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Abstract 8 

Digital engineering and digital twins are increasingly being used in nuclear energy projects with 9 
important impacts. At Idaho National Laboratory, these approaches have been applied in a variety of 10 
nuclear energy research, development, and demonstration projects, with key lessons and evolutions 11 
occurring for each. In this paper, we describe the use of digital engineering and digital twins in the 12 
Versatile Test Reactor design, National Reactor Innovation Center test beds, and nonproliferation 13 
analysis of the AGN-201 reactor design. We share key lessons learned for these projects related to 14 
tool selection, adoption and training, and working with existing assets versus beginning at the design 15 
phase. We also share highlights of future potential uses of digital twins and digital engineering, 16 
including using artificial intelligence to perform repetitive design tasks and digital twins to move 17 
towards semiautonomous nuclear power plant operations. 18 

1 Introduction 19 

Digital engineering (DE) and digital twins (DT) can radically change the design, construction, 20 
operation, and lifecycle of nuclear energy assets. By providing a single source of truth for 21 
multidisciplinary teams, and by equipping asset owners and operators with a digital replica of the 22 
system, DE and DTs combined with artificial intelligence (AI) and machine learning (ML) can 23 
improve outcomes during construction and can enable predictive maintenance, advanced operational 24 
modes like remote and autonomous control, and the development of advanced security and 25 
safeguards. This technology has enabled enormous cost reductions in other industries and can bring 26 
the same benefits to nuclear energy, unlocking a capacity to scale nuclear energy so that its energy, 27 
security, and environmental benefits can be fully realized. At Idaho National Laboratory (INL), we 28 
have applied DE to a number of nuclear energy projects to varying degrees and have learned key 29 
lessons. The purpose of this article is to share the authors’ perspectives on the present and future 30 
value of digital engineering for nuclear energy and nuclear nonproliferation and to highlight 31 
experiences with three projects: the Versatile Test Reactor, the National Reactor Innovation Center 32 
(NRIC) test beds, and a DT for the nonproliferation analysis of the AGN-201 reactor. 33 

2 Digital Twins and Digital Engineering 34 

DE is a data-driven approach in which legacy paper-based engineering practices are replaced by a 35 
selection of design-, engineering-, procurement-, construction-, management-, and operation-related 36 
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digital tools. These tools are connected and used in an integrated digital thread to support dynamic 37 
synchronization across traditionally siloed domains while maintaining an accurate virtual replica of 38 
the product. A DT is a living virtual model that leverages both data from the digital thread and real-39 
time feedback from an operating asset to mimic its behavior in ways that are important to the user. 40 

This approach improves accuracy and efficiency across engineering and management disciplines, 41 
results in better cost and performance outcomes, and unlocks potential advanced uses of digital tools, 42 
including predictive capabilities, AI/ML, remote operation, and customized uses such as safeguards 43 
development (Javaid et al. 2023; Ritter et al. 2022a; Li et al. 2017; Rajesh et al. 2019; Wang et al. 44 
2022; Upadhyaya et al. 2007; Wood 2004; Basher 2003; Tuegel et al. 2011). For a more 45 
comprehensive description of the benefits of DTs, see Javaid et al. (2023). 46 

DE has been prioritized in the U.S. Department of Defense, real estate, and aerospace industries, as 47 
examples (DoD 2018; Attaran and Celik 2023; Grosse 2019; Dang et al. 2018; Bazilevs et al. 2015; 48 
Glaessgen & Stargel 2012; Seshadri & Krishnamurthy 2017; Li et al. 2017; Tuegel et al. 2011). 49 
Increasingly, DE is being used in biotechnology, medicine, agriculture, nuclear energy, and other 50 
fields (Attaran and Celik 2023; Javaid et al. 2023; Rassolkin et al. 2019; Cai et al. 2017; Bruynseels 51 
et al. 2018; Kochunas & Huan 2021; Crowder et al. 2022; Sandhu et al. 2023; Prantikos et al. 2022). 52 

3 Digital Engineering Opportunities for Nuclear Energy 53 

The existing U.S. nuclear energy industry has not routinely exercised many DE tools. The landscape 54 
has changed dramatically, however, in the past 10–15 years, with dozens of new companies, new 55 
designs, several demonstration projects, and an influx of talent from other high-tech industries like 56 
aerospace, oil and gas, automotive, and computing. 57 

The opportunities to use DE and DTs in nuclear energy are diverse. A 2021 report by INL, Oak 58 
Ridge National Laboratory, and the U.S. Nuclear Regulatory Commission evaluated potential uses of 59 
DTs in the nuclear industry (U.S. NRC 2021). Here, we highlight several key opportunities: 60 

