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Multiobjective Constrained Symbolic Regression for Predictive 
Modeling of Material Creep Behavior
Motivation

When creep testing is repeated on samples of the same alloy under the 
same parametric conditions (i.e., stress and temperature), the resulting 
strain/time curves can vary from each other considerably as shown in Figure 1 
[1]. The time required to creep test a material to rupture can extend to the order 
of years. Because of this, a numerical model that can quickly analyze the 
incomplete results of an ongoing experiment to predict 1) the incomplete 
portion of the strain/time curve leading up to the rupture point and 2) the 
rupture point itself would be of great utility to the materials community. Such a 
model has the potential to save 1) the time required to finish running the 
experiment to rupture 2) the associated monetary cost of finishing said 
experiment. Furthermore, it would be advantageous if the predictive model 
could give a parametric function modeling strain/time curves for material 
scientists to investigate the impact of the temperature and stress parameters 
on the resulting creep behavior.

Methods
The predictive model developed to date utilizes multiobjective 

constrained symbolic regression (SR) to predict the remainder of the strain/time 
curve of an ongoing experiment. In SR, the functional form of the curve is not 
specified by the user, but instead determined through a genetic programming-
based machine learning algorithm. This process works by initializing a 
population of randomly generated candidate functions to model the data. Each 
candidate is assigned a fitness describing how well they model the data. The 
most fit candidates are selected to undergo genetic operations to produce the 
next generation of candidates. This process repeats until a candidate is found 
that models the data with sufficient accuracy. Figure 2 illustrates a genetic 
operation called crossover.

All SR results in this work were generated using the Python library 
gplearn [2]. This library only implements SR for a single objective fitness 
function. To perform multiobjective SR, gplearn was non-intrusively coupled to 
a custom-created creep framework that implements multiobjective fitnesses 
that behave like single objective fitness functions, so they are compatible with 
gplearn’s evolution machinery.

The fitness/objective/constraints used for this work are defined as 
follows. Note that in the last equation, “std” denotes standard deviation.
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All these constraints are used as fitness metrics in the piecewise multiobjective 
SR model, resulting in a fitness metric vector rather than a scalar. Genetic 
algorithm-based SR relies on comparing values of the fitness metric to find 
functions that best describe the data. In the single objective case, the candidate 
function with the lowest fitness metric value is deemed the most fit. For the 
multiobjective case, the nondominated sorting genetic algorithm (NSGA)-II 
domination principle [4] is used determine the most fit candidates. Namely, A 
candidate function 𝑓$ is said to dominate candidate function 𝑓( if 𝑓$ is not worse 
than 𝑓( in any objective and 𝑓$ is strictly better than 𝑓( in at least one objective. 

The piecewise multiobjective SR is summarized by Algorithm 1.

Results
Figure 3 presents the resulting SR model of Algorithm 1 applied to the 

data in Figure 1. The equation characterizing the SR model is given below 
Figure 3.

Figure 1. Strain data for creep experiments conducted at a temperature of 1000 ℃ and a stress 
of 16 MPa. The blue line denotes the single ongoing experiment used to test the predictive 
model.

Figure 2. An example of crossover in which a subtree of one function replaces a subtree of another function [2].

Figure 3. The resulting SR model of Algorithm 1 applied to the 1000 ℃, 16 MPa data of Figure 1. 
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