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Variational Estimates and Generalized Perturbation Theory

for the Ratios of Linear and Bilinear Functionals
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ABSTRACT

Variational functionals are presented which provide an

estimate of ratios of linear and bilinear functionals of the

solutions of the direct and adjoint equations (inhomogeneous

and homogeneous) governing linear systems. These variational

functionals are used as the basis for a generalized perturba-

tion theory for estimating the effects of Changes in system

parameters upon these ratios of linear and bilinear functionals.

The relation of the present theory to the variational theory of

Pamraning and to the generalized perturbation theory of UsaChev

and Gandini is discussed. Potential applications of the theory

to nuclear reactor physics are outlined.
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I. INTRODUCTION

If a variational functional can be written for a given property of

a linear system, then that property can be computed to second-order accu-

racy (with respect to errors in the solution function) by evaluating the

variational functional. For example, a variational functional for the

eigenvalue of the linear system described by the equation'

CA - AB) 	 0	 (1)

. 2
is

- (<1!;,A0A)

[/)),
- K4,13(px)

where cp x must satisfy the adjoint equation

I 	 _ AB*)(p* = 	0 .

*

A, B, A , and B are linear operators satisfying (u,Av) = (A u,v),

(u,Bv) = (B u,v). If functions and -(1) which differ from the solutions

to Eqs. (1) and (3) by 4 and 4 , respectively, are used to evaluate

Eq. (2), it may be shown that

-

	

(SX E A (px,(px	
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!* (I)	
= 0 + order (60 ,d(p).

X' X

Similarly, a variational estimate of the linear functional (S ,$)

of the solution to the inhomogeneous equation

3

(2)

(3)
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- B)0 = S	 (4)

is given by the Roussopolos functional
3

= (S
* ,)
0 + 0 ,CS -	 - B)0]) ( *

.	 4
or the Schwinger functional

(s*„) (0*)
,(1)]	 =

(0 * ,(A — B)0)

where 0 satisfies

*	 *1*
- B	 = S .

Selengut
5 demonstrated that these latter two functionals are equivalent.

Pomrarang
6
 suggested the variational functional

/ *
P 1 [0	 ,0]	 =	 G[0] + \0	 - (A - B)07)	 (8)

for estimating the arbitrary linear functional G[0] of the solution of

Eq. (4).	 He demonstrated that p	 must satisfy

*	 *
A	 - B	 = 	 (9)

where the prime indicates the functional derivative.

Pomranang
7
 also suggested the variational functional

P2
*
4;1	 = (10)+ (* ,(A - XB)ox)

(5)

(6)

(7)

for estimating an arbitrary linear functional GH of the eigensolution

of Eq. (1). He showed that 8 must satisfy





5

( *	
*)

A - AB )O	 =	 .	 (11)

A necessary condition for Eq. (11) to have a solution is that the RHS is

orthogonal to the eigensolutions of Eq. (1) or

= 0

which is just the basic property of homogeneous functionals.

In many practic,a1 situations, the property of interest is the ratio

of two linear or bilinear function als of the solution to the direct [Eqs.

(1) or (4)] andior adjoint ags. (3) or (7)] equations describing the

system. While Pomraning's functionals may be specialized to accommodate

the eAse of ratios of linear functionals of the solution to the direct

equations, no variational functionals have been presented which are

suitable for estimating ratios of linear functionals of the solution to

the adjoint equation or ratios of bilinear functionals of the solutions

of the direct and adjoint equations.

The primary purpose of this paper is to present variational fund-

tionals which may be used to estimate ratios of linear and bilinear

functionals of the direct and adjoint solutions of the equations which

govern linear systems. A secondary purpose is to develop a perturba-

tion theory from the variational functionals, which, for eigenvalue

problems, is identical to the generalized perturbation theory developed

from physical arguments for reactor physics problems by Usachev
8
 and

. 9
extended by Gandini. Thus, an ancilliary result is the provision of a

firmer theoretical basis for the generalized perturbation theory, in

addition to extending that theory to systems governed by inhomogeneous

equations.





