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ABSTRACT

The two-dimensional space-time kinetics code FX2 is based on the

factorization approach to solving the time-dependent diffusion equations.

As such, it contains a three-level time step structure. The largest step

is the interval between shape function recalculations. Within this inter-

val are the time points at which coefficients of the amplitude function

equations are recalculated. Finally, there are time points used for

integration of the amplitude function equations, i.e., the point kinetics

equations.

In this memorandum the algorithm used to integrate the point kinetics

equations is described. This algorithm, an undetermined parameter

(weighted residual) method, uses subdamain weighting and piecewise quad-

ratic trial functions. The method is used in conjunction with an auto-

matic time-step-selection scheme, which is also described.
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INTRODUCTION

The two-dimensional space-time kinetics code FX2 is based on the

factorization1-3 (quasistatic) approach to solving the time-dependent

multigroup diffusion equations. That is, it is assumed that the flux

shape changes much more slowly in time than does its amplitude. Hence,

very few shape function recalculations are needed relative to the number

of amplitude function recalculations. The shape function calculations

are done by a two-dimensional inhomogeneous multigroup diffusion theory

calculation. The amplitude function calculations are done by the point

kinetics algorithm to be described in this memorandum. The algorithm

is an extension of a method devised by Kaganove
4
 to solve the conventional

point kinetics equations. Modification of Kaganove's method is necessary

in order to account for the effects of fuel motion that might occur dur-

ing disassembly or slumping accidents. Since the hydrodynamic effects

during disassembly are described on a moving mesh the modifications to

the point kinetics equations take the form of corrections to account for

moving precursors.

The derivation of the algorithm will be described first, followed

by a discussion of the input and output information required. Finally,

the computational logic involved in the solution will be described.

THE POINT KINETICS ALGORITHM

Solution Method 

The point kinetics equations for FX2 are (using the definitions and

notation of reference 3):
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s=1

s'•
n s = 7 N- ( X s+K s ) n s ,	 1 < s < m

where

N = amplitude function,

p = reactivity,

= effective delayed neutron fraction,

k
0
 = eigenvalue of source-free adjoint equation (unity unless the

reactor is initially subcritical),

A = generation time,

Q' = external source,

X
s
 = decay constant for sth precursor family,

n
s 

= weighted integral concentration of sth precursor family,

s 
= correction to concentration of the sth precursor family due to

fuel motion,

K
s	

loss coefficient for sth precursor family,

V = effective delayed neutron fraction for the sth family as calcu-

lated on the moving mesh.

The first step toward obtaining a solution is to formally integrate Eqs. (2)

over the time interval tj _ i_ < t< tj . The result is

s
(t) = n s (tj _ 1 ) exp	 I(X +K (T)) dT]

S S
t
j-1

I expl	 (X +K (T)) dT —s (t') N(t') dt'
s s	 A

tj _ l	t'
(3)
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If Eq. (3) is substituted into Eq. (1), then

+ -7-r--)N(t) + 	 X {In (tj-1) exp [-	 (A + K (0) dT]
k - 1

- 6	 0

t
j-1 

s s

+ ft	 exp - f t (A + IC (I)) d7	 (t') N(t') dt'
s s

t ,	 t'

+
s
(t)} + Q'
	

(4)

Next, assume the following trial solution for N(t) over the interval

t
j -1	

t	 t
j

:

	

N
K
(t) = I A, (t-t._,)	 (5)

k	 K=0 	 ) 1

dNK 
= 
k1 

k A (t-t. )
k_l

JT-	k	 )-1
=

The following residual is formed when the approximate solution is put into

Eq. (4):

dNK	 _ B	 ko - 1
RN (t) =	 LD A + –1717.-

0 
] NK(t)

- 

sll 
X s (n s (tj _ l ) exp - j	 (X +1(_(0) dT

t.	 s s
-	 3--

-
t

(t') N (t') dt'+ I	 exp	 I	 (A	 (r)) UT
A

tj-1	
t'	 s

+
s
(t)) - Ql(t)

(6)

(7)





The parameters Ak are evaluated by the method of undetermined parameters,

with subdomain weighting. 5 The time-step selection technique developed

by Kaganove
4
 is used to ensure a stable, accurate solution.

