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ABSTRACT Low Earth Orbit (LEO) satellites play a crucial role in enhancing global connectivity, serving
a complementary solution to existing terrestrial systems. In wireless networks, scheduling is a vital process
that allocates time-frequency resources to users for interference management. However, LEO satellite
networks face significant challenges in scheduling their links towards ground users due to the satellites’
mobility and overlapping coverage. This paper addresses the dynamic link scheduling problem in LEO
satellite networks by considering spatio-temporal correlations introduced by the satellites’ movements.
The first step in the proposed solution involves modeling the network over Riemannian manifolds, thanks
to their representation as symmetric positive definite matrices. We introduce two machine learning (ML)-
based link scheduling techniques that model the dynamic evolution of satellite positions and link conditions
over time and space. To accurately predict satellite link states, we present a recurrent neural network (RNN)
over Riemannian manifolds, which captures spatio-temporal characteristics over time. Furthermore, we
introduce a separate model, the convolutional neural network (CNN) over Riemannian manifolds, which
captures geometric relationships between satellites and users by extracting spatial features from the network
topology across all links. Simulation results demonstrate that both RNN and CNN over Riemannian
manifolds deliver comparable performance to the fractional programming-based link scheduling (FPLinQ)
benchmark. Remarkably, unlike other ML-based models that require extensive training data, both models
only need 30 training samples to achieve over 99% of the sum rate while maintaining similar computational
complexity relative to the benchmark.

INDEX TERMS Convolutional neural network, LEO satellite, link scheduling, recurrent neural network,
Riemannian geometry, symmetric positive definite matrices, spatio-temporal correlation.

I. INTRODUCTION

THE EMERGENCE of fifth-generation (5G) and beyond
5G (B5G) networks promises enhanced capacity, yet

achieving universal connectivity remains a formidable chal-
lenge that B5G networks may only partially achieve [1]. The
majority of the global population still lacks adequate Internet
access due to the high cost and complex deployment issues
of mobile base stations. As a complementary approach to
providing seamless connectivity for a large number of users,
low Earth orbit (LEO) satellite networks have demonstrated
significant potential that may not be attainable by solely
terrestrial networks [2]. LEO satellites operate at lower
altitudes (between 500 to 2000 kilometers) compared to

geostationary Earth orbit (GEO) and medium Earth orbit
(MEO) satellites. This close proximity makes LEO satellite
communication more effective in terms of latency, power
consumption, and deployment expenses, thus facilitating
the development of future wireless networks for achieving
global coverage [3]. Inspired by the potential for widespread
global connectivity, companies like SpaceX and OneWeb
are spearheading initiatives to develop dynamic network
architectures consisting of thousands of LEO satellites in
orbit [4].

A dense deployment of LEO satellites may lead to increased
levels of interference, while their continuous motion relative
to a ground-base observer induces spatio-temporal correlation.
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In regions where satellite coverage overlaps, user equipment
(UE) might encounter considerable interference, resulting in
major deterioration in performance [4], [5]. Additionally, the
spatio-temporal correlation arises from the temporal evolution
of their movement over time. Together, the interference and
spatio-temporal correlation pose a challenge to link scheduling
in LEO satellite communication towards ground UE, and this
is the focus of this paper.

Link scheduling strategies are crucial for reducing
excessive interference and involve carefully selecting and
activating a subset of UE links. Also, link scheduling has sig-
nificant real-world applications, particularly in satellite-based
Internet of Things (IoT) systems and their integration with
5G networks. An efficient link scheduling strategy supports
the seamless operation of IoT devices in remote and under-
served areas, where terrestrial infrastructure is often limited
or unavailable. Over the last few years, several satellite
operators and IoT companies have recognized the potential
for innovation and business opportunities in enabling direct
IoT-to-satellite communication [6]. Such advancements can
enhance critical sectors like environmental monitoring, smart
agriculture, and disaster management, enabling robust con-
nectivity and data exchange in challenging environments [7].
However, while LEO satellites provide global coverage,
IoT devices with poor channel conditions face difficulties
when directly offloading tasks to these satellites, leading
to network congestion and high energy consumption [8].
Link scheduling models efficiently address these challenges
by leveraging interference patterns and resource allocation
strategies, ensuring reliable and energy-efficient communica-
tion. Moreover, the integration of satellite networks with 5G
systems supports low-latency, high-capacity communication
for real-time applications such as telemedicine, autonomous
vehicles, and emergency response, thereby emphasizing the
transformative potential of this area of research [9].

Link scheduling problem aiming to maximize the sum rate
over all links is formulated as a non-convex combinatorial
optimization problem [10]. Traditional link scheduling meth-
ods have mainly relied on techniques such as sequential link
selection algorithms [11], iterative fractional programming
algorithms [12], and distance-based link scheduling strate-
gies [13]. Alternatively, deep learning (DL) approaches, such
as deep reinforcement learning (DRL) [14] and convolutional
neural networks (CNN) [15], have been applied to achieve
sum rates comparable to optimization-based methods. Such
DL models require large volumes of training data to train
their models (i.e., as in [16], [17]). For example, a deep
neural network (DNN) approach for link scheduling was
proposed in device-to-device (D2D) network [18], requiring
as many as 10, 000 training samples.