R..
13 (12)

*
FI E * 	 =

II. LINEAR FLUX RATIOS — INHOMOGENEOUS SYSTENE

Consider the problem of estimating the ratio of linear functionals

of the solution (I) of Eq. (4)

6

where E. and E. are scalar operators. A direct estimate of R.. from

Eq. (12) with a function .(i) which differed from the solution of Eq. (4)

by a function 6(1) would introduce an ecior 6Rii a (6); i.e. a first-

order eviur.

However, the variational functional

I - Kty * , E(A - B)cp - Si))	 (13)

providesanestimateofR.
j with e	 j

ur 6R. a (11) ,60); i.e. of secondi	 i
order. Here 64) is the difference between the trial function (i) used to

evaluate Eq. (13) and the solution of Eq. (4), and 611, is the difference

between the trial function ty used to evaluate Eq. (13) and the solution

of

t *A -B)

E.
3

(E1°) (Y)
(14)

The proof of this follows from the easily verifiable fact that F 1 is

stationary (i.e. 6F 1 = 0 to first order) about functions lp and (I) which

Pomraning's results 6 reduce to this form when GE (1)] = Rij.

satisfy Eqs. (14) and (4), respectively, and the stationary value is R...
ij





6R..	
(E0)	

E.(1)\ ( *
,[( 6A - 6B)0 - (SS])

ij
R..	

(Ei(P)	 (E4)

(16)

7

A perturbation theory for Changes in Rij corresponding to Changes in

the system parameters can be derived from the difference

&Rij 	54)] - FIC IP	 .	 (15)

The prime indicates that the perturbed values Ei, E j , A , B , S are used

in Eq. (13) to evaluate F', while the unperturbed values are used to

evaluate F. Trial functions which approximate (or are equal to) the

unperturbed solutions to Eqs. (4) and (14) are used to evaluate both F'

and F. The result, accurate to second order, is

where 6A E A - A, etc. If the solution did not Change with the int_10-

duction of the perturbation, the first two tei,Lb in Eq. (16) would rigorously

describe the Change6R../R. . A conventional estimate (one in which the
ij

unperturbed flux is used) based on Eq. (12) yields just the first two terms.

Thus, the final term in Eq. (16) accounts for the effect of the perturbation

upon the solution (1), and represents a refinement upon conventional methods.

III. LINEAR FLUX RATIOS —HOMOGENEOUS SYSTEMS

Consider again the problem of estimating Rij , this time with o x , the

fundamental eigensolution of Eq. (1). Again, a direct estimate from Eq. (12)

would yield a first-order e/Tur 6R... The variational functional
ij

(Ei45:) 
F2 EP )0d -	 (tP*,(A - AB)co )1

A

(E'gb

(17)
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provides an estimate of R.. accurate to second order with respect to the
ij

differences 60 and 4 between the trial functions used in evaluating

Eq. (17) and the solutions of Eq. (1) and

*
A(* - AB 

(Ei)) (YX)

respectively. Proof follows from consideration of the stationarity con-

ditions for F2 . Pomraning's results
7
 reduce to this form when G[0] = Rij.

Equation (18) has a solution because the RHS is orthogonal to 0A,

the fundamental eigensolution of Eq. (1). The method of successive approxi-

mations yields a solution to Eq. (18) of the form (see Appendix for proof

of convergence)

=

	

	
(19)

n=0

where

* *	 E.	 E .
A 0 - 	

(E i 4),) (YA)

	 (20a)

* *	 * *
A	 = AB	 n > 0 .	 (20b)

n n-1 '

A mutnal orthogonality relation can be constructed from Eqs. (20)

(18)

and Eq. (1)





0
(YA) (YA)

(E3- 45`) (PA)
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( * *
A tl) 0 	 =lp A cID

*

	

=	 `P ID 5A1345,) r \AB tPo4 A) = (A*4,0A)