It is obvious that Ao = NK ( t i _ l ), so that only A1,.. .,AK, need to

be evaluated over the time interval. Nested subdomains are chosen,

such that each begins at t31 . The largest is the full interval,

the next largest the half-interval then the quarter interval, etc., until

K intervals are chosen. Unit step functions over each subdomain are

the weighting functions. Mathematically, the weighting functions are

written as

V(t) = U(t) - U(t-t)
	

r = 1,...,K,	 (8)

where

	

(t.-t.	 At.
t = t.	 + 	 3 3- ' 	 - t.	 +
r	 3-1	 2

r-1	 3-1	 2r-1

(thus defining At. E t. - t
1

. ). The method of undetermined parameters,

	

)	 )	 J-

concisely written as

t.

J
t

j-1 

Vr (t) RN (t) dt = 0 ,
)

r = 1,...,K,	 (10)

can then be used to obtain K algebraic equations to solve for A1,,.. ,AK.

The parameters p, f3, A, s , Q', 13S and K s are, in general, functions

of time. Since their functional dependencies cannot, in general, be pre-

specified, they shall be approximated by fitting to quadratic functions
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over time intervals - called reactivity time steps - that are, in general,

quite a bit larger than the point kinetics intervals.

havior of the parameters can be written as

p(t)	 = p(t
j-1

)	 +	 (t-t
.-1

)(a
1
+2a

2 tj-1
)	 +

where

p	 -	 +	 (k -1)/k
0	 0

The functional be-

a
2
(t-t

j-1
)
2
	(11)

(12)P	 A

S 	 =	 s (tj-1 )	 (t-tj-1 )(c ls +2c2s tj-	 ) c25(t-tj-1)
2

'
(13)

8'	 (31

(t)	 =	 ( t j _ l )	 +	 (t - t j _ 1 )(bis+2b 2s tj_ 1
) b25(t - tj - 1)

2

s=	 1,...,m. (14)

W(t)--W(t1)	 j-1
.+(t-t.	 )(q

1
 +2q2
	 t3-1

.	 )	 + q	 (t-t,	 )
2

 2	 3-1
(15)

wherethecoefficientshavebeenevaluatedatanearliertime ti _ l.which is

in turn set to zero, so that all times are those that have elapsed since

t1 _ 1 . Since K
s 

is a crude function, it is approximated as the initial value

over the time interval (i.e., -c s ) to simplify evaluation of the integrals

that appear in Eq. (7). When Eqs, (5), (6), and (11) - (15) are sub-

stituted into Eq. (10), with the weighting functions given by Eqs. (8) and

(9), the result is

k	
R
rk
A
k 
= S

rk '	
r = 1,...,K	 (16)

=1
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where

k+1

	

k _ r	 ,2)-1r2	 2Atlic.+3]

	

Rrk = Atr

p(t. 1 )At	 (a +2a t	 )At	 a

+1
	  + 	

	

k + 2	 k + 3

In[ t.k+1 - (k+1)Is,k	 r 1(At)
(r.	 ) 	 rA	 )-1 k+ 1

s=1

[Atk+2 - (k+2)Is,10.1(AtIA
+ (bls

+2b
2s

tj-1
) 	 t

k + 2

[Atk+3 - (k+3) I s ,k+2 (AtA
+ b
2s t k + 3

At 2 At 3

Srk = P( t. )At + (a +2a t. )	 t+at)-1	 r	 1	 2 )-1 —2—	 2 3

2

m	

At
+	 T

s ( tj-1 ) [Atr - Is,o (Atr)] + (bis+2b2stj	 r
_ 1 ) —7 - Is,i(Atr)

s=1

[ 
s

At3	m

4- b	 - -r- - I s,2	 )(Atr	 A0 + /	 A s n s (tj-1 )I s,o (Atr2s)s=1

At2	
At

+	 +	
r +c,+2c	 t.

3
r

(t.	 ,)At	 (c	 ) ---
s	 r	 is	 2s 3-1	 2	 2s	 3

At
2 	 At 3

+	 +	 +20 t	 )	 r +	 r

[
(18)'Q' (t	 )At	 (aj -1	 r	 •1	 '2 j -1	 2	 q2	 3

and

ft
Is,k (At)	 =exp[-(As+Ks)(t-t')]	 (t e -tj _ i ) k dt'

t)-1
(At = t -	 (19)

Some important features of the I-functions are described in the Appendix.

The set of algebraic equations represented by Eq. (16) can then be solved
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for the parameters Ak , which are in turn substituted into Eq. (5) to obtain

the amplitude function at t..

