and i n s t a b i l i t i e s pr^sved to be an apparent 

l imit of the .-nodel applicabi l i ty . 

^•^ Su--̂ T r̂y of (Fully Matched) Intemediate Field Solutions 

The preceding resu l t s , in graphical form, show clearly the 

influence of the near-field dynamics on the overall shape and 

in t emal flow dyna.mcs of the intennediate f ield t r ansc r i t i ca l 

domain. Probably the single most .-.eaningful measure of t h i s in­

fluence i s the upstream stagnation length, | x j = | x J / t , plotted 

as a IMnctxon of yi.^ (,ee Figure 5-lU). The data Ihow^a s igni f i ­

cant dependence upon l^/l.^ for the range l^/K^^ bef.een 1 and Uo. 

However, outside this range, i . e . , l^/l^^ -, o and l^/f. - - , 

asymptotic regions are reached. This can be understood from the 

follcring considerations: The rat io l^/l.^ can be expanded in terxis 

of the i n i t i a l momentum and buoyant fluxes M ,r.^ T 
J ii.uxes, .M̂  and J^, respectively, 

and ambient velocity, as 

S J 3/2 
I o 7 - = 
•" 2nc u 3 , 3 A (5.50) 

D a o 

Thus, when the i n i t i a l momcntan flux is v<.rv i 
very large compared with the 

buoyancy flux, the rat io '. /, tends to 0 and < 
I '' • ' ='"°. inversely a relat ively 

large buoyancy flux results in t./' ten<Hn„ * 
j / „ tending to ". !„ general, the 
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10.0 

1.0 

0.1 0,1 1,0 10.0 

G5 
AsymptotcH 

limit 

100.0 

Figure 5-lU The stagnation length as a function of the relative 

intermediate to near-field length scales. 
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stagnation length, x , i s a function of J , M and u , or, i f non-
s o o a 

dimenslonallzed by l^ , x/l^ =. f ( ' j / ' - „ ) . However, for the two 

limiting cases, the relationship ciraplifies to x/'- = constant, for 

^l^^S *^"'^"G to » (only J^, and u^ are important), and to 

S -2/3 
r = =°"=t. (^) (5.51) 
I N 

for •̂j/'f-jj tending to 0 (only M^ and u are important). Thus it can 

be seen that in the limit as the momentum effects dominate the 

buoyancy effects, an asymptotic relation exists, relating x /I to 
s X 

''"l̂ N̂ ̂  ^^^ negative two thirds power. This relation is drawn on 

Figure 5-lU, as a continuation of the relation in the asymptotic 

limit. The numerical results indicate that these asymptotic limits 

hold for l^/t^ g, 1 and t^/l^ Z 90, respectively. The associated tran­

sition Froude number, F^^, is marked for the several computational 

cases that yielded Figure 5-lU. Thus, low t.^/1^ are linked to high 

transition Froude numbers and subsequent strong Jump conditions in 

the intensedlate field. High l^/t^, on the other hand, have a 

transition Froude number that asymptotically approaches unity, the 

critical value. The minimum F^^ value for the present computation 

was 1.05 {l^/l„ - Ul.2. grid G5), and is very close to theoretical 

criticality (see also the discussion on the volatility of the near-

critical flow behavior in Sections 2.3 and U.2). The next lower 

case modeled {l^/l^ , lU.l. grid G 6 ) 1. associated with only a 
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slightly higher Froude number, F|, ,p = 1.25, giving an indication 

that an asymptotic regime in the -t-j/-'-̂  range is indeed approached. 

The various boundary shapes corresponding to the '̂ jAjj 

values solved for and summarized in Figure 5-1'+, have been shown in 

Figure 5-8 and Figure 5-10 (see Table 5-1 for details). These are 

now brought together in Figure 5-15 to en̂ ihasize the growth in 

boundary width which goes along with the growth in x^ as summarized 

in Figure 5-lU. 
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Figure 5-15 Variation of transcritical region boundary shape with 

l ' N" 



CHAPTER 6 

THE INTERMEDIATE FIELD (SUPERCRITICAL FLOW REGION) SOLUTION 

The intermediate field supercritical region occurs downstream 

of the transcritical flow region and extends to the far field region, 

as discussed in Section 3.1. A numerical model is formulated that 

solves the governing Equations (3.72) and (3.73) (in nondimension­

allzed form, assuming a Case A stratification type). These equations 

include interfacial friction, which plays an increasingly important 

role within this region - depending on the governing non-dimensional 

parameters (see Section 3.5.2). The limiting case of zero friction 

is of fundamental interest for comparison to elementary theories 

(Section 2.1.3). 

6.1 Numerical Computations - MacCormack's Method 

The flow in this region is supercritical (i.e. , it is of 

hyperbolic type, all information passing downstream) and non-

entraining. Various numerical solution methods applicable to hyper­

bolic equations were discussed in Section 2.6. These were further 

summarized in Section U.l, where the MacCormack scheme (an explicit 

stepping technique) was chosen as the most suitable method for 

modeling of the entraining supercritical flow in the near field. The 

same method can be applied in this case, with the entrainment set to 

zero, and, instead, a frictional term appearing in the equations. 

Thus, the non-dimensional controlling Equations (3-72) and (3-73) 

-223-
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are written in vector form as 

B * l f = H (6.1) 
5y 

where 

hu I I hv 

u^h + i h^ \ ; G = / uvh \ ; H = / '̂ ^̂ •(û  - u)|u -u| 

^ * | h M /v(-^)l-^l) uvh \ / v' 

where V is the volume flux parameter defined In Equation (3.62). 

The MacCormack scheme can then be applied in the form summarized in 

Equation (U.3). 

The finite volume scheme (Section U.1.1) is applied, for 

consistency with the near and transcritical intermediate field approa­

ches, particularly to simplify its boundary condition with the latter) 

and also to facilitate the application of the boundary conditions 

along the curved outer boundary. The non-dlmensionalized equations 

(Equation 6.1) in contravariant form can be written as 

aF ^ ac 
5x * ̂  = " (6.2) 

where 
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hDU I (hDV 

hDUu + i y.^h^ / ' '̂  " N ™ ^ " ' i ^ / ^ y ' " " ^ X^VD(u^-u) | u^-u] 

hDUv + I x^h^ j (_hDVv - i x^^g'h^ | (^ X^VD(-v) | -v j 

6.1.1 Solution Details 

The solution procedure is as listed in Section U.l.2, apart 

from the calculation of the dependent variables, u, v, h. This differ­

ence is due to the lack of entrainment in this supercritical region, 

which eliminates the need for a buoyancy equation, as g' will be 

constant, and thus no longer one of the dependent variables. The 

modified relations are written as 

, x , FB(3) - y„ FB(2)v p g ( i s 2 
0 . 5 h 3 + ( - X ^ ) h + ^ ^ = 0 (6.5) 

^ Xy' + y / ^ (x,^ + y / ) 

where FB(i), i = 1,2,3 are the intermediate predictions of the F flux 

values. 

6.1.2 Initial and Boundary Conditions 

Initial conditions are required at the upstream boundary only, 

as this is a marching scheme. This upstream boundary is taken 



-226-

directly from the transcritical solution. The converged potential 

and f.rid values from all points in the transcritical solution are 

retained, so that once the point '1' at which the supercritical 

solution is required to start has been decided upon, the appropriate 

potential and grid values can be obtained. 

The treatment of the "no-flux" centerline and the outer 

(frontal) boundary is similar to that used in the near field model, 

apart from small modifications due to the constant buoyancy and 

presence of a frictional rather than entrainment terms. As for the 

transcritical regime, no downstream boundary is required, as this 

will be self-determined by the marching scheme. 

6.1.3 Automatic Grid Generation and Matching of the Frontal Boundary 

A significant feature of the model formulation is the auto­

matic step-wise generation of the computational grid during the down­

stream march. This is carried out such that the frontal boundary 

shape simultaneously meets the inner and outer pressure matching. 

The location of the first two lines ( 1 = 1 and 2) of grid 

points are determined as port of the upstream boundary, as discussed 

in Section 6.1.2. Thereafter the grid must be generated so as to 

effect a height matching, as discussed for the transcritical region 

(ĵ .e. , the "inner" boundary height, K, obtained from the flow 

dynamics matched to the "outer" boundary height, h^, as defined by 

Equation 5-2). This matching could be obtained by iteration on 

possible boundary positions, a method used for the transcritical 
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region (chapter 5). However, due to the marching nature of the 

solution procedure in the totally supercritical region, a more direct 

method of boundary determination is available. This involves, if 

the flov; has been calculated up to a point 'i', choosing a boundary 

angle, 9. - as 

«i.i = ^'-'K\i) (6-6) 

where it should be remembered that h, is the internal boundary 

height. This effectively sets 

^ , i+l = ^,i 
(6-. 7) 

i.e., the external boundary height at the new point is equal to the 

intemal boundary height already calculated at the previous point. 

This involves an "explicit" approximation. The accuracy of this 

formulation (Equation 6.7) was checked by using an alternative 

specification, 

\ i.l = '^"2'''^-' • ^'-'^ 

This gave very little change in the final boundary shape, which 

indicates that either expression is sufficiently accurate. It should 

be noted that at the upstream boundary, hL and h^ must be equal, as 

this is obtained from the converged transcritical solution. 

Once the boundary angle has been defined, and hence the boun­

dary point (i,j=2), the remaining grid points (i,j=3...I6) are 
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determined by keeping the ra t ios of the angles of the 'J = constant ' 

l ines to the local boundary angle as the same as in the grid l ine 

forming the upstream boundary (1=1). 

