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        Through continued advancement in computational 
resources, development that was previously done by trial 
and error production is now performed through computer 
simulation. These virtual physical representations have 
the potential to provide accurate and valid modeling 
results and are being used in many different technical 
fields.  Risk assessment now has the opportunity to use 3D 
simulation to improve analysis results and insights, 
especially for external event analysis. However, the static 
nature of traditional PRA methods hinders the direct use 
of time dependent dynamic simulations.  This paper first 
briefly discusses how 3D simulation methods can be used 
to improve the modeling approach.  In addition, we show 
how a state based PRA model, based on discrete event 
simulation, is equivalent and in some cases better than 
results from traditional fault tree evaluation methods.  
Finally, how to successfully incorporate physics based 3D 
simulation events at runtime to enhance overall results. 

 
I. INTRODUCTION 

 
Through physics and complex mathematical models, 

we have a good understanding how our world around us 
behaves.  However for anything other than small 
problems, these models become complicated when 
attempting to represent reality.  The field of 
computational physics applies numerical approximations 
and decomposes a problem into a large number of simple 
mathematical operations that can be solved using a 
computer. (Ref. 1)   

Many fields of study use computational physics to do 
calculations, from protein folding for medicine to realistic 
effects in visualization.  With the expansion of 
computation power and distributed computing, larger and 
more complex problems are able to be solved.  We have 
used these physics methods and tools to analyze flooding 
events and dynamically determine component failures.  
These tools have then been incorporated into PRA 
analysis software to improve results for a tsunami external 
event analysis.  The same principles can also be used for 
other external events. 

By using these simulation tools, the modeler only has 
to determine the likelihood of an event without having to 
also predict the results of that event.  The use of 3D 
simulations not only reduces errors from unforeseen 
secondary effects, but also determines when or sequence 
of any failures.   

To make full use of time dependent simulation 
results, a modification to traditional PRA calculation 
methods is needed.  A state based PRA modeling method 
was implemented based on the same principles as three-
phased discrete event simulation (Ref 9).  It can fully 
represent traditional models, and seamlessly incorporate 
events from a continuous physics based simulation.    

For this example we started with the same design as 
the “Demo” project from SAPHIRE, consisting of 16 
basic events and 2 fault trees, and then added in tsunami 
initiating events.  The four pumps and two diesel 
generators were also included in the 3D model to fail with 
water contact during the simulation. 

 
II. PHYSICS BASED 3D SIMULATION SETUP 

 
A 3D Simulation for risk analysis consists of several 

parts, the 3D facility model; components in the model; the 
events of concern on those components; and a scenario to 
run against the model.  
 

 
II.A. 3D Facility Model 

 
A 3D Facility model is used by the simulation for 

collision data and object properties during the simulation.  
It defines items that either exist or are planned for, such as 
terrain, buildings, tanks, openings, etc.  The closer these 
objects match to their real world counterparts, the more 
accurate the simulation results.  

The terrain is a key factor for any external flooding 
scenario such a dam break, flash flood, or tsunami.  A 
planed terrain can be constructed by a modeler, or if it is 
an existing area, automated tools can be used.  For 
example, the Google Altitude API can be used to query 



points for a defined area (Ref. 4).  This point cloud can 
then be converted into a polygon mesh and used as a base 
for the rest of the modeling. 

Deferring levels of resolution of a facility need to be 
made in order to optimize the simulation calculations.  A 
lower resolution but large area model is needed for full 
facility simulations.  Then any buildings of interest need a 
higher detailed interior model with all doors, vents, and 
physical structures.   Items need to be assigned physical 
properties such as mass or anchoring pins so that they can 
react correctly to situations in the simulation.  

 
II.B. Model Components and Events 

All key components and the events of concern must 
be included in a model.  Events of concern could be water 
contact, water submersion level, impacts, or movement.  
Data such as impact force, pressure, or position could be 
gathered or fed back to a parent application during a 
simulation. 

For example, a water resistant electrical pump would 
be modeled and linked with water submersion event.  
When water comes in contact with the pump, that data is 
communicated back to the attached application with the 
time of the event.   

The events done for this test were only water contact 
events.  However, with simulated physics, other factors 
such as debris impacts, flow obstructions, or erosion 
could also be modeled. 
 

