Experimental Plan for Synthesis of an Americium- and Plutonium-Containing Salt

M4AT-24IN0705022

AUGUST 2024

Toni Karlsson

Idaho National Laboratory

Juliano Schorne-Pinto

University of South Carolina

DISCLAIMER

This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

INL/RPT-24-80052 Revision 0

Advanced Reactor Technologies

Experimental Plan for Synthesis of an Americiumand Plutonium-Containing Salt

M4AT-24IN0705022

Toni Karlsson Idaho National Laboratory Juliano Schorne-Pinto University of South Carolina

August 2024

Idaho National Laboratory Advanced Reactor Technologies Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517

INL ART Program

Experimental Plan for Synthesis of an Americiumand Plutonium-Containing Salt

INL/RPT-24-80052 Revision 0 August 2024

Technical Reviewer: (Confirmation of mathematical accuracy, and correctness of data and appropriateness of assumptions.)

any Kinn Morgan Kropp

Morgan Kropp Research Scientist

Approved by:

Michael E. Davenport ART Project Manager

massing

Michelle T. Sharp INL Quality Assurance

8/13/24 Date

8/13/2024

Date

8/13/2024

Date

CONTENTS

ACR	ONYMS	X
1.	BACKGROUND	1
2.	EXPERIMENTAL PLAN	5
3.	EXPERIMENTAL HAZARDS	8
4.	NEXT STEPS	8
5.	REFERENCES	8

FIGURES

Figure 1. Pu-Am metal alloy that will be reduced in size and converted to a chloride salt (right) and Gibb's free energy predictions for hydriding actinides (left)	2
Figure 2. Comparison of melting temperatures of lanthanides and actinides (left), prediction of the eutectic composition of actinides (middle), and a prediction of the eutectic melting temperature for some NaCl-AnCl ₃ (An = U, Pu, Am) (right).	2
Figure 3. Predicted NaCl-AmCl ₃ binary phase diagram alongside the NaCl-UCl ₃ , NaCl-PuCl ₃ , and NaCl-SmCl ₃ systems	3
Figure 4. Predicted enthalpy of mixing for NaCl-AmCl ₃ compared to other lanthanides (Ln) (left) and comparison of predicted vapor pressures of An metals and AnCl ₃ (right).	4

ACRONYMS

- AFC Advanced Fuels Campaign
- FMF Fuel Manufacturing Facility
- MSR Molten salt reactor

Experimental Plan for Synthesis of an Americium- and Plutonium-Containing Salt

M4AT-24IN0705022

1. BACKGROUND

In many molten salt reactor (MSR) concepts, the fuel cycle can also be closed for minor actinides [1] where the actinides from the spent fuel of existing reactors can be utilized by MSR breeders or burners in the closed cycle. Even in the open cycle, the utilization of resources in MSRs is higher than in solid fuel reactors. Excellent neutron economy, radiation stability of the carrier salt, and the possibility to continuously remove fission products and adjust the fuel composition allow for higher burnup and lower initial fissile fuel enrichment [2].

Some MSR concepts propose combining aqueous recycling to recover uranium and plutonium to use in light-water reactor or mixed oxide fuels. In this scenario, minor actinides, such as americium (Am), will be burned in an MSR to reduce the footprint of a geological repository. To study fuel salt compositions containing Am, salt must first be synthesized. Kersten et al. [3] synthesized americium trichloride (AmCl₃) by chlorination of americium oxide (Am₂O₃) with zirconium chloride (ZrCl₄) in a LiCl-KCl molten salt at 500°C. The formation of AmCl₃ was confirmed by cyclic voltammetry and gamma spectroscopy. Zirconium oxide (ZrO₂) is a byproduct that is not electrochemically active; however, the ZrO₂ product from this synthesis method would need to be removed prior to performing fuel salt property measurements as it affects the composition and properties of the salt.