Figure 6-1 shows a typical grid generated using this method -

in fact th is figures shows the "cell-averaged" grid values, ^ . e . , 

each point drawn represents the center of each actual grid ce l l . 

This shows the points of evaluation of the flow variables using the 

f in i te volume scheme. 

6.2 Numerical Experiment: Application of the MacCormack 

Supercrit ical Scheme to an I n i t i a l l y Uniform Grid 

The purpose of th is experiment was to model the l a t e r a l plume 

spread from an i n i t i a l l y uniform buoyant inflow from a source of 

f in i te width, into an ambient stream. Solutions for th i s case can be 

compared to those from the "one-dimensional theories" discussed in 

Section 2.1. 

The i n i t i a l conditions taken were those of an uniform hori­

zontal supercri t ical velocity, q = 1.03 (F = 1.51) applied on a grid 

defined as: 

x( l ; ^.) = 1.0; x(2,¥j) = l.OU ; 

y( l ; j) = 1.0 - (J-1) 0.2, J = 1,6 ; 

y(2;j) = 1.02 - ( j - l ) 0.20U, J = 1,6; 

The variation of the calculated width, b, with downstream distance, 

X, is shown in Figure 6-2, for values of the parameter X V of 0.0 
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Figure 6-1 A typical grid used for the supercritical region of the 

intermediate field (every other point in the 'i' direction 

shown). 
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Figure 6-2 Boundary variation with downstream distance for the one-

dimensional model of Jirka et al., I980, and the numerical 

simulation for 'uniform' initial conditions 



-231-

and 0 .1 . Also shown in Figure 6.2 i s the boundary width variation 

with X for the elementary one-dimensional theories of Jirka £ t a l . 

(1980) (see Section 2.1); for the case of zero f r ic t ional effects , 

X.V = 0.0, th i s general theoret ical model, Equation (2.20), can be 

written in non-dimensional coordinates, for s t ra t i f i ca t ion Case A 

(s = 0 ) , as 

3 2/3 
h = (b^2 ^ I ,^ (̂  . ^ )̂) (6.9) 

while that including f r ic t ion , Equation (2.28), can be simplified 

to 
5 2 

i 

I t can be seen that once the effects of the i n i t i a l conditions 

(x = 1, b = 1; X = 1, b = 1 ) are overcome, the boundary width 
* o o ' oc oc 

increases as x^'^ and x^'^, respectively. Two aspects are evident 

from the comparison of the predictions of the one-dimensional e le ­

mentary theories and of the present two-dimensional calculations: 

F i r s t , for large x, both methods predict the same asymptotic 

behavior, namely an x ' ^ spreading for the inviscld case and an x ' 

spreading for the f r ic t ional case. This validates the treatment of 

the frontal boundary condition in the two-dimensional formulation. 

Second, the degree of spreading in the two-dimensional calcula­

t ion i s significantly lower (factor of about 2). The main reason 
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for th is mismatch appears to l i e in the omission of the l a t e r a l (y) 

acceleration terms from the simple one-dimensional theories. In 

rea l i ty , these reaction terms seem to play an important role in the 

spreading process. The error , thus introduced, i s carried over in 

the entire downstream domain.' 

6.3 Application to the Intermediate Field Supercri t ical Domain 

6.3.1 Typical Values of the Frictional Parameter, XV' 

Using the expression for V , Equation (3-62), for s t r a t i f i ­

cation Case A (s = 0 ) , evaluated for the "typical" oceanic conditions 

given in Section 3 .1 .1 , yields a value of V '" UO. For the labor­

atory experiments carried out by JirJta et a l . (I98O), a range of 

V values typically between 1 and 20 was obtained. Adams e t a l . 

(1981) indicate values of X, for fully turbulent oceanic conditions 
.3 

as 10 , whereas for the less turbulent laboratory conditions 

(R •« 5 X 10'3) , a X. value of 5 x lO"^ i s more applicable. These 

values give XV' values for oceanic conditions (V between 10 and 

50), of between 0.01 and 0.05, and X.V laboratory values of between 

0.05 and 0.10. Therefore, X V' values of 0 .1 , 0.05 and 0.01 were 

investigated, together with the fr ict ionless case (X V' = 0 .0) , which 

i s of interest from a fundamental viewpoint. 

6.3.2 Results 

The MacCormack scheme was applied as a downstream continuation 

of several of the t r ansc r i t i ca l flo\* computations that have been 



Table 6-1 

A Summary of the Results Presented for the Intermediate Field Supercritical Region. 

Ul;_2 lUj^ 7^0 3.0 

FigT Fig. Fig. Fig. 

0.0 6-3a (i,ii) 6-7a (i,ii) 6-8 (i,ii) 6-9a(i,ii) 

6-5a (i,ii) 

6-6 (iii) 

0.01 6-3b (i,ii) - - -

6-6 (iii) 

0.05 6-3c (i,ii) - - -

6-6 (iii) 

0.10 6-3d (i,ii) 6-7b (i,ii) - 6-gb(i,ii) 

6-6 (iii) 

(i) denotes a graph of velocity vectors 

(ii) denotes a graph of height contours 

(iii) denotes a plot of frontal boundary shape 

ro 
OJ 
CO 
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summarlzed in Table 5-1 and associated figures. Results of the !1ac 

Cormack computations for various \ / \ and ̂ ĵ V' values, as summarized 

in Table 6-1, ore given. 

In some of these cases the upstream boundary for the MacCormack 

scheme was equal to the curved downstream boundary of the trans­

critical calculation and corresponding flux boundary conditions were 

applied. In other cases, o certain degree of overlapping between 

the two co.mputational domains -vras adopted. 

First the complete results for ^j/^j, = "̂ 1. i.e. , the asymptotic 

case of negligible near field effect (see Figure 5-lU) are discussed, 

the respective velocity vectors and height contours being shown in 

Figure 6-3a to d. It can be seen that the increasing frictional 

effects cause the (self-determined) outer (frontal) boundary to in­

crease in width much more slowly [as would be expected from the 

theoretical formulae predictions. Equations (6.9) and (6.10)]. In 

addition, this effect is felt throughout the flow (as can be seen 

from a comparison of the velocity vectors), as might be expected from 

the Interfacial friction acting over the whole of the horizontal inter­

face (bottom) of the density current. The frictional effects can also 

be seen to decrease the velocity magnitude in general. This however, 

does not neccessarily increase the heights in the entire flow domain, 

as the simple Bernoulli Equation (3-67), no longer holds, due to the 

frictional effects. For the most part the heights do, in fact, 

increase apart from a small region near the outer boundary (see 
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Figure 6-3 Results for the supercritical region of the intermediate 

field, for III = Ul.2. 
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d) X^V = 0.10 (1) velocity vectors 

(2) height contours. 
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Figure 6-3d) where they actually decrease slightly. Also note that 

for increasing friction the velocity vectors in the downstream section 

become more and more parallel to, and approach in magnitude, the 

ambient velocity. 

^ = (:^'°) 
This phenomenon is clearly caused by the interfacial momentum transfer 

between the internal and ambient flows. 

In order to estimate how well these MacCormack solutions match 

the (one-diraensional) theoretical solutions given by Equations (6.9) 

and (6.10) for no friction and frictional effects, respectively, the 

boundary increase with downstream distance is compared in the log-log 

plot given in Figure 6-U. Only the extreme cases of no friction and 

X V =0.1 are shown, for clarity. The one-dimensional theoretical 
i 

values shown are calculated using approximate initial values of x^ "« 

1.6 b •« 7.2 and x "^ 1.6, b " 7.2, obtained from G5 as shown in 
' o ' oc oc 

Figure 6.1. The limiting coefficients of the power laws, 2/3 and 2/5 

(for convective and frictional treatment, respectively) are also drawn. 

It can be seen that although both the convective and frictional 

numerical solutions appear to be converging to these values, they 

have not yet obtained them - however, at this point downstream, 

neither has the value from the one-dimensional theory.' This is due 

to the initial conditions still having a large effect on the solution. 

The fact that in Section 6.2 the density current, which has small 
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Figure 6-U Boundary variation with downstream distance for one-dimen­

s ional model of Jirka et a l . , I980, together with numerical 

simulation for the supercriti-cal region of the Intcrinediate 

f i e l d corresponding to t / i . Ul .2. 
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initial dimensions has easily obtained these values, indicates that 

they would be attained eventually. In order to check this, Figure 

6-5 shows the supercritical region extended to larger distances 

do'-mstream, and in this additional region the current spreading 

approaches the behavior predicted from the one-dimensional theory as 

predicted. 

Figure 6-6 forms a summary plot showing the frontal boundary 

shape for the various friction cases (including zero friction), 

corresponding to \ / \ = ^X. This emphasizes the decrease in boundary 

spreading brought about by frictional effects. 

6.3.3 Additional Comments 

Mention should be made at this point of various limits of 

applicability of the MacCormack solution. 

High velocities: These occur particularily for downstream 

extensions for the frictionless cases of low 1.^/1^^ solutions, and 

are the reason that the solution for l ^ / \ = 3 (Figure 6-9) was 

terminated earlier than the other supercritical regions. These 

extremely high speeds cause the solution to become unrealistic 

{i.e. , exceeding the maximum possible velocity for frictionless 

cases) - a phenomenon also encountered by Garvine (I982), who used 

a different numerical scheme on a similar problem. This will be 

discussed further in Chapter 7. 
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a) X^V =0.0 (1) velocity vectors 

(2) height contours. 

