

This is a preprint of a paper intended for publication in a journal or
proceedings. Since changes may be made before publication, this
preprint should not be cited or reproduced without permission of the
author. This document was prepared as an account of work
sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, or any of
their employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s use,
or the results of such use, of any information, apparatus, product or
process disclosed in this report, or represents that its use by such
third party would not infringe privately owned rights. The views
expressed in this paper are not necessarily those of the United
States Government or the sponsoring agency.

INL/CON-14-33680
PREPRINT

INCORPORATING
DYNAMIC 3D
SIMULATION INTO PRA

PSA 2015

Steven Prescott, Curtis Smith, Ramprasad
Sampath

May 2015

 1

INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

Steven Prescott
Curtis Smith

Ramprasad Sampath

Idaho National Lab: P.O. Box 1625, Idaho Falls, ID, 83415, Steven.Prescott@inl.gov

 Through continued advancement in computational
resources, development that was previously done by trial
and error production is now performed through computer
simulation. These virtual physical representations have
the potential to provide accurate and valid modeling
results and are being used in many different technical
fields. Risk assessment now has the opportunity to use 3D
simulation to improve analysis results and insights,
especially for external event analysis. However, the static
nature of traditional PRA methods hinders the direct use
of time dependent dynamic simulations. This paper first
briefly discusses how 3D simulation methods can be used
to improve the modeling approach. In addition, we show
how a state based PRA model, based on discrete event
simulation, is equivalent and in some cases better than
results from traditional fault tree evaluation methods.
Finally, how to successfully incorporate physics based 3D
simulation events at runtime to enhance overall results.

I. INTRODUCTION

Through physics and complex mathematical models,

we have a good understanding how our world around us
behaves. However for anything other than small
problems, these models become complicated when
attempting to represent reality. The field of
computational physics applies numerical approximations
and decomposes a problem into a large number of simple
mathematical operations that can be solved using a
computer. (Ref. 1)

Many fields of study use computational physics to do
calculations, from protein folding for medicine to realistic
effects in visualization. With the expansion of
computation power and distributed computing, larger and
more complex problems are able to be solved. We have
used these physics methods and tools to analyze flooding
events and dynamically determine component failures.
These tools have then been incorporated into PRA
analysis software to improve results for a tsunami external
event analysis. The same principles can also be used for
other external events.

By using these simulation tools, the modeler only has
to determine the likelihood of an event without having to
also predict the results of that event. The use of 3D
simulations not only reduces errors from unforeseen
secondary effects, but also determines when or sequence
of any failures.

To make full use of time dependent simulation
results, a modification to traditional PRA calculation
methods is needed. A state based PRA modeling method
was implemented based on the same principles as three-
phased discrete event simulation (Ref 9). It can fully
represent traditional models, and seamlessly incorporate
events from a continuous physics based simulation.

For this example we started with the same design as
the “Demo” project from SAPHIRE, consisting of 16
basic events and 2 fault trees, and then added in tsunami
initiating events. The four pumps and two diesel
generators were also included in the 3D model to fail with
water contact during the simulation.

II. PHYSICS BASED 3D SIMULATION SETUP

A 3D Simulation for risk analysis consists of several

parts, the 3D facility model; components in the model; the
events of concern on those components; and a scenario to
run against the model.

II.A. 3D Facility Model

A 3D Facility model is used by the simulation for

collision data and object properties during the simulation.
It defines items that either exist or are planned for, such as
terrain, buildings, tanks, openings, etc. The closer these
objects match to their real world counterparts, the more
accurate the simulation results.

The terrain is a key factor for any external flooding
scenario such a dam break, flash flood, or tsunami. A
planed terrain can be constructed by a modeler, or if it is
an existing area, automated tools can be used. For
example, the Google Altitude API can be used to query

points for a defined area (Ref. 4). This point cloud can
then be converted into a polygon mesh and used as a base
for the rest of the modeling.

Deferring levels of resolution of a facility need to be
made in order to optimize the simulation calculations. A
lower resolution but large area model is needed for full
facility simulations. Then any buildings of interest need a
higher detailed interior model with all doors, vents, and
physical structures. Items need to be assigned physical
properties such as mass or anchoring pins so that they can
react correctly to situations in the simulation.

II.B. Model Components and Events

All key components and the events of concern must
be included in a model. Events of concern could be water
contact, water submersion level, impacts, or movement.
Data such as impact force, pressure, or position could be
gathered or fed back to a parent application during a
simulation.

For example, a water resistant electrical pump would
be modeled and linked with water submersion event.
When water comes in contact with the pump, that data is
communicated back to the attached application with the
time of the event.

