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A B S T R A C T

Woody biomass represents an abundant resource for sustainable biofuels, biochemicals, and bioproducts. 
Technologies for converting woody biomass have been established for decades, and research consistently 
highlights the critical role of inorganic species and ash plays in feedstock handling and conversion processes, 
including equipment plugging, corrosion, and catalyst deactivation. A thorough understanding of the variability, 
transport behavior, and downstream impact of inorganic species in woody biomass is essential for defining 
feedstock quality specifications and developing effective management strategies for conversion processes. This 
review compiles critical information in five main sections: 1) inorganic species concentration in woody biomass, 
based on anatomical fractions and their sources of variability; 2) technique features for quantifying inorganic 
elemental chemical analysis; 3) impacts of inorganic species on biomass preprocessing; 4) impacts of inorganic 
species on pyrolysis, and 5) mitigation strategies. Additionally, this review explores future challenges and op
portunities in addressing the impacts of inorganic species on biomass quality. These insights aim to support the 
sustainable development of the biomass-to-bioenergy pipeline and ensure high-quality lignocellulosic feedstocks 
for efficient downstream conversions. The findings offer valuable guidance to policy makers, industry stake
holders, and researchers in developing effective strategies for managing inorganic species in woody biomass and 
fostering the sustainable processes for lignocellulosic biorefineries.

1. Introduction

Production of biofuels and bioproducts from lignocellulosic feed
stock has attracted considerable attention due to its abundance, carbon- 
neutral features, and potential to promote circular economy [1]. The 
2023 Billion-Ton Report released by the U.S. Department of Energy 
(DOE) predicted the U.S. could produce 1 billion dry tons of biomass per 
year. This biomass can be converted to biofuel, biopower, and bio
products to displace one-third of the nation’s petroleum consumption 
[2]. By 2040, the total available biomass for bioenergy is about 826 
million dry tons, with a roadside cost of $60/dry ton. More than 15 % 

comes from woody energy crops. Compared to the northern and western 
regions of the U.S., the southern region provides more biomass, poten
tially more than 68 % (about 57–78 million dry short tons) [3].

Lignocellulosic biomass is composed of heterogeneous organic 
polymers, including carbohydrates and aromatic lignin along with 
smaller amounts of inorganic constituents with variable compositions. 
While the organic components, cellulose, hemicellulose, and lignin, in 
plant biomass are converted into fuels and chemicals, the inorganic 
components, such as ash, present challenges for preprocessing and 
conversion operations. The presence of inorganic components could 
lead to equipment wear and failure [4]. Beyond equipment wear and 
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abrasion, ash and inorganic compounds could contribute to plugging, 
fouling, and slagging, which reduce product yields and increase con
version costs. Therefore, understanding the inorganic composition of 
lignocellulosic feedstocks and its impact on biomass processing is crit
ical to biorefinery success [5–9].

Inorganic matters in biomass include 1) crystalline mineral species 
such as silicates, oxyhydroxides, sulfates, carbonates, chlorides, and 
nitrates, 2) poorly crystallized mineraloids, and semi-crystalline species; 
and 3) non-crystalline or amorphous species [10]. The woody biomass 
can contain over 20 % inorganic components, including heavy metals 
such as iron- and nickel-containing compounds [11]. The thermal 
transformation of lignocellulosic material may liberate alkaline metals, 
like silica or chlorine (Cl), resulting in reactor corrosion or toxic emis
sions into the atmosphere. Moreover, a high biomass ash content can 
result in equipment wear and unexpected downtime [12]. However, 
inorganic compounds also act as catalysts in pyrolysis and gasification.

Alkali metals and alkaline earth metals (AEMs) in biomass pose 
additional challenges for thermal conversion processes. The conse
quential alkali vapors generated from biomass thermal conversion are a 
critical problem, as they increase facility maintenance costs and reduce 
equipment lifespan. Potassium (K), one of the most common alkali 
metals in biomass, is present as oxides, chlorides, and sulfates, which 
can lead to slagging and fouling during thermal conversion [13]. 
Moreover, high alkali metal and ash contents significantly lower the 
efficiency of biomass pyrolysis and increase net power consumption 
[14]. Hence, understanding the inorganic elemental composition, 
chemical forms, and distribution within plant tissues is crucial for 
improving the efficiency of biomass thermal conversion and developing 
effective ash-mitigation strategies [15].

This review offers insight into the sources of lignocellulosic biomass 
variability related to biorefinery unit operations, the unique character
istics of inorganic species at anatomical and tissue scales, and their ef
fects on biomass handling, feeding, process configuration, and 
conversion into fuels and chemicals. The focus is specifically on woody 
feedstock materials, including pine, willow, poplar, and mixed forest 
residues. This study highlights (1) the inherent variability of intrinsic 
and extrinsic inorganic species in biomass; (2) the features, advantages, 
and limitations of existing characterization techniques; (3) the impacts 
of inorganic species on preprocessing operations; (4) their effects on 
biomass pyrolysis; (5) potential strategies for mitigating inorganic 
components; and (6) future research needs and perspectives (see Scheme 

1). The goal of this review is to identify knowledge gaps to optimize 
biomass utilization and mitigate negative effects on feedstock-to- 
bioenergy through thermochemical conversions.

2. Variability and characterization methods for inorganic 
species

Biomass contains significant ash constituents, including alkali and 
alkaline earth metals, such as silicon (Si), chlorine (Cl), and sulfur (S). 
Ash content can be divided into intrinsic and extrinsic ash. Intrinsic ash 
includes Si, micronutrients (e.g., Iron (Fe), Manganese (Mn), Zinc (Zn), 
Copper (Cu), Boron (B), Cl, and Molybdenum (Mo)), and macronutrients 
(e.g., Nitrogen (N), Phosphorus (P), K, Calcium (Ca), Magnesium (Mg), 
and S). These elements accumulate naturally in plants through uptake, 
transport, or assimilation depending on their availability in the soil [16]. 
In contrast, extrinsic ash is introduced from soil, dust, and other con
taminations accumulated during harvest and collection [10]. Plants 
have intrinsic inorganic species that mediate biological mechanisms 
during growth and transport. Additionally, plants collect physiological 
inorganic components from the soil, and soil amendments, which consist 
of the essential macronutrients (Ca, K, S, Mg, N, P) [17], micronutrients 
(Zn, Fe, Mn, Cu, Cl, B, Mo, and Nickel (Ni)) [18,19], and other 
non-essential elements such as Sodium (Na) and Si [20–25].

2.1. Intrinsic inorganic species

Table S1 shows the total ash content in softwood and hardwood 
biomass categorized by anatomical fractions, including whitewood, 
branches, bark, needles, and leaves. Woody biomass contains relatively 
low ash content compared with herbaceous biomass. The average ash 
content in softwood biomass is 0.2–1.1 wt %, while in hardwood 
biomass, it is slightly higher, around 2 wt %. Differences in ash content 
are related to tree age and growing conditions, including the nutrient 
contents in the soil [17]. The composition of inorganics in different 
woody biomass is shown in Fig. 1. Woody fractions mainly contain Ca 
and significant quantities of K, both essential nutrients for tree meta
bolism [26–31]. Smaller amounts of Si, Aluminum (Al), Mg, P, and Mn 
are also present. Mineral nutrients are transported from the soil to tree 
tissues through xylem cells. The inorganic compounds migrate through 
the heartwood to sapwood and cambium into mature cell walls [26,32]. 
Therefore, the inorganics are unevenly distributed throughout the tree 

Scheme 1. Schematic of connections among review topics and coverage in the literature.
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tissues, which necessitates the study of inorganic composition at the 
tissue or anatomical-fraction scale. Different plant parts—tissues and 
anatomical fractions, may be best suited to particular uses based on their 
chemical compositions and physical properties.

Fig. 1 and Table S1 show the ash content in different anatomical 
fractions of woody biomass. In softwood (Fig. 1a), inorganic compounds 
are more concentrated in bark (up to 7.1 %), foliage (~5.2 %), and 
needles (up to 2.2 %). The ash content in the whitewood of pine includes 
Ca (~600 ppm) and K (407–710 ppm). Bark fractions have over four 
times higher elemental contents with Ca (2390–6530 ppm) and K 
(1600–3180 ppm) as the dominating species, followed by P (1260 ppm), 
Mg (874 ppm), and Mn (343 ppm). However, their Cl contents (147 
ppm) are only moderately higher when compared with the whitewood 
(85 ppm). The needles had the highest K (4770 ppm). The concentration 
of P, K, Cl, and Mg increases from whitewood to twigs, bark, and nee
dles. However, the ash content is lower in Douglas fir, with Ca being the 
dominant component and abundant in the bark. For spruce, the inor
ganic contents are low across the whole tree, and the ash composition of 
different anatomical fractions is similar to that of pine.

The inorganic composition of hardwood is shown in Fig. 1b and c. 
The Ca is significantly higher in hardwoods than softwoods and is 
located mainly in the bark. The highest concentrations of inorganic 

elements were observed in different anatomic fractions, with Ca pre
dominantly found in the bark, and K primarily located in the needles. In 
contrast, the elements found in the lowest concentration are Na and Fe 
[33]. The inorganic species K, P, and Mg, enriched in the woody biomass 
anatomical fractions, are mobile elements [34]. They are readily soluble 
in sap solutions and translocate between different parts of the trees [35,
36]. The bark contains more inorganics than the whitewood because the 
bark collects inorganic impurities like sand and soil [37,38]. Therefore, 
it is suggested that the bark be treated as a distinct feedstock [39].

2.2. Extrinsic inorganic species

Extrinsic ash typically comes from rocks, soil, and other forms of 
contamination acquired during harvest, collection, transportation, and 
processing. Therefore, minimizing introduced contamination from soils 
during forestry harvest and materials handling is beneficial.

