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Outline
• What is PTT (pebble packing transport)?
• To enable the transport solver (CMFD accelerated Richardson 

iteration) in Griffin for PTT with DFEM (discontinuous finite element 
method) –SN (discrete ordinates method):

– Residual evaluation,
– Transport update,
– CMFD acceleration.

• Numerical results of the transport solver.
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What is PTT?
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• PTT stands for pebble tracking 
transport.

• First implemented with DFEM-SN in 
Rattlesnake at the end of FY 2017 and 
published at PHYSOR2018.

• In the pebble packing region, a mesh 
node represents a pebble. A 
tetrahedron element is formed with five 
pieces: four pebbles on the vertices 
and one gap in-between.

• Cross sections are homogenized on 
pebbles. A tetrahedron element may 
have five sets of macroscopic cross 
sections. Pebbles are assumed as a 
perfect sphere. 

R

R

R

• To remove the region homogenization of the 
pebble-bed domain in traditional methods.

• To enable direct transport calculations with pebble 
tracking without meshing individual pebbles.

• About 1% error on powers of individual pebbles can 
be achieved with pebble-homogenized broad cross 
sections generated with MC.

1568 pebbles, half million elements 

41,048 pebbles, 437,735 elements 



CMFD (Coarse Mesh Finite Difference) 
Accelerated Richardson Iteration in Griffin
• The algorithm for CMFD accelerated Richardson iteration with multiphysics:
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Element Mass Matrix for PTT

• ∫𝑒𝑒 Σ𝑡𝑡,𝑔𝑔 𝑥𝑥 𝑏𝑏𝑖𝑖 𝑥𝑥 𝑏𝑏𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 = ∑𝑘𝑘=14 Σ𝑡𝑡,𝑔𝑔,𝑘𝑘 ∫𝑃𝑃𝑘𝑘 𝑏𝑏𝑖𝑖 𝑥𝑥 𝑏𝑏𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 + Σ𝑡𝑡,𝑔𝑔,0 ∫𝑒𝑒 𝑏𝑏𝑖𝑖 𝑥𝑥 𝑏𝑏𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑 − ∑𝑘𝑘=14 ∫𝑃𝑃𝑘𝑘 𝑏𝑏𝑖𝑖 𝑥𝑥 𝑏𝑏𝑗𝑗 𝑥𝑥 𝑑𝑑𝑑𝑑

R

R

R

• How the integration is done on the partial 
pebbles around vertices can be found in the 
paper:

– Shape functions are polynomials;
– Σ𝑡𝑡 𝑥𝑥  is assumed constant within a pebble 

and in the gap;
– Elemental matrices ONLY depend on mesh 

and are pre-calculated and stored.
• We can do similar treatment to the 

scattering/fission terms.
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Residual Evaluation and Transport Update with 
DFEM-SN
• The final algebraic equation:

– 𝐿𝐿Ψ = 𝑆𝑆Ψ + 1
𝑘𝑘𝐹𝐹Ψ

• Residual of a solution Ψ is defined as
– 𝑅𝑅(Ψ) ≡ 𝑆𝑆Ψ + 1

𝑘𝑘𝐹𝐹Ψ − 𝐿𝐿Ψ  (implemented previously)
• Transport update

– Ψ = Ψ + 𝑈𝑈𝑅𝑅(Ψ)
– Update operator 𝑈𝑈 can be as simple as 𝐿𝐿−1 with a sweeper (implemented 

previously),
– Or more complicated as (𝐿𝐿 − 𝑆𝑆)−1 done with a matrix-free multigroup 

iterative solver, which calls the mesh sweeper, with residual as the source.
– 𝑆𝑆 can be an approximation, for example, only containing the isotropic part.
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Meshless Consistent CMFD 
Setup/Projection/Solve/Prolongation
• Coarse elements (elements with the same coarse element ids):

• On coarse element side:

• On boundary:
• On element:

• Solve:

– Uses PETSc/SLEPc with A and B explicitly assembled.
• Prolongation:
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*Meshless means these formula do not care whether 
coarse elements are regular and only require which 
coarse element a fine element belongs to.



