
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/CON-24-81299-Revision-0

Towards Provable Security
in Industrial Control
Systems Via Dynamic
Protocol Attestation

December 2024

Max Taylor, Lance Gregory Joneckis, Trevor Kann, Arthur Amorim

DISCLAIMER

This information was prepared as an account of work sponsored by an
agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/CON-24-81299-Revision-0

Towards Provable Security in Industrial Control
Systems Via Dynamic Protocol Attestation

Max Taylor, Lance Gregory Joneckis, Trevor Kann, Arthur Amorim

December 2024

Idaho National Laboratory
Idaho Falls, Idaho 83415

http://www.inl.gov

Prepared for the
U.S. Department of Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Towards Provable Security in Industrial Control Systems Via Dynamic Protocol
Attestation

Arthur Amorim
University of Central Florida

Florida, USA
arthur.amorim@ucf.edu

Trevor Kann
Carnegie Mellon University

Pittsburgh, USA
tkann@cmu.edu

Max Taylor
Idaho National Laboratory

Idaho Falls, USA
maxwell.taylor@inl.gov

Lance Joneckis
Idaho National Laboratory

Idaho Falls, USA
lance.joneckis@inl.gov

Abstract—Industrial control systems (ICSs) increasingly rely
on digital technologies vulnerable to cyber attacks. Cyber
attackers can infiltrate ICSs and execute malicious actions.
Individually, each action seems innocuous. But taken together,
they cause the system to enter an unsafe state. These attacks
have resulted in dramatic consequences such as physical dam-
age, economic loss, and environmental catastrophes. This paper
introduces a methodology that restricts actions using protocols.
These protocols only allow safe actions to execute. Protocols
are written in a domain specific language we have embedded in
an interactive theorem prover (ITP). The ITP enables formal,
machine-checked proofs to ensure protocols maintain safety
properties. We use dynamic attestation to ensure ICSs conform
to their protocol even if an adversary compromises a com-
ponent. Since protocol conformance prevents unsafe actions,
the previously mentioned cyber attacks become impossible.
We demonstrate the effectiveness of our methodology using
an example from the Fischertechnik Industry 4.0 platform.
We measure dynamic attestation’s impact on latency and
throughput. Our approach is a starting point for studying
how to combine formal methods and protocol design to thwart
attacks intended to cripple ICSs.

Index Terms—Formal methods, Correctness proofs, Industrial
automation, Industrial control, Software and System Safety.

1. Introduction

Industrial control systems (ICSs) are large-scale, dis-
tributed, cyber-physical systems controlled by software.
ICSs are increasingly targeted in cyber attacks. For example,
the Stuxnet worm used malicious commands to destroy
centrifuges [36]. In 2014, a similar attack caused immense
damage to a blast furnace in a steel mill [29]. Blast furnaces
must be shut down according to a specific protocol or
risk damage. Attackers infiltrated the steel mill’s ICSs and
violated the shutdown protocol.

Figure 1 shows an attack against an ICS controlling
a high bay warehouse storing red, white, and blue items.
This ICS contains a human machine interface (HMI), a
control unit, and low-level device drivers. These components
interact by executing remote procedure calls (RPCs). At the

HMI Control Device

① StoreRequest Red

② Store Red

③ Collision

Figure 1: Example attack. An adversary infiltrates the con-
trol unit to cause a collision in the warehouse.

start of this attack, the warehouse is full. Then, the operator
executes a StoreRequest RPC. Alone, this RPC is benign:
the controller is under no obligation to store an item in a
full warehouse. But in this controller resides an attacker
who previously infiltrated the ICS. The attacker seizes their
opportunity to execute a Store RPC on the hardware drivers.
Since there is no empty bay available, a collision occurs.

An ICS’s software components can become compro-
mised at any moment. Compromises are increasing with the
rise of “Industry 4.0.” Industry 4.0 integrates manufacturing
and digital technology [22]. Often, digital technology uses
the public internet. Presence on the internet exposes new and
existing vulnerabilities to attackers. Attackers exploit vul-
nerabilities to compromise ICS components. Compromised
components can execute arbitrary RPCs. Hence, we assume
an attacker can execute arbitrary, malicious RPCs. Malicious
RPCs can lead to unsafe behavior, as in Figure 1.

It is possible, albeit challenging, to show an ICS be-
haves safely using formal methods. Formal methods are a
family of mathematical techniques for reasoning about sys-
tems. Formal methods have two popular techniques: model
checking and theorem proving. Model checking has been
applied in previous research efforts to obtain safety poofs for
ICSs [31], [35], [46], [27], [12]. However, model checking
suffers from the state explosion problem. This problem
prevents model checking from scaling to larger ICSs, as
shown in [12].

Scaling safety proofs to larger ICSs is possible using
theorem proving. However, theorem proving notoriously re-
quires significant effort. For example, it cost 20 person-years
to verify seL4, an OS written in ≈ 8000 lines of C [24]. But

this effort was only necessary because the totality of seL4
was verified. All other factors remaining equal, verifying
less software requires less effort.

Our main idea is to restrict sequences of RPCs to a
protocol. We prove protocol conformance implies the ICS
behaves safely. Thus, unsafe behavior can only ever occur as
a result of executing a non-conformant RPC. We keep non-
conformant RPCs from executing using a dynamic protocol
attestation system. When the attestation system encounters
a non-conformant RPC, it triggers a fail-safe. Fail-safes are
always safe to execute.

In our approach, engineers describe their system’s RPCs
using an interactive theorem prover (ITP). ITPs are programs
that help engineers write formal, machine-checked proofs.
This paper uses F* [38], a state-of-the-art ITP with sophis-
ticated proof automation. Inside F*, we have embedded a
domain specific language (DSL). Our DSL helps engineers
design RPC protocols. Engineers use F*’s proof automation
to prove that protocol conformance implies safety.

We provide automation to generate code for RPC frame-
works from our DSL. Although ITPs like F* can help verify
designs, they are not suitable for writing ICS software. ICS
software is often written in embedded languages like C or
C++. Embedded languages are usually not memory or type
safe. This lack of safety makes RPC implementations more
vulnerable to attacks. We can reduce the risks posed by this
attack vector by leveraging off-the-shelf RPC frameworks.
RPC frameworks use high-level message specifications to
generate ”boilerplate” code. With boilerplate code auto-
matically generated, software engineers can concentrate on
essential application logic. Our automation extracts message
specifications for RPC frameworks directly from an engi-
neer’s F* specification.

Critically, our approach makes formally verifying all
software in an ICS unnecessary. Instead, we only need to
verify software that interfaces with physical mechanisms.
For example, the low-level software that drives a servo or
reads a thermometer. It is easy to identify these software
components. In our formal model, they directly interact with
the system state. Our proofs show that the ICS behaves
safely if RPC semantics are accurately modeled; i.e., if the
software implementation matches the F* semantics.

To summarize our contributions, we:

• Propose a new methodology for developing ICS
software. Our methodology enables us to construct
new communication protocols in F*, a state-of-the-
art ITP. We use F* to prove that protocols maintain
critical safety invariants.

• Provide automation to extract RPC framework
inputs from F*. This generates the code necessary
to create implementations of the protocol.

• Show how to use dynamic protocol attestation to
reduce the verification burden.

• Provide experimental results that highlight the
potential of our approach. Dynamic attestation
checking adds moderate overhead. In many applica-

tions, the overhead will be acceptable. Future work
will consider how to further reduce the overhead.

