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SENSITIVITY STUDIES OF THE EFFECT OF UNCERTAINTY IN THE
238y(n,y) AND IN THE 23%Pu(n,f) AND (n,y) CROSS SECTIONS

H. H. Hummel

Applied Physics Division
Argonne National Laboratory, Argomne, Illinois 60439

ABSTRACT

The effects of current uncertainties in the above
cross sections below 1 MeV, believed to be the most seri-
ous for fast reactors, were studied for a spherical model
of a large LMFBR. Total variations found for a probably
pessimistic assumption for 238y o(n,y) uncertainty were
about 3% in k, 0.10 in breeding ratio, 5% in sodium-void
effect (out of a total effect of +2.7% k), and 20% in
238y Doppler effect. For 23%Pu o(n,f) and o(n,y) below
30 keV, disagreements among recent measurements (which
are usually within error bars) correspond to a variation
of about 1% in k, 0.05 in breeding ratio, 15% in sodium-
void effect, and 12% in 238y Doppler effect. Uncertainty
in the 239%Pu fission cross section above 30 keV corres-
ponds to a variation of several percent in k, about a *5%
uncertainty in the sodium-void effect, and minor changes
in the other quantities. The most serious of these uncer-
tainties are those in k and in breeding ratio. Improve-
ment in knowledge of low energy 239y cross sections has
significantly reduced the uncertainty in reactivity
coefficients.

NOTE: This report is an expanded version of the paper of
the same title presented at the Third Conferemce on Neutron
Cross Sections and Technology, University of Tennessee,
Knoxville, March 15-17, 1971.
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INTRODUCTION

It is generally recognized that nuclear data uncertainties are the princi-
pal cause of unreliability in fast reactor physics calculations. The most
important data uncertainties are commonly considered to be in the fission and
capture cross sections of 239Pu and in the capture cross section of 238U. Be-
cause there haye been a number of recent measurements and evaluations of these
cross sections, it seemed to be of interest to assess the current uncertainty
in the most important fast reactor characteristics associated with uncertainty
in these cross sections. The reactor properties selected for study were reac-
tivity, sodium-void effect, Doppler effect of 238U, and breeding ratio (B.R.).

NUCLEAR DATA SELECTION

239py Fission and Capture Below 30 keV

A number of authorsl—7 have recently presented results for these cross sec-
tions in a form that facilitates comparison: a tabulation for common energy in-
tervals ranging from 0.1 keV at low energies to 5 keV at higher energies.
Results in most cases now agree within error bars; these error bars are some-
times rather large, however, particularly for the capture-to-fission ratio, a.
It seemed that simply computing the reactor properties corresponding to the
various reported cross section values would give a reasonable estimate of the
uncertainty from this source. The discrepancies obtained in this way are proba-
bly smaller than those that would correspond to the uncertainty in individual
measurements because of the cancellation of positive and negative effects. The
reference cross sections from which variations were made were those presented
by Pitterle, et al.8 The energy-averaged values for ENDF/B—II(Q)
from Ref. 5.

were taken

The fission and capture cross sections were used directly as tabulated in
the various papers, with self-shielding factors calculated by Kikuchil? applied
to variations in the cross sections. These factors were assumed to be indepen-

dent of the data, which should be good enough for the present purpose.
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The base cross sections as calculated by Mc21) Gere effective cross sec-
tions in that flux correction factors differing for different isotopes to take
account of accidental resonance overlap were used. 12,13) The flux correction
factors calculated by Kikuc:hi10 were also based on this method for a 2
(scattering cross section per atom) consistent with the reactor camposition be-

ing studied.

239py Fission and Capture Above 30 keV

In this case the variation made from the cross sections of Pitterle, et al
was to lower fission and capture by up to 16% between 40 keV and 1 MeV, corres-
ponding to the difference between the white* and Poenitzl® (preliminary) 235U
fission cross sections used as a standard. This was considered to be a repre-
sentative uncertainty. The effect of increasing alpha by 20% from 30 to 800 keV

was also determined; this is the uncertainty estimated by Greebler, et al.:Ls

238y Capture

The ENDF/B Version I cross sectionl7 was used as a standard in this case.
Upper and lower curves were constructed (Fig. 1) which were intended to repre-
sent extreme limits for this cross section, based on available experiments and
evaluations. Below 25 keV the curves were calculated from the unresolved reso-
nance parameters given in Table 1. The parameters for the upper curve are
those of Schmidt'® except that D_, . is 10.4 eV instead of 11.4. This curve

=3/2
agrees well with the 1966 evaluation of Schmidt below 100 keV.