A. MOTIVATIONS AND CONTRIBUTIONS
Motivated by the significance of satellite link scheduling
in real-world application and its associated challenges, we
follow a different approach by reformulating the dynamic

satellite networks over Riemannian manifolds. Previously,
Riemannian geometry has been applied in communication
systems to tackle various challenges, including the design of
beamforming codebooks [19], the deployment of relays [20],
link scheduling [10], [21], [22] and power allocation in
random device-to-device (D2D) wireless networks [23], and
covariance shaping in [24]. In this work, the entire topology
of links is represented as a point over Riemannian manifolds.
Specifically, the network structure around each UE link is
represented as a graph, including any interfering links. This
is then modeled as a symmetric positive definite (SPD)
matrix, which can be represented as a single point over
Riemannian manifolds (i.e., curved surfaces). The sequence
of spatio-temporal correlated network topologies can be
modeled as a series of points over Riemannian manifolds.
Efficiently abstracting such local interference networks using
single points over non-Euclidean surfaces (i.e., Riemannian
manifolds) makes it possible to use simple machine learning
(ML) models for extracting the spatio-temporal correlation
and hence requiring fewer training samples, compared to
existing DNN models over Euclidean (i.e., flat) surfaces.

In this paper, we propose two alternative ML-based
approaches. Each is suited to different aspects of the
link scheduling problem in LEO satellite networks. First,
given the spatio-temporal nature of satellite movement and
time-dependent network dynamics, we employ a recurrent
neural network (RNN) over Riemannian manifolds to capture
the evolution of temporal patterns in each satellite-to-user
wireless link across time slots. The Riemannian metric,
which is Stein metric in this case, is used as a similarity
measure to accurately model time series forecasting. Time
series forecasting also involves using the statistical recurrent
unit (SRU) that analyzes the spatio-temporal correlations
between satellite links at previous time slots to predict future
link scheduling decisions. In [25], SRU was proposed as a
tool for time series forecasting in Euclidean space. The SRU
effectively captures long-term dependencies in time series by
maintaining moving averages of the data, commonly referred
to as summary statistics.

Second, using an alternative approach to account for the
spatial variability of the overall network topology across time
slots, we introduce a convolutional neural network (CNN)
over Riemannian manifolds. This model utilizes the changing
geographic positions of satellites and users, detecting spatial
patterns. In summary and by leveraging the RNN to capture
how each pair evolves over time and the CNN to capture
how the overall network topology changes across time
slots, we propose two different approaches to model the
spatio-temporal correlation inherent in the dynamic nature
of satellite networks. Our simulation outcomes are assessed
through a comparison with the fractional programming
technique, FPLinQ [12], designed to produce high-quality
local optimum solutions.

The key contributions of this work are threefold, which
are:
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� Efficient modeling of link scheduling in LEO satellite
networks over Riemannian manifolds, enabling ML
models to capture the spatio-temporal correlations.

� By capturing the evolution of each satellite-UE pair
over time, RNN-based approach achieves over 99% of
sum rate with similar computational complexity while
predicting link scheduling decisions up to 7 future time
slots, using only 30 training samples of wireless network
layouts.

� By capturing the evolution of each network topol-
ogy over time, CNN-based method also maintains a
comparable computational complexity and sum rate
performance with an equal number of training samples
of 30 wireless network layouts to predict 7 time slots
ahead.

B. RELATED WORKS
In recent years, ML-based strategies have been increasingly
adopted to address various scheduling challenges in non-
terrestrial networks, particularly in satellite networks. These
approaches aim to enhance network performance, ensure
seamless connectivity, and optimize resource utilization.
For instance, [26] provides an overview of AI/ML-driven
techniques for addressing problems related to ISTNs. In [27],
the authors focused on optimizing the space-HAPS-ground
network to solve user scheduling problems under spe-
cific connectivity and power constraints, employing an
ensemble deep neural network (EDNN) model for network
optimization. Similarly, [28] proposed a deep reinforcement
learning-based construction model to handle scheduling
issues in agile earth observation satellites (AEOS) for large-
scale satellite management. Furthermore, [29] applied a
Q-learning approach to optimize task sequencing in satellite
management systems. The optimization process primarily
relied on a reinforcement learning-based memetic algorithm
(RL-MA) to achieve energy-efficient satellite range schedul-
ing. These works highlight the diverse applications of AI/ML
in addressing complex scheduling problems in dynamic and
non-terrestrial networks.

While link scheduling in satellite networks is a key
component of integrated satellite-terrestrial network (ISTN)
to ensure seamless global coverage, several works have
focused on other aspects of ISTN, such as dynamic spectrum
sharing and spectrum sensing for achieving the same
objective. Authors in [30] formulated a dynamic spectrum-
sharing strategy utilizing the same spectrum resources in
satellite and terrestrial terminals. In [31], improvement
in spectrum efficiency was proposed by utilizing non-
orthogonal multiple access and cognitive radio techniques.
Given the extensive coverage provided by satellite sub-
networks, various satellite-driven spectrum sensing schemes
have been introduced, playing a vital role as a prerequisite
for dynamic spectrum sharing [32], [33].

Satellite link scheduling has not received as much attention
as other scheduling strategies [34] such as inter-satellite link

(ISL) scheduling [35], [36], [37], satellite range schedul-
ing [38], [39], and satellite imaging scheduling [40], [41].
Some research has explored the integration of routing and
link scheduling techniques [36], [42] to boost the throughput.
Subsequently, a dynamic approach to scheduling satellite
topology allowed for swift network reconstruction and helped
reduce the decline in routing performance [42]. In [43],
authors investigated strategies for link allocation and power
distribution to address network cost optimization issues.

