





Variational Estimates and Generalized Perturbation Theory
for the Ratios of Linear and Bilinear Functionals
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ABSTRACT

Variational functionals are presented which provide an
estimate of ratios of linear and bilinear functionals of the
solutions of the direct and adjoint equations (inhomogeneous
and hamogeneous) governing linear systems. These variational
functionals are used as the basis for a generalized perturba-
tion theory for estimating the effects of changes in system
parameters upon these ratios of linear and bilinear functionals.
The relation of the present theory to the variational theory of
Panraning and to the generalized perturbation theory of Usachev
and Gandini is discussed. Potential applications of the theory

to nuclear reactor physics are outlined.
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I. INTRODUCTION

If a variational functional can be written for a given property of
a linear system, then that property can be computed to second-order accu-
racy (with respect to errors in the solution function) by evaluating the
variational functional. For example, a variational functional for the

eigenvalue of the linear system described by the equation1

(A—)\B)tta)‘ = 0 (@D)
is

* <¢j’A¢>\>
AE)A,¢>] = —-*— ) (2)
<¢)\’B¢)\>

*
where ¢, must satisfy the adjoint equation

(a* - AB"}J: B (3)

* * *
A, B, A, and B are linear operators satisfying (u,Av) = (A u,v),
% - ~%
{u,Bv) = (B u,v). If functions ¢ and ¢ which differ from the solutions
%
to Eqs. (1) and (3) by 8¢ and 6¢ , respectively, are used to evaluate

Eq. (2), it may be shown that

~% - * *
6% = A|6,.8,| - A|6,,6,| = 0+ order <6¢ ,6¢>.

Similarly, a variational estimate of the linear functional (S°,¢)

of the solution to the inhomogeneous equation
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(A-B)¢ =8 W)

is given by the Roussopolos func‘tional3

* * %
RE o] = )+ (ls - a - med) (%)
or the Schwinger functional'+

EED

*
Jle ,01 - (6)
*
<¢ J(A - B)o)
*
where ¢ satisfies
* *) % *
(A —B]¢ = B, (7

Selengu’c5 demonstrated that these latter two functionals are equivalent.

Pomr\aning6 suggested the variational functional
* *
Pivt 0] = clel+ (05 - (- Be]) (8)

for estimating the arbitrary linear functional G[¢] of the solution of

%
Eq. (4). He demonstrated that y must satisfy
% *) %
(A -B)w = G°[ed , (9

where the prime indicates the functional derivative.

Pomraning7 also suggested the variational functional

Pz[}*m,] = G[})] + <e*,(A . AB)¢>‘> (10)

for estimating an arbitrary linear functional G[}b)\] of the eigensolution

*
of Eq. (1). He showed that 8 must satisfy
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(a* - a8*)e* = -G‘I}ﬂ . an

A necessary condition for Eq. (11) to have a solution is that the RHS is

orthogonal to the eigensolutions of Eq. (1) or

o [l

which is just the basic property of homogeneous functionals.

In many practical situations, the property of interest is the ratio
of two linear or bilinear functionals of the solution to-the direct [Egs.
(1) or (4)] and/or adjoint [Eqs. (3) or (7)] equations describing the
system. While Pomraning's functionals may be specialized to accommodate
the case of ratios of linear functionals of the solution to the direct
equations, no variational functionals have been presented which are
suitable for estimating ratios of linear functionals of the solution to
the adjoint equation or ratios of bilinear functionals of the solutions
of the direct and adjoint equations.

The primary purpose of this paper is to present variational func-
tionals which may be used to estimate ratios of linear and bilinear
functionals of the direct and adjoint solutions of the equations which
govern linear systems. A secondary purpose is to develop a perturba-
tion theory from the variational functionals, which, for eigenvalue
problems, is identical to the generalized perturbation theory developed
from physical arguments for reactor physics problems by Usachev8 and
extended by Gandj_ni.9 Thus, an ancilliary result is the provision of a
firmer theoretical basis for the generalized perturbation theory, in
addition to extending that theory to systems governed by inhomogeneous

equations.
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II. LINEAR FLUX RATIOS — INHOMOGENEOUS SYSTEMS

Consider the problem of estimating the ratio of linear functionals

of the solution ¢ of Eq. (4)

ko

where I. and Ej are scalar operators. A direct estimate of Rij from

(12)

Eq. (12) with a function ¢ which differed from the solution of Eq. (4)
by a function 6¢ would introduce an error dRij « (8¢); i.e. a first-
order error.

