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ABSTRACT

Alloy components in advanced nuclear reactors will be subjected to environmental conditions that
could include high temperatures, irradiation, and exposure to corrosive salts. These conditions could lead
to the formation of crack-like defects, which could grow over time in a mechanism known as creep crack
growth (CCG). Predicting growth rates of these defects is important for assessing the safe operating life
of advanced reactors. This project documents progress toward developing and testing next-generation
data-driven constitutive models for deformation creep. It also documents the application of the extended
finite element method in conjunction with surrogate creep models to predict CCG parameters under a
variety of conditions. These important incremental developments contribute to the longer-term objective
of developing microstructure-aware constitutive models that can be used for predicting creep deformation
and CCG at the component scale with improved accuracy.
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Creep and Creep Fracture Modeling with Surrogate Creep
Models and the Extended Finite Element Method

1. INTRODUCTION

Alloys used for the components in molten-salt reactors must be able to perform acceptably in the reactor
environment, which will include exposure to salt, high temperature, and irradiation. To design reactor
components, it is essential to be able to predict the deformation creep response. In addition, there is the
potential for crack defects to initiate and propagate in those components under service conditions. Crack
growth can occur under steady-state conditions or during cyclic loading in a mechanism known as creep-
fatigue interaction. In this report, crack growth affected by creep deformation ahead of the crack tip is referred
to as creep crack growth (CCG).

The Simulation of the Response of Structural Metals in Molten Salt Environment project under the US
Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) program is developing
capabilities for predicting multiple degradation mechanisms—including corrosion, creep, and CCG—for
salt-facing alloys relevant to advanced reactors. Idaho National Laboratory (INL) and North Carolina State
University (NCSU) are supporting this effort by testing and integrating surrogate creep-deformation models
into finite element (FE) codes and developing capabilities for CCG modeling that make use of these surrogate
models (SMs). This report documents efforts of INL and NCSU in both of those areas to support that project.

Creep deformation in alloys is highly dependent on microstructure, processing, and environmental
conditions. High-fidelity mesoscale models that explicitly represent the crystallographic structure of alloys
can predict many of these effects. These models are computationally expensive, and because they represent
material at a scale much smaller than that of engineering components, deploying them to predict component
response is challenging. SMs that represent an alloy’s deformation response based on data obtained from
mesoscale simulations are being developed by other partner institutions in the current SciDAC project.
Polynomial-based SMs have been previously developed in other programs, and the current SciDAC project is
exploring the use of machine learning (ML) methods as an alternative surrogate-modeling method. NCSU
has developed a Python-based test bed for these models to rapidly assess their robustness and accuracy before
deploying them in a large-scale FE code, as described in Section 2.

Creep deformation is an important driver of CCG, so it is natural to take advantage of the developments
in SMs for engineering-scale component response to predict CCG. The other aspect of the work, documented
in Section 3, is an effort by INL to deploy a surrogate creep model to capture the deformation response ahead
of a crack tip under high-temperature conditions. The extended finite element method (XFEM) is a powerful
technique that can be used to model the propagation of discrete cracks in an FE mesh independently of the FE
discretization. This report documents efforts to assess using XFEM together with surrogate creep models
for CCG modeling within the Multiphysics Object-Oriented Simulation Environment (MOOSE) framework,
which is the target platform for deploying the capabilities described here for large-scale simulations.

1



2. CREEP SURROGATE MODELING

Using data obtained from viscoplastic self-consistent models of material response at the mesoscale, Sandia
National Laboratories and Los Alamos National Laboratory jointly developed a Mixture of Experts (MoE)
ML model to predict the elastic-viscoplastic response of HT-9 steel under reactor operational conditions. To
deploy this ML model, it needs to be faithfully integrated within an FE framework to leverage its superior
prediction ability for analyzing versatile and complex geometric entities. The stand-alone Python-based
finite element code PyFEM was chosen as the initial framework for model integration and testing. This
report presents the work done to date and its findings. The description of this effort is organized as follows:
Section 2.1 describes the PyFEM architecture and the details of the implementation. Section 2.2 describes
the numerical verification of the accurate integration. Findings from several investigations are introduced in
Section 2.3. Section 2.4 discusses the results of a few simulations. Section 2.5 presents the strain rate map
generated using varying stress states and temperatures. Finally, Section 2.6 provides concluding remarks
along with the limitations and future work.