The upper curve also agrees rather well with the data of Macklin, Gibbons
and Pasmc:\,19 as renormalized by Davey,20 extending up to 55 keV. Davey20 in-
cluded these measurements in his Category A of best available measurements,
"Good Absolute Data." The upper curve lies from 6 to 10% above Davey's "Best
Values" over most of the energy range below 100 keV. At higher energies up to
1 MeV, the upper curve agrees well with the measurements of Barry, Bunce and
White,21 and therefore with Davey's evaluated r\esults,20 which were based on

these measurements.

The lower curve up to 100 keV agrees well with the data of Moxon,22 except
that it is at about the lower limit of the data between 10 and 30 keV. Several
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recent evaluationszo’za’zu have chosen to renormalize Moxon's data upwards by

factors of 1.09 to 1.15. This was justified by a desire for consistency with
certain other measurements rather than by identification of any specific
deficiency in Moxon's technique, however. The shapes of both upper and lower
curves below 100 keV are similar to that of Moxon's data. At higher energy the
lower curve agrees with the measurements of Menlove and Poenitz,25 and above
140 keV also agrees closely with measurements of Fricke, et al.2[5 As pointed
out by Davey,20 the discrepancy between his evaluated values and the Menlove
and Poenitz values is essentially the same as the difference between the Whitel”
and Poenitz!® 235U fission cross sections and probably results from discrepancy
in neutron flux monitoring.

If ratio measurements among 235U fission, 23%Pu fission, and 238U capture
available above 100 keV‘?”? are used to obtain 238U capture from the 239Pu
based on the White 235U fission data, values close to the upper curve are
obtained. If the preliminary Poenitz 235U fission cross sections are used as
a standard instead, values close to the lower curve are obtained up to about
600 keV. However, the error bars in the ratio measurements would allow a
reduction of at least 5% from the upper curve for 238U capture using the
White 235U fission cross section as a standard.

If the shapes of the Moxon and of the Menlove and Poenitz measurements are
accepted, acceptance of the Barry, Bunce and White data requires high values of
238y capture at low energy close to those of Macklin, Gibbons and Pasma. The
measurements of Fricke, et al, however, which differ in shape fram those of
Moxon, indicate the possibility of cross sections substantially below those of
Macklin, et al, below 30 keV even with agreement with the values of Barry, et
al, at high energies.

- are very close to ENDF/B-I values

Davey's best values for 238U capture
up to 30 keV and are within a few percent of them plus or minus up to 1 MeV.
The ENDF/B Version II evaluated results prepared by I-"it‘ter‘le23 are about 5%
below Version I over most of the range below 100 keV, the discrepancy increasing
to 15% over a small range around 80 keV. Between 100 keV and 1 MeV the two ver-

sions are in close agreement.
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The evaluated values by Konsiin’® are within several percent of the Ver-
sion I values up to 1 MeV. Recent estimates of the uncertainty in the 238U
capture cross section are (1) #5-10% below 2 keV, +10% between 2 and 150 keV,
+5% between 0.15 and 2 MeV;23 and (2) +108.2% Since the difference between
the upper and lower curves used here, which were meant to represent pessimis-
tic limits, is more like +15% above their average over most of the range below
100 keV and +10% up to 1 MeV, the variation in reactor characteristics
obtained depending on which curve is used should be divided by about 1.5 to
be consistent with these estimates of error limits. The most reasonable reduc-
tion of the uncertainty assumed here is in the lowering of the upper limit
between 1 and 30 keV, as there are no recent measurements to support values
this high.

In calculating the effect of resonance self-shielding on the altered cross
sections, only the effect on the numerator of the effective cross section was
taken into account; the effect on the flux correction factor was neglected.
This causes some error in calculation of the variation in the Doppler effect,
but this error is not believed to be large enough to be important for the
present purpose.

METHOD OF CALCULATION

The cross section variations were made for a spherical model of a 1000-Mwe
oxide-fueled fast reactor used for parametric studies of LMFBRS.ZB The 5500-
liter core contained two enrichment zones of equal volume, and had 40 vol-% fuel
(p = 0.85), 40% sodium, and 20% stainless steel. The isotopic plutonium compo-
sition was 66% 23%Pu, 28% 240Pu, 4% 24!Pu, and 20% 2“2Pu. Fission products cor-
responding to 5 heavy at-% burnup were present, and 0.5% homogeneously distri-
buted tantalum in the outer zone simulated shim control effects. The core was
surrounded by a 25-cm thick blanket containing 55 vol-% depleted UO,, 30%
sodium, and 15% stainless steel, and a reflector 15-am thick containing 80%
stainless steel and 20% sodium. The cross sections were ENDF/B Version I
except for use of the Pitterle 23%Pu data and of lowered values for 238U in-

elastic scattering.

