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Figure 1. Steam generator for a SMR system.
Taken from: https://holtecinternational.com/2020/12/23/a-key-topical-

ey report-on-smr-160-submitted-to-the-usnrc/
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« Perform parameter sensitivity studies pertaining to a steam

generator (SG) model:
all modular reactor (SMR) system [1][2].

. Chcks
vel

. Design guélbes involve:

- Chénai-r@.flda |ﬁ368||s input design parameters (e.g.,

and machine-learning tools for a

temperaturF Fﬁ.’ flow rate)

— Observing the res |ng effects on the output of the
system (e.g., hedt tfsig\eedfficient [HTC], Nusselt
number, heat transfer performance)

— Supporting reactor system design, analysis, and
licensing [3].
« Sensitivity studies analyze:

— The degree to which system output and/or desired
parameters (e.g., HTC or heat transfer performance)
are sensitive to changes in the input parameters.

* INL developed the Risk Analysis Virtual Environment
(RAVEN), which is used to perform the parametric,
sensitivity, and optimization studies.
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The vertical, once-through SG, which is the primary subject of /_\

this study,
-~ Chokstiredietesice SMR design [4]. =
- Reactor h@iigfs iithe isf fluid that enters the hot-leg (HL) O PIET T
through th?#sée@sﬁe_c ion and is then carried through the various e
small SG tubes ] hird level e
— Referred to as tﬁmlﬁﬁn‘-é\c}%l E’Zﬁﬁﬁ
« The secondary-side consi the shell encasing the SG tubes -
and provides a path alohgﬁl'ﬁﬁﬂ tré\éelondary fluid can flow, @eﬁi:i?‘m
— Thus enabling heat transfer between the primary and s ([ |
secondary fluids to occur [5]. ok
* As shown in Figure 2(a), the SG tubes are supported by

Subcooled
Liguid
Preheating

_y Reglon)

— Baffles positioned within the shell where secondary
fluid flows through. Fesdwater et

— The middle column, or “riser,” experiences a change in
cross-sectional area, becoming wider at the top.

— The hot fluid becomes gathered up at this point prior to
being sent directly back down through the SG tubes.

Figure 2 (a): SMR
once-through SG [4].
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 The RAVEN code discretizes the length of the SG
into thousands of intervals in which the fluid

. @‘rfﬁﬂ'%ﬁa@ﬁst‘éﬁf’ to be constant.

" ncu e IRt tanster
Generating WAL /R Y6 SMR systor.

- Starts with anTniEépbm !@YI%I HL outlet

temperature to be 23984 his boundary,
conditions for the next i iﬁ/_t%g? e calculated.

* This calculation is repeated until the error between
the HL inlet temperature and the guessed parameter
is lower than 0.01.

* The code also accounts for a phase change in the
secondary fluid of the SG (i.e., subcooled boiling,
nucleate and film boiling).

* INL developed the RAVEN optimization tools and
Python algorithm used in this study [6] to support
design studies, including sensor placements [7] [8].
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Jll GhivketoiediENastienstind Correlations
[ odalConsiator hopicabio Range | Reterance

Single-phase frictional 0 <Re <2300 iz 2L
factor Petukhov et al.
[10]

Two-phase fictional Lockhart and
pressure drop Martinelli [11]
Two-phase acceleration Todreas and
pressure drop Kazimi [12]
Two-phase gravitational Todreas and
pressure drop Kazimi [12]

Incropera et al.

Single-phase Nusselt [13]
Number Gnielinski [14]
Sub-cooled boiling heat
transfer rate e (]
Nucleate boiling heat Chen [15]

transfer rate
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Bl Riitdréoeelldbdtrchkisleger Model using
Python code

Thermodynamic quality (secondary side) (Python)

Pressure Profile (Primary Side) (Python)

Temperature Profile (Primary Side) (Python)
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Figure 3: Sample plots output with the Python-based code.
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* The code works on many specific correlations that work under certain
. @@g& sod't is_important to define the ranges for each input the code
Bt eI 4bwn:

= Beeressif¥shout: £5% from the baseline

— HLe téRipengaved input: 0.2% below or 1% above the baseline
- HL MFRFAebuthdeyveelow or 5% above the baseline

— CL pressurehiifplattenelo from the baseline

— CL temperature input: 5% below or 1% above the baseline
— CL MFR input: 3% below or 2% above baseline.

» Baseline inputs for parametric study (values removed as they are
proprietary information).

Baseline Inputs Parameters

Primary side Pressure (MPa), inlet temperature (K),

Secondary side
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* Click to edit text

— Second level
* Input param-erneI 9 Iﬁﬁ(‘)L |nlet (a) pressure, (b) temperature, and (c)
MFR. Fourth level

* Output parameters:lféfmdﬁé//ﬁ%er HTC, (b) primary side pressure and
temperature profile (riser and tube), and (c) secondary side pressure and
temperature profile.

» Baseline: Original 2 MW (scaled facility to prototype of 1:2) data.
* Range: All six inputs are increased from the baseline by 0.1% until 0.5%.
* The code is run five times, each time incrementing the input by 0.1%.

* The output parameter values are saved for each run to be graphed and
analyzed later.
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Influence of Input Changes on the HTC

This datgg%@t@gikmtall parameters are increased, the HTC begins to fluctuate
at differentidgatmms @ltmgdhe SG, as indicated in Figure 4.

* Third level

(a) (b)
Figure 4. SG HTC under varied inputs.
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Influence of Input Changes on the SG Pressure Profile

The p?in@:\lriﬁkam ?&it)rt@éﬁty-side pressures are also significantly affected by
changes to-ti¥xigputs, Bsvatiserved in Figure 5.

