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U3Si2 is being considered as a potential
accident-tolerant fuel
• Compared with UO2:
– Lower melting temperature
– But higher thermal conductivity

may give higher margin to melting
temperature

• U3Si2 swelling/fission gas
release behavior less well
characterized
– Evidence from higher-temperature

irradiation suggests pellet-form
fuel would remain crystalline, have
similar microstructure to UO2 fuel

• BISON model recently
developed based on these
assumptions

Barani et al., J. Nuclear Mater., 522, 97-110 (2019)

U3Si2 irradiated at ~950 K and ~6
GWd/tU (Shimizu, NAA-SR-1062,

1965).

U3Si2 implanted with Xe at 873K
(Miao et al., J. Nuclear Mater.,
503, 314-322 (2018)
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Lower length scale calculations to reduce
uncertainty in BISON

• Sensitivity analysis of Bison U3Si2 swelling and gas release
predictions showed strong dependence on inter-granular bubble
dihedral angle and surface energy
– Measured values also not available

• Surface energy and grain boundary energies were determined for
U3Si2 using molecular dynamics (MD) calculations
– Dihedral angle (θ) calculated from surface energy and grain

boundary energy; input to Bison
– Data also used to parameterize the Marmot phase-field model

Beeler, Baskes, Andersson, Cooper, Y. Zhang, J. Nucl. Mater., 514, 290-298 (2019)

Configuration for MD Calculation of
GB Energy
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Lower length scale calculations to reduce
uncertainty in BISON

• Sensitivity analysis also showed strong dependence on saturation
coverage of grain faces (Fc,sat)
– No measured value available for U3Si2

• Phase-field simulations1 showed progress of grain boundary venting
was strongly dependent on intergranular bubble areal density and
dihedral angle
– New phase-field simulations are being used to determine Fc,sat using

U3Si2 parameters
1Millett, Tonks, Biner, L. Zhang, Chockalingham, Y. Zhang, J. Nucl. Mater., 425, 130-135
(2012)
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Phase-Field Model: Essential Physics

• Represent bubble phase
and multiple grains of
U3Si2

• Track vacancies and
fission product species
(Xe only)
– Source terms for production

• Set surface energy and
grain boundary energy
– Controls dihedral angle θ
– Remove bulk energy contribution

to interfacial energy

GB

Grain 2Bubble

Grain 1

θ/2
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Phase-Field Model: Grand-Potential
Functional

• Multi-phase, multi-order parameter extension to
grand-potential model

• Advantages:
– Bulk free energy contribution is removed from interfacial energy
– Allows interfacial thickness and energy to be set independently,

enabling coarser mesh, improved computational performance
– Similar to KKS in this respect, but do not need separate phase

concentration variables, so performance is improved
– Prevents spurious formation of additional phases at two-phase

interfaces
L.K. Aagesen, Y. Gao, D. Schwen, K. Ahmed, Phys. Rev. E, 98, 023309 (2018).
L.K. Aagesen, D. Schwen, M.R. Tonks, Y. Zhang, Comp. Mat. Sci., 161, 35-45 (2019).
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Phase-Field Model Evolution Equations

• Order parameters: Allen-Cahn
• Densities: change to chemical potential for each

species

Gas:

Vacancies:
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Phase-Field Model Initial Conditions

• Intergranular bubble areal density (na):
determine from rate theory simulations
– At 1035 K, na = 15 / μm2

Y. Miao, K.A. Gamble, D. Andersson, B. Ye, Z.-G. Mei, G. Hoffman, A.M. Yacout, Nucl. Eng. Design,
322, 336-344 (2017).
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Phase-Field Model Initial Conditions

• Determine Fc,sat

• 1035 K

• 𝛳/2 = 73
• No-flux Boundary

Conditions

• 3 μm⨉ 3 μm grain
boundary

• Populate with randomly
placed lenticular bubbles,
na = 15 / μm2, minimum
spacing 160 nm

3 μm⨉ 3 μm
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Phase-Field Simulation Results

3 μm⨉ 3 μm



11

Phase-Field Simulation Results

• Plot fractional coverage of GB (XGB
C) and fraction of

bubbles that are vented to edge of domain (XGB
V) vs.

time
– Less rapid increase with respect to time compare to previous

simulations of Millett et al. due to to slow buildup from source terms

• Areal density of bubbles versus time
– Rate of coalescence relatively constant until the bubble density

reaches approximately half its initial value, then slows
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Informing BISON with Phase-Field
Results
• Plot fraction of bubbles that are vented to edge

of domain (XGB
V) versus fractional coverage of

GB (XGB
C)

• Implications for Bison:
– Short term: set Fc,sat where slope of curve is greatest (shown: XGB

C

= 0.62)
– Longer term: modify Bison model to turn off swelling and release

gas gradually following curve shape

Bison assumption Marmot Simulation
Fc,sat
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Effect of Simulation Assumptions on
Predicted Value for BISON Model
• Simulation initial conditions
– Maintain all simulation parameters the

same including minimum spacing lmin =
160 nm

– Change seed in random number
generator used to determine initial
bubble positions

– 5 total configurations simulated using
these parameters

• Mean Fc,sat = 0.60
• Standard deviation indicates

calculated value of Fc,sat is
relatively insensitive to initial
bubble configuration



14

Effect of Minimum Bubble Spacing in
Initial Conditions
• Also simulated lmin = 130 nm, 200 nm, 5

configurations each
• 200 nm: Initial portion of release curve delayed
• Slight decrease in Fc,sat with lmin , but may be just

due to statistical variation

Min.
spacing
(lmin), nm

Fc,sat

130 0.61 ± 0.039

160 0.60 ± 0.036

200 0.58 ± 0.046
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Effect of simulation domain geometry

• Compare venting curves for circular GB versus
square GB
– Circular GB: Fc,sat = 0.61 ± 0.046, Square GB: 0.60 ± 0.036
– Conclude that GB geometry does not have a significant effect



16

Effect of simulation temperature

• Current BISON model assumes Fc,sat is
independent of temperature

• Primary effect of varying temperature: gas
diffusivity Dg

• Ran 5 simulations with T = 1015 K (Dg
decreased by 2x)
– Much finer microstructure at same simulation time
– No change in calculated Fc,sat = 0.60 ± 0.014

Dg = 0.05 nm2/s Dg = 0.1 nm2/s

Microstructur
e at t = 1.98 ×
108 s:
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Conclusions

• BISON predictions of fission gas release and swelling
are strongly dependent on dihedral angle, surface
energy, Fc,sat

– No measured values available

• Phase-field simulations were used to calculate Fc,sat

– Determined without needing to wait for costly post-irradiation
examination

• Fc,sat = 0.60 recommended for BISON U3Si2 model
• No strong effect on Fc,sat from initial conditions, minimum

bubble spacing, simulation domain geometry,
temperature (in range considered)

• BISON simulations of U3Si2 ATR irradiation underway,
using parameters determined from lower length scale
calculation and their uncertainties



Thank you!

Questions?