Results with a Simplified Randomly-Packed PBR
• Total 41,048 pebbles. Packing fraction is 0.51 (relatively low) with 

PEBBLES.
• Total 444,729 tetrahedra. 78,250 node
    points.
• Reflecting boundary condition on top and
    bottom, vacuum on the outer radius.
• 11-group cross sections are
    pre-generated with Serpent.
• Total 15 cross section sets: five for the inner reflector, five for the 

pebble bed, five for the outer reflector, based on the distance to the 
center line.

• Level-symmetric S4 quadrature is used (24 streaming directions).
• Calculation can be one on INL Sawtooth with 2 nodes in 20min. But all 

CPU results are gathered with 24 nodes with 24 CPU cores on each 
node.
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Coarse Element ID and Coarse Groups

• Coarse element ids of all element are 
assigned.

• Results with the coarse element id 
being, both the element id and 
coarse element id assigned through 
the coarse mesh will be presented.

• Number of groups for CMFD: 11 or 3.
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Results with different polynomial order
• Fine-mesh finite difference diffusion acceleration; 11-group CMFD;
• Few other settings for the multigroup iterative solver in the transport update: 

Scattering truncation 0; 4 inner iteration with GMRes .
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p ∆𝒌𝒌𝒆𝒆𝒆𝒆𝒆𝒆
(pcm)

N Wall time 
(s)

Residual
grind time

(𝝁𝝁𝝁𝝁)

Sweeping
grind time

(𝝁𝝁𝝁𝝁)

Total
Sweeps

(7*N)
0 8503 12 76.0 0.818 0.467 84
1 52.9 16 122.1 0.514 0.239 112
2 1.2 15 316.5 0.621 0.313 140
3 0 27 1330.5 1.169 0.540 189

• k-eff of p=0 indicates significant homogenization error.
• k-eff convergence with respect to p is fast. We recommend p=2 for typical PBR analysis.
• Grind time (total time divided by the number of calls, the number of total DoFs, multiplied 

by the number of processors) is about a micro second.
• Paper contains detailed break-down on the wall time.



Effects of coarse mesh and coarse energy 
groups

• Coarse mesh or coarse energy groups in CMFD result into slightly 
more Richardson iterations (more residual evaluations and transport 
sweeps) with less time in CMFD.

• For this test problem with 11 groups and 24 streaming directions, 
coarse mesh with 11-groups performs slightly better.
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N Wall time (s) Time in CMFD (s)
Fine mesh, 11-group 20 316.5 73.9
Fine mesh, 3-group 24 314.2 49.3
Coarse mesh, 11-group 23 254.2 4.4



Conclusions
• PTT with CMFD is implemented and verified in Griffin.
• Results with PTT compare well with Serpent references for a simplified 

pebble bed reactor.
• PTT does not require fundamental changes to the current transport 

codes, i.e. most existing solving techniques, post-processing, mesh 
generation and cross section preparation can be reused.

• CMFD can significantly accelerate PTT calculations making calculation 
done in minutes for one single eigenvalue calculation.
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Questions?
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Conclusions and Future Works
• PTT with CMFD is implemented and verified in Griffin.
• Results with PTT compare well with Serpent references for a simplified 

pebble bed reactor.
• PTT does not require fundamental changes to the current transport 

codes, i.e. most existing solving techniques, post-processing, mesh 
generation and cross section preparation can be reused.

• CMFD can significantly accelerate PTT calculations.

• Pebble tracking depletion.
• Online cross section with machine learning.
• Mesh generation.
• Transient.
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Weak Form for the Transport Equation on the 
Mesh
• We use the weak form with DFEM-SN, one-group, k-eigenvalue 

problem, isotropic scattering and vacuum boundary. The idea can be 
extended to general multigroup transport equations.