2. Background

2.1. Fischertechnik

2.1.1. Overview. Industry and academia use Fischertech-
nik’s embedded platforms [13] to address the challenges
posed by Industry 4.0 [22]. Industry 4.0 increases the com-
plexity and concurrency of ICS software. These increases
have lead to vulnerabilities not previously found in em-
bedded systems. Members of industry and academia are
mitigating these vulnerabilities with new technical solutions,
often validated on Fischertechnik’s platforms.

The Fischertechnik was initially used in studies involv-
ing controller verification with model checking [8], [7], [15],
[7], in an example implementation of model-driven systems
engineering [43], [3], and in a program analysis-based PLC
code vetting study [44].

Researchers have also used Fischertechnik platforms
to study ICS security. For example, researchers used Fis-
chertechnik platforms to study runtime detection of im-
proper parameters in ICSs [44]. They were also used to
study decentralized monitoring of linear temporal logic
(LTL) formulae [1]. Finally, a contract-based hierarchical re-
silience management framework which improves resilience
when dealing with component failures used a Fischertechnik
platform to perform its evaluation [17].

2.1.2. High Bay Warehouse. The Fischertechnik factory
stores manufactured items in its high bay warehouse (HBW).
The HBW is shown in Figure 2. The HBW provides an in-
terface that displays items to customers. The HBW consists
of nine bays that can store at most one item. The HBW
interacts closely with the vacuum gripper. The vacuum
gripper delivers and retrieves items from storage. The HBW
also has an arm that moves items into and out of bays. We
chose to implement our approach on the HBW due to its
intuitive functionality and straightforward interactions with
other components.

Figure 2: Image of the Fischertechnik’s High Bay Ware-
house from [14]

2.1.3. Critical Safety Properties. The high bay warehouse
is vulnerable to two dangerous scenarios:

1) Storing a new item when the high bay warehouse
is already full.

Industrial Control System

HMI SCADA
Hardware

Controller

seL4

Drivers

RPCs

Subsystem

Trusted
computing

base

Subsystem Subsystem

Hardware

Controller

seL4

Drivers

Hardware

Controller

seL4

Drivers

Figure 3: Overview of an ICS. The demon icon is located
adjacent to components that we assume an attacker controls.

2) Attempting to retrieve an item that is not stored in
a bay.

Therefore, an ICS’s software implementation must en-
force three invariants. First, that the HBW is not full before
it attempts to store an item. Second, that the HBW only
processes a customer’s order if it contains the desired item.
Third, that the state of the bays is accurately tracked. In this
example the safety property is that none of these invariants
are violated.

2.2. Attack Model

2.2.1. Threats. We consider a threat model where adver-
saries seek to compromise ICS controllers. ICS controllers
use low-level hardware drivers to manipulate the physical
world. ICS controllers support emerging industry 4.0 trends
by interfacing with the public internet. Interfacing with
the internet jeopardizes the security of an ICS controller.
Therefore, we assume an ICS controller may become com-
promised at any moment. Compromised ICS controllers may
execute RPCs that place the ICS at-risk.

2.2.2. Attacker. We assume the attacker is able to execute
arbitrary RPCs on any controller in the ICS. Figure 3 shows
possible attack vectors. ICS controllers communicate with
low-level device drivers. Thus, the attacker is able to execute
malicious actions from compromised controllers. The at-
tacker may also execute malicious RPCs on uncompromised
controllers connect by a network. By trusting input from
malicious RPCs, uncompromised controllers can also take
a system to an unsafe state.

2.2.3. Trusted Computing Base. We assume attackers
cannot control the operating system, low-level hardware
drivers, or hardware. High assurance operating systems like
seL4 [41] have formally verified security properties. These
properties enable strong isolation of software components.
We assume that engineers have verified the behavior of
hardware drivers. We trust that hardware functions as in-
tended. We also assume attackers have not compromised the
RPC framework. We further assume the RPC framework
always executes RPCs. Finally, we assume attackers have
not compromised our dynamic protocol checker.

2.3. Interactive Theorem Provers

Interactive theorem provers are tools that help engineers
construct computer-verified mathematical proofs. Engineers
write proofs in a language the ITP provides. Often, ITPs
provide purely functional languages based on the Calculus
of Inductive Constructions [34]. The Calculus of Inductive
Constructions (CIC) is a type theory for expressing proofs.
Proofs in CIC are constructed following the Curry-Howard
isomorphism [21]. The Curry-Howard isomorphism treats
types as propositions and values as proofs. Writing a proof
of a proposition amounts to writing a term whose type
corresponds to the proposition. Type-checking verifies that
the proof is free from mistakes in reasoning.

ITPs provide automation that helps users write terms.
Writing a term that inhabits a type is often awkward. As
the type’s corresponding proposition grows more complex,
the situation becomes worse. To help remedy the situation,
ITPs often provide tactic systems. Tactics are examples
of metaprograms: programs that write programs. Tactics
construct terms by exposing commands to engineers. These
commands more closely match how humans think about
proofs. Commands need not even be correct because the
term a command produces is ultimately type-checked. Users
can extend ITPs with their own tactics without compromis-
ing the soundness of their proofs.

F* [38] is a new ITP that makes it even easier for
engineers to write proofs. Tactic systems require users to
explicitly justify each step in their reasoning. But many steps
in reasoning are obvious: equality is symmetric, addition is
commutative, etc. Often times, humans make these steps
without ever saying so. F* mimics human reasoning by
integrating the Z3 SMT solver with its tactic system [10].
SMT solvers are tools that automatically prove propositions.
Since it is impossible to automatically prove all propositions,
SMT solvers may fail. When Z3 succeeds, an engineer is
relieved of the burden. When Z3 fails, the engineer can use a
combination of programming and tactics to write the proof.
Z3 still fills gaps between steps, thus tremendously reducing
the proof burden.

3. Methodology

This section describes how to construct protocol specifi-
cations and prove that safety properties hold on the protocol.
Communication protocols describe legal sequences of RPCs.
Ultimately, a communication protocol is a formal language
inhabited by sequences of RPCs called traces. RPCs have
semantics that our methodology formally models in F*.
In the semantics, an RPC that causes the ICS to behave
unsafely causes the state to become Wrong. We embed a
DSL for describing communication protocols in F*. Using
F*, we can verify conformance to a protocol implies the
ICS does not go Wrong.

An attacker can cause traces of the ICS to diverge from
the specified protocol. To account for this possibility, we
implement dynamic protocol attestation. Dynamic protocol

attestation checks that the ICS’s trace conforms to the proto-
col. Dynamic protocol attestation prevents non-conforming
RPCs from taking the system to a Wrong state.

3.1. DSL Design

We describe communication protocols using a DSL em-
bedded in F*. Our methodology provides a general pur-
pose protocol description language. However, the protocol-
specific parameters listed in Table 1 must be provided by
the engineer.

Parameter Description
D(Vm) Values used by State and ExtCom
AP Propositions that reflect the ICS’s state

ExtCom RPCs executed in the ICS
Inputs Commands received by the HMI

TABLE 1: Description of protocol-specific parameters.

3.1.1. Syntax. Our DSL draws a distinction between RPCs
and terms that describe protocol behavior. In our DSL, RPCs
are called external commands. Terms that describe protocol
behavior are called internal commands.

v0,j ∈ D(V0)

... ∈ . . .

vm,j ∈ D(Vm)

ap ∈ AP

state ∈ State

EC ∈ ExtCom

IC ∈ IntCom

V0 ::= v0,0 | . . . | v0,n
... ::= . . .
Vm ::= vm,0 | . . . | vm,n

state ::= σ | Wrong
EC ::= E1 vm1,n1

. . . vmk,nk
| . . . |

Ej vm1,n1
. . . vmk,nk

IC ::= Skip | Seq IC1 IC2 | If ap IC1 IC2 | EC

ExtCom is the set of all external commands ex-
changed in the system. Commands are represented as
Ej vm1,n1

. . . vmk,nk
. Each vmk,nk

represents a value of
the command’s corresponding argument. A value is part of
a domain D(Vm). Domains can be standardized (e.g., N,
bool) or user-defined. A trace is a sequence of external
commands. External commands are the only mechanism to
modify the ICS’s state. Therefore, to assure the safety of
the system is to enforce that only traces that satisfy safety
guarantees are executed. In our methodology, this can be
accomplished by defining a provably secure RPC protocol.
Atomic propositions, AP , are used to reason about the ICS’s
internal state. The labeling function L: State → 2AP maps a
state to a set of atomic propositions. An atomic proposition
p evaluates to true in state σ iff p ∈ L(σ).