 
II.C. Scenario Simulations 

 
Once a model is built and components with events 

added, a scenario can be constructed.  Many different 
scenarios can be developed using the same base model.  A 
scenario consists of a timeframe, and physics based 
influences added to a model, such as rain fall, a wave 
machine, or wind.  When a simulation starts, physics 
algorithms determine all consequential or secondary 
reactions over the timeframe of the simulation. 
 

 
III. SIMULATION TOOLS 

 
There are different 3D physics simulation engines 

using a variety of methods.  Each has its advantages or 
disadvantages depending on the intended use.   

 
III.A. Houdini FX 

 
For this research, we initially started with a software 

package called Houdini FX. (Ref. 6) This application is a 
dynamic and widely used 3D simulation environment for 
visual effects.  It also has an API for custom 
modifications which allowed us to communicate with it 
through other applications during each frame of the 

simulation.  This feature makes it useful for incorporation 
into risk analysis modeling since the scenario evolution 
can be controlled (e.g., a failures can be triggered) during 
the calculations being performed. 

The Houdini package worked well for smaller 
simulation such as water flow inside of a room.  However, 
it had two issues with larger simulations.  First, the solver 
that is used in Houdini was grid based Fluid In Particle 
(FLIP) method.  Particle-In-Cell (PIC) PIC/FLIP based 
solvers are extensively used in visual effects and produces 
visually interesting dynamic motion because it uses 
custom particle advection methods to combat numerical 
diffusion problems resulting in diffuse fluids. However, 
using a Smoothed Particle Hydrodynamics (SPH) solver 
with physics based modifications to handle boundaries 
guarantees conservation of mass with computation of 
pressure from weighted contribution of neighboring 
particles (Ref. 2). 

When Houdini’s FLIP solver was used to generate 
wave like a tsunami, the wave would quickly lose 
momentum and diffuse out. We tried to overcome this 
numerical diffusion by using higher resolution grids. But, 
in using higher resolution grids, we ran into the second 
problem.  The Houdini engine was not able to support the 
memory requirement needed to run the larger simulations. 
Moreover even running higher resolutions to a maximum 
of what could be handled, this work around still did not 
produce a wave which preserved energy and had 
excessive numerical diffusion. 

 
III.B. Neutrino Solve Engine 

 
To combat the problems we encountered with 

Houdini’s FLIP fluid solver, we decided to try 
“Neutrino.”  The Neutrino fluid solver [Developed by 
Neutrino Industries from initial work done by Nadiar 
Akinci’s PhD thesis (Ref 7)] is based on Smooth Particle 
Hydrodynamics with a pressure solver to handle 
incompressible fluids.  The Neutrino fluid solver also 
factors in accurate boundary handling, and adaptive time 
stepping to help to increase accuracy and calculation 
speed (Ref. 3). 

For this research, we collaborated with Neutrino 
Industries and they provided the use of their solve engine 
and made custom modifications to the code base to help 
with analysis.  Neutrino was able to handle not only the 
memory requirements needed for large simulations, but 
provided more accurate fluid movement with less 
numerical diffusion which preserved the solitary tsunami 
wave momentum required for our simulations.  

Neutrino also provides a variety of tools to measure 
parameters during a fluid simulation.  This includes the 
wave height at a specific point, the average pressure and 
average velocity in a certain area/volume, as well as the 
flow rate across a certain area/volume. 

 



 
IV. SIMULATION TESTS 

 
To test the capabilities of the simulation tools for 

PRA purposes, we combined both a large scale problem 
and a smaller subset.  The first consisted of a large 
tsunami wave inundating a facility and then dynamic 
internal flooding of a room caused by random tsunami 
heights.  Components and their failure monitoring were 
included in the smaller simulation.  

 
IV.A. Facility Model  

 
 To begin, we needed to model a facility.  As a 

starting point we used a publicly available reactor facility 
model that was based on Fukushima (Ref 8).  This base 
model was then converted into a collision model for the 
main facility simulations.  As testing evolved, we then 
used a custom application that queried Google’s Altitude 
API (Ref. 4) to generate a terrain map for the facility.  
(See Appendix A.I)  The facility was then added to the 
terrain map to provide more accurate simulation behavior. 
(See Figure 1) 

 

 
Figure 1. Nuclear facility model on a terrain map. 