• The high capital cost of nuclear energy has long been a key impediment to its 61 
increased use (Joskow and Parsons 2009). DE has reduced costs in other complex 62 
engineering projects (Osborn 2020; GE 2024). Its potential to reduce the cost of 63 
nuclear design, engineering, and construction is perhaps the most consequential 64 
opportunity in using DE for nuclear energy (Ritter and Rhoades 2023). 65 

• By using DTs, it would be possible to streamline and improve the training of nuclear 66 
operators and inspectors, as well as ensure state-of-the-art training over time, with 67 
updates to the DT (Martínez-Gutiérrez et al. 2023). 68 

• DTs are being used to test and improve the use of remote operation and autonomy in 69 
fields ranging from production and construction to transportation and surgery (Stączek 70 
et al. 2021; Laaki et al. 2019; Isto et al. 2020; Upadhyaya et al. 2007; Wood 2004; 71 
Basher 2003). This application could be important in an expansion of nuclear energy. 72 
Remote and autonomous operations can enable smaller remote reactors for important 73 
energy security or energy access needs, as well as other flexible operating approaches. 74 

• DTs could be used to reduce proliferation and security risks, by facilitating the 75 
development of safeguards and security strategies during design and operation by 76 
providing a platform to identify and train on suspicious system behaviors. Remote 77 
monitoring could enable the scalable and advanced safeguards and security of reactors 78 
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and fuel cycle facilities, which is largely accomplished today through direct 79 
inspections by individuals (Ritter et al. 2022a; Stewart et al. 2023). 80 

• The use of DE and DTs enables incorporating AI/ML for predictive maintenance, 81 
autonomy, and many other purposes. The uses of AI/ML are just beginning to be 82 
widely understood and appreciated; by using DE approaches, we enable the current 83 
and future application of those tools (Tao et al. 2018; Daniel et al. 2024; da Silva 84 
Mendonça 2022). 85 

• Finally, while product lifecycle management (PLM) has value in many applications, it 86 
is especially beneficial in nuclear energy, where decommissioning is a major 87 
undertaking and an important part of integrated planning. 88 

At INL, in partnership with others and in collaboration with the Digital Innovation Center of 89 
Excellence (DICE), DE is being applied to many nuclear energy projects, with varying intensity of 90 
scope and at varying stages of the technology lifecycle. In Sections 4-6, we provide insights from 91 
implementing DE in three representative projects. 92 

4 Digital Engineering for the Versatile Test Reactor 93 

The Versatile Test Reactor (VTR) program was established to build an advanced, fast flux test 94 
reactor in the United States for research and development needs. The design effort was a 95 
collaboration across six national laboratories, ten universities, and over 15 industry partners and was 96 
concentrated between 2017 and 2021. The VTR program implemented elements of the Department of 97 
Defense Digital Engineering Strategy (DoD 2018) through the use of data-driven tools, a digital 98 
thread, cloud computing, and close collaboration with the Digital Innovation Center of Excellence 99 
(Ritter et al. 2022b). These tools were implemented through design and procurement, with the intent 100 
to continue their use during construction and operation. 101 

To transition towards a fully connected digital thread, VTR leadership invested in an ecosystem of 102 
data-driven tools, which was novel for a large nuclear reactor program. Prior to the VTR, most 103 
requirements were developed within Microsoft Office documents and then published in pdf format to 104 
document management repositories. The VTR project implemented a capability to natively develop 105 
and maintain requirements within commercial off the shelf (COTS) requirement management 106 
software. Similarly, building information modeling (BIM) and the capture of structured data were 107 
emphasized over purely geometric computer-aided design artifacts. These BIM models were used to 108 
generate fly-through videos of the plant, providing a marketing capability and ensuring all 109 
engineering teams were aware of changes to the design. Most VTR organizations used local instances 110 
of scheduling software, but to increase collaboration, the VTR program deployed a centralized 111 
platform to manage the schedule across organizations. 112 

To connect these new sources of data, the VTR program developed a novel open-source digital 113 
thread platform, DeepLynx, now in use across dozens of nuclear, national security, and renewable 114 
energy projects. At its core, DeepLynx uses an ontological model to organize data within a graph-like 115 
structure. The ontological model includes classes, their properties, and relationship (relations) pairs 116 
to organize data across a graph. The graph for the VTR included information such as individual 117 
requirements, pieces of plant equipment, or schedule activities that needed to be completed on the 118 
project. These objects were then related through relationship pairs. DeepLynx’s graph structure is 119 
linked to external COTS tools through custom-built software pipelines using available application 120 
programming interfaces. The VTR program developed these pipelines for the majority of COTS 121 
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software deployed in the cloud environment. Since the VTR program, many other projects have 122 
expanded this ecosystem, illustrated in Figure 1, to other application domains and software platforms. 123 