2.1. Implementation Details

2.1.1. PyFEM Architecture

PyFEM simulations are executed by invoking the PyFEM.py Python script from the terminal, with the
name of an input file specified as an command-line argument to that script. Depending on the operating
system used, a shell script can also be used to run the PyFEM simulation. The PyFEM input file is a project
file with the *.pro extension, which is a text file with material, solver, input, and output specifications that
can be written using any text or code editors. The *.pro file is linked to a *.dat file that contains all the
meshing information along with the boundary conditions. The input-file parser goes through the *.pro file
and instantiates the needed solver and material objects among the various modules required for the FE analysis
of the given geometry. At each quadrature point the getStress method of that respective material model is
called to calculate the stress from the updated kinematics. Therefore, the implementation of a new constitutive
model necessitates the redefinition of these material classes along with their member variables and methods.

2.1.2. Viscoplasticity Model (Power-Law Creep)

As an initial step toward integrating the MoE elasto-viscoplasticity model into PyFEM, a power-law
viscoplasticity model was implemented within the PyFEM framework. This power-law viscoplasticity model
computes the effective creep strain 𝜀𝑝 as:

𝜀𝑝 = 𝐴 (𝜎𝑡𝑟
𝑒 − 3𝐺Δ𝑝)𝑛 (𝑡 − 𝑡𝑜)𝑚 (1)

where 𝐺 is the isotropic shear modulus and 𝐴 is a material-dependent constant that can be easily extended
to useful quantities. For example, one can express 𝐴 as 𝐴 = 𝑒(

−𝑄
𝑅𝑇 ). Here, 𝑄 is the activation energy, 𝑅 is

the universal gas constant, 𝑇 is the temperature, 𝑡 and 𝑡𝑜 are current and initial times, respectively, and 𝑛
and 𝑚 are exponent values. This power-law creep model is implicitly integrated by evaluating it within the
radial-return method (Section 2.1.3) as shown in Algorithm 1, following Dunne and Petrinić [1].
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Algorithm 1 Return Mapping Implementation (Power-Law Creep)
1: Initialize 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ← 0.0
2: Initialize 𝑘 ← 0
3: Define 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 as the convergence threshold (small value)
4: Define 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 100
5: Define 𝑑𝑒𝑞𝑝𝑙 as the effective plastic strain increment
6: Define other material and problem parameters (𝐴, 3𝐺, 𝑛, (𝑡 − 𝑡𝑜)𝑚, Δ𝑡, 𝜎𝑒)
7: while |𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙| > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 or 𝑘 == 0 do
8: 𝑘 ← 𝑘 + 1
9: if 𝑘 > 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 then

10: break ⊳ Exit the loop if iteration limit is reached
11: end if
12: Compute 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ← 𝐴 × (𝜎𝑒 − 3𝐺 × 𝑑𝑒𝑞𝑝𝑙)𝑛 × (𝑡 − 𝑡𝑜)𝑚 × Δ𝑡 − 𝑑𝑒𝑞𝑝𝑙
13: if |𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙| < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 then
14: exit ⊳ Convergence achieved
15: end if
16: Compute 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛 ← −𝐴 × 3𝐺 × 𝑛 × (𝜎𝑒 − 3𝐺 × 𝑑𝑒𝑞𝑝𝑙)𝑛−1 × (𝑡 − 𝑡𝑜)𝑚 × Δ𝑡 − 1.0
17: Update 𝑑𝑒𝑞𝑝𝑙 ← 𝑑𝑒𝑞𝑝𝑙 − 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛
⊳ Newton-Raphson update

18: end while

2.1.3. Equations and Algorithms for MoE Model Integration

The mechanical analysis of arbitrary model geometries requires obtaining the stresses and strains derived
from the displacement field associated with that entity given a particular set of boundary conditions. Regardless
of the complexity of the problem, the displacement field is obtained by solving a force balance equation.
Equation 2 represents the discretized nonlinear equilibrium equation of FE to be solved to determine the
displacement u by the FE framework [1].

𝑭 𝒊𝒏𝒆𝒓𝒕𝒊𝒂𝒍(𝒖) + 𝑭 𝒊𝒏𝒕(𝒖) − 𝑭 𝒆𝒙𝒕(𝒖) = 0 (2)

Here, 𝑭 𝒊𝒏𝒆𝒓𝒕𝒊𝒂𝒍(𝒖), 𝑭 𝒊𝒏𝒕(𝒖), and 𝑭 𝒆𝒙𝒕(𝒖) represent the inertial, internal, and the external force applied, respec-
tively. The internal response to the applied external force is obtained from the stress via Equation (3).