Figure 6-5 Results for the supercrit ical region of the inter^di . te 

field for l^/l^ = 1,1.2 . downstream extension. 
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Figure 6-6 Variation of matched boundary curves with friction 

coefficient for the case of l.^/l„ = Ul.2. 
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a) X^V = 0.0 (1) velocity vectors 

Figure 6-7 Results fo 
(2) height contours. 

r the supercritical region of the intermediate 
field for yi^ . II,. 1. 
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a) \^V =0.0 (1) velocity vectors 

Figure 6-8 Results for the 

(2) height contours. 

supercritical region of the intemediate 
field for l^/l^ , 7.0. 
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Figure 6-9 Results for the supercritical region of the intermediate 

field for t /t, = 3.0. 
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b) X^V =0.1 (1) veloci '•V vectors 

(2) height contours. 
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Hon-orthogonality of grid: The initial upstream grid is 

orthogonal (chapter 5), but the frontal boundary generation destroys 

this orthogonality, especially in its close vicinity. This lack of 

orthogonality leads to a lack of diagonal dominance (Section 5.3) 

within the numerical scheme, and, eventually a divergence. 

In summary, the MacCormack scheme has been used to obtain 

solutions to the supercritical region, with an automatic boundary 

(and grid) generating facility, and also the option of including the 

effects of friction. 

The complete intermediate field solution, obtained by combining 

the solutions for the transcritical and supercritical regions will be 

discussed in Chapter 7. 



CHAPTER 7 

SUMMARY OF PREDICTIONS, COMPARISON WITH EXPERIMENTAL DATA 

AND ENVIR0N1.1ENTAL APPLICATIOIJS 

7-1 Complete P r e d i c t i o n s 

"^•^•i Summary of In t e rmed ia te F ie ld Result..; 

The r e s u l t s for the i n t e m e d i a t e f i e l d t r a n s c r i t i c a l region 

(With inner boundary determined by the r e l a t i v e n e a r - i n t e m e d i a t e 

f i e l d s t r e n g t h s , l^/l^ , Sec t ion 5.5-1) and i t s downstream super­

c r i t i c a l extension have been d iscussed in Chapters 5 and 6 , r e spec ­

t i v e l y . These are now combined, to ob ta in a complete d e s c r i p t i o n 

Of the in te rmedia te f i e l d , in the f igures su:™.rlzed in Table 7 . 1 . 

Figures 7 - 1 , 7-2 and 7-3 show the f u l l i n t e rmed ia t e f i e l d 

s o l u t i o n s , (both v e l o c i t y f i e l d ( i ) and c u r r e n t t h i c k n e s s ( l l ) ) . 

for t h e i r var ious . ^ / . ^ values . The d e l i n e a t i o n between the t ra 'ns -

c r l t i c a l and s u p e r c r i t i c a l regions i s i nd ica ted as a s o l i d l i n e . 

These f igures serve to i l l u s t r a t e the smaU changes which occur 

between l^/l^ . a l u e s of Ul .2 , lU. 1 and 3 .0 , r e s p e c t i v e l y . The 

f i r s t serves to i l l u s t r a t e the behavior of a d i scharge wi th in the 

asymptotic reg ion , while the second and t h i r d a r e r e l a t i v e l y equaUy 

spaced on a logar i thmic s c a l e , t o i n d i c a t e the behavioura l changes 

with t j / t ^ va lues . 

The e f f ec t of i n t e r f a c i a l f r i c t i o n on the in t e rmed ia t e f i e l d 

behaviour i s I l l u s t r a t e d by p re sen t ing the i n t e r n a l flow f i e l d s for 

-250-
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Table 7-1 

Summary Table of the Results Presented for the Full Intermediate Field 

* I 

grid 

X,V 

0.0 

0.01 

0.05 

0.10 

Ul.2 

05 

Fig. 

7 - l a ( i , i i ) 

7-U ( i i i ) 

7-7 ( i i i ) 

7-U ( i i i ) 

7-U ( i i i ) 

7 - l b ( i , i i ) 

7-U ( i i i ) 

lU . l 

G6 

Fig. 

7 -2a( i , i i ) 

7-5 ( i i i ) 

7-7 ( i i i ) 

-

-

7-2b( i , i i ) 

7-5 ( i i i ) 

7 .0 

G i l 

Fig. 

7 -7( i i i ) 

-

-

-

3.0 

G8 

Fig. 

7 -3a ( i , i i ) 

7-6 ( i i i ) 

7-7 ( i i i ) 

-

-

7-3b( i , i i ) 

7-6 ( i i i ) 

(i) Denotes a plot of velocity vectors. 

(ii) Denotes a plot of height contours. 

(iii) Denotes a plot of frontal boundary shape. 
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a) X^V = 0.0 (1) velocity vectors ''• 

(2) height contours. 

Figure 7-1 Results for the full Intennediate field for I /I . 1.1.2. 
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a) X^V = 0.0 (1) velocity vectors 

"I r 

(2) height contours. '' 

Figure 7-2 Results for the full intermediate fi eld for l^/l^ . lU.i. 
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b) X^V = 0.1 (l) velocity vectors 

(2) height contours. 
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^) X^V' = 0.0 (1) velocity vectors '''' 

(2) height contours. 

figure 7-3 Results for the fuU Intermediate H o l d for t/l , „ 
I ' N ~ ^•"-
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the extreme cases of zero frict ion (a) and of X V = 0 . 1 (b). In 

addition. Figure 7-U i l l u s t r a t e s more direct ly the changes in the 

flow boundaries for these and intermediate f r ic t ional values of 

X^V = 0.01 and 0.05 for the case of l^/l^ = Ul.2. Figures 7-5 and 

7-6 compare the boundaries for the zero and extreme fr ic t ional case 

(X^V = 0.1) for ' j / t j j values of lU. 1 and 3-0. I t can be seen that 

the effects of friction become sl ightly stronger within increasing 

•f-j/^- values. 

Figure 7-7 i s a summary plot , combining the fr ic t ionless 

boundary plots from a l l the complete runs shown. This plot can be 

used as a predictive tool for forecasting density current shapes 

for various relat ive near to intermediate field strengths. 

"^•^•^ Additional Comments: Hear Field and Downstream Extensions 

a) Near Field 

The actual near field has not been plotted in the in ter ­

mediate field normalization that forms the basis for the preceding 

figures. This could be obtained in each case, by considering the 

appropriate l^/l^ value to convert the figures in Chapter U (e.fi. , 

Figure U-6) from the near field to intemediate field scaUng. 

Furthermore, i t i s important to note that the t ransi t ion 

between the near and Intermediate f ie lds , as considered In the 

modeling framework, provides a definite limit on the amount of nea 

field mlxin,: that can be achieved. The to ta l amount of near-field 

flow (at the transi t ion point) , (l/(M^5/'</j l /2j ^^ ^^^^^ ^^ ^ 

r-
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Figure 7-U variation of matched boundary curves, for the full inter 

mediate field, with friction coefficient for l^/l^ = Ul.2. 
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Flgure 7-5 Variation of matched boundary curves, for the fUU inter­

mediate field, with friction coefacient for I /I . lU. i . 
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Figure 7-6 Variation of matched boundary curves, for the full inter 

mediate field, with friction coefficient, for ^j^l^^ = 3-0. 



-262-

Figure 7-7 Comparison of intermediate f i e l d boundary shapes for 

various t^/t^j values, ( for zero i n t e r f a c i a l f r i c t i o n , 

Xĵ V = 0 . 0 ) . 
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function of the relative intermediate to near-field strengths in 

Figure 7-8. It can be seen that for larger relative field strengths 

a larger near field flow is experienced at the transition boundary. 

This is due to the near field extending out to smaller Froude numbers 

(F. = 1.05 for K/'-.^ = Ul) for larger \ / \ values and hence 

allowing more entrainment to take place, 

t) Downstream Extension: 

The preceding intermediate field predictions have been 

continued to a downstream distance x/'t-j. = 20. As has been discussed 

in Section 6.3, if the behaviour further downstream is of interest, 

this can be computed by using the "one-dimensional theories". In 

essence, this means an extrapolation as x^'^ f^^ the frictionless 

(convective spreading) case, or as x^'^ for the cases with inter­

facial friction. 

Far field processes, mostly in the form of ambient 

turbulent diffusion that will erode the distinct density current 

structure, will gradually govern at large downstream distances. 

However, as stated, these processes are outside the scope of the 

present analysis. 

7.2 Comparison with Experimental and Field Data 

7.2.1 Experimental Data 

Jirka et al. (I980) and Chen (I98O) investigated the density 

current formed by heated water discharged from a stationary source 

into a moving ambient. Huq (I983) studied density currents formed by 



Figure 7-8 Variation of to ta l near-field dilution, 5, with relat ive 

intermediate to near-field strengths, I /I 
1 N 
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either temperature or/and salinity differences. In both cases the 

discharge was from a moving source into a stationary ambient. 

Except for possible minor differences due to turbulence in the 

noving ambient flow (stationary source), both methods should produce 

similar results. 

The upstream intrusion length, x^, normalized by the inter­

mediate field length, -t̂  (Table 3-'*) is drawn as a function of the 

relative field strengths, ^j/\, in Figure 7-9. In addition, in 

order to investigate the width of the density current. Figure 7-10 

gives the relationship between the width at the source, b(o), with 

I 11 . 
V N 

The results of Huq (1983) and Jirka et al. (I98O) were carried 

out for, in general, similar initial flow properties. Typical values 

U/ 2 
in both studies are: momentum flux •=» 2000 cm /s , buoyancy flux 

<« UOOO cmVs^, and ambient velocity « 3 cm/s. These combine to give 

typical length scales of -(-jj "« 5 cm and l.^ P 2U cm. In particular, 

the ranges of values used in these studies are summarized in Table 7-2. 

