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The Point Kinetics Algorithm for FX2
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ABSTRACT

The two-dimensional space-time kinetics code FX2 is based on the
factorization approach to solving the time-dependent diffusion equations.
As such, it contains a three-level time step structure. The largest step
is the interval between shape function recalculations. Within this inter-
val are the time points at which coefficients of the amplitude function
equations are recalculated. Finally, there are time points used for
integration of the amplitude function equations, i.e., the point kinetics
equations.

In this memorandum the algorithm used to integrate the point kinetics
equations is described. This algorithm, an undetermined parameter
(weighted residual) method, uses subdomain weighting and piecewise quad-
ratic trial functions. The method is used in conjunction with an auto-

matic time-step-selection scheme, which is also described.






INTRODUCTION

The two-dimensional space-time kinetics code FX2 is based on the
fact:orizationl_3 (quasistatic) approach to solving the time-dependent
multigroup diffusion equations. That is, it is assumed that the flux
shape changes much more slowly in time than does its amplitude. Hence,
very few shape function recalculations are needed relative to the number
of amplitude function recalculations. The shape function calculations
are done by a two-dimensional inhomogeneous multigroup diffusion theory
calculation. The amplitude function calculations are done by the point
kinetics algorithm to be described in this memorandum. The algorithm
is an extension of a method devised by Kaganove4 to solve the conventional
point kinetics equations. Modification of Kaganove's method is necessary
in order to account for the effects of fuel motion that might occur dur-
ing disassembly or slumping accidents. Since the hydrodynamic effects
during disassembly are described on a moving mesh the modifications to
the point kinetics equations take the form of corrections to account for
moving precursors.

The derivation of the algorithm will be described first, followed
by a discussion of the input and output information required. Finally,

the computational logic involved in the solution will be described.

THE POINT KINETICS ALGORITHM

Solution Method
The point kinetics equations for FX2 are (using the definitions and

notation of reference 3):






] 515 & k0 =l m m
= 1
N ki 3 N+SZ1 A ns+sz Ag Eg * Q 1)

1
o= KE N - (gt ) n 1< s'<'m (2)

S bl

where
N = amplitude function,
p = reactivity,
B = effective delayed neutron fraction,
k, = eigenvalue of source-free adjoint equation (unity unless the

reactor is initially subcritical),
A = generation time,
Q' = external source,

\_ = decay constant for sth precursor family,

S
ng = weighted integral concentration of sth precursor family,
55 = correction to concentration of the sth precursor family due to

fuel motion,
k_ = loss coefficient for sth precursor family,
8y = effective delayed neutron fraction for the sth family as calcu-
lated on the moving mesh.
The first step toward obtaining a solution is to formally integrate Eqs. (2)
over the time interval tj-l <tz t..0 The result is

J
t
1) = gty p e |- [ :

(AS+KS(T)) dr]
ji=1
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t t B
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If Eq. (3) is substituted into Eq. (1), then

g K -1 m t
= (PTa, Tk-()-)N(t) + Zl A {ns(tj_l) exp [ Jt (Ag*eg (1)) er
j-1

S=

T it B!
S ' 1 1
+ Jt. : exp [} jt' (AS+KS(T)) dﬁ} K—-(t ) N(t') dt
j-

+ asct)} + Q' )
Next, assume the following trial solution for N(t) over the interval
tr EAE T
-1=F2Y

5 k
Ne(t) = kzo Ak(t-tj_l) (5)

K
- i k-1
o kzl k A (et ) (6)

The following residual is formed when the approximate solution is put into

Bao (4
aN § ky, - 1
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The parameters Ak are evaluated by the method of undetemmined parameters,
with subdomain weighting.5 The time-step selection technique developed
by Kaganove4 is used to ensure a stable, accurate solution.

It is obvious that A0 = NK(tj_l), so that only Al"“’AK’ need to
be evaluated over the time interval. Nested subdomains are chosen,
such that each begins at tj—l'
the next largest the half-interval then the quarter interval, etc., until

The largest is the full interval,

K intervals are chosen. Unit step functions over each subdomain are

the weighting functions. Mathematically, the weighting functions are

written as
Vr(t) = U(t) - U(t-tr) . T =0, .04,K (8)
where
(t;-t. ;) AL
Y = tJ-l g 2r-l il tj-l ¥ 2r-1 ©®)
(thus defining Atj = tj - tj-l) The method of undetermined parameters,
concisely written as
5
J Vr(t) RN(t) dt =0, T LyowersKy (10)
By
=1

can then be used to obtain K algebraic equations to solve for Al""’AK'
The parameters p, B8, A, £, Qs B; and kg are, in general, functions
of time. Since their functional dependencies cannot, in general, be pre-

specified, they shall be approximated by fitting to quadratic functions
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over time intervals - called reactivity time steps - that are, in general,
quite a bit larger than the point kinetics intervals. The functional be-

havior of the parameters can be written as

o _ r 2
p(t) = P(tJ_l) * (t tj_l) (al+23~2 tj_l) i d az(t tj'l) (11)
where
o= R (k-1 /k
p = —0, (12)
_ o _ 2
ES(t) T Es(tj_l) & (t tj'l) (C1$+2C25 tj'l) * CZS(t tj_l) ’ (13)
s (t) = ] (tak Da¥ chtete )5 1 70x £ o 16+ Do (-t )
Ay A j-1 §-1/*1s" “"2s 7j-1 2s j-1