States can be valid or invalid. A valid state is a tuple
σ = ⟨s1, s2, . . . , sk, input⟩; σ contains k internal
variables that comprise the internal state. A valid state σ also
keeps track of SCADA and HMI input. Although not part of
the syntax, inputs are also protocol-specific parameters. An
invalid state is labeleled as a Wrong state. Non-conformant
RPCs take the semantics of the ICS to Wrong. Engineers
define a protocol using internal commands. We emphasize
the If internal command, as it represents the control flow
for creating safe protocol specifications. If commands are
conditioned by atomic propositions.

3.1.2. Semantics. The semantics in Figure 4 formalize the
ICS’s behavior. A command that takes a system to a valid
state is a valid command. Each external command has two
semantic rules. The first rule states the effects of performing
the operations denoted by a valid command. The second
rule states which commands are invalid. For example, the
Store command is invalid when the control unit executes
a Store command when the high bay warehouse is already
full. Invalid commands lead the system to a Wrong state.
The big-step semantics for external commands takes a state
and a command and returns a new state.

⟨ExtCom, State⟩ ⇒EC State

The semantics for internal commands also uses a big-
step semantics. In the absence of recursion, all command-
state pairs evaluate to a state without the need to consider
intermediate steps.

⟨IntCom, State⟩ ⇒IC State

In order to define a protocol specification for a given
system, the user must add the system’s external commands
to the DSL. Furthermore, the user must define their under-
lying semantics. There are two functions that achieve these
goals.

The semantic function E : ExtCom → State → State
implements ⇒EC for all combinations of external com-
mands and states. This function allows the user to define
the semantics for all RPCs in the system. First, the seman-
tics allows the system to define which State × ExtCom
combinations are valid. Second, the semantics formalize
how executing a given command changes the internal state.
Third, the exhaustive property of F* functions forces users
to consider all possible scenarios. However, some of the
control flow may require procedures to check properties of
the internal state.

The precondition function Φ : ExtCom → State → bool
determines if a command is valid in a valid state. Commands
that are not valid evaluate to Wrong. We note that Φ and
atomic propositions are strictly orthogonal ideas. Φ is used
to define the semantics of commands. Atomic propositions
are used to define protocols.

3.1.3. Safety Condition. In an unrestricted environment,
both valid and invalid sequences of RPCs can be executed.
To generate only valid RPCs, we restrict accepted traces to a

Φ(Ejvm1,n1
. . . vmk,nk

, σ)
Φ(Ejvm1,n1

...vmk,nk
,σ)

(Ejvm1,n1 ...vmk,nk
,σ)⇒ECσ′

(Ejvm1,n1
. . . vmk,nk

, σ) ⇒EC σ′ (ExtCom Valid)
(Ejvm1,n1

. . . vmk,nk
, , Wrong) ⇒EC Wrong

(Wrong)

¬Φ(Ejvm1,n1
. . . vmk,nk

, σ)

(Ejvm1,n1 . . . vmk,nk
, σ) ⇒EC Wrong

(ExtCom Invalid)
ap ∈ L(s) (Ic1, s) ⇒IC s′

(If ap IC1 IC2, s) ⇒IC s′
(If true)

(Skip, s) ⇒IC s
(Skip)

ap /∈ L(s) (IC2, s) ⇒IC s′′

(If ap IC1 IC2, σ) ⇒IC s′′
(If false)

(Ec1, s) ⇒IC Wrong
(Seq IC1 IC2, s) ⇒IC Wrong

(Seq Invalid)
(IC1, σ) ⇒IC σ′ ∨ (IC2, σ) ⇒IC σ′′

(Seq IC1 IC2, σ) ⇒IC σ′′ (Seq Valid)

Figure 4: Semantics of our DSL.

Framework Overhead Embedded Language Support Custom Networking? Security Practices
C? C++? Rust? Code Scanning? Fuzzing?

Cap’n Proto [6] Low ✗ ✓ ✓ ✗ ✗ ✓
COAP [37] High ✓ ✓ ✓ ✗ ✗ ✗
eRPC [11] Low ✓ ✗ ✗ ✓ ✗ ✗
gRPC [16] Medium ✗ ✓ ✓ ✗ ✗ ✓

TABLE 2: RPC frameworks we considered adopting in our prototype.

subset of all possible traces. Our DSL introduces syntax for
restricting RPCs, given underlying semantics of the RPCs.
Using the DSL, users write a term (i.e., called spec) that
specifies a communication protocol. F* can be used to prove
different safety properties about the protocol. Given the
attack model, the following safety condition must be proven:

SAFETY CONDITION

Applying the big-step semantics ⇒IC to spec in a
state ̸= Wrong always yields a state’ ̸= Wrong.

Formally:

∀σ ∈ State.⟨spec, σ⟩ ̸⇒IC Wrong

If this condition is proven, then all sequences of com-
mands generated by the spec are safe command sequences.
Thus, spec generates a subset of all RPCs that cannot go
Wrong.

3.2. Translation to RPC Framework

We provide automation that translates terms from F*
into an RPC framework. The translation occurs via proce-
dures written using Meta-F* [28]. Meta-F* is a framework
for metaprogramming in F*. Metaprogramming involves
writing procedures that write programs. Metaprogramming
allows us to inspect terms in F* and emit new terms that
generate code in an RPC framework. This allows us to use
F* specifications to generate code for an RPC framework.

3.2.1. RPC Frameworks. Table 2 shows the RPC frame-
works we considered adopting in our prototype. The “Cus-
tom Networking” column indicates if the framework sup-
ports additional network technologies. There are a large
number of network technologies found in embedded sys-
tems. For example, an embedded system might use CAN,
UART, SPI, and ethernet to connect its subsystems. Ideally,

an embedded framework allows for extending its network
layer to support these protocols.

RPC frameworks introduce overhead. Overhead origi-
nates from serializing and deserializing data. We classified
overhead as either Low, Medium, or High. Cap’n Proto
and eRPC are low-overhead RPC frameworks. They use
binary representations of data that matches how a com-
piler arranges data structures. This reduces overhead while
serializing and deserializing data. We consider COAP to
have high overhead. While COAP itself is light-weight, it
is not a true RPC framework. Creating an RPC framework
in COAP introduces additional overhead beyond the other
RPC frameworks.

We evaluated the security practices of candidate RPC
frameworks with two criteria. First, does the project use any
static analysis tools? Static analysis tools like Coverity [9]
can identify vulnerabilities during development [2]. Second,
we considered does the project use fuzzing? Fuzzing is a
software testing strategy that uses random inputs to try to
find unexpected outputs or invariant violations [30]. Fuzzing
has identified thousands of defects in software [26], [47].
The “Security Practices” columns in Table 2 reports our
findings. gRPC performed static analysis using Coverity,
but stopped in 2015. Both gRPC and Cap’n Proto use
fuzzing. Fuzzing is effective, having found a critical security
vulnerability in Cap’n Proto in 2022 [5].