• Find solution Ψ(𝑥𝑥,Ω), such that 
𝑏𝑏 Ψ∗,Ψ = 1

𝑘𝑘𝑓𝑓 Ψ∗,Ψ ,∀Ψ∗ ∈ 𝑊𝑊,
𝑏𝑏 Ψ∗,Ψ ≡ − Ψ∗,Ω � ∇Ψ 𝒟𝒟 + Ψ∗,Σ𝑡𝑡Ψ 𝒟𝒟 − Ψ∗ ,Ψ−

Γ𝑖𝑖 + Ψ∗,Ψ 𝜕𝜕𝜕𝜕
+

− Ψ∗, 14𝜋𝜋Σ𝑠𝑠Φ 𝒟𝒟
 , 

𝑓𝑓 Ψ∗,Ψ ≡ Ψ∗, 14𝜋𝜋Σ𝑓𝑓Φ 𝒟𝒟
. 

• Details on the notation can be found in the paper.
• Solution on each element (with partial pebbles on its vertices) is 

expanded with polynomials.
• Only the terms with cross sections need to be implemented differently.
• Break-down of Ψ∗,Σ𝑡𝑡Ψ 𝒟𝒟 term:
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How Do We Generate the Mesh for PTT?
• Use a DEM code to generate all pebble locations in a file.
• Use a Fortran script to draw the geometry in a PLC (Piecewise Linear 

Complexes) file and include nodes of all pebble locations to form a final node 
file.

• Let TetGen process the PLC file to generate the final mesh for the entire 
geometry. (No new nodes should be inserted in the pebble packing region.)

• Drawbacks:
– No control on how TetGen inserts Steiner points on the interface between 

pebble packing region and the static region, and how TetGen connects 
nodes to form tetrahedra.

– Every time geometry changes, we have to modify the Fortran script.
– Users must lean a DEM code to generate a packing manually.
– The static region has to be meshed with tets.

• In the future: We hope to have a dedicated MOOSE mesh generator.
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How Do We Generate Cross Sections for PTT?
• We use Monte Carlo to do reference calculations to generate multigroup (<30) 

macroscopic cross sections with fresh pebbles.
• Pebbles are grouped into clusters. Pebbles in one cluster have the same cross 

sections.
– It appears that the number of clusters is small for making k-effective error 

in few hundreds pcm.
• No thermal feedback and no pebble tracking depletion with PTT in Griffin yet.

• In the future:
– On-line cross section capability that can handle temperature dependency 

with depleted pebbles.
– DEM codes can be used to generate pebble follow pattern during 

depletion without actually changing the mesh, or without moving node 
locations.

– Demonstrate both equilibrium core, running-in, and transient calculations 
with PTT.
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Results • 24 nodes on Sawtooth, 24 CPUs per node, 
Level-Symmetric S4, fixed convergence 
check.

• ∆𝑘𝑘 roughly depends only on polynomial 
order.

• k is 1.24345 with p=3 while the reference 
Serpent value is 1.24181.

• T1 is the CPU time in all mesh sweepings; 
Sweeping grind time is about 0.32 μ𝑠𝑠.

• T2 is the time in all residual evaluations; 
Residual grid time is about 0.62 μ𝑠𝑠.

• T3 is the time in all transport updates 
including the time in residual evaluations, 
mesh sweepings, scattering source 
evaluation, etc.; T3 > T1+T2.

• T4 is the time in CMFD 
projection/solve/prolongation;

• T5 is the time in CMFD initial setup; It 
depends only on NCE.

• T6 is the time in partial matrix evaluation; It 
depends only on polynomial order p.

• T is the total wall time.
• N1: The number of Richardson iterations
• N2: The number of total mesh sweepings

• PJFNK solver takes about 1460.8s with 8 
power iterations. We see 4 times reduction 
on CPU time.

• Moderate inner iterations with scattering 
truncation with GMRes is preferred.

• Coarse mesh can reduce the CMFD time 
although it requires more Richardson 
iterations than fine mesh. 
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