Fig. 2 illustrates the elemental analysis of anatomical fractions as 
received, using pine as a representative feedstock due to its prevalent 
use in industry. It also shows the chemical composition of the extrinsic, 
soil-derived inorganic particles adhered to the biomass through surface 
interactions while harvest and transportation. Extrinsic inorganic com
pounds were recovered from as-received dry biomass using a 

Fig. 1. Inorganic compositions in woody biomass anatomical fractions for (a) softwood logging residues, (b) hardwood logging residues, and (c) hardwood whole 
tree biomass (Detailed information in SI).
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composition-preserving method involving sieving, and sonication to 
separate a mixture of organic debris and inorganic dirt particles, as 
described by Lee et al. [4]. Extrinsic inorganic compounds were 
measured using newly developed sieving-sonication method to extract 
extrinsic inorganic compounds without altering their compositions. As 
shown in Fig. 2, the presence of extrinsic inorganic compounds at least 
doubles the total inorganic contents in biomass compared to the 
as-received (intrinsic inorganics) biomass samples. This pattern is 
particularly observed from Si; the extrinsic Si content is about 11 times 
higher than as-received content in bark and about 44 times higher in 
twigs. Similarly, the extrinsic Fe and Al contents are about 13 and 9 
times higher, respectively.

The levels of extrinsic inorganic matter increased due to contami
nation during the processes of harvest, collection, and storage. For 
example, Si along with Fe, Al, Na, and Titanium (Ti) can be introduced 
during biomass harvest as clays, sand, and other soil contaminations 
[40–48]. Lee et al. [4] performed the characterization of inorganic 
compounds relative to the plant microstructure and found that Si exists 
in lower concentrations in the epidermis than in the inner tissues 
(0.14–0.18 wt% vs. 0.36–0.87 wt%). However, their scanning electron 
microscopy (SEM) energy dispersive x-ray spectroscopy (EDS) maps 
revealed higher content of Si in the needles (0.65 wt%) than the other 
anatomical fractions (0.11–0.24 wt%). Additionally, bark has the 
second-highest Si content (0.24 wt%), while twigs and whitewood 
fractions show similar levels of 0.11–0.15 wt%. These results highlight 
the significant presence of inorganics in biomass following processing.

High extrinsic inorganics can lead to operational difficulties [49]. Si 
can pose operational challenges due to its presence in quartz, which 
causes abrasion in handling and feeding equipment. Moreover, its 
presence as silicates with other inorganics can result in slagging during 
biomass combustion for bioenergy conversions [50,51].

2.3. Characterization techniques

Using a thermogravimetric analyzer to exam weight loss in biomass 
under 750 ◦C is the standard approach for determining ash content, as 
developed by National Renewable Energy Laboratory (NREL) and 
American Society for Testing and Materials (ASTM E1755-01) [52,53]. 
These conventional methods require labor-intensive sample prepara
tion, high reagent costs, and time-consuming data generation. Addi
tionally, they cannot differentiate between extrinsic and intrinsic ash 
[54]. However, a recent study reported non-destructive methods that 
distinguish between extrinsic and intrinsic ash in lignocellulosic by 
combining X-ray fluorescence (XRF) and near-infrared (NIR) spectros
copy [55]. Advanced characterization tools for inorganic species in 
woody biomass are essential for understanding the sources of variability 
and their distribution in plant tissues, as well as for quantifying their 
impact on lignocellulose preprocessing and conversion processes. Such 
knowledge can guide the design and development of mitigation strate
gies to manage the impacts of inorganics on biomass conversions [52]. 
Moreover, the concentration of the inorganic presents in biomass could 
be more accurately identified using non-destructive characterization 
techniques compared to conventional high-temperature ash character
ization [56]. Thus, non-destructive tools that provide both quantitative 
and qualitative elemental analysis, along with rapid and reliable 
assessment of inorganic material attributes, can facilitate the identifi
cation of biomass type and origin while guiding quality management for 
subsequent conversions [50,57].

2.3.1. Conventional ash characterization
Table S2 summarizes techniques from the literature for character

izing total ash and inorganic composition characterization in biomass. 
Dry-ashing and wet-ashing are two major approaches used in 

Fig. 2. Chemical compositions of pine anatomical fractions and their extrinsic inorganic compounds (modified from Ref. [4]); extrinsic inorganic compounds were 
separated from as-received dry biomass samples using a composition-preserving, sieving-sonication process. [Note: No standard deviation (% STDEV) was reported in 
this reference.].
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conventional ash characterization. Dry-ashing directly heats biomass in 
a muffle furnace at the temperatures ranging from 500 ◦C to 600 ◦C. 
During heating, most minerals are converted to oxides, sulfates, phos
phates, chlorides, and silicates. Some elements, including Fe, Selenium 
(Se), Lead (Pb), and Mercury (Hg), may partially volatilize during this 
process. Wet-ashing uses acids or oxidizing agents and is often preferred 
over dry-ashing because it solubilizes minerals without causing vola
tilization [58]. However, conventional methods that remove extractives 
require preconditioning, indicating that reliable results can only be 
obtained from samples within a specific range of particle sizes. Addi
tionally, these methods require a relatively large amount of material 
(>300 mg) [59].

2.3.2. Non-destructive tools for ash determination
Infrared spectroscopy (IRS) is a valuable non-destructive analytical 

tool that detects the fundamental molecular vibrations excited by 
infrared light. Infrared spectroscopy yields qualitative and quantitative 
data with minimal or no sample preparation, at high throughput 
[60–62], and with multiple constituents analyzed simultaneously [63]. 
In addition to measuring inorganic composition, IRS also provides other 
structural information about the major polysaccharides in the biomass 
[63]. However, IRS cannot probe for trace elements, non-structural 
components, or compounds with concentrations below 1 g/L [64,65]. 
Fourier transform infrared spectroscopy (FTIR) is a powerful tool using 
infrared light. Sample preparation is crucial for FTIR, as it analyzes in
dividual components extracted from the plant cell wall [66,67]. In 
addition to inorganics determination, Allison et al. demonstrated that 
FTIR can predict N content and alkali index in energy grasses converted 
from lignocellulosic feedstock [18]. The application of infrared light in 
NIR spectroscopy helps identify the biomass structure. NIR spectroscopy 
and pyrolysis-molecular beam mass spectrometer (py-MBMS), coupled 
with multivariate analytical techniques, can provide rapid and accurate 
predictive tools for biomass composition, including ash content 
[68–71]. However, these methods require sophisticated and costly 
equipment, as well as established analytical model using calibration 
samples. Additionally, NIR spectroscopy has limitations in predicting 
ash content because it only measures organically bound inorganics [64,
72,73].

Powder X-ray diffraction (PXRD) has been frequently utilized to 
identify crystalline cellulose peaks and estimate an overall crystallinity 
index (CI). It also serves as a valuable tool to identify inorganic species 
such as quartz, carbonate, phosphate, sulfate, and metal oxides [56,74,
75]. Quantification of minerals by PXRD is possible with careful 
experimental design, sample preparation (milling and mounting), data 
processing, and selection of standards. Moreover, additional techniques 
such as FTIR and elemental analysis are often required for mineral 
identification and selection of quantification standards [76].

Most analytical techniques used to quantify inorganic elements 
associated with biomass samples suffer low sensitivity and cannot be 
used for trace elements. Inductively coupled plasma mass spectrometry 
(ICP-MS) can detect down to the parts-per-trillion within liquid samples 
and can thus be used to measure trace elements. It also enables online 
determination of K and Na during single particle biomass combustion 
[77]. Furthermore, the accuracy and sensitivity of the measurements 
can be improved as the proper sample preparations and dilutions [78].

Neutron activation is another non-destructive technique that allows 
for the direct determination of trace element concentrations in biomass 
[79]. However, the major drawback is that the detection limits and 
analytical uncertainties are generally higher compared to standard ash 
characterization methods [16].

Laser-induced breakdown spectroscopy (LIBS) is an emerging non- 
destructive and rapid method that has shown comparable analytical 
results to established techniques for determining inorganic species 
across diverse lignocellulosic feedstocks [80]. Unlike wet-ashing tech
niques, LIBS requires little sample preparation and no reagent con
sumption, and it provides rapid data acquisition [73]. However, the 

major limitation of LIBS is the requirement of high inorganic compound 
concentration in biomass for detection [81].

Combining energy-dispersive X-ray fluorescence (ED-XRF) and NIR 
spectroscopy was introduced to enhance distinguishing between 
intrinsic ash and ash originating from contamination [55]. This tech
nique creates new opportunities for developing instrumentation to 
monitor variable ash content in lignocellulosic feedstocks for bio
refineries efficiently [55]. ED-XRF can also provide semiquantitative 
elemental analyses of individual biomass samples for their thermal 
conversion processes [8]. Additionally, scanning electron microscopy 
with energy-dispersive X-ray spectroscopy (SEM-EDS) can facilitate the 
analysis of the extrinsic inorganic particle composition. Coupling 
SEM-EDS with XRD can further identify specific mineral species present 
in the extrinsic inorganic particles [52,82].

Table 1 lists the suggested uses of advanced non-destructive tech
nologies for characterizing inorganic species in lignocellulosic feed
stocks. High-throughput analytical techniques, such as NIR coupled with 
Py-MBMS and wet chemistry, have been proven as effective character
ization approaches to detailed chemical information of biomass samples 
with minimal sample preparation [73]. Wet analytical chemistry, IRS, 
ICP-OES, and LIBS, can provide rapid results with high chemical reso
lution. Unlike wet chemistry and XRF, LIBS and IRS require minimal or 
no sample preparations. Conclusively, most of these techniques can offer 
comprehensive features, enabling the best biomass characterization and 
screening based on the targeted biomass thermochemical conversion 
strategies.