• (4) 1 ,A(1) ) = (4) I' All4 x) = . . • = (Lp
n

,A130
X
)

	

Thus, the 	 and hence o , are biorthogonal to 0 x 
with respect to the

operator B. This suggests that Eqs. (20) he replaced by

* *
A C o - 	

	

(E i 4) X)	 (Ej(PX)

	

* *	 * *
Ac

n 
. AB o	 ,	 n > 0 ,n_, 

*
(C!,Bo x ) *

* "
• = E	 	 \ Ox ,/

V*A ,B4) A )

where the second term in Eq. (21c) was added to remove any fundamental

mode contamination which may arise from numeriral roundoff.

A perturbation theory for Changes in R ij corresponding to Changes

in the system parameters can be derived from the difference

6R.. = F2-11)	 -
13

where both Fi and F2 are evaluated with approximations to the solutions

of Eqs. (1) and (18) for the unperturbed system parameters, while per-

turbed and unperturbed system parameters are used in Eq. (17) to evaluate

Fi and F2 , respectively. The result, accurate to second order, is

E.	 E.

(22)





(24)

612..	 K6Ei0\ 	(6E.. \j X/
- 6013)]0

R..	
(Eict)	 (Ii°

where, again, 6A E A - A, etc. As before, the third term in Eq. (23)

accounts for the effect of the perturbation upon the eigensolution, .x,

and represents a refinement upon conventional theory, which would approxi-

mate 6R1 ./R.. with the first two terms of Eq. (23).

Usathev
8
 obtained a perturbation expression equivalent to Eq. (23),

and prescriptions equivalent to Eqs. (19) and (21), from physira] argu-

ments for the case of neutron transport within a critical nuclear reactor.

It is indicative of the power of variational principles that the straight-

forward derivation given above led to the same results as the

convoluted physical arguments of Usachev.

IV. LINEAR ADJOINT RATIOS — INNOMDGENEOUS SYSTEMS

Now consider the problem of estimating the ratio of linear functionals

of the solution of Eq. (7)

10

(23)

wheres.and s. are scalar operators. A direct estimate from Eq. (24)

*	 .
results in errors 6R.. which are first order in the difference 6. between

ij
-*

the trial function used to evaluate Eq. (24), cp , and the solution of Eq. (7),

*

The variational functional
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(4)*Si)

	  1 -OA* -	 cp* - sj,

(0%

(25)F 3 L *I),td	 =

provides a second-order estimate of R.. relative to the functions 41]

mentioned above and 6*, which is the difference between a trial function

* used to evaluate Eq. (25) and the solution to

S.	 S.
(A - B)p = 	
	

(26)

(4)*S i ) (4)*S . )

Proof of this follows from consideration of the stationarity properties

of F3.

A perturbation theory for Changes in Ril corresponding to Changes

in the system parameters can be derived from the difference

6R.. = FiEp* , 41 - F3 EP	 ,
	 (27)

where both F; and F 3 are evaluated with approximations to the solutions

of the unperturbed Eqs. (7) and (26), Fi is evaluated with the perturbed

system parameters, and F3 is evaluated with the unperturbed system

parameters. The result, accurate to second order, is

( *
cp 6S

1
)	 Es.)
	  (RA* - 6/31 - 6Si , 0) .	 ( 28)

(* *si)	 (cp%
i

Because the first two terns in Eq. (28), which coil spond to the conven-

tional method of estimation, are exact in the rae where the perturbation

does not Change the adjoint, the third term in Eq. (28) represents a refine-

ment to account for the effect of the perturbation on the adjoint.
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V. LINEAR ALLJOINT RATIOS -- HOMOGENEOUS SYSTEMS

*
lnt)iscase , avardatioroiestimateofR . . is sought for the case13

in which the ratio involves linear functionals of the fundamental eigen-

solution, 0 x , of Eq. (3). The variational functional

F	 = 	4 A'	

(q5x5i)

(O x s i) r- 	
*	

- XB)0)
	

(29)

provides a second-order estimate of R.. relative to the difference 60 Xip

between the trial function used to evaluate Eq. (29) and the solution to

Eq. (3), and the difference 60 between the trial function used to evalu-

ate Eq. (29) and the solution to

s.
(A- AB)0 =	 1 	

(30)

(O xs i ) (0xsj)
*

Proof follows from the stationarity properties of Fy.