We chose to initially implement support for the Cap’n
Proto RPC framework based on our evaluation. Cap’n Proto
is lightweight, supports many embedded languages, and has
good security practices. Although Cap’n Proto does not
support C, C and C++ have good interoperability.

In the future, we plan to support additional RPC frame-
works besides Cap’n Proto. Cap’n Proto lacks the ability to
use common embedded networking technologies. We will
eventually fill this gap using eRPC. In the long term, we
plan to create our own RPC framework. We will use formal
methods to prove its security.

3.3. Dynamic Protocol Attestation

StoreRequest Not_Full Store(blue)
StoreRequest Not_Full Store(white)
StoreRequest Not_Full Store(white)
 RetrieveRequest(white) No_Color Retrieve(white)
 RetrieveRequest(white) No_Color Retrieve(white)
RetrieveRequest(blue) No_Color Retrieve(blue)
StoreRequest Not_Full Store(white)
RetrieveRequest(red) No_Color Retrieve_Red

System TracesProxy

Figure 5: Dynamic protocol attestation.

We make no assumptions about the correctness of com-
ponents implementing the RPC protocol beyond the low-
level device drivers. Component defects may produce invalid
traces. Thus, we introduce dynamic protocol attestation to
ensure the protocol is followed at runtime. Consequently,
it provides assurance that the system does not reach an
unsafe state. To prevent illegal runtime traces from causing
the ICS to go wrong, we must decide if the current trace is
generated by spec. A decider procedure acts as a recognizer
for the safe RPC language. The decider takes the ongoing
system trace, spec, and current state as an input. As output,
the decider returns true if spec generates the trace and
false otherwise. This procedure is implemented as a proxy.
The proxy monitors ICS traces at runtime, as shown in
Figure 5. For performance reasons, we implemented the
proxy by hand. But, it can be automatically generated. This
automation is left for future work.

4. Applying Methodology to Fischertechnik

HMI Control
Low Level

Driver
StoreRequest

NotFull

IsFull

RetrieveRequest

HasColor

DoesNotHaveColor

Store(color)

Retrieve(color)

Figure 6: The warehouse’s communication protocol.

To demonstrate our metholodology, we use the Fis-
chertechnik factory as shown in Figure 6. A customer can re-
quest an item of a certain color via a RetrieveRequest color
RPC. Likewise, a supplier can request to store an item using
the StoreRequest color RPC. The HBW controller receives
and processes these RPCs. The effect of RPCs is contingent
on the current internal state of the system. The controller
can either return a rejection or an acknowledgement to
the sender. The RetrieveRequest color RPC triggers ei-
ther a HasColor or a DoesNotHaveColor response. The
StoreRequest color RPC can trigger a IsFull or NotFull
response. The controller then forwards the accepted requests
to the low-level hardware drivers. After processing an RPC,
the controller updates the current dynamic state of the the
bays.

The controller makes all policy decisions. The low-level
drivers faithfully execute all RPCs they receive from the
controller. The safety of this communication is critically
important. An attacker is able to execute arbitrary RPCs.
Thus, an attack stemming from the controller could trigger
unsafe driver commands. These unsafe commands pose a
physical threat to workers, and even the ICS itself. Since the
protocol describes all safe executions, nonconforming traces
can cause unsafe behavior. Non-conformant traces that lead
to unsafe behavior are invalid traces. A invalid trace will
break at least one logical assertions defined in §2.1.3. This
can lead to outcomes like collisions when attempting to store
an item in an occupied bay.

4.1. Syntax and Semantics

The protocol-specific syntax is:

color ::= empty | red | white | blue
input ::= RetrieveRequest color | StoreRequest color
EC ::= IsFull | NotFull | HasColor | Store color

| Retrieve color|DoesNotHaveColor
ap ::= APBaysFull | APHasRetrieveRequest

| APContainsWhite | APContainsBlue
| APHasStoreRequest | APRequestRed
| APContainsRed | APRequestBlue
| APRequestWhite

Some external commands take color as arguments. We
represent a valid state as a pair σ = ⟨ bays, input ⟩; σ keeps
track of the current state of the nine bays and the current
user input. We model the bays as a record of nine slots:

type bays = { bay1 : color; . . . ; bay9 : color; }

To access each bay, we define a function:

bf : bays → N → color

that takes the bays and a number n between 1 and 9 as
arguments, and returns the current state of bay n.

EC is the set of valid commands that can be sent in the
network. Figure 6 demonstrates the intended communication
protocol. The example in appendix §A.4 shows how a trace
is broken down into small sequences of commands that can
be interpreted by the decider. Each part is evaluated by the
dynamic attestation checker against the current state. The
example contains only valid commands that take the HBW
from a valid state to another valid state in accordance to the
HMI input. On the other hand, §A.5 illustrates a few patterns
of invalid traces. These traces contain at least one invalid
command, with takes the ICS’s state to Wrong. The invalid
command either violates the HBW’s safety properties listed
in §2.1.3 or does not correspond to the intended action given
by the HMI input.

Using our DSL, we write a term called spec (which is
shown in Figure 8) that specifies the RPC protocol for the
high bay warehouse.

Next, we must prove that following the protocol de-
scribed by spec ensures that the safety condition holds. For

find color(s, 1, empty) = None
(IsFull, s) ⇒EC s

(IsFull Valid)
find color(s, 1, empty) = Some

(IsFull, s) ⇒EC Wrong
(IsFull Invalid)

find color(s, 1, empty) = Some
(NotFull, s) ⇒EC s

(NotFull Valid)

find color(s, 1, empty) = None
(NotFull, s) ⇒EC Wrong

(NotFull Invalid)
find color(σ, 1, empty) = None
(Store color, σ) ⇒EC Wrong

(Store color) Invalid)
find color(σ, 1, color) = None

(Retrieve color, σ) ⇒EC Wrong
(Retrieve Color Invalid)

σ.inp = RetrieveRequest color find color(σ, 1, c) = None
(DoesNotHaveColor, σ) ⇒EC σ

(DNHC Valid)
σ.inp = RetrieveRequest color find color(σ, 1, c) = Some

(HasColor, σ) ⇒EC σ
(HasColor Valid)

σ.inp = RetrieveRequest color find color(σ, 1, c) = Some
(DoesNotHaveColor, σ) ⇒EC Wrong

(DNHC Invalid)
σ.inp = RetrieveRequest color find color(σ, 1, c) = None

(HasColor, σ) ⇒EC Wrong
(HasColor Invalid)

find color(σ, 1, empty) = Some
(Store color, σ) ⇒EC σ[color 7→ bf(σ.bays, n)]

(Store color Valid)
find color(σ, 1, color) = Some n

(Retrieve color, σ) ⇒EC σ[empty 7→ bf(σ.bays, n)]
(Retrieve color Valid)

Figure 7: Semantics of our command language.

1 spec =
2 If APHasStoreRequest
3 (If APBaysFull (IsFull)
4 (Seq
5 (NotFull)
6 (If APRequestRed (Store Red)
7 (If APRequestWhite (Store White)
8 (If APRequestBlue (Store Blue)
9 Skip)))))

10 (If APHasRetrieveRequest
11 (If APRequestRed
12 (If APContainsRed
13 (Seq (HasColor) (Retrieve Red)) (NoColor))
14 (If APRequestWhite
15 (If APContainsWhite
16 (Seq (HasColor) (Retrieve White))
17 (NoColor))
18 (If APRequestBlue
19 (If APContainsBlue
20 (Seq (HasColor) (Retrieve Blue))
21 (NoColor))
22 Skip)))
23 Skip)

Figure 8: Specification of the HBW’s protocol.

that purpose, we define the semantic function for the RPC
language.