Piecewise quadratic functions (K= 2) are used in FX2 because they have

worked very well in QX1. And, they are very well suited to be used in con-

junction with Kaganove's time-step-halving-and-doubling scheme for auto-

matically selecting the time step size. This time-step-selection technique

will now be described.

Time Step Selection 

Supposethatasolutionhasbeenobtainedatti_landthatAtihas

been selected. Then, two independent solutions (sets of parameters) of

thepointkineticsequationsarefoundatyThe first of these integrates

over the whole time step, yielding a solution directly at t. The second
At.

solution is for only half the step, yielding a solution at t 	 +	 .

Thehalf-stepsolutionisthenextrapolatedtot..It will not be the

same as that determined directly, but it should be close. The degree of

closeness determines whether or not the solution is acceptable.

The VARD values are compared by forming the error norm

I N ( t )	 11(t-)
E -	

N
ext

(t
j
)

	 (20)

and comparing it with a preselected tolerable error E l . If E < E l , then

the amplitude function N(t) is acceptable and the solution can be found

for the next step. If, in addition, E < C E l where C is a preselected

parameter less than unity (usually set to 0.1), then the next time step is

estimated to be 2At.. Otherwise
' 
At

j+1 
= At

j





If, on the other hand, e > c i , the solution at t j is not acceptable,

and the time step is halved. Two independent solutions to the point
At

kinetics equations are again found, this time for t = t i _ i + 7— and
At.

t = t.
1 	 Note that the first of these has already been made for3 	 4

the original comparison and hence need not be repeated. The solutions

are again compared as described above. If an acceptable value of
At.

N(ti _ 1 + 72-)isfound,thesolutionfort.will again be attempted in

	

3	 At.
the same manner. This time, however, t = t.

1
 + —1 at the lower end of

	

3- 	 2

the time step, so that independent solutions are formed for t = tj-1 +

3
At

j 
and t = t.

At.
If the value N(t i _, + --2-1 ) is not acceptable the time step is

halved again and the calculation is repeated for the quarter step. Cal-

culation continues until an acceptable solution has been obtained for

t = t. The procedure then begins anew to determine N(tj+1), etc., until

the end of the reactivity step is reached.

REQUIRED INPUT AND OUTPUT INFORMATION

The following information is needed upon entry to the point kinetics

algorithm: the amplitude function N(t. )' the coefficients p(t. )' a1-1	 1-1	 1,
a2 , c5 (t i _ 1 ), c15 , c25 ,	 (ti), bls , b 25 ,	 bls, b25,

q l , q 2 , s (t i _ i ), and the time interval (called the reactivity

stwoverwhichthesearetobe lsedThese co-l
efficients are evaluated by fitting the inner products for reactivity,

etc., from the previous two i-intervals to parabolas. The functions are
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then extrapolated to t = t i . The inner products are recalculated at t = ti

afterN(t.
1 )	 Thebeen found.	 e recomputed values are compared with the

extrapolated values, and the necessary corrections are made.

Once the amplitude function is evaluated at t = t i , it is used, along

withN(t i _ i) and N(t1-2. ) to evaluate n
1 , 

n2' and n
3
	thfor use in e ex-

press ion

tn N(t i+l ) = nl + n
2 1(t.+1 - ti ) + n3 (t i+1 - ti )

2
 .	 (21)

This extrapolation, which takes place once an estimate of t i+1 has been

determined, is necessary to compute the energy generated over the i+1 st

interval from the increase in fuel temperature. The estimate of N(ti4.1)

obtained from Eq. (21) is, of course, later corrected by carrying out a

point kinetics calculation over the interval [t i , ti+1],

In addition to the amplitude function information, the quantities

ai and b i
'
 as defined in Eq. (19) of reference 3, are available from the

s

point kinetics calculation. These quantities, needed to properly update

the concentrations of delayed neutron precursors, are given by the ex-

pressions

" ia	 =s

t.1

f
exp

t.1
[-	 f	 (A + 14	 (T))s	 S dT] (t-t.	 ) N(t) dt1-1 (22)

---At.1	 t.1-1

t. t.
- i
b	 =s

1	 I
exp	 [--_	 i	 1 (A	 + I(	 (T))

s	 s
dT.] (t.-t)	 N(t)	 dt	 .1 (23)