Equation (30) has a solution because the RHS is orthogonal to 0x,

the fundamental eigensolution of Eq. (3). The method of successive

approximation applied to Eq. (30) yields a solution of the form (see

Appendix for proof of convergence)

CO

n=0

where

*	 )5B

cPA
*11 =

cpx,BSA

(31)

(32)





*	 '
(O x s i) (0Asj)

(33a)

and the Cr, are generated recursively

13

Acn = X134,11_1	 n > 0 .	 (33b)

The second term in Eq. (32) is included to remove fundamental node con-

tamination which may arise from numerical roundoff. (A mutuAl biortho-

gonality relation exists which requires that (4,N) = 0, n > 0.)

A perturbation theory may be derived, similar to the previous section,

from the difference

6R..	 = F4 O x 0-11 - Fy cpx,t1]1]

where the unperturbed trial solutions are used to evaluate Fr, and F.

Perturbed system parameters are used to evaluate Fy, while F4 is evaluated

with the unperturbed parameters. The result, accurate to second order, is

_	 **
6R..	

(0"):6s)	 (sx6s1)
ij - 	—.---(4,[6A - 60.13)] ty)

R..	 (0*si)	 (01si)1]

The reasoning of the previous section indicates that the third term in

Eq. (35) is a refinement upon conventional theory which accounts for the

effect of the perturbation on the adjoint. Gandini
9
 obtained an expression

(34)

(35)

equivalent to Eq. (35), and algorithms equivalent to Eqs. (31) through (33),

in his extension of Usachev's generalized perturbation theory.
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VI. BILINEAR RATIOS — INHOMOGENEOUS SYSTEMS

In many practical situations an estimate of the ratio of bilinear

functionals of the solutions 0 of Eq. (4) and	 of Eq. (7)

( * 
,Hi0)

P ij	

(
*

	0 ,1-1.0)

	 (36)

is required. Here H i and H i are arbitrary linear operators. A direct estimate

from Eq. (36) leads to errors which are of first order in 60 * and 60,

the differences between the trial functions 	 and used to evaluate

Eq. (36) and the solutions to Eqs. (7) and (4), respectively.

The variational functional

(0

F 5 P, r* ,o,d = 	 	 (rBA - B> 0 - sj)
(	 )

	- 	 - B	 - Si, IA	 (37)

provides an estimate of p.. which is accurate to second order in I,
13

60 and the functions sr and sr, which are the differences between the

trial functions r and I" used to evaluate Eq. (37) and the solutions of

* *	 * *
( aa	 H
	- B j r 	 =

( 4)*'111.4')V'll'(P)

and

Hi 0	 H.0
(A - B)r 	  3

(
* ,Hi 0) (0*,H0)

(38)

(39)





respectively. Proof follows from the stationarity properties of F5.

A perturbation theory for Changes in p il corresponding to perturba-

tion in the system parameters can be derived from the difference

* *
6p..	 = F - )	 r5	 4/1]	 F5

*

F	 54' / 1-1 51]

where both Fg and F 5 are evaluated with approximations to Eqs. (4), (7),

(38), and (39) for the unperturbed system, and Fg is evaluated with the

perturbed parameters while F5 is evaluated with the unperturbed parameters.

The result, accurate to second order, is

dp..	 (1)*,6Hicp)	 (4) * , 61-11q)

--L1 	 	 (r*,[(6A - 613) - OS])

- ([

( *	 *
611 - dB	 - OS	 ,	 .