T T (14)

2

Q'(t) Q'(tj_l) + (t'tj_l) (ql+2q2 tj'l) x qz(t'tj_l) (15)

where the coefficients have been evaluated at an earlier time tia which is
in turn set to zero, so that all times are those that have elapsed since

ti g Since Kg is a crude function, it is approximated as the initial value
over the time interval (i.e., Es) to simplify evaluation of the integrals
that appear in Eq. (7). When Eqs. (5), (6), and (11) - (15) are sub-
stituted into Eq. (10), with the weighting functions given by Eqs. (8) and

(9), the result is

K
kzl Reply 884 r=1,...,K (16)






where

k[Pt l)Atk+1 (ay+2ayt, 1)Atk+2 2Atk 3]
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Z ) [at] (k+1)15)k(ur)]
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+b S ) s k2 & )]} an
2s k +
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Spx = (p(t -8t + (ag*2a,t 1)T*32T

' ' 2
m BS Atr
¥ szl I (tj-l) (at, - Is,o(Atr)] % (bls+2b25tj-l) WeT - Is,l(Atr)

3
At
2 szl:_?al 5 Is,Z(Atr)]}>A % 521 [”s(tj-l)ls,o(Atr)

Atz Ati
e (tJ ot + (e t2c) .t - ) _7_.+ Cos 3

Ati Ati
g [Q'(tj-l)Atr = (q1+‘2q2tj-l) T = qZ TJ ’ (18)
and
x = k
Is’k(At) = Jt exp[-(AS+Ks)(t-t')] (t'-tj_l) dt!’
np=il
(at =t - tj_l), (19)

Some important features of the I-functions are described in the Appendix.

The set of algebraic equations represented by Eq. (16) can then be solved
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for the parameters Ak’ which are in turn substituted into Eq. (5) to obtain
the amplitude function at tj.

Piecewise quadratic functions (K=2) are used in FX2 because they have
worked very well in QX1. And, they are very well suited to be used in con-
junction with Kaganove's time-step-halving-and-doubling scheme for auto-
matically selecting the time step size. This time-step-selection technique

will now be described.

Time Step Selection

Suppose that a solution has been obtained at tj-l and that Atj has
been selected. Then, two independent solutions (sets of parameters) of
the point kinetics equations are found at tj. The first of these integrates
over the whole time step, yielding a solution directly at tj' TheAi?cond
solution is for only half the step, yielding a solution at tj-l + —71
The half-step solution is then extrapolated to tj' It will not be the
same as that determined directly, but it should be close. The degree of

closeness determines whether or not the solution is acceptable.

The two values are compared by forming the error norm

(tJ) i N(tJ)| d
Next(tj)

o INext

(20)

and comparing it with a preselected tolerable error e;. If e < g, then
the amplitude function N(tj) is acceptable and the solution can be found
for the next step. If, in addition, e < C g where C is a preselected
parameter less than unity (usually set to 0.1), then the next time step is

estimated to be ZAtj. Otherwise, Atj+1 = Atj.
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I1f, on the other hand, ¢ > €1» the solution at tj is not acceptable,
and the time step is halved. Two independent solutions to the point
kinetics eqzifions are again found, this time for t = tj-l + ﬁ;i-and
t= tj-l x _fl . Note that the first of these has already been made for
the original comparison and hence need not be repeated. The solutions
are again compared as described above. If an acceptable value of
N(tj_1 * ﬁ;i ) is found, the solution for tj willA:gain be attempted in
the same manner. This time, however, t = tj_1 - —fi at the lower end of
the time step, so that independent solutions are formed for t = tj-l +
%Atj andt=tj. A

If the value N(tj_1 o —71 ) is not acceptable the time step is
halved again and the calculation is repeated for the quarter step. Cal-
culation continues until an acceptable solution has been obtained for
t= tj. The procedure then begins anew to determine N(tj+l)’ etc., until
the end of the reactivity step is reached.

REQUIRED INPUT AND OUTPUT INFORMATION

The following information is needed upon entry to the point kinetics
algorithm: the amplitude function N(ti_l), the coefficients p(ti_l), ap,
1

(t:

j-17s bpgs Bags Q'(t;_5)» Bygs by

s
80 G5ty 1)y €190 S50 T
Q'(ti_l), 1> 9p» Es(ti_l), and the time interval (called the reactivity
step) over which these are to be used (i.e., ti-l to ti). These co-
efficients are evaluated by fitting the inner products for reactivity,

etc., from the previous two i-intervals to parabolas. The functions are
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then extrapolated to t = t,. The inner products are recalculated at t = t,
after N(ti) has been found. The recomputed values are compared with the
extrapolated values, and the necessary corrections are made.