The radial discharge device shape was similar in both studies, having 

a radius r = 7. 5 cm, with a slot height, h^, of between 2 and 6 cm 

(Jirka et al., I98O) and between 2 and U cm (Huq, I983). 

As shown in Figures 7-9 and 7-10, both of the above data sources, 

which were obtained using different techniques (moving versus 

stationary source) appear to be consistent with each other. Over 

their common range, the different data showed excellent agreement. 

In the range ^ J \ less than 30, the experimental data all 
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Figure 7-9 Comparison of experimenUl and f i e l d data with the numerical 

estimation of the normalized stagnation length, \xj/l^. 
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Figure 7-10 Comparison of experimental and field data with the numerical 

estimation of the normalized current width at the source, 

^\f ~ *-*) , as a function of the ratio of intermediate to 

near-field strengths, ^j/\-
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Table 7-2 

Range of Flow Parameters Used in Various Experimental 

Data Sources. 

\ (cm) 

\ (cm) 

*l/*N 

Jirka et a l . 
(1980) 

7-70 

2-15 

0.5-25 

Huq 
(1983) 

3-100 

2-7 

0.u-85 

Chen 
(1980) 

5-130 

8-130 

O.08-U.6 

R ( l - l8)xlo3 (2.3-lo.U)xlo3 ( l .7-3.2)xlo3 

" ' ^nr^ '^^^'^^ ^ ^^ ^^^ discharge model diameter, and 
V Is the kinematic viscosity. 
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have somewhat higher stagnation lengths, ^J^i> than predicted by 

the present theory. On the other hand, Huq's data points for ̂ j/̂ jj 

values greater than 30 fall considerably below the theory. 

The reason for the latter mismatch can be seen by considering 

the range of X.V values in both studies: X^V = 0.003 to 0.3 in 

Jirka et al. (1980) and X.V = 0.06 to 11 in Huq (I983). Thus some of 

Huq's data experience considerable frictional effects. Furthermore, 

large I /^ values are, for practical purposes, usually associated 

with large interfacial friction values, X^V. Clearly, for X^V 

values greater than 1, it must be expected that the convective assump­

tion (X.V = 0) for the transcritical region will lead to excessive 

errors and over prediction of the upstream stagnation length relative 

to the actually interfacially controlled condition. Thus, Huq's 

points for IJl^ greater than 30 seem clearly affected by interfacial 

friction effects. 

On the other hand, no obvious explanation appears to hold for 

the underprediction of the theory (by a factor of about 1.5) in the 

lower \ / \ range (less than 20). 

In striking contrast to both the data of Jirka et al. (I98O), 

and Huq (I983), the study by Chen (I98O) indicates considerably lower 

stagnation lengths (no width information being given). These stagna­

tion length values are plotted on Figure 7-9. It can be seen that 

relative to the previous two studies, the mismatch is of the order 

of 10. 
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Various p o s s i b i l i t i e s e x i s t , which might explain t h i s d i s ­

crepancy: 1) d i f ferences in the t^^/l^ range, 2) d i f ferences in 

Reynolds number, and 3) poss ib le d i f f i c u l t i e s with the radial d i s ­

charge device in Chen's experiment. In order t o i n v e s t i g a t e these 

p o s s i b i l i t i e s , the i n i t i a l condit ions and range of flow parameters 

used for Chen's experiments should be noted. Typical I n i t i a l con­

d i t ions are: momentum flux values of "« 7000 cmVsec^, buoyancy f lux 
k. 3 

" 200 cm / s e c and an ambient ve loc i ty of ~ 1.0 cm/sec, which give 

typ ica l length sca les of t̂ ^ « 5U cm and t^ <» 31 cm. The ranges of 

values used are again given in Table 7-2. The radial discharge 

device shape used had a radius r^ <» 7.6 cm and a he ight , h « 0. 3 cm. 

Thus, considerable overlap e x i s t s in the '.-/•'. values con­

sidered in a l l three experimental s tud ies . A l so , the Reynolds nuiifcer 

values for a l l experiments are wel l above a c r i t i c a l value of 1,000 

to 3,000, required for turbulent flow condit ions to re su l t . Thus the 

f i r s t two poss ible explanations for the discrepancies can be d i s ­

counted. 

However, the third p o s s l b l U t y should be considered further, 

as i t i s , in fac t , d i f f i c u l t to generate a t ru ly unlfonn now through 

a radial s l o t discharge device. This has to do with the fact that 

the flow i s decelerat ing as I t t rave l s from an inner chamber through 

a radial s l o t of f i n i t e length to the outs ide . D i f f i c u l t i e s In 

generating such flov;s have been noted e a r U e r by Jirka e t a l . ( I977) . 

The problem can be understood by the d i f f e r e n t i a t i o n of the 
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Bemoulli equation (neglecting friction within the slot) which gives 

where P is the pressure. For a radial slot with constant height, h^, 

the velocity i/ri.11 decrease by virtue of continuity, thus — (•̂ ) > 0, 

leading to an adverse pressure gradient. Thus the flow is liable to 

finite intemal separation effects, which may be triggered by any 

geometry or frictional imperfection within the model and, much more 

importantly, by an uneven pressure field in the ambient fluid surroun­

ding the device. In case of an ambient crossflow, there is, of course, 

a highly uneven pressure distribution (with maximum stagnation values 

on the upstream side). Also, the problem will be most severe if large 

ratios, r /r. exist (r = outer radius of slot, r. = inner radius of 
' o' 1 o 1 

slot = chamber radius). 

To overcome this problem, Jirka et al. (1980), used a model with 

several features: a short slot length, r^r^^ < 1 and intemal baffles 

and dissipation devices (wire screens) to minimize the effect of imper­

fection in the slot geometry. The shortness of the slot discourages 

the development of the adverse pressure gradients and resulting in­

stabilities. Another method of overcoming this problem was used by 

Jirka et al. (1977). They designed the upper surface of the radial 

slot so as to decrease the slot height with increasing distance from 

the inner radius, such that the flow area was constant, and hence no 

deceleration took place in the flow. Furthermore, they split the 
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inner chamber into several sections, each with a separate supply 

line. Despite these measures, some imperfections in the radial 

flow distribution persisted, albeit tolerable. 

Chen's model, hov^ver, had an extreme ratio, r /r " 2 , 
o' 1 

with a constant slot height, h , and thus strong adverse pressure 

gradients under any magnitude of discharge flow. This, together with 

the higher upstream outside pressure field, may well have signifi­

cantly reduce the discharge flux (and momentum flux) into the up­

stream direction, and therefore correspondingly reduced the stag­

nation lengths. Chen does not discuss this potential problem, 

but does not offer conflicting evidence either, in the form of, say, 

stagnant reference experiments with documented radial uniformity. 

7.2.2 Field Data 

Two types of field data are included in Figures 7-9 and 7-10. 

Buoyant discharge from a submerged single port on the 

ocean bottom, (photographs from the Allan Hancock Foundation, I96U). 

Riverine plume discharge into a saline estuary, (Garvine, 

I97U) (discussed in Section 7.3.1). 

The Initial discharge data for the first (submerged discharge) 

requires some manipulation to take account of the effects of ambient 

velocity and ambient nixing during its ascent to the surface. These 

considerations -̂ 111 now be discussed in more detail. The flow is 

discharged from a submerged single port at a rate, Q = 5.26 m^/s and 

at a depth, l( = 16.8 m and buoyancy g^ = 0.2U5 m/s^ into an ajubient 
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flow, u = 0.175 and 0.l60 m/s, respectively. If, during its ascent 
a 

from the ocean bottom to surface, the discharge is assumed to be a 

perfect plume, the follovdng computations can be made: The mixing 

with the ambient takes place such that the mass flux at any height, z, 

is given by Rouse et al.'s (1952) equation 

Q = 0.15 (Q,gy/3 ,5/3 (7.2) 

after Fischer et al. (1979)- Also, an averaged speed within the 

plume is given by 

Upon reaching the surface, the plume begins to spread horizontally 

such that the initial horizontal speed is approximately equal to 

the vertical velocity prior to the horizontal motion (Lee and 

Jirka, I98I). Using the above data, an estimate for the final 

dilution after the ascent is, S = |- = 3.̂ ,̂ and the initial spreading 

velocity, a = 1.0 m/s. In addition, the plume will acquire hori­

zontal velocity in the downstream direction due to bending brought 

about by the ambient flow momentum. An estimate of this bending can 

be obtained from Wright's (1977) trajectory law, vtiich can be stated 

where ^m is defined as 
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H V 2 

"a (7.5) 

and M^ is the initial source momentum flux. Equation (7.U) allows 

estimation of the angle, e, of the plume to the horizontal, as 

dx' (7.6) 

At a height, H, th is i s evaluated as the impingement angle, 6 ~ 65°, 

in this case. Once the angle of the plume to the horizontal i s kno-.«, 

a simple one-dimensional momentum analysis of the impingement prx^cess 

yields the relat ive discharge in the upstream (-x) direction, 

/I - cos e., 

'^-'%{ 2 -) (7.7) 

and in the downstream (+ x) direction, 

/ I + cos e., 
«d = SQ, ( — ^ — ^ ) (^ 3j 

For e. - 65°, Equation (7.8) yields Q̂  ~ 0.3 SQ, as opposed to 

«u = °-5 SQ,, which would hold for zerx> plume bending (or i n i U a l 

radial discharge). 

In principle , the actual non-uniform How distr ibution calcu­

lated in this manner could be specified as a boundary condition for 

the present modeling framework (as opposed to the radial uniformity 

assumed In the present study). However, an approximate procedure, 

for comparison purposes - especially as far as the prediction of up­

stream stagnation is concerned - may he to simply multiply the ent ire 

a u x quantities by the factor ( l - cos 0^) ( i . e . . 0.6 in the present 
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case) to account for the reduced upstream fluxes. 