𝑭 𝒊𝒏𝒕(𝒖) = ∫ 𝑩𝑻𝝈 𝑑𝑣 (3)

As mentioned earlier, the stress at each quadrature point is calculated by the getStress method of the
elasto-viscoplastic material model. This method determines the stress through elasto-viscoplastic constitutive
relation—relating strain to stress—using the radial return iterative technique, which iteratively computes the
stress and viscoplastic strain from an elastic trial stress. Although the radial-return method is a multistep
algorithm, its essence can be captured via the following:

𝜎𝑒 = 𝜎𝑡𝑟
𝑒 − 3𝐺Δ𝑝 (4)

Here, the actual effective stress, 𝜎𝑒, is obtained by subtracting the plastic corrector, 3𝐺Δ𝑝, from the elastic
predictor (i.e., effective trial stress), 𝜎𝑡𝑟

𝑒 . The increment of viscoplastic strain, Δ𝑝, is calculated using the
following linearized viscoplastic constitutive relation:

Δ𝑝 = 𝜙(𝜎𝑒, 𝑇 , 𝜖𝑝, 𝜌𝑐 , 𝜌𝑤,Φ)Δ𝑡 (5)
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where 𝜙 is the MoE elasto-viscoplastic ML model that depends on 𝜎𝑒 and 𝑇 , as well as the total effective
plastic strain, 𝜖𝑝, the dislocation density within the cell, 𝜌𝑐 , the dislocation density at the cell wall, 𝜌𝑤 and flux,
Φ. This model computes the elasto-viscoplastic strain rate, ̇𝜖𝑝, and the rates of change of the cell dislocation
density, �̇�𝑐 and wall dislocation density, ̇𝜌𝑤, as shown below:

outputs = [ ̇𝜖𝑝, �̇�𝑐 , ̇𝜌𝑤] (6)

The pseudocode presented in Algorithm 2 outlines the steps that define our “MOEElasticoViscoPlastic”
material model, which implicitly integrates the elasto-viscoplastic model using return mapping.

Algorithm 2 MoEElastoViscoPlastic Material Model
1: Initialize material properties and history variables
2: Initialize tangent stiffness matrix from elastic properties
3: Instantiate MoE model wrapper
4: Commit initial history
5: procedure GETSTRESS(kinematics)
6: Retrieve strain increment from kinematics
7: Get history parameters and material variables
8: Calculate trial stress
9: Compute von Mises stress

10: if von Mises stress satisfies yield criterion (non-zero for viscoplasticity) then
11: Return mapping starts → to bring back the trial stress to yield surface
12: Prepare input for MoE model
13: Evaluate MoE model and compute Jacobian
14: Perform Newton-Raphson iterations to satisfy linearized elasto-viscoplastic constitutive relation
15: Update plastic strain, elastic strain, and stress
16: Update history variables
17: Return mapping ends
18: else
19: Use trial stress as final stress
20: end if
21: end procedure
22: Update output parameters
23: Return stress, tangent stiffness matrix

2.2. Numerical Verification

To verify the aforementioned integration of the MoE elasto-viscoplastic model within the PyFEM
framework, a number of initial conditions were selected to simulate the material response using a single 3D
hexahedral element.

Cases 1 and 2 were taken from Tallman et al. [2], and are used here to compare results from the MoE
model with results from the SM proposed before by Tallman et al. Although these are both models of the
same material, they use different model forms and are based on different training data. It was found that the
PyFEM MoE implementation underestimates the total strain in both the elastic and elasto-viscoplastic cases
as compared to the Tallman et al. results. However, the trends shown by both of these models are similar.
Their results are compared in Figure 1.
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Table 1. Initial conditions for various test cases.

Case # 𝝈𝒆(𝑀𝑃𝑎) 𝑻 (𝐾) 𝝐𝒑(−) 𝝆𝒄(𝑚−2) 𝝆𝒘(𝑚−2) 𝚽(𝑑𝑝𝑎𝑠−1)

1 128.7 789 0.0 5.85 × 1012 8.66 × 1012 3.82 × 10−8
2 50.4 607 0.0 5.07 × 1012 9.18 × 1012 4.83 × 10−7
3 237.079 948.95 0.0 2.23 × 1012 1.17 × 1013 5.03 × 10−7
4 169.92 982.07 0.0 5.03 × 1012 8.45 × 1013 8.72 × 10−7

(a) Case 1: 𝝐𝒑 (b) Case 1: 𝝆𝒄 (c) Case 1: 𝝆𝒘

(d) Case 2: 𝝐𝒑 (e) Case 2: 𝝆𝒄 (f) Case 2: 𝝆𝒘

Figure 1. Comparison of the MoE and Tallman et al. responses for cases 1 and 2.