The first two terms in Eq. (41) correspond to the conventional theory, and

would be exact if the perturbation did not alter 4) or 4). The third and

fourth terms are refinements which account for the effect of the perturba-

tion upon 4) and 4) , respectively.

VII. BILINEAR RATIOS — HOMOGENEOUS SYSTEMS

Consider again the problem of estimating p ij of Eq. (36), this time

with 4) A and 4) A , the fundamental eigensolutions of Eqs. (3) and (1), res-

pectively. As before, a direct estimate from Eq. (36) would have an

error which was first order in d. and (54)
A' 

the differences between the
A
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(40)

Pij	 (P*)	 (cP*5H.4)

(41)





F6
 E

* *
A ,F ,0A,1] 1 -	 (A - AB)r)- (r

*
,(A - A13)0A)
	

(42)

(A - xB)r
Hi O x	H.0

X = 	 * 

(0 x ,Hi 0 x) (0:,H10x)

(44)

trial functions 0 x and 0x used to evaluate Eq. (36) and the solutions of

Eqs. (3) and (1), respectively.

The variational functional

16

provides an estimate of p.. which is accurate to second order in 60 x , 60x,
ij

and the differences 6F and Or between the trial functions used to evaluate

Eq. (42) and the solutions of

*	
*) *

A - AB )F

* *
H

(43)

(q)* H. )
A'	 A

*
Vx'Hi')x)

and

respectively. Proof follows from the stationarity properties of F6.

Equation (43) has a solution because the RHS is orthogonal to 0x,

the fundamental eigensolution of Eq. (1). Application of successive

approximations to Eq. (43) yields (see Appendix for proof of convergence)

*
F	 =	 F,

n=0 n

B0 \

	  0 A

(
0 B0
A' A

*	 )

where

r n

(45)

(46)





and the En are generated recursively

	

* *	 * *

A E0
* *
	 H. 	 1-14

7 X 
5

(,Hi cp x ) (4),Flio)

* *	 * * *
	AEn = AB r	 n > 0	 (47b)

n- '

Similarly, a solution to Eq. (44) may be constructed from

F =	 r	 ,	 ( 48)
n=0 n

where

45,03En)(*
OA*

(,BA)

and the En are generated recursively

	

Hi cp x 	 H.0
X 

'Hi'P A)	 (4)'1-1j4)

	AEn = ABrn_i	 n > 0 .	 (50b)

The second terns in Eqs. (46) and (49) are included to remove any funda-

mental node contamination which may arise from numerical roundoff. (Mutual

biorthogonality relations exist which require that (1' n ,B4) = 0,

(,BF) = 0, n > 0.)
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(47a)

AE0

(49)

(50a)





(0x,ffliox) KOx,61-1•0x)

/*
K(PA'Hj40

op..

— o(x13)] r)
*
A'
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A perturbation theory for Changes in p ij corresponding to perturba-

tions in the system parameters can be derived from the difference

op..
13

= F6
*	 *	 *5, ,r opv l] - F6 ro x ,r s cp )A	 . (51)

As before, F6 and F6 are both evaluated with trial functions which approxi-

mate the solution of the unperturbed Eqs. (1), (3), (43), and (44). Per-

turbed parameters are used to evaluate Fg, while unperturbed parameters

are used to evaluate F6 . The result, accurate to second order, is

— (r ,[6A — s(xB)]	 .	 (52)

Again, the first two teLrrt in Eq. (52) correspond to the conventional

result. The third and fourth terms are refinements which account for

the effect of the perturbation upon o x and O x , respectively.

Gandini
9 obtained a perturbation expression equivalent to Eq. (52)

and algorithms equivalent to Eqs. (45) through (50) in his extension of

Usachev's generalized perturbation theory.
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VIII. POSSIBLE APPLICATIONS TO NUCLEAR REACTOR PHYSICS

Potential applications to problems in reactor physics are considered

to illustrate the use of the theory presented in the previous sections.

Hopefully, these examples will suggest applications in other fields by

analogy.