To assist with the controller logic, we define the func-
tion:

find_color : color → N → bays → option N

which acts as the Φ function. find_color empty b
finds the bay that will be used during a Store RPC. Simi-
larly, find_color c b finds a item colored c. The func-
tion returns an option N . Values of type option a
are either Some a or None. The natural number inside the
option cannot be used without accounting the possibility
that the value is missing. With the help of the pre-condition
function, we define the semantic function in §A.1. To define
a semantic function, the user must match each external
command to its valid and invalid semantic rules. As an
example of conformant RPC behavior, an IsFull response
can be sent when the bays are full. On the other hand,

an IsFull response sent when one more bays are available
is invalid behavior. The semantic function formalizes these
semantic rules. The semantic rules will serve as the basis
for the safety condition proof.

The proof in §A.2 verifies our safety condition. The
proof shows that, for any valid state σ, ⟨spec, σ⟩ ̸⇒IC

Wrong. The proof verifies that every combination of atomic
propositions allowed by spec in a valid state cannot compute
a Wrong state. A match construct in F* relates atomic
propositions to the internal state. As an example, if the
labeling function maps a state to APHasStoreRequest and
APBaysFull, then the HBW must be full. Otherwise, AP-
BaysFull means we sent an invalid command to the HMI. An
assert construct in F* checks that to be true. Unlike other
ITPs, F* can delegate the verification of boolean equations
to SMT solvers. F* uses an SMT solver backend to alleviate
some of the proof burden. Instead of writing hints to the
proof checker, engineers write assertions they want to verify.
These assertions are encoded as SMT formulae that can be
checked by an SMT solver. The proof uses the flexibility
of this approach. Assertions are checked at compile-time,
before the program is executed. The proof is complete once
all atomic propositions are checked to reach valid states
when adhering to the spec protocol.

Consider a situation where there is a request to retrieve
a blue item. Then, a system that follows spec denies the
request by sending a NoColor RPC. The safety proof guar-
antees that there is no blue item in the high bay warehouse.
The proof uses the the labeling function L to map the current
state to the atomic propositions that are true at that state.
Then it uses an assert statement to ask the Z3 solver to
verify APContainsBlue ∈ L(σ). The SMT backend makes
this proof style more ergonomic then solely relying on type-
checker.

We provide the implementation of a decider that checks
traces are generated by a protocol in F*, as shown in §A.3.
The decider uses the eval_until_next_com function
to break down the trace into smaller command sequences.
This function is responsible for breaking down traces into
checkable RPC sequences.

Given the proven safety condition, spec cannot lead to
wrong state. The decider then makes is possible to decide
if a trace can be generated by spec. The decider will be
used to implement the dynamic protocol attestation checker
discussed in 4.3.

4.2. RPC Generation for the Fischertechnik

Figure 9a shows F* code that describes the RPCs com-
prising our protocol. Critically, line 17 shows how to use our
metaprogramming system. The by syntax invokes F*’s tac-
tic system. F*’s tactic system is an extensible mechanism to
automate transforming terms. Individual term transformers
are called tactics. gen_rpcs is a tactic that transforms an
RPC framework and an F* type into an RPC encoder. RPC
encoders contain code to emit inputs to an RPC framework.
Emission occurs by calling the dump function. Figure 9b
shows the inputs that are automatically generated from the
code in Figure 9a.

The tactic system manipulates F*’s abstract syntax tree
(AST) using gen_rpcs. gen_rpcs traverses the AST of
the type supplied as its second argument. Several primitive
types including machine integers and strings have simple,
direct encodings. gen_rpcs supports composite types like
records by recursively applying itself to struct members.
Advanced features in F*’s type system like sum types and
refinement types are unsupported.

The RPC framework’s existing code generation tool
transforms the framework inputs into code. We trust the RPC
framework to emit correct code. The generated code con-
tains logic to handle errors ranging from RPC cancellation
to network errors. Since common errors are already handled,
engineers only need to implement message semantics.

4.3. Dynamic Protocol Attestation

We implement dynamic protocol attestation as a proxy
in C++ using Cap’n Proto. The proxy dynamically feeds the
current trace to the decider procedure in F*. Since ICS never
terminate, our approach ensures we always analyze finite
traces. That is done through chopping the trace is smaller
parts while keeping track of the state. Our approach was
successful in finding non-comformant RPCs.

4.3.1. Performance Evaluation. To understand the effects
of dynamic protocol attestation on RPC performance, we
conducted a performance evaluation. To conduct our eval-
uation, we created a software implementation of the Fis-
chertechnik HBW system. Our implementation has four
components: a controller, low-level device drivers, a client,
and the dynamic attestation system. The controller exposes
a store/retrieve interface to the client. The low-level device
drivers executes physical actions. The client randomly sends
the controller messages that conform to the controller’s
protocol. We implemented each component in C++. We
implemented RPCs using Cap’n Proto with the inputs our
automation generated.

We considered two performance criteria in our evalu-
ation. First, what is the effect on latency? Second, what
is the effect on message throughput? We examined two
measures of throughput: the number of messages sent, and
the number of bytes sent. We evaluated two configurations:
one without dynamic protocol attestation enabled, and one
with it enabled. We evaluated each configuration for 30
seconds. Table 3 shows our numeric results.

Configuration Avg. Latency (ms) Throughput
Messages KB

Without Attestation 0.1452± 0.0007 191,250 3,060
With Attestation 0.1903± 0.0007 145,054 2,321

TABLE 3: Numeric results from our evaluation.

There is moderate overhead imposed by protocol attesta-
tion. Protocol monitoring increases latency by ≈ 31%. Sim-
ilarly, protocol monitoring decreases throughput by ≈ 32%.
Some applications may tolerate protocol monitoring’s per-
formance overhead. Performance overhead can be reduced
in future work.

To better understand dynamic protocol attestation’s im-
pact on latency, we examined the cumulative density func-
tions (CDFs) of our two evaluation configurations. These
CDFs are shown in Figure 10. We observe that protocol
monitoring preserves the shape of the original CDF. In
particular, 99th percentile latency also increases by ≈ 30%.
Despite this increase, it is promising that protocol monitor-
ing’s worst-case performance appears tied to its average-case
performance.

5. Limitations

In this section we will briefly discuss some of the known
limitations of our work and possible mitigations for them.
The protocols defined with our methodology provide formal
guarantees of safety. However, these guarantees exist within
a framework of assumptions.

5.1. Fail-Safes Are Not Always Safe

The methodology guarantees that non-conformant RPCs
will not execute dangerous commands. Instead, the ICS
executes a fail-safe command whenever an RPC would
violate the protocol. Often these fail-safe commands are
well-known and can be safely executed from any given state
the ICS may be in. However, there may be ICSs for which
such fail-safes do not exist. Moreover fail-safes may rely on
the integrity of the devices that trigger them. Possibly, an
alternative backup mechanism could be called when a fail-
safe needs to be executed. One such mechanism is to alert a
human operator to manually bring the ICS to a known safe
state.

Additionally, we assume doing nothing is always safe.
This assumption has the unintended consequence of requir-
ing our controller to be sufficiently abstracted away from the
drivers. Then, issuing no commands or issuing a fail-safe
is always a safe operation. Some ICS subsystems rapidly

1 type store_response = | NotFull | IsFull
2

3 type retrieve_response =
4 | HasColor | DoesNotHaveColor
5

6 type color = | Red | White | Blue
7

8 type hbw_rpc = {
9 store_request : color → store_response;

10 retrieve_request : color →
11 retrieve_response;
12 store : color → unit;
13 retrieve : color → unit;
14 }
15

16 let enc : encoder CapnProto hbw_rpc =
17 _ by (gen_rpcs (`CapnProto) (`hbw_rpc))
18

19 dump enc

(a) The RPC specification in F*.