The implementation of the ML model within PyFEM was further assessed by comparing it with the
pointwise model response, which was calculated by more directly time-integrating the MoE model using
the scipy.integrate.solve_ivp [3] function from the SciPy library. Cases 3 and 4, taken from the
viscoplastic self-consistent simulation data for model validation, were used for this purpose. The results
matched with each other perfectly and thereby verified the successful integration of the elasto-viscoplastic
ML model with PyFEM. Figure 2 shows the comparison between the PyFEM and SciPy integration of the
MoE model.
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(a) Case 3: 𝝐𝒑 (b) Case 3: 𝝆𝒄 (c) Case 3: 𝝆𝒘

(d) Case 4: 𝝐𝒑 (e) Case 4: 𝝆𝒄 (f) Case 4: 𝝆𝒘

Figure 2. Comparison of the SciPy integration of the MoE model and PyFEM response for cases 3 and 4.

2.3. Investigations

ML models, especially neural networks, lack interpretability and in most cases end up functioning as
a black box. Therefore, to better understand the model response in an FE setup several investigations were
performed. This section describes the results and findings from these investigations.

2.3.1. Effect of Changing Time-Step Size Δ𝑡

A large set of simulations were performed using the same initial conditions, but with varying time-step
sizes Δ𝑡 up to 10 hours. A difference in response was observed initially between the smallest and largest
time-step size for the MoE model. A reference model using the classical power-law creep model was also
run, and in both the MoE and power-law creep models, it was found that there are time discretization errors
when large time steps are taken, which can be attributed to the linearized representation of the viscoplastic
constitutive equation in the return-mapping algorithm. However, the time discretization errors observed were
insignificant in this case. The results are shown in Figure 3.
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(a) MoE model (b) Power-law creep model

Figure 3. Effects of time-step size variation. Although the gap appears large for the MoE model, the difference
is negligible compared to the power-law creep model (note that the y-axis scales are different).

2.3.2. Model Surfaces

When the ML models were run, certain combinations of the initial conditions required a very small
time-step size to be used to obtain a converged solution up to the desired time due to the increasing nonlinearity
of the problem. Furthermore, the cases with high-stress conditions could only be run using ramped loading to
avoid convergence issues. To better understand these phenomena, we plotted the surface created by the model
derivative using the data obtained from the real simulations. We used case 3 and the simulation data of the
dogbone sample (described in Section 2.4.1) to create the model derivative surface. We found that as the
initial condition changes, so does the nonlinearity of the problem along with the smoothness of the derivative
surfaces, as expected. The surfaces were created by plotting the model Jacobian (i.e., the derivative of the
effective creep strain rate with respect to the von Mises stress in the creep model) against the effective stress
and viscoplastic/creep strain, as shown in Figure 4 for the cases mentioned.

The model surface was also investigated. It is impossible to visualize the model surface completely
because it is a multivariate function that takes six inputs and produces three outputs. However, an attempt
was made to partially visualize the surface by plotting each output against the two most important inputs,
namely the von Mises stress and total strain. The model inputs were varied over the range of each input as
shown below:

𝜎𝑒(𝑀𝑃𝑎) = [0.119132960099, 299.985430264]

𝑇 (𝐾) = [600.0690046472204, 1099.9901302093344]

𝜖𝑝(−) = [0.0, 0.0499999986721]

𝜌𝑐(1∕𝑚2) = [4669.9511535360325, 8461801410123.313]

𝜌𝑤(1∕𝑚2) = [4406641771830.477, 11999567054170.322]

Φ(𝑑𝑝𝑎∕𝑠) = [1.018454806316354 × 10−09, 9.998075715064236 × 10−07]

As can be seen in Figure 5, each output varies smoothly with respect to the model inputs. As expected, there
is asymptotic behavior for the outputs in the vicinity of high-stress regions.
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(a) Case 3: view 1 (b) Case 3: view 2

(c) Dogbone: view 1 (d) Dogbone: view 2

Figure 4. Model derivative surface obtained from PyFEM simulations.

(a) ̇𝝐𝒑 surface (b) �̇�𝒄 surface (c) ̇𝝆𝒘 surface

Figure 5. Model output surfaces against effective stress and accumulated strain.

2.3.3. Time and Memory Profiling

The MoE elasto-viscoplastic material model was compared with the well-known power-law creep model
as a reference case to gauge its performance in terms of timing and memory. Case 1 was simulated using both
material models, ramping the stress up to 128.7 MPa and then keeping it constant. A total of 186 load steps
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were run using a time-step size of 1 second. Although the nonlinearity of the power law was only quadratic
in stress, it was found that the MoE model is slower than the power-law creep model by several orders of
magnitude. While PowerLawCreep.py requires 0.164 seconds to run, PowerLawCreepMoeshort.py (the
MoE model) takes a significantly longer 9,267 seconds to finish. It can be assumed with a fair amount of
certainty that the internal computations of the weights and biases of the large ML model consume a significant
amount of time. However, further investigations are required to identify the portions of the model that require
the most computational resources. Results of this timing study are presented in Figure 6.

