

INL/RPT‐24‐78713

Light Water Reactor Sustainability Program

Upgrade of EMRALD to a Modern
JavaScript-based Framework

Steven Prescott
Jared Nielson
John Stewart

June 2024

U.S. Department of Energy
Office of Nuclear Energy

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/RPT-24-78713

Upgrade of EMRALD to a Modern JavaScript-based
Framework

Steven Prescott
Jared Nielson
John Stewart

Idaho National Laboratory

June 2024

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Page intentionally left blank

iii

ABSTRACT

Event Modeling Risk Assessment using Linked Diagrams (EMRALD) is a
software tool developed at Idaho National Laboratory for researching the
capabilities of dynamic probabilistic risk assessment. It provides a simple
interface to represent complex interactions often seen when developing dynamic
models. EMRALD can also interface with other applications by modifying
inputs, running, and using their results within EMRALD for dynamic and
integrated assessment. This report goes over the work performed as part of the
Risk-Informed Systems Analysis Pathway under the Light Water Reactor
Sustainability program to upgrade the EMRALD software.

iv

Page intentionally left blank

v

CONTENTS

ABSTRACT ... iii

ACRONYMS ... viii

1. BACKGROUND ... 1

2. UPGRADE PLANNING .. 1

2.1 Packages Used .. 1

2.2 New Package Research .. 1

3. MODELING UI PROJECT SOURCE LAYOUT .. 2

4. MODELING UI DEVELOPMENT .. 3

4.1 Main User Interface ... 3

4.2 Diagram Editor ... 5

4.3 Logic Tree Editor ... 7

4.4 Edit Properties Forms ... 10

4.4.1 Diagram and State Forms .. 10

4.4.2 Variable Forms .. 11

4.4.3 Event and Action Forms ... 12

5. EMRALD MODEL USE AND CHANGES ... 13

5.1 Model Schema .. 13

5.2 Upgrade Methods ... 13

5.2.1 Web Editor Model Upgrade .. 14

5.2.2 Simulation Engine Model Upgrade ... 14

5.3 Cross References and Item Changes .. 14

6. DOCUMENTATION .. 15

6.1 Markdown Help ... 16

6.1.1 Web User Interface ... 16

6.1.2 Diagrams ... 16

6.1.3 States ... 17

6.1.4 Events .. 17

6.1.5 Actions, Variables, and Other ... 17

6.2 EMRALD JSON Model Syntax Information ... 18

7. FUTURE WORK .. 19

8. EMRALD V3 Release ... 21

9. REFERENCES .. 21

vi

FIGURES

Figure 1. EMRALD project file structure. .. 3

Figure 2. Example of speed-dial button for new forms. ... 4

Figure 3. Example of EMRALD window capabilities and minimization. .. 5

Figure 4. Example of dialog window. ... 5

Figure 5. Example of EMRALD diagram. .. 6

Figure 6. Example of logic tree diagram. .. 7

Figure 7. Example of node double-click edit functionality. .. 7

Figure 8. Example of gate node right-click context menu. ... 8

Figure 9. Example of non-default value highlighting. .. 9

Figure 10. Example of droppable area highlighting. ... 10

Figure 11. Example of standardized property forms with labels on the fields. ... 11

Figure 12. New variable form showing an accrual variable with droppable area for the accrual
states. .. 11

Figure 13. Form showing a distribution event with the parameters for a normal distribution. 12

Figure 14. EMRALD form for a change variable value action. .. 13

Figure 15. Upgrade folders and files, where a folder and processing files are created for each
schema change. ... 14

Figure 16. JSON path in the C# code for looking up items referenced by a State. 15

Figure 17. JSON path in the C# code for looking up itmes that reference a state. 15

Figure 18. Previous documentation website written in markdown language. .. 16

Figure 19. EMRALD model schema added to the documentation. Auto generated from the JSON
schema file. ... 19