In addition to LEO-based networks, MEO and GEO
architectures have also been explored for link scheduling and
resource management. MEO satellites, due to their moderate
altitude, offer a trade-off between coverage area and latency,
making them suitable for applications like navigation and
certain communication systems [44]. Traditional non-AI-
based schemes in GEO architectures, such as heuristic
algorithms and greedy scheduling techniques, have been
widely used for satellite imaging scheduling and range
scheduling tasks [40], [45]. For instance, classical time-
division multiple access (TDMA) and frequency-division
multiple access (FDMA) methods have been implemented
in GEO satellites for resource allocation, though these
approaches often suffer from inefficiencies in dynamic
environments [46]. Additionally, the use of linear program-
ming and graph-based algorithms has been prominent in
conventional satellite scheduling but lacks the adaptability
required for highly dynamic LEO networks.

Several works in the literature utilize spatio-temporal
correlations for scheduling. To address the issue related to
thermal-aware scheduling in high-performance computing,
spatio-temporal correlation of the temperature evolution over
time was considered in [47]. Authors in [48] introduced
scheduling problem for remote estimation in a wireless
sensor networks considering the spatio-temporal dependency
of the broadcasting observations. By retaining moving
averages of statistics, long-term dependencies in time series
data can be captured [25], and it has been successfully
utilized in a range of time series prediction tasks in the
past [49], [50].

Outline: The remainder of the paper is organized as
follows. Section II provides an introduction to the pre-
liminary concepts of Riemannian manifolds and outlines
major parameters for LEO satellite networks. Section III
describes the system model. Section IV focuses on the
formulation of the problem. Section V explores machine
learning models for link-state prediction, presenting both
RNN over Riemannian manifolds and CNN over Riemannian
manifolds. Section VI showcases the performance of the
proposed link scheduling techniques and offers an analysis
of the computational complexity of these methods. Finally,
Section VII concludes with a key summary.

II. SYSTEM MODEL
Figure 1 depicts the major parameters of the satellite
communication network. In this scenario, the LEO satellite
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FIGURE 1. Major parameters of LEO satellite communication.

FIGURE 2. LEO satellite communication network layout.

communication system is represented in a Cartesian coordi-
nate system, where a single LEO satellite travels at a certain
velocity and operates from �i altitude. The origin of the
coordinates is denoted by p, and the line corresponding to
the longitude 0 is placed in the XpY plane. For a satellite
si � S, latitude, longitude, and altitude are denoted as �i, �i,
and �i, respectively. The values of � ranges from ��/2 to
�/2 and � ranges from �� to � . Then the coordinates of
si at time slot t can be computed as

ai = (�i + RE) cos �i sin �i
bi = (�i + RE) cos �i cos �i
ci = (�i + RE) sin �i

�
�

�
(1)

where RE denotes the radius of the earth.
As shown in Figure 2, every satellite in S =

{s1, s2, . . . , sS} has a footprint, and a number of UEs are
connected to each satellite. Using eq. (1), the position

of satellites for each time slot is computed. Basically,
K satellite-UE pairs are formed with S satellites. As a
transmitter, each satellite makes pairs with all UEs within
the area covered by their footprints from a certain altitude.
We focus on the downlink scenario, in which each satellite
applies superposition coding to send information to the active
UEs that are associated with it. It is assumed that each UE
decodes its information, considering signals for other UEs
as interference. Interference terms include signals coming
from its own satellite towards other active UEs within its
vicinity.

We assume a single-antenna for each UE. Using an
information-theoretic approach, the capacity of the link
towards q-th UE at a time slot t from its satellite is given
by

Rt
q
�
ct� = Blog2

�

1 +
P� ct

q|ht
qs|2gt

qs�
s��S,i �=q P� ct

i|h
t
is� |

2gt
is� + � 2

n

	

, (2)

where B is the bandwidth, P� denotes the fixed transmit
power level of the satellites, and � 2

n is the noise variance.
hqs represents instantaneous channel gain due to small-scale
fading effects. Here, ct = [ct

1, . . . , ct
K]T acts as the indicator

vector for link states, where ct
q = 1 indicates that q-th

satellite link is activated and ct
q = 0 otherwise. In each

scheduling slot, a subset of links are activated to transmit at
the same time.

The channel between LEO satellite and UE is denoted as
gqs. In densely deployed LEO satellite networks with high
mobility, obtaining instantaneous channel state information
(CSI) is challenging due to the rapid changes in the
environment [51]. Therefore, we employ statistical CSI
based on distance metrics to estimate the channel conditions
without relying on instantaneous CSI. Using statistical CSI
is supported by [52] and [53].

The value of the channel gain can be obtained from the
following link budget equation [32]

gt
qs = Gr,maxGt

�
c

4� fcdt
q,s

	2

10Ag/1010Ac/10, (3)

where Gr,max represents the maximum gain of the receiving
antennas of the UE and Gt is the gain of the LEO satellite.
c = 3 × 108 ms�1 represents the speed of light, fc is the
operating frequency of satellite in Hertz. Ag is the gaseous
absorption factor and Ac represents cloud or fog absorption
factor in dB. dt

q,s denotes the distance between the s-th
satellite and the q-th UE at time slot t.

The model shown in Figure 2 can be represented as a
weighted and directed finite graph Gt(V, E), where t is the
time slot (t = 1, 2, . . . , T), V denotes the set of n = 2K
nodes, and E represents the set of m edges that includes
the communication links and the interfering links to all
neighbors. The edges comprise the communication links
between the satellite-UE pairs and the interfering links to
all neighbors at any time slot t. The incidence matrix Dt �
Rn×m of graph Gt at time slot t is the matrix with l-th
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column given by edge vector et
l. The edge vector et

l � Rn is
specified as having et

lq = 1, et
ls = �1, and all other entries

set to zero, for edges linking nodes q and s, where q, s � K
and q �= s. The weight matrix Wt � Rm×m is specified
as a diagonal matrix in which each diagonal entry denotes
the weight of the l-th edge. The edge weight is determined
by the Euclidean distance between its two nodes, and this
distance is represented with a finite precision of r bits via
uniform quantization [54], reducing the range from infinite
to 2r possible values.

