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CIA Actuator Assembly

Background and Purpose

MARVEL | " ¢ CD Actuator Assembly
systems/subsystems
- MARVEL - 85 kW, microreactor to be 2 21
constructed at INL to demonstrate heat | “—— UpperShieta
applications including power production Stiring Engine __—
and Supports

ClA Rod Assembly

« Stirling engines are MARVEL'’s planned method Secordar Cootant
of power production, with several limitations: Cover Gas System

Secondary Coolant ‘ ]
Subsystem [

Primary Coolant System

— Guard Vessel

- Corrosion from eGalnSn secondary coolant
- Radiation fields limit Stirling engine life

- Thermal stresses imposed on upper distribution
plenum by AT imposed by cooling water limits Coritral Deurm Ll

Neutronics System

 Purpose - analyze alternative power cycles for reactorsupponstucture —
comparison to:

- Identify configurations that may address limitations
and improve operational flexibility

- Compare thermal efficiency for microreactor
developers and end-users
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Overview of models

- Power conversion models developed in Aspen HYSYS 12.1(Superheated Rankine, Open
and Closed Brayton Cycles, Super-critical CO, Cycle)

* Assumptions

- Model input (reactor core and primary coolant system) based on MARVEL 90% final design and one of four identical
loops (total output = 4X one loop’s output by symmetry)

- Secondary coolant system — Stirlin? engines with natural circulation using eGalnSn secondary coolant replaced by an
intermediate helium loop consistent with NRC principal design criterion (PDC) 78 in all models

- Parameters — reasonably achievable with available technology
- Minimum heat exchanger approach temperature = 25°C.
- Minimum differential stream temperature for heat exchangers = 25°C.
- Minimum differential stream temperature for recuperators = 10°C.
- Pressure drops across heat exchangers = 2%.
- Adiabatic compressor efficiency = 85%.
- Adiabatic pump efficiency = 85%.
- Adiabatic turbine efficiency = 90% .

- Intermediate Loop Pressure set to approximately 220 kPa to minimize the effects of a tube leak on core neutronics
(due to coolant voiding in the fuel).
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Superheated Rankine Cycle
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* Observations:

- Widely used,
mature
technology

- Most common
cycle among
MRP developers

- Improves
thermal
efficiency
compared to
Stirling engines
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Closed Helium Brayton Cycle with Recuperation.
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Open Air Brayton Cycle with Recuperation and
Intermediate Loop
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sCO, Cycle with Recuperation
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* Observations:
- Good efficiency, least technically mature
- Limited efficiency gain for lower heat sink temperatures
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Summary

* Results - Comparison of Thermal Efficiency [(Ny, = 2 (W, et)/2 (Qreactor) * 100%]

Power Stirling Superheated  Closed Helium Open-Air Supercritical
Cycle Engine Rankine Cycle Bravton Cycle Bravton Cycle CO: Cycle
Thermal 23.5% 36.1% 26.9% 14.1% 29.2%
Efficiency

* Analysis

- All options, configured with an intermediate He loop, solve corrosion, radiation, and thermal stress
limitations associated with Stirling engines
- Stirling engines are less thermally efficient than all but the Open-Air Brayton Cycle

« Recommendations

- Leverage models to demonstrate alternative power conversion cycles with MARVEL
- Expand models to integrate heat applications and wind/solar microgrid
- Expand models to include other microreactor types
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