The events done for this test were only water contact
events. However, with simulated physics, other factors
such as debris impacts, flow obstructions, or erosion
could also be modeled.

II.C. Scenario Simulations

Once a model is built and components with events

added, a scenario can be constructed. Many different
scenarios can be developed using the same base model. A
scenario consists of a timeframe, and physics based
influences added to a model, such as rain fall, a wave
machine, or wind. When a simulation starts, physics
algorithms determine all consequential or secondary
reactions over the timeframe of the simulation.

III. SIMULATION TOOLS

There are different 3D physics simulation engines

using a variety of methods. Each has its advantages or
disadvantages depending on the intended use.

III.A. Houdini FX

For this research, we initially started with a software

package called Houdini FX. (Ref. 6) This application is a
dynamic and widely used 3D simulation environment for
visual effects. It also has an API for custom
modifications which allowed us to communicate with it
through other applications during each frame of the

simulation. This feature makes it useful for incorporation
into risk analysis modeling since the scenario evolution
can be controlled (e.g., a failures can be triggered) during
the calculations being performed.

The Houdini package worked well for smaller
simulation such as water flow inside of a room. However,
it had two issues with larger simulations. First, the solver
that is used in Houdini was grid based Fluid In Particle
(FLIP) method. Particle-In-Cell (PIC) PIC/FLIP based
solvers are extensively used in visual effects and produces
visually interesting dynamic motion because it uses
custom particle advection methods to combat numerical
diffusion problems resulting in diffuse fluids. However,
using a Smoothed Particle Hydrodynamics (SPH) solver
with physics based modifications to handle boundaries
guarantees conservation of mass with computation of
pressure from weighted contribution of neighboring
particles (Ref. 2).

When Houdini’s FLIP solver was used to generate
wave like a tsunami, the wave would quickly lose
momentum and diffuse out. We tried to overcome this
numerical diffusion by using higher resolution grids. But,
in using higher resolution grids, we ran into the second
problem. The Houdini engine was not able to support the
memory requirement needed to run the larger simulations.
Moreover even running higher resolutions to a maximum
of what could be handled, this work around still did not
produce a wave which preserved energy and had
excessive numerical diffusion.

III.B. Neutrino Solve Engine

To combat the problems we encountered with

Houdini’s FLIP fluid solver, we decided to try
“Neutrino.” The Neutrino fluid solver [Developed by
Neutrino Industries from initial work done by Nadiar
Akinci’s PhD thesis (Ref 7)] is based on Smooth Particle
Hydrodynamics with a pressure solver to handle
incompressible fluids. The Neutrino fluid solver also
factors in accurate boundary handling, and adaptive time
stepping to help to increase accuracy and calculation
speed (Ref. 3).

For this research, we collaborated with Neutrino
Industries and they provided the use of their solve engine
and made custom modifications to the code base to help
with analysis. Neutrino was able to handle not only the
memory requirements needed for large simulations, but
provided more accurate fluid movement with less
numerical diffusion which preserved the solitary tsunami
wave momentum required for our simulations.

Neutrino also provides a variety of tools to measure
parameters during a fluid simulation. This includes the
wave height at a specific point, the average pressure and
average velocity in a certain area/volume, as well as the
flow rate across a certain area/volume.

IV. SIMULATION TESTS

To test the capabilities of the simulation tools for

PRA purposes, we combined both a large scale problem
and a smaller subset. The first consisted of a large
tsunami wave inundating a facility and then dynamic
internal flooding of a room caused by random tsunami
heights. Components and their failure monitoring were
included in the smaller simulation.

IV.A. Facility Model

 To begin, we needed to model a facility. As a

starting point we used a publicly available reactor facility
model that was based on Fukushima (Ref 8). This base
model was then converted into a collision model for the
main facility simulations. As testing evolved, we then
used a custom application that queried Google’s Altitude
API (Ref. 4) to generate a terrain map for the facility.
(See Appendix A.I) The facility was then added to the
terrain map to provide more accurate simulation behavior.
(See Figure 1)

Figure 1. Nuclear facility model on a terrain map.

IV.B. Tsunami Simulation

The tsunami simulation consisted of a facility

modeled on the coast, similar to Fukushima incident. In
the beginning a small slice of the facility with one reactor
was used for testing. This progressed to using the south
half of the facility including support buildings and terrain.
A boundary container was constructed around the desired
facility area and into the ocean to contain the water within
the desired scope. This container was filled with water
particles using volumetric operations and Boolean
operations to remove any particles inside solid geometry.
This served as a start point of the simulation (i.e., still
water). A wave machine was added to the model to
initiate the water movement in the simulation. (See Figure
2) To accurately generate the wave, the wave piston

movement was based on Goring’s 1978 numerical wave
model (Ref 10). (Also See Appendix A.II)

Figure 2. Wave piston setup with initial conditions.