Frequently the solution to a problem slightly different from the

problem of interest is either available or readily obtainable and one

would like to use this solution to compute a ratio of functionals for

the problem of interest, or one would like to assess the Change in the

ratio of functionals corresponding to the changes leading from the prob-

lem for which a solution is available to the problem of interest. In

the former case, the variational functionals F 1 through F6 provide a more

accurate estimate of the ratio of functionals than would be obtained by

a direct evaluation of the ratio using the available solution. In the

latter case, the perturbation expressions provide a means, accurate to

second order, of assessing the change in the ratio of functionals without

the necessity of calculating the solution for the problem of interest.

Changes in material composition, material arrangement, mathematical model,

nuclear data, source, and fuel temperature arise in reactor analysis.

Material composition Changes occur when one material is substituted

for another (e.g. insertion of a col-awl rod, experimental device, detec-

tor, etc.) and when Changes in isotopic composition due to fission, acti-

vation, and radioactive decay take place. Changes in material arrange-

ment may arise from thermal expansion or changes in the loading pattern.

In a somewhat different vein, the material in a reactor may be homogenized

in the calculational model to facilitate obtaining a solution. This homo-





genized solution could be used, together with the actual heterogeneous

material configuration, in a variational functional to obtain an estimate

of a ratio in the actual system, or in a perturbation expression to assess

the difference between the ratio in the fictictious hamogenized model and

in the actual heterogeneous model. (Variational and perturbation expres-

sions for the eigenvalue have been applied to this and.

In the same vein, a simplified mathematical model may be used to

obtain an approximate solution. This solution may be used in a varia-

tional functional constructed for a more rigorous mathematir.91 model to

obtain an estimate of a ratio. Alternately, the perturbation expression,

with (SA and dB corresponding to the differences between the more rigorous

and approximate operators, could be used with the approximate solution to

assess the effect of the difference between the more rigorous and approxi-

mate models on the ratio. Replacing high-order neutron transport approxi-

mations with low-order approximations, such as diffusion theory, and neg-

lecting anisotropy in the neutron angular scattering distributions, are

typical simplifications.

Perturbation expressions of the form presented in this paper have

been used to assess the effect of nuclear data uncertainties upon ratios

of functionals, both for the purpose of assessing the implied uncertainty

in the performance of nuclear reactors
13,14

 and for adjusting averaged

cross sections to obtain agreement with integral experiments.
14,15

Use

of the variational functionals would allow an estimate of the corresponding

ratios when new data became available without the necessity of obtaining

a solution corresponding to the new data.

The variational functionals F 1 and F2 are appropriate for estimating

reaction rates oractivation ratios in subcritical (F 1 ) or critical (F2)

11,12)
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reactors.InthiscaseE.arld E. are the cross sections appropriate to

the reactions, distributed or localized in space and energy according to

the dictates of the problem. The functionals can also provide an estimate

of relative local flux or per peaking if E i = (5(r - ri) or E fd(r - ri)

anclE j =lorEv mspectively.6(r-rlis the Dirac delta, r is the

spatial variable, and E f is the macroscopic fission cross section dis-

tributed in space and energy. Another use of these functionals is to

estimate the relative neutron flux above some energy E min . In this race,

E 1 = 1J(E-Ernin)andE. = 1, where U is the step function.

Anestimateoftherelativeimportanceofneutronsourcess.and s

*
to the reaction rate (S ,4) in a subcritical reactor is provided by the

variational functional F3. Both F3 (subcritical) and Fy (critical) pro-

vide an estimate of the relative loral adjoint when s i = 6[r - ri) and

s. = 1.