At time slot t, the Laplacian matrix Lt
q � Rm×m is given

by

Lt
q = DtWt�Dt�T, (4)

where T representing matrix transposition. Since Laplacian
matrices are positive semi-definite, a regularization step by
adding a scaled identity matrix yields a regularized SPD
Laplacian matrix [55] at time slot t, expressed as

St
q = DtWt�Dt�T + �I, (5)

where � > 0 is a regularization parameter and I is the n × n
identity matrix.

III. PROBLEM FORMULATION
The Riemannian manifold (M, L) is a real differentiable
manifold M, where each tangent space is equipped with
an inner product L, known as the Riemannian metric.
Additionally, the set of n × n SPD matrices, denoted as
Sym++

n , resides within the interior of convex cones, forming
a specific class of Riemannian manifolds [56].

For satellite link scheduling, our goal is to determine the
optimal combinations of the indicator vector ct that maximize
the total of instantaneous information-theoretic rates over the
T time frame, as given by

max
ct

1

T

T


t=1

K


q=1

Rt
q
�
ct� s.t. ct � {0, 1}K . (6)

Addressing the link scheduling problem in any wireless
network demands proper interference modeling. Hence, we
model the wireless network graph Gt

q at time slot t for link
scheduling as shown in Figure 3. We consider three strategic
ways of modeling this wireless network of satellite-UE pairs
with three Laplacian matrices.

For the first matrix, graph Gt
q, referred to as Gt

Dq
(V, EDq),

corresponds only to the direct links between the intended
satellite-UE pair at time slot t as depicted in Figure 3(a).
This also provides information about the signal-to-noise
ratio for a certain satellite-UE pair. The next two methods
model the interference. Figure 3(b) depicts the formation
of second matrix using the graph Gt

q, where the intended
pair experiences interference from the nearest scheduled pair
at time slot t and referred to as Gt

Nq
(V, ENq). Lastly, in

the third matrix, as depicted in Figure 3(c), we model the
graph Gt

q considering the impact of interference to the nearest

Algorithm 1: Sequential SPD Points Modeling Over
Manifold
Input: Lt

Dq
, Lt

Nq
, and Lt

Pq
, �q � K, t � T

Initialization: St
q = 0, �q � K, t � T

for t = 1 to T do
for q = 1 to K do

S1: Calculate St
Dq

, St
Nq

, and St
Pq

from eq. (5).
S2: Add SPD matrices of each time slot t and
compute St

q.
end

end
return {St

q}T
t=1, �q = {1, . . . , K}

pairs when the intended pair is scheduled at time slot t
and represented as Gt

Pq
(V, EPq). Here, EPq corresponds to

the interference links from the scheduled link to the nearest
pairs, along with all direct links of the nearby pairs.

Basically, all these three Laplacian matrices, Lt
Dq

, Lt
Nq

,
and Lt

Pq
at time slot t are positive semi-definite in nature. By

following the regularization step addressed in eq. (5), three
SPD matrices, St

Dq
, St

Nq
, and St

Pq
are formulated. Since

adding SPD matrices produces another SPD matrix [57],
we combine these three matrices by adding them to have
complete interference information of the intended satellite-
UE pair at a certain time instant t. Algorithm 1 describes
the steps of formulating SPD matrices from semi-definite
Laplacian matrices at time slot t.

IV. MACHINE LEARNING FOR LINK-STATE PREDICTION
This section explains details about modeling the link-state
prediction problem via ML over Riemannian manifolds con-
sidering spatio-temporal correlation in LEO satellite network.
At first, we introduce local graph modeling on RNN over
Riemannian manifolds, where the time-correlated movement
of each link is captured to predict the link-state across
different time slots. Then, we address the same problem on
CNN over Riemannian manifolds where the neural network
captures the evolution of whole network topology over time
utilizing geographical locations of interfering and interfered
nodes.

A. LINK-STATE PREDICTION WITH RNN OVER
RIEMANNIAN MANIFOLDS
In the link scheduling problem model, after capturing
the network layout for each time slot t, the necessary
information for devising effective scheduling is retained as a
sequence of SPD points on the manifold. Handling sequential
data of this nature is achieved through the use of RNN
architectures, which are commonly applied in tasks like
machine translation [58]. The fundamental idea of RNN is to
estimate the conditional probability distribution of the output
sequence given the input sequence [59].

The correlated temporal movements of satellites can be
expressed as a sequence of SPD points, S1

q, . . . , ST
q �
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FIGURE 3. Satellite-UE wireless network graph modeling at time slot t: (a) modeling direct links from satellite to UE, (b) modeling interfering links to the UE of intended link
from nearby satellites, (c) modeling interfering links from the satellite of intended link to nearby UE.

Sym++
n , and are incorporated using recurrent statistics � t

q.
Recurrent statistics refers to statistical measures that are
continuously updated over time. In this case, recurrent
statistics would represent how current states depend on past
SPD points, capturing long-term dependencies between SPD
points over time. Geodesic distances between SPD points,
which reflect the temporal dependencies among satellite-
UE pairs at consecutive time slots, can be measured using
Riemannian metrics like the Stein metric [60]. Utilizing
the Stein metric, the distance between St�1

q and St
q can be

computed as

Y
�
St�1

q , St
q

�
=

���log det

�
St�1

q + St
q

2

	

�
1

2
log det

�
St�1

q • St
q

�
,

(7)

where the log det function represents the logarithm of the
determinant of St�1

q and St
q, capturing the distance metric as a

measure of changes within the local geometry of Riemannian
manifolds of SPD points.