If the data is treated in this manner, then it can be seem 

from Figures 7-9 and 7-10 that one data points fall very close to 

the numerical predictions for the stagnation length. It is slightly 

below the experimental data of Jirka et al. (I98I) and Huq (I983). 

The frictional effects alone could not account for this discrepancy, 

as low X.V values of - 0.3 obtained. However, it should be noted 

that slight discrepancies in the ambient velocity, flow rate, etc. 

could easily account for the slight differences observed. 

The riverine data from Garvine (197U) also shows very good 

agreement with the na^erical predictions. Again frictional effects 

are minor (X^V - 0 . 2 ) , and the slight discrepancies could easily 

te explained^y difficulties in estimating the field parameters, such 

as estimating an unifoi™ ambient velocity along the banks of an 

estuary having a sloping bottom. The exact method of treating the 

river plume data (which are generated by'a side channel inflow 

rather than a radial discharge.') is explained in the subsequent 

section. 

in summary, the predictions and the framework of the present 

r^unerical modeling study appear to be well confined by both different 

laboratory experimental data (largely discounting Chen's r e su l t s , 

however) and f ield data. 

7.3 Predictions 

The purrose of this section is two-fold: first to demonstrate 
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how the tabulated and graphed resul ts of the present study can be 

applied to different environmental discharge problems, without 

necessitating actual numerical model implementation. Second, to 

show both the magnitude and features of large scale environmental 

density currents and the i r strong sensi t iv i ty to ambient conditions. 

7.3.1 Application to a River Discharge 

The numerical solution presented in t h i s thesis was solved 

for a radial source discharging into an ambient flow. However, a 

r iver discharge into an ambient flow, 1̂ . e. , a l ine source along the 

X-axis rather than a radial (or point) source, can be thought of 

as approximately similar. 

The principal assumptions of the riverine application are , as 

shovm in Figure 7 -U . that the upstream edge of the rirer Inflow i s 

approximately the origin of the co-ordinate system and that near-field 

effects play a rather minor role. The l a t t e r assumption should 

hold if the inflow i s c r i t i c a l at the river mouth (with stagnant 

saline wedge intrusions) or only mildly supercr i t ica l , since the 

further mixing i s then strongly suppressed, a lso, in view of the 

unusually large source dimension, W (see also Jirka et a l . , 1981). 

The f i r s t assumption appears readily acceptable i f the near-field 

configuration of Figure 7-2 i s considered: instead of the radial 

c i rc le , whose upstream edge i s always close to x = 0 in the in ter ­

mediate field normalization, a l a t e ra l ly distr ibuted InHow can be 

asEuraod. 
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Figure 7-11 Schematic diagram of Riverine plume. 
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I t should be noted that an obvious l a t e r appl icaUon of the 

present numerical model woiUd be to run them using a grid and inner 

boundary condit ions equivalent to a river discharge. 

In order to predict the shape of the given r iver in trus ion in to 

the estuary, various r iver ine discharges were taken from the Connecticut 

River data compiled by Garvine (197U). These data are sunmarlzed in 

Table 7-3. Garvine quotes typ i ca l t i d a l v e l o c i t i e s , u , of ~ 1 m/s. 

However, due to the shaUoimess of the estuary c lo se to the shore, i t 

was assumed that s U g h t l y lower v e l o c i t i e s would be more appropriate, 

so that a value of u^ = 0 . 7 m/s (30^ lower) was taken. Table 7-U 

summarized the various f igures drawn. In order to est imate the d i s ­

charge ve loc i ty of the freshwater of the r iver , a c r i t i c a l s ec t ion 

was assumed at i t s mouth, enabling the v e l o c i t y , u to be ca lculated 

as 

"c = ( i f̂ O (7.9) 

where W i s the river width. Garvine's plume shapes were taken at the 

high slack t ide point in our attempt to minimize unsteady e f f e c t s from 

the o s c i l l a t i n g ambient ve loc i ty . 

F io ires 7-12 and 7-13 show predict ions of the r iver ine plume 

for various flow condit ions corresponding to two cases of the 

Connecticut river plume for which data arc ava i lab le . Figure 7-12 

show: u boundary mismatch of a factor of « I . 5 , while Figure 7-13 

shows even better agreement. The greater divergence in Figure 7-12 

might in part be due to the larger f r i c t i o n a l e f f e c t (X^V - 0. 3 ) , 
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Table 7-3 

Summary of Some of Garvine's (197U) Connecticut River 

Discharge Data. 

Run 

Q (m^/s) 

g ; (m/s^) 

r i v e r wid th . W (m) 

c r i t i c a l d i scharge 
v e l o c i t y , u^ (m/s) 

t , (m) 

u (m/s) 

^J (m) 
\l\ 
-J\ 
b ( o ) / t j 

Boundary pre 

» 
Q g ' 

j f i l e 

for 
3 u 

a 

A p r i l 2 1 , 

2800 

O.2U5 

1300 

0 . 8 1 

12 .5 

0 . 7 

635 

50.8 

2 .0 

3.6 

1972 

F ig . 7-12 

a r i v e r i n e d i scharge 

May 1 , 1972 

1600 

O.2U5 

1300 

0.67 

9-5 

0 . 7 

36U 

38 

1.9 

3.3 

Fig . 7-13 



Q 

1500 

2500 

1500 

2500 

Rl 

8o 
(m/s^) 

O.2U5 

O.2U5 

O.2U5 

O.2U5 

Table 7-U 

ver lne Discharge Predict ions . 

W 

1300 

1300 

1300 

1300 

u 

(m/s) 

o.b6 

0 .78 

0 .66 

0 .78 

u 

(m/s) 

0 .5 

0 .5 

1.0 

1.0 

^N 
(m/s) 

9.20 

10.5 

9.20 

11.9 

'1 

936 

1560 

117 

I9U 

I /I 
r N 
102 

1U9 

12.7 

16. u 

Case 

1 1500 0. PUS ITfin n .^, r, c ^ ^ . . , .__ 9 

2 

3 

1* 
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y (km) 

Numerical prediction 

- + - Physical data, April 21.1972 

(Garvine, 1974) 
0.3 (extrapolated) 

(km) 

Figure 7-12 Comparison of predicted with actual boundary shapes for 

the Connecticut River plume, April 21, 1972, (field data 

from Garvine, I97U). 
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y (km) 

Numerical prediction 

Physical data. May 1. 1972 

(Garvine. 197^) 

X ( km] 

Figure 7-13 Comparison of predicted with actual boundary shapes for the 

Connecticut River plume. May 1, 1972. (field data fron 

Carvlne, 197U) . 
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but is probably due, as discussed previously, to the difficulties in 

estimating the ambient parameters. 

The prediction in Figure 7-lU illustrates the strong sensitivity 

of the boundary shape to various changes in environmental parameters 

as shown in Table 7-U. Thus, small changes (+ 30fo) of the ambient 

velocities (assumed 0.70 cm/s in the data suspension of Figures 7-12 

and 7-13) can produce significant changes in the size of the density 

current phenomenon. 

7.3.2 Application to an OTEC Discharge 

The applications of the predictive techniques for the density 

current resulting from a 100 ̂ W (OTEC-lOO) installation are now 

demonstrated at typical sites under consideration for early install­

ations (Hawaii and Puerto Rico). 

7.3.2.1 Ocean Baseline Conditions 

A complete prediction of the intennediate field is complicated 

by the fact that detailed data are not presently available at the sites 

of interest. The data gathering and display effort by Thomas et al. 

(1979) for a Gulf of Mexico OTEC Study site represents an important 

step in the direction of a more complete characterization of OTEC 

sites. From this study, vertical temperature and velocity distri­

butions and a long term record (17 days) of the temperature and density 

variations within the the thermocllne have been shown in Figures 3-2 

and 3-U, respectively. Figure 3-3 summarized typical density profiles 

from the Gulf of Mexico, Hawaii and Puerto Rico. However, velocity 
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measurements below the surface and in the region of the thermocline 

are very limited. The following estimates are available: 

Gulf of Mexico Typical = 15 to 20 cm/s 

Extreme = 0 to 50 cm/s 

Puerto Rico Typical = 10 cm/s ) Based on geo-

) strophic 
Extreme = 0 to 20 cm/s ) calculations, 

Atwood et al., 
(1976) 

Hawaii Typical = 10 to 15 cm/s ) Near shore 
) measurements 

Extreme = 0 to 30 cm/s ) Bathen (1977) 

Based on these background data, values of Brunt Vaisala frequencies 

of N = 0.010, 0.015 and 0.020 s'-*-, and of ambient velocities of 
u = 0.10 0.15 and 0.20 m/s were selected, as shown in Table 7-5. 
a ' ' 

7.3.2.2 Plant Design 

Various OTEC intake and discharge configurations are under 

study, no candidate design having evolved at this stage. Of funda­

mental importance for the subsequent flow field is whether a mixed 

or separate mode (see Section 1.2) is adopted for the condenser and 

evaporator effluents (Jirka et al., 1977; Adams et al., 1979). This 

choice determines the amount of mixing and the terminal level of 

the effluent, it having moved vertically within the ambient ocean 

until this equilibrium level (if a linear stratification) or inter­

face is reached. For simplicity, a mixed discharge design is 

assumed, but with a variable mixing ratio, S. Various studies 
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(op. cit.) have related the dilution to the plant design parameters. 

these suggesting the adoption of three dilution levels. 