3. Impacts of inorganic species on biomass preprocessing

Biomass preprocessing—including transportation, feeding, and par
ticle size reduction—is essential before pyrolysis and accounts for 
approximately 4 % of total operational costs [83]. Inorganic species play 
a critical role in biomass preprocessing, posing challenges to process 
optimization. One major concern is equipment wear during biomass 
preprocessing, which directly impacts the feasibility of commercializing 
biorefineries and has drawn considerable attention [84]. In general, 
inorganic compounds in biomass feedstocks are the primary contribu
tors to equipment wear, as they are harder and more abrasive than 
organic tissues [4]. Beyond equipment degradation, inorganic species 
affect multiple aspects of biomass processing. They complicate biomass 
transportation and feeding systems, leading to logistical challenges and 
reduced efficiency. Additionally, their presence increases energy con
sumption during preprocessing, ultimately hindering the overall effi
ciency of biomass pyrolysis and other conversion processes.

3.1. Equipment wear caused by inorganic species and ash

Machine wear is a critical issue in biomass preprocessing, driven by 
both extrinsic and intrinsic inorganic compounds. Extrinsic inorganic 
species, primarily from soil contamination, have the greatest impact due 

Table 1 
Suggested advanced biomass characterization techniques for elemental 
composition based on specific features of the technique.

Features Characterization techniques

High throughout NIR, py-MBMS, wet chemistry
High resolution NIR, py-MBMS, LIBS
Low sample preparation LIBS > wet chemistry; infrared spectroscopy > XRF
Non-destructive Infrared spectroscopy, neutron activation, LIBS, 

Raman, FTIR, XRF
Broad application LIBS > ICP-OES
Trace elements ICP-MS, neutron activation, XRF
Low detection limit ICP-MS, ICP-OES
Structural information Infrared spectroscopy, Raman
Field portable Raman, XRF, NIR, FTIR
Distinguish intrinsic/ 

extrinsic
ED-XRF coupled with NIR
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to their abundance on biomass surfaces. Large particles (>200 μm) with 
sharp edges exert high contact forces, accelerating equipment wear and 
erosion. This abrasion substantially increases equipment maintenance 
costs and shortens machine lifespan, necessitating wear-resistant 
materials.

In woody biomass, bark typically contains higher extrinsic inorganic 
content than other fractions (Figs. 1 and 2). However, Lee et al. [4] 
reported that pine bark, despite having less ash than the needles, caused 
more wear on machines. Among inorganic species, Si and Al containing 
compounds can be harder than the steel used in comminution equip
ment, which causes excessive wear during biomass preprocessing [84,
85].

Intrinsic inorganic matter also contributes to abrasion and erosion of 
equipment. During particle size reduction, inorganic compounds redis
tribute according to particle size fractions. The 0.6–2 mm fraction has 
been reported to contain the highest inorganic and ash content, 
increasing the risk of machine wear without proper particle screening 
[86]. However, the intrinsic inorganic species vary across different 
feedstocks.

3.2. Impact on feeding, plugging, and energy consumption

The presence of inorganic species in biomass significantly affects 
various aspects of biomass processing, including feeding, plugging, and 
energy consumption. Soil contamination exacerbates plugging during 
conveyance, while high inorganic content increases the energy required 
for grinding and particle size reduction [87]. Variability in ash content 
further increases energy consumption, generates substantial fines, and 
reduces processing throughput, posing significant techno-economic 
challenges [15].

Fine extrinsic ash particle coat the biomass surface, significantly 
reducing biomass processing efficiency [88]. These fine particles also 
retain moisture, creating strong adhesive forces that act as binders, 
leading to plugging, arching, rat-holing, and discontinuous flow. Addi
tionally, inorganics can absorb heat during preprocessing, further 
impacting energy efficiency [89]. Biomass with higher ash content re
quires approximately 30–42 % more energy for preprocessing [90,91].

Inorganic species include ash, Si, Al, Fe, and various minerals such as 
silicates, sulfates, and phosphates. These compounds contribute to 
various levels of impact on biomass preprocessing, including machine 
erosion, corrosion, and increased energy consumption (Table 2). Min
erals like silicates, sulfates, and phosphates are particularly hard com
pounds that are most likely to cause damage to biomass preprocessing 
equipment. Corrosion-induced material loss during biomass processing 
can cause secondary erosion to machines, further reducing processing 
efficiency and machine lifespan [92]. The increased costs associated 
with the issue of inorganic species have become a critical challenge for 
lignocellulosic refineries. The mechanochemical process was considered 
as a cost-effective approach for removing inorganics from wood chips 
before biomass conversion [93]. Total process costs were projected to 
range from $6 to $9/dry ton of biomass for removing 62 %, 39 %, and 
88 % of total ash, alkaline earth metals, phosphorus (AAEMS + P), and 
Si, respectively. These findings highlight the significance of minimizing 
dirt contamination, controlling inorganic content, and implementing 
effective preprocessing methods to reduce wear, energy consumption, 
and processing issues in biomass utilization.

4. Impacts of inorganic species on biomass pyrolysis

In addition to impacting biomass preprocessing, inorganic species 
present in biomass have become one of the decisive factors determining 
biomass behavior during thermal degradation, directly influencing 
conversion efficiency and quality in biomass pyrolysis [96–98]. 
Depending on their composition, these inorganics introduce new func
tionalities, exhibiting either catalytic or negative effects on biomass 
pyrolysis reactivity according to their specification. As a result, they can 

alter feedstock conversion and upgrading processes, ultimately modi
fying the chemical composition of bio-oils produced from biomass py
rolysis [99].

Unlike extrinsic inorganic species that mainly affect biomass pre
processing, intrinsic inorganics can facilitate the depolymerization of 
cellulosic polymers by promoting carbon-carbon bond cleavage and 
lowering reaction temperatures. In some cases, inorganics were found to 
act on primary pyrolysis reactions altering the distribution of organic 
compositions [100]. Sekiguchi and Shafizadeh reported that intrinsic 
inorganic compounds increase char and gas yields at the expense of 
liquid pyrolysis oil [101]. After the biomass thermochemical conversion, 
inorganic compounds are generally concentrated in the solid biochar 
residue [102]. Generally, lower ash content can increase oil yields by 
1–5 % for 1 % of ash removed from native biomass [103].

Fast pyrolysis is widely used in biomass thermal conversion to pro
duce various forms of bioenergy. Inorganic species, major components 
of ash present in lignocellulosic biomass, can significantly impact the 
biomass thermal conversion, influencing both biofuel quality and yields. 
Typically, woody biomass is preferred for fast pyrolysis due to its lower 
ash content compared to herbaceous feedstock (between 1.1 and 4.8 % 
wt.), leading to higher bio-oil yields and minimizing issues such as 
catalytic poisoning or equipment fouling during pyrolysis and gasifica
tion [103,104]. However, the presence of different inorganic species can 
significantly affect biomass thermochemical conversion, either inhibit
ing or catalyzing the process. Table 3 summarizes the specific impacts of 
the major inorganic species found in woody biomass.

Table 2 
Impact of inorganic compounds on preprocessing.

Inorganic 
content

Formula, element, or 
note

Impact References

Ash SiO2, Fe2O3, Al2O3, 
MgO, K2O, CaO, etc.

• Higher power 
consumption during 
grinding, resulting in 
reductions of 
processing rate.

[94,95]

• Higher mechanical 
wear rate, equipment 
erosion or corrosion.

Intrinsic and 
extrinsic 
inorganic 
compounds

​ • Combined contribution 
to machine wear.

[4]

• Extrinsic minerals 
made a significant 
impact even though 
they only accounted 
for a small fraction of 
the total ash.

Silica and 
silicates

SiO2, NaAlSi3O8 • Harder than the steel 
used in milling and can 
cause excessive wear.

• Cause the most friction 
against the screw 
extruder and the 
briquette die.

[4,84]
CaAl2Si2O8

CaMgSi2O6 or CaMg 
(SiO3)2

NaAlSi3O8- 
CaAl2Si2O8

KAlSi3O8

α-CaSiO3 or 
α-Ca3Si3O9

Aluminum and 
alumina

Al, Al2O3 • Harder than the steel 
used in milling and can 
cause excessive wear.

[4,84,85]

Iron FeO, Fe2O3, Fe3O4 • Preprocessing 
equipment wear.

[85]

Sulfates and 
phosphates

Ca(PO4)3(Cl,F,OH, 
CO3) or 
Ca5(PO4)3(Cl,F,OH, 
CO3)

• Harder than mild steel 
and more likely to 
damage biomass 
preprocessing 
equipment.

[84]

Ca(PO4)3(OH), 
Ca5(PO4)3(OH) or 
Ca10(PO4)6(OH)2

L. Ding et al.                                                                                                                                                                                                                                     Energy 322 (2025) 135697 

6 



4.1. Catalytic effect on biomass pyrolysis

4.1.1. Alkaline metals (IA metals)
Ash formed from alkaline metals during biomass thermal conversion 

plays a critical role in biomass pyrolysis. Alkaline metals (primarly Na 
and K) catalyze biomass thermal conversion, exhibiting the greatest 
effect on improving biogas and biochar yields and quality from biomass 
pyrolysis by reducing oxygen content and modifying its chemical 
composition [123]. During the biomass pyrolysis, the presence of alka
line cations promotes the cleavage of bonds between monomers, leading 
to depolymerization, dehydration, decarboxylation, demethylation, 
decarbonylation, etc., of the polymer chains [106].

Among alkaline metals, Na and K also have strong catalytic effects on 
lignin thermal degradation by interacting with acidic functional groups 
and enhancing ether bond cleavage, forming simple phenolic com
pounds and decreasing the yield of bio-oil while increasing char and gas 
yield from 400 to 900oC (Fig. 3) [124,125]. Wang et al. reported the 
decrease in aromatics and olefin production with a higher concentration 
of alkali metals [126]. Even trace amounts of these metals influence 
pyrolysis rate, product yield, and degradation temperature and alter 
decomposition mechanisms [127]. Moreover, Li et al. reported that al
kali metals effectively reduce the initial pyrolysis temperature by 
lowering activation energy for municipal waste and biomass in bri
quettes [127]. The similar results were also reported in the thermal 
decomposition kinetic investigation of Douglas fir, and the initial py
rolysis temperature was reduced to at around 350oC [128].