(a) Power-law creep model (b) MoE model

Figure 6. Timing comparison of power-law creep and ML model integrated code.

In terms of memory consumption, both models behave similarly in an average sense. Although the
ML-based material model consumes comparatively more at the beginning due to MoE model instantiating,
there are no obvious needs to optimize regarding memory usage at this point. Figure 7 illustrates and compares
the memory consumption of both models.

(a) Power-law creep model (b) MoE model

Figure 7. Memory-usage comparison of power-law creep and ML model integrated code.
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2.4. Simulations

2.4.1. Dogbone Creep

To further determine the capabilities and limitations of our current implementation, a few simulations
were performed. To simulate a multiple-element entity rather than a single 3D brick element, a 16-element
dogbone sample measuring 8 × 0.5 × 0.2 mm was simulated under the following conditions:

𝜎𝑒 = 185 MPa

𝑇 = 789 K

𝜖𝑝 = 0.0

𝜌𝑐 = 5.85 × 1012 m−2

𝜌𝑤 = 8.66 × 1012 m−2

Φ = 3.82 × 10−8 dpa s−1

The sample consisted of a cross-sectional area of 0.1 mm2 at the wide region and 0.08 mm2 at the narrow
region. A tensile load of 18.5 N was applied at one end and was ramped up in six steps and held constant
for 56 more steps. The results obtained from the simulation were generally acceptable. They are shown in
Figure 8.

(a) Simulated dogbone sample (b) Stress (c) Strain

(d) ̇𝝐𝒑 (e) 𝝆𝒄 (f) 𝝆𝒘

Figure 8. (a) Simulated dogbone sample and (b-f) time histories of creep simulation outputs.
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2.4.2. Stress Cycling

A stress-cycling simulation was also performed to assess the physical relevance of the integrated model
under cyclic loading. Please note that the results of this simulation are preliminary, and this can be improved
in the future by running up to a more physically meaningful duration where the effects of stress cycling can
be assessed. We used the following conditions for our simulation with a single hexahedral element.

Cycled between 𝜎𝑒 = 5.184 − 128.7 MPa

Cycle time = 200 s

𝑇 = 789 K

𝜖𝑝 = 0.0

𝜌𝑐 = 5.85 × 1012 m−2

𝜌𝑤 = 8.66 × 1012 m−2

Φ = 3.82 × 10−8 dpa s−1

The results from these simulations agreed well with our expectations, and no unphysical results were observed.
Figure 9 illustrates the outputs from the stress-cycling simulation.

(a) Load vs. displacement (b) Stress (c) Strain

(d) ̇𝝐𝒑 (e) 𝝆𝒄 (f) 𝝆𝒘

Figure 9. (a) Load-displacement curve and (b-f) time histories of cyclic simulation outputs for one element.
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2.5. Strain Rate Maps

Strain rate maps were generated by varying the stress from 100 MPa to 240 MPa with an increase of 10
MPa, and temperatures from 600 K to 1100 K with an increase of 50 K. Therefore, a total of 165 (11 × 15)
simulations were executed to obtain the elasto-viscoplastic strain rate for each case in the secondary stage
(constant rate). For consistency, all stress cases were ramped up in 96 steps and then held constant for 1,500
steps. Figure 10 shows the time-step size of all 165 simulations. 147 of the 165 cases were simulated for up
to 44.33 hours using a time-step size of 100 seconds; these cases are marked in green. A converged solution
for the remaining 18 cases could only be obtained by using the time-step size shown in Figure 10, or an even
smaller one.

Figure 10. Time-step sizes of 165 cases. Δ𝑡 = 100 s was used for all cases marked in green.

Due to the variation of Δ𝑡 the resulting maps were inconsistent. The inconsistency is evident from the
maps’ discontinuous nature (see Figure 11).

(a) 3D surface map (b) 2D surface map

Figure 11. Generated strain rate maps.

Furthermore, depending on the combination of the initial conditions, quite a few anomalous cases were
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observed where the viscoplastic strains suddenly jumped or dislocation densities dropped, or they depicted
nonphysical behavior. SciPy integration of one of these cases is presented in Figure 12.

Figure 12. SciPy-integration outputs of the model over time for 180 MPa and 1100 K.

2.6. Summary and Future Work

Integrating the capabilities of ML-based constitutive models into FEM-based codes has the potential to
greatly improve their ability to predict component-level response. Moreover, by using microstructural data
during the model training, this approach can be used in a scale-bridging manner.