Karlsson et al. [4] has previously used ammonium chloride (NH_4Cl) to chlorinate plutonium (Pu) metal in a sodium chloride (NaCl) carrier salt to form a high purity plutonium chloride – sodium chloride ($PuCl_3$ -NaCl) fuel salt. Additionally, Herrmann et al. [5] used NH_4Cl as a chlorinating agent to form a high purity uranium chloride – sodium chloride (UCl_3 -NaCl) fuel salt. In both studies, the salt was characterized to determine the completion of conversion of actinide metal (An) to actinide chloride ($AnCl_3$).

Therefore, NH₄Cl will be used to chlorinate an 80wt%Pu - 20wt%Am metal alloy at the Idaho National Laboratory in fiscal year 2025. Chlorination of the Pu-Am alloy will utilize a NaCl carrier salt. In this document, the experimental plan along with associated hazards are outlined. The major steps in the plan are preparation of salt and alloy, particle size reduction (increase surface area) of the Pu-Am alloy via the hydride-dehydride (H/dH) process, chlorination, and inspection. The large chunks of Pu-Am alloy that will be used for this synthesis is shown in Figure 1, left. Approximately 100g of the alloy will be separated from the bulk. The 100g will be manually broken up into pebble-sized particles prior to the H/dH process. Thermodynamic predictions using HSC Chemistry (version 9.9.2.3) show that U and Pu have very similar reaction enthalpies (see Figure 1, right) while hydriding Am is more thermodynamically favorable. Thus, our previous methods for size reduction (i.e., increase surface area for reactions to take place) will be used.

Figure 1. Pu-Am metal alloy that will be reduced in size and converted to a chloride salt (right) and Gibb's free energy predictions for hydriding actinides (left).

To date, these researchers are not aware of any available ternary PuCl₃-AmCl₃-NaCl phase diagrams to use as a guide in understanding melting temperature and phase formation. However, to make a baseline approach, phase diagram modeling by Professor Juliano Schorne-Pinto from the University of South Carolina was done to better understand the behavior of actinide mixtures/systems. Using the ionic radius of Am³⁺ with coordination number (CN) = 6 (r = 0.975 Å), a rough assumption can be made that Am³⁺ will behave similarly to Pm³⁺ (r = 0.97 Å) or Sm³⁺ (r = 0.958 Å). Moreover, AmCl₃ has a melting point of 988 K, which is close to PmCl₃ (1000 K) and somewhat close to SmCl₃ (941 K). Since the NaCl-PmCl₃ binary system is not readily available in literature, the NaCl-SmCl₃ system [6] was used for further approximations of the NaCl-AmCl₃ system.

Figure 2. Comparison of melting temperatures of lanthanides and actinides (left), prediction of the eutectic composition of actinides (middle), and a prediction of the eutectic melting temperature for some NaCl-AnCl₃ (An = U, Pu, Am) (right).

Professor Schorne-Pinto then used correlation methods to validate the NaCl-SmCl₃ systems relevance in predicting the NaCl-AmCl₃ phase diagram. As seen in Figure 2 (left), the lanthanide chlorides (LnCl₃) correlate somewhat closely with the melting temperatures of the AnCl₃. The AnCl₃ (An = Cm, Am, Pu, Np, and U) melting points seems to follow a linear trend in function of the ionic radius. Then using the size parameter called Sigma₁₂ [7], Professor Schorne-Pinto predicted the composition of the eutectic point and melting temperature of the NaCl-AmCl₃ system seen in Figure 2 (middle, right). Finally, the NaCl-SmCl₃ and predicted NaCl-AmCl₃ systems were compared to known binaries of NaCl-UCl₃ and NaCl-PuCl₃. Figure 3 demonstrates that by using the NaCl-SmCl₃ as a proxy system and the correlation from the NaCl-AnCl₃ systems, the NaCl-AmCl₃ will have a proposed eutectic at AmCl₃ = 0.40–0.45mol%, and T = 650–700 K. It should be noted that the presence of intermediate phases for the NaCl-SmCl₃ (i.e., Na₂SmCl₅ and Na₃Sm₅Cl₁₈) [8] may indicate that NaCl-AmCl₃ will not be a simple eutectic.