The recurrent statistics at time slot t depend on the
SPD points from previous time slots. Therefore, � t

q is not
only a function of St

q but also of St�1
q , which in turn

depends on St�2
q , and so forth. These dependencies are

represented by the exponential moving average of recurrent
statistics at time slot t (i.e., summary statistics, 	 t

q). In other
words, summary statistics provide a way to understand and
analyze how the position of satellites changes over time
as observed from specific ground locations. To compute
summary statistics utilizing the weighted Frechét mean, we
can use the following [61]

�
	 t

q

�

= argmin

	

T


t=1


Y2
��

	 t�1
q

�

,� t

q

�
, �
 � J, (8)

where J denotes the set of different time scales, with 
 as
the scaling parameter and 
 � [0, 1).

To predict link-states over NT consecutive time slots ahead,
indicating activity or inactivity, we utilize summary statistics.
The complete time frame T is partitioned using the sliding
window technique [10] into two stages: one for training and
the other for testing. Both the training and testing stages
for link-state prediction necessitate multiple steps of the
algorithm, as summarized in Algorithm 2 and illustrated in
Figure 4.

1) TRAINING STAGE

As we see in Figure 4, the network of each link is captured in
the sequential local graph as SPD points over the Riemannian
manifold at time slot t. The model receives these points
as input features, and for training the supervised model,
we utilize the scheduling decisions as targets generated by
the optimal FPLinQ [12] scheduler which operates with a
predefined limit on the maximum number of iterations.

The algorithm inputs features from N input window of size
µ into the model, concurrently updating the recurrent unit
� t

K by calculating summary statistics (	 t
K)
 as in eq. (8). It

then predicts a continuous link scheduling decision variable
Qt

K for the K-th link at time slot ttrain. Similarly, the process
continues for time slot ttrain+1 and so on. Using the sigmoid
activation function, the algorithm converts the continuous
outputs into discrete values to predict binary scheduling
decisions. An additional rounding function is applied to
convert the output into decimal values, either 1 or 0, where
1 indicates link activation and 0 represents inactivity. The
model then compares the predicted scheduling decisions with
the target values. Subsequently, the recurrent unit calculates
the error and adjusts the trainable parameters accordingly.
The algorithm continues to repeat these steps, predicting NT
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FIGURE 4. Satellite-UE link-state prediction using RNN over Riemannian manifolds model utilizing individual recurrent unit for each link at time slot t .

Algorithm 2: RNN Over Riemannian Manifolds-Based
Link-State Prediction Algorithm
Data: SPD matrices X, FP scheduling labels Y
Input: Training SPD matrices Xtrain, Testing SPD matrices Xtest,

Training labels Ytrain, Testing labels Ytest
Output: Predicted scheduling decisions �Y
1. Initialize Model Parameters:
S1: Define network parameters, including number of links, sequence
length, and batch size.
S2: Initialize SPD-SRU cells for recurrent processing.
2. Load Data:
S3: Load the SPD matrices and FP scheduling labels.
S4: Split the data into training and testing sets.
3. Reshape Data:
S5: Reshape Xtrain and Xtest into sequences for RNN input.
S6: Reshape Ytrain and Ytest to match the target format for link
scheduling.
4. Training Procedure:
for epoch = 1 to E do

S7: Pass training SPD matrices Xtrain and labels Ytrain through
the RNN.
S8: Calculate the
softmax_cross_entropy_with_logits loss between
predicted and actual labels.
S9: Update weights using an optimizer like Adadelta.

end
5. Evaluation:
S10: Evaluate model performance on Xtest and Ytest.
S11: Calculate prediction accuracy using the sigmoid outputs and
comparison with true labels.
6. Save Results:
S12: Save the predicted scheduling decisions for further analysis.

consecutive decisions for training batches, Ntrain of size µ,
i.e., windows {W1, . . . , WNtrain}, until the process is complete.

2) TESTING STAGE

During the testing stage, feature SPD matrices from the
other portion of the time frame partition are introduced

in batches, Ntest, each with the same size µ, i.e.,
windows{WNtrain+1, . . . , WNtest }. At this stage, predictions of
NT successive time slots ahead rely solely on the summary
statistics, with no updates to the weights or biases. The
rest of the algorithm follows the same procedure as in the
training stage. The scalability of this recurrent satellite-UE
network enables it to efficiently accommodate an increasing
number of links, while its dynamic nature allows it to adapt
to changing network conditions over time.

B. LINK-STATE PREDICTION WITH CNN OVER
RIEMANNIAN MANIFOLDS
CNN focuses on learning spatial patterns within the SPD
matrices over time, effectively capturing the interference
each link causes to and receives from its neighbors across
each network topology. Unlike RNN, which is designed
to model temporal dependencies, CNN does not require
information about the sequential time-correlated movements
of satellites to make accurate predictions. When it comes
to capturing input data structure, CNN excels at extracting
features from two-dimensional matrix-shaped data, with SPD
matrices being a prime example of such data [62]. This
gives CNN a strong advantage in processing SPD matrices
effectively [63]. Link-state prediction process with CNN over
Riemannian manifolds is summarized in Algorithm 3 and
illustrated in Figure 5.

