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First principles understanding of el
transport in 5f electron materials in
irradiation environments

Science Question 1
What is the impact of 5f electrons
¢n phonon and electron structure in
Th,.,UO, and UZr alloys?
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Science Question 2
How do intrinsic and irradiation-
induced defects self-organize in
Th,.,UO, and UZr alloys, and
what are their impacts on
electron and phonon scattering?
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Science Question 3
What are the collective effects of
defects, defect ordering, and
defect supersaturation on

thermal transport of
Th-. 11.0-and [17r allovs?
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Thorium Dioxide Crystal Structure and Synthesis

Deposition on
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Refractive |ndeX (n)ﬂ 2105 (at 5893 nm) §P. Macedo, W. Capps, J. Wachtmann/ J. Amer. Ceram. Soc. (1964)

1J. Belle, RM. B , DOE/NE—0060, (1984
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Hydrothermal Crystal Synthesis Method

Spontaneous nucleation performed
in silver ampoules

ThO, feedstock powder placed in
silver ampoule

6M CsF mineralizer solution used to
dissolve feedstock and transport it
to crystallization zone

Water counter-pressure applied to
silver ampoule

Reaction conditions maintained for
10 days

2.63 mm

J. Castilow, et al., Mater. Res. Soc. Sym%Proc Vol.
1576 (2013)
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lon Irradiation at Texas A&M Accelerator Laboratory

Sample ID Avg. dpa in H* ion H* ion irradiation  Irradiation Temperature
Plateau Region  energy  fluence (ions/cm?)
(0-12.5 pm)
ThO2-SN-8h 0.01 dpa 2 MeV 1.73x 10" Room Temperature

ThO2-SN-8¢c 0.1 dpa 2 MeV 1.73x 108 Room Temperature
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Changes in Optical Absorption after lon Irradiation

Pre-Irradiation
»  Proton irradiation changed thorium dioxide a

colorless crystal to a dark blue appearance

>  Change in optical absorption due to electrons ThO2-SN-8h
trapped in point defects that create states within
the bandgap 0.01 dpa
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B.G. Childs, P.J. Harvey, and J.B. Hallett, Color centers
and point defects in irradiated thoria.
J. Am. Cer. Soc., 53(8), 431-435 (1970).

Post-Irradiation
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Characterization of Microstructural Damage via Optical Spectroscopy

Extinction Coefficient k (a.u.)
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» Optical Absorption/ emission could be
influenced by electronic transitions from
intervalence bands created by irradiation-
induced defects, or by charged defects

» Intensities of absorbed/ emitted spectra may
be used to correlate with displacement
damage levels

‘ Trapped
electron in

anionic
e vacancy
6
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Damage Profile using SRIM
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» 2 MeV H* ions at normal incidence " “Peak Damage Region _
> Total fluence: 8.65 x 10" ions/cm?
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R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner: On the use of SRIM for computing radiation damage exposure.
Nucl. Instrum. Methods Phys. Res., Sect. B. 310, 75 (2013).
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Laser-based Modulated Thermoreflectance Method
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M. Khafizov, V. Chauhan, Y. Wang, F. Riyad, N. Hang, D.H. Hurley, Investigation of thermal transport in composites and ion beam irradiated materials for nuclear energy applications.
J. Mater. Res., 32(1), 204-216 (2017).
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Thermal Wave Amplitude & Phase Profiles in Pristine ThO,

Room Temperature Measurements
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Fitted room temperature thermal diffusivity of pristine ThO,:

Using room temperature density p = 10.01 g/cm?® and heat
capacity C, = 229.1 J/(kg K), the thermal conductivity of
pristine ThO, is:
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Temperature-dependent Phase Profiles in Pristine ThO,

Phase Profiles on Pristine ThO,
measured from 77 K - 295 K at 50 kHz
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> Phase profiles become more steep with increasing temperature
> Indicates change in thermal diffusivity with temperature

10
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Temperature-dependent Phase Profiles in Irradiated ThO,

Phase Profiles on 0.01 dpa ThO, Phase Profiles on 0.05 dpa ThO,
measured from 77 K - 295 K at 50 kHz measured from 77 K - 295 K at 50 kHz
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Damage Dose Dependence of Thermal Wave Phase Profiles

Phase Profiles for different damage Phase Profiles for different damage
doses measured at 50 kHz and 77 K doses measured at 50 kHz and 295 K
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> Phase profiles become steeper with increasing displacement damage
» Change in slope more pronounced at low temperatures 12
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Temperature- and Dose-Dependent Thermal Conductivity
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» Reduction in thermal conductivity with
temperature in pristine ThO, — three-phonon
processes mediated by lattice anharmonicity

» Strong influence of irradiation-induced defects -
~60% & ~80% reduction in 0.01 dpa and 0.05
dpa, respectively at room temperature.

» Low temperature dependence in irradiated

samples, with slight decrease at lower
temperature

13



Temperature-Dependent Thermal Conductivity using Boltzmann Transport

Formalism
5 ' ] | ' ' BTE with relaxation time approximation:
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R. O. Pohl, Influence of F centers on the lattice thermal conductivity in LiF. Physical Review, 118(6), 1499 (1960).
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Summary & Conclusions

» Investigated the influence of microstructural defects induced by irradiating single crystal ThO,
samples with 2 MeV H* ions at room temperature

> Irradiation-induced optical absorption peaks suggest formation of F-center defects in crystal
|attice

» Spatially-resolved thermal transport measurements performed on the length-scale of
microstructural heterogeneity (within the damage layer) using a modulated thermoreflectance

approach

> Irradiation-induced damage strongly affects thermal diffusivity/ conductivity — ~83% reduction
from pristine to 0.05 dpa at 295 K

» BTE model with scattering rates for different processes shows that resonant scattering from
strain fields associated with F-centers

» Future outlook:

» DFT modeling of electronic transitions will be compared with optical absorption ellipsometry
measurements

15
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