Figure 20. Old custom application user interface for MAAP. .. 20

Figure 21. The filter feature of the old version of EMRALD. .. 21

vii

Page intentionally left blank

viii

ACRONYMS

DPRA Dynamic probabilistic risk assessment

EMRALD Event Modeling Risk Assessment using Linked Diagrams

INL Idaho National Laboratory

JSON JavaScript object notation

LWRS Light Water Reactor Sustainability

MAAP Modular Accident Analysis Program

MUI Material User Interface

PRA Probabilistic risk assessment

RISA Risk-Informed Systems Analysis

UI User interface

ix

Page intentionally left blank

1

Upgrade of EMRALD to a Modern JavaScript-based
Framework

1. BACKGROUND
Event Modeling Risk Assessment using Linked Diagrams (EMRALD) is a dynamic probabilistic risk

assessment (DPRA) tool developed at Idaho National Laboratory (INL) and has been used for many
laboratory and academic research projects. EMRALD started out as a Laboratory Directed Research and
Development project in 2005 to prove our DPRA methods. In 2016, the Light Water Reactor
Sustainability program needed a way to link external event simulations dynamically to risk analysis with
the timing of component failures and operator actions. EMRALD was further developed to be used for
external hazard analysis research projects [1–4]. Recent projects in LWRS include human reliability
projects, dynamic and classical PRA coupling, physical security optimization [5–7]. Several commercial
companies have shown interest in EMRALD and integrated it into their tools [8, 9].

In making updates to EMRALD for recent projects, it was determined that the web-based user
interface (UI) for modeling was reaching the end of its life cycle. Several of the packages used were no
longer supported and would not be receiving any security updates. It was determined that this code
needed to be rewritten and upgraded to a more modern framework. This report outlines the work done for
upgrading EMRALD to extend its usability lifespan and enable planned research projects.

2. UPGRADE PLANNING
Several months were spent looking at existing features and tools used in the current version of

EMRALD and finding and testing newer tools that could achieve equivalent features while minimizing
work and maintainability of the new version. The new version will upgrade existing models to the new
3.0 version, but any 3.0 versions will not be compatible with the older UI or solve engine.

2.1 Packages Used
The web-based EMRALD modeler UI was developed using Angular JS, a JavaScript-based web

framework from Google [10]. Updates to Angular JS were stopped in 2022. There are new versions of
Angular, but there were no upgrade paths from Angular JS to the new Angular framework, and upgrading
any project using Angular JS would require a software rewrite.

Other packages were used for many of the features in EMRALD. The diagram and logic tree viewer
and editor uses MX_Graph library [11]. The MX_Graph library is also no longer supported and has not
been updated since 2020. When reviewing the remaining packages used, none were deemed significant as
they all had newer versions or could easily be replaced with similar packages.

2.2 New Package Research
Various front-end technologies were evaluated for the new EMRALD UI. Given that the previous UI

was built using AngularJS, upgrading to Angular 17 [12] was initially considered a viable option.
However, due to the straightforward nature of EMRALD and the extensive ecosystem of libraries
available, React [13] emerged as the preferred choice for the new UI development. React’s flexibility,
robust community support, and extensive library ecosystem made it particularly well-suited for the
EMRALD UI upgrade.

A critical component of the EMRALD application is the diagram tools used for model visualization
and construction. To enhance the user experience and streamline the process of building models, the
React Flow [14] library was selected. Initially, D3.js [15], a powerful JavaScript library for producing
dynamic, interactive data visualizations, was considered because it is used by the EMRALD UI for the
Sankey diagrams and remains a popular library. However, during the research phase, React Flow emerged

2

as the preferred choice for the state diagram editor and logic tree editor as there were easy-to-use
components in React Flow making development faster and reducing long-term maintainability. React
Flow significantly improves the visual appeal and usability of the UI. The UI’s integration with React
Flow allows for a more dynamic and responsive interface, providing users with a more intuitive and
efficient model-building experience.

Another critically important feature of EMRALD is the capability to manage multiple windows,
including the functionality to drag and drop these windows. Additionally, the application requires the
ability to drag and drop various items to different locations within the interface and handle the
corresponding data transfer seamlessly. To achieve these functionalities, the libraries React-RND [16] and
React-DND [17] were selected. React-RND facilitates the resizing and dragging of windows, while
React-DND provides a powerful and flexible drag-and-drop framework. Together, these libraries enhance
the interactivity and user experience of EMRALD, ensuring that users can efficiently organize their
workspace and manage the application’s components.

In addition to the core libraries, several other useful tools were employed to craft the new UI for
EMRALD, including Material-UI [18], React-Icons [19], and Day.js [20]. Material-UI was chosen for its
comprehensive suite of predesigned components that adhere to Google’s Material Design guidelines,
ensuring a consistent and visually appealing user interface. React-Icons was utilized to provide a vast
array of customizable icons, enhancing the visual clarity and user experience of the application. Day.js
was incorporated to handle date and time manipulation. Together, these libraries contribute to a polished,
user-friendly, and high-performance UI for EMRALD.