The reference calculations were carried out with a 26-group set of cross
sections with 0.5 lethargy unit width, generated by ultra-fine-group MC2?
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calculations for a base temperature of 1300°K and also at 2500°K for Doppler-
effect calculations. Doppler and sodium-void effect calculations were carried
out by first-order perturbation calculations, assuming a uniform temperature
rise in the core in the former case and uniform core voiding in the latter.

For study of the effect of the variation of 23%Pu fission and capture below
30 keV, derivatives of the effect of variation of o(n,f) at constant a and of a
at constant o(n,f) were obtained by direct k-calculations, with additional deriv-
atives obtained for the adjustment to critical by enrichment search. The deriv-
atives for the energy intervals of the tabulated cross sections were obtained
from those in calculation groups by linear interpolation in energy. The effects
of other cross section variations were obtained by direction enrichment search.

RESULTS OF CALCULATIONS

The importance of the variation of reactor characteristics given in Tables
2 and 3 can be judged by comparing them with what are believed to be reasonable
goals for the next few years for acceptable errors from all cross section uncer-
tainties (see, for example, Ref. 16): reactivity, *1% k; sodium-void effect,
+0.3% k; Doppler coefficient, #+5%; and breeding ratio, +0.02.

Variations in 23%Pu o¢ and o,

Results obtained for variations of 23%Pu o(n,f) and o are displayed in
Table 2. Of the results of variations in o(n,f) at constant a below 30 keV,
only the divergence in reactivity of about #0.5% k seems unacceptably high.
This deviation is mainly due to o(n,f) variation above 10 keV. Perhaps the most
noteworthy result is the relatively small variation in sodium-void effect,
amounting to *0.1% k. A variation of this size is not very significant for
safety, considering other uncertainties in dealing with accidents involving
sodium voiding. This conclusion is in contrast with what was found from compari-
son calculations made in 1965, when differences amounting to #1.0 to 1.5% k were

= In that case, however, variations by factors as

found for total core voiding.
large as two occurred in choices of o(n,f) of 23%Pu in the energy region below

30 keV made by various organizations, and this is believed to be the main source
of such large discrepancies in the sodium-void effect.30

averaged over common energy intervals agree for the most part within 10 to 20%.

The recent data as
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The self-shielding factors applied to o(n,f) were about 0.7 at 0.1 keV,
0.8 at 0.3 keV, 0.9 at 0.7 keV, 0.93 at 1 keV, and 1.00 at 5 keV and above.
No factor was applied to a since the factors for o(n,f) and o(n,y) were
nearly the same.

The energy region in which the sodium-void effect is most sensitive to a
given percentage change in the fission cross section at constant o is from
about 100 eV up to about 2 keV as can be seen in Table 4, in which the deriva-
tives of reactor characteristics with respect to effective cross section
changes are given as a function of energy. Since strong fluctuations in the
fission cross section occur in this energy range, significant errors in reac-
tor calculations are possible if the data are not properly averaged. It is
desirable to have the data given in as much detail as possible as a function
of energy so that the reactor physicist can perform his own averaging, taking
into account the group energy structure he wishes to use, the attenuation of
the neutron flux over such groups, and the perturbing effect of wide scatter-
ing resonances. A representation of the fluctuations to the extent possible
in terms of resonance parameters is, of course, highly desirable for accurate
resonance self-shielding and overlap and 23%Pu Doppler-effect calculations.
The latter were not attempted here because of the nonavailability of any reso-
nance parameter representation for the various sets of data. Experimentally,
the 239Pu Doppler effect appears to be small so that this deficiency does not
seem serious. The 239Pu Doppler effect is defined here in the effective cross

section sense,lz’ls which is the customary definition.