However, at this stage, a few limitations regarding the model prediction and integration still prevail.
Unphysical behavior for some cases and the total simulation time required are at the forefront of them. The
inconsistency and discontinuous nature of the generated strain rate maps are also of concern. Therefore
future efforts will be focused on regenerating a continuous rate map and understanding the convergence
issues arising from the model stiffness for some cases. In addition, in the near future, integrating the MoE
elasto-viscoplastic model with the MOOSE framework [4] will be undertaken.
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3. CREEP CRACK GROWTH MODELING

The primary objective of this part of the effort is to demonstrate the potential for using surrogate creep
models together with XFEM to predict CCG in high-temperature alloys. The surrogate creep models are
a promising method for accurately representing the deformation response in the vicinity of a crack in the
presence of a variety of microstructure and macroscopic conditions. Using these creep models in conjunction
with techniques such as XFEM to capture deformation ahead of a crack tip has the potential to improve CCG
simulation accuracy.

3.1. Overview of Simulation Methods

This work discusses the deformation response that was modeled using a surrogate creep model, with
cracks represented using the XFEM and 𝐶∗ integrals used as an indicator of crack growth rate. This work was
done in the MOOSE framework. The following sections summarize the key components of this simulation
capability.

3.1.1. Creep Crack Growth Simulation Methods

Because of the significant plastic deformation that occurs in the region ahead of a crack tip, crack growth
rates in alloys under high temperature are not well correlated with the stress intensity factor, 𝐾 . The 𝐶∗

integral proposed by Landes and Begley [5] was shown to be an improved indicator of CCG rates [5, 6]
relative to 𝐾 [7]. The 𝐶∗ integral is closely related to the 𝐽 integral of Rice [8], being a rate form of that
integral. The time-dependent integral 𝐶(𝑡) is expressed as:

𝐶(𝑡) = ∫Γ
�̇� ⋅ d𝑥2 − 𝑇𝑖

𝛿�̇�𝑖
𝛿𝑥𝑖

⋅ d𝑠 (7)

where Γ is the integration contour, �̇� is the strain energy density rate, 𝑥1 and 𝑥2 are the local coordinate
directions at the crack tip (with 𝑥1 being the direction of crack advancement), 𝑇𝑖 is the surface traction on the
crack face, 𝑢𝑖 is the displacement vector, and 𝑠 is the distance along the contour. �̇� is defined as:

�̇� = ∫

�̇�𝑚𝑛

0
𝜎𝑖𝑗d�̇�𝑖𝑗 (8)

where 𝜎𝑖𝑗 and 𝜖𝑖𝑗 are the local stress and strain rates, respectively. It is important to note that while closed-form
solutions for computing �̇� for power-law creep models exist, computing this quantity is not necessarily
straightforward for the data-driven types of models used here. An upper-bound approximation of �̇� was
used in the simulations presented here, but this will be revised for more accurate computations in the future.

𝐶∗ is 𝐶(𝑡) as 𝑡 → ∞ under steady-state conditions, and it has successfully been used as an indicator for
long-term crack growth rates. Multiple consensus standards employ 𝐶∗ as an indicator for CCG, and it is
currently being considered for inclusion as part of a methodology for in-service surveillance in non-light-water
reactors in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code [9].

Despite the success of 𝐶∗-based approaches for CCG prediction, the relationships between crack growth
rate �̇� and 𝐶∗ are inherently only applicable to the specific conditions of the tests on which they are based.
Changing the conditions experienced by the crack, in particular the constraint and boundary conditions (e.g.,
load control vs. displacement control), can significantly affect the crack growth rate. Continuum damage
mechanics methods that explicitly capture local damage processes in the region ahead of a crack tip have
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been used with some success to predict CCG rates in fracture specimens under varying conditions, and their
practical application has been demonstrated for component-level simulations [9]. The continuum damage
mechanics approach requires a constitutive model that captures damage behavior. While in general it would
be possible to incorporate damage into the type of surrogate creep models being developed in this project, it
is unlikely that it will be feasible to do so in the timeline of the current project. Because of this, as well as
the widespread acceptance of 𝐶∗-integral-based approaches, the current focus is on developing modeling
approaches based on 𝐶∗ integrals.

3.1.2. Extended Finite Element Method

XFEM is a technique for inserting arbitrary mesh-independent discontinuities in a continuous FE solution.
It was originally proposed for modeling fracture [10, 11] but has been used for modeling a variety of other
discontinuities, such as material interfaces. These interfaces can be either stationary or moving, as would be
the case during processes such as corrosion.