3. MODELING UI PROJECT SOURCE LAYOUT
EMRALD operates without a traditional backend or database for data fetching. Instead, users build a

JavaScript object notation (JSON) model, a common human- and machine-readable format, that later is
used with the EMRALD simulation engine. The new EMRALD UI is designed around a global store or
local storage that houses this JSON model. This model is organized into various sections, such as
diagrams, actions, and events. To manage these sections efficiently, a React context [21] is created for
each subsection, allowing relevant parts of the application to interact with and manipulate the data via
their respective contexts. React contexts are a feature of the React library, which allows you to share data
across multiple components without having to pass props down manually at every level. Using React
context for state management within each subsection of the model ensures that changes in one part of the
application can be efficiently propagated to other relevant parts, enhancing the responsiveness and
interactivity of the UI.

The new structure, shown in Figure 1, emphasizes a robust component architecture. This architecture
is modular with components segmented into distinct parts, including diagrams, forms, windows, and page
layouts. Each component is designed to be as simple as possible, leveraging React hooks to manage logic
where necessary. This modular approach enhances maintainability by making it straightforward for
developers to locate and understand various parts of the application. The clear separation of concerns
allows for individual components to be developed, tested, and debugged in isolation, which improves the
overall quality of the codebase.

Additionally, the modular architecture promotes reusability, enabling components to be easily reused
across different parts of the application. This not only accelerates development but also ensures a
consistent user experience throughout the application. This design philosophy results in a more robust,
efficient, and user-friendly application, enhancing the overall experience for both developers and end-
users.

3

Figure 1. EMRALD project file structure.

4. MODELING UI DEVELOPMENT
One of the goals in the upgrade was to keep the UI experience as close as possible to the original

while still making it easier to use and updating the tools. The graphing tools are the most different but
maintain the original workflow, and the forms have a very similar layout and feel. This section outlines
the main work that was done in the different areas showing the biggest differences or additional features.

4.1 Main User Interface
To enhance the user experience while preserving the familiar feel of the previous EMRALD UI,

several new features have been implemented. These enhancements not only eliminate the need for users
to relearn the application but also streamline the process of creating models.

The main canvas of the EMRALD application now features a speed-dial button, shown in Figure 2.
When hovered over, this button provides users with quick access to create new forms when constructing
their model. Previously, users had to right-click on each menu item and then select the new form button,
which was a more time-consuming process. The new speed-dial button significantly improves usability
by allowing users to quickly and easily locate and create new items, thereby accelerating the model-
building process.

4

Figure 2. Example of speed-dial button for new forms.

Leveraging the capabilities of the React-RND and React-DND libraries, a new custom window
component has been developed. This component grants users’ extensive control over the windows on
their canvas. These windows can be easily dragged, resized, minimized, and expanded, offering a high
degree of flexibility in managing the workspace. Minimized windows, as shown in Figure 3, are
conveniently listed at the bottom of the canvas, and a simple click restores them to their previous size,
helping users maintain an organized and clutter-free workspace. This functionality enhances the overall
user experience by making window management intuitive and efficient.

5

Figure 3. Example of EMRALD window capabilities and minimization.

Additionally, instead of relying on the browser’s alert window for entering information such as the
model’s name, the new UI now utilizes Material-UI dialog windows. These dialogs are centered on the
web page, providing a more aesthetically pleasing appearance that aligns with the overall design of the
application. This integration, as shown in Figure 4, not only enhances the visual appeal of the UI but also
ensures a consistent user experience across different parts of the application.

Figure 4. Example of dialog window.

4.2 Diagram Editor
The diagram editor has undergone significant improvements with the integration of the React Flow

library, making it much easier and more intuitive to work with. In the previous UI, moving state nodes
within the diagram was cumbersome, requiring an initial click before dragging to select the node, and the
space to which the node could be moved was limited. In the new UI, users can effortlessly click and drag

6

nodes to any desired location within the window, significantly enhancing the ease of interaction.
Additionally, the diagram’s size and scale can expand to accommodate an almost limitless number of
nodes, providing greater flexibility in model construction.

The React Flow library introduces new controls, shown in Figure 5, that greatly improve the usability
of the diagram editor. Users can now zoom in and out on the diagram, allowing for detailed inspection or
an overview of the entire model as needed. A mini-map feature has been added, helping users to easily
navigate to nodes that may not be within the current view. This improves the overall navigation and
usability, especially in complex diagrams.