Once the amplitude function is evaluated at t = ti» it is used, along
with N(ti_l) and N(ti_z) to evaluate n;, ny, and ng for use in the ex-
pression

en N(t. & .

ey! = M AR (Bhg s B st &)

; (21)

This extrapolation, which takes place once an estimate of tin has been
determined, is necessary to compute the energy generated over the i+l st
interval from the increase in fuel temperature. The estimate of N(ti+1)
obtained from Eq. (21) is, of course, later corrected by carrying out a
point kinetics calculation over the interval [ti, ti+1]'

In addition to the amplitude function information, the quantities

)
a
S

point kinetics calculation. These quantities, needed to properly update

and Bi, as defined in Eq. (19) of reference 3, are available from the

the concentrations of delayed neutron precursors, are given by the ex-

pressions
ti ti

o 1

a; = Kf; Jt exp [} Jt (AS+KS(T)) dr] (t-ti_l) N(t) dt (22)
=il

s g [ 4

bs = Kf; Jt exp |- Jt (As+zs(r)) dt (ti-t) N(t) dt. . (23)
il

We shall now outline the method of evaluating these quantities.
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Within the time interval [t, ,, ti] there are J point kinetics steps
(t0 =t 1 and L ti). Let us, therefore, evaluate the integrals by

sumning the components of each point kinetics step; specifically,

t-

- J 7 K
T - k
ag = 5, jzl Itj_l exp [ - (g*e.)(t-0)] (t-t; ;) kZO Ak(t-tj_l) dt (24)
t
J j K
] J - k
b = K?; jZl th-l exp[ - (Ag*e)(t;-1)] (t5-1) kZO Ak(t-tj_l) dt (25)

This is necessary because N(t) is a piecewise polynomial function over the

interval [ti_l,

interval. Finally, after some manipulations, it can be shown that

ti], such that its coefficients differ over each point kinetics

5 3 K
T | <
% 7 T j£1 (exp [- (g*e ) (t7t)] kZO A [Tg 1ap (885)
+ (tj_1 -t Is’k(Atj)]} (26)
S g i K
% ” 8t jZI i WG R kZO ALt I i (8ty)
SR ARG} (27

COMPUTATIONAL LOGIC

The logical sequence of the point kinetics solution is shown in Fig. 1.
The first step is to calculate the coefficients that appear in Eqs. (11) - (15).

Then, the time values are initialized,the convergence criteria are set, and the
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starting values of the point kinetics parameters are calculated. These
parameters will be updated later according to Egqs. (11) - (15). We are
now ready to solve for the Ak for the first time step.

We begin by calculating the I-functions needed for sty and Atl/Z
(see Appendix). Then, we can find the coefficients Rrk and Srk of Eq.
(16) for the full step and for the half step. The determinant of co-
efficients is formed for each step, and solved to obtain the values of
Ak for ty and t1/2. These, in turn, are used to find N(tl) and Next(tl)'
If they are not close enough to each other, then the time step is halved
and a solution at t1/2 is attempted. If I-functions for the half-step
are needed they are calculated. Otherwise, the determinants of co-
efficients for both the half step and the quarter step are formed and
solved. for the Ay-

When e < € the solution is considered to be converged, and the next
time step is selected. This next step is double the previous one if
gl 00 €q Otherwise, the step length remains the same. In either case
the point kinetics parameters are updated to the latest time step, as are
the precursor concentrations. An edit of the current information can
also be made at this time. If more I-functions need to be calculated for
the next time step they are so calculated; otherwise, the determinants of
coefficients are formed and solved for the half step and the full step.

When a converged solution has been found at t = ti (the end of the
reactivity step), the parabolic coefficients for &n N, needed to estimate
the amplitude function behavior over the next reactivity step are calcu-

lated. Then, the information is taken from the module to be used in other

parts of the program.

13
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APPENDIX

The Is,m(At) Functions

The I-functions are defined as

i -(AS+ES)(t-t') &
= e ' = ~
I n(4t) Jt e (et " e, At =t -t (A1)
j=1

From the definition, it is evident that

-(A_+c_) At
T Ty e RN | TS e (A2)
S,O e
S S

A

Using Eqs. (Al) and (A2), the following recursion relationship can easily be

derived:

-m I ()], m>1 (A3)

Finally, using Eqs. (Al), (A2), and (A3), a very useful expression for the

integral of the I-function is found:

t
T o
Jt I p(8t) dt = o1 I pep (8t (A4)

J=1

where
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Fizure 1. Logical Sequence of Point Kinetics Solution
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