The variational functionals F6 (subcriti_al) and F6 (critical) pro-

vide an estimate of reactivity worths, effective delayed neutron fraction,

and effective prompt-neutron lifetime, depending upon the Choice of Hi

and H.. When H. is the Change in the neutron balance operator -A(A - AB)

(critic-Al) or -A(A - B) (subcritical) due to a sample inserted into a

reactor,andH.is the integral operator

x(E)	 dE vEf(E',r)
0

then the variational functionals provide an estimate of the reactivity

worth of the sample. Here E is the neullun energy, v is the number of

neutrons per fission, and x is the energy distribution of fission neutrons.
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WhenH.is the integral operator

xd (E)	 dE v8Ef(E',r),

and H. remains the same, an estimate of the effective delayed neu 	 ion

fraction is provided by the variational functionals. Here, 8 is the

fraction of delayed fission neuLiuns and x d is the distribution in energy

oftlesedelaYedneuluns.Ifii.is the inverse neu Jun speed, and H.

remains the same, F5 and F6 provide an estimate of the prompt-neutron

lifetime.Aratioofreactivityworthsand H. are

changes in the neu Lion balance operator.

Thus, there are many potential applications of the theory to nuclear

reactor physics, only a few of which have been examined to date. Certainly,

fruitful applications must exist in other fields as well.
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APPENDIX

The method of successive approximations was used to construct a solu-

tion to the flux importance equation

(A - X13)x = S	 (A.1)

of the form

X =	 X Xn /
n=0

where

Ax o 	S ,	 (A.3)

Axn = ABxn_i	 n > 0 .	 (A.4)

Solving Eqs. (A.3) and (A.4)

Xn = A-1A13Xn_1 = Gq-IABynA-1S	 n > 0 ,	 (A.5)

and substituting in Eq. (A.2) yields

CO

X =	 X (A-1 2) nA-1 S .	 (A.6)

n=0

It was shown previously that

()4) s	 =	 ,
 *

*
where cp is the fundamental (i = 0) eigenfunction of

fA - A iB*1 cpi* = 0 .
	

(A.7)

(A.2)





24

Thus, S can be represented by an expansion in the higher harmonic (i > 0)

eigenfunctions (1) i of

IA - A iBpi = 0 .	 (A.6)

Writing

=	 ,

1=1

it follows that

co
(A-I AB) nA-'S =	 1 a --

1=1 i A.

For the multigroup diffusion equations there are positivity proofs17

which assure that A
0
 < A i > 1. Thus, the sum in Eq. (A.6) converges,

and may be written

CO

X =	 (A-10)1' A—Is	 (1 _	
(A — AB) -1 S , (A.9)

n=0

which is the solution of Eq. (A.1).

A similar proof obtains for the adjoint importance solution.

4bi





25

REFERENCES

'We shall speak of an "equation" throughout. However, the formalism

is appropriate for matrix operations as well, and hence is applicable to

systems of equations.

2
P. M. Mbrse and H. Feshbadk, Methods of Theoretical Physics

(McGraw-Hill, New York, 1953), p. 1108.

3
P. Roussopolos, "Methodes Variationueles en Theories des Collisions,"

C. R. Acad. Sci. Paris, 236, 1858 (1953).

4
H. Levine and J. Schwinger, "On the Theory of Diffraction by an

Aperture in an Infinite Plane Screen," Phys. Rev., 75, 1423 (1949).

D. S. Selengut, "Variational Analysis of Multidimensional Systems,"

Hanford Report HW-59126 (1959), p. 89.

6
G. C. Pomraning, "A Variational Principle for Linear Systems,"

J. Soc. Indust. AppZ. Math., 13, 511 (1965).

G. C. Pamraning, "Variational Principle for Eigenvalue Equations,"

J. Math. Phys., 8, 149 (1967); also "The Calculation of Ratios in

Critical Systems," J. NucZ. Energy, Pts. A/B, 21, 285 (1967).

8L. N. Usachev, "Perturbation Theory for the Breeding Ratio and for

Other Number Ratios Pertaining to Various Reactor Processes," J. Nucl.

Energy, Pts. A/B, 18, 571 (1964).

9A. Gandini, "A Generalized Perturbation Method for Bilinear

Functionals of the Real_ and Adjoint Neutron Fluxes," J. Mud. Energy,

Pts. A/B, 21, 755 (1967).