* Third level

Primary Side Tube Pressure

(a) (b) (c)

*)%,
ﬂ PURDUE

IDAHO NATIONAL LABGRATORY



Il StokitivigyliSidalster title

« Sensitivity analyses differ from parametric analyses in that they focus on how one specific
input parameter affects the output as a whole, and each input is not varied a certain amount

@| F@Ehfdnemlf f@ {ISIS is conducted in two ways:

rst by manu ly varylng the input parameters to obtain the sensitivity data with each
deNu@Ed two different values within the given range to obtain the effect on

the re.ti‘lit‘[5 a]jutput

- Seco (/ AVEN and its built-in techniques—ypaired with the Python code—
Al- generat@ggﬁhv]@?@s based on additional input perturbations are obtained, thus
making the data more reliable.

The sensitivity C(SefF d.ﬁrh JQ]VLQ calculated mathematically via many methods but the
simplest is to divide the change in output by the change in input, as given in Equation (1):

To find the sensitivity coefficient
of the given inputs:

SG HTC to the HL
temggg@ture

WP PURDUE
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Manual perturbation of HL and CL inputs are performed independently to observe:
— The axial distribution of HTC in the primary-side tube and secondary-side shell

Clickdonedit text

- h t d input perturbations, which considered changes on pressure,
B M%N&FR input.

- The reshiipdflies/B]C based on the HL inputs (i.e., pressure, temperature, and MFR)
and the ch ges/pF]rtTrbaticins, which have a similar trend as Figure 5 for the varied
SG HTCn rth leve

The preliminary senditjftity festdsh (e.g., Figure 6, Figure 7) were used to identify:
— The exhibited entrance/exit effects on the riser top plenum region.

An independent boundary case used for the top plenum region is needed:
— To improve the SG design sensitivity and parametric studies
— Keep consistency in the sensitivity results without any sudden spikes.
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Sensitivity HL Pressure, Temperature, and MFR on HTC Sensitivity of CL Pressure, Temperature, and MFR on HTC
85000 —‘-/
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(a) (b)

Figure 6: Preliminary sensitivity results on HTC along the SG length for the:
(a) HL input changes, and (b) CL input changes. (Note: Here, x-axis is the
normalized z coordinate).
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Sensitivity of HL inputs on HTC Sensitivity of CL inputs on HTC
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(a) (b)

Figure 7: Preliminary RAVEN-based sensitivity results on HTC along the SG
length for the: (a) HL input changes, and (b) CL input changes. (Note: Here,
x-axis is the normalized z coordinate).

NUCLEZ
o R

®

o 0,
& )
S N
& 3

PURDUE

ER ST

©0°
o,
e

IDAHO NATIONAL LABGRATORY

&
Wergpre



Rbsklte eabhMdpster title

* The preliminary sensitivity results (e.g., Figure 6, Figure 7) exhibited:
- Inconsistency on the riser top plenum region due to the entrance/exit effects, as

o C|ickdt@te@w f@e)ﬂulse (sudden spike) in the sensitivity results.

* Andn ary case used for the top plenum region is needed to improve
the S | n senS| |V|t and parametric studies:

- nger fidn'GMQ (to planum) boundary conditions: temperature, pressure
and mass ﬁ‘Bﬂ?ﬁftI%‘V@F tube inlet (from planum) boundary conditions.

* The revised sen3|t|V|ty|._sif;t(H ﬁwnh modified plenum region boundary conditions) results for
600 random samplés:

— Using the Monte Carlo sampling method with RAVEN tools.
— Sensitivity results exhibited no inconsistencies (or sudden spike) as presented
in Figure 8.
» The samples are generated using uniform distributions (x1% relative changes) for the
following input parameters:

— HL pressure input, HL temperature input, HL MFR input, CL pressure input,
CL temperature input, and CL MFR input.

Note: HL for hot leg, CL for cold leg, MFR for mass flow rate.
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Normalized Sensitivity Coefficient for Convective heat transfer coefficient (tube) [W/{m~2-K)1
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Figure 8: RAVEN-based sensitivity results for the: (a) tube side and (b) shell
side. (Note: Here, x-axis is the index for the normalized z coordinate).
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Jlll Gliokarydilidtiste sitie conclusion

» Successful nuclear reactor system design and analysis requires:

— Various levels of qualifications for each system, structure, and component, and
* Clickt¢atiehipioxg them, for obtaining regulatory approvals.

- esignsp tric and sensitivity study is pivotal as the SG in a PWR-type SMR
%&f&r&a the primary and secondary coolant loops.
- Therefore, th H’Q ﬂﬁ)/@ls observations, and recommendations are as follows:

- HL and Qmﬁﬁure,\;@qssure, and MFR have varied effects on the SG HTC:

« The impactof the MFR gn the HTC is greatest, followed by temperature and
pressupe'. tr'olf{h 'Iweveﬂ 9 y p

* However, the RAVEN-based results show that pressure and temperature also
have a significant impact on the HTC—even more than the MFR.

— The preliminary parametric and sensitivity study exhibited the entrance and exit effect
in the top plenum of the riser section required modification:

* Independent boundary cases were considered for the riser top plenum region,
which provided improved design data.

— The preliminary sensitivity study shows the maximum sensitivity for all parameters
falls within the 0.4—0.9 normalized z-coordinate bounds, with certain parameters
(e.g., CL temperature, MFR) having a more global impact on the HTC than others.

— The revised SG model shows the sensitivity ranges between 10-7 and 5x10-1 for the
HTC, which provides greatly improved data than the preliminary design case.
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