However, the variational functional

Z.¢
* < e *
Fily ,6] = —— {1 - <¢ ,[(A - B¢ - s]), (13)
<):.¢>
A
%* 7
provides an estimate of Rij with error GRij = (8¢ ,6¢)3 i.e. of second
order. Here §¢ is the difference between the trial function ¢ used to
%*
evaluate Eq. (13) and the solution of Eq. (4), and 6y is the difference
%
between the trial function y used to evaluate Eq. (13) and the solution

of

The proof of this follows from the easily verifiable fact that F; is

(2 =)t )

%
stationary (i.e. 8F; = 0 to first order) about functions ¢y and ¢ which
satisfy Eqs. (14) and (4), respectively, and the stationary value is Rij'

Pomraning's result56 reduce to this form when G[¢] = Rij'
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A perturbation theory for changes in Rij corresponding to changes in

the system parameters can be derived from the difference

%
GRij = Filv ,¢1 - Fl[w*,q»] : (15)

The prime indicates that the perturbed values s ):]T, A, B”, S” are used
in Eq. (13) to evaluate F”, while the unperturbed values are used to
evaluate F. Trial functions which approximate (or are equal to) the
unperturbed solutions to Eqs. (4) and (14) are used to evaluate both F~

and F. The result, accurate. to second order, is
SR <“i¢> <‘“j¢>
1. - 5
R, .
ij <Zi¢> <Zj¢>

where 6A = A” - A, etc. If the solution ¢ did not change with the intro-

- <w*,[(aA - 6B)o - 651) , (16)

duction of the perturbation, the first two terms in Eq. (16) would rigorously
describe the change GRij /Rij' A conventional estimate (one in which the
unperturbed flux is used) based on Eq. (12) yields just the first two terms.
Thus, the final term in Eq. (16) accounts for the effect of the perturbation

upon the solution ¢, and represents a refinement upon conventional methods.

III. LINEAR FLUX RATIOS — HOMOGENEOUS SYSTEMS

Consider again the problem of estimating Rij’ this time with ¢, the
fundamental eigensolution of Eq. (1). Again, a direct estimate from Eq. (12)

would yield a first-order error GRij . The variational functional

2
FZE;*,gtJ = <l¢x> 1 —<w-*,(A - AB)¢ > an
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provides an estimate of Rij accurate to second order with respect to the

% :
differences 6¢ and 6y between the trial functions used in evaluating
Eq. (17) and the solutions of Eq. (1) and

[A* - AB*) w* (18)

iz, 45
g R T (e
3
<Zi¢x> <’:j¢a>
respectively. Proof follows from consideration of the stationarity con-
ditions for F,. Pomraning's results7 reduce to this form when G[¢] = Rij'
Equation (18) has a solution because the RHS is orthogonal to 9y
the fundamental eigensolution of Eq. (1). The method of successive approxi-
mations yields a solution to Eq. (18) of the form (see Appendix for proof

of convergence)

% 2 %
voo= 1oy, (19)
n=0
where
% %
* % 1 s
Ay, = — - —1 (20a)
<Zi"x> <Zj¢x>
N AB*w:_l sk & 4 (20b)

A mutual orthogonality relation can be constructed from Eqs. (20)

and Eq. (1)
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OB, X
oS (s () = (i)

<¢:,AB¢)\> = (x8%yg,0 N A"wf,g)
<wT,A¢)‘> 3 <‘”1’AB¢A> T [ptnaprt s <“’:’AB°A>

% * :
Thus, the wn, and hence ¢ , are biorthogonal to o)‘ with respect to the

operator B. This suggests that Eqs. (20) be replaced by

e Y e ) (21a)
<zi°x> <£j¢x>
%* %
A§n=ABwnl, TR 0N (21b)
i <c B‘h>
U= (21c)

<°A’B¢’A>

where the second term in Eq. (21c) was added to remove any fundamental
mode contamination which may arise from numerical roundoff.
A perturbation theory for changes in Rij corresponding to changes

in the system parameters can be derived from the difference
= *
Fz ] ,¢A T Fz 1} ,¢A F (22)

where both F5 and F, are evaluated with approximations to the solutions
of Eqs. (1) and (18) for the unperturbed system parameters, while per-
turbed and unperturbed system parameters are used in Eq. (17) to evaluate