 
IV.B. Tsunami Simulation 

 
The tsunami simulation consisted of a facility 

modeled on the coast, similar to Fukushima incident.  In 
the beginning a small slice of the facility with one reactor 
was used for testing.  This progressed to using the south 
half of the facility including support buildings and terrain.  
A boundary container was constructed around the desired 
facility area and into the ocean to contain the water within 
the desired scope. This container was filled with water 
particles using volumetric operations and Boolean 
operations to remove any particles inside solid geometry. 
This served as a start point of the simulation (i.e., still 
water). A wave machine was added to the model to 
initiate the water movement in the simulation. (See Figure 
2)  To accurately generate the wave, the wave piston 

movement was based on Goring’s 1978 numerical wave 
model (Ref 10). (Also See Appendix A.II)  

 

 
Figure 2. Wave piston setup with initial conditions. 

 
Several simulations with various wave heights were 

run for the single reactor slice of the facility and for the 
larger half facility model. (See Figure 3)  These 
simulations not only showed the water behavior and 
inundation depending on the varying waves, but were 
used to gather water levels and flow rates on doors and 
openings leading inside facility buildings. The two facility 
simulations used millions of particles depending on the 
resolution of the water particles.  Over 12 million 
particles where used for a ½ meter resolution single 
reactor simulations and 80 million particles for a ½ meter 
resolution half facility model.   

 
 

 
Figure 3. Resulting flooding from tsunami wave 
simulation 
  

For 12 million particles, each frame (simulated at 
24fps) required about 2-3 minutes on a 24 thread 12 core 
dual processor Xeon 2.8 GHz machine.  These large scale 
simulations provide great result data, but can’t be used for 
large run scenarios.  Instead, a few simulations with 
varying parameters can be done and then extrapolate data 
points for areas between those simulations.  For our 
tsunami simulations, three wave heights were generated 
and the flooding level into one building was measured. 
(See Figure 4) 

 



 
Figure 4. Measured water heights from different 
tsunami waves 

 
IV.C. Internal Building Flood Simulation  

 
By using smaller yet more detailed models we can 

detect individual component failures.  This also allows for 
the running of many simulations with minor parameter 
variations.  For testing we constructed a room with 
several components and a flooding water source. (See 
Figure 5)  Through parameters the water flow rate can be 
adjusted throughout the simulation.   

 

 
Figure 5. Dynamic interior room flooding example  

 
This allows for direct incorporation into multiple run 

methods, with runtime communication between the parent 
application and the simulation. 

 
 

V. STATE BASED PRA MODELING 
 
Traditional PRA software uses static Fault Trees and 

Event Tree sequences to calculate probability.  While 
simulations can and do provide additional information for 
this approach, you are limited by not having a true 
interaction between the static PRA model and the 
dynamic Simulation.  To accomplish this, we need a 
dynamic PRA method.  We developed a state diagram 
method using discrete event analysis that can also start up 
3D simulations with desired parameters.  The PRA 
simulation sends and receives events from the 3D 
simulation affecting the current states of the PRA model 
thus affecting the overall results during runtime.   The 
PRA model can also change the behavior in the 3D 
simulation.  This allows the PRA model to dynamically 
effect the simulation based probabilistic failures of 
components or systems.     

 
V.A. State Based Design 

 
The state based model implements a variation of 

three phase discrete-event simulation where you jump to 
the next chronological event; execute any required or 
immediate events; and then check for any conditional 
events. (Ref 9)  Designing a system consists of a layout of 
states with defined event triggered actions as links or 
movement between states.  A state has two sections, a list 
(0 or more) of immediate actions and a set of event driven 
or conditional actions.  When entering a new state, all 
immediate actions are executed in order and the state then 
stays in the current states list until an event triggers an 
action that moves it out of that state. (See Figure 6 and 
Figure 7)  We are able to synchronize the continuous 3D 
simulation by sending the time of the next state event to 
the 3D simulation and requiring it to return back either 
that event or any previously occurring 3D event before 
proceeding.  In conjunction the simulation pauses after 
sending any event it sends and waits for a “Continue” 
from the state simulation.       