Alkaline metals further affect carbohydrate degradation pathway, 
illustrated in Fig. 4, and catalyze secondary fragmentation of volatiles, 
resulting in increased biogas and biochar production [100,103]. 
Consequently, the products of biomass pyrolysis can be tailored by 
augmenting the biomass with metal ions. Notably, potassium was re
ported stronger catalytic effects than sodium due to its larger metal 
strength [114,129]. Among potassium and sodium salts, carbonate salts 
demonstrate the highest catalytic efficiency, followed by sulfate and 
chloride salts [130]. Pushkaraj et al. demonstrated that small amounts of 
sodium chloride contribute to the formation of levoglucosan, the major 
pyrolysis product of cellulose for further product upgrading [100]. 
K-catalyzed pyrolysis increases biochar yield while reducing the average 
first-order activation energy required for the process [131]. Higher K 
concentrations in feedstocks also increase the production of acidic 
products from biomass thermal conversions, as well as lowering the 
bio-oil quality [131]. Conversely, reduced K can minimize further 

Table 3 
Impact of the inorganic composition of woody materials on pyrolysis.

Impact on Pyrolysis Reference

Alkali metals
Potassium •Strong catalytic effect on lignin 

thermal degradation.
[15,16,100,103, 
105–113]

•Negatively affects catalytic fast 
pyrolysis.
•Affects the biomass carbohydrate 
degradation pathway.
•Increases biochar yield.
•Lowers liquid fuel yield.
•Causes fragmentation of the 
monomers that make up the polymer 
chains, rather than significant 
depolymerization in the absence of 
monomers.

Sodium • Catalyzes lignin thermal 
degradation.

[15,16,100,104,
106,107,109,110,
112,115,116]•Trace amounts of sodium salts can 

significantly increase charcoal 
production.
•Causes secondary cracking of vapors.

Alkaline earth metals
Calcium •Catalytic effect on lignin thermal 

degradation.
[16,100,104,110,
115]

•Lowers tar yield.
•Increases biochar yield.

Magnesium •Catalytic effect on lignin thermal 
degradation.

[16,100,104,110,
115]

Others
Iron •Catalyzes cellulose degradation to 

both levoglucosan and 
levoglucosenone.

[16,104,110,115]

Sulfur •Causes machine corrosion. [16,106,109, 
114–118]• Sulfur tolerant catalysts or sulfur 

adsorbents (zinc oxide) are required.
• Causes catalyst poisoning.
• Formation of hydrogen sulfide in the 

pyrolysis vapor inhibits the 
deoxygenation reactions on the 
catalyst.

• A scrubbing system is required to 
reduce harmful hydrogen Sulfide 
emissions.

Chlorine • Causes machine corrosion. [16,106,109,114, 
119–121]• Increases volatilization and 

formation of chlorine.
• High concentration of chlorine 

increases fine particulate emissions.
• Toxic to catalysts.
• Iron or copper chlorides increase 

levoglucosan yields.
• Likely bond with trace elements, 

such as Pb and Zn to form lead (II) 
chloride and zinc chloride in the 
volatile phase at high temperatures.

• 20 ppm of hydrogen chloride cause 
degradation in solid-oxide fuel-cell 
performance.

• Slag is formed after Cl reacts with 
alkali metals such as K and Na.

Bromine • Hydrogen bromide formation 
increases volatility of biofuels.

[109,122]

Phosphorous • Increases biochar yields. [110,117]
• Strong catalytic effect on lignin 

thermal degradation.
• Phosphate deposition by catalysis 

from alkali metals causes catalyst 
poisoning.

• Without alkali, formation of 
phosphoric acid accelerates the 
deposition of coke.

Nitrogen • Nitrogen catalyst targets tar 
destruction and ammonia reduction.

[109,114,116,117]

• Ammonia is the most-significant 
species from fuel nitrogen  

Table 3 (continued )

Impact on Pyrolysis Reference

conversion (concentrations from 500 
to 30000 ppm).

• Scrubbing or catalytic elimination 
can remove the precursor to nitric 
oxide emission in downstream units.

• Generates an unpleasant smell.
Silica • Secondary catalyst for the cleavage 

of macromolecular polymers.
[104,105,110,125]

• Facilitates char and biogas 
production.

• Contribute to fouling on reactor 
surfaces.

• Lowers overall thermal efficiency.
Heavy metals
Cu, Zn, Cd, Pb, 

Hg, Mn, V, As
• Formation of fly ash and aerosols 

that lead to particulate emissions.
[16,104,110]

• Affects the utilization and disposal of 
char/ash.

• Cause machine abrasion, corrosion, 
and erosion.

• Requires gas cleaning device.
• An additional bio-oil cleaning step is 

needed.
• Hinders energy and mass transport.
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catalytic cracking or aging reactions [131].

4.1.2. Alkaline earth metals (IIA metals)
Alkaline earth metals (AEMs), including Ca and Mg, also exhibit 

catalytic effects on biomass pyrolysis. These metals have been reported 
to break weak bonds in favor of stronger ones, leading to an increase in 
condensed aromatic rings [132]. However, their impacts on lignin 
thermal degradation are less compared to alkaline metals such as K and 
Na [16,100,103,109,113].

In addition to lignin degradation, AEMs have a strong affinity for 
oxygenated groups, promoting deoxygenation via dehydration and 
depolymerization of cellulose and hemicellulose to form anhydro 
sugars. Wang et al. reported that AEMs greatly catalyzed cellulose and 
hemicellulose pyrolysis below 330 ◦C, reducing the initial and peak 
pyrolysis temperatures [133]. Kleen and Gellerstedt showed that Ca+

enhances the yield of anhydrous sugars from pulp pyrolysis [120]. 
Shimada et al. observed that alkaline earth metals also promote the 
formation of low-molecular-weight products, such as levoglucosan, from 
cellulose depolymerization during pyrolysis. Notably, these also exhibit 
catalytic effects on reducing the bulk cellulose-decomposition temper
ature and activation energy by up to 20 % [119].

Furthermore, Ca and Mg also enhance the secondary dehydration of 
anhydro sugars, i.e. levoglucosan, anhydro glucofuranose, cellobiosan, 
etc. to form furans, light oxygenates, and char (Fig. 4) [134–137]. 
However, compared to alkaline metal ions (K+, Na+), Ca2+ and Mg2+ are 
a weaker cracking catalyst in biomass pyrolysis with lower levoglucosan 
yields [138].

4.1.3. Other inorganics
Other inorganic elements present in biomass can also catalyze 

biomass pyrolysis, particularly Fe, Cl, and P. Fe and Cl primarily facil
itate cellulose degradation to increase levoglucosan yields [16,100,109,

119]. Phosphorus salts were reported as a catalyst for lignin degrada
tion, resulting in increased char yields [139]. While Si is generally 
considered inert in pyrolysis reactions. Bulushev and Ross found that 
silicon dioxide can act as a secondary catalyst, cracking macromolecular 
polymers and increasing char and gas formation [140].

Alkaline metals, alkaline earth metals (AEMs), and other inorganic 
species are primarily present in biomass ash. Ash content is the critical 
indicator for predicting the yield and quality of bioenergy from ligno
cellulosic biomass pyrolysis. During pyrolysis, even trace amounts of ash 
in biomass—as low as 0.1 wt%—can exert a catalytic effect, resulting in 
reduced bio-oil yield [103,130]. Moreover, biomass with high ash 
content significantly alters the product distribution, leading to increased 
yields of char and non-condensable gases [131]. This shift in the product 
profile can substantially impact overall process efficiency and the pro
duction of liquid and gaseous biofuels. In general, higher inorganic 
content results in greater bio-charge and bio-char yields, accompanied 
by a decline in liquid biofuel output.

Li et al. reported that a 7.4 % ash content increase in biomass would 
marginally increase biochar yield (by 0.03 kg per kg of biomass) but 
significantly reduce biofuel yields by 53.4 % (46.6 gallons per ton) 
[141]. This reduction might be mitigated by using biomass with a higher 
O/C ratio ranging from 0.88 to 1.12.

4.2. Negative effects on biomass pyrolysis

Although inorganic species can facilitate the degradation of struc
tural carbohydrates and lignin during pyrolysis, their accumulation can 
also negatively influence biomass pyrolysis. Additionally, machine 
abrasion and further corrosion and erosion caused by these species pose 
major challenges for biomass pyrolysis.

Fig. 3. Pyrolysis of lignin for bioenergy conversions.

Fig. 4. Structural carbohydrate depolymerization during pyrolysis for biofuel conversions.
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4.2.1. Inhibitory effect on biomass pyrolysis
The inhibitory effect of inorganic species on biomass pyrolysis can be 

the catalyst poisoning derived from deposition of volatile compounds, 
particularly phosphate from reaction between alkaline metals (K, Na) 
and P [115]. Moreover, hydrogen sulfide present in pyrolysis vapor was 
reported to inhibit the deoxygenation reactions on the catalyst [142]. 
However, these effects have primarily been observed in pyrolysis pro
cesses with external catalyst additions. The inhibitory effects of the 
intrinsic inorganic species on biomass pyrolysis efficiency remain un
explored and require further investigations. A deeper understanding of 
these effects is essential for optimizing pyrolysis processes and devel
oping strategies to mitigate negative impacts on product yields and 
quality.