  124 

Figure 1. VTR Digital Engineering Ecosystem 125 

To host this vast quantity of data and the digital thread, the VTR was the first project at INL and one 126 
of the first in the nuclear industry to use cloud computing. Most of the VTR ecosystem of tools were 127 
deployed centrally to a Microsoft Azure for Government cloud. Each laboratory and industry partner 128 
could authenticate with their home organization credentials and instantly collaborate within the same 129 
databases. The COTS requirements tool was natively designed for cloud computing and allowed for 130 
near real-time synchronization of requirements data across the project. 131 

The use of a strong DE ecosystem for the VTR project enabled collaboration across national 132 
laboratories, universities, and private companies. The VTR program was able to meet key milestones 133 
on schedule despite the challenges of the COVID-19 pandemic; the team credits DE with making 134 
major contributions to this success (Ritter et al. 2022b). The DE implementation in the project was 135 
not without its challenges, however. At deployment, the COTS BIM tools proved mature for 136 
engineering and drafting, but the team experienced rendering and deployment issues with the cloud 137 
collaboration tools available in 2019. One of the tools was chosen not based on its suitability to meet 138 
the needs of the project but for its prior use by partner organizations, and its implementation was 139 
never successful. Cultural and workforce adoption was slow, and multiple trainings, guides, and 140 
other resources were developed to increase end-user acceptance. If the VTR program is reinitiated, 141 
the use of DE will pay dividends, because it will be straightforward to restore access to program 142 
documents and data for team members. 143 

5 Digital Engineering for the National Reactor Innovation Center Test Beds 144 
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NRIC is establishing two demonstration test beds in which industry will demonstrate their reactors or 145 
perform experiments as part of its mission to accelerate the demonstration of advanced reactors. The 146 
two test beds addressed here are the Demonstration of Microreactor Experiments and the Laboratory 147 
for Operation and Testing in the United States test beds. 148 

For both these test beds, NRIC anticipated the need to interface with industry partners on many 149 
design details. The test beds provide various support infrastructure, electrical supply, control systems, 150 
cooling, and other opportunities for the industry reactors to utilize the existing physical plant. To 151 
support timely engineering execution and a smooth integration between the test bed and reactor, 152 
NRIC incorporated DE tools from the outset of both test bed projects. These tools included those 153 
implemented in the VTR program, as well as more complex domains such as model-based systems 154 
engineering, PLM, model-based definition, and mixed reality (MR). The NRIC DE ecosystem is 155 
illustrated in Figure 2. 156 

  157 

Figure 2. NRIC Digital Engineering Ecosystem 158 

For the NRIC test beds, DE was established as the expected approach for all team members, and 159 
training was provided to enable its effective use. Before developing a physical architecture for the 160 
test bed, there was a strong focus on functional requirements and the concept of operations for the 161 
facility. Requirements were managed in a model-based system, and systems and functions in the 162 
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design were traced back to requirements, whether based on project needs or Department of Energy 163 
requirements. This DE approach to verifying the ways in which the design addresses each 164 
requirement is novel and enhanced the regulatory review process. The PLM and model-based 165 
definition implementation allowed tables and pdfs to be exported from the model, avoiding manual, 166 
error-prone tabulation. Upon design approval, data created in the PLM is automatically transferred to 167 
INL’s electronic document management system, reducing labor in developing those documents while 168 
ensuring an accurate transfer. 169 

While the VTR project developed some fly-through videos for marketing and team review, the NRIC 170 
test bed projects took this farther, using the DE environment to develop imagery viewed through MR 171 
headsets that are valuable for design reviews, walkdowns, and tours. 172 

Benefits of DE in working with industry have been marked. The ability to share requirements and 173 
design details in real time, with all changes propagating through the system immediately, has led to 174 
improved collaboration and design optimization for both test beds. Working in a single environment 175 
with numerous project participants from laboratories and industry creates a single source of truth for 176 
project documentation, alleviating the emailing of documentation and enabling access control. 177 
Several potential users are currently collaborating with NRIC to design microreactor experiments, 178 
and the use of DE tools has led to efficiencies and improved communication, as well as the ability to 179 
partner with multiple potential users. The physics-based modeling of the facility that simulates how 180 
the test bed will perform can connect to a demonstrator’s models and simulations. 181 

A key challenge in implementing DE for the test beds was the acceptance of tools and training for 182 
new users. Some external partners who have their own tools do not want to learn a new tool for 183 
collaboration, but it can be necessary. Different types of training also work better for different 184 
people, so offering both self-study and guided options is important. Tools need to be as simple as 185 
possible to begin with, and training, guides, and procedures need to be provided to promote adopting 186 
new ways of performing project functions. 187 

The NRIC team has conceptualized a facility-scale DT and plans to develop that DT in the future to 188 
enable operational predictions. 189 