Figure 3. Predicted NaCl-AmCl₃ binary phase diagram alongside the NaCl-UCl₃, NaCl-PuCl₃, and NaCl-SmCl₃ systems

AmCl₃ has a low boiling point, 1253° C [9]. During synthesis (H/dH and chlorination), the vapor pressure of AmCl₃ must be considered. Concerning the volatility of AmCl₃, the pure salt only has relevant vapor pressures for T > 775–800°C. However, in mixtures with NaCl, the tendency is to have a negative enthalpy of mixing as predicted in Figure 4. AmCl₃ is 166 times more volatile than PuCl₃ at 1000 K, with a partial pressure of 7 Pa at its melting point (715°C/988 K). Behavior of the ternary mixture (PuCl₃-AmCl₃-NaCl) is not well understood, but having AmCl₃ in solution with PuCl₃ and NaCl will lower its volatility.

Figure 4. Predicted enthalpy of mixing for NaCl-AmCl₃ compared to other lanthanides (Ln) (left) and comparison of predicted vapor pressures of An metals and AnCl₃ (right).

Approximately 100g of the Pu-Am alloy will be used for the synthesis reaction. To make the salt having a composition of 0.40PuCl₃-0.09AmCl₃-0.50NaCl, 24.4g of NaCl, and 67.7g of NH₄Cl will be used. The NH₄Cl will be added in 1% excess. The synthesis reaction will take place following Equations 1–4.

$$Pu + H_2(g) \leftrightarrows PuH_2$$
, $Am + H_2(g) \leftrightarrows AmH_2$ Hydride (1)

$$PuH_2 \leftrightarrows Pu + H_2(g), \quad AmH_2 \leftrightarrows Am + H_2(g)$$
 Dehydride (2)

$$Pu + 3NH_4Cl \leftrightarrows PuCl_3 + 3NH_3(g) + 1.5H_2,$$
(3)
Chlorination

$$Am + 3NH_4Cl \leftrightarrows AmCl_3 + 3NH_3(g) + 1.5H_2 \tag{4}$$

To summarize the synthesis team will aim to synthesize a $0.40PuCl_3$ - $0.09AmCl_3$ -0.50NaCl (mol fraction) salt from a Pu-Am alloy containing 0.79 Pu-0.18Am-0.03U. The salt composition was chosen since it is rich in PuCl_3 and AmCl_3 and can be diluted with carrier salt in future experiments. Modeling done by Professor Schorne-Pinto suggests NaCl-AmCl_3 mixtures will have a lower eutectic melting temperature compared to NaCl-PuCl_3, with a concentration of AmCl_3 = 0.40-0.45mol%, and T = 650-700K region. There is also the possibility of NaCl-AmCl_3 forming intermediate phases, such as Na₂AmCl₅ and Na₃Am₅Cl₁₈, similar to the NaCl-SmCl_3 analogue. Pure AmCl_3 is known to be volatile at low temperatures; mixing AmCl_3 in NaCl will make AmCl_3 more stable in the liquid phase, thus reducing its volatility.