1 interface HbwRpc {
2 storeRequest @0(_0:Color) -> StoreResponse;
3 retrieveRequest
4 @1(_0:Color) -> RetrieveResponse;
5 store @2(_0:Color);
6 retrieve @3(_0:Color);
7 }
8 struct RetrieveResponse {
9 enum V {hasColor @ 0; doesNotHaveColor @ 1;}

10 v @ 0 : V;
11 }
12 struct StoreResponse {
13 enum V {notFull @ 0; isFull @ 1;}
14 v @ 0 : V;
15 }
16 struct Color {
17 enum V {red @ 0; white @ 1; blue @ 2;}
18 v @ 0 : V;
19 }

(b) Cap’n Proto inputs emitted from Figure 9a.

Figure 9: Overview of the Fischertechnik’s HBW RPC system.

0.1 0.2 0.3 0.4 0.5
Latency (Milliseconds)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

CDFs of RPC Latencies

Without Attestation
With Attestation

Figure 10: CDFs of RPC latency, without and with dynamic
protocol attestation.

issue commands turning another subsystem on and off at a
precise interval (e.g., a pulse-width modulated controller).
In the event the controller must execute a fail-safe com-
mand, it may not be safe to cease issuing other commands.
The controller could have been actively preventing another
component from causing damage. Our protocol makes no
guarantees about the timeliness of the messages between de-
vices. Thus, these time-dependent events should be pushed
into the devices’ drivers.

5.2. No Liveliness Guarantees; Denial of Service

We assume no guarantees about time within our system
nor any liveliness guarantees. A compromised subsystem
could continuously execute non-conformant RPCs. Conse-
quently, the only executed commands are fail-safes. Alterna-
tively, the compromised device could refuse to communicate
at all, denying service to all devices requiring a response
from it. A possible defense to this is to have an internal
timeout process within the protocol. The timeout process

would issue a competing command to a controller, instruct-
ing the controller to issue a fail-safe within a reasonable
amount of time. Such instruction can be implemented by
refining the communication semantics.

5.3. Discretization

Our RPC functions allow any type within the function
parameters. However, our type system can only reason about
countable states and the protocol must be implemented
on realizable hardware. This prevents us from reasoning
about ICSs with possibly uncountable states or RPCs where
infinite precision is required. However, we argue these limi-
tations exist in the current ICS landscape. Furthermore, our
solution drastically improves the assurances ICS operators
can have on their system.

6. Future Work & Conclusion

6.1. Future Work

Our initial results demonstrate the viability of our ap-
proach. We envision four extensions to our work. First,
the current DSL to define spec requires protocol-specific
parameters. Our ultimate goal is to create a general DSL that
can describe all protocols. Second, the dynamic checker’s
overhead might prevent its adoption in certain scenarios.
Third, most of the framework in this paper was implemented
by hand. Additional automation is needed to create the
dynamic checker. We also desire proof automation. Finally,
we desire supported for additional RPC frameworks.

6.1.1. Generalizing the DSL. To create DSLs for defining
arbitrary protocols, we need a core language. Session types
[18] are a typed foundation for the design of message-
passing systems. Multiparty session types (MPST)[20] are

able to define properties in systems with multiple compo-
nents. One of these properties is the ordering of messages. A
relevant example is the application of MPST to specify the
protocol for the Ocean Observatories Initiative (OOI) [33],
[4], [19]. This research inspired the development multiparty
session types with payload refinements [45], [42], [32]. Re-
finement multiparty session types (RMPSTs) are able to also
reason about the contents of messages. A possible extension
of our work is to embed RMPSTs in F*. This embedding
allows users to write typed protocol specifications using
RMPSTs. This can be seen a direct extension of [45]. Once
having embedded RMPSTs in F*, we plan to integrate with
additional type theories including theories of unit types and
security type systems (e.g., [39], [25]).

6.1.2. Reducing Dynamic Attestation’s Overhead. Our
implementation of dynamic protocol attestation is naive. A
single, global proxy adds performance overhead because
it requires an extra round of serializing and deserializing
RPCs. This extra round could be prevented if the proxy
deserialized RPCs into shared memory. Deserializing RPCs
into shared memory requires a distributed attestation system.
We leave this as future work.

6.1.3. Extending Automation. To provide better automa-
tion for our approach, we could also benefit from session
types. The use of a DSL that implements RMPST would
mechanize the process in many ways. First, standard se-
mantics are used for proofs. Second, F*’s type checker can
be used to verify protocol implementations. Third, a few
core proofs, such as absence of deadlocks, can be proven
for all protocols implemented with the DSL. These proofs
would be protocol-irrelevant. Users would get these benefits
just by using the DSL.

We have shown F*’s use of SMT solvers automates
some of the proof process. However, considerable knowl-
edge about F* is needed to prove non-trivial properties of
complex system. This is a drawback that precludes adoption
of formal methods. We can help reduce proof burden by (1)
integrating with model checkers when possible, (e.g., [23],
[40]) and (2) providing new tactics and SMT patterns to
help further automate proofs.

6.1.4. Additional RPC Framework Support. Currently,
This approach currently only supports the Cap’n Proto RPC
framework. We would like to expand our extraction of RPCs
to handle additional RPC frameworks.

6.2. Conclusion

In this paper, we have presented a methodology that
enables engineers to design communication protocols in
F*. Communication protocols are provably safe using F*’s
theorem proving capabilities. We have also shown how to
translate the F* specification into RPCs. By extracting RPCs
from the F* specification, we provide a single source of
truth governing the ICS’s RPCs. We implemented a dynamic
attestation system that ensures runtime traces conform to the

safe protocol. Critically, our approach limits the impact of
compromised components without requiring heavy-weight
verification. While these tradeoffs are not insignificant,
many ICS could benefit from our proposal, especially when
the cost of security incidents is high.

References

[1] Omar Al-Bataineh, Daniel Jun Xian Ng, and Arvind Easwaran. Mon-
itoring cumulative cost properties. In Proceedings - 2021 IEEE/ACM
9th International Conference on Formal Methods in Software Engi-
neering, FormaliSE 2021, pages 19–30. Institute of Electrical and
Electronics Engineers Inc., 5 2021.

[2] Dejan Baca. Identifying security relevant warnings from static code
analysis tools through code tainting. In 2010 International Conference
on Availability, Reliability and Security, pages 386–390. IEEE, 2010.

[3] Sebastian Biallas. Verification of programmable logic controller code
using model checking and static analysis. Technical report, RWTH
Aachen University, 2016.

[4] Laura Bocchi, Tzu Chun Chen, Romain Demangeon, Kohei Honda,
and Nobuko Yoshida. Monitoring networks through multiparty ses-
sion types. Theoretical Computer Science, 669:33–58, 3 2017.

[5] Cap’n Proto. Cve-2022-46149 security advisory, 2022. Accessed:
2024-09-03.

[6] Cap’n Proto Authors. Cap’n proto: Insanely fast data interchange
format and rpc system. https://capnproto.org, 2024. Accessed: 2024-
06-06.

[7] Thierry Cattel. Process control design using spin, 1995.

[8] Thierry Cattel. Using concurrency and formal methods for the design
of safe process control, 1996.

[9] Coverity Scan. Coverity scan: Static analysis for open source projects,
2024. Accessed: 2024-09-03.

[10] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In International conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340. Springer, 2008.

[11] eRPC Project. erpc: Embedded remote procedure call, 2024. Ac-
cessed: 2024-09-03.