Drag-and-drop functionality has been enhanced using the React-DND library, making it clear and
easy to see which items can be dropped within the diagram. This improvement ensures a more intuitive
and efficient user experience when modifying the model. Additionally, while the previous UI allowed
users to move actions up or down within an event, the new UI extends this functionality by enabling both
actions and events to be moved up or down. This provides users with greater control over the node
configuration and simplifies the process of organizing and adjusting the model.

The handles for connections between state nodes have also been improved. In the older UI, users had
to hover over the action item to access the handle, which added confusion and slowed down the process.
In the new UI, these handles are easier to locate and drag to other nodes, streamlining the creation and
adjustment of connections between state nodes.

Moreover, in the previous version, if a diagram had links to other diagrams, it merely included an
icon to indicate this link, without offering further assistance in navigating to the linked diagram. The new
UI addresses this limitation by not only featuring these link icons but also allowing users to click on them
to open the linked diagram in a new window. This enhancement makes it quick and easy to navigate
between related diagrams, significantly improving the user experience.

Overall, these enhancements to the diagram editor, facilitated by React Flow and React-DND, result
in a more user-friendly, efficient, and flexible tool for building and managing models in EMRALD.

Figure 5. Example of EMRALD diagram.

7

4.3 Logic Tree Editor
The logic tree diagram in EMRALD has seen significant upgrades with the integration of React Flow,

aligning it with the improvements made to the main EMRALD diagrams. These enhancements bring
consistency to the UI, making it easier for users to become familiar with and navigate the application.

One of the notable upgrades is the refined appearance of the nodes, shown in Figure 6. Nodes now
feature cleaner designs with embedded buttons and more visible gate-type icons, allowing users to
understand the diagram at a glance. The improved visual clarity significantly enhances the user
experience by making it easier to work with the logic tree.

Figure 6. Example of logic tree diagram.

Several powerful features have been added to the logic tree, boosting its functionality and user-
friendliness. Users can now double-click on the title of a node to activate a text field, enabling them to
quickly and easily update the node’s name without needing to open a separate form. An example of this
functionality is shown in Figure 7. This same double-click functionality is available for editing node
descriptions, making it easier to understand and manage the model as it is being constructed.

Figure 7. Example of node double-click edit functionality.

8

A major new feature is the right-click context menu, displayed in Figure 8, which provides a list of
actions specific to the node. This menu offers options that were previously unavailable in the older UI,
such as copying and pasting nodes within the tree. This capability, combined with the streamlined editing
process, significantly accelerates the tree-building workflow. Additionally, the ability to remove a gate
node while keeping it within the model for reference by other trees, or to delete the gate entirely, has been
introduced. This feature provides greater flexibility and control over the model structure.

Figure 8. Example of gate node right-click context menu.

Component nodes now have a right-click menu that offers quick access to the edit form, deletion
options, and the ability to open the diagram in a new window. Also, if a component node has been edited
to deviate from default values, like what is shown in Figure 9, it is highlighted in a darker color and
marked with an edit icon in the top left corner. This provides users with a quick visual indicator that the
node has been modified, improving the ease of managing and reviewing the model.

9

Figure 9. Example of non-default value highlighting.

When dragging gate items onto a node within the tree, the target node is highlighted green, providing
clear feedback, as shown in Figure 10, that the new item can be dropped there. This visual aid simplifies
the process of adding new items to the tree, reducing the likelihood of errors and enhancing overall
efficiency.

10

Figure 10. Example of droppable area highlighting.

4.4 Edit Properties Forms
The forms for editing properties have been updated to be consistent with new user interface styling.

Several changes were implemented to clarify properties and facilitate the user experience in general.
Users can now navigate and utilize the forms more efficiently.

4.4.1 Diagram and State Forms

The diagram form has been updated to now include a new property: the diagram label. In addition to
its previous properties of type, name, and description, the diagram label indicates which category the
diagram belongs. Previously, this was accomplished by the diagram type, but changes were made to give
the user more flexibility in their diagram designs as well as to increase user understanding. The diagram
type is now either “Single State” or “Multi State” to indicate whether this type of diagram can be in
multiple states at once or not. These small changes to the diagram form—as well as the new user interface
styling—help the user diagram effectively.