4.2.2. Impacts on pyrolysis operation and its costs
However, alkaline metals and AEMs can lead to operational issues, 

such as reduced heat transfer, gas-flow disturbance, gasifier damage, 
corrosion, and erosion due to fouling, slagging, and agglomeration 
[143]. Another critical challenge posed by inorganic species is machine 
wear caused by heavy metals. Elements such as Cu, Zn, Cd, Pb, Hg, Mn, 
V, and As contribute to abrasion, corrosion, and erosion, further exac
erbating equipment degradation. Additionally, these heavy metals pro
mote biochar formation and intensify slagging, fouling, and 
agglomeration [103,109].

Beyond machine damage caused by inorganic species, they signifi
cantly impact heat transfer efficiency, gas flow stability, and overall 
gasifier performance [103,109]. These issues will substantially lower 
the economic feasibility of biomass pyrolysis for bioenergy production. 
Moreover, variations in ash content among different lignocellulosic 
feedstocks lead to differences in the energy content of bioenergy prod
ucts after pyrolysis [144]. While the composition of pyrolysis bioenergy 
cannot be predicted from biomass ash content alone, limited data sug
gest that bioenergy yield from biomass pyrolysis is affected by both 
feedstock ash content and process conditions [145].

Blending different feedstocks is seen as promising strategy to miti
gate ash content and secure economic sustainability for biomass pyrol
ysis. Lan et al. investigated the economic viability of fast pyrolysis 
biorefineries using blended feedstocks. Their analysis suggests that a 
more competitive minimum fuel selling price (MFSP) can be achieved 
using low-ash pellets mixed with pine residues. Notably, a 2000 dry 
metric tons per day biorefinery operating at 90 % capacity with blended 
pellets (75 % switchgrass, 25 % pine residues, 2 % ash) could produce 
fuel with an MFSP between $4.49 and $4.71 per gallon of gasoline 
equivalent. In contrast, a traditional centralized biorefinery operating at 
80 % capacity achieves an MFSP between $4.72 and $5.28 [146]. 
However, several uncertainties still require further investigation. Future 
research is needed to understand how inorganic species impact the 
cost-effectiveness of bioenergy from biomass thermal conversions. This 
includes optimizing reaction design, mitigating inorganic elements, and 
improving related post-treatment and processing methods to address the 
economic and technical challenges posed by inorganic species in 
biomass conversion processes.

4.3. Impacts of waste and emissions on the environment

Additional gas and bio-oil cleaning steps are required for product 
recovery to ensure the better quality of bioenergy produced from 
biomass pyrolysis [147]. However, these cleaning processes not only 
increase operational costs but also introduce environmental concerns 
through waste streams. Emissions of sulfides and nitrogen oxides 
derived from S and N compounds are the major concerns, which 
contribute to air pollution and exacerbate impacts on ecosystem [109], 
such as acidification and eutrophication impacts. Additionally, the fine 
particulate emissions (PM2.5) resulting from high Cl concentration pre
sent another are another critical air pollution concern [148].

Heavy metal content in biomass presents further environmental and 

ecological risks [16]. Emissions of heavy metal-based fly ash aerosols 
can lead to contamination of air, water, and soil, posing serious pollu
tion hazards [149]. These challenges underscore the need for effective 
environmental management and safe handling practices for pyrolysis 
products and by-products [150].

5. Mitigation strategies

Implementing effective strategies to mitigate inorganic species in 
woody biomass is essential for optimizing its use as a renewable energy 
source. High inorganic content in biomass can lead to operational 
challenges in different conversion pathways, such as increased wear and 
tear on equipment, higher maintenance costs, and reduced efficiency 
due to slagging, fouling, and corrosion in boilers and gasifiers. 
Furthermore, ash disposal presents an environmental and economic 
challenge, as it requires safe handling and storage to prevent pollution. 
Mechanical, chemical, physiochemical, and advanced biomass pre
treatments, summarized in Table 4, have been introduced to biomass 
processing prior to biomass pyrolysis to mitigate the inorganic content 
and make it a more efficient and cleaner fuel (Fig. 5). This not only 
enhances the overall performance and lifespan of bioenergy conversion 
systems but also contributes to the sustainability of biomass as a 
renewable energy source by reducing its environmental impact and 
lowering operational costs.

5.1. Mitigation before and through harvest

Mitigation strategies to reduce inorganic content in biomass are 
essential for minimizing nutrient loss from harvest sites, as well as 
reducing equipment maintenance and ash disposal costs in biorefineries. 
However, limited research has explored effective approaches to lower 
inorganic species content in woody biomass. One promising method is to 
optimize harvest window to reduce inorganic components that nega
tively affect fast-pyrolysis product distribution [131]. For example, 
analysis indicated that loblolly pine samples harvested in January 
(summer) had the highest ash content, demonstrating a statistically 
significant difference compared to samples collected in other seasons 
[152]. Similarly, white gum sampled in fall and late winter had the 
highest ash content [153].

Adjusting harvest practices is another approach to lower ash content, 
especially to reduce levels of water-soluble elements like Cl, S, K, Na, P, 
and N [150]. By incorporating a trommel screen in forest residue 
grinding process, the ash content can be notably decreased from 4.0 % to 
1.4 % for roundwood residues, and from 11.9 % to 6 % for smaller 
chipping residues [154]. However, trommel screening could lead to 
approximate 50 % wt [156] biomass loss. Huber et al., reported that 
screens could decrease the ash content and improve biomass quality for 
pyrolysis, particularly in small wood fractions [154,155].

Moreover, the harvest practice can be adjusted particularly for 
reducing the extrinsic inorganic species present in biomass, including 
controlled felling to minimize soil contact, adopting clean collection 
practices to avoid ground debris, and debarking to remove mineral-rich 
bark. Additionally, utilizing machinery designed to limit soil and debris 
pickup [211]. Selecting low-risk harvest sites and performing 
post-harvest cleaning, such as air blowing or washing, can further help 
to lower ash content. By adopting these strategies, it becomes feasible to 
reduce biomass ash content, which in turn decreases equipment main
tenance requirements and ash disposal costs. Moreover, these ap
proaches enhance the quality and efficiency of biomass utilization 
processes, leading to more sustainable and cost-effective energy 
conversions.

5.2. Mechanical pretreatment

Particle size reduction and sieving are the principles used in biomass 
mechanical pretreatment. Particle size reduction not only increases 
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Table 4 
Strategies for mitigating inorganic compounds prior to biomass pyrolysis.

​ Pros Cons References
Biomass 

processing 
during harvest: 
Optimize 
harvest 
window

• Minimize nutrient 
loss from harvest 
site

​ [150,
151–157]

• Reduces equipment 
maintenance and 
ash disposal cost in 
biorefineries

Adjust harvest 
practices

• Remove Cl, S, K, Na, 
P, N.

• Inconsistent ash 
reduction

• Higher costs for 
Screened Round 
wood

• Reduced Grinder 
Utilization.

• ~50 % mass loss

​

• Decrease ash 
content from 4.0 % 
to 1.4 % for 
roundwood 
residues, and from 
11.9 % to 6 % for 
smaller chipping 
residues by trommel 
screen.

• Improve biomass 
quality for 
pyrolysis.

• Decrease equipment 
maintenance 
requirements and 
ash disposal costs.

Mechanical 
pretreatment: 
Air 
classification

• Effectively removes 
exogenous ash 
components like 
silica, alumina, and 
iron

• Removing 
physiological ash 
components within 
plant cells is more 
difficult

• Significant 
biomass loss (up to 
34 %) when 
removing high-ash 
light fractions.

• Ineffective at 
removing 
biologically 
derived inorganics 
like calcium, 
potassium, 
magnesium, and 
phosphorus

[158–160]

• Reduces propensity 
for slagging and 
fouling in biopower 
applications

• Blending ash- 
reduced fractions 
can reduce overall 
feedstock costs 
compared to single 
feedstock

• Removes over 40 % 
of ash content by 
concentrating it into 
<7 % of total 
biomass.

• Reduces overall ash 
content from 1.69 % 
to 1.07 % for forest 
thinnings and 1.09 
%–0.68 % for 
logging residues

Vibratory Sieving • Reduces ash content 
by segregating 
minerals into 
different fractions

• May not 
completely remove 
all inorganic 
contaminants

• Potential for 
feedstock losses 
during the sieving 
process

[161]

• Simple and 
straightforward 
pretreatment 
process

• Low-cost ash 
mitigation process

Biomass 
washing: 
Water washing 
and leaching

• Field rain washing is 
inexpensive and 
returns nutrients to 
the soil

• Field rain washing 
is limited by 
weather 
unpredictability 
and can lead to 
organic 
degradation and 
material loss

[93,109,
158,
162–165]

• Simple and 
straightforward 
treatment process

• May not be 
sufficient to 
remove intrinsic 
ash species

• Removes extrinsic 
ash components

• Using surfactant- 
mediated  

Table 4 (continued )

inorganics removal 
approaches is non- 
selective, poten
tially extracting 
lipids and proteins 
during the process

• Decrease ash- 
related issues

• Can disrupt the 
chemical structure 
and morphology of 
biomass

• Surfactant can be 
added to the water 
to increase the ash 
removal efficiency

• High water 
consumption 
required for the 
washing process

• Reduces alkaline 
metal and AMEs 
content in biomass

• Wastewater 
generated needs to 
be treated, adding 
operational costs

• Decreases harmful 
emissions of 
pollutants like 
chlorine, sulfur, and 
nitrogen

• Potential loss of 
water-soluble nu
trients in the 
biomass

• Minimal impact on 
physicochemical 
properties of 
biomass

• Consumes energy 
for heating, 
pumping, and 
drying the treated 
biomass

Hot-water 
extraction

• Reduces Na, K, and 
Ca concentrations, 
increasing the 
higher heating 
value (HHV) of the 
bio-oil

• Cannot completely 
remove the 
divalent AAEM 
species like Mg and 
Ca from the 
biomass.