F; and Fp, respectively. The result, accurate to second order, is
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6Ris <”i¢x> <“j¢’x>
Ry zi¢)> <):j¢)>

where, again, 6A = A - A, etc. As before, the third term in Eq. (23)

* 9
= (¥, lsh - 6(AB)]¢A> , (23)

accounts for the effect of the perturbation upon the eigensolution, ¢,
and represents a refinement upon conventional theory, which would approxi-
mate tSRJ._j/Rij with the first two terms of Eq. (23).

Usac:hev8 obtained a perturbation expression equivalent to Eq. (23),
and prescriptions equivalent to Eqs. (19) and (21), from physical argu-
ments for the case of neutron transport within a critical nuclear reactor.
It is indicative of the power of variational principles that the straight-
forward derivation given above led to the same results as the

convoluted physical arguments of Usachev.

IV. LINEAR ADJOINT RATIOS — INHOMOGENEOUS SYSTEMS

Now consider the problem of estimating the ratio of linear functionals

of the solution of Eq. (7)
*
¢
o
sy

where s, and 55 are scalar operators. A direct estimate from Eq. (24)

P (24)

n

* . *
results in errors GRiJ. which are first order in the difference 8¢ between

~%
the trial function used to evaluate Eq. (24), ¢ , and the solution of Eq. (7),

&
$ .

The variational functional
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o
Fylo | = L A et vt (25)
[+*4] o { i)

- . * - - *
provides a second-order estimate of Rij relative to the functions &¢
mentioned above and 8y, which is the difference between a trial function

¥ used to evaluate Eq. (25) and the solution to

Sla S.
(A-BY = . (26)
<¢*Sj

1 -
* > >
¥’s;
Proof of this follows from consideration of the stationarity properties
of F3.
A perturbation theory for changes in Rij corresponding to changes

in the system parameters can be derived from the difference

% %*
SRy = rgl}*,q] - F3E> ,u] 5 27

where both F; and F3 are evaluated with approximations to the solutions
of the unperturbed Eqs. (7) and (26), F3 is evaluated with the perturbed
system parameters, and F3 is evaluated with the unperturbed system

parameters. The result, accurate to second order, is

* ¢*5 L ¢:*6 ,
5Rij ) < Sl> L < SJ> _ <[[6A* h GB*)¢* ' ssi—l, l“>. it
Ris <¢*Si> <‘°*Sj >

Because the first two terms in Eq. (28), which correspond to the conven-

tional method of estimation, are exact in the case where the perturbation
does not change the adjoint, the third term in Eq. (28) represents a refine-

ment to account for the effect of the perturbation on the adjoint.
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V. LINEAR ADJOINT RATIOS — HOMOGENEOUS SYSTEMS

4 A : £
In this case, a variational estimate of Rij is sought for the case
in which the ratio involves linear functionals of the fundamental eigen-

*
solution, 9y of Eq. (3). The variational functional

|: ,J <¢:> |:1 - <¢)‘,(A - AB)w>:| (29)

% *
provides a second-order estimate of Rij relative to the difference 66,

between the trial function used to evaluate Eq. (29) and the solution to
Eq. (3), and the difference 6§y between the trial function used to evalu-

ate Eq. (29) and the solution to

SL S.
(A - AB)y = = _—3J (30)

<‘*’isi> <‘°isj>

Proof follows from the stationarity properties of Fj.

*
Equation (30) has a solution because the RHS is orthogonal to 955

the fundamental eigensolution of Eq. (3). The method of successive

approximation applied to Eq. (30) yields a solution of the form (see

Appendix for proof of convergence)

A T ) s (31)

where

v €n (32)
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and the g are generated recursively

A s %
Aty = s (33a)

() Gls

At = ABy

n A g3 (1)) (33b)

The second term in Eq. (32) is included to remove fundamental mode con-
tamination which may arise from numerical roundoff. (A mutual biortho-
gonality relation exists which requires that <¢;":,Bwn> =0, n>0.)