To edit or create a state form, the following form is used as shown in Figure 11. It can be accessed
from an open diagram either by right-clicking on the diagram and choosing “New State” or by right-
clicking on a state and choosing “State Properties.” Like the previous UI, the “Default Logic Tree
Evaluation Value” will only appear if the assigned diagram is a single state diagram. The new design uses
text fields with descriptive labels above and in the empty box to indicate what should be entered, as
shown in Figure 11.

11

Figure 11. Example of standardized property forms with labels on the fields.

4.4.2 Variable Forms

Variables can be created from the right drop-down menu. The new design follows the same format as
the old UI in what information is required but follows the new format concerning how information is
entered. Labeled text fields indicate what should be entered for the name and description. All forms of
data entry utilize the Material User Interface (MUI) React library. One of the largest updates for the
variable forms was this new droppable box, where the user can deposit state items that should be used for
accrual variables, as shown in Figure 12.

Figure 12. New variable form showing an accrual variable with droppable area for the accrual states.

12

4.4.3 Event and Action Forms

The event forms—like the variable forms—follow the same outline as the old UI but with some
notable changes and updated styling. Besides styling, the most notable change is in the distribution form,
shown in Figure 13, where a default rate was added. This allows for a user to set and use a default rate for
each variable. This makes the table easier to manage since if the rate is not of concern to the user, then
they will not have to bother setting a rate for each variable.

New design work for the action forms includes a modernized droppable box in which the user can
drop state items as well as newly styled components for adding code, as shown in Figure 14. The newly
styled components should help the user enter information, remove any confusion, and streamline the user
experience. Each form has been updated to reflect the design styles of the new user interface resulting in
forms that are visually pleasing and easy to work with.

Figure 13. Form showing a distribution event with the parameters for a normal distribution.

13

Figure 14. EMRALD form for a change variable value action.

5. EMRALD MODEL USE AND CHANGES
In reviewing the existing EMRALD software, there were several things that would help minimize the

effort in rewriting the code. One of those things was how the EMRALD model is structured and
processed. For long-term maintainability, a consistent and standardized way of making upgrades and
checking for model syntax error was needed. To accomplish this, a schema defining the EMRALD model
structure and requirements was needed and could be used in several areas of development.

5.1 Model Schema
The EMRALD model is saved in the JSON format which is both easily processed by most software

languages and can still be read, understood, and modified by humans. JSON also has a publicly defined
schema language which made it easy to define exactly what is allowed and required for the EMRALD
model. A JSON schema was defined early in the development process. This schema was used in several
areas: (1) autogenerating and documenting the object types for use in the code, (2) checking the model
before saving and find any syntax errors, and (3) implementing the upgrade process described in Section
5.2.1.

5.2 Upgrade Methods
As with all software and tools, it is expected that EMRALD will progress and change over time. This

includes the data and format in the EMRALD model. The current model upgrade to a new schema was
very limited and not well defined. It also required an upgrade method or old version compatibility in both
the model-building UI and the solve engine. Research was done on how to combine this as one code or

14

tool to minimize work through code reuse and reduce errors. One solution was to require the user to
upgrade an existing model in the web UI before opening in the solver, but this seemed less optimal. The
second option was to use a package that could execute the JavaScript code in the solver C# code. This
second method was chosen.

5.2.1 Web Editor Model Upgrade

To effectively perform model upgrades, a folder with schema logic and standard class structure was
set up for each schema change as shown in Figure 15. The class knows both its schema and the previous
and implements defined functions to upgrade model pieces. When first opening a project, the upgrade
function is called which reads the current version number and runs each schema upgrade that is needed to
bring it up to the current version.

Figure 15. Upgrade folders and files, where a folder and processing files are created for each schema
change.

When a new version of the model is needed, a folder with the version is created. Changes are made to
the existing schema and saved in the folder, then the schema is used to autogenerate all the TypeScript
[23] object types as one file and saved in the folder. The developer then copies and splits out all the
different object types and updates the current EMRALD object definitions. Using the definitions from the
current and previous version, the developer creates an upgrade class implementing the functions to update
the model returning a new JSON model string.

5.2.2 Simulation Engine Model Upgrade

The package ClearScript from Microsoft [22] allows JavaScript to be run inside C#; however, this
requires the JavaScript to be included as a file in the solve engine code. The UI code is written in
TypeScript, but this translated automatically down to JavaScript for execution as a web application. A
script to convert the TypeScript for just the upgrade process was added to the source code and is called
whenever the solve engine is compiled and the code has been updated. The upgraded JavaScript source is
then copied to the solve engine project. When the user opens an EMRALD model in the solve engine, it
executes the upgraded JavaScript function passing in the EMRALD model text and returns and upgraded
text.