Mean Low High 

S = 5 S = 2 S = 1 0 

Alternat ive ly , the computed r e s u l t s following can be applied t o 

separate discharge modes. In that case , the d i l u t i o n factor would 

be twice as large. 

The 100 HŴ  OTEC plant flowrate i s given by Q - looo m^/s. 

a typ ica l discharge ve loc i ty being taken as U = 2 m/s 

7 - 3 . 2 . 3 Appl i cab i l i ty of the Present Model to OTEC Discharp;es 

I t should be noted at t h i s point that the modeUng e f f o r t con­

tained in t h i s study, while devised for a l l three s t r a t i f i c a t i o n cases 

described in Section 3 . 1 , Is only carried out for Case A, i . e . , a 

surface discharce on a homogeneous ocean. The d i f ferences between 

t h i s model and that for Cases B and C ( i n t e r f a c i a l spreading and 

equilibrium l e v e l spreading in a l inear s t r a t i f i c a t i o n , respect ive ly ) 

l i e s in the mixing charac ter i s t i c s in the near - f i e ld . For Case A 

s t r a t i f i c a t i o n , the entrainment of ambient f lu id reduces the e f f e c t i v e 

buoyancy while increasing the Qows. whereas for Case. B « ,d C. flow 

augmentation only occurs due to the entrainment cons i s t ing of approxi­

mately equal amounts of more and l e s s dense f lu id . (This can be seen 

from the governing equations in 3-2) . The intermediate f i e l d , how­

ever, Which does not experience entrainment, could be used for both 

Cases A and B. Thus, in order to apply t h i s model to oceanic 
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conditions, several assumptions have to be made: 

i) The intermediate flow field is assumed diluted by the 

values of S, given in Section 7.3.2.2. This is equival­

ent to saying that this is the dilution which occurs 

during both its vertical rise and the horizontal near-

field motion. This assumption is borne out by the 

experiments of Huq (I983), who measured total dilutions 

for a radial discharge into a linearly stratified ambient 

as « 3.5. 

ii) The values of density differences felt by the density 

current are estimated by the following process: The 

effective gravity, g' is obtained from the linear strati­

fication by a function of the local vertical height of 

the density current, h. An averaged value for this can 

be obtained by assuming a value, equal to one half of the 

stagnation height, h^. Thus the effective gravity 

obtained from 

g' = N^h . C^-IO) 
°o s 

A value for the stagnation height is obtained, using the 
u ^ 

relation h = C„ -fr (Table 3-'*). Equating these two 

expressions, yields 

g ; = V ^ N u ^ , (7-11) 



Table 7-5 

OTEC-iOO I n t e r a t i l . t e r i t l a Predict ion! . 

^^^ ^ i ± -^yyy^zykytyyy 
, 0 nin '̂  °°°°3o ;̂ ; ;;; r;^ ^̂  
? 0.010 0.10 10 0.0010 500 < - « ^ 7 U.39 

' ^ ' '500 0.00020 ?5l 398 

0.0020 500 5 ;,5oo O.OOO^ J78 796 U.Ul ~ 

- 0.015 0.15 10 0 . 0 0 ^ 500 5 ,500 O.OOCU. 170 2 5 , 1 5 3 , „ 

' o-oi'^ 0 . . , 1 , 3 0 . . . ^ , , ^ „ ^ ^^^ ^ • -

0 0 1 , 0.10 S.7 0.001, 5 . 10 ^ „ . _ ^ , J • • 

' ° ° " ° " ^ - » • - ' ^ ^ .000 0 .0007, 

i - W 0.01. 

0.16 ?> 

^ 5 239 1.16 O.Oli 
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which is the relation used to calculate g^ in Table 7-U. 

The value of effective gravity would, for the surface 

case (A) be divided by the dilution value S. However, 

in an attempt to more accurately represent Case B, the 

dilution effect on the effective gravity is ignored, the 

value g' being assumed to apply throughout. 

7.3.2.U Density Current Sensitivity 

The various runs summarized in Table 7-5 and plotted in 

Figures 7-15 (boundary shapes) and 7-l6 (boundary heights) were 

designed to test the density current sensitivity over the possible 

ranges of ambient conditions. The effects of variations in the 

ambient velocity are investigated in Cases 1, U and 5. It can be seen 

that the current experiences a great sensitivity to this flow param­

eter, with large boundary changes for small velocity variations. 

Stratification changes are investigated in Cases 1, 2 and 3, 

while volume changes are investigated in Cases 1, 6 and 7. It can be 

seen that the density current is very sensitive to any changes in 

ambient conditions, but rather more sensitive to changes in stratifi­

cation, and, in particular to ambient velocity, than to discharge 

volume. 

In all cases it can be seen that the current has horizontal 

dimensions of the order of kilometers, while vertical dimensions are 

only of the order of meters, that is, a wide, thin density current is 

produced. Due to its great sensitivity to the ambient conditions. 
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Figure 7-l6 OTEC-lOO sensi t iv i ty runs: side view 
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where reasonably small changes cause current boundary variations of 

the order of kilometers, an undersUnding of the basic sens i t iv i ty 

processes (and ambient conditions) i s environmentally Important. 



CHAPTER 8 

SUl-MARY, CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

A numerical study has been carried out of the highly two-

dimensional density current flow field resulting from the critical 

or supercritical discharge of one fluid into another of different 

density, which may be moving. Previous studies had either been of 

a one-dimensional nature, (assuming that the one-dimensional asymp­

totic solutions applied immediately, which obviously ignores all 

two-dimensional flow features), or, in the case of Garvine (I982), 

had required the input flow (such as a riverine discharge into an 

estuary) to be directed downstream such that the property of super­

criticality was never violated. This meant that upstream intrusions 

(which are clearly visible, both for riverine discharges (Figure 

1-3) and for radial discharges (Figure l-l)), were totally neglected, 

despite the importance of these phenomena when the extent of the 

density current is required to be known for design features (such as 

inflow relative to discharging cooling water flows for power plants, 

or relative OTEC plant sitings within energy parks to eliminate inter-

plant recirculation possibilities, to give but two examples). 

The analytical treatment and numerical model formulation for 

the entire density current was carried out by dividing the density 

current into two regions: A near-field region and an intemediate 

field region. Different relative strengths of these fields (as 

measured by the ratio of their respective length scales) ultimately 
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control the total flow dynamics. The conclusions drawn from each 

of these models will be discussed separately in the following 

sections. 

8.1 The Near-Field 

The near- f ie ld i s the region of supercr i t i ca l entraining 

flow occurring a f ter the f lu id i s released frx.m the source. The 

theoret ica l framework for t h i s region was developed for three d l f f e r -

erent s t r a t i f i c a t i o n condit ions , (Case A: Surface source with 

homogeneous ambient. Case B: Interface source with homogeneous 

ambient, and Case C: Equilibrium source with l inear ambient 

s t r a t i f i c a t i o n ) . However, the f ina l numerical model appl icat ion 

was l imited to the case A s t r a t i f i c a t i o n . This s t r a t i f i c a t i o n case 

has rather di f ferent flow dynamics from the others. This i s due to 

entrainment only occurring on the lower interface for a surface J e t . 

result ing in a reduction of buoyancy while preserving the t o t a l 

buoyancy f lux, -whereas symmetric entrainment keeps a constant 

buoyancy for the other cases. 

The numerical scheme adopted to model the depth integrated 

equations i s the e x p l i c i t , marching, f i n i t e di f ference scheme of 

MacCormack (1971). This was applied for a radial surface discharge 

into both a stagnant and moving ambient. On the bas i s of a compari­

son Of these r e s u l t s , a s l ^ l i f l e d model for the case of discharge 

into a crossflow was developed, involving sh i f t ing the c i rcu la t ing 

symmetric r e s u l t , from the stagnant case downstr«m. using a Galilean 



-295-

transformation, to account for the ambient flow. 

Ultimately, in combination with the subsequent intermediate 

field model, it is demonstrated that there is a significant inter­

action between the two regions. The dynamics of the near-field, 

such as mixing, point of flow criticality, etc., have been shown to 

be intimately related to the properties of the intermediate field, 

and vice versa, as illustrated by the transition conditions for the 

near-intermediate field boundary. In particular, the total near-

field dilution is controlled by the cut-off imposed by the inter­

mediate field boundary condition. Thus a strong near-field will 

affect the intermediate field flow dynamics, by causing the tran 

sition boundary to be much enlarged with supercritical velocities 

existing along it, which thus cause an enlarged intermediate field, 

and density current, in general. Alternately, a relatively larger 

intermediate field allows the near-field to continue its entraining, 

expanding flow for longer before the transition point occurs, but 

when it does, the flow is critical (for the asymptotic case of very 

large intermediate field), leading to lower transition velocities and 

a smaller density current in general. 

8.2 Intermediate Field 

The intermediate field is the region of transcritical non-

entraining flow, occurring after the flow has passed through the 

near-field. The intermediate field can be subdivided into two 

regions, the transcritical region, which includes both super- and 
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subcr i t i ca l regions, (the l a t t e r of which mainly occur in the up­

stream intrusion rer ion) , and the t o t a l l y supercr i t i ca l region, 

which includes increasing Important f r i c t i o n a l e f f e c t s , and occurs 

af ter the flow has passed through the t r a n s c r i t i c a l region. As no 

entrainment i s assa-ned to occur in the intermediate f i e l d region, 

both s t rBt i f i ca t ion coses A and B can be described by an i d e n t i c a l 

model. 

The t r a n s c r i t i c a l part of the intermediate f i e l d , e s p e c i a l l y 

for large near- f ie ld strengths , i s composed of strong Internal 

hydraulic jumps and two-dimensional behaviour, inc luding, in par­

t i c u l a r , the upstream Intrusion region. The depth-averaged equations. 