The MOOSE framework has support for XFEM through its xfem module. This is one of multiple
“modules” that are collections of capabilities for foundational physics models that are included in the MOOSE
code distribution but are not directly part of the MOOSE framework. The xfem module was originally
developed to target nuclear fuel fracture [12], but it has been applied to a variety of fracture-mechanics
and material-interface problems. While the originally proposed formulation of XFEM employs special
additional degrees of freedom at the nodes of elements traversed by interfaces to capture jump conditions, the
MOOSE implementation of XFEM follows the “phantom-node” method [13]. This phantom-node method
employs overlapping “partial elements” that represent nonoverlapping portions of the physical material and
are connected in a way that correctly preserves the nature of the discontinuity. This method also employs
special procedures to properly integrate functions over the physical portion of the partial elements. Details of
the MOOSE implementation of these procedures are provided in Jiang et al. [12].

The ability of XFEM to model propagating discrete cracks independent of the FE mesh topology makes
it an attractive method for CCG simulation. The representation of cracks as discrete, zero-thickness entities
avoids many issues with mesh dependencies and the spurious retention of strength that can be encountered in
continuum-based fracture methods. XFEM is also general in terms of the physics models that can be used in
the continuous solution that it augments, and it can be used with arbitrary constitutive models, provided that
stateful material property data is properly managed in the presence of propagating cracks.

3.1.3. Surrogate Creep Model

To model creep in a computationally efficient manner but capture the effects of microstructure, environ-
ment, and processing on material behavior, surrogate creep models are being used for this work to model
deformation behavior in the vicinity of the crack tip. Ultimately this project will target Alloy 617 for its SM
development and CCG predictions, but because the Alloy 617 SM is under development, this work is using
the HT-9 model as a temporary stand-in. This project will use Alloy 617 SMs for CCG simulation efforts as
they become available. The HT-9 model is based on interpolation between tabulated values of creep rate and
dislocation densities as a function of stress, temperature, effective creep strain, cell dislocation density, and
wall dislocation density [14]. This version of the model is significantly more robust than prior versions of
the model that were based on overlapping tiles for which output quantities were interpolated using Legendre
polynomials [15].
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3.2. Creep Deformation Simulations with XFEM and Surrogate Models

A major objective of the work presented here is to demonstrate the ability to use XFEM together with a
surrogate creep model to capture deformation response in the vicinity of cracks under a variety of conditions.
This is in preparation for a longer-term objective of this project, which is to develop CCG reduced order models
(ROMs) that could facilitate lifetime assessments of in-service components with observed or postulated cracks.
As previously noted, the HT-9 model was used for the present demonstration.

A rectangular body modeled in 2D under plane-strain conditions with an edge crack was used for this
study. The body is 0.05 m wide and 0.2 m tall. Pressure was applied in the vertical direction to put the body
in tension in that direction, and, using XFEM, cracks of varying depths were prescribed on the left side of
the body at its midheight. Figure 13 shows the FE mesh used for this body, as well as a zoomed-in view of
the region with the crack at the end of the baseline case to show how the model captures deformation and
crack opening. In most of the domain, the elements have a size of 0.002 m, but mesh refinement is used in the
vicinity of the crack, with elements in that region having a size of 0.0005 m.

Figure 13. FE mesh of rectangular body that was modeled (left), and a zoomed-in view of the deformed mesh
(right), with deformations magnified 10× in the region of the crack at the end of the baseline simulation.

The baseline simulation had a prescribed crack depth of 0.01 m, a prescribed pressure of 50 MPa at the top
and bottom surfaces, a temperature of 700 K, and initial cell and wall dislocation densities of 6.0 × 10−12 m−2

and 1.0 × 10−13 m−2, respectively. Figure 14 and Figure 15 show contours of the effective creep strain and
von Mises stress at multiple times during the simulation, which was run over a time duration of approximately
6.0 × 106 s. The von Mises stress contours show how the stress in the bulk of the material near the top and
the bottom of the model is close to the applied pressure of 50 MPa, while there is a stress concentration in the
vicinity of the crack. As for all fracture-mechanics problems, the peak stress is dependent on the mesh size
due to the stress singularity. There are stress redistributions over the course of the simulation due to creep
deformation, but these occur primarily in the vicinity of the crack tip. The creep strains, on the other hand,
evolve significantly over time in both the bulk of the material and the region near the crack tip. The distinctive
shape of the strain concentrations that is common in ductile fracture problems develops ahead of the crack tip.

To assess the model’s ability to predict CCG under varying conditions, 𝐶(𝑡) was evaluated using this
model over the course of the transient analyses under varying loading, crack depths, and microstructure
parameters. To actually predict crack growth rates, experimental data on CCG is necessary. Because a
placeholder material (HT-9) was used for this study, it would not be relevant to use a relationship between the
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Figure 14. Contours of effective creep strain for the baseline simulation (pressure = 50 MPa, crack depth =
0.01 m, 𝜌𝑐 = 6.0 × 10−12 m−2 𝜌𝑤 = 1.0 × 10−13 m−2) at times of (from left to right) 5.0 × 105 s, 1.0 × 106 s,
3.0 × 106 s, and 6.0 × 106 s.