5.3 Cross References and Item Changes
EMRALD modeling pieces, such as variables, events, actions, diagrams, etc., can be referenced by

name by many other pieces of the model. Name vs. ID references are used to make the model human

15

readable; however, this makes it more difficult to change or alter a name since all the references also need
to be updated. The old EMRALD modeling UI had a long piece of code that processed all the model
pieces looking for references and making changes if needed. This worked well but was cumbersome to
modify and understand by new developers.

A simpler method was implemented in this updated version using JSON path for all referencing and
updates [24]. JSON path allows the user to define a simple rule to find items in a JSON file, similar to
how a regular expression works. A set of JSON path rules was defined for each of the EMRALD items;
these rules specified how to get all the names referenced by the item. For example, a state item can
reference diagrams, events, and actions with the JSON path rules shown in Figure 16. A second set of
rules was added to get all the items that reference a specific item. For example, a state can be referenced
by diagrams, actions, events, logic node, and variables, with JSON path rules shown in Figure 17.

Figure 16. JSON path in the C# code for looking up items referenced by a state.

Figure 17. JSON path in the C# code for looking up items that reference a state.

These rules provide several software use and maintainability benefits. First, they allow the developers
to use the same function for updating any item and any references to it. Second, it provides a simple
method for getting an item and all the items it uses, which are used to copy a piece of the model or make a
template. Finally, if new items are added, it makes it easy to add those changes to the reference and
update calls by simply adding a new line to the rules for the applicable items.

6. DOCUMENTATION
With the user interface changes, updates to the documentation website, as shown in Figure 18, were

also performed. This section goes over how the documentation is set up and changes that were made. A
new documentation piece was added to provide help for anyone desiring to understand and use the
EMRALD model JSON format.

16

Figure 18. Previous documentation website written in markdown language.

6.1 Markdown Help
The markdown documentation provides a wealth of information for users to better understand and

utilize the EMRALD application. These help pages were updated to be consistent with the new UI. This
update involved replacing outdated images, rewording text to better match with the new designs, and
adding text to explain new features and components. As the help pages are divided into sections, each
section needed considerable rework.

6.1.1 Web User Interface

The web UI section of the documentation needed new images to include the new drop-down menu for
creating diagrams, logic trees, events, etc. Since this is a new feature in the UI, the help text was modified
to include it, and an additional section was added to explain how it works. This additional section
explains how hovering over each icon in the drop-down menu displays text indicating what the button
will do. When clicked, the icon will open a form to create the desired component.

6.1.2 Diagrams

The method of creating a new diagram has been updated. Instead of right-clicking on the left
navigation frame, you need to use the drop-down menu on the right-hand side. In addition, what used to
be referred to as the diagram type is now referred to as the diagram label. The diagram type still exists,
but the options are now “Single State (Evaluation)” or “Multi State.” These refer to whether the diagram
will be a single state or a multi-state diagram. Then, a new field for diagram label was created to
implement what was previously referred to as the type. The markdown pages were edited to explain the
difference between the type and the label and images of the new interface were provided.

17

Additional documentation was added to explain templates. When creating a diagram, the user can
choose to have the diagram follow a specific template. Documentation in the “Diagram” section will
include information on template options as well as an entirely new section explaining how to create new
templates.

The subsection “Types of Diagrams” was reworded to instead explain diagram labels and their
significance. Instead of having a generic “Other” diagram label, you can type the name of the label you
wish your diagram to be part of, and the left navigation frame will update itself to include the category.

6.1.3 States

The new UI caused adjustments to the “State” section of the documentation, including an easier way
to create a state. When right-clicking in the diagram, and after selecting the option “New State,” instead
of a small form just asking for the name of the new state, the user interface will instead pull up the
dialogue box for entering all the state details—including name, description, and type. New images are
included, and text is updated to reflect this change.

The table listing the state’s events has been removed. Since the option to leave a state when an event
is triggered is shown on the event form, it does not need to be offered here on the state form as well.
Some images and paragraphs in the markdown were removed to clarify these changes.

6.1.4 Events

Several changes to the events forms and methods require the documentation to be updated. Events
can no longer be created by right-clicking on the events tab in the left navigation frame. Instead, events
are created either by right-clicking the state in the diagram or from the drop-down menu. Then, when
entering the event information, the user can select the option to exit the parent state after the event is
triggered. (This is available only if the event is accessed from the diagram UI.)