2. EXPERIMENTAL PLAN

- 1. Materials and Equipment
 - Sintering furnace
 - Large Kerr furnace
 - Vacuum oven located in argon glovebox
 - Quartz crucible
 - Blending jar
 - Glassy carbon crucible
 - Steel wool
 - Modified Gavin Can (quality marked) containing 100g Pu/Am metal alloy
 - Ammonium chloride (NH₄Cl)
 - Sodium chloride (NaCl)
 - Mortar and pestle
 - 30 mesh sieve and pan
 - 50 mesh sieve and pan
 - Ammonia (NH₃) Drager sampling tubes
- 2. Experimental Setup and Preparations
 - a. Preparing NaCl
 - Sodium chloride, AnhydroBeads, -10 mesh, 99.999%
 - Place the salt in an Inconel (or similar) crucible
 - Place NaCl in crucible in the vacuum oven
 - Heat to 350°C under vacuum
 - Hold for 48 hours
 - Cool vacuum oven
 - Remove the salt and collect four samples for moisture analysis
 - Reduce in size and sieve to $-30 \text{ mesh} (\sim 600 \text{ } \mu\text{m})$
 - Place in a poly bottle and transfer to the Fuel Manufacturing Facility (FMF)
 - b. <u>Preparing NH₄Cl</u>
 - Use Ammonium chloride, 99.995% Suprapur
 - Place NH₄Cl on a metal tray
 - Place in the furnace and heat to 140°C
 - Hold for 24 hours and cool
 - Reduce in size and sieve to $-30 \text{ mesh} (\sim 600 \text{ } \mu\text{m})$
 - c. Preparing Am/Pu Alloy and Particle Size Reduction
 - Break out 100 grams of material, place in the Advanced Fuels Campaign (AFC) glovebox
 - Remove the Pu/Am metal from the modified Gavin Can
 - Break Pu/Am alloy into smaller pieces place in a quartz crucible
 - Place the quartz crucible with Pu/Am alloy into the AFC furnace
 - Close the furnace and set program for the hydride/dihydride process

3. <u>H/dH Process</u>

- a. <u>Hydride</u>
 - Furnace prep (60 minutes)
 - Place the crucible and 100g Pu/Am in the AFC Sintering Furnace
 - Evacuate the chamber, ~ 23 Torr = 23 mmHg
 - Purge 100% H₂, flow rate = 20 sccm
 - Heat the furnace to 250°C at a rate of 15°C/min
 - Cycle 1 (estimated time 90 minutes)
 - Dwell time (at 250°C) for 60 minutes while purging 100% H₂
 - Evacuate (vacuum), hold for 30 minutes (no flow of H₂ gas)
 - Cycle 2 (estimated time 90 minutes)
 - Purge (at 250°C) with 100% H_2 for 60 minutes, flow rate = 20 sccm
 - Evacuate (vacuum), hold for 30 minutes (no flow of H₂ gas)
 - Cycle 3 (estimated time 90 minutes)
 - Purge (at 250°C) with 100% H_2 for 60 minutes, flow rate = 20 sccm
 - Evacuate (vacuum), hold for 30 minutes (no flow of H₂ gas)
 - Cycle 4 (estimated time 90 minutes)
 - Purge (at 250°C) with 100% H_2 for 60 minutes, flow rate = 20 sccm
 - Evacuate (vacuum), hold for 30 minutes (no flow of H₂ gas)
 - Cool the furnace to room temperature, under vacuum
 - Overnight evacuation (vacuum), no flow of H₂ gas
 - b. Inspection
 - Remove the sample from furnace and examine the product
 - If powder, then proceed to the dihydride step
 - If larger chunks remain, then try manual size reduction and restart hydriding procedure
 - c. <u>Dehydride</u>
 - Heat the furnace to 375°C (15°C/min), NO hydrogen purge
 - Hold for 180 minutes
 - Cool the furnace to room temperature, under vacuum
 - Remove the sample and record weight (sample + crucible)
 - Sieve the material through 50 mesh sieve
 - > 50 mesh particle size (needs to be further reduced)
 - < 50 mesh particle size (good for synthesis)

- 4. Chlorination Process
 - Step performed in Kerr furnace
 - Reference FCF-NOP-9167D [10] for operating instructions
 - Reserve 0.5 grams of the Pu/Am material for elemental and isotopic analysis
 - In a glass container with lid, add the following material (+/-0.005g)
 - Pu/Am = 100.0000g
 - $NH_4Cl = 67.7188g$
 - NaCl = 24.4184g
 - Mix the chemical in container with lid on
 - Add the mixed material to the glassy carbon crucible and place in the Kerr furnace
 - Place the glassy carbon lid on crucible
 - Place the steel wool on top of lid
 - Place the cover on the furnace
 - Ramp the Kerr Furnace to 450°C at 10°C/hr
 - Place NH₃ Drager tubes at several locations within the AFC glovebox
 - Turn on glovebox blowers
 - Heat the furnace to 700°C at 5°C/min
 - Hold at 700°C for 60 minutes
 - Turn off the furnace and cool to room temperature
 - Remove the glassy carbon crucible from furnace
- 5. Inspection of Synthesized Salt
 - Remove the lid from the glassy carbon crucible
 - Inspect the PuCl₃-AmCl₃-NaCl product
 - Weigh the PuCl₃-AmCl₃-NaCl product
 - Break material apart looking for a blue/green color
 - Reserve 0.5g of sample for elemental and isotopic analysis
 - Store material until needed for thermal property measurements.