1) STRUCTURE OF CNN

As shown in Figure 5, we employ a 2D convolutional
layer (Conv2D) with a set kernel size and trainable
filters, applied over input SPD matrices. This layer detects
local spatial features by sliding the filters across each
SPD matrix, capturing key interference patterns between

978 VOLUME 6, 2025



FIGURE 5. Satellite-UE link-state prediction using CNN over Riemannian manifolds model utilizing spatial correlation among all links at time slot t .

links. Next, a MaxPooling layer downsamples the spatial
dimensions of the feature maps while capturing the dominant
interference patterns essential for accurate scheduling deci-
sions. Subsequently, a BatchNormalization layer is
applied, stabilizing and standardizing activations to account
for variations across batches and speed up convergence.
This process is followed by Dropout layers that randomly
deactivate a portion of neurons to prevent overfitting.

The network also includes a second Conv2D layer,
which further processes the refined features from the SPD
matrices, supported by another sequence of MaxPooling,
BatchNormalization, and Dropout layers. After the
convolutional layers, the feature maps are flattened into
a 1D vector by the Flatten layer, then passed to
a fully connected dense layer with ReLU activation.
This layer combines the extracted features to predict link
states, effectively making scheduling decisions based on the
observed interference structure.

The network’s predictions are compared to true scheduling
labels (from FPLinQ), and the error, computed via a
sigmoid_cross_entropy_with_logits loss func-
tion, is backpropagated to adjust the CNN’s weights. This
iterative process, optimized by the Adam optimizer, allows
the CNN to converge toward accurate scheduling predictions
that align with the FPLinQ benchmark.

2) TRAINING PROCESS

The CNN model is trained with a fixed number of epochs.
Similar to RNN, the training batches, Ntrain of window size
µ is used, which means the model processes µ samples of
SPD points at a time before updating its weights. The true
link-state decisions, labeled as the target outputs and derived
from the FPLinQ benchmark, serve as the ground truth for
supervised learning. These target labels are included in each
batch, allowing CNN to compare its predictions against the
actual scheduling decisions.

3) PREDICTION PROCESS

After the training stage, the CNN model makes predictions
on test batches, Ntest of the same window size µ to predict

Algorithm 3: CNN Over Riemannian Manifolds-Based
Link-State Prediction Algorithm
Data: SPD matrices X, FP scheduling labels Y
Input: Training SPD matrices Xtrain, Testing SPD matrices

Xtest, Training labels Ytrain, Testing labels Ytest
Result: Predicted scheduling decisions �Y
1. Prepare Training and Testing Data:
for i = 1 to Ngraphs do

S1: Extract SPD matrices Xi from X for Nlinks links.
S2: Extract labels Yi from Y.

end
S3: Split data into training and testing sets
Xtrain, Xtest, Ytrain, Ytest.
2. Reshape and Normalize Data:
S4: Reshape Xtrain and Xtest to match the CNN input
requirements.
S5: Normalize the input data using a standard scaling
method.
3. Training Loop:
for epoch = 1 to E do

S6: Train on the training data Xtrain, Ytrain with a
defined batch size and validation split.

end
4. Prediction and Evaluation:
S7: Predict �Y = model.predict(Xtest).
S8: Apply a threshold to convert predictions into binary
decisions.
S9: Compute the accuracy between the predicted and true
labels.
5. Save Results:
S10: Save the binary predictions for further analysis.
return

the scheduling decision of NT successive time slots ahead.
We set a threshold level for the predicted output to convert
them into binary decisions (either 0 or 1) for link scheduling.

V. PERFORMANCE EVALUATION AND DISCUSSION
This section outlines the performance of our proposed
machine learning-based link-state prediction to evaluate its
sum rate performance when compared to other scheduling
benchmarks. The simulation outcomes are acquired using
the MATLAB R2022b and Python 3.9 platform with the
Win11 system, the processor: Intel(R) Core(TM) i9-12900K
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CPU @ 3.20 GHz, the RAM: 64.0 GB, and the system type:
64-bit operating system.

A. DATASET
We utilize a real-world dataset gathered from 16 ground
station-satellite pairs operating in the X-band, the most
widely used downlink band for Earth imagery satellites
today. The dataset incorporates augmented weather data,
including precipitation intensity, precipitation probability,
and cloud cover, obtained via the Dark Sky weather API [64].
This augmentation allows the dataset to inherently capture
the effects of varying environmental conditions on satellite-
ground communications.

The dataset includes data from ground stations located
in Wisconsin, Hawaii, Antarctica, Guam, and Florida. For
our analysis, we focus on data from Florida involving four
satellite links: NOAA-20/JPSS1, AQUA, TERRA, and SNPP,
with available elevation and azimuth angles recorded at
different time slots.

B. SIMULATION SETUP & DESIGN PARAMETERS
In this work, considering the available dataset, we introduce
a total of four (S = 4) satellites whose positions are
determined by the elevation and azimuth angles for each time
slot. Besides, we randomly generate locations of UE within
a field length of 20, 000 to 35, 000 km, considering the total
coverage region of all four satellites. In addition, we also set
up uniform footprint radii of satellites ranging between 1000
to 4000 km. We assume a finite time frame of T = µ+2N�1
time slots, where we use N input window of size µ in the
training stage, Ntrain{1, . . . , µ+N �1} and N input window
of same size µ in testing stage, Ntest{µ+N, . . . , µ+2N�1}.
So, the dataset is used to determine the positions of satellites
over T time slots, resulting in a network of T distinct layouts.
To gain insight into the behavior of various link scheduling
schemes, we consider that 20 UEs are served within the
overall field length of four satellites, which corresponds to
a total of 20 links. However, the overall model remains
scalable and can accommodate any number of links within
the dynamic network. The rest of the simulation parameters
are presented in Table 1.

In our experiment, we compare the proportion of link
activation and the average sum rate performance achieved
by the trained RNN and CNN over Riemannian manifolds
models with each of the following benchmarks.