The effects of a variation in the low energy a at constant o(n,f) are
somewhat more significant for reactivity coefficients and breeding ratio, fairly
marked differences between results from the ORNL-RPI data’ and the data of
Schomberg, et al,’ being evident. The former data are generally higher than the
latter, the difference exceeding error bars in some energy regions. It was
found that for variation from ENDF/B—I(n) to IT a loss in k of 0.5% occurs both
for the o(n,f) variation at constant a and the a variation at constant o(n,f).
The low a values of ENDF/B-I give variations of -0.16% k.for the sodium-void
effect and -0.03% for the Doppler effect relative to the base values. Since it
is rather certain that the I values are too low, this difference represents a

narrowing of the uncertainty range for these quantities.
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In Table 4 it is seen that the derivatives are depressed in Group 17, which
contains most of the large sodium resonance at 2.85 keV. At higher energies the
derivatives of reactivity coefficients with respect to cross section changes
decrease markedly even on a per group rather than per unit energy basis. Also,
relative uncertainties in cross sections are smaller at high energy so that the
contribution of the region above several keV to uncertainty in reactivity coef-
ficients is relatively unimportant. To the derivatives in Table 4 there must
still be added the effect of an enrichment search to critical, as given in
Footnote "a" in Table 2.

Of the variations above 30 keV, the reactivity change is the most important.
The corresponding decreases in k calculated for critical assemblies are unaccept-
ably large in comparison with experiment.

Variations in 238y oy

The "Unmod. 60" results for 238U Doppler effect given in Table 3 correspond
to neglect of the change in effective 238U capture cross section with tempera-
ture. The effect of this change is smaller for the lower curve because of the
weaker p-wave self-shielding with the smaller strength function. The indicated
Doppler-effect variation corresponds to an uncertainty considerably less than
the deviations between experiment and calculation of the order of 30% that have
been obser'ved.32 Although other parameter uncertainties affect Doppler effect
calculations also, the ones considered here are probably the most important.
Large uncertainties in Doppler-effect calculations because of uncertainty in

the cross sections considered here seem unlikely.

Use of the ENDF/B-II values would produce variations from the base values
about a third of those obtained with the lower curve.

The uncertainties indicated for reactivity and breeding ratio are much too
large even after reduction to allow for an overly pessimistic choice of error
limits.

ALTERNATE METHODS OF ADJUSTING FOR CROSS SECTION CHANGES

The results given in Tables 2 and 3 are, as noted before, based on an
enrichment search to critical, in which the fissile content of both core regions
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is changed by the same ratio. Other means of adjustment which might be more
realistic in an actual case are the variation of the relative sizes of the two
zones, holding the total core volume constant, and a uniform change in the core
size, maintaining the ratio of the two zones constant. The final reactor proper-
ties obtained with a given initial composition and given initial zone sizes for
the various ways of achieving criticality are shown in Table 5.

It is noted in Table 5 that there is essentially no change in any of the
components of the sodium-void effect on adjusting enrichment to critical at con-
stant core volume. There is still not much change when varying the ratio of
zone volumes but holding the radius of the outer zone constant. A larger but
still not very important change occurs when criticality is achieved by a uni-
form change in core size at constant enrichment. This indicates that the most
important effect on the scattering component is that of the variation of
effective geometrical B? through core size changes on the energy dependence of
the adjoint function. This effect is considerably diminished when only the
inner zone radius is varied, and would be smaller still if there were more than
two enrichment zones with the outer core dimension kept constant. In effect,
this represents an approach to the case in which enrichment is varied by a
given ratio throughout the core. There is also, of course, a change in the
leakage component when core size is altered, which is considerably less when
the outer core radius is kept constant. The spherical model used is not the
best possible one for studying the leakage component effect, but conclusions
should be qualitatively valid even in this case.

Comparison of the scattering component for the enrichment search to critical
at constant core dimensions and for the search by altering both core radii shows
the change in sodium-void effect when core size and enrichment are altered simu-
taneously. The change in scattering component with fertile-to-fissile ratio
under these circumstances is comparable to that observed in earlier studies with
a fundamental mode flux with B2 being adjusted for criticality.>®>33

The situation is different for the Doppler effect; here the effect of vary-
ing enrichment on the amount of low-energy flux is evident, while a change in
core size at constant enrichment has a smaller effect. The change in Doppler
effect for a critical reactor, balancing size against core enrichment, is of the
same order as observed in fundamental mode studies.l3’3u
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In the case of the total breeding ratio, there is a significant change in
adjusting the system to criticality, as this effectively amounts to a change in
v. There is little change for a critical system in balancing change in enrich-
ment against change in core dimensions, however.

The error in critical mass corresponding to a 1% error in k is 1.9% for
adjustment of relative zone size at constant total core volume comapred to 1.7%
for a uniform enrichment search. If a uniform core size change is made, the
error in mass per per cent k is much larger, 14%. The former type of adjustment
is more likely to be made in practice than the latter, however.