[108,123,
166–168]

• Improved bio-oil 
composition

• Downstream 
drying of treated 
biomass requires 
high energy input, 
increasing costs in 
the bio-oil.

• Effectively remove a 
large fraction 
(50–100 %) of the 
alkaline metals and 
AEMs, especially the 
monovalent K.

• Disposal of 
leachate 
containing 
removed 
inorganics can be 
challenging

• Limited increases in 
the yields of sugars 
in the bio-oil.

​

Chemical 
pretreatment: 
Acid 
Pretreatment

• Effectively removes 
inorganic minerals, 
alkali and alkaline 
earth metals from 
biomass.

• Acidic leachate 
requires proper 
disposal, 
increasing 
operational costs

[123,
169–183]

• Causes structural 
changes, increasing 
biomass energy 
density and 
accessibility

• Additional 
pretreatment 
increases 
complexity and 
cost of the overall 
process.

• Increased aromatic 
hydrocarbon yield 
by removing alkali 
and alkaline earth 
metals.

• Corrosive nature 
requires expensive 
non-corrosive 
reactor materials.

• Prevents catalytic 
effects of inherent 
or added alkaline 
metals and AEMs

• Limited 
understanding of 
the removal 
mechanism of 
inorganic species

• Improves bio-oil 
yield and quality

• Can lead to 4–15 % 
biomass loss

• Improves pyrolysis 
selectivity towards 
bio-oil, reduces char 
and gas yields.

• Difficulty removes 
calcium in some 
feedstocks

(continued on next page)

L. Ding et al.                                                                                                                                                                                                                                     Energy 322 (2025) 135697 

10 



biomass surface to increase pyrolysis efficiency but also mitigates ash 
and inorganic content through subsequential screening [83]. Addition
ally, extrinsic inorganic species can be removed from the screening 
process.

Air classification and mechanical sieving are widely used in me
chanical pretreatment. Air classification, known as air aspiration, sep
arates biomass into different fractions based on density profiles [160]. 
Thompson et al. reported that the lighter fraction contains higher ash 
forming elements, such as Si and alkaline metals [159]. Air aspiration 
has demonstrated strong performance in removing approximately 40 % 
of extrinsic inorganic compounds and ash content from biomass before 
pyrolysis. Additionally, it offers significant flexibility in adapting to 
various feedstocks while maintaining economic viability, with an esti
mated cost of $2.23 per ton of biomass [158,159]. However, air classi
fication is limited in removing intrinsic inorganic species and results in 
approximately 34 % biomass loss [159].

Similar to air aspiration, vibratory screening separate biomass into 
different fractions. This process utilizes a vibrating screen or series of 
screens to classify particles, with smaller particles passing through the 
screen openings while larger particles are retained [161]. Pradhan 
examined the ash removal efficiency of pinewood and sweet gum and 
reported that vibratory screening can remove 17–27 % ash content 

Table 4 (continued )

• Alters bio-oil 
composition, 
increasing oxygen 
content and anhy
dro sugars.

• Can cause 
agglomeration and 
clogging issues 
during continuous 
pyrolysis

• Reduces ash-related 
issues like slagging, 
fouling, and 
corrosion

• Decreases H2 

production at both 
low and high 
temperatures

• Concentrates 
inorganics in the 
solid char for 
separate utilization.

​

• Passivates AAEMs 
by converting them 
into normal and 
acid salts.

​

• Increases sugar 
yields, especially 
levoglucosan (up to 
55 % of cellulose)

​

Alkaline 
pretreatment

• Effective at 
removing inorganic 
contaminants from 
biomass

• Forms salts to 
inhibit the bio-oil 
production

• Generates 
significant 
amounts of 
wastewater 
requiring further 
treatment.

• Reduces bio-oil 
yield

• Inhibits syngas 
energy output at 
high pyrolysis 
temperature

• Removes lignin 
resulting in 
reduction in 
energy density

[172,181,
184–189]

• Solubilizes lignin 
and enhances 
cellulose 
digestibility

• Enhances 
depolymerization of 
hemicellulose and 
cellulose, benefiting 
thermochemical 
conversion

• Increase alkali and 
alkaline earth metal 
(AAEM) content in 
biomass

• Enhances gas and 
char yields at low 
pyrolysis 
temperature (823 K)

• Promotes H2 

production at both 
low and high 
temperatures

Thermal 
pretreatment: 
Hydrothermal 
pretreatment

• Retain structural 
carbohydrates and 
lignin

• Silica content in 
ash is relatively 
stable and not 
significantly 
reduced

• Some inorganics 
like Pb and As are 
not effectively 
removed

• Potential loss in 
overall yield of 
useable pyrolysis 
oil products

• Can lead to 
catalyst 
deactivation

[190–198]

• Majorly disrupt 
biomass structure 
and retain structural 
carbohydrates and 
lignin

• Effectively removes 
heavy metals like 
Ni, Ag, Pb, Zn, Cu, 
As, Cd, Cr

• Effectively reduces 
ash content

• Reduces slagging 
and fouling 
tendencies of 
biomass ash

• Decreases alkali 
index and chlorine 
content to avoid 
corrosion

• Wide adaptability to 
different feedstocks

Torrefaction • Removes ash with 
depolymerization of 
structural 
carbohydrates

• Lowers bio-oil 
yields

• Complex and 
energy-intensive 
pre-treatment 
process

[99,165,
199–204]

• Significantly 
reduces ash-forming  

Table 4 (continued )

• Potential loss of 
desirable organic 
components

• Challenges in 
scaling up the 
technology

elements like Na, 
Mg, K, and Ca.

• Improves fuel 
quality by reducing 
oxygen content and 
increasing energy 
density

• Improves bio-oil 
quality

• Increases phenol 
content

• Increases anhydro 
sugar yields

• Increases syngas 
yields

• Mitigates slagging, 
corrosion, and 
agglomeration 
during biomass 
thermal conversion

Advanced 
process: 
Sequential 
pretreatment 
processing

• Combining different 
pretreatment 
technologies

• Additional 
preprocessing 
steps incur capital 
and operating 
costs

[205–207]

• Optimizes inorganic 
removal •

Additional 
optimization is 

needed
• Provides flexibility 

to process various 
resources of 
feedstocks

Microwave- 
assisted 
pretreatment

• Applied to acid, 
alkaline, and 
hydrothermal 
pretreatment

• Causes 
microexplosions 
and uneven 
treatment of 
biomass

[178,184,
208–210]

• Increases energy 
efficiency

• Potential 
incomplete 
transformation of 
pyrolysis 
intermediates, 
leading to lower 
organic product 
yields

• Increases organic 
accessibility

​
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[212]. However, this process primarily removes extrinsic inorganic 
species and also contribute to mass loss.

5.3. Biomass washing

Biomass washing is an economical approach to remove inorganic 
species from biomass and decrease ash-related issues, such as slagging, 
fouling, and corrosion [158,164]. Additionally, water washing and 
leaching also mitigate the harmful emissions from Cl, S, and N [164].

Both rainfall in the field and laboratory-scale soaking, leaching, and 
dewatering have demonstrated efficacy in reducing inorganic content 
[93]. Meester et al. reported that about 80–90 % of K and Cl can be 
removed by multiple extractions with fresh water [213]. Compared to 
water washing in the lab, field rain washing is inexpensive and returns 
nutrients to the soil but is limited by weather unpredictability and can 
lead to organic degradation and material loss by 15 % [93]. Water 
washing can be performed using spraying, flushing, or soaking with cold 
or hot water in a temperature-controlled environment. Among these 
methods, soaking proves more effective than spraying or flushing, with 
hot water achieving better results than cold [162]. Water washing at 
near boiling temperatures can remove ash species introduced in soil 
contamination [109]. Surfactants can be added to the water to increase 
the ash removal efficiency. However, using surfactant-mediated in
organics removal approaches is non-selective, potentially extracting 
lipids and proteins during the process [163].

While water washing primarily removes extrinsic inorganic matter, it 
can also cause minor disruptions to biomass morphology and, resulting 
in loss of water-soluble nutrients, such as carbohydrates and proteins 
[213]. Additionally, the process incurs increased operational costs due 
to high water consumption, wastewater treatment requirements, and the 
need for additional energy to dry the biomass after washing [164]. The 
cost of water leaching to remove alkaline metals and AEMs was esti
mated at $8 per ton of dry biomass [213].

Hot-water extraction (HWE) has demonstrated success in removing 
inorganic metal species from the biomass that would increase bio-oil 
yields [123]. Mohammed et al. reported that hot-water treatment 
significantly reduced Na, K, and Ca concentrations, increasing the 
higher heating value (HHV) of the bio-oil [166]. Tarves et al. demon
strated that treating shrub willow by HWE reduced the concentration of 
inorganic minerals, such as Ca, K, Mg, P, and S, improving bio-oil’s 

heating value by 5 % with reducing hemicellulose content [167]. Similar 
results were reported by Mourant et al. indicating that Na, K, and Mg 
were significantly removed using HWE at near to boiling temperature 
[108]. Overall, HWE is an efficient and cost-effective technique, 
removing inorganic minerals or alkali metals and enhancing bio-oil 
quality [123]. However, hot water extraction has lower removal rate 
of AEMs due to its lower mobility and weaker divalent binding strength 
with water compared to alkaline metals [214]. Similar to water washing 
and leaching, the resulting waste stream can also pose potential envi
ronmental burdens.

5.4. Chemical pretreatment

Acid and alkaline pretreatments have merged as effective methods 
for modifying the composition of lignocellulosic feedstocks, particularly 
in removing inorganic species and altering the structure of biomass 
components [215]. Various acids and bases have been used to mitigate 
ash-forming elements before pyrolysis. These pretreatments play a 
crucial role in enhancing pyrolysis efficiency and improving bio-oil 
quality.