� FPLinQ: This fractional programming-based algorithm
iterates 100 times to optimize link scheduling.

� All active: This heuristic activates all available links
simultaneously, disregarding interference and power
constraints.

� Random: Each link is scheduled with a 50% probability,
resulting in a randomly selected subset of active links
in each instance.

� Strongest link: Links are prioritized based on direct
channel strength, with a fixed proportion of the strongest

TABLE 1. Simulation parameters.

TABLE 2. RNN over Riemannian manifolds model design parameters.

TABLE 3. CNN over Riemannian manifolds model design parameters.

FIGURE 6. Different field lengths versus proportion of activated links when footprint
radii of satellites are fixed at 4000 km.

links being activated. The optimal percentage of active
links is chosen based on the average activation ratio
observed in the FPLinQ target.

For the case of RNN over Riemannian manifolds, we use a
single recurrent unit for predicting link-state of each satellite
link and the weighted combinations of the summary statistics
of the previous time are computed in the recurrent unit using
different time scales. For CNN over Riemannian manifolds, a
rectified linear unit (ReLU) is used as an activation function
at each neuron in the hidden layers. Besides these, other
design parameters for RNN and CNN based models are
included in Table 2 and Table 3, respectively.
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FIGURE 7. Various field lengths versus average sum rate achieved (as % of FP) with
different scheduling methods when footprint radii is fixed at 4000 km.

C. SIMULATION OUTCOMES
We first start by analyzing the activation proportion (schedul-
ing ratios) across different link densities, which refers to
the number of links spread across a given field length when
the footprint radii of each satellite held constant at 4000
km. Figure 6 illustrates that both RNN over Riemannian
manifolds and CNN over Riemannian manifolds replicate
the link activation pattern of the CSI-based FPLinQ [12],
while other heuristic methods (i.e., all active, random,
and strongest link) do not align with the state-of-the-art
performance. Notably, RNN over Riemannian manifolds
matches the FPLinQ curve precisely, while CNN over
Riemannian manifolds closely follows it. Intuitively, the
proportion of link activation is expected to increase as the
overall field length of the network expands, indicating a
general reduction in interference among the links.

Figure 7 presents a comparison of the average sum
rate performance of RNN over Riemannian manifolds and
CNN over Riemannian manifolds along with other heuristic
methods when the field length of wireless network layout
is varied under constant footprint radii of 4000 km for
20 satellite-UE pairs. The results are shown as a percentage
of the FPLinQ benchmark. As seen from the figure, both
RNN over Riemannian manifolds and CNN over Riemannian
manifolds reach as close to 96% of the average sum rate of
FPLinQ benchmark. In comparison to these two methods,
only ‘all active’ heuristic achieves close to 83% sum rate
of FPLinQ benchmark for the maximum considered field
length of 30, 000 km. So, it is clear from the average sum
rate performance that both neural networks maintain stability
even with varying field lengths.

In contrast to the previous result shown in Figure 6,
considering 20 links, the activation proportion decreases
across varying footprint radii when the field length is fixed
at 20,000 km, as depicted in Figure 8. At constant field
length, an increase in the footprint radii of each satellite,
or the area covered by each satellite, leads to greater

FIGURE 8. Different footprint radii of all satellites versus proportion of activated
links when field length is fixed at 20 × 103 km.

FIGURE 9. Various footprint radii versus average sum rate achieved (as % of FP)
with different scheduling methods when field length is fixed at 20 × 103 km.

interference between links. Consequently, the proportion of
activated links gradually declines as the footprint radii grow.
The RNN over Riemannian manifolds closely follows the
exact activation pattern, while the CNN over Riemannian
manifolds exhibits a similar pattern to FPLinQ. However,
the other heuristic methods fail to achieve the state-of-the-art
performance.

Figure 9 illustrates the average sum rate performance of
both neural networks with 20 links under varying footprint
radii, with a fixed field length of 20, 000 km. Similar to
their performance under varying field lengths, RNN over
Riemannian manifolds and CNN over Riemannian manifolds
consistently achieve over 95% of the average sum rate of
the FPLinQ benchmark, even as the footprint radii of all
satellites expand. Based on the results from Figures 8 and 9,
it is evident that both neural networks can accurately predict
scheduling decisions while maintaining performance levels
that closely match the FPLinQ benchmark in terms of sum
rate. While the ‘strongest link’ heuristic method comes
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TABLE 4. Significance of the number of training samples predicting successive time
slots ahead when the total number of links is 40.

FIGURE 10. Training loss versus training network layout graph for different regional
data modeled with and without Riemannian manifold representation.

TABLE 5. Sum rate (as % of FP) comparison for different regional data modeled with
and without Riemannian manifold representation.

within 80% of the FPLinQ benchmark at the maximum
footprint radius of 4000 km, the other two methods fall short,
showing even worse performance in maintaining sum rate
as the footprint radii increase.

Table 4 presents the achievable sum rate performance
of both models for a total of 40 links. Notably, with just
30 training samples, the RNN over Riemannian manifolds
is capable of predicting NT = 7 successive time slots
ahead, achieving over 99% of the sum rate compared to the
FPLinQ benchmark. Similarly, the CNN over Riemannian
manifolds for the same number of links, also predicts
NT = 7 consecutive time slots ahead using only 30 training
samples. The model also attains more than 99% of the sum
rate relative to the FPLinQ benchmark. Since there is no
significant improvement in performance with an increasing
number of training samples, we can confidently conclude
that 30 training samples are sufficient to train both RNN
and CNN based models, demonstrating their robustness in
maintaining high performance with a limited dataset.