CONCLUSIONS

While a change in the method of adjusting to critical would change the
results in Tables 2 and 3 slightly, the conclusions drawn from them would not
be changed in any significant way. Usually, of course, changes will be made in
more than one cross section at a time with compensating effects on reactivity
so that the problem of adjustment to criticality is even less than is implied
here.

Recent improvement in knowledge of 23%Pu fission and capture cross sections
below 30 keV has considerably reduced the uncertainty in reactivity coefficient
calculations, particularly for the sodium-void effect. Uncertainty in breeding
ratio and k calculations is still much too large.
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Table 1.

UNRESOLVED RESONANCE PARAMETERS USED

TO CALCULATE 2 OF 238y BELOW 25 keV

Upper Lower

Curve Curve ENDF/B-1
T mv 24.8 24.8 24.6
Sp x 10* 0.90 0.90 0.94
S, x 10% 2.5 1.0 1.58
R x 1013, cm 9.18 9.18 8.74
Dy1/2 20.8 20.8 18.5
D 10.4 10.4 9.25

14
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Table 2. RESULTS OF 23°Pu o{n,f) AND a VARIATIONS
Variation with Variation with
o(n,f) at Constant a a at Constant o(n,f) Total Variation
Sodium | 2380 ~ [ Sodium | 2380 Sodium I 2380
Void? | Doppler Total? | Reac.®| Void Doppler | Total | Reac. Void | Doppler [Total |Reac.
(% k) (% k) B.R. | (% k) (% k) (% k)| B.R. | (% k) (3 k)| (% k) B.R. (% k)

Base-Pitterle (8)

o(n,f) and o 2.683 | -0.u485 1.277 | 100. 2.683 | -0.485 I5277 100. 2.683 | -0.485 1.277 | 100.

Variations Below 30 keV

ENDF/B—II(g) -0.112 0 -0.003 0.018 | -0.092 | -0.015 0.005 0.096 | -0.204 | -0.015 0.002 | 0.114
orNL-RPIZ()

11-g Foil -0.004 0 0.001 | -0.196 0.132 0.035 | -0.031| -0.444 0.126 0.035 (-0.030 | -0,.640

Ioniz. Chamber -0.036 0.002 -0.001 | -0.118 0.202 0.045 | -0.040| -0.569 0.166 0.047 (-0.041 | -0.687
Saclay(Z) -0.120 | -0.001 -0.003 0.359
Petrele(s) 0.061 0.001 0.001| 0.396
James® (3 -0.061 | -0.005 | o -0.182
Dubnae(7) -0.003 0.004 0.001 | -0.665 0.185 | 0.028 | -0.012| ~-0.154 | +0.182 0.032 -0.011 | -0.819
Schomberg et al(l) -0.065 0.008 0 -0.509 | -0.096 |-0.015 0.012 0.193| -0.161 | -0.007 0.012 | -0.316
Czirr & Lindsey(z) 0.030 | 0.011 | -0.001| -0.067

Variations Above 30 keV

Poenitz o(n,f)(12) -0.256 -0.001 -0.001 | -3.130
Increase of 20% -0.019 0.004 | -0.022| -0.281

in a
aFor enrichment search to critical, 6kDO pler//KkReactivity = -0.0088, where GkReactivity is k after cross section

® /A Q0 O

Data extend only to 20 keV.

adjustment, GkB.Ru//%kReactivitz = +2.77,
Doppler temperature change 1300 K to 2500°K.

Skna Voie//GkReactivity % 0.

Gaps in one set of ORNL data were filled with values from the other set.

An increase of 1% k corresponds to a decrease of 1.6% in fissile inventory for an enrichment search to critical.

Fission data extend only to 25 keV.
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Table 3. RESULTS OF 238y g(n,y) VARIATIONS?
Base Value - High Curve Low Curve
ENDF/B-1 Above Above Above Above
a(n,y) 67 keV 1 keV 67 keV 1 keV
b
% 6K — -0.11 -0.56 1.10 2.90
Enrichment
Total Fissile
Reg. 1 0.1093 0.1095 0.1121 0.1074 0.1042
Reg. 2 0.1628 0.1631 0.1669 0.1599 0.1552
& Sodium Void (% k) 2.683 -0.015 0.112 0.107 0.035
& 238y Doppler (% k)¢
Unmod. 60 -0.485 0.001 0.052 -0.015 -0.074
Mod. 6o -0.485 0.001 0.030 -0.014 -0.063
§ (B.R.)
Core 0.896 0.001 0.029 -0.015 -0.049
Total 1.277 0.001 0.039 -0.017 -0.063

%Enrichment adjustment to critical.

bBefore enrichment adjustment.

cDoppler temperature change 1300°K to 2500°K.
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Table 4. DERIVATIVES OF REACTOR PROPERTIES WITH RESPECT TO CROSS SECTION VARIATIONS PER UNIT ENERGY®
o(n,f) at Constant « a at Constant o(n,f)

up E, keV AE, keV 3 Skya b GkDoppler s SKReact. §(B.R.) $ Skya $ skDoppler $ GkReact.’ §(B.R.)