Which are solved for , have been sho;„ to f o r . a hydrauUc analogy 

for the compressible gas flow equations, which suggested the modifi­

cation of the transonic gas flow program of Jameson and Caughey 

(1979) to solve the inv i sc ld t r a n s c r i t i c a l now equations. 

The depth-averaged equations for the supercr i t i ca l flow region 

including the In ter fac ia l f r i c t i o n e f f e c t s , are solved by, again, an 

application of the MacCormack scheme. 

The inner boundary conditions for the t r a n s c r i t i c a l flow region 

are, as already discussed, transmitted by the condit ions a t the tran­

s i t ion boundary. A c ircu lar , equi-energy boundary condition 1 . 

assumed. 

The intennediate f i e ld Is solved for various re la t ive i n t e r ­

mediate to near-f ie ld strengths. I t was shown that two asymptotic 

l imi t s e x i s t , for t^/^,^ . „ ( „ , , p , . , , , ^ ^ _ ^ ^ ^ _ ^^^ ^^^ ^ ^ ^ 
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near-field effects, l-^l\ - 0 (or in practice, < l). 

The frictional effects entering the solution in the super­

critical region are found to affect the whole of the flow field, 

rather than just the boundaries, causing the velocity vectors to 

become aligned with the ambient flow, and hence conform with the 

elementary one-dimensional theories. In the absence of frictional 

effects, the convective flow would tend to "slide" over the surface 

of the ambient, leading to unrealistically large velocities - a 

problem also encountered by Garvine (1982). The frictional effects 

also have a significant influence on the boundary shape of the 

density current. 

An iii5>ortant feature brought out by these models is the 

"memory" of the flow, in that, differences in initial conditions, 

such as initial widths as flow distributions, will be 'remembered' 

downstream. The flow, once its asymptotic .spreading rate is reached, 

will retain this information as a constant width difference throughout 

the whole of the downstream region. 

8.5 Suggestions for Future Work 

Obvious extensions of this study present themselves: 

1. Linear ambient stratification (Case C), should be accounted 

for within both the transcritical and supercritical numerical model. 

This might be preferable where the results are being used for pre­

dictions in an ambient ocean. In particular, the discussion in 

Section 2.2 indicates that for given upstream flow conditions the 
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internal ju-Tips will be less strong, and hence move easily modeled 

by the constant energy assumption. 

2. Frictional effects should, eventually, be Included both 

in the t ranscr i t i ca l and MacCormack models. This i s not possible 

in the former, potential solution, but has already been lncori)orated 

into the supercri t ical MacCormack scheme. 

3. The MacCormack scheme, in general, proved to be of use for 

a great variety of supercri t ical flows. In the present study i t was 

applied to entraining and frict ional flows. Also, i t was applied on 

both specified and self-generated domains, indicating that i t could 

easily be applied to flows through part icularly shaped regions -

curved boundary conditions being easily accounted for by the f in i te 

volume scheme which i t contains. 

U. Both of the fundamental models, 1 .̂̂ . , the MacCormack 

scheme for the supercrit ical region, and the t r ansc r i t i ca l model 

offer considerable f lexibi l i ty to'rfards the modeling of other types 

of s t ra t i f ied and free surface flow conditions. 

In part icular , the flow of i n i t i a l l y supercri t ical flows down 

spillways with possible transit ions to subcrit ical n.ows, could be 

predicted using this combination of methods. 

5. In the case of j e t s that are not discharged at the i r 

equilibrium level {i.e., with a rising or falling near-field t rajec­

tory) , the develop.ment and matching of a move appropriate near-field 

model to estimate the i n i t i a l mixing should be developed. 

6. Another extension which Might be incorporated into the 



-299-

model might be a method of accounting for bottom topography within, 

say, a river or estuary, where the relative density current to total 

depth ratios are significant, and hence would be likely to affect the 

boundary shape, as discussed with regard to the drag coefficient in 

Section 2.1. 

7. unsteadiness in ambient conditions, such as velocity, 

4- A fr,r- Thi q has already been done in an approxi-should be accounted for. Ihis nas •ij.i'^a^j 

.ate way (using dimensional arguments by Jirka et al. (I98O)). .ut due 

to the constantly fluctuating environmental parameters, a more 

accurate method would be appropriate. This should involve incorpor­

ating an actual time dependence into the models used. 

8.U Comparison with Observations 

The numerical results from this modeling procedure have been 

compared with several sets of experimental data. The experimental 

results of Jirka et al. (I98O) and Huq (1983), were considered. Both 

ir̂ volved discharging a bouyant fluid onto the surface of an ambient 

Which had a relative motion con^ared with the source. A good agree­

ment was Obtained with both these data sets. No agreement was ob­

tained, however, with the data of Chen (I98O), who carried out 

Similar experiments. This mismatch, however, may be attributed to 

possible problems in his discharge flow generation. 

Thus good agreement was obtained, with the data of Jirka et al. 

(1980), and Huq (I983), especially as a certain variability is expec­

ted for the turbulent phenomenon considered. 
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8. 5 Environmental Applications 

The datii woi . applied to environmental problems of two differ­

ent types. 

Riverine plumes formed by fresh river water discharge 

into coastal water. 

OTEC discharges. 

Both of these applications Indicate that the resulting density 

current should have a large horizontal extent, (» km) but shallow 

vert ical extent (>« m). 

Considerable sensi t ivi ty was found to ambient environmental 

conditions such as u and g' (N) . 
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APPENDIX I 

OCEAN THERl'yiL ENERGY CONVERSION (OTEC): 

PAST, PRESENT AND FUTURE 

l - l H i s t o r i c a l Development 

The p r i n c i p l e behind OTEC was f i r s t proposed by the French p h y s i c i s t 

Arsene d 'Arsonval ( I88I ) who suggested u t i l i z i n g the temperature 

d i f f e rence between a warm spr ing in P a r i s and the co lde r waters of 

the Seine t o d r ive a hea t engine which would genera te e l e c t r i c i t y . 

The hea t engine he proposed vjas a c losed cycle system as shown i n 

Figure I - l using sulphur dioxide as a secondary o r i n t e m a l working 

f l u i d . This v/ould be a l t e r n a t e l y evaporated by the warm water n o w , 

made t o dr ive a t u r b i n e , and condensed by the cold water flow. 

L a t e r , h i s f r iend end s tudent Georges Claude (Claude, I928; 

Boucherot, 1928; Claude and Boucherot, 1928), suggested an open cycle 

system using sea-water as the working f l u id . He b u i l t a 60 kW p l a n t 

and succeeded in genera t ing e l e c t r i c i t y both along the River I'.euse 

in France, and during 1930, in the ocean off the coas t of Cuba. In 1933, 

Claude transformed the 10,000 ton cargo ship Tunis ie i n t o t he f i r s t 

n o a t i n g p o t e n t i a l OTEC p l a n t . However, due t o d i f f i c u l t i e s in l a y i n g 

the 650 m long and 2.50 m iri.de cold water pipe r e q u i r e d , the p r o j e c t 

was abandoned. 

A 'tO .'-iW p r o j e c t , Abidjan, was proposed by Claude i n I9U0. 

However, i t was soon transformed i n t o ft 10 IM open-cyc le , shore based 
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Figure I-l A closed-cycle OTEC heat engine (after Cohen, 1979/80) 
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plant, with two units of 3.5 t-Me net power ond a U km cold water pipe, 

being taken charge of by the government company 'Energie des Mers'. 

During the period until 1955 various investications were made of the 

heat engine system, and pipe laying methods, such that it became 

clear that the Abidjan project was technically feasible. However, 

political reasons, coupled v.ith the very low cost of oil during this 

time led to the plant never being constructed. 

A more detailed review of the French development is given in 

Marchand (1979). 

1-2 Present Day OTEC Technolofr/ 

In low latitudes, a well mixed region, extending from the sea 

surface to 50 or 100 m depth, becomes warmed to about 25 C due to 

the absorption of solar radiation. Warm upper ocean curî ents move 

pole'.rards, necessitating deep ocean currents to carry cold water 

equatorwards, so that temperatures of around 5 C are experienced at 

1000 m depth. Thus, a significant vertical temperature variation is 

maintained in the ocean, even though its form and magnitude may change 

with latitude, local weather variations, season, etc. Typical 

tropical or subtropical vertical density profiles are given in 

Figure 3-2, '<(hile Figure 1-2 gives annual average monthly temperature 

differences ( A T ) between the ocean surface and the 1000 m depth, 

showing that large areas have average monthly AT values greater than 

20 C. Thus, although the thermal gradient is a low grade energy 

resource, it is at least plentiful, free and renewable. 
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Figure 1-2 The annual average monthly temperature d i f f e r ences between 

the ocean surface and 1,000 m depth, shown in degrees 

C e l s i u s , ( a f t e r Cohen, 1979/80). 



-316-

Water in these upper and lower layers foms two heat reservoirs 

which can be ut i l ized by a heat engine for conversion into useful 

energy (e.^. , e l ec t r i c i ty ) . In a closed cycle system as shown in 

Figure I - l . the internal working fluid used i s ammonia, 

rather than the sulphur dioxide suggested by d' Arsonval (I88I). 