There were several other notable changes to the documentation’s “Event” section. Event types can
now be changed, but the event data will be cleared with every change. The external event simulation has
also changed to allow multiple external event types. Documentation was added to explain each external
event type. An event type “distribution” was created, and when selected, the user will be given the option
to further specify the type of distribution. The requested information will change depending on that
answer.

6.1.5 Actions, Variables, and Other

There have been minor updates to several other pieces of the UI. The “External Simulation Message”
action type has been modified, and markdown documentation reflects the changes. When the “Sim
Action” property is set to “Open Sim,” the model reference, config data, and max simulation runtime
variables are no longer required. When the “Sim Action” is “Comp Modify,” the variable value is no
longer required.

Other small changes to the user interface include how variables must now be created using the right-
side drop-down menu. When creating a logic gate, there is no longer a navigation window at the top right
corner, and the zoom-in and zoom-out tools have been removed. To add a logic gate to a logic tree, you
can drag the provided tool on top of the desired gate—there is no longer an option to click a small “+”
icon. When adding basic events to a logic gate, basic events are being reworded as “Evaluation Nodes.”
Each of these small changes requires the documentation to be updated.

The final few changes that were necessary were in the “External Simulations” and “Icons” sections of
the documentation. New external simulations must now be created using the right-side menu. There is no
longer another option to create them. In the “Icons” documentation page, the images have been updated in
this section to reflect and explain the new icons.

18

The new user interface has caused much of the markdown documentation to be updated. Almost
every section had outdated images and information. Now, each section has been revised to reflect the
current state of the application. With the new user interface design and up-to-date documentation, users
can better navigate and utilize the EMRALD application.

6.2 EMRALD JSON Model Syntax Information
The user interface is the primary way to create and edit an EMRALD model. However, there are

many instances where a user may wish to edit or view the JSON text version of the model. Previously
there was no documentation on what fields and requirements; therefore, someone would have to look at
examples or review the EMRALD code to understand how items were saved. The creation of the
EMRALD JSON model schema that was used to simplify and standardize other areas of development,
also provided an easy way to autogenerate much of the help documentation.

Using a tool called jsonschema2md [25], markdown documentation of the EMRALD model schema
is generated. This documentation allows the user to click through the schema and see each of the various
parts without having to dig through the code base to piece it together.

19

Figure 19. EMRALD model schema added to the documentation. Autogenerated from the JSON schema
file.

7. FUTURE WORK
Most of functionality is in the initial Alpha release, but as a web application, EMRALD can have new

releases that are seamless to the user. Two current features are still being worked on and will be in a
future release. The first of these is the “Use Custom Application” for the Run Application action type
shown in Figure 20. Previously, this had the option to run MAAP (Modular Accident Analysis Program)
and had a user interface for that. This function is still being developed; however, this will not interfere
with the operation of existing models, including those using a custom MAAP application. A custom
application form simply offers an easy-to-use interface for generating a standard Run Application event.
New models or modifying the MAAP parameters will be difficult until this is complete.

20

Figure 20. The previous custom application user interface for MAAP.

Also, the filtering option available in the older version as seen in Figure 21 is not complete. This
option allowed the user to filter the action, event, variable, and state lists to only contain items that are
used by the diagram specified in the filter. A future update will also include this capability while making
it more intuitive to the user.

21

Figure 21. The filter feature of the old version of EMRALD.

Other features identified and that are easy to implement given the new user interface data structure
will also be included in near-term releases, including a search and cross reference, where the user
searches for items and then sees where that item is used.

8. EMRALD V3 Release
A build pipeline has been set up which pulls the code from the open-source Git repository and then

compiles the website. This process allows INL staff to easily review any changes and then test them on a
development site before being released to the main website. The new EMRALD website is available at
www.emrald3app.inl.gov. Both the old version, located at www.emraldapp.inl.gov, and new version will
be available until testing is complete and initial users have had the opportunity to provide feedback. After
that, the standard or old website will be updated to the new version. As stated earlier, once upgraded to
the 3.0 version, models will not be usable in the old UI or solve engine. It is anticipated that a full
transition will be done by the end of 2024.