A perturbation theory may be derived, similar to the previous section,

from the difference

* - * *
GRij = FQE)‘a:l = FQE)\a] s (34)

where the unperturbed trial solutions are used to evaluate Fi and F,.
Perturbed system parameters are used to evaluate Fj, while F, is evaluated
with the unperturbed parameters. The result, accurate to second order, is
% <¢*<Ss.> <¢*Gs.>
GRij A ASEY

E3

Ry (o) ()

The reasoning of the previous section indicates that the third term in

(s3sLe - SO ) (35)

Eq. (35) is a refinement upon conventional theory which accounts for the
effect of the perturbation on the adjoint. Gandini9 obtained an expression
equivalent to Eq. (35), and algorithms equivalent to Egs. (31) through (33),

in his extensian of Usachev's generalized perturbation theory.
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VI. BILINEAR RATIOS — INHOMOGENEOUS SYSTEMS

In many practical situations an estimate of the ratio of bilinear

functionals of the solutions ¢ of Eq. (4) and ¢* of Eq. (7)
<¢ H, ¢»>
Pis
J
<o H, ¢>

is required. Here Hi and H. are arbitrary linear operators. A direct estimate
3

(36)

*

from Eq. (36) leads to errors which are of first order in 6¢ and §¢,
% -

the differences between the trial functions ¢ and ¢ used to evaluate

Eq. (36) and the solutions to Egqs. (7) and (4), respectively.

The variational functional

<¢’H1>
il ")

- <[(A* = B*)¢* = s’j, r> (37)

%
provides an estimate of Pij which is accurate to second order in 6¢ ,

5 <r*,[(A - B)¢ - s_']>

%
8¢ and the functions 6T and 6I', which are the differences between the

% = s
trial functions T and T used to evaluate Eq. (37) and the solutions of

(a* - 8%)c* - . 1 (38)
GE IO RY
and
A-B)N = s (39)

(¢*.Hi¢> <¢*,Hj¢> ,
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respectively. Proof follows from the stationarity properties of Fs.
A perturbation theory for changes in Ps3 corresponding to perturba-

tion in the system parameters can be derived from the difference

L % %
6pij = FSE s ,¢)I] i FSE > :¢3I] > (40)

where both Fg and F; are evaluated with approximations to Egs. (4), (7),
(38), and (39) for the unperturbed system, and F: is evaluated with the
perturbed parameters while Fs is evaluated with the unperturbed parameters.

The result, accurate to second order, is
% %
¢ ,5H.¢> < L6H,
Gpij . < 1 T 2 J¢>
Bers % > %
5 (" He) (o He)

. <[(6A* - 586" - 53{1, > : (41)

The first two terms in Eq. (41) correspond to the conventional theory, and

- <r*,[(cA - §B)¢ - as])

*
would be exact if the perturbation did not alter ¢ or ¢. The third and
fourth terms are refinements which account for the effect of the perturba-

%
tion upon ¢ and ¢ , respectively.

VII. BILINEAR RATIOS — HOMDGENEOUS SYSTEMS

Consider again the problem of estimating Pij of Eq. (36), this time
3
with 9 and oy the fundamental eigensolutions of Eqs. (3) and (1), res-
pectively. As before, a direct estimate from Eq. (36) would have an

*
error which was first order in 6¢)\ and 6¢A, the differences between the
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% L :
trial functions ¢, and ¢, used to evaluate Eq. (36) and the solutions of
Egs. (3) and (1), respectively.

The variational functional

* % <¢>" > % *
Fe Ex,r ,¢A,ﬂ 1- (538 - )= (r¥,aa - 2By, )| 2)
CETY

*

provides an estimate of Pij which is accurate to second order in &¢,, 6¢,,
* .

and the differences 6T and 8T between the trial functions used to evaluate

Eq. (42) and the solutions of

% % * %
H ¢ H%%
(a* - 8*)r* - JEE. ‘ (43)
* *
<¢A’Hi“’x> <“’x’Hj¢x>
and
H.¢ H.¢
(A - AB)T = 4 O, L, S )

(o3 H;0,) <¢’;’Hj¢x>

respectively. Proof follows from the stationarity properties of Fg.
Equation (43) has a solution because the RHS is orthogonal to )0

the fundamental eigensolution of Eq. (1). Application of successive

approximations to Eq. (43) yields (see Appendix for proof of convergence)