For 20 links, Figure 10 compares the training losses
of RNN and CNN models across two regions, Florida
and Wisconsin, as the number of training network layouts
increases from 10 to 40. The results demonstrate that
irrespective of the geographical locations of two ground

stations, both RNN over Riemannian manifold and CNN
over Riemannian manifold converge within 30 training
graphs, highlighting their efficiency in capturing the spatio-
temporal characteristics of satellite networks. The RNN over
Riemannian manifold models starts with relatively higher
training loss at 10 graphs but exhibits a steep decline,
stabilizing around 30 network graphs. Similarly, the CNN
over Riemannian manifold models begin with lower initial
loss and demonstrate a steady decline with fewer oscillations,
stabilizing at 30 network graphs.

The consistency of results across two geographical
regions, Florida and Wisconsin, highlights the robustness of
RNN and CNN models with Riemannian manifold represen-
tation in achieving reliable performance. This confirms the
sufficiency of only 30 training network graphs and validates
the proposed models’ ability to generalize effectively to
new satellite network layouts while maintaining prediction
accuracy.

In contrast, CNN without Riemannian manifold repre-
sentation begins with a significantly higher initial training
loss (� 0.7) and shows a slower decrease, failing to reach
a minimum value as that of Riemannian-based models.
This trend suggests that the lack of Riemannian manifold
representation limits the model’s ability to effectively learn
from the structured SPD matrices.

Similarly, the sum rate comparison graph across the dataset
for two regions in Table 5 illustrates the same consis-
tency. Both RNN and CNN-based models with Riemannian
manifold representation using the dataset of two regions
maintain over 95% of the average sum rate of FPLinQ
benchmark for 20 links. But, the CNN-based model without
manifold representation only manages to achieve 64.45% of
average sum rate of the benchmark. These results verify the
critical role of Riemannian manifolds in enhancing model
performance and highlight the superiority of the proposed
approach for link scheduling in dynamic environments.

D. COMPLEXITY ANALYSIS
In this section, we provide the complexity of FPLinQ
algorithm first. Then, we examine the complexity of both
neural networks in addressing the satellite link scheduling
problem. Exploring the computational complexity of the
RNN over Riemannian manifolds and then the CNN over
Riemannian manifolds, we try to draw a comparison with
the FPLinQ benchmark. The complexity of each method is
analyzed in terms of its scalability with respect to the number
of nodes, N .

1) FPLINQ ALGORITHM

At each iteration, the FPLinQ algorithm’s main compu-
tational load arises from performing matrix multiplication
with the N × N channel coefficient matrix. This operation
results in a per-iteration complexity of O(N 2). Assuming
convergence within a set number of iterations, the total
runtime complexity therefore also scales as, CF = O(N 2).
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2) RNN OVER RIEMANNIAN MANIFOLDS

The process of link-state prediction with RNN over
Riemannian manifolds is twofold. First part involves sequen-
tial local graph modeling, where a series of SPD points are
accumulated over the Riemannian manifold throughout the
entire time frame T . The second part predicts the scheduling
decisions for NT time slots ahead. Since the first part
involves accumulating SPD points over consecutive time
slots within the overall time frame, the complexity for this
part can be calculated as O(N 2). In the second part, given
a fixed number of iterations with a total of Ntest batches,
each of size µ, and adjustable training parameters A, the
complexity is calculated as O(N NtestµA), which simplifies
to approximately O(N ) for large network size N [10]. The
recurrent statistics are updated through operations on N ×
N SPD matrices. Thus, each operation on these matrices
incurs an O(N 2) computational cost as recurrent statistics
overhead. Since operations are not nested within additional
loops, the final breakdown of the computational complexity
of link scheduling with RNN over Riemannian manifolds is
CR = O(N 2) + O(N ) + O(N 2) � O(N 2).

3) CNN OVER RIEMANNIAN MANIFOLDS

Similar to RNN over Riemannian manifolds, CNN over
Riemannian manifolds also follows the same twofold oper-
ation. Thus, the first part of accumulation of SPD points
corresponds to a complexity of O(N 2). Next, assuming the
discretized grid of size K×K, filter dimension of L×L, size
of input feature vector to be v0 for fully connected stage, and
(v1, v2, . . . , vn) representing the number of hidden units for
each of the n hidden layers, the total complexity of the neural
network can be computed as O{K2 ×L2 +N × (v0v1 +• • •+
vn�1vn + vn)} � O(N ) [16]. Hence, similar to RNN over
Riemannian manifolds, CNN over Riemannian manifolds
also has the same overall computational complexity, CC =
O(N 2).

Thus, we see that the overall complexity of both neural
networks (CR and CC) is the same as the CSI-based FPLinQ
benchmark (CF) [12]. However, since the proposed neural
network-based models do not rely on CSI, their similar
complexity enhances their robustness in achieving a high
level of sum rate performance. Both RNN over Riemannian
manifolds and CNN over Riemannian manifolds models even
outperform those with lower complexity in [16], [65], as
they require only a minimal number of training samples to
achieve effective performance.

VI. CONCLUSION
In this paper, we propose RNN and CNN over Riemannian
manifolds as a low-complexity solution approach to tackle
the challenges of link scheduling in satellite networks.
To achieve this, we first model the dynamic structure of
the satellite network over Riemannian manifolds. We then
explore the time and space domains with RNN and CNN,
taking advantage of the spatio-temporal correlation that arises
from satellite movements. Simulation results reveal that both

neural networks achieve over 99% of the sum rate compared
to traditional fractional programming-based methods such as
the FPLinQ benchmark using only 30 training samples.
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