Figure 15. Contours of von Mises stress (in Pa) for the baseline simulation (pressure = 50 MPa, crack depth
= 0.01 m, 𝜌𝑐 = 6.0 × 10−12 m−2 𝜌𝑤 = 1.0 × 10−13 m−2) at times of (from left to right) 5.0 × 105 s, 1.0 × 106
s, 3.0 × 106 s, and 6.0 × 106 s.
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crack growth rate and 𝐶∗ for another material. When a model for Alloy 617 is used with this model later in
this project, an effort will be made to use all available CCG data for that alloy. There are ongoing efforts in
the U.S. Department of Energy’s Advanced Reactor Technologies program to collect data on CCG in Alloy
617 [16, 17], and that data will be used to the extent it is applicable.

To study the model’s sensitivity to crack depth, crack depths of 0.01, 0.015, and 0.02 m were simulated
using the baseline set of parameters. To study its sensitivity to applied pressure, pressures of 10, 30, and 50
MPa were applied. Finally, to assess the effects of microstructure parameters, three different sets of cell and
wall dislocation densities (𝜌𝑐 and 𝜌𝑤, respectively) were used: a “low” case with values of 4 × 1012 m−2 and
8 × 1012 m−2, respectively, a “medium” case with values of 5 × 1012 m−2 and 9 × 1012 m−2, respectively, and
a “high” case with values of 6 × 1012 m−2 and 1 × 1013, respectively. Figure 16 shows time histories of the
maximum effective creep strain and 𝐶(𝑡) for these studies.

It is important to note that the measure of effective creep strain is mesh dependent, but it is still useful for
comparing the near-tip response of the material in these cases. Also, as previously noted, an upper-bound
estimate was used to calculate the strain energy rate density in 𝐶(𝑡), and further development is needed to
more accurately calculate this for these SMs. As would be intuitively expected, larger crack depths lead to
higher stress intensity under the same far-field load, along with higher effective creep strain. The model
terminates when a limiting value of 0.01 is reached for the effective creep strain, and that value is reached
much earlier for the deeper cracks. The 𝐶(𝑡) integral decreases over time, and the deeper crack has higher
values of 𝐶(𝑡), at least for the time range studied.

Trends similar to those observed for varying crack depth were observed for increasing pressure. As would
be expected, the maximum effective creep strain increases with increasing pressure, which corresponds to an
increasing far-field stress, and at least initially C(t) is also higher with increasing pressure. Interestingly, 𝐶(𝑡)
also follows that same trend initially, with higher values for higher applied pressure. However, later in time
the value for 50 MPa drops below that for 30 MPa. This needs further investigation, but potentially it could
be due to the creep response going into a different regime as the material’s internal state evolves.

The study of microstructure dependence, where the dislocation densities were changed, shows that with
increasing dislocation density the effective creep strain increases, as does 𝐶(𝑡), which is indicative of increased
deformation near the crack tip. A crossover behavior for the highest dislocation content (which is the baseline
case in the other simulations) similar to that observed in the pressure-dependent response was observed in
these simulations, and could be occurring due to similar reasons.
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(e) Microstructure: maximum effective creep strain
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Figure 16. Time histories of maximum effective creep strain and 𝐶(𝑡) for the parameter studies for crack
depth, applied pressure, and microstructure (parameterized by dislocation density).
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3.3. Summary and Future Work

This effort demonstrated using XFEM with the SM to predict the elastic-viscoplastic response of HT-9
steel in the vicinity of a crack. This study demonstrated that these modeling approaches can be used together,
and that this modeling approach is sufficiently robust for exploring the effects of modeling parameters. The
effects of varying crack depth, applied pressure, and microstructure parameters were studied, and for the most
part the results were as expected, although there was a somewhat unexpected crossover between the computed
values of 𝐶(𝑡) for some of the cases, which warrants further exploration.

Logical next steps for this effort include refining the procedure for computing 𝐶(𝑡) for SMs, utilizing
the Alloy 617 SM when it becomes available, and locating relevant CCG data for Alloy 617 and using it for
predicting crack growth rates. In addition, further testing of this modeling approach is needed to ensure its
validity. This could be done using data for Alloy 316H, for which there is experimental CCG data available.
Longer-term objectives could include using a continuum damage mechanics approach for CCG with the
surrogate creep model.
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