*

r = Z Fn ) (45)

where

GEY
b, = Spr————'%, » (46)

(romes)
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*
and the £ are generated recursively

H* % % %
% % i¢>\ Hj%\
A 50 = — = (47a)
% H < %
(orHytyy  Coptso,)
R _ o F ok %
A R N (47b)
Similarly, a solution to Eq. (44) may be constructed from
i (48)
n=0
where
*
Qe
. = En - —*—- ¢)\ (149)
<¢A’B¢A>
and the £ are generated recursively
H.¢ H.¢
Ag, = i deptbat.igo ) s (50a)
* %
<¢>\’Hi¢)\> <¢A’Hj¢>\>
Agn = ABrn_l | I =08 . (50b)

The second terms in Eqs. (46) and (49) are included to remove any funda-
mental mode contamination which may arise from numerical roundoff. (Mutual
biorthogonality relations exist which require that <F;,B¢)> =0

<¢:,B1‘n>= 0, n>0.)
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A perturbation theory for changes in Ps; corresponding to perturba-

tions in the system parameters can be derived from the difference
ol [ it * &
6°ij = FGE)\’F ,¢)‘,ﬂ - FGEA’F ’%"I:—J 5 (51)

As before, Fg and Fg are both evaluated with trial functions which approxi-

mate the solution of the unperturbed Eqs. (1), (3), (43), and (44). Per-

turbed parameters are used to evaluate Fg, while unperturbed parameters

are used to evaluate Fg. The result, accurate to second order, is

Soi; <”§’5Hi°x> <¢i’6Hj¢A>

P13 <¢:’Hi¢x> <¢: ’Hj ¢A>

- <¢’:,[6A - 60B)] r>

" <r*,[aA - §(B)] ¢A> ! (52)

Again, the first two terms in Eq. (52) correspond to the conventional

result. The third and fourth terms are refinements which account for

*
the effect of the perturbation upon N and 4y respectively.

G.andi\']i9 obtained a perturbation expression equivalent to Eq. (52)

and algorithms equivalent to Egqs. (45) through (50) in his extension of

Usachev's generalized perturbation theory.
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VIII. POSSIBLE APPLICATIONS TO NUCLEAR REACTOR PHYSICS

Potential applications to problems in reactor physics are considered
to illustrate the use of the theory presented in the previous sections.
Hopefully, these examples will suggest applications in other fields by
analogy .

Frequently the solution to a pmblem slightly different from the
problem of interest is either available or readily obtainable and one
would like to use this solution to compute a ratio of functionals for
the problem of interest, or one would like to assess the change in the
ratio of functionals corresponding to the changes leading from the prob-
lem for which a solution is available to the problem of interest. In
the former case, the variational functionals F; through Fg provide a more
accurate estimate of the ratio of functionals than would be obtained by
a direct evaluation of the ratio using the available solution. In the
latter case, the perturbation expressions provide a means, accurate to
second order, of assessing the change in the ratio of functionals without
the necessity of calculating the solution for the problem of interest.
Changes in material composition, material arrangement, mathematical model,
nuclear data, source, and fuel temperature arise in reactor analysis.

Material camposition changes occur when one material is substituted
for another (e.g. insertion of a control rod, experimental device, detec-
tor, etc.) and when changes in isotopic composition due to fission, acti-
vation, and radiocactive decay take place. Changes in material arrange-
ment may arise from thermal expansion or changes in the loading pattern.

In a samewhat different vein, the material in a reactor may be hamogenized

in the calculational model to facilitate obtaining a solution. This homo-
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genized solution could be used, together with the actual heterogeneous
material configuration, in a variational functional to obtain an estimate
of a ratio in the actual system, or in a perturbation expression to assess
the difference between the ratio in the fictictious hamogenized model and
in the actual heterogeneous model. (Variational and perturbation expres-
sions for the eigenvalue have been applied to this end.ll’lz)

In the same vein, a simplified mathematical model may be used to
obtain an approximate solution. This solution may be used in a varia-
tional functional constructed for a more rigorous mathematical model to
obtain an estimate of a ratio. Alternately, the perturbation expression,
with 8A and 8B corresponding to the differences between the more rigorous
and approximate operators, could be used with the approximate solution to
assess the effect of the difference between the more rigorous and approxi-
mate models on the ratio. Replacing high-order neutron transport approxi-
mations with low-order approximations, such as diffusion theory, and neg-
lecting anisotropy in the neutron angular scattering distributions, are
typical simplifications.