[12] Borja Fernández Adiego, Ignacio D Lopez-Miguel, Frederic Havart,
Enrique Blanco Viñuela, Tomasz Ladzinski, and Jean-Charles
Tournier. Applying model checking to highly-configurable safety
critical software: the sps-pps plc program. JACoW, pages 759–763,
2022.

[13] Fischertechnik. Fischertechnik. https://www.fischertechnik.de/en/,
2024. Accessed: 2024-06-06.

[14] Fischertechnik. Fischertechnik automated high bay warehouse 24v,
2024. Accessed: 2024-10-08.

[15] Vincent Gourcuff, Jean Marc Faure, and Olivier De Smet. Improving
large-sized plc programs verification using abstractions. In IFAC
Proceedings Volumes (IFAC-PapersOnline), volume 17, 2008.

[16] gRPC Authors. grpc: A high performance, open source universal rpc
framework. https://grpc.io, 2024. Accessed: 2024-06-06.

[17] Mohammad Shihabul Haque, Daniel Jun Xian Ng, Arvind Easwaran,
and Karthikeyan Thangamariappan. Contract-based hierarchical re-
silience management for cyber-physical systems. Computer, 51:56–
65, 11 2018.

[18] Kohei Honda. Types for dyadic interaction*. 1993. Accessed: 2024-
09-03.

[19] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen,
and Nobuko Yoshida. Scribbling interactions with a formal founda-
tion.

[20] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty
asynchronous session types. In Proceedings of the 35th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 273–284, 2008.

[21] William A Howard et al. The formulae-as-types notion of construc-
tion. To HB Curry: essays on combinatory logic, lambda calculus
and formalism, 44:479–490, 1980.

[22] IBM. Industry 4.0, n.d. Accessed: 2024-08-28.

[23] Saurabh Jha, Subho Banerjee, Timothy Tsai, Siva KS Hari, Michael B
Sullivan, Zbigniew T Kalbarczyk, Stephen W Keckler, and Ravis-
hankar K Iyer. Ml-based fault injection for autonomous vehicles:
A case for bayesian fault injection. In 2019 49th annual IEEE/IFIP
international conference on dependable systems and networks (DSN),
pages 112–124. IEEE, 2019.

[24] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, et al. sel4: Formal verification of
an os kernel. In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, pages 207–220, 2009.

[25] Ada Lamba, Max Taylor, Vincent Beardsley, Jacob Bambeck,
Michael D Bond, and Zhiqiang Lin. Cocoon: Static information flow
control in rust. Proceedings of the ACM on Programming Languages,
8(OOPSLA1):166–193, 2024.

[26] Jun Li, Bodong Zhao, and Chao Zhang. Fuzzing: a survey. Cyber-
security, 1:1–13, 2018.

[27] Ignacio D Lopez-Miguel, Jean-Charles Tournier, and Borja Fernandez
Adiego. Plcverif: status of a formal verification tool for programmable
logic controller. arXiv preprint arXiv:2203.17253, 2022.

[28] Guido Martı́nez, Danel Ahman, Victor Dumitrescu, Nick Gian-
narakis, Chris Hawblitzel, Cătălin Hriţcu, Monal Narasimhamurthy,
Zoe Paraskevopoulou, Clément Pit-Claudel, Jonathan Protzenko, et al.
Meta-f: Proof automation with smt, tactics, and metaprograms. In
European Symposium on Programming, pages 30–59. Springer Inter-
national Publishing Cham, 2019.

[29] Dover Microsystems. German steel mill cyberattack, 2024. Accessed:
2024-09-10.

[30] Barton P Miller, Lars Fredriksen, and Bryan So. An empirical study
of the reliability of unix utilities. Communications of the ACM,
33(12):32–44, 1990.

[31] Ramesh Neupane and Hoda Mehrpouyan. An ontology-based frame-
work for formal verification of safety and security properties of
control logics. In 2022 14th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), pages 1–8. IEEE, 2022.

[32] Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Ab-
deljallal. A session type provider: compile-time api generation of
distributed protocols with refinements in f. In Proceedings of the 27th
International Conference on Compiler Construction, CC ’18, page
128–138, New York, NY, USA, 2018. Association for Computing
Machinery.

[33] Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. Spy: Local
verification of global protocols, 2013.

[34] Christine Paulin-Mohring. Introduction to the calculus of inductive
constructions. All about Proofs, Proofs for All, 55, 2015.

[35] Olivera Pavlovic and Hans-Dieter Ehrich. Model checking plc soft-
ware written in function block diagram. In 2010 Third International
Conference on Software Testing, Verification and Validation, pages
439–448. IEEE, 2010.

[36] Michael Riley. The real story of stuxnet. IEEE Spectrum, 2014.
Accessed: 2024-09-10.

[37] Z. Shelby, C. Bormann, L. Frank, S. Kasap, P. Kyzivat, and J. M. D.
Morris. The constrained application protocol (coap), 2014. RFC
7252, June 2014. Accessed: 2024-09-03.

[38] Nikhil Swamy, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, An-
toine Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric
Fournet, Pierre-Yves Strub, Markulf Kohlweiss, et al. Dependent
types and multi-monadic effects in f. In Proceedings of the 43rd
annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 256–270, 2016.

[39] Max Taylor, Johnathon Aurand, Feng Qin, Xiaorui Wang, Brandon
Henry, and Xiangyu Zhang. Sa4u: practical static analysis for unit
type error detection. In Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 1–11,
2022.

[40] Max Taylor, Haicheng Chen, Feng Qin, and Christopher Stewart.
Avis: In-situ model checking for unmanned aerial vehicles. In 2021
51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 471–483. IEEE, 2021.

[41] UNSW. sel4 secure microkernel. https://sel4.systems/, 2013. Ac-
cessed: 2024-06-06.

[42] Martin Vassor and Nobuko Yoshida. Refinements for Multiparty
Message-Passing Protocols: Specification-Agnostic Theory and Im-
plementation. In Jonathan Aldrich and Guido Salvaneschi, edi-
tors, 38th European Conference on Object-Oriented Programming
(ECOOP 2024), volume 313 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 41:1–41:29, Dagstuhl, Germany, 2024.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[43] Nat Andreas Wortmann. Model-Driven Architecture and Behavior
of Cyber-Physical Systems. PhD thesis, RWTH Aachen University,
2021.

[44] Qingzhao Zhang, Xiao Zhu, Mu Zhang, and Z. Morley Mao. Au-
tomated runtime mitigation for misconfiguration vulnerabilities in
industrial control systems. In ACM International Conference Proceed-
ing Series, pages 333–349. Association for Computing Machinery, 10
2022.

[45] Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova,
and Nobuko Yoshida. Statically verified refinements for multiparty
protocols. In OOPSLA, 9 2020.

[46] Min Zhou, Fei He, Ming Gu, and Xiaoyu Song. Translation-based
model checking for plc programs. In 2009 33rd Annual IEEE Inter-
national Computer Software and Applications Conference, volume 1,
pages 553–562. IEEE, 2009.

[47] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing:
a survey for roadmap. ACM Computing Surveys (CSUR), 54(11s):1–
36, 2022.

Appendix A.

A.1. Semantic Function E in §4.1

The semantic function is used to define the meaning
behind executing each RPC. It must specify the valid and
invalid cases for each external command defined in the
syntax.