At.1	 t

1

. t1-1

We shall now outline the method of evaluating these quantities.
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Within the time interval [ti, ti ] there are J point kinetics steps

(to = ti _ 1 , and tj = t i ). Let us, therefore, evaluate the integrals by

summing the components of each point kinetics step; specifically,

t.
J

- 1	 1
a =	 exp [ - ( A +I( )(t.-t)] (t-t.	 )	 A,(t-t

j-1
)
k 

dt	 (24)
S	 At.	 S s	 1	 1-1

1 j=1 t
j-1	

k=0

t.
J3	 Kfp i	 1	 7	 f

5 . Lt.	 L	 I	

_
exp[ - (As+Ks)(ti-t)] (t.-t) 1 A,(t-tj-1 )

k 
dt

11 j=1 Jt
j-1	 k=0 '

This is necessary because N(t) is a piecewise polynomial function over the

interval [t 1 _ 1 , t i ], such that its coefficients differ over each point kinetics

interval. Finally, after some manipulations, it can be shown that

J	 K
'I	 1
a = — 1 {exp [- (A +K )(t.-t.)] 1 A

k
[I
s,k+1

(At
j

)
s	 L .	 S 5	 1 1t1 j=1	

'	 k=0

+ (t.	 - t.1 	 1 ,(At.)1}
3-1	 1-1	 s o x 	 3

A i	 1
b = —	 {exp [- (A	 )(t.-t.)] 1 A [(t.-t. ) I	 (pt.)

5	 At.	 . ,	 s 5	 1 3	 k.0 k	 1 3-1	 s,k	 3
31	 .1

1s,k+1
(At

j
)])

COMPUTATIONAL LOGIC

-

The logical sequence of the point kinetics solution is shown in Fig. 1.

The first step is to calculate the coefficients that appear in Eqs. (11) - (15).

Then, the time values are initialized,the convergence criteria are set, and the

(25)

(26)

(27)





starting values of the point kinetics parameters are calculated. These

parameters will be updated later according to Eqs, (11) - (15). We are

now ready to solve for the Ak for the first time step.

We begin by calculating the I-functions needed for At 1 and Lt1/2

(see Appendix). Then, we can find the coefficients Rrk and Srk of Eq.

(16) for the full step and for the half step. The determinant of co-

efficients is formed for each step, and solved to obtain the values of

Ak for t 1 and t 1/2. These, in turn, are used to find N(t i ) and Next(t1)•

If they are not close enough to each other, then the time step is halved

and a solution at t
1/2 is attempted. If I-functions for the half-step

are needed they are calculated. Otherwise, the determinants of co-

efficients for both the half step and the quarter step are formed and

solved for the A
IC

When E < E l the solution is considered to be converged, and the next

time step is selected. This next step is double the previous one if

< 0.1 E l . Otherwise, the step length remains the same. In either case

the point kinetics parameters are updated to the latest time step, as are

the precursor concentrations. An edit of the current information can

also be made at this time. If more I-functions need to be calculated for

the next time step they are so calculated; otherwise, the determinants of

coefficients are formed and solved for the half step and the full step.

When a converged solution has been found at t = t i (the end of the

reactivity step), the parabolic coefficients for in N, needed to estimate

the amplitude function behavior over the next reactivity step are calcu-

lated, Then, the information is taken from the module to be used in other

parts of the program.
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APPENDIX

The I	 (At) Functions
S ,m

The I-functions are defined as

t	 +K )(t-t')

I	 (At) =	
e	 s s	

(t'-t
j-1

)m dt'	 , At = t - t j-1 .	 (Al)
s,m

t
j-1

From the definition, it is evident that

I
s,0

(At) -
	 1 

K

	 1	 e
-( As +l-c s ) At

S	 S

Using Eqs. (Al) and (A2), the following recursion relationship can easily be

derived:

I	 (At) -	 1[At
m
 - m I

s,m-1
(At)],	 m > 1	 (A3)

s,m	 -
A + K

S	 S

Finally, using Eqs. (Al), (A2), and (A3), a very useful expression for the

integral of the I-function is found:

ft	 1 
I	 (At) dt -	 I	 (At )

	

s,m	 m + 1	 s,m+1	 r
t.
3-1

where

At = t -t.	 .
r	 r	 j-1

(A2)

(A4)
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Pieure 1. Lotical Sequence of Point Kinetics Solution
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