(Gof/af]AE [Gcf/of]AE [Gof/of]AE [Gcf/of]AE Sa AE Sa AE Sa AE Sa AE
11 40.9-67.4 | 26.5 0.005 0.001 0.146 -0.003 -0.001 0.0004 ~0.045 -0.0027
12 24.8-40.9 | 16.1 0.009 0.002 0.188 -0.005 -0.002 0.0007 -0.057 -0.0035
13 15.0-24.8 9.8 -0.025 0.003 0.270 -0.007 -0.003 0.0014 ~0.080 -0.0050
14 9.12-15.0 5.9 -0.021 0.005 0.392 -0.011 0.001 0.0027 -0.112 -0.0071
15 5.53-9.12 3.59 -0.021 0.006 0.468 -0.013 0.014 0.0043 -0.143 -0.0081
16 3.35-5.53 2.18 0.089 0.008 0.417 -0.013 -0.023 0.0055 -0.139 -0.0073
17 2,03-3.35 1.32 0.005 0.008 0.265 -0.010 0.005 0.0048 ~-0.114 -0.0048
18 1.23-2.03 0.80 -0.660 0.026 1.50 -0.063 0.294 0.0364 ~0.640 ~-0.0314
19 | 0.748-1.23 0.48 -1.24 0.008 2.19 -0.083 0.582 0.0816 -0.988 -0.0434
20 | 0.454-0.748] 0.294 -1.50 -0.034 2.24 -0.085 0.850 0.139 -1.30 -0.0380
21 | 0.275-0.454] 0.179 -1.37 -0.073 1.84 -0.067 0.854 0.147 -1.25 -0.0380
22 | 0.167-0.275] 0.108 -1.22 -0.127 2.04 -0.046 1.080 0.234 -1.30 -0.0305
23 | 0.101-0.167 | 0.066 -0.23 -0.091 1.06 -0.030 0.561 0.097 -0.44 -0.0167

aEnergy in keV.

LT
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Table 5.

EFFECT ON REACTOR CHARACTERISTICS OF VARIOUS WAYS OF ADJUSTING TO CRITICAL

Region 1 Region 2 238y
Outer Outer Doppler
Enrichment Radius, Enrichment Radius, Sodium-Void Effect, % 6k Effect,
Case Fert/Fiss Ratio am Fert/Fiss Ratio cm k Zone | Scatt. [ Capture | Leakage | Total %k B.R.

Initial 0.11011 86.912 0.16397 109.501 (1.00u54 1 2.653 0.144 | -0.210 | 2.587 ( -0.3861| 1.2662
8.081 5.099 2 0.931 0.047 | -0.880 | 0.098 | -0.0941
Total| 3.584 0.191 | -1.090 | 2.685 | ~-0.u4808

Enrichment 0.10929 86.912 0.16276 109.501 | 1.00000 1 2.652 0.144 | -0.211 | 2.586 [ -0.3893) 1.2765
search 8.150 5.144 2 0.931 0.047 | -0.880 | 0.098 [ -0.0955
Total| 3.583 0.191 | -1.091 | 2.683 [ -0.u4848

Zone 1 radius 0.11011 88.181 0.16397 109.501 | 1.00000 il 2.731 0.149 | -0.253 | 2.627 | -0.4104 | 1.2771
altered 8.081 5.099 2 0.847 0.043 | -0.842 | 0.048 | -0.0873
Total| 3.578 0.192 | -0.1095( 2.675 | -0.4887

Both zone radii 0.11011 85.166 0.16397 107.301 | 1.00002 3 2.629 0.143 | -0.224 | 2.548 | -0.3844 | 1.2769
altered 8.081 5.099 2 0.921 0.047 | -0.895 | 0.073 | -0.0944
Total| 3.550 0.180 | -1.119 | 2.621 | -0.4788
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Fig. 1. Capture cross section of 238U. The upper and lower
curves are estimated extreme uncertainty limits.
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