1 let E (c : ExtCom) (s : state) : state =
2 match c, s with
3 | _, Wrong -> Wrong
4 | IsFull, Sigma bay inp ->
5 if None? (find_color' Empty 1 bay)
6 then Sigma bay inp else Wrong
7 | NotFull, Sigma bay inp ->
8 if Some? (find_color' Empty 1 bay)
9 then Sigma bay inp else Wrong

10 | HasColor, Sigma bay inp ->
11 match inp with
12 | None -> Wrong
13 | Some (RetrieveRequest color) ->

14 if Some? (find_color' color 1 bay)
15 then Sigma bay inp else Wrong
16 | _ -> Wrong
17 | NoColor, Sigma bay inp ->
18 match inp with
19 | None -> Wrong
20 | Some (RetrieveRequest color) ->
21 if None? (find_color' color 1 bay)
22 then Sigma bay inp else Wrong
23 | _ -> Wrong
24 | Store color, Sigma bay inp ->
25 match find_color' Empty 1 bay with
26 | Some n ->
27 Sigma (update_bay bay n color) inp
28 | _ -> Wrong
29 | Retrieve color, Sigma bay inp ->
30 match find_color' color 1 bay with
31 | Some n ->
32 Sigma (update_bay bay n Empty) inp
33 | _ -> Wrong

A.2. Proof of Safety Condition in §4.1

The proof shows that for any valid state σ,
⟨spec, σ⟩ ̸⇒IC Wrong. The proof uses the atomic propo-
sitions provided by the user to ensure that spec can only
generate valid traces.

1 let lemma_session_good (σ : state{σ ̸= Wrong})
2 : Lemma (ensures σ spec ̸⇒IC Wrong) =
3 match spec, σ with
4 | If APHasStoreRequest c1 c2,
5 Sigma bays inputs → begin
6 if eval_atomic_prop APHasStoreRequest σ
7 && eval_atomic_prop APBaysFull σ then
8 assert (None? (find_color' Empty 1 bays))
9 else if eval_atomic_prop APHasStoreRequest σ

10 && ¬(eval_atomic_prop APBaysFull σ) then
11 assert (Some? (find_color' Empty 1 bays))
12 else if eval_atomic_prop APHasRetrieveRequest σ
13 && eval_atomic_prop APRequestRed σ
14 && eval_atomic_prop APContainsRed σ then
15 assert (mem APContainsRed (label_fn σ))
16 else if eval_atomic_prop APHasRetrieveRequest σ
17 && eval_atomic_prop APRequestRed σ
18 && ¬(eval_atomic_prop APContainsRed σ) then
19 assert (¬(mem APContainsRed (label_fn σ)))
20 else if eval_atomic_prop APHasRetrieveRequest σ
21 && eval_atomic_prop APRequestWhite σ
22 && eval_atomic_prop APContainsWhite σ then
23 assert (mem APContainsWhite (label_fn σ))
24 else if eval_atomic_prop APHasRetrieveRequest σ
25 && eval_atomic_prop APRequestWhite σ
26 && ¬(eval_atomic_prop APContainsWhite σ) then
27 assert (¬(mem APContainsWhite (label_fn σ)))
28 else if eval_atomic_prop APHasRetrieveRequest σ
29 && eval_atomic_prop APRequestBlue σ
30 && eval_atomic_prop APContainsBlue σ then
31 assert (mem APContainsBlue (label_fn σ))
32 else if eval_atomic_prop APHasRetrieveRequest σ
33 && eval_atomic_prop APRequestBlue σ
34 && ¬(eval_atomic_prop APContainsBlue σ) then
35 assert (¬(mem APContainsBlue (label_fn σ)))
36 else ()
37 end
38 | _ → ()

A.3. Decider

A decider procedure is implemented as part of the
dynamic attestation checking. The decider checks that traces
are generated by spec

1 let rec is_trace
2 (t : IntCom) (tr : list ExtCom) (st : state)
3 : Tot bool (decreases (length tr)) =
4 match tr with
5 | [] → true
6 | com :: tr' →
7 let cmd', term', state' =
8 eval_until_next_com st t in
9 match cmd' with

10 | None → false
11 | Some com' →
12 if None? term' then
13 com = com' && is_trace spec tr' state'
14 else
15 com = com' &&
16 is_trace (unwrap_some term') tr' state'

A.4. Example of Valid Traces

This example shows how a trace can be validated by
the dynamic attestation checker, given the current state and
HMI inputs.

1 RPCs:Notfull - Store red - Hascolor -
2 Retrieve blue - Hascolor - Retrieve white -
3 Notfull - Store red
4

5 At state
6 ⟨ { bay1 : white; bay2 : blue; bay3 : empty;
7 bay4 : white; bay5 : red; bay6 : red;
8 bay7 : empty; bay8 : empty; bay9 : empty }
9 StoreRequest red ⟩.

10

11 With the following HMI inputs:
12 ⟨ { bay1 : white; bay2 : blue; bay3 : empty;
13 bay4 : white; bay5 : red; bay6 : red;
14 bay7 : empty; bay8 : empty; bay9 : empty }
15 StoreRequest red ⟩.
16 RPCs:Notfull - Store red
17

18 ⟨ { bay1 : white; bay2 : blue; bay3 : red;
19 bay4 : white; bay5 : red; bay6 : red;
20 bay7 : empty; bay8 : empty; bay9 : empty }
21 RetrieveRequest blue ⟩.
22 RPCs:Hascolor - Retrieve blue
23

24 ⟨ { bay1 : white; bay2 : empty; bay3 : red;
25 bay4 : white; bay5 : red; bay6 : red;
26 bay7 : empty; bay8 : empty; bay9 : empty }
27 RetrieveRequest white ⟩.
28 RPCs:Hascolor - Retrieve white
29

30 ⟨ { bay1 : empty; bay2 : empty; bay3 : red;
31 bay4 : white; bay5 : red; bay6 : red;
32 bay7 : empty; bay8 : empty; bay9 : empty }
33 StoreRequest red ⟩.
34 RPCs:Notfull - Store red
35

36 ⟨ { bay1 : red; bay2 : empty; bay3 : red;
37 bay4 : white; bay5 : red; bay6 : red;
38 bay7 : empty; bay8 : empty; bay9 : empty }
39 StoreRequest red ⟩.

A.5. Examples of Invalid Traces

The examples listed below break the safety properties
in §2.1.3. The examples show possible State × ExtCom
pairs that would trigger a fail-safe.

1 1- Store wrong color
2 ⟨ { bay1 : white; bay2 : blue; bay3 : empty;
3 bay4 : white; bay5 : red; bay6 : red;
4 bay7 : empty; bay8 : empty; bay9 : empty }
5 StoreRequest red ⟩.
6 RPCs: Notfull - Store blue
7

8 2- Store with full
9 ⟨ { bay1 : white; bay2 : blue; bay3 : white;

10 bay4 : white; bay5 : red; bay6 : red;
11 bay7 : red; bay8 : blue; bay9 : blue }
12 StoreRequest red ⟩.
13 RPCs: Notfull - Store red
14

15 3- Command mismatch
16 ⟨ { bay1 : white; bay2 : blue; bay3 : empty;
17 bay4 : white; bay5 : red; bay6 : red;
18 bay7 : empty; bay8 : empty; bay9 : empty }
19 StoreRequest red ⟩.
20 RPCs: Hascolor - Retrieve red
21

22 4- Response Mismatch
23 ⟨ { bay1 : white; bay2 : blue; bay3 : empty;
24 bay4 : white; bay5 : red; bay6 : red;
25 bay7 : empty; bay8 : empty; bay9 : empty }
26 RetrieveRequest red ⟩.
27 RPCs: Notfull - Retrieve red
28

29 5- Retrieve with no color
30 ⟨ { bay1 : white; bay2 : blue; bay3 : empty;
31 bay4 : white; bay5 : blue; bay6 : blue;
32 bay7 : empty; bay8 : empty; bay9 : empty }
33 RetrieveRequest red ⟩.
34 RPCs: Hascolor - Retrieve red