6 Digital Twin of the AGN-201 Reactor 190 

In a partnership between Idaho State University and INL, a multidisciplinary team developed a DT of 191 
the 5 watt AGN-201 reactor at Idaho State University. The DT is used to simulate proliferation 192 
activities and methods of detection and to inform researchers and practitioners on safeguards 193 
innovation with DTs, as well as to potentially serve as a training platform. The AGN-201 DT project 194 
was a 1 year project to leverage prior research to deliver the first nuclear reactor DT. The team 195 
initially invested in four primary areas: digitalization of the reactor data acquisition (DAQ), 196 
development of real time (5 second) DAQ streaming to DeepLynx, reactor physics model 197 
development, and anomaly detection models. After the streaming technology was operational, the 198 
team collected data over a series of reactor runs to train and tune models for a red-team, blue-team 199 
test. 200 

The DAQ system connected AGN-201 sensors directly to LabView. A new ingestion system, Jester, 201 
watches for LabView changes and uploads these changes to DeepLynx. After the VTR program, 202 
DeepLynx was modified to add time series support to collect real-time operating information 203 
alongside an ontological graph model, allowing for near-real-time DTs. 204 
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A high-fidelity reactor physics model was developed using the Serpent Monte Carlo code. A 205 
mathematical surrogate model was developed with Gaussian process regression to run alongside the 206 
operating reactor in real time. 207 

DeepLynx included a processing loop to communicate with both a surrogate physics model and 208 
machine model in real time. The red team developed a reactor operation plan to evaluate the 209 
performance of the two AI models. Prior to the experiment, the blue team developed a software 210 
platform with these two AI models to detect proliferation. During the experiment, the models are 211 
automatically run based on reactor operations data to evaluate the probability of proliferation. After 212 
the experiment, a presentation from the blue team was presented to the red team to evaluate model 213 
performance. The use of two models proved successful, and some of these results will be discussed in 214 
an upcoming paper “Autonomous Anomaly Detection of Proliferation in the AGN-201 Nuclear 215 
Reactor Digital Twin.” 216 

This project developed a DT of an already-operating asset, which is challenging because there were 217 
no digital artifacts from the design and build process to inform the twin. Further, the reactor could 218 
only be accessed during scheduled times, which complicated development. These challenges would 219 
likely be greater for a commercial asset. 220 

Based on experience with the AGN-201 DT, future efforts could include developing a DT of a novel 221 
design to facilitate incorporating safeguards during the development phase. A DT of an existing 222 
reactor can be created to enhance understanding of possible proliferation-related activities and to 223 
provide a training platform. 224 

7 Future Directions 225 

We see several promising future uses for DE and DTs and highlight two here: 226 

• AI for plant design: Even with digital tools, there are repetitive, time-consuming steps 227 
in the engineering process that could potentially be automated using AI. These include 228 
building three-dimensional models in drafting software from conceptual sketches or 229 
meetings and verbal communication; building the corresponding analytical model 230 
used to validate architectural or design models; generating documents that summarize 231 
work performed in modeling and simulation platforms; elements of performing a 232 
design review, obtaining feedback, and incorporating feedback into the design; and 233 
matching up design requirements with design output documentation during design 234 
reviews and verification stages. 235 

• Semiautonomous operation for nuclear energy: With DE tools and DTs, a research 236 
microreactor could be designed and built with autonomy in mind, with a goal of 237 
testing and implementing autonomy for specific tasks in the plant. This could be an 238 
important step forward for nuclear power research and development and for future 239 
autonomous operations of single plants or fleets of plants. 240 

8 Discussion 241 

DE tools were implemented at different levels in each of the three projects described here. In the case 242 
of VTR, DE tools benefitted design collaboration and schedule success. Lessons included the 243 
importance of identifying tools based on the needs of the project, rather than user preferences. 244 
Implementing DE tools at the earliest possible point in a project can save a lot of rework in migration 245 
of data between tools. 246 
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In contrast with VTR’s project-level DE, for the NRIC test bed projects, INL began deploying 247 
model-based tools as an enterprise capability and making the use of DE tools an expectation among 248 
teams across INL. DE tools have been valuable in enabling collaboration with potential test bed 249 
users. Visualization tools used in the VTR project were improved for the test beds to use MR to have 250 
greater value in design. Further, in the test bed implementation, tools were chosen carefully for their 251 
ability to meet project needs, which improved implementation. 252 

The AGN-201 project demonstrated that a DT can be used to evaluate proliferation risks. Building 253 
upon this work, in the future, a DT could be used to enable safeguards improvements in design and 254 
provide a training platform for inspectors. 255 

The open-source DeepLynx tool developed at INL has evolved over the course of these and other 256 
projects, and the team has plans for improving and extending it, including implementing AI features 257 
to perform repetitive tasks. 258 

DE and DTs are already improving the way we approach nuclear design and demonstration, and they 259 
have the potential to revolutionize how nuclear energy is built, operated, safeguarded, and 260 
decommissioned in the future, resulting in lower costs and higher performance. 261 
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