5

7





26

10
J. Lewins, Importance: The Adjoint Function (Pergamon Press,

Oxford, 1965).

11
F. Stolitr, A. Khairallah, M. Cadiihac, and P. Benoist, "Hetero-

geneity Calculation for Fast Reactors by a Perturbation Method," Nucl.

Sci. Eng., 24, 153 (1966).

12
W. M. Stacey, Jr., "Calculation of Heterogeneous Fluxes and

Reactivity Worths," Nucl. Sci. Eng., 42, 233 (1970).

13
A. Gandini, M. Salvatores, and I. Dal Bono, "Sensitivity Study

of Fast Reactors Using Generalized Perturbation Techniques," Fast Reactor

Physics, Vol. I. (IAEA, Vienna, 1968), P. 241.

14
A. Gandini and M. Salvatores, "Effects of Plutonium-239 Alpha

Uncertainties on Some Significant Integral Quantities of Fast Reactors,"

Nucl. Sci. Eng., 41, 452 (1970).

15
J. L. Rowlands and J. D. MacDougall, "The Use of Integral Measure-

ments to Adjust Cross Sections and Predict Reactor Properties," Proc.

Intern. Conf. Physics of Fast Reactor Operation and Design, London (1969).

16
J. Y. Barre, M. Heindler, T. Lacapelle, and J. Ravier, "Lessons

Drawn from Integral Experiments on a Set of Multigroup Cross Sections,"

Proc. Intern. Conf. Physics of Fast Reactor Operation and Design, London

(1969).

17G. Birkhoff and R. S. Varga, "Reactor Critio.q1ity and Non-Negative

Matrices," WAPD-166, Bettis Atomic Power Laboratory (1957); also R. S.

Varga, Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, New

Jersey, 1962).





'WA 11,1.19!-..,.


	Fra-tm-21_0001.tif
	Fra-tm-21_0002.tif
	Fra-tm-21_0003.tif
	Fra-tm-21_0004.tif
	Fra-tm-21_0005.tif
	Fra-tm-21_0006.tif
	Fra-tm-21_0007.tif
	Fra-tm-21_0008.tif
	Fra-tm-21_0009.tif
	Fra-tm-21_0010.tif
	Fra-tm-21_0011.tif
	Fra-tm-21_0012.tif
	Fra-tm-21_0013.tif
	Fra-tm-21_0014.tif
	Fra-tm-21_0015.tif
	Fra-tm-21_0016.tif
	Fra-tm-21_0017.tif
	Fra-tm-21_0018.tif
	Fra-tm-21_0019.tif
	Fra-tm-21_0020.tif
	Fra-tm-21_0021.tif
	Fra-tm-21_0022.tif
	Fra-tm-21_0023.tif
	Fra-tm-21_0024.tif
	Fra-tm-21_0025.tif
	Fra-tm-21_0026.tif
	Fra-tm-21_0027.tif
	Fra-tm-21_0028.tif
	Fra-tm-21_0029.tif
	Fra-tm-21_0030.tif
	Fra-tm-21_0031.tif
	Fra-tm-21_0032.tif
	Fra-tm-21_0033.tif
	Fra-tm-21_0034.tif
	Fra-tm-21_0035.tif
	Fra-tm-21_0036.tif
	Fra-tm-21_0037.tif
	Fra-tm-21_0038.tif
	Fra-tm-21_0039.tif
	Fra-tm-21_0040.tif
	Fra-tm-21_0041.tif
	Fra-tm-21_0042.tif
	Fra-tm-21_0043.tif
	Fra-tm-21_0044.tif
	Fra-tm-21_0045.tif
	Fra-tm-21_0046.tif
	Fra-tm-21_0047.tif
	Fra-tm-21_0048.tif
	Fra-tm-21_0049.tif
	Fra-tm-21_0050.tif
	Fra-tm-21_0051.tif
	Fra-tm-21_0052.tif
	Fra-tm-21_0053.tif