9. REFERENCES
1. Parisi, C., et al. 2016. Demonstration of External Hazards Analysis. Report No. INL/EXT-16-39353.

Idaho Falls, ID: Idaho National Laboratory.
https://lwrs.inl.gov/RiskInformed%20Safety%20Margin%20Characterization/Demonstration_of_Exte
rnal_Hazards_Analysis.pdf.

22

2. Coleman, J., et al. 2016. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and
Applications. Report No. INL/EXT-16-40055. Idaho Falls, ID: Idaho National Laboratory.
https://lwrs.inl.gov/RiskInformed%20Safety%20Margin%20Characterization/Multi-
Hazard_Advanced_Seismic_Probabilisitc_Risk_assessment_Tools_and_Applications.pdf.

3. Ma, Z., C. L. Smith, and S. R. Prescott. 2022. A Simulation-Based Dynamic Analysis Approach for
Modeling Plant Response to Flooding Events. Report No. INL/EXT-17-40928, Rev. 1. Idaho Falls,
ID: Idaho National Laboratory.
https://lwrs.inl.gov/RiskInformed%20Safety%20Margin%20Characterization/Simulation-
basedDynamicApproachFlooding_RISA.pdf.

4. Parisi, C., et al. 2017. Risk-Informed External Hazards Analysis for Seismic and Flooding
Phenomena for a Generic PWR. Report No. INL/EXT-17-42666. Idaho Falls, ID: Idaho National
Laboratory. https://www.osti.gov/servlets/purl/1376899.

5. Prescott, S., et al. 2023. Plant-Specific Model and Data Analysis using Dynamic Security Modeling
and Simulation. Report No. INL/RPT-23-73490, Rev 1.
https://lwrs.inl.gov/Physical%20Security/Plant-SpecificModelDataAnalysisDynamicSecurity.pdf.

6. Prescott, S., T. Wood, and M. Ziccarelli. 2022. Dynamic and Classical PRA Coupling using
EMRALD and SAPHIRE. Report No. INL/RPT-22-70424.
https://lwrs.inl.gov/RiskInformed%20Safety%20Margin%20Characterization/Dynamic_Classical_PR
A.pdf.

7. Lew, R., et al. 2023. EMRALD-HUNTER: An Embedded Dynamic Human Reliability Analysis
Module for Probabilistic Risk Assessment. Report No. INL/RPT-23-72783.
https://lwrs.inl.gov/RiskInformed%20Safety%20Margin%20Characterization/EMRALD-
HUNTER.pdf.

8. Office of Technology Transitions. 2020. “Department of Energy Announces $33 Million for 2020
Technology Commercialization Fund Projects.” June 11, 2020.
https://www.energy.gov/technologytransitions/articles/department-energy-announces-33-
million2020-technology.

9. Small Business Innovation Research. n.d. “Development of EMRALD Services in a Fully-Integrated
RISMC Platform.” Accessed August 22, 2023. https://www.sbir.gov/node/1648965.

10. AngularJS. Accessed June 10, 2024. https://angularjs.org.

11. jgraph. “mxGraph.” Accessed June 10, 2024. https://github.com/jgraph/mxgraph-js.

12. Angular. "Angular Documentation." Accessed June 10, 2024. https://v17.angular.io/docs.

13. React. Accessed June 10, 2024. https://react.dev.

14. xyflow team. React Flow. Accessed June 10, 2024. https://reactflow.dev.

15. D3.js. Accessed June 10, 2024. https://d3js.org.

16. npm. “react-rnd.” Accessed June 10, 2024. https://www.npmjs.com/package/react-rnd.

17. React DnD. “Drag and Drop for React.” Accessed June 10, 2024. https://react-dnd.github.io/react-
dnd/about.

18. MUI. “Material-UI.” Accessed June 10, 2024. https://mui.com/material-ui.

19. React Icons. Accessed June 10, 2024. https://react-icons.github.io/react-icons.

20. Day.js. Accessed June 10, 2024. https://day.js.org.

21. React. “useContext Hook.” Accessed June 10, 2024. https://react.dev/reference/react/useContext.

23

22. ClearScript. Accessed June 10, 2024. https://github.com/microsoft/ClearScript.

23. TypeScript. Accessed June 10, 2024. https://www.typescriptlang.org.

24. “JSONPath.” Wikipedia, The Free Encyclopedia. Last modified May 15, 2024. Accessed June 10,
2024. https://en.wikipedia.org/wiki/JSONPath.

25. Python Package Index. “jsonschema2md.” Accessed June 10, 2024.
https://pypi.org/project/jsonschema2md.