Heat i s transferred between the water and working fluid by means of 

heat exchangers. This heat transfer process takes typical ly about 

50^ of the temperature difference between the reservoirs to accomp­

l i sh (Lavi and Zener. 1975)- Assuming a temperature difference 

( A T ) between the reservoirs of 20 C, and a warm water temperature 

of 25 C, the ideal thermal efficiency of an OTEC plant i s 

11 = 20/(25 + 273) = 6.75- Due to the temperature loss across the heat 

exchangers, together with additional parasi t ic losses such as in 

the ocean -.rater pumping systems, this efficiency is in practice reduced 

to about 2^. This very low efficiency necessitates very large water 

now rates: for example, to produce 100 MW, a to t a l now rate of 

1000 rn^/s i s required (Jirka £ t a l . , I98I) while for a 1000 MW plant , 

the flow rate v/ould correspond to half the Mississippi 's mean d is ­

charge! This vast amount of water required must be increased if AT 

i s reduced. Such a reduction could occur due to local weather 

anomalies, seasonal sea surface ten^Jerature variations or by recircu­

lation of the discharged water Into the warm water in le t . However, i t 

can be reduced if the exchanger becomes more efficient. Thus, i t can 

be seen that a key part of OTEC development must be the design of the 

heat exchangers. 
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Another possibility for the heat engine is the open cycle 

approach described in some detail by Cohen (1979-19S0) which uses the 

sea vrater itself as the -.rorkinc fluid, this being deaerated and flash 

evaporated such that the steam produced drives the turbines. However, 

the technology for the closed cycle systan is at present further 

advanced, so that this is the major option currently pursued. 

On August 2, 1979 the first floating, at sea OTEC plant to 

produce net power, I-ilNI-OTEC, went into operation off Ke-Ahole Point, 

Hawaii, and continued until December 1979. This barge-raounted 

experimental plant, discussed in detail in Trimble and Potash (1979) 

was built to test key power system components, and succeeded in 

producing 50 B-Je of electricity (gross) or about 10 KWe of net power; 

it also gave valuable information on the pressing problems of bio­

fouling, corrosion and their countermeasures. 

In April I98I, OTiiC-l, a T2 tanker converted into a 1 MV/e test 

facility, commenced operation which was planned to continue for three 

and a half years. An overview of the OTEC-1 design is given in 

Svensen (1979). The primary purpose of this plant is again to 

operate and test an OTEC module at sea, assess developing heat 

exchanger technology, evaluate biofouling and corrosion and to deter­

mine potential environmental impacts. 

The Japanese have also been investigating their ovm OTEC 

possibilities, as described in Homa et al. (1979). In 197U they 

established an OTEC committee to overview their research, and they are 
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now planning their o-.m 1 W/e tanker based test plant to facilitate 

the design of a 100 IWe plant. 

1-3 Potential Future OTEC Uses and Applications 

The temperature gradient which forms the ocean thermal resource 

has the great advantage of being renewable. It is also steady, day 

and night, enabling OTEC plants to be used as baseload plants, i.e. , 

producing electricity continuously, and hence comparable with other 

baseload sources such as coal and nuclear power plants. The OTEC 

electricity must either be transjxjî ed to shore via submarine cables 

or be used in situ. The latter option entails the manufacture of 

energy intensive products such as aluminum, ajnnonia, hydrogen, 

chlorine and magnesium. This would enable plants to operate in a 

'grazing' mode, moving to a region of maximum thermal resource as 

required, whereas electricity transmission to shore, requires them to 

be stationary. However, plants in the Gulf of Mexico could provide 

valuable baseload contributions to the Southern States, a region having 

the lowest electricity reserve margin and fastest electrical growth 

in the U.S. (Cohen, 1979-1980): also it would supply the U.S. Islands 

such as Puer-to Rico and Hawaii as discussed in Richards (1979). This 

'island strategy' is also particularly interesting as frequently very 

deep water is found relatively close to the islands enabling reduction 

of trans-mission costs and energy independence for the islands which 

frequently are dependent on oil generated electricity. 

Typical sizes of commercial pla'nts would be from 10 MWe to 
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500 MWe, the limiting size probably being determined by the ability 

to construct the platforms cost effectively and also due to recircu­

lation possibilities between the plant outflow and inflow, reducing 

the thermal resource, and environmental considerations (Cohen, 

1979-1980). These plants may operate individually or in energy 

'parks' composed of several plants. This would reduce transmission 

costs, but careful consideration of water recirculation between 

plants reducing the thermal resource would have to be made, as in 

Jirka (1978). 

A more detailed summary of general technical developments, 

remaining problems, and future plans is given in Vadus and 

Giannotti (I980), while other general overviews are given by Jirka 

(1979) and Cohen (1979-1980). 



APPENDIX II 

HISTORICAL OVERVIEW OF THE HYDRAUUC ANALOGY TO 

COMPRESSIBIi; GAS FLOW 

The mathematics of this analogy is discussed in Section 2-2. 

This appendix will confine itself to the historical usage of the 

analogy. 

The similarity between compressive shock waves in gases and 

the surface water waves found around obstacles in rivers was noticed 

as early as lBS7 by the Austrian physicist E. Mach (l887). Later, 

In 1911, Isaachsen showed one of the first experimental demonstrations 

of the analogy, applying it to, among other things the study of nozzle 

now (Isaachsen, I9II). It vns not until 1920 that Jouget (Jouget, 1920) 

established the basic mathematical relationships comprising "the 

hydraulic analogy", 1̂ .̂ -, the analogy between free surface water flow 

and compressible gas now. He realized that, due to the nature of 

the equations, the analogy only applied to a gas having a ratio of 

specific heats, Y = 2 and not l.U as is the case with air. 

Thus, the basic analogy occurs between the two-dimensional 

now of an inviscld, homogeneous isentropic gas, having a constant 

ratio of specific heat capacities, Y, and the two-dimensional flow 

of an inviscld, homogeneous, shallow fluid experiencing no surface 

tension effects, and confined to a channel with a horizontal bottom 

and with vertical walls. The analogy states that, provided y for 
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the gas equals 2 then. 

\(gh = c = a = \/V gRT = V p 

water gas 

where h and h are water depths, p , T, p being density, temperature 
o 

and pressure, respectively of the gas, a the speed of sound in a 

gas and c the velocity of a surface wave propagation in a fluid. 

Thus measurement of the water heights gives information about the 

various gas dynamic parameters. It should be noted, however, that 

other effects such as capillary waves, have no part in the analogy. 

The main use made of the analogy in these and following cases 

were the investigation of air flows, supersonic and subsonic, around 

various obstructions, by means of experimental work on shallow, 

free-surface water nows. These hydraulic experiments at the time 

were easier to carry out than the gas experiments, the latter being 

much more difficult and expensive. 

One of the best known studies of the hydraulic analogy was 

made by Ernst Preiswerk, as part of his doctoral thesis now trans­

lated (Preiswerk, 1938, Parts 1 and 2). He completed a mathematical 

investigation of both subsonic and supersonic analogy methods 

(Preiswerk, 1938, Part l) together with a consideration of the 
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appllcabillty of the analogy In the presence of a discontinuity 

such as a jump or shock. He concluded that, in principle, a shock 

in a compressible gas with Y - 2, is not fully analogous to a 

hydraulic jump in water flow over a horizontol bottom (see Table 2-3). 

However, provided that weak discontinuities only are admitted, the 

analogy between the two nows is still satisfied to a first approxi­

mation. 

During the 19U0's and 1950's the usage of the hydraulic 

analogy gained in popularity, a detailed summary of its development 

and applications being given by Hoyt (I962). Some particular 

advances during this time, however, will be listed herein: 

The hydraulic analogy proved particularly useful, experimen­

tally, in the field of transonic flow. This is due to transonic 

wind-tunnel facilities encountering difficulties due to the shock 

waves generated being almost perpendicular to the bodies under in­

vestigation. This can be seen to occur for transonic cases (Mach number 

M ~ 1) , due to the Mach angle,a, where a = sin" (-) (Shapiro, 

1953) being near 90 degrees, where this is the angle the shock would 

make relative to the direction of the flow. Renections of the shock 

from the wind tunnel walls would thus arrive back close enough to 

the body to distoi-t the now field. In a hydraulic channel the 

hydraulic jumps analogous to these shock waves can be trapped easily 

(Hoyt, 1962), thus eliminating the problem. 

Laltone (1952), pointed out that the expression for the wave 
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velocity, c = \IW. which forms the basis of the analogy, as dis­

cussed in Section 2-3, only holds for negligible vertical acceler­

ations (Lamb, 19'+5). He found, experimentally, that c tends to 

. ^ , independent of the wavelength X only for small water depths, 

of the order of l/U inch. 

Crossley and Harleman (1952) extended the analogy to encompass 

unsteady rotational flow, making it applicable to accelerated tran­

sonic flows between curved shocks. They used a "towed model" type 

of apparatus to investigate transonic flow over wedge profiles. 

Ippen and Harleman (1952), pointed out that for both shock and expan­

sion waves, calculated values of h^/h^ agreed weU with calculated 

values of P /p but not so well with other terms in the analogy, i.e., 

pressure and temperature ratios. Thus they suggested a useful 

strategy which they called a "modified analogy" would be to use 

experimental height ratios to calculate density ratios, thereafter 

calculating pressure and temperature from aerodynamic relations. 

They used this method to predict flow around various shapes using 

the water channel. 

Various meteorological applications were suggested by Tepper 

(1950, 1952) who generalized the analogy to apply to not only one 

layer free surface flow, but to flow in two and three layers. He 

then used the method of characteristics to suggest an explanation 

for the erratic behavior of pre-frontal squall lines. 

Klein (1966) made a critical evaluation of the theory and 

limtations of the hydraulic analogj'. More recent usages of the 
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hydraulic analogy involve the investigation of flow through turbo-

machines. Blanvillaln and Thirlfays (1970) used free surface shaUow 

water to visualize supersonic now through turbine blades, while 

Le Hot and Bernard (1972) investigated the streamline pattern by 

using particles as tracers. 