Several simulations with various wave heights were

run for the single reactor slice of the facility and for the
larger half facility model. (See Figure 3) These
simulations not only showed the water behavior and
inundation depending on the varying waves, but were
used to gather water levels and flow rates on doors and
openings leading inside facility buildings. The two facility
simulations used millions of particles depending on the
resolution of the water particles. Over 12 million
particles where used for a ½ meter resolution single
reactor simulations and 80 million particles for a ½ meter
resolution half facility model.

Figure 3. Resulting flooding from tsunami wave
simulation

For 12 million particles, each frame (simulated at
24fps) required about 2-3 minutes on a 24 thread 12 core
dual processor Xeon 2.8 GHz machine. These large scale
simulations provide great result data, but can’t be used for
large run scenarios. Instead, a few simulations with
varying parameters can be done and then extrapolate data
points for areas between those simulations. For our
tsunami simulations, three wave heights were generated
and the flooding level into one building was measured.
(See Figure 4)

Figure 4. Measured water heights from different
tsunami waves

IV.C. Internal Building Flood Simulation

By using smaller yet more detailed models we can

detect individual component failures. This also allows for
the running of many simulations with minor parameter
variations. For testing we constructed a room with
several components and a flooding water source. (See
Figure 5) Through parameters the water flow rate can be
adjusted throughout the simulation.

Figure 5. Dynamic interior room flooding example

This allows for direct incorporation into multiple run

methods, with runtime communication between the parent
application and the simulation.

V. STATE BASED PRA MODELING

Traditional PRA software uses static Fault Trees and

Event Tree sequences to calculate probability. While
simulations can and do provide additional information for
this approach, you are limited by not having a true
interaction between the static PRA model and the
dynamic Simulation. To accomplish this, we need a
dynamic PRA method. We developed a state diagram
method using discrete event analysis that can also start up
3D simulations with desired parameters. The PRA
simulation sends and receives events from the 3D
simulation affecting the current states of the PRA model
thus affecting the overall results during runtime. The
PRA model can also change the behavior in the 3D
simulation. This allows the PRA model to dynamically
effect the simulation based probabilistic failures of
components or systems.

V.A. State Based Design

The state based model implements a variation of

three phase discrete-event simulation where you jump to
the next chronological event; execute any required or
immediate events; and then check for any conditional
events. (Ref 9) Designing a system consists of a layout of
states with defined event triggered actions as links or
movement between states. A state has two sections, a list
(0 or more) of immediate actions and a set of event driven
or conditional actions. When entering a new state, all
immediate actions are executed in order and the state then
stays in the current states list until an event triggers an
action that moves it out of that state. (See Figure 6 and
Figure 7) We are able to synchronize the continuous 3D
simulation by sending the time of the next state event to
the 3D simulation and requiring it to return back either
that event or any previously occurring 3D event before
proceeding. In conjunction the simulation pauses after
sending any event it sends and waits for a “Continue”
from the state simulation.

Figure 6. A options for a single state of a state diagram

Figure 7: Flow of how State Diagrams are processed

V.B Definitions

State: a logical representation for the condition of a
component or system. (4 types)

1. Start – A state that is to be placed in the
current state list when the model begins a
simulation.

2. Standard – A normal state representing no
special conditions.

3. Key State – Marks a state that is to be
tracked for final probability calculations.
(All “End States” from a traditional PRA
model should have a corresponding “Key
State”)

4. Terminal – Marks when a simulation ends.
(If this state is encountered then the
simulation ends)

Component Group: a group of states that together define
the valid states of a component. Only one of these states
can be in the “Current States” list at any given time. Each
of these states must have a success or failed flag
indicating if the component is in an “OK” or “Failed”
condition.

Variables: named values that can be set by “Actions” or
evaluated by “Events”. (3 Types)

1. 3D Simulation – value for the associated
component in the 3D simulation.

2. Component – available for all to read but
only “Actions” in a “State” associated with
that component can change the value.

3. Global – available for all to read the value
and “Actions” to set it.

Action: (3 types).

1. Transition – Start or move to a new state or
states. It is probabilistic if it contains more
than one to state.

2. Change Value – Change the value of a
variable.

3. 3D Sim Action – Send a message to the 3D
simulator.