5.4.1. Acid pretreatment
Acid pretreatment primarily solubilizes hemicellulose and alters 

biomass structure, facilitating removal of soluble metals and insoluble 
minerals not physiologically bound to the plant tissue. Sulfuric acid, 
hydrochloric acid, phosphoric acid, acetic acids, nitric acid, and formic 
acids have been commonly used in biomass pretreatment for bioenergy 
conversions [169,170,172,174,175]. The cleavage of C-O bond among 
structural carbohydrates and lignin as well as the breaking of ether bond 
within lignin by acids facilitates hemicellulose solubilization and in
organics extraction. It results in increasing heating value of biomass 
with condensation of aromatic compounds in biomass [123,179]. 
Reducing alkaline inorganic species mitigates their catalytic effect on 
thermal decomposition of biomass, resulting in higher yields and better 
quality of bio-oil [103]. The efficiency of inorganic leaching increases 
with higher concentration of the acidic solvent [123].

Meesters et al. demonstrated that acid pretreatment can be designed 
to extract targeted AEMs with over 80 % efficiency [213]. Acid leaching 
with acetic acid removed approximately 60–86 % of alkaline metals and 
AEMs [177]. Hong et al. investigated the efficiency of inorganic removal 

Fig. 5. Biomass-to-bioenergy pipeline via pretreatment and pyrolysis.
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from white pine and rice husk using 7 % HCl, H3PO4, and H2SO4, 
reporting 55–88 % removal rates for alkaline species. Among these 
acids, HCl and H3PO4 exhibited the highest efficiency for AEMs removal, 
achieving rates of 78–88 % [170]. Stefanidis et al. found that nitric acid 
treatment at room temperature for 5 h removed over 90 % of inorganics 
[169]. Pascoli dilute H2SO4 treatment achieved up to 81 % ash removal 
from pine chips [176]. Liu et al. examined the effect of HCl concentra
tion on microalgae pretreatment, finding that increasing HCl concen
tration to 4M removed approximately 79 % of Al. However, the overall 
ash removal rate remained relatively low at 38 % [151].

In addition to inorganic removal, acid pretreatment passivates 
alkaline metals and AEMs, enhancing biomass susceptibility to thermal 
decomposition and significantly increasing bio-oil yields while 
improving quality by reducing acidity and viscosity [178]. Usino et al. 
found that mahogany bio-oil yields increased by over 70 % after acid 
pretreatment with 1 % H2SO4. Results of 46 % bio-oil yield increase 
were reported by Pittman et al. from corn stalks acid pretreatment using 
2 % H2SO4 [183]. Pienihäkkinen et al. reported that nitric acid pre
treatment increased bio-oil yields by over 40 % from the pyrolysis of 
eucalyptus residues and wheat straw [168]. Similar results were 
observed in the pyrolysis of pretreated agricultural residues. Wang et al. 
reported that 10–46 % increase in bio-oil yield from sweetgum, 
switchgrass, and corn stover after 1 % H2SO4 pretreatment [173]. Zhou 
et al. summarized that about 20 % reduction in bio-oil acidity was 
achieved from HCl pretreatment [173]. Tan et al. concluded that acid 
pretreatment not only enhances bio-oil yields but also increases sugar 
yields for bioenergy conversion [216].

Although acid pretreatment is seen as an efficient approach for 
inorganic mitigation, the post-treatment of acid leachate presents 
challenge due to its potential content of hazardous metals. Additionally, 
the corrosive nature of acid increases operational and maintenance 
costs, necessitating expensive non-corrosive construction materials for 
reactors [131]. However, its high sugar content resulting from cellulose 
and hemicellulose degradations offers opportunities for producing 
value-added coproducts [123]. Notably, Horhammer et al. demon
strated that a subsequent neutral wash following dilute acid pretreat
ment further enhanced mineral removal from biomass, eliminating all K 
and Mn, and 94 % of Mg [95]. To date, limited studies have examined 
the economic and environmental costs and benefits of acid pretreatment 
and its overall impact on biomass pyrolysis. This lack of research leaves 
gaps in our understanding of how to design a sustainable inorganic 
mitigation for bioenergy production from biomass pyrolysis.

5.4.2. Alkaline pretreatment
Alkaline pretreatment is another process to enhance biomass depo

lymerization by disrupting glycosidic and ester bonds between lignin 
and hemicellulose, leading to primarily solubilizing lignin and keeping 
most parts of cellulose intact [166,181]. NaOH, KOH, Ca(OH)2, and 
NH4OH have been commonly used in alkaline pretreatments [123,184,
185]. With the solubilization of lignin, biomass structure is disrupted, 
resulting in cellulose swelling, increasing accessibility to biomass 
decomposing, and facilitating ash removal [181,217].

Unlike acid pretreatment, alkaline pretreatment could decrease bio- 
oil yield. Wang et al. found about 10 % reduction in bio-oil yield from 
loblolly pine pyrolysis after pretreatment with 0.5 % NaOH [172]. 
Similar results were reported by Mohammed et al. indicating 9 % 
decrease in bio-oil yield from the pyrolysis of 5 % NaOH pretreated 
Napier grass [166]. However, Ellison et al. observed a marginal increase 
in bio-oil from the pyrolysis of NaOH pretreated eucalyptus residue 
[186]. Hernández-Beltrán et al. concluded that the effects of alkaline 
pretreatment on the composition of bio-oil, biochar, and biogas vary 
depending on the biomass feedstock [188]. To optimize bio-oil yield 
while preserving cellulose, Raveendran et al. investigated the combi
nation of acid and alkaline pretreatments. The results demonstrated 
increase in bio-oil yields of 16–23 %, 39 % and over 75 % were explored 
from the pyrolysis of 10 % HCl-5 %NaOH pretreated corn residues, rice 

husk, and subabul wood, respectively [218].
In addition to its impact on bio-oil yield, alkaline pretreatment has 

been shown to reduce biochar yield. Palniandy et al. reported a 10 % 
decrease in biochar yield from the pyrolysis of rice husk. Notably, 
alkaline pretreatment increases the carbon content of biomass and alters 
the functional groups of biochar, enhancing its catalytic activity and 
potential applications [187].

Though alkaline effectively solubilizes lignin, alter biomass struc
ture, remain cellulose, and enhance inorganics mitigation, the potential 
formation of salts, such as NaCl, Na2SO4, K2SO4, and K2CO3, from alkali 
agents could reduce the bio-oil yields [130]. Similar to acid pretreat
ment, leachate from the alkaline poses required waste treatment to 
mitigate pollution risks, leading to an increase in operational and capital 
costs [189].

5.5. Thermal pretreatment

Thermal pretreatment is seen as a physiochemical process to 
deconstruct biomass to enhance its accessibility for further conversions. 
Hydrothermal and torrefactions have been widely used in biomass 
pretreatment for bioenergy production through different conversion 
routes. For its applications in inorganic mitigation, the hydrothermal 
process utilizes pressure and high temperature to solubilize inorganic 
species; torrefaction directly uses heat to break down the biomass 
structure, removing the intrinsic inorganic matter, which then improves 
pyrolysis efficiency and bioenergy quality [193].

5.5.1. Hydrothermal pretreatment
Hydrothermal pretreatment effectively removes loose dirt and 

structural ash, eliminating up to 90 % of Ca, S, P, Mg, and K, and less 
than 50 % of Fe and Mn from biomass, resulting in a homogenized, 
carbon-rich, energy-dense solid fuel, biochar, through pyrolysis [190]. 
Processing temperature and duration are critical factors influencing 
biomass deconstruction and ash mitigation. A wide range of tempera
tures (120–230 ◦C) and processing times (30 min to 2 h) have been 
explored. Reza et al. reported that hydrothermal carbonization at 130 ◦C 
for 2 h, assisted by citric acid, effectively reduced heavy metals, 
lowering structural ash content by 77–93 % without adversely affecting 
the cellulose, hemicellulose, or lignin composition [191]. Lu et al. 
observed an increase in ash content reduction from 13 % to 21 % as the 
processing temperature rose from 120 ◦C to 180 ◦C. Vallejo et al. 
highlighted that intrinsic inorganic species migrated from biomass to the 
liquid phase during hydrothermal processing, reducing the impact of 
minerals on biomass pyrolysis and product properties. Additionally, 
they demonstrated the broad adaptability of hydrothermal pretreatment 
to various feedstock blends, achieving up to a 70 % increase in energy 
yield and a 46 % improvement in higher heating value (HHV) from 
different biomass sources [195].

However, solely hydrothermal process primarily reduces biomass 
crystallinity and partially solubilizes hemicellulose [219]. The effec
tiveness of hydrothermal treatment in enhancing ash reduction, 
improving product HHV, and increasing pyrolysis efficiency is signifi
cantly higher when assisted by additional chemicals [191,195]. The use 
of chemical additives introduces additional leachate handling re
quirements, similar to acid and alkaline treatments, and may lead to 
catalyst deactivation during pyrolysis [197,198]. Other challenges 
associated with hydrothermal pretreatment include biomass loss and the 
limited reduction of Si, Pb, and As [195–197]. Furthermore, limited 
studies have investigated the effects of hydrothermal processing on 
bioenergy product yield and distribution, resulting in knowledge gaps 
regarding the optimization of hydrothermal pretreatment for regulating 
bioenergy production from pyrolysis.

5.5.2. Torrefaction
Unlike hydrothermal process, torrefaction is performed at 200–300 

oC with low heating rate under inert atmospheric conditions to 
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deconstruct biomass [123]. The extent of biomass deconstruction is 
primarily determined by torrefaction temperature. In light torrefaction 
(200–235 ◦C), hemicellulose degradation occurs through the breaking of 
glycosidic bonds and the dehydration of hydroxyl groups. Mild torre
faction (235–275 ◦C) primarily breaks glycosidic and hydrogen bonds, 
leading to the depolymerization of free hydroxyl groups in hemicellu
lose and cellulose, resulting in further structural breakdown. Severe 
torrefaction (275–300 ◦C) causes near-complete degradation of hemi
cellulose and significant depolymerization of cellulose [123,200]. With 
depolymerization and degradation of cellulose and hemicellulose, the 
intrinsic ash-forming species can be removed. Sutapa and Hidyatullah 
reported that about 50 % total ash were removed from Calliandra wood 
by torrefaction [220].