Perturbation expressions of the form presented in this paper have
been used to assess the effect of nuclear data uncertainties upon ratios
of functionals, both for the purpose of assessing the implied uncertainty

e and for adjusting averaged

14,15

in the performance of nuclear reactors
cross sections to obtain agreement with integral experiments. Use

of the variational functionals would allow an estimate of the corresponding
ratios when new data became available without the necessity of obtaining

a solution corresponding to the new data.

The variational functionals F; and F, are appropriate for estimating

reaction rates oractivation ratios in subcritical (F;) or critical (F»)
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reactors. In this case z,; and ):j are the cross sections appropriate to
the reactions, distributed or localized in space and energy according to
the dictates of the problem. The functionals can also provide an estimate
of relative local flux or power peaking if I, = 6{11 - Pi] or I8 {r - ri]
and Zy = 1 or I, respectively. G[r - ri) is the Dirac delta, r is the
spatial variable, and I ¢ 1s the macroscopic fission cross section dis-
tributed in space and energy. Another use of these functionals is to
estimate the relative neutron flux above some energy Emin' In this case,
I, = U[E - Emin) and Iy = 1, where U is the step function.

An estimate of the relative importance of neutron sources s; and S5
to the reaction rate <S*,¢> in a subecritical reactor is provided by the
variational functional F3. Both F3 (subcritical) and Fy (critical) pro-
vide an estimate of the relative local adjoint when s; = é[r - Pi) and
sj = 1.

The variational functionals Fs (subcritical) and Fg (critical) pro-
vide an estimate of reactivity worths, effective delayed neutron fraction,
and effective prompt-neutron lifetime, depending upon the choice of Hi
and Hj' When Hi is the change in the neutron balance operator -A(A - AB)

(critical) or -A(A - B) (subcritical) due to a sample inserted into a

reactor, and Hj is the integral operator

x(E) J de” v):f(E‘,r) 5
0
then the variational functicnals provide an estimate of the reactivity

worth of the sample. Here E is the neutron energy, v is the number of

neutrons per fission, and x is the energy distribution of fission neutrons.
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When Hi is the integral operator
)(d(E) r dE~ vBZf(E',I‘),
0

and Hj remains the same, an estimate of the effective delayed neutron
fraction is provided by the variational functionals. Here, B is the
fraction of delayed fission neutrons and x 4 is the distribution in energy
of these delayed neutrons. If Hi is the inverse neutron speed, and Hj
remains the same, Fs5 and Fg provide an estimate of the prompt-neutron
lifetime. A ratio of reactivity worths results when both H; and Hj are
changes in the neutron balance operator.

Thus, there are many potential applications of the theory to nuclear

reactor physics, only a few of which have been examined to date. Certainly,

fruitful applications must exist in other fields as well.
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APPENDIX

The method of successive approximations was used to construct a solu-

tion to the flux importance equation

(A-XB)x = S (A.1)
of the form
X < E X s (A.2)
n=0
where
Axo = 8, (A.3)
A)(n = }‘an-l 5 T Qg (A.4)

Solving Egs. (A.3) and (A.4)

x, = AlBx _, = (Ahm)]Als, n>0, (A.5)

and substituting in Eq. (A.2) yields

x =00 (A aERAls (A.6)
n=0

It was shown previously that
%
(65) - o,
*
where ¢, is the fundamental (i = 0) eigenfunction of

* Al
[A - )‘iB]"i =0 . (A.7)
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Thus, S can be represented by an expansion in the higher harmonic (i > 0)

eigenfunctions s of

(A- xi8]¢i = (T (A.8)
Writing
Fase a;A;Bo;
i=1

it follows that

(A-1aB)"A-1s = ] a, ¢, -
=k A

For the multigroup diffusion equations there are positivity proofsl7
which assure that Ao < Aps i > 1. Thus, the sum in Eq. (A.6) converges,

and may be written
x = J (ALB)"Als = (I-a1B)7'Als = (A-aB)7IS, (A.9)
n=0

which is the solution of Egq. (A.1l).

A similar proof obtains for the adjoint importance solution.
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