 

 
Figure 6. A options for a single state of a state diagram 



 
Figure 7: Flow of how State Diagrams are processed 
 

 
V.B Definitions  

 
State: a logical representation for the condition of a 
component or system. (4 types) 

1. Start – A state that is to be placed in the 
current state list when the model begins a 
simulation. 

2. Standard – A normal state representing no 
special conditions. 

3. Key State – Marks a state that is to be 
tracked for final probability calculations.  
(All “End States” from a traditional PRA 
model should have a corresponding “Key 
State”) 

4. Terminal – Marks when a simulation ends.  
(If this state is encountered then the 
simulation ends) 

 
Component Group: a group of states that together define 
the valid states of a component.  Only one of these states 
can be in the “Current States” list at any given time.  Each 
of these states must have a success or failed flag 
indicating if the component is in an “OK” or “Failed” 
condition. 
 
Variables: named values that can be set by “Actions” or 
evaluated by “Events”.  (3 Types) 

1. 3D Simulation – value for the associated 
component in the 3D simulation. 

2. Component – available for all to read but 
only “Actions” in a “State” associated with 
that component can change the value. 

3. Global – available for all to read the value 
and “Actions” to set it. 

 
Action: (3 types). 

1. Transition – Start or move to a new state or 
states.  It is probabilistic if it contains more 
than one to state. 

2. Change Value – Change the value of a 
variable.  

3. 3D Sim Action – Send a message to the 3D 
simulator. 

  
Event: A condition based item that when met executes its 
assigned actions.  (6 Types) 

1. Timer – executes when time has passed. 
2. Fail Rate – executes when the sampled time 

(based on the failure rate) has passed. 
3. State Change – executes when the 

associated state is in the list of current states. 
4. Component Logic – executes if the defined 

logic for a set of components is met.  
(Similar to evaluating a FT in PRA without 
probabilities) 

5. Variable Condition – executes if a variable 
meets the user defined condition. 

6. 3D Simulation – executes if the associated 
3D component fails. 

 
 

 
V.C. Modeling Design 

 
A project model consists of many diagrams and those 

diagrams can be grouped into logical areas such as 
Components, Systems, and Plant Response.  Traditional 
PRA models could be translated or imported into a state 
model with a similar design layout.  For example, most 
basic events for a component can be modeled as a single 
component diagram with three states.  These three states 
are “Standby”, “On” or Running, and “Failed” and a 
component must always be in one and only one of these 
states.  The starting state is “Standby” and when the 
system starts, it shifts to “On” or “Failed” depending on if 
the component failed to start.  Any events that cause the 
item to stop running also move the state to “Failed”.  (See 
Figure 8)  A component diagram also has a Boolean 
evaluation value with each state so that the component 
can be evaluated at any time by other events.  It evaluates 
to the Boolean value of the current state. (See Figure 9)    

 



 
Figure 8: Example of State flow for a component that 
has both “fails to start” and “fails to run”. 
 

 
Figure 9. Key for state startup and evaluation  
 

Once all components of are modeled, a Fault Tree 
from traditional modeling can be directly converted into 
System diagram with two states and a special event used 
to evaluate Boolean logic.  The two states are “Active” 
and “Failed”, with a “Component Logic” event in the 
active state evaluating the assigned logic whenever a 
component diagram state changes.  If the logic ever 
evaluates to false, then the current state shifts from 
“Active” to “Failed”. (See Figure 10)  This is similar to a 
typical PRA model except the logic does not contain any 
probabilities, just references to the Component diagrams. 

 
Figure 10: Example of Logic Evaluation for triggering 
an event. 

 
Finally we have Plant Response diagrams.  These 

diagrams are the main items to be evaluated, similar to 
Event Trees.  This diagram has starting states such as 
Normal Operation and a Mission Time state.  Other states 
can do general evaluation and movement or be Key states.  
The Normal Operation starting state contains a Failure 
Rate event with information formerly held by an initiating 
event in traditional modeling.  The Mission Time starting 
state uses a timer to end the evaluation if we are past the 
desired mission time.  Key states represent states that we 
are concerned about when the evaluation ends, such as 
End States from traditional modeling. 

For example if an evaluation is needed for “loss of 
offsite power” (LOSP) that failure rate is added to the 
normal running start state for the Plant Response diagram.  
If that event occurs, the state shifts to the LOSP state.  
The LOSP state immediately starts new states to evaluate 
the related systems and waits for any events that trigger 
new key state.  When the evaluation ends, all Key states 
that are in the current state list are logged with the time of 
when that state was entered.  (See Figure 11) 

 



 
Figure 11. Plant Response diagram for LOSP example 

 
 

V.D. 3D Simulation Integration  
 
Integrating 3D simulation into the state diagram 

model is just a matter of starting the simulation when 
needed and receiving events that can trigger a state 
change.  For each component that can have a failure from 
the 3D simulation, we must add a 3D simulation failure 
event in the component state diagram.  (See Figure 12) 

 

 
Figure 12. Addition of 3D Simulation event into a 
component diagram 

 
Then in the Plant Response diagram we need a “3D 

Sim Action” to start the simulation.  As an example we 
will add a Tsunami initiating event probability to the 

diagram show in Figure 11.  This event triggers a move to 
the Tsunami state, which possibly triggers LOSP, starts 
the 3D simulation, and starts evaluation of the systems.  
(See Figure 13) Evaluating the state diagrams now 
consists of evaluating the next state diagram event or 
waiting for the next 3D simulation event. 

 

 
Figure 13. Plant Response diagram incorporating a 3D 
Simulation. 

 
V.E. State Model Evaluation 

 
Results from this design are gathered from repeat 

evaluations of the model.  From each repeated evaluation, 
the any Key states in the current state list, along with the 
time those states were entered, is logged as a result.  The 
compilation of these results allows us to determine the 
probability of any outcome we are concerned with.  When 
using equivalent models with no time related items, the 
results from the state model evaluation converge on the 
same result as other PRA methods.   If there are time 
based relationships, such as the recovery of offsite power 
that is dependent on the when two failures occur, the state 
diagram run automatically takes this into account where 
traditional methods attempt a complex convolution 
adjustment to fix the deviation.   

The state model evaluation also allows the user to 
determine the average or mean time of a particular 
outcome, enhancing the result set by giving an additional 
perspective. 

 
 

VI. RESULTS 
 
Information from the SAPHIRE “Demo” project was 

used as a testing model.  The only change made was the 
initiating event frequency for LOSP, where it was reduced 





to enhance result data and reduce the need for modelers to 
correctly predict the outcomes of hard to determine 
scenarios such as external events.    
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A. APPENDIX 
 
 
A.I. Altitude Point Cloud to Polygon Terrain Map 

 
To obtain a terrain map for use in simulations, a custom 
application was developed.  This application uses the 
Google Altitude API to obtain a point could for a given 
area.  In order to correctly determine coordinate  locations 
for querying points in a grid formation, a Haversine 
formula was used. 
 
Haversine formula:  
a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2) 
c = 2 ⋅ atan2( √a, √(1−a) ) 
d = R ⋅ c 
Where φ is latitude, λ is longitude, R is earth’s radius 
(mean radius = 6,371km). 
Note that angles need to be in radians. 
[http://www.movable-type.co.uk/scripts/latlong.html] 
 
The OBJ file format is generated first by defining points 
in a parameter space of curve or surface.  
As an example, if “v 5 15 34.483” were to be generated, it 
would mean that a vertex (v for vertex) at rectangular 
point coordinate (5, 15) with z-axis (elevation) 34.483. 
 
 
A.II. Goring Solitary Wave Generation – Numerical 
Model 

 
Goring (Ref 10) proposed a model for the purpose of 
laboratory solitary wave generation. The surface profile 
(x,t) of a solitary wave can be described using the 
following equation: 

http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
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 =          (A-1) 
C =                          (A-2) 

Κ =                              (A-3) 

Where C is the wave celerity or phase velocity,  is the 
wave displacement, H is the wave height and h is the 
depth of the ocean. Applying equation A-1 to the wave 
maker piston results in  

          (A-4) 
Using this equation one can solve for the wave piston 
displacement and wave piston duration using newton 
iterations resulting in 

        and         

Where S is the displacement and  is the time taken for 
the displacement. 
 
 
 
 
 