In addition to ash reduction, torrefaction also increases energy 
density and improves fuel quality by reducing oxygen content [199,201,
202]. Tumuluru et al. reported that the heating value of pine chips 
doubled after torrefaction at 270 oC, while the total lignin content 
increased to 68 % after the torrefaction at 300 oC [204]. Ren et al. found 
that torrefaction increased syngas quality, resulting in a 32 % increase in 
H2 content and a 12 % increase in CO content [99]. Moreover, torre
faction increased carbon conversion to 93 % to syngas production [204]. 
For bio-oil production, torrefaction increases anhydro sugar production 
due to its primary effects on depolymerization of structural carbohy
drates [204]. However, it leads to lower bio-oil yields. Tran et al. 
observed about 4.5 % reduction in bio-oil yield from pyrolysis of tor
refied spruce wood [203]. Moreover, torrefaction effectively alleviates 
the slagging, corrosion, agglomeration issues by reducing ash-forming 
inorganic species from biomass [199].

However, torrefaction pretreatment can result in up to 30 % biomass 
loss, leading to a significant reduction in organic compounds available 
for biofuel conversion [204]. Additionally, high energy requirements 
and fine particulate emissions are major concerns associated with tor
refaction [165]. Its complex and energy-intensive nature poses signifi
cant challenges to large-scale commercialization.

5.6. Advanced preprocessing

5.6.1. Sequential pretreatments
The sequential pretreatments, integrating different biomass decon

struction processes to optimize ash mitigation and increase bioenergy 
yield and quality, have been introduced. Wigley et al. combined dilute 
acid pretreatment with torrefaction in series for pinus radiate wood, 
resulting 25 % increase in bio-oil yield [205]. Chen et al. applied 
sequential wash and torrefaction pretreatment to cotton stalk, which 
increased HHV of biofuel by 37 % but its bio-oil yield decreased from 42 
% to 24 % [206]. Zhang et al. reported marginal increase in bio-oil yield 
and its HHV by about 2 % from the sequential light torrefaction and acid 
leaching for rice husk [207].

While sequential pretreatment offers flexibility in processing diverse 
feedstocks, it also presents challenges. Additional processing steps in
crease operational costs, and further optimization is required to inte
grate different processing technologies into a single pipeline. Future 
research is necessary to inform the development of more efficient 
sequential pretreatment systems for bioenergy conversion. This includes 
optimizing process parameters, exploring cost-effective integration 
strategies, and assessing the overall economic and environmental im
pacts of these integrated systems.

5.6.2. Microwave-assisted pretreatment
Microwave technology has been applied to facilitate acid, alkaline, 

and hydrothermal pretreatment, effectively reducing biomass crystal
linity, improving inorganic species mitigation, increasing organic matter 
accessibility, and enhancing energy efficiency [178,208,209]. 
Álvarez-Chávez et al. found that microwave-assisted hydrothermal 
pretreatment achieved a 58 % ash reduction and increased organic 
species accessibility by 18.5 % for spruce wood [208]. Chen et al. 

reported that microwave-assisted formic acid pretreatment increased 
aromatic product yields from lignin decomposition to 30 % [178]. 
Moreover, microwave-assisted alkaline pretreatment has been shown to 
enhance biomass porosity and surface area while selectively solubilizing 
lignin and hemicellulose, improving the removal of intrinsic inorganic 
species [184].

However, excessive microwave exposure can cause microexplosions 
within the biomass structure, leading to uneven heating, microstructural 
collapse, and increased recalcitrance [210]. The rapid heating associ
ated with microwave-assisted pretreatment may also result in incom
plete transformation of depolymerized intermediates, reducing organic 
product yields and biofuel production [178]. Therefore, further opti
mization of microwave assisted pretreatment is necessary to maximize 
the efficiency of biomass pyrolysis.

6. Current status and future perspectives

Inorganic species, particularly alkaline metals and alkaline earth 
metals, impact biomass pyrolysis efficiency and bioenergy quality 
(Table 3). Mechanical pretreatments have been employed to remove 
extrinsic inorganic matter, mitigating operational challenges and facil
itating subsequent processing [158,159]. Various chemical, physico
chemical, and thermal pretreatments have also been introduced to 
address inorganic-related issues, particularly by removing intrinsic 
inorganic species. However, these approaches alter biomass decompo
sition pathways, affecting syngas, bio-oil, and biochar yields, as well as 
their physicochemical properties (Table 4). Compared to conventional 
biomass pretreatment using single processing technology, hybrid 
mechanical-physicochemical methods have been explored to enhance 
biomass deconstruction while preserving organic matter [178,
205–207]. Among these, advanced hydrothermal pretreatment appli
cations have shown great potential for integration with mechanical and 
chemical processes, improving ash mitigation through biomass decon
struction [193,195,196]. Additionally, these methods offer flexibility for 
processing different biomass types based on their chemical composition, 
providing a promising solution to challenges related to feedstock vari
ability, uncertainty, and supply [221]. Further research is needed to 
optimize consolidated biomass pretreatment strategies for accommo
dating biomass variability and feedstock blends.

Gaining a deeper understanding of inorganic migration mechanisms 
is a crucial area for future research, particularly in the development of 
consolidated pretreatments that integrate multiple technologies within 
the biomass-to-bioenergy pipeline. Leveraging the principles of me
chanical, chemical, and hydrothermal pretreatments to explore their 
synergistic effects could mark a significant milestone in bioenergy 
conversion. Additionally, strategically balancing gas, liquid, and solid 
bioenergy yields through intelligent pretreatment design presents a 
critical opportunity to enhance the efficiency and viability of biomass 
pyrolysis. Furthermore, integrating advanced modeling techniques, 
such as computational fluid dynamics and machine learning algorithms, 
could greatly improve the ability to predict and control inorganic 
migration during pyrolysis, leading to more precise process optimization 
and improved bioenergy yields [222].

Economic and environmental viability is another major concern for 
consolidated pretreatments. Multiple operations increase operational 
costs and capital investments. Several studies have conducted the 
techno-economic analysis of biomass pyrolysis for bioenergy production 
from wood using different pretreatments prior to pyrolysis, and the cost 
biofuel ranges from $2.58-$4.13/gal [112,223,224]. However, limited 
studies have performed the cost analysis and prediction focusing on 
biomass pretreatment for further pyrolysis. Though higher operational 
costs are expected for the consolidated pretreatments due to additional 
processing units, the higher quality of biofuel and coproduct recycling 
can increase the total revenues and improve overall economic 
feasibility.

For carbon footprint of biofuel production, Lan et al. reported that a 
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range from 40.8 to 41.2 g CO2e/MJ biofuel from pine residues via fast 
pyrolysis was observed [225]. Notably, the carbon footprint can be 
reduced by over 50 % when biochar is reused as a soil amendment, 
resulting in 19.0–19.7 g CO2e/MJ. This study has provided great insight 
into the carbon dynamics of biofuel production from woody biomass. 
However, limited studies have highlighted the environmental impacts 
derived from the leachate from biomass pretreatment. It will help the 
development of consolidated biomass pretreatment and pyrolysis to 
optimize bioenergy production and sustainably manage its coproducts 
and waste streams.

Future research should also focus on reducing the high feedstock 
costs, which are a major economic driver, and exploring innovative 
pretreatment methods to enhance the overall efficiency and environ
mental performance of biofuel production systems.

7. Conclusion

This review synthesizes insights from peer-reviewed publications to 
examine the quantity, distribution, and roles of inorganic species within 
anatomical fractions of woody biomass. It addresses three key research 
questions: (1) the total ash content and specific inorganic species 
introduced at various stages of biomass supply logistics, (2) the specific 
impacts of extrinsic and intrinsic inorganic species on biomass pyrolysis, 
and (3) the critical unit operations and most efficient methods for 
managing ash, specifically whether these opportunities are best imple
mented early in the supply chain or by integrating preprocessing with 
biorefinery operations. However, few studies have focused on these 
areas, and significant data gaps hinder our ability to assess the economic 
and environmental trade-offs between increased processing costs to 
achieve lower ash levels and the higher biofuel production costs asso
ciated with elevated ash content.

A comprehensive understanding of inorganic profiles in biomass is 
fundamental to effective ash mitigation and process optimization in 
thermochemical conversions. Biomass pretreatment strategies present 
opportunities for advanced process design, improving bioenergy con
version efficiency while enhancing co-product utilization and waste 
management. Optimizing these factors is essential for increasing the 
economic and environmental viability of biomass-to-bioenergy path
ways, particularly through pyrolysis. Consolidated biomass pretreat
ment offers a promising approach, not only for effectively mitigating 
inorganic species and enhancing product yields and quality but also for 
facilitating coproduct recovery and waste minimization.

Future studies should focus on leveraging the synergistic effect 
integrating different pretreatments to improve the overall efficiency of 
biomass pyrolysis. Additionally, advanced modeling techniques, such as 
dynamics simulation and machine learning, should be employed to 
better predict and control inorganic migration during thermal conver
sion. Further research should also explore the economic and environ
mental trade-offs associated with various ash mitigation strategies, 
assessing their feasibility across different biomass supply chains. By 
addressing these gaps, future studies can contribute to the development 
of more efficient, cost-effective, and sustainable biomass-to-bioenergy 
processes, ultimately enhancing the viability of biofuels as a renew
able energy source.
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