Event: A condition based item that when met executes its
assigned actions. (6 Types)

1. Timer – executes when time has passed.
2. Fail Rate – executes when the sampled time

(based on the failure rate) has passed.
3. State Change – executes when the

associated state is in the list of current states.
4. Component Logic – executes if the defined

logic for a set of components is met.
(Similar to evaluating a FT in PRA without
probabilities)

5. Variable Condition – executes if a variable
meets the user defined condition.

6. 3D Simulation – executes if the associated
3D component fails.

V.C. Modeling Design

A project model consists of many diagrams and those

diagrams can be grouped into logical areas such as
Components, Systems, and Plant Response. Traditional
PRA models could be translated or imported into a state
model with a similar design layout. For example, most
basic events for a component can be modeled as a single
component diagram with three states. These three states
are “Standby”, “On” or Running, and “Failed” and a
component must always be in one and only one of these
states. The starting state is “Standby” and when the
system starts, it shifts to “On” or “Failed” depending on if
the component failed to start. Any events that cause the
item to stop running also move the state to “Failed”. (See
Figure 8) A component diagram also has a Boolean
evaluation value with each state so that the component
can be evaluated at any time by other events. It evaluates
to the Boolean value of the current state. (See Figure 9)

Figure 8: Example of State flow for a component that
has both “fails to start” and “fails to run”.

Figure 9. Key for state startup and evaluation

Once all components of are modeled, a Fault Tree
from traditional modeling can be directly converted into
System diagram with two states and a special event used
to evaluate Boolean logic. The two states are “Active”
and “Failed”, with a “Component Logic” event in the
active state evaluating the assigned logic whenever a
component diagram state changes. If the logic ever
evaluates to false, then the current state shifts from
“Active” to “Failed”. (See Figure 10) This is similar to a
typical PRA model except the logic does not contain any
probabilities, just references to the Component diagrams.

Figure 10: Example of Logic Evaluation for triggering
an event.

Finally we have Plant Response diagrams. These

diagrams are the main items to be evaluated, similar to
Event Trees. This diagram has starting states such as
Normal Operation and a Mission Time state. Other states
can do general evaluation and movement or be Key states.
The Normal Operation starting state contains a Failure
Rate event with information formerly held by an initiating
event in traditional modeling. The Mission Time starting
state uses a timer to end the evaluation if we are past the
desired mission time. Key states represent states that we
are concerned about when the evaluation ends, such as
End States from traditional modeling.

For example if an evaluation is needed for “loss of
offsite power” (LOSP) that failure rate is added to the
normal running start state for the Plant Response diagram.
If that event occurs, the state shifts to the LOSP state.
The LOSP state immediately starts new states to evaluate
the related systems and waits for any events that trigger
new key state. When the evaluation ends, all Key states
that are in the current state list are logged with the time of
when that state was entered. (See Figure 11)

Figure 11. Plant Response diagram for LOSP example

V.D. 3D Simulation Integration

Integrating 3D simulation into the state diagram

model is just a matter of starting the simulation when
needed and receiving events that can trigger a state
change. For each component that can have a failure from
the 3D simulation, we must add a 3D simulation failure
event in the component state diagram. (See Figure 12)

Figure 12. Addition of 3D Simulation event into a
component diagram

Then in the Plant Response diagram we need a “3D

Sim Action” to start the simulation. As an example we
will add a Tsunami initiating event probability to the

diagram show in Figure 11. This event triggers a move to
the Tsunami state, which possibly triggers LOSP, starts
the 3D simulation, and starts evaluation of the systems.
(See Figure 13) Evaluating the state diagrams now
consists of evaluating the next state diagram event or
waiting for the next 3D simulation event.

Figure 13. Plant Response diagram incorporating a 3D
Simulation.

V.E. State Model Evaluation

Results from this design are gathered from repeat

evaluations of the model. From each repeated evaluation,
the any Key states in the current state list, along with the
time those states were entered, is logged as a result. The
compilation of these results allows us to determine the
probability of any outcome we are concerned with. When
using equivalent models with no time related items, the
results from the state model evaluation converge on the
same result as other PRA methods. If there are time
based relationships, such as the recovery of offsite power
that is dependent on the when two failures occur, the state
diagram run automatically takes this into account where
traditional methods attempt a complex convolution
adjustment to fix the deviation.

The state model evaluation also allows the user to
determine the average or mean time of a particular
outcome, enhancing the result set by giving an additional
perspective.

VI. RESULTS

Information from the SAPHIRE “Demo” project was

used as a testing model. The only change made was the
initiating event frequency for LOSP, where it was reduced

to enhance result data and reduce the need for modelers to
correctly predict the outcomes of hard to determine
scenarios such as external events.