3. EXPERIMENTAL HAZARDS

Warning

Energetic Reaction

• Use thermodynamic data to predict energy, compare U and Pu

• Follow previous procedure for UCl₃ and PuCl₃ synthesis

• NaCl carrier salt will abosorb energy (heat) during synthesis

• Slow heating rate to limit energy introduced into reaction

Warning Off-Gas from Synthesis

• Drager tubes in glovebox (detect NH₃)

• Steel wool on top of glassy crucible as indicator for HCl gas

- Run experiment with 1% excess NH_4Cl
- Quantities of off gases $NH_3 = 26.7g/batch$ (~21,000 ppm if all HN_3 was in GB at one time), $H_2 = 1.567g/batch$
- Consider purification bed matierial (stailess steel, Cu, diatomaceous earth)

Warning Radiological

• Using Am and Pu, known to be flighty

- Reduce number of pours
- Once molten, this is less of a concern

4. NEXT STEPS

All materials and equipment needed to perform the synthesis have been ordered or are in place at the FMF in an argon glovebox, commonly referred to as the AFC glovebox. Once received, the NaCl and NH₄Cl will be prepared as described in the Experimental Plan section. H/dH experiments are expected to start in October 2024, and chlorination experiments will occur shortly thereafter. Salt synthesis is expected to be complete in early November 2024. Samples of the starting materials and the synthesized salt will be sent for elemental and isotopic analysis. Thermal property measurement such as density, meting point, enthalpy of fusion, enthalpy of crystallization, heat capacity, and thermal diffusivity are expected to be done as funding becomes available in fiscal year 2025.

5. **REFERENCES**

- 1. Heuer, D., et al., *Towards the thorium fuel cycle with molten salt fast reactors*. Annals of Nuclear Energy, 2014. **64**: p. 421-429.
- 2. Status of Molten Salt Reactor Technology. 2023, Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY.
- 3. Kersten, B., et al., *Synthesis of americium trichloride via chlorination of americium oxide using zirconium tetrachloride in LiCl–KCl molten salt.* Journal of Radioanalytical and Nuclear Chemistry, 2022. **331**(12): p. 4913-4918.
- 4. Karlsson, T.Y., et al., *Synthesis and thermophysical property determination of NaCl-PuCl3 salts*. Journal of Molecular Liquids, 2023. **387**: p. 122636.
- 5. Herrmann, S.D., et al., *Synthesis and characterization of uranium trichloride in alkali-metal chloride media.* Journal of Nuclear Materials, 2022. **565**: p. 153728.
- 6. Wang, Y., et al., *Thermodynamic optimization and calculation of the SmCl3–MCl (M=Na, K, Rb, Cs) phase diagrams*. Calphad, 2005. **29**(4): p. 317-322.
- 7. Schorne-Pinto, J., et al., *Correlational Approach to Predict the Enthalpy of Mixing for Chloride Melt Systems*. ACS Omega, 2022. 7(1): p. 362-371.
- 8. Thiel, G. and H.J. Seifert, *Properties of double chlorides in the systems ACl/SmCl3 (A = Na-Cs)*. Thermochimica Acta, 1988. **133**: p. 275-282.

- 9. Weigel, F. and W. Schuster, *The vapor pressure of americium(III) chloride: An ultramicro apparatus for the determination of saturation vapor pressures of actinide halides.* Journal of the Less Common Metals, 1985. **113**(1): p. 157-176.
- 10. Uranium Behavior in Molten Salts for Pyroprocessing, in FCF-NOP-9167D. 2024: Idaho National Laboratory.