ACKNOWLEDGMENTS

We appreciate DOE for funding this research and

furthering the advancement of PRA capabilities.

DISCLAIMER

This information was prepared as an account of work
sponsored by an agency of the U.S. Government. Neither
the U.S. Government nor any agency thereof, nor any of
their employees, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness, of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. References herein to any specific commercial
product, process, or service by trade name, trade mark,
manufacturer, or otherwise, do not necessarily constitute
or imply its endorsement, recommendation, or favoring
by the U.S. Government or any agency thereof. The views
and opinions of authors expressed herein do not
necessarily state or reflect those of the U.S. Government
or any agency thereof.

.

REFERENCES

1. Wikipedia contributors, “Computational physics”
Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/wiki/Computational_physics.
(accessed August 23, 2014)

2. Wikipedia contributors, “Smoothed-particle
hydrodynamics” Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/wiki/Smoothed-
particle_hydrodynamics. (accessed August 23, 2014)

3. N. Akinci, M. Ihmsen, G. Akinci, B. Solenthaler and
M. Teschner, "Versatile Rigid-Fluid Coupling for
Incompressible SPH," ACM Transactions on
Graphics (Proc. SIGGRAPH 2012), vol. 31, no. 4,
2012.

4. Google Maps Elevation API, Google,
http://www.programmableweb.com/api/google-maps-
elevation (accessed Nov 1, 2014)

5. Safinaz El-Solh, “SPH Modeling of Solitary Waves
and Resulting Hydrodynamic Forces on Vertical and
Sloping Walls”. Master of Applied Science in Civil
Engineering Report, University of Ottawa, Ottawa,
Canada.

6. Houdini Software, Side Effects,
http://www.sidefx.com/ (accessed Nov 10, 2014)

7. Neutrino Software Research,
http://www.naadir.tk/research (accessed Nov 10,
2014)

8. Artist iljujjkin, Fukushima 1 Nuclear Power Plant,
TurboSquid, http://www.turbosquid.com/3d-
models/c4d-nuclear-power-plant-fukushima/594020
(accessed Nov 10, 2014).

9. Michael Pidd, “Computer simulation in management
science” Wiley (1998)

10. Goring, D. G. Tsunamis – The Propagation of Long
Waves Onto a Shelf. Doctoral Dissertation, Report
No. KH-R-38, Keck Laboratory of Hydraulics and
Water Resources, California Institute of Technology,
Pasadena, California (1978).

A. APPENDIX

A.I. Altitude Point Cloud to Polygon Terrain Map

To obtain a terrain map for use in simulations, a custom
application was developed. This application uses the
Google Altitude API to obtain a point could for a given
area. In order to correctly determine coordinate locations
for querying points in a grid formation, a Haversine
formula was used.

Haversine formula:
a = sin²(Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin²(Δλ/2)
c = 2 ⋅ atan2(√a, √(1−a))
d = R ⋅ c
Where φ is latitude, λ is longitude, R is earth’s radius
(mean radius = 6,371km).
Note that angles need to be in radians.
[http://www.movable-type.co.uk/scripts/latlong.html]

The OBJ file format is generated first by defining points
in a parameter space of curve or surface.
As an example, if “v 5 15 34.483” were to be generated, it
would mean that a vertex (v for vertex) at rectangular
point coordinate (5, 15) with z-axis (elevation) 34.483.

A.II. Goring Solitary Wave Generation – Numerical
Model

Goring (Ref 10) proposed a model for the purpose of
laboratory solitary wave generation. The surface profile
(x,t) of a solitary wave can be described using the
following equation:

http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
http://en.wikipedia.org/wiki/Smoothed-particle_hydrodynamics
http://www.programmableweb.com/api/google-maps-elevation
http://www.programmableweb.com/api/google-maps-elevation
http://www.sidefx.com/
http://www.naadir.tk/research
http://www.turbosquid.com/3d-models/c4d-nuclear-power-plant-fukushima/594020
http://www.turbosquid.com/3d-models/c4d-nuclear-power-plant-fukushima/594020

 = (A-1)
C = (A-2)

Κ = (A-3)

Where C is the wave celerity or phase velocity, is the
wave displacement, H is the wave height and h is the
depth of the ocean. Applying equation A-1 to the wave
maker piston results in

 (A-4)
Using this equation one can solve for the wave piston
displacement and wave piston duration using newton
iterations resulting in

 and

Where S is the displacement and